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Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-
wise polynomial curves, but without introducing new control points e.g. by knot insertion.
Crease rules are well understood for low degree (cubic and lower) curves. We compare
three main approaches: knot insertion, ghost points, and modifying subdivision rules.
While knot insertion and ghost points work for arbitrary degrees for B-splines, these meth-
ods introduce unnecessary (ghost) control points.

The situation is not so simple in modifying subdivision rules. Based on subdivision and
subspace selection matrices, a novel approach to finding boundary and sharp subdivision
rules that generalises to any degree is presented. Our approach leads to new higher-degree
polynomial subdivision schemes with crease control without introducing new control
points.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

We wish to have arbitrary-degree subdivision surfaces
with creases and boundary conditions that are as robust
as those available for B-spline surfaces [8]. The existing
methods for degree 3 do not generalise to higher degrees.
We have analysed the problem and provide a general solu-
tion, with specific worked examples for degrees up to 7.
We present here our results for curves, which provide
the necessary precursor to the more challenging surface
cases.

Sharp creases and end-point interpolation (including
Bézier end-conditions) in B-spline curves (and by exten-
sion in tensor-product B-spline surfaces) are typically
achieved via multiple knots. Indeed, a knot of multiplicity
m reduces the continuity of a degree d B-spline to Cd�m

from the native Cd�1 continuity at single knots. Thus, to
create a crease, a knot of multiplicity d can be used. To
achieve Bézier end-conditions, knots of multiplicity dþ 1
are included at the start and end of knot vectors.
Instead of using multiple knots to achieve end-point
interpolation, one can use ghost (also known as phantom
or virtual) points. Depending on degree, several ghost
points are pre- and appended to the control polygon. These
are carefully placed (as linear combinations of existing
control points) so that the resulting curve satisfies given
end-conditions. This technique yields modified basis func-
tions formed as linear combinations of B-splines.

A popular alternative to using basis functions to evalu-
ate spline curves and surfaces is recursive subdivision
[18,20]. Creases and boundary interpolation rules can still
be obtained via multiple knots [17,16,12], but there is an
alternative available: smooth subdivision rules are modi-
fied to sharp ones [9,7]. This has the advantage over multi-
ple knots that the user does not need to interact with the
knot vector. The user marks control vertices of a curve
(edges in the surface case) as smooth (default) or sharp.
This leads to an intuitive modelling interface as no extra
control points are introduced, in contrast to knot insertion.

Motivated by these observations and the fact that sharp
rules have so far been limited to low-degree subdivision
[7,1,17,15,16,11,10], we investigate a more general setting
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for introducing sharp creases and boundary interpolation
rules in higher-degree spline curves. Our results then ex-
tend naturally to tensor-product surfaces and potentially
to higher-degree subdivision surfaces, such as those by
Stam [24] and Cashman [2].

The problem of finding crease rules, and our approach
to solving it, comprise our main contribution (Section 3).
We present case studies for odd degrees (Section 4) and
the more challenging even degrees (Section 5), demon-
strated on examples of B-spline subdivision curves with
creases. We show that relaxing some of our requirements
(Section 6) leads to interesting trade-offs between the sim-
plicity of subdivision rules and the behaviour of subdivi-
sion curves at creases and end-points. Before all this, we
present our notation and a summary of the necessary
underlying B-spline theory.
(c)

(d)

(f)

(g)

(e)
2. Preliminaries

Consider a polynomial spline curve of degree d and or-
der k ¼ dþ 1 given by the knot vector t ¼ ðt0; t1; . . . ; tnþdÞ; ti

6 tiþ1, where i ¼ 0; . . . ;nþ d� 1, and by n control points
Pi:

cðtÞ ¼
Xn�1

i¼0

Bi;kðtÞPi; tk�1 6 t 6 tn: ð1Þ

The B-splines Bi;k are defined recursively [6]:

Bi;1ðtÞ ¼
1 if ti 6 t < tiþ1;

0 otherwise;

�
Bi;k ¼

t � ti

tiþk�1 � ti
Bi;k�1ðtÞ þ

tiþk � t
tiþk � tiþ1

Biþ1;k�1ðtÞ;
ð2Þ

with the convention 0
0 ¼ 0. It is typically required that

ti < tiþd for all i ¼ 1; . . . ;n� 1. From this definition it fol-
lows that the support of Bi;k, i.e., the closure of the interval
where it is non-zero, is ½ti; tiþk�.

While many of the ideas that we explore below can be
applied in the general setting of non-uniform knot vectors,
we focus on initially uniform knot vectors ti ¼ i, but knots
are subsequently allowed to become multiple. An example
of uniform B-splines is shown in Fig. 1a. To achieve Bézier
end-conditions, an open-uniform knot vector (end knots
have multiplicity k) can be used; see Fig. 1b.
Fig. 1. A comparison of various cubic splines (left) and the basis functions
(right) used to generate them. All basis functions are either cubic B-splines
or obtained as their linear combinations. (a–d) The flexibility offered by
modelling systems that allow the user to modify knot vectors. Note that (c)
results from (d) by moving two knots to create a knot of multiplicity 3. (e)
The effect of a triple control point (cyan) and the corresponding basis. (f)
Ghost points can be used to force end-point interpolation without
modifying the knot vector. (g) Modifying subdivision rules to allow for
control points to be tagged either as smooth (default) or sharp (green) offers
intuitive control over the resulting spline. End-points are marked as sharp
implicitly even for smooth curves (shown in grey) that have no internal
points marked as sharp. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
2.1. B-spline creases

The typical B-spline approach to creating sharp creases
is by using multiple knots. This follows from the fact that
the continuity of a B-spline of degree d at a knot of multi-
plicity m is Cd�m. In the cubic case, a triple knot is used. For
an existing curve, there are two variants. First, one moves
two knots to create three coalescing knots, i.e., a triple
knot; see Fig. 1c. Second, one inserts a desired knot several
times until its multiplicity reaches m ¼ d; see Fig. 1d. This
introduces new control points that the user can freely
move around. While valid and popular, these solutions
are not ideal, especially when generalised to tensor-prod-
uct surfaces, for the following reasons:
� the user needs to have access to the knot vector and
understand how creating and moving multiple knots
influences the shape of a curve or surface;



Fig. 2. A quintic spline example given by (7) with the corresponding
basis. Ghost control points P�1 and P�2, computed from (6), have been
used at one end. Ghost points used at the other end are not shown.
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� in the surface case, one cannot use a (multiple) knot
locally; a knot line must run across the whole surface
or form a closed loop.

