
 

 

 University of Groningen

Chiral symmetry of QCD with twelve light flavors
Deuzeman, A.; Pallante, E.; Lombardo, M. P.

Published in:
28th International Symposium on Lattice Field Theory (Lattice 2010)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Deuzeman, A., Pallante, E., & Lombardo, M. P. (2010). Chiral symmetry of QCD with twelve light flavors. In
28th International Symposium on Lattice Field Theory (Lattice 2010) (Lattice).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/39d25170-9c86-46b1-8fe9-fa8577233b08


Chiral symmetry of QCD with twelve light flavors

A. Deuzeman ∗
Centre for Theoretical Physics, University of Groningen, 9747 AG, Netherlands
E-mail: a.deuzeman@rug.nl

M. P. Lombardo†

INFN-Laboratori Nazionali di Frascati, I-00044, Frascati (RM), Italy
E-mail: lombardo@lnf.infn.it

E. Pallante
Centre for Theoretical Physics, University of Groningen, 9747 AG, Netherlands
E-mail: e.pallante@rug.nl

We study QCD with twelve light flavors at intermediate values of the bare lattice coupling. We
contrast the results for the order parameter with different theoretical models motivated by the
physics of the Goldstone phase and of the symmetric phase, and we perform a model independent
analysis of the meson spectrum inspired by universal properties of chiral symmetry. Our analysis
favors chiral symmetry restoration.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Present address: Institute for Theoretical Physics, Ch-3012 Bern, Switzerland
†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

ar
X

iv
:1

01
2.

60
23

v1
  [

he
p-

la
t]

  2
9 

D
ec

 2
01

0

mailto:a.deuzeman@rug.nl
mailto:lombardo@lnf.infn.it
mailto:e.pallante@rug.nl


Nf=12 QCD M. P. Lombardo

1. Introduction

In this note –which is part of an extended publication [1] – we discuss the realization of
chiral symmetry in QCD with twelve flavors. This is an ongoing effort which aims at clarifying
the phase diagram of QCD with fundamental fermions - effort motivated either by theoretical and
phenomenological considerations, nicely reviewed in e.g. [2–4]. The salient feature to be elucidated
is the occurrence of a zero temperature phase transition in QCD when the number of flavor grows
large, but still below the loss of asymptotic freedom [5]. This phase transition separating the
hadronic phase of QCD from a symmetric, conformal phase is a predictions from different model
and analytic studies, and still needs a quantitative, first principle assessment. To briefly summarize
the status of the field at the time of this meeting, there is little doubt that SU(3) theories with a
number of flavors below or equal eight are in the ordinary, broken phase of QCD [6–8]. QCD with
twelve flavors appears to be a borderline case, either from an analytic and numerical point of view:
our results [1] as well as results based on the analysis of the Schroedinger functional [6] favor
chiral symmetry restoration at weak coupling, and indicate the existence of an IRFP, others suggest
chiral symmetry breaking [9]. According to a MCRG analysis [10] the data favor the existence of
an infrared fixed point and conformal phase, though the results are also consistent with very slow
walking.

It might be worthwhile to recall that conformality implies chiral symmetry – indeed the confor-
mal window has been uncovered by noticing that, in the presence of an IRFP, the running coupling
might not grow large enough to break chiral symmetry [11]. Only at a later stage it was recog-
nized that the chiral transition at the critical number of flavor was of a peculiar nature - dubbed
conformal [5]. Hence, chiral symmetry restoration in the asymptotically free region of QCD, and
conformality go hand-in-hand. The direct observation of the physics of a conformal transition
and the behaviour at IRFP are of course an important subject of investigation, which we are not
addressing here.

