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Chapter 1





Introduction

1.1 Introduction

Two classes of complex systems are considered in this thesis: distribution networks
and multi-agent systems.

Distribution networks can be seen everywhere in our daily life, such as public
transportation systems, telephone networks and electrical power systems. Typi-
cally, a distribution network is depicted as a graph where resources can enter the
network via supply vertices (e.g. power plants, factories) and leave the network
via demand vertices (e.g. cities, consumption centers), together with edges (e.g.
routes, cable lines, roads) that connect the supply, demand and additional internal
vertices. Often, flow capacity constraints and (transportation) cost functions are
assigned to the edges.

Generally speaking, distribution networks can be divided into two classes,
depending on whether the vertices can store resources or not. If the vertices
can only distribute resources but not store, we refer to this type of distribution
networks as static ones. The study of static distribution networks is a broad
research topic which has a long history and a large number of applications [7]. One
celebrated result is the max-flow min-cut theorem [35, 36]. The static distribution
problem is closely related to monotropic programming problems which enjoy a
complete and symmetric duality theory [61].

Differently from static distribution networks, vertices can have storage of
resources in dynamical distribution networks. This type of models has many
applications in e.g. communication networks [32, 66], transportation networks
[9, 50], and production distribution networks [12].

In this thesis, we consider dynamical distribution networks where we assign a
set of nonlinear integrators to the vertices (with state variables corresponding to
storage). All the integrators are controlled by the flows on the edges. Furthermore,
unknown but constant in/outflows may enter or leave the network through
some of the vertices. The control aim is to regulate the outputs of the vertices
to consensus by controlling the flows on the edges. This is called the output
agreement problem. The problem can be solved by a continuous distributed
controller defined on the edges. In the case without flow capacity constraints,
the solution to the output agreement problem is straightforward by formulating
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the closed-loop system as a port-Hamiltonian system [6]. In the case with flow
capacity constraints, the constraint intervals and supplies/demands need to satisfy
certain conditions to guarantee convergence to output agreement. The proof is
done by the Lyapunov method and by the analysis of the graphical structure of the
network. Similar to the monotropic programming problem in [61], we can relate
the case with flow capacity constraints to a pair of dual optimization problems.
This leads to an equivalent expression of the necessary and sufficient condition for
output agreement with flow capacity constraints.

The other problem about dynamical distribution networks studied in this
thesis is the case with state constraints on the vertices. More precisely, we consider
the model used in the first problem with a Proportional-Integral (PI) controller
assigned to all the edges. Due the oscillatory behavior introduced by the PI
controller, the state constraints can be violated. The control objective in this
problem is to achieve output agreement of the vertices while the state constraints
remain satisfied for all time. This objective can be accomplished by designing
state-based flow constraints. The result is proved for all Filippov trajectories of
the discontinuous closed-loop system.

In the second part of this thesis, we study multi-agent systems which occur in
several applications including formation flight of unmanned air vehicles (UAVs),
clusters of satellites, automated highway systems and task assignment (see e.g.
[25], [33], [60], [64]). In these applications, an agent represents a system which
can interact autonomously with other systems according to the communication
law to perform specific tasks. The communication structure is usually given
by a (directed) graph called the communication graph, where the vertices are
corresponding to the agents, while the edges represent the information exchanging
or sensing channels among the agents. See Figure 1.1 for a graphical explanation.

One fundamental and benchmark problem in multi-agent systems is the (state)
consensus problem (see e.g. [37], [51], [57], [59]). Roughly speaking, consensus and
the like (synchronization, rendezvous) refer to the group behavior that all agents
asymptotically reach a certain state of interest. Although consensus problems have
a history in computer science [47], we focus on their applications in cooperative
control of multi-agent systems.

The simplest and most well-studied consensus problem is the continuous-
time linear time-invariant consensus protocol. The operation mechanism is that
each agent moves towards the weighted average of the states of its neighbors.
From the classical results (see e.g. [48], [51]), it is known that this consensus
protocol will drive the states of the agent to consensus if and only if the underlying
communication graph contains a directed spanning tree.

Apart from the linear consensus protocol, nonlinear versions have attracted
attention of many researchers in the last decade. The nonlinear consensus proto-
cols may arise due to the nature of the controller. For instance, the measurement
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Figure 1.1: This figure depicts a multi-agent system with 14 agents placed on the
nodes. The edge between agent i and j indicates that the information of i is
available to j and vice versa. If the undirected edges are replaced by directed ones,
it means that the information of the end vertex of the edge is available to the head
vertex but not vice versa.

of the state of each agent can be nonlinear (see for example [20] about quantized
consensus protocols), or the comparison of the states of two agents can be nonlin-
ear, see e.g. [21], [22] about sign-based control protocols. The nonlinear consensus
protocols may also describe the physical coupling existing in the network (see e.g.
[26], [53]).