Due to the local convex hull property of B-splines, coa-
lescing control points can be used to force cðtÞ to interpo-
late a control point. Indeed, d superimposed consecutive
control points create a crease in a degree d spline. A cubic
example with a triple control point (cyan) is shown in
Fig. 1e. Note that the basis function corresponding to
the triple control point is given as the sum of three
B-splines.

In simple modelling systems which do not allow the
user to modify knot vectors, multiple coalescing control
points may be the only approach available to obtain
creases without splitting a curve into several pieces. How-
ever, this method suffers from several disadvantages:

� Due to the flatness of the basis function corresponding
to the multiple control point (see Fig. 1e, right), a uni-
form sampling of the parameter interval leads to a
highly non-uniform and dense distribution of points
on the spline in the neighbourhood of the multiple con-
trol point.
� Multiple control points, especially for higher degree

splines, are difficult to handle for the user and have to
be handled properly by the system to avoid unexpected
effects and loss of control.
� In the surface case, d2 coalescing control points are

required to force interpolation in a bi-degree d patch
and the resulting shape is typically undesirable.

We do not pursue multiple control points any further.
A much cleaner approach is based on ghost control

points [21,23,13]; see Fig. 1f. In the cubic case, one adds
an extra ghost point P�1 to the control polygon
ðP0;P1; . . .Þ of a curve and requires the spline to interpolate
P0 for t ¼ 0. In the uniform case, using e.g. blossoming [19]
or (1), this leads to

6cð0Þ ¼ P�1 þ 4P0 þ P1 ¼ 6P0;

or equivalently P�1 ¼ 2P0 � P1. The curve then changes to

cgðtÞ ¼ B�1;4P�1 þ B0;4P0 þ B1;4P1 þ . . .

¼ ð2B�1;4 þ B0;4ÞP0 þ ðB1;4 þ B�1;4ÞP1 þ B2;4P2 þ . . .

with B�1;4 defined by the local knot vector ð�1;0;1;2;3Þ.
Thus the new basis, truncated at t ¼ 0, becomes

ð2B�1;4 þ B0;4;B1;4 þ B�1;4; B2;4; . . .Þ: ð3Þ

An example with ghost points is shown in Fig. 1f. It then
follows that

cgð0Þ ¼ P0; c0gð0Þ ¼ P1 � P0; c00gð0Þ ¼ 0: ð4Þ

Compared to cðtÞ defined over an open-uniform knot vec-
tor with

cð0Þ ¼ P0;

c0ð0Þ ¼ 3ðP1 � P0Þ;
c00ð0Þ ¼ 6P0 � 9P1 þ 3P2;

ð5Þ
leading to Bézier end-conditions, the second derivative and
curvature of cgðtÞ vanish at t ¼ 0. While this is acceptable
in computer graphics, vanishing curvature can be undesir-
able in CAD applications.

One can proceed similarly and use ghost points for
higher degrees as well. For example for d ¼ 5, one can
introduce two ghost points, P�1 and P�2, and require that
cð0Þ ¼ P0 and c0ð0Þ ¼ aðP1 � P0Þ. This leads to

120P0 ¼ P�2 þ 26P�1 þ 66P0 þ 26P1 þ P2;

aðP1 � P0Þ ¼ P2 þ 10P1 � 10P�1 � P�2:
ð6Þ

Consequently, with the choice of a ¼ 24 giving the end-
derivative P1 � P0, one obtains the basis, again truncated
at t ¼ 0,

21
4

B�2;6 þ
15
8

B�1;6 þ B0;6;�
13
2

B�2;6 �
3
4

B�1;6 þ B1;6;
9
4

B�2;6

�
�1

8
B�1;6 þ B2;6;B2;3; . . .

�
; ð7Þ

shown in Fig. 2. Other choices of a are possible.

2.2. Creases in subdivision curves

We now switch the view on the splines considered
above from basis-centred to subdivision-centred. It is well
known (see e.g. Chapter 32 of [20]) that the subdivision
matrix Su for uniform cubic B-splines reads

Su ¼
1
8

. .
.

4 4 0 0 0
1 6 1 0 0
0 4 4 0 0
0 1 6 1 0
0 0 4 4 0
0 0 1 6 1
0 0 0 4 4

. .
.

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

ð8Þ
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and that the subdivision matrix S with Bézier end-condi-
tions given by an open-uniform knot vector reads

S ¼ 1
8

8 0 0 0 0 0
4 4 0 0 0 0
0 6 2 0 0 0
0 3

2
11
2 1 0 0

0 0 4 4 0 0
0 0 1 6 1 0

. .
.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð9Þ

The uniform subdivision mask ½1;4;6;4;1�=8 (or its por-
tions) is highlighted in bold.

In the case of the cubic basis (3) constructed using ghost
points, the subdivision matrix T is easily verified to be

T ¼ 1
8

8 0 0 0 0
4 4 0 0 0
1 6 1 0 0
0 4 4 0 0
0 1 6 1 0

. .
.

0BBBBBBBBB@

1CCCCCCCCCA
: ð10Þ

Note that only one row, the first one corresponding to the
end point, in T is different from the rows of Su in (8). It fol-
lows that a subdivision implementation based on T is
much simpler than that based on S, yet achieves similar ef-
fects; compare the curve in Fig. 1b to that in Fig. 1f. More-
over, using T, one can simply mark control points as
smooth or sharp, thus changing subdivision rules from
½1;6;1�=8 to ½8�=8 as requested by the user. The rule
½4;4�=8 always stays the same. An example is shown in
Fig. 1g, which should be compared with Fig. 1c. This idea
appeared, in the surface case, in [9,7] for Loop and Cat-
mull–Clark subdivision surfaces, respectively.