2. The simulations, their systematics and the bulk transition

We have simulated an SU(3) gauge theory with twelve flavors of staggered fermions in the
fundamental representation. We used a tree level Symanzik improved gauge action to suppress
lattice artifacts, and Kogut-Susskind (staggered) fermions with the Naik improvement scheme.
High statistics runs were performed at fixed bare quark mass am = 0.05 over an extended range of
bare lattice couplings, on 163×8 and 164 lattices. The results for the chiral condensate [1] suggest
a bulk phase transition at gL = 1.35(3) .

At two selected couplings, 6/g2
L = 3.9 and 6/g2

L = 4.0, on the weak coupling side of the
bulk transition, we have then performed runs on lattices 203×32, 244, 324 and five masses am =

0.025,0.04,0.05,0.06,0.07. The thermalization of all runs was extensively verified by monitoring
the stability of averages and uncertainties as a function of the discarded number of sweeps, and
bin size. In addition, we have verified the decorrelation from initial conditions by performing
simulations with ordered and random starts for a few selected couplings and masses.

Measurements of the chiral condensate were performed on three different volumes for each
mass, up to 324 for the smallest masses. The data set used for the extrapolation to the chiral limit
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Figure 1: (color online) Observed finite volume effects in the chiral condensate, displayed as the difference
∆FV between the measurements at the two largest available volumes (243× 24 and 323× 32 for the lowest
mass, 203× 32 and 243× 24 for the other masses) divided by their combined standard deviation σ . Blue
triangles indicate results for 6/g2

L = 3.9, red circles those for 6/g2
L = 4.0.

consists of the measurements at lattice volumes 244, which can be considered as infinite volume
measurements within their errors, see Fig. 1.

3. The analysis of the chiral condensate

Having observed a behaviour strongly suggestive of a bulk phase transition, we examine in
detail the chiral condensate, and the spectrum (next Section) for two selected coupling on the weak
coupling side of the transition itself. Why staying close to the bulk transition? For one thing, the
finite volume effects (which are expected to be large in a symmetric phase), should anyway be
smaller at larger coupling. Second, close to the bulk transition the system should be QED-like
and we can use previous expertise coming from the lattice analysis of the QED strong coupling
transition. On a more technical note, we underscore that staggered fermions have a remnant of exact
chiral symmetry which allows a precise definition of the chiral order parameter – the condensate
〈ψ̄ψ〉 – also on a coarse lattice, with a genuine Goldstone modes and mass gap when the symmetry
is broken.

3.1 Fits motivated by a possible Goldstone phase

The functional forms discussed here would be appropriate if the bulk behavior were not to be
associated to a true chiral transition. For instance, it might just be due to a generic rapid crossover,
or to a genuinely lattice transition between two phases with different ordering. In this case the
range of couplings between 6/g2

L = 3.9 and 6/g2
L = 4.0 would still belong to the phase with broken

chiral symmetry. We have thus considered the following functional form:

〈ψ̄ψ〉= Am+Bm log(m)+ 〈ψ̄ψ〉0 , (3.1)

where the parameters were all left free, giving fits with two degrees of freedom, or in turn con-
strained to zero. The logarithmic mass dependence is typical of a chirally broken phase for a
QCD-like theory in four dimensions at zero temperature.
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6/g2
L A B 〈ψ̄ψ〉0

√
χ2 dof

3.9 2.70(3) -0.103(13) 0.00013(54) 0.68
3.12(3) 0 (F) 0.0043(3) 3.12
2.682(5) -0.107(2) 0 (F) 0.56

4.0 2.48(2) -0.120(10) -0.00091(42) 0.51
2.73(1) 0 (F) 0.0041(5) 3.74
2.519(8) -0.099(3) 0 (F) 0.56

Table 1: Fits to 〈ψ̄ψ〉= Am+Bm logm+ 〈ψ̄ψ〉0

The results of the fits to Eq. 3.1 are summarized in Table 1. The linear fits produce an intercept
different from zero, but are highly disfavored by their large χ2. The inclusion of the term m log(m)

considerably improves the quality of the fits. Those with free intercept 〈ψ̄ψ〉0 gave an extrapolated
value consistent with zero, and in agreement with the fit obtained by constraining 〈ψ̄ψ〉0 = 0. Both
fits are satisfactory, and imply that the chiral condensate in the chiral limit is zero within errors. In
conclusion, a conventional picture of the Goldstone phase seems not to be supported by our data.