In this thesis we consider a general mathematical model of nonlinear consensus
protocols which cover all cases of nonlinearity. The nonlinearities are assumed to
be sign-preserving with possible discontinuities. For these nonlinear consensus
protocols, we provide sufficient conditions on the nonlinear functions and the
topology of the underlying graph such that consensus is asymptotically achieved.
The analysis is performed within the framework of Filippov solutions. An impor-
tant source of inspiration of this work is [26]. Specifically, the result in Section 5.2.2
modifies and extends the result in [26] from signum functions to general nonlinear
functions under the weakest topological condition, namely a digraph containing a
directed spanning tree.

1.2 Thesis outline

The outline of this thesis is as follows.
In Chapter 2, preliminaries are given on graph theory, convex analysis, net-

work optimization theory, port-Hamiltonian systems, equilibrium-independent
passivity and non-smooth analysis.

The main part of the thesis is divided into two parts.
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The first part of this thesis, containing Chapter 3 and 4, deals with dynamical
distribution networks.

In Chapter 3, we propose distributed PI controllers defined on the edges which
regulate the flows of the network. It is proved that the output agreement of the
vertices in the distribution network is asymptotically stable for the cases with and
without flow constraints. This chapter is based on [70], [72] and [74].

In Chapter 4, we consider the case that the distribution network has state
constraints. By modifying the controller proposed in Chapter 3 with state-based
flow constraints, we prove that all the Filippov ( as well as Krasovskii) trajectories
meet the state constraints and converge to output agreement. Chapter 4 is an
extended and modified version of [73].

The second part of this thesis is Chapter 5 and deals with several general math-
ematical models of nonlinear multi-agent systems. Sufficient conditions about the
nonlinear function in the dynamics and topology of the network are provided to
guarantee the states of the agent to achieve consensus. In this chapter, the nonlin-
ear functions are assumed to be sign-preserving with possible discontinuities. All
the results are derived for Filippov solutions. This chapter is partially based on
[75] which is submitted for journal publication.
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Chapter 2





Preliminaries

In this chapter we present the tools from graph theory, convex analysis, network
optimization theory, port-Hamiltonian systems, equilibrium-independent pas-
sivity and non-smooth stability analysis, which will be used in the subsequent
chapters.

2.1 Graph theory

In this section, we first provide some essentials from the field of graph theory as
can be found e.g. in [11, 14].

A graph G is a triple G = (V, E ,W) such that E is a subset of V ×V of unordered
pairs of V where no self-loops are allowed. The finite sets V and E (also denoted as
V(G) and E(G)) are the set of vertices (also called nodes) and edges (of G) respectively.
The map W : E → R+ defines the weights on each edge. Such weights might
represent, for example, costs, lengths or capacities, etc. In this thesis, let us denote
V = {v1, . . . , vn} and |E| = m. If the edges are ordered pairs of vertices, the graph
G is called a directed graph, or digraph for short. An edge of a digraph G is denoted
by eij = (vi, vj) (with vi 6= vj) representing the tail vertex vi and the head vertex
vj of this edge. Given a digraph G, a corresponding graph, denoted as Go, can be
obtained by neglecting the direction of the edges. Note that Go may have multiple
edges. We say that G′ = (V ′, E ′,W ′) is a subgraph of G = (V, E ,W) if V ′ ⊂ V ,
E ′ ⊂ E , andW ′ =W|E′ .

For a graph G, a path P from vertex vi to vertex vi+l is a finite sequence
of edges which connect a sequence of vertices {vi, vi+1, . . . , vi+l} which are all
distinct from one another. This path is denoted by P = vivi+1 · · · vi+l. If a path
P = vivi+1 · · · vi+l is such that vi = vi+l and the vertices vi+j , 0 6 j < l, are
distinct from each other, then P is said to be a circuit. A graph is acyclic if it does
not contain any circuit. A graph is connected if for every two vertices vi and vj
there is a path from vi to vj . A subgraph T ⊆ G is a tree if it is connected and
acyclic, and a spanning tree if it is a tree and contains all the vertices of G.

For a digraph G, we define a directed path from vertex vi to vertex vj to be a
path of Go such that the first edge starts from vi, the last edge ends at vj and every
edge starts where the previous edge ends. A digraph is called strongly connected if
for every two vertices vi and vj there is a directed path from vi to vj . A digraph G
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is called weakly connected if the graph Go is connected. A subgraph T of G is called
a directed spanning tree for G if V(T ) = V(G), and for every vertex vi ∈ V there is
exactly one vj such that eji ∈ E(T ), except for one vertex, which is called the root
of the spanning tree. Furthermore, we call a vertex v ∈ V a root of G if there is a
directed spanning tree for G with v as a root. In other words, v is a root of G if
there is a directed path from v to every other vertex in the graph.