A natural question arises: Can one obtain similar results
for higher degree splines, including subdivision rules for
sharp creases and boundaries?

Let us inspect the quintic basis (7). It turns out that
while this basis gives creases and good end-conditions, it
is not subdivision-suitable. By that we mean that there is
no subdivision matrix T that links the basis (7) to its uni-
formly refined counterpart with knots inserted into the
middle of every knot interval. The intuition behind this fact
is simple: only four basis functions overlap the first knot
span ½0;1� and thus the basis does not possess full quintic
reproduction there; see Fig. 2. In fact, one can show, e.g.
using the methods developed in Section 3, that no choice
of a in (6) gives a subdivision-suitable basis. Hence one
cannot trivially extend the method of [7] to handle higher
degrees and some new method must be sought.
Fig. 3. The difference between the standard cubic B-spline basis B near a
knot of multiplicity 4, and the new basis N with one fewer (D ¼ 1) basis
function. The natural configuration (given by Greville abscissae in the
case of B) is shown as bullets. Note that sufficiently far from the multiple
knot, the basis functions in B and N are the same uniform B-splines. Their
Greville abscissae are shown in cyan. Compared to four in the case of B,
only three basis function supports overlap the left-most non-zero knot
span.
3. Subdivision crease rules

Our goal is to find subdivision rules at creases in arbi-
trary degree subdivision for piece-wise polynomial curves,
but without introducing new control points e.g. by knot
insertion. We want the cubic solution (10) to be only a
special, degree three case of a more general approach.
Sharp creases and boundary conditions are basically
equivalent, so we simply focus on boundary conditions
only. Crease rules can be obtained from boundary rules
by symmetry.

Let B ¼ ðB0;kðtÞ;B1;kðtÞ; . . .Þ be the vector of B-splines
Bi;kðtÞ of degree d ¼ k� 1 defined over the knot vector
t ¼ ½0; . . . ;0;2;4;6;8; . . .�, where the knot at 0 has multi-
plicity k. We use B to denote the basis itself as well.

We want to construct a new curve subdivision scheme,
with basis functions collected in a vector N, that produces
piece-wise polynomial curves of degree d and with the
same continuity as B (i.e., Cd�1 at all knots except C0 at
0). We require the number of basis functions in N to be
the same as for a uniform B-spline basis with no knots
multiple. The idea here is that we do not want any extra
control structures, only the original polygon with vertices
marked as either smooth or sharp, in the spirit of [7]. This
may not be so important in the curve case, but is of para-
mount importance on (subdivision) surfaces. Thus suffi-
ciently far from t ¼ 0; N should be identical to B, but
locally at t ¼ 0; N should have D ¼ ðd� 1Þ=2 fewer basis
functions than B for odd degrees; see Fig. 3. In the case
of even degrees, the difference is either D ¼ d=2� 1 or
D ¼ d=2 basis functions; see Section 5 for more details on
the choice of D.

Since B forms a basis of the space whose subspace we
want to span by N, a subspace selection matrix M exists
such that N ¼ BM. Let S be the subdivision matrix for B,
i.e., B ¼ bS, where b is the refined basis over the finer knot
vector s ¼ ½0; . . . ;0;1;2;3;4; . . .� with the knot at 0 of un-
changed multiplicity k.

We want N to be subdivision-suitable, so we require
that N ¼ nT for some subdivision matrix T, where n is
the refined version of N defined over s. Also, at the finer
level, n ¼ bM must hold.

Putting all four matrix equations together

N ¼ nT; B ¼ bS; N ¼ BM; n ¼ bM; ð11Þ

we see that

bSM ¼ bMT: ð12Þ

Since b forms a basis, we obtain that
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SM ¼MT: ð13Þ

In this equation for a particular degree d; S is known; it is
simply the B-spline subdivision matrix at a knot of multi-
plicity dþ 1 giving Bézier end conditions. If either M or T
are known, one can solve a system of linear equations to
get the other. However, in general, neither M nor T are
known, and one obtains a system of bilinear equations in
the coefficients of M and T. Thus, the overall algebraic de-
gree of the problem can be very high. Not even modern
computer algebra systems can solve such a matrix equa-
tion in general. We now look at ways of simplifying the
matrix equation by inspecting the structures of the matri-
ces involved.

3.1. The matrix M

We require the coefficients of M to satisfy the following
conditions (further discussion can be found in Section 6):

(M1) The matrix M creates the new basis N from B. As B
and N partition unity, the rows of M must sum to
one.

(M2) The support widths of basis functions of N should
not exceed the support width of the uniform B-
spline Bdþ1, which is equal to dþ 1. Thus it follows
that Mi;1 ¼ 0 for i > Dþ 1 and similarly for other col-
umns of M.

(M3) Looking at boundary derivatives, it is undesirable for
the r-th derivative, 0 6 r 6 d, of the new spline at 0
to be influenced by more than r þ 1 consecutive con-
trol points (e.g. the derivative c0ð0Þ should only
depend on P0 and P1, and not on P2). Since
BðrÞi ð0Þ – 0 for 1 6 i 6 dþ 1 and i� 1 6 r 6 d, it fol-
lows that all the entries to the right of the main diag-
onal of M have to be zero, i.e., Mi;j ¼ 0 for all i < j. In
particular, combining this with (M1) yields M1;1 ¼ 1
and M1;j ¼ 0 for all j > 1.

(M4) For a given degree d, the first uniform B-spline (not
influenced by the multiple boundary knot) is given
by Bdþ1. Thus, it is reasonable to require that
Ni�D ¼ Bi for all i > d; see Fig. 3. Hence, the bottom
right block of M is the unit matrix with the 1s corre-
sponding to Mi;i�D ¼ 1 for all i > d. Moreover, the
elements of M above and to the left of this unit block
are zero.

(M5) [Optional] To guarantee cð0Þ – 0 for generic control
polygons, we require M2;1 – 1. This softer condition
appears desirable, but (as is shown later) we may
need to violate it.

Consequently, the matrix M assumes the form !