3.2 Fits with an anomalous dimension

We considered the functional form

〈ψ̄ψ〉= Am1/δ +Bm+ 〈ψ̄ψ〉0 , (3.2)

containing an anomalous dimension, whose effect is parameterized by the exponent δ . Since the fits
described in section 3.1 already suggest that a curvature in the behavior of the chiral condensate
as a function of the mass is mandatory, we started by setting the linear term to zero. We note
that analogous fits were used in the past to analyze QED in its symmetric phase, close to the
strong coupling transition in Ref. [12], even if a more satisfactory account of the data requires the
consideration of the magnetic equation of state, which is going to be discussed in the next section.
All fits to Eq. (3.2) with B = 0 are satisfactory, with a chiral condensate compatible with zero in
the chiral limit. This was checked, as before, by comparing fits with free intercept, and fits with
〈ψ̄ψ〉0 = 0.

One might still suspect that a fit combining a power-law term and a linear term, with a non
zero intercept might still accommodate the data, hence indicating chiral symmetry breaking. For
completeness we have performed fits to Eq. (3.2) with the inclusion of a linear term. As expected
from the near degeneracy between a power law with 1/δ ≈ 1 and a linear term, the uncertainties
coming from a Marquardt-Levenberg minimization of χ2 are huge.

To acquire a feeling about the possible relevance of a linear term, we have also performed
a sequence of fits, constraining the exponent to several values in the acceptable range given by
the fit errors. It appears that the coefficient of the linear term smoothly changes from positive to
negative, while the intercept - the chiral condensate in the chiral limit - remains consistent with zero
throughout at 6/g2

L = 3.9, and becomes slightly negative at 6/g2
L = 4.0. We thus again conclude

that our data point at exact chiral symmetry.
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6/g2
L A B δ

3.9 0.1(9) 0.3(9) 1.1(2)
4.0 0.3(1) 0.077(9) 1.3(1)

Table 2: Fits to m = A〈ψ̄ψ〉+B〈ψ̄ψ〉δ

In conclusion, regardless the presence of any additional linear term, or any analytic term in
Eq. (3.2) the resulting extrapolated condensate remains compatible with zero. The interested reader
is referred again to our extended publication Ref. [1] for details.

3.3 Fits motivated by the Magnetic Equation of State

Finally we considered fits motivated by the magnetic equation of state, see e.g. Ref. [12] and
references therein. The following equation is a satisfactory parameterization

m = A〈ψ̄ψ〉+B〈ψ̄ψ〉δ , (3.3)

which would of course coincide with the simple power law when A=0. The coefficient of the linear
term A should vanish at a critical point, with A ∝ (β −βc). This of course explains the smallness
of A close to the transition, while δ is the conventional magnetic exponent. The linear term in the
condensate is implied by chiral symmetry, and guarantees that the ratio

lim
m→0

Rπ =
∂ 〈ψ̄ψ〉/∂m
〈ψ̄ψ〉/m

= 1 (3.4)

approaches unity in the chiral limit and in the chirally symmetric phase. We can view Eq. (3.3) as
a model for a theory with anomalous dimensions, which incorporates the correct chiral limit. Note
that the linear term of Eq. (3.3) is of different origin than the one considered in Eq. (3.2). The latter
describes violations of scaling and it is increasingly relevant at larger masses. In Eq. (3.3) instead,
it is dominating at very small masses, away from the critical point.