M ¼

cMd�ðd�DÞ 0d�1

01�ðd�DÞ I1�1
; ð14Þ
where 0 is a block of zeros and each block’s super-

script denotes its size (rows � columns). I is the infi-
nite unit matrix. Only the block cM, which is lower
triangular with bandwidth ðDþ 1Þ due to (M3), is
of interest.
3.2. The matrix S

The subdivision matrix S for B-splines can be found
using e.g. the Oslo algorithm of [5]. In the cubic case with
an open-uniform knot vector it takes the form (9). For a
general degree d the matrix S has the structure

S ¼
bS2d�d 0d�1

01�d S1�1u

 !
; ð15Þ

where the block denoted by bS has entries influenced by the
multiple knot at t ¼ 0, and Su is the subdivision matrix for
uniform B-splines, whose columns, i.e., subdivision masks,
are given by scaled binomial coefficients; cf. (8).

3.3. The matrix T

We now look at the structure of T.

(T1) Since T is a subdivision matrix, its rows (stencils)
sum to 1.

(T2) Due to (M4), from the ðd� Dþ 1Þ-th column onward
the mask has to be that of a uniform B-spline of
degree d.

(T3) Using the support width of N1, we see that only the
first Dþ 2 basis functions of n can contribute to form
N1. Thus, Ti;1 ¼ 0 for all i > Dþ 2 and analogously for
other columns of T. Moreover, turning to (M3) and
the derivatives of N and n at zero, and the fact that
we deal with binary subdivision, it follows that
Ti;j ¼ 0 for all i > 2jþ D and T is lower triangular.

(T4) [Optional] To guarantee polynomial reproduction up
to degree at least d� D� 1 at t ¼ 0, we require
Ti;i ¼ 1

2i�1 for i ¼ 1; . . . ; d� D; see [25]. This is a soft
condition, and, as (M5), is mentioned explicitly
when invoked.

Consequently, T has its structure similar to that of S.
Indeed,

T ¼
bTð2d�DÞ�ðd�DÞ 0ðd�DÞ�1

01�ðd�DÞ S1�1u

 !
: ð16Þ

Having now determined the general form of the three
matrices, we turn to consider specific examples.

4. Odd degrees

We start by looking at odd degrees. Even degrees are
discussed in Section 5.

4.1. Degree 3

In the case of degree three, D ¼ 1 and S is given in (9).
Due to conditions (M1)–(M4), we expect cM to be of the
form

cM ¼ 1 0
m1 1�m1

0 1

0B@
1CA ð17Þ

with one unknown parameter, m1.



Fig. 4. A cubic example governed by T2 in (22) and the corresponding
basis. The curve controlled by the same polygon but obtained using T1 in
(21) is shown in grey for comparison. Note that the continuity of the basis
functions in N2 at the central knot (in green) is at least C1, yet a sharp
feature is produced. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Defining cðtÞ ¼
Pn�1

i¼0 Ni;kðtÞPi and looking at the value
and (right) derivative of the resulting curve at zero, we
obtain

cð0Þ ¼ P0; c0ð0Þ ¼ 3ð1�m1ÞðP1 � P0Þ: ð18Þ

Thus if one desires the end derivative to be generically
non-zero, m1 must differ from 1, as (M5) dictates.

In the case of T we have

T ¼ 1
8

8 0 0 0 0
t1 8� t1 0 0 0
t2 7� t2 1 0 0
0 4 4 0 0
0 1 6 1 0

. .
.

0BBBBBBBBB@

1CCCCCCCCCA
; ð19Þ

where the uniform masks are shown in bold; see (T2). This
leaves T with two unknown parameters, t1 and t2.

Forming SM ¼MT (see (13)) gives the following system
of three equations for three unknowns

t1m1 � t1 � 4m1 ¼ 4; t1 ¼ 6m1; 2t2 ¼ 3m1; ð20Þ

which has two solutions

m1 ¼
2
3
; t1 ¼ 4; t2 ¼ 1;

m1 ¼ 1; t1 ¼ 6; t2 ¼
3
2
;

with the corresponding matrices (we omit . .
.

from now on)

M1 ¼

1 0 0 0 0
2
3

1
3 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; T1 ¼

1
8

8 0 0 0 0
4 4 0 0 0
1 6 1 0 0
0 4 4 0 0
0 1 6 1 0

0BBBBBB@

1CCCCCCA;

ð21Þ

and

M2 ¼

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; T2 ¼

1
8

8 0 0 0 0
6 2 0 0 0
3
2

11
2 1 0 0

0 4 4 0 0
0 1 6 1 0

0BBBBBB@

1CCCCCCA:

ð22Þ

The first solution is the one encountered in (10) and con-
firms that this subdivision matrix leads to piece-wise cubic
curves with creases. The corresponding basis functions are
obtained from N ¼ BM; see Fig. 1f.

The second solution may not be desirable as c0ð0Þ ¼ 0;
cf. (18). It is also more difficult to implement as a subdivi-
sion scheme. On the other hand, the tangent at t ¼ 0 is gi-
ven by the second derivative, which is equal to 3ðP1 � P0Þ,
and geometrically, the resulting curve is well behaved; see
Fig. 4.
Following the analysis used in [20], we obtain the fol-
lowing eigen-components of the subdivision matrices (S
of (9) is included as reference):

ð23Þ

The values k0; k1; k2 are the dominant, subdominant, and
subsubdominant eigenvalues (directly determined from
the diagonals of Tf1;2g), and v0;v1;v2 the corresponding
unnormalised right eigenvectors. It follows that T1 behaves
‘better’ in the sense that it produces uniform point distri-
butions towards the limit as subdivision proceeds; see
Fig. 3, bottom. Indeed, its natural configuration, given by
v1, is linear and uniform. Left eigenvectors associated with
k1 then confirm that the tangent at t ¼ 0 is given by P0P1 in
both cases.

Looking at polynomial reproduction as approached in
[25], we see from (23) that T1 misses quadratics (those
would correspond to k ¼ 1

4), while T2 misses linear func-
tions (k ¼ 1

2). This was to be expected as N spans only a sub-
space of the space spanned by B. From this point of view,
the solution with the longest uninterrupted sequence of
eigenvalues following the pattern ð1; 1

2 ;
1
4 ; . . . ; 1

2l ; . . .Þ can
be considered ‘best’ as such solution can reproduce poly-
nomials at t ¼ 0 up to degree l, in accord with (T4).

It is worth pointing out that in N2 (that corresponds to
the solution M2), the basis function corresponding to the
crease is C2, although it is obtained as a combination of
C0 B-splines; see Fig. 4.

It is interesting to note that there are two and only two
solutions. Overall, T1 is the preferred and popular solution
[7], while T2 has not appeared in the literature. We proceed
to solve the quintic case in a similar fashion.
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4.2. Degree 5

As discussed previously, there is no obvious solution to
the case of degree 5 or higher odd degree.

For degree 5 and D ¼ 2 we have

S ¼ 1
32

32 0 0 0 0 0 0 0 0

16 16 0 0 0 0 0 0 0

0 24 8 0 0 0 0 0 0

0 6 22 4 0 0 0 0 0

0 0 40
3

50
3 2 0 0 0 0

0 0 20
9

625
36

137
12 1 0 0 0

0 0 0 15
2

37
2 6 0 0 0

0 0 0 5
4

59
4 15 1 0 0

0 0 0 0 6 20 6 0 0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

: ð24Þ

Subjecting cM and T to our conditions we obtain

cM ¼
1 0 0

m1 1�m1 0
m2 m3 1�m2 �m3

0 m4 1�m4

0 0 1

0BBBBBB@

1CCCCCCA; ð25Þ

and

T ¼ 1
32

32 0 0 0 0 0 0

t1 32� t1 0 0 0 0 0

t2 t3 32� t2 � t3 0 0 0 0

t4 t5 31� t4 � t5 1 0 0 0

0 t6 26� t6 6 0 0 0

0 t7 16� t7 15 1 0 0

0 0 6 20 6 0 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ð26Þ

with 4 and 7 free parameters, respectively.
The matrix equation SM ¼MT again leads to a well-

determined problem. Using e.g. Gröbner basis computa-
tions, one obtains two cubic equations, all other equations
are linear. The system then gives nine real solutions and all
resulting matrices have positive coefficients.
Fig. 5. Three examples given by Nf1;2;3g corresponding to (27)–(29) for degr
corresponding to the red portions of the curves is shown. The smooth curve who
reference. (For interpretation of the references to colour in this figure legend, th
The condition (M5), i.e., m1 – 1, reduces the number of
solutions of (13) for d ¼ 5 to three:

cM1 ¼

1 0 0
5
6

1
6 0

1
2

1
2 0

0 1 0
0 0 1

0BBBBBB@

1CCCCCCA; T1 ¼
1

32

32 0 0 0 0
16 16 0 0 0
20
3

70
3 2 0 0

10
9

665
36

137
12 1 0

0 15
2

37
2 6 0

0 5
4

59
4 15 1

0 0 6 20 6

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

ð27Þ

cM2 ¼

1 0 0
49
60

11
60 0

9
20

11
20 0

0 22
25

3
25

0 0 1

0BBBBBB@

1CCCCCCA; T2 ¼
1

32

32 0 0 0
16 16 0 0 0
6 22 4 0 0
1 33

2
27
2 1 0

0 33
5

97
5 6 0

0 11
10

149
10 15 1

0 0 6 20 6

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

ð28Þ

and

cM3 ¼

1 0 0
19
25

6
25 0

9
25

102
175

2
35

0 24
35

11
35

0 0 1

0BBBBBB@

1CCCCCCA; T3 ¼
1

32

32 0 0 0 0
16 16 0 0 0
24
5

96
5 8 0 0

4
5

66
5 17 1 0

0 36
7

146
7 6 0

0 6
7

106
7 15 1

0 0 6 20 6

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

ð29Þ

Looking at the eigenstructures of the subdivision matrices
listed above, we see that T3 possesses the best sequence of
non-zero eigenvalues 1; 1

2 ;
1
4 ;

1
32, which leads to polyno-

mial reproduction of degree up to 2 at t ¼ 0, in accord with
(T4). The end-conditions produced by T3 are
cð0Þ ¼ P0; c0ð0Þ ¼ 6

5 ðP1 � P0Þ, and c00ð0Þ ¼ 4
5 P0 � 48

35 P1 þ 4
7 P2.

Examples using the three solutions listed above are
shown in Fig. 5 along with the basis functions of N1; N2,
and N3. Note that visually, the three solutions produce very
similar results. The remaining six solutions with vanishing
first end-derivative produce curves that behave similarly,
too.
ee 5 are shown. Due to symmetry, only a half of the basis functions
se top right control point (green) is marked as smooth is shown in grey as
e reader is referred to the web version of this article.)



Table 1
A summary of our results. From the third column: #sols. stands for the total
number of solutions, (M5) is the number of solutions satisfying this
condition, #m is the number of parameters in cM; #t denotes the number
of parameters in bT, and GB stands for the polynomial degrees in the
Gröbner basis associated with SM ¼MT (linear equations are ignored)
without imposing (T4). The abbreviation ‘DNC’ stands for ‘did not compute’
(the Gröbner basis computation ran out of memory). In the rows with
‘DNC’, + means that there are probably more solutions, but those could have
been missed by the method used (Maple’s solve () function). The last three
rows extrapolate our results to higher degrees ða ¼ b� 1; c ¼ bþ 1Þ; the
entries in bold are provably correct.

d D #sols. (M5) #m #t GB

3 1 2 1 1 2 2
4 2 3 1 2 3 3

1 4 2 2 5 2, 2
5 2 9 3 4 7 3, 3
6 3 16 4 6 9 4, 4

2 27 9 6 12 3, 3, 3
7 3 64 16 9 15 4, 4, 4
8 4 125 25 12 18 5, 5, 5

3 100+ 52+ 12 22 DNC
9 4 100+ 40+ 16 26 DNC

2b + 1 b cb ca
b2 3b2þb

2
cb

2b b ca cb�2 ab 3jb
2

ca

a bb ba ab 3b2�b
2 bb
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4.3. Degree 7 and higher

For degree 7 and D ¼ 3 we have

S ¼ 1
128

128 0 0 0 0 0 0 0
64 64 0 0 0 0 0 0
0 96 32 0 0 0 0 0
0 24 88 16 0 0 0 0
0 0 160

3
200

3 8 0 0 0
0 0 80

9
625

9
137

3 4 0 0
0 0 0 105

4
1407

20
147

5 2 0

0 0 0 105
32

35;259
800

12;299
200

363
20 1

0 0 0 0 336
25

1484
25

236
5 8

0 0 0 0 42
25

798
25

327
5 28

0 0 0 0 0 28
3

164
3 56

0 0 0 0 0 7
6

167
6 70

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

ð30Þ

Note that seven masks in S are affected by the multiple
knot. Using our approach, the resulting T will have only
d� D ¼ 7� 3 ¼ 4 such masks before returning to uniform
ones, making it much simpler to implement as a subdivi-
sion scheme.