Results for this case are given in Table 2. The fit m = m(〈ψ̄ψ〉) was performed with a least
squares algorithm. Note that, as expected, the significance of the linear term is very low, closer to
the bulk transition, and slightly larger by moving away from it. Indeed, the agreeement between
the numerical solutions of the equation m(〈ψ̄ψ〉) = msim, with msim the simulation masses, with
the simulation results for the condensate is very good.

All fits clearly favor a positive value for the coefficient of the linear term, as it should be in the
chirally symmetric phase, and within the large errors the results for the exponent are compatible
with the ones coming from the genuine power law fits. We conclude again in favor of chiral
symmetry restoration.

4. Spectrum analysis

We have fitted both the pion and the rho mass to a power law

mπ,ρ = Aπ,ρmεπ,ρ (4.1)
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(a) Interpolations of meson masses. (b) π to ρ mass ratio with fits superimposed

Figure 2: (color online) (a) Measurements of the pseudoscalar (blue) and vector (red) masses versus lattice
coupling at several values of the bare quark mass, from bottom to top am = 0.04, 0.05, 0.06 and 0.07, with
fits superimposed. (b) The measured π to ρ mass ratio as a function of the bare mass and decreasing coupling
gL, bottom to top 6/g2

L = 3.5 to 4. The superimposed lines are ratios of the best fits.

with the results Aπ = 3.41(21), επ = 0.61(2), Aρ = 4.47(61), ερ = 0.66(5) at 6/g2
L = 3.9, and

Aπ = 3.41(21), επ = 0.61(2), Aρ = 4.29(11), ερ = 0.66(1) at 6/g2
L = 4.0. From these fits – also

plotted in Fig. 2(a) – we conclude that the mass dependence of the vector and pseudoscalar mesons
is well fitted by a power-law. Second, it is also relevant that the exponents are not unity and
επ 6= 1/2. The latter result immediately tells that the pion seen here is not a Goldstone boson of a
broken chiral symmetry.

By looking at the behavior of the mass ratio we can further inspect the status of chiral sym-
metry. Fig. 2(b) shows the ratios of measured pseudoscalar and vector masses, for a fixed coupling
and as a function of the bare quark mass. We have superimposed the ratios of the best fits to
the raw mass data. It is immediately clear that the ratio increases as the quark mass approaches
zero, a behavior opposite to what is expected for a Goldstone pion (see Ref. [12] for more exteded
discussions) .

Note that the spectrum results can be used to determine the lines of “constant physics” in the
two dimensional parameter space gL and am, the bare quark mass of degenerate fermions, following
the same strategy which was successful for N f = 16 [13].

5. Summary and Outlook

After observing a bulk transition for N f = 12, we are continuing our study along two lines:
we explored the nature of the weak coupling phase, which is the subject of this note, and we are
investigating in more details the nature of this bulk transition, see the contribution by Elisabetta
Pallante [14].

The results presented here favor chiral symmetry restoration in the range of couplings which
we have explored. Barring unexpected re-entrant transitions at even weaker coupling (a preliminary
β scan shows no sign of such phase transitions) this should indicate chiral symmetry also in the
continuum limit, compatible with the existence of an IRFP.

Can we challenge this result? It is clear that additional data at even lighter masses or extremely
larger volumes might in principle leave room for different conclusions. In practice, it seems difficult
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to reverse the trend of the mass ratio.
If the N f = 12 theory is very close to the critical number of flavor it is indeed rather natural to

have ambiguous results from different methods and setups. The analysis of the phase diagram in the
Temperature-N f space [15] might help understanding why: if the critical exponent of the running
gauge coupling at the IRFP is less then one, the critical temperature becomes exponentially small
when approaching Nc

f : a cold quark gluon plasma will then become arbitrarily close to the zero
temperature conformal window, and the hadronic phase will only appear for a very large Nt .

A conservative conclusion - encompassing our results as well as those from other groups - is
then that the critical number of flavor is very close to twelve, and a speculation is that the critical
exponent of the running gauge coupling at the Banks-Zacs fixed point is less than one.
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