Subjecting M and T to our conditions for degree 7 we
obtain two matrices with 9 and 15 free parameters, respec-
tively. The matrix equation SM ¼MT leads to a well-deter-
mined system of three equations of degree four, again
obtained by using Gröbner bases, with 64 solutions. All
have positive coefficients and 16 of those satisfy (M5).

Subjecting these solutions to (T4) leads to one solution
(obtained by solving a system of linear equations) given by

cM1 ¼

1 0 0 0
57
70

13
70 0 0

1
2

351
770

17
385 0

32
175

2301
3850

1139
5390

2
245

0 65
154

1649
3234

10
147

0 0 34
49

15
49

0 0 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; ð31Þ

and the corresponding

T1 ¼
1

128

128 0 0 0 0 0 0
64 64 0 0 0 0 0
384
17

1248
17 32 0 0 0 0

24
5

2496
55

680
11 16 0 0 0

3
5

1131
55

3621
55 40 1 0 0

0 312
55

18;496
385

464
7 8 0 0

0 39
55

8857
385

527
7 28 1 0

0 0 136
21

1208
21 56 8 0

0 0 17
21

592
21 70 28 1

0 0 0 8 56 56 8

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

; ð32Þ

has the spectrum 1; 1
2 ;

1
4 ;

1
8 ;

1
128 ;0;0; . . .

� �
, confirming cubic

reproduction at t ¼ 0.
For degrees higher than 7 one obtains matrices M and T

with even more free parameters (the number of parame-
ters goes up quadratically with degree; see Table 1). The
resulting system of equations is likely to contain equations
of degrees 5 and higher in its Gröbner basis, and thus pos-
sibly not directly solvable in radicals. However, since one
expects solutions expressible with rational numbers, it is
very likely that exact solutions can still be obtained. Also,
one could restrict the number of parameters and thus re-
duce the algebraic degree of equations involved by
employing further conditions.

By imposing (T4), we observed that the problem re-
duces to a linear one for odd degrees up to 21. We empha-
sise that some of the equations obtained directly from (13)
are still bilinear in the parameters ti and mj, and only a de-
tailed analysis reveals that the system is equivalent to a
linear one.
5. Even degrees

Having analysed odd degrees in detail, we now turn to
even degrees. As can be seen in Fig. 3, control points are
logically associated with knots in odd degree curves. In
the case of even degrees, this relationship changes: control
points are associated with knot intervals; see Fig. 6.

This fact slightly complicates the investigation of even
degree curves: when the user marks a control point as
sharp, which knot value should be used to represent the
crease? This question lends itself to two answers:
D ¼ d=2� 1 or D ¼ d=2. We address both of these options,
starting with degree 2.
5.1. Degree 2

We note that using ghost points does not work for de-
gree 2. Indeed, requiring that cð0Þ ¼ P0 ¼ ðP�1 þ P0Þ=2
leads to P�1 ¼ P0, and the resulting curve starts with a
straight segment between P0 and ðP0 þ P1Þ=2.



Fig. 6. The Greville abscissae (bullets) of a quadratic B-spline basis B near
a triple knot. Note that sufficiently far from the triple knot, control points
(cyan) are logically associated with knot intervals. This is in contrast to
Fig. 3, where control points are associated with knots.

Fig. 7. Replacing P0 with eP0 forces the curve to interpolate P0 without the
need for modifying uniform subdivision rules used to generate uniform
quadratic splines.
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One can also easily verify that setting D ¼ d=2 ¼ 1 and
using our matrix approach leads to the same problem.
The other option D ¼ d=2� 1 ¼ 0 simply returns the solu-
tion with a triple knot as shown in Fig. 6, governed by the
subdivision matrix

S ¼ 1
4

4 0 0
2 2 0
0 3 1
0 1 3

. .
.

0BBBBBB@

1CCCCCCA; ð33Þ

with the uniform quadratic mask ½1;3;3;1�.
If one wants to avoid using multiple knots completely

and use a uniform knot vector and thus the unmodified
(although truncated) uniform quadratic subdivision matrix

Su ¼
1
4

3 1 0
1 3 0
0 3 1
0 1 3

. .
.

0BBBBBB@

1CCCCCCA; ð34Þ

instead, one can play the following trick: display the input
control points to the user as usual, but replace P0 witheP0 ¼ 2P0 � P1 internally for subdivision. The resulting
curve displayed to the user is then equivalent to the one
obtained by using a triple knot; see Fig. 7. Note that this
is different from using a ghost point.
5.2. Degree 4

Addressing ghost points first, we obtain that
c0ð0Þ ¼ �16P0 þ 14P1 þ 2P2 when using only one ghost
point P�1. This violates the principle behind (M3). Using
two ghost points, as in the degree 5 case in (6), yields the
system

24P0 ¼ P�2 þ 11P�1 þ 11P0 þ P1;

aðP1 � P0Þ ¼ P1 þ 3P0 � 3P�1 � P�2:
ð35Þ

However, as with d ¼ 5, this system leads to a basis that is
not subdivision-suitable. In summary, ghost points lead to
a solution that satisfies all our conditions, except (T4), for
d ¼ 3 only; see (21).

Turning to our approach, when d ¼ 4, we have
S ¼

16 0 0 0 0 0 0 0
8 8 0 0 0 0 0 0
0 12 4 0 0 0 0 0
0 3 11 2 0 0 0 0
0 0 20

3
25
3 1 0 0 0

0 0 4
3

29
3 5 0 0 0

0 0 0 5 10 1 0 0
0 0 0 1 10 5 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; ð36Þ

with the uniform quartic subdivision mask
½1;5;10;10;5;1�.

If we set D ¼ 1, we obtain

cM ¼
1 0 0

m1 1�m1 0
0 m2 1�m2

0 0 1

0BBB@
1CCCA; ð37Þ

T ¼ 1
16

16 0 0 0 0
t1 16� t1 0 0 0
t2 t3 16� t2 � t3 0 0
0 t4 15� t4 1 0
0 t5 11� t5 5 0
0 0 5 10 1

0BBBBBBBB@

1CCCCCCCCA
; ð38Þ

with 2 and 5 parameters, respectively. The system
SM ¼ MT leads to 4 solutions (obtained by solving two
quadratic equations), two of which satisfy (M5). The best
solution selected by (T4) then reads

cM1 ¼

1 0 0
4
7

3
7 0

0 9
11

2
11

0 0 1

0BBB@
1CCCA; T1 ¼

1
16

16 0 0 0 0
8 8 0 0 0
12
7

72
7 4 0 0

0 60
11

105
11 1 0

0 12
11

109
11 5 0

0 0 5 10 1

0BBBBBBBB@

1CCCCCCCCA
;

ð39Þ

and possesses quadratic reproduction at t ¼ 0. Its end-con-
ditions are cð0Þ ¼ P0; c0ð0Þ ¼ 12

7 ðP1 � P0Þ, and c00ð0Þ ¼
12
7 P0 � 216

77 P1 þ 12
11 P2.

On the other hand, setting D ¼ 2 yields

cM¼
1 0

m1 1�m1

m2 1�m2

0 1

0BBB@
1CCCA; T¼ 1

16

16 0 0 0
t1 16� t1 0 0
t2 15� t2 1 0
t3 11� t3 5 0
0 5 10 1

0BBBBBB@

1CCCCCCA; ð40Þ
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with 2 and 3 free parameters, respectively. The system
SM ¼MT in this case leads to 3 solutions (given by a cubic
equation). Only one solution satisfies both (M5) and (T4):

cM2 ¼

1 0
5
6

1
6

1
2

1
2

0 1

0BBB@
1CCCA; T2 ¼

1
16

16 0 0 0
8 8 0 0
10
3

35
3 1 0

2
3

31
3 5 0

0 5 10 1

0BBBBBB@

1CCCCCCA; ð41Þ

with only linear reproduction at t ¼ 0. The corresponding
end-conditions are cð0Þ ¼ P0; c0ð0Þ ¼ 2

3 ðP1 � P0Þ, and all
higher-order derivatives at t ¼ 0 vanish.

The two solutions governed by T1 and T2, along with the
one given by S, are compared in Fig. 8.

5.3. Degree 6 and higher

The subdivision matrix for d ¼ 6 reads

S ¼ 1
64

64 0 0 0 0 0 0 0 0
32 32 0 0 0 0 0 0 0
0 48 16 0 0 0 0 0 0
0 12 44 8 0 0 0 0 0
0 0 80

3
100

3 4 0 0 0 0
0 0 40

9
625
18

137
6 2 0 0 0

0 0 0 105
8

1407
40

147
10 1 0 0

0 0 0 15
8

969
40

309
10 7 0 0

0 0 0 0 42
5

168
5 21 1 0

0 0 0 0 6
5

104
5 35 7 0

0 0 0 0 0 7 35 21 1

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

:

ð42Þ

With D ¼ 2; M and T have 6 and 12 free parameters,
respectively. The system given by SM ¼ MT leads again
to a well determined problem with 27 solutions (obtained
by solving three cubic equations). Of these, 9 satisfy (M5).
The best solution selected by (T4) then is

cM1 ¼

1 0 0 0
13
18

5
18 0 0

3
10

35
58

14
145 0

0 16
29

917
2175

2
75

0 0 7
9

2
9

0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; ð43Þ

T1 ¼
1

64

64 0 0 0 0 0 0
32 32 0 0 0 0 0
208
21

800
21 16 0 0 0 0

4
3

1900
87

952
29 8 0 0 0

0 210
29

14;308
435

343
15 1 0 0

0 30
29

1708
87

109
3 7 0 0

0 0 98
15

532
15 21 1 0

0 0 14
15

316
15 35 7 0

0 0 0 7 35 21 1

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
; ð44Þ

with cubic reproduction at t ¼ 0.
When D ¼ 3; M and T have 6 and 9 degrees of freedom,
respectively. The associated system has 16 solutions, four
of which satisfy (M5). Imposing (T4) then gives a single
solution

cM2 ¼

1 0 0
11
13

2
13 0

37
65

90
221

2
85

16
65

138
221

11
85

0 10
17

7
17

0 0 1

0BBBBBBBB@

1CCCCCCCCA
; ð45Þ

T2 ¼
1

64

64 0 0 0 0 0
32 32 0 0 0 0
144
13

480
13 16 0 0 0

42
13

6384
221

525
17 1 0 0

6
13

3408
221

699
17 7 0 0

0 84
17

630
17 21 1 0

0 12
17

362
17 35 7 0

0 0 7 35 21 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; ð46Þ

with quadratic reproduction at t ¼ 0.
From the above examples for degrees 4 and 6 we see

that the situation for even degrees is very similar to that
for odd ones. The difference between choosing
D ¼ d=2� 1 or D ¼ d=2 is mainly in the fact that the former
option yields higher polynomial reproduction at t ¼ 0,
whereas the latter produces curves that differ less from
the smooth curves as there are fewer irregular subdivision
masks and stencils involved.

The observation of Section 4.3 applies to even degrees
as well: By imposing (T4), the problem of finding the
end-conditions and crease rules simplifies to a linear prob-
lem with a unique solution for any degree d > 1.

Our findings are summarised in Table 1. All symbolic
computations have been performed using Maplesoft’s Ma-
ple 14 on a Linux system with 8 GB of RAM. Extrapolating
our results (last three rows in Table 1) to arbitrary degrees
suggests very high degrees of the equations involved, un-
less (T4) is used to reduce the problem to a linear one.

We emphasise that in the case of d ¼ 8 and D ¼ 4, the
system of equations given by SM ¼MT is equivalent to a
system with three quintic polynomials (the remaining
equations are linear). Still, we were able to obtain all 125
solutions exactly.

6. Breaking the rules

We have fixed a number of restrictions on M and T in
Sections 3.1 and 3.3, respectively. We now look at each
restriction in turn and analyse whether it can be lifted
and at what cost.

We start with the matrix M:

(M1) This is a natural restriction. While bases that do not
partition unity are possible, they do not alter the
resulting space they span or produce piece-wise
rational (instead of polynomial) curves.



Fig. 8. Three examples given by B and N1;2 corresponding to (36) and (39)–(41), respectively, for degree 4 are shown. The smooth curve whose top right
control point (green) is marked as smooth is shown in grey as reference. Note that the B-spline solution (left) with knots of multiplicity five deviates the
most (measured along the curves) from the grey, smooth curve, while the one given by N2 deviates the least. This is caused by the fact that the subdivision
rules of T2 in (41) return to the regular rules sooner than those of T1 in (39) and S in (36) as one moves away from the crease. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(M2) While we could allow basis functions in N to have
larger supports than those in B, this would not make
N span a richer space. Larger supports may easily
lead to local linear dependencies of basis functions
(also called overloaded elements in the literature).

(M3) This restriction could be lifted, if one is prepared to
allow e.g. that c0ð0Þ ¼ a0P0 þ a1P1 þ a2P2 for some
values of a0; a1, and a2 – 0. We regard this as geo-
metrically undesirable and not intuitive for a
designer.

(M4) This condition could be relaxed, but we do not see
any point in altering basis functions that are not
influenced by the multiple boundary (or crease)
knot.

(M5) This soft condition is only optional.

We now turn to T, whose existence is equivalent to N
being subdivision-suitable:

(T1) This restriction cannot be relaxed.
(T2) This condition is linked to (M4), and thus fixed.
(T3) The support widths of the refined basis functions in

n are directly linked to the original ones in N. Relax-
ing this restriction would only lead to more linear
equations expressing that the new parameters must
be equal to zero, unless (M3) is relaxed as well.

(T4) The requirement on the eigenvalues is only optional,
but guarantees the best possible polynomial repro-
duction at creases/end-points.

Note that one could try to construct the matrix T di-
rectly from end-derivatives given by differences of control
points, and/or eigenstructure. This approach, however,
does not guarantee that the curves generated by such a
subdivision matrix would be piece-wise polynomial (with
finitely many pieces over finite knot intervals).

In the case of odd degrees, our choice of D ¼ ðd� 1Þ=2
directly corresponds to the number of control points intro-
duced by changing the multiplicity of a knot from one (cor-
responding to a control point marked as smooth) to d
(corresponding to a sharp control point). Consequently,
no new control points need to be introduced using our ap-
proach when marking a control point as sharp. Neverthe-
less, one can still ask what would other values of D lead
to. Clearly, D ¼ 0 leads to M being the identity matrix
and we get N ¼ B, understood component-wise, as ex-
pected. The other extreme would be to set D ¼ d� 1,
which yields N0;k ¼

Pd
i¼0Bi;k, leading to undesirable effects

such as only constant reproduction. Values of
D 2 ½1; . . . ; d� 2� then offer a range of schemes with a
trade-off between polynomial reproduction and simplicity
of subdivision matrices. Similar arguments apply to even
degree subdivision schemes as well.

As an example, consider quintics with D ¼ 1 and D ¼ 3.
The former choice leads to a scheme with cubic reproduc-
tion at t ¼ 0 and the corresponding T contains four irregu-
lar masks. Eight such solutions exist, with four satisfying
(M5) and one solution (T4). On the other hand, the latter
choice provides only linear reproduction but with only
two irregular masks. Four solutions exist and only one sat-
isfies (M5), and also (T4).

Based on our observations for both odd and even de-
grees, we formulate the following.

Conjecture 1. By imposing all our conditions including (T4),
the bilinear system given by SM ¼MT for any d > 1 and any
value of D 2 ½0; . . . ; d� 1� is equivalent to a linear one with a
unique solution having the best possible reproduction degree.
7. Conclusions and future challenges

Using a set of conditions that a desirable B-spline-based
subdivision scheme with crease control should satisfy, we
have presented a general approach to finding such
schemes. Our method allows for a complete classification
of these schemes up to degree 7, beyond which the com-
plexity of the problem becomes prohibitive. Employing
an extra condition on the eigenvalues of the subdivision
matrix, and thus achieving the best polynomial reproduc-
tion at end-points, the problem is conjectured to reduce
to a linear one with a unique solution for any degree.

In contrast to knot insertion, our method does not intro-
duce any new control points and does not require the user
to modify knot vectors when points are required to become
creases and be interpolated. This leads to an intuitive and
clean user interface. We have also shown that ghost points
cannot be used to match the superior behaviour of our



J. Kosinka et al. / Graphical Models 76 (2014) 240–251 251
results. Ghost points either lead to bases that are not sub-
division-suitable, or result in geometrically undesirable
end-conditions.

It has not escaped our notice that relaxing some of the
rules (in particular (M3), the rule about end-conditions),
one can get simpler matrices with more regular stencils
in them. These simpler matrices allow much easier imple-
mentation of sharp and semi-sharp methods, in the spirit
of [7]. We will investigate this family of methods in future
work.

Generalising our results to tensor-product surfaces is
straightforward. Using our new sets of basis functions, a
crease can be allowed to run along a knot line. But when
viewed as subdivision surfaces, creases could potentially
be allowed to stop or smooth out gradually, as in
[7,22,17,16,12].

Our method is based on direct manipulation of
subdivision masks and stencils. It would be interesting to
investigate similar approaches, but in combination with
multi-stage methods, e.g. with those developed in [14,4].
In the uniform surface case, this would lead to creases
for the family of schemes introduced in [24], and in the
non-uniform setting to crease rules for the NURBS-compat-
ible framework developed in [3].
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