A (di)graph is called simple if it has no multiple edges or self-loops. For a
simple (di)graph G the weighted adjacency matrix A = [aij ] ∈ Rn×n is defined in
the following way: aij = W(eji) if and only if eji ∈ E , where W is the weight
function. Moreover, aii = 0 for all i = 1, . . . , n. Notice that for undirected graphs,
A = AT . The set of neighbors of vertex vi is denoted by Ni = {vj ∈ V : eji ∈ E}.
For each vertex vi, its in-degree and out-degree is defined as

degin(vi) =
∑n
j=1 aij ,

degout(vi) =
∑n
j=1 aji.

For undirected graphs, the in-degree is equal to the out-degree for all the vertices,
and hence will be called the degree. For a graph with all the weights on the edges
being one, the adjacency matrix only has 0-1 elements, and in this case we have
degin(vi) = |Ni|. The degree matrix of the digraph G is a diagonal matrix ∆ where
∆ii = degin(vi). The graph Laplacian is defined as

L = ∆−A.

This implies L1 = 0, where 1n is the n dimensional vector containing only ones.
We omit the subscript if the dimension of the vector is unambiguous from the
context. We say that a vertex vi is balanced if its in-degree and out-degree are equal.
The graph G is called balanced if all of its vertices are balanced or, equivalently, if

1TL = 0.

A digraph, with possibly multiple edges, is completely specified by its incidence
matrix B, which is an n × m matrix, with (i, j)th element equal to −1 if the jth

edge is towards vertex i, and equal to 1 if the jth edge is originating from vertex i,
and 0 otherwise. The graph Laplacian is also given as L = BWBT , where W is
the diagonal matrix of the edge weights. A digraph is weakly connected if and
only if kerBT = span1n. A digraph that is not weakly connected falls apart into a
number of weakly connected subgraphs, called the weakly connected components.
The number of weakly connected components is equal to dim kerBT .

Lemma 2.1. For a digraph with weights one on all the edges, it is balanced if and only if
1m ∈ kerB.
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Definition 2.2. For a (di)graph G, the vertex space C0(G) is the vector space of
all functions from V to a field R. The edge space C1(G) is the vector space of all
functions from E to a fieldR.

If G has n vertices and m edges and we take the fieldR as R, then C0(G) and
C1(G) can be identified with Rn and Rm respectively. Indeed, the elements of
x ∈ C0(G) can be written in the form x =

∑n
i=1 xiv

i where vi : V → R is equal to
0 everywhere except 1 at the vertex vi. Then {v1, . . . , vn} is a basis of C0(G). In
this way, the incidence matrix B of the graph can be also regarded as the matrix
representation of a linear map from the edge space Rm to the vertex space Rn.

By replacing the field R by some other fields, such as R = R3, many of the
results of this thesis can be generalized to higher-dimensional spaces.

Given a digraph G, let C be a circuit in Go, then the two possible cyclic orderings
of the vertices of C induce two possible circuit orientations of the edges of C. Let
us choose one of these circuit orientations, and define a function ξC ∈ C1(G) as
follows. We take ξC(e) = +1 if e belongs to C and its circuit orientation coincides
with its orientation in G, ξC(e) = −1 if e belongs to C and its circuit orientation is the
reverse of its orientation in G, and we take ξC(e) = 0 if e is not in C. Furthermore,
C together with a chosen orientation is called a positive circuit if ξC ∈ Rm>0.

Theorem 2.3. For a weakly connected digraph G, the kernel of the incidence matrix B is
a vector space whose dimension is m− n+ 1. If C is a circuit in Go, then ξC ∈ kerB.

2.2 Convex analysis

In this section, we review some notations and definitions from convex analysis as
can be found in [28, 62]. Afterwards some connections between graph theory and
convex analysis are given.

The support of a vector, supp(x), is the set of indices i such that xi 6= 0. If x and
y are different points in Rk, the set of points of the form (1−λ)x+λy where λ ∈ R
is called the line through x and y. A face of a convex set C is a convex subset C ′ of
C such that every line segment in C with a relative interior point in C ′ has both
endpoints in C ′. The empty set and C itself are faces of C. The zero dimensional
faces of C are extreme points of C. Thus a point x ∈ C is an extreme point if and
only if there is no way to express x as a convex combination (1−λ)y+λz such that
y ∈ C, z ∈ C and 0 < λ < 1. A subset K of Rn is called a cone if it is closed under
positive scalar multiplication, i.e., λx ∈ K when x ∈ K and λ > 0. A convex cone
is a cone which is a convex set. For a convex cone, the origin is the only extreme
point. The one-dimensional set

{λΓ + x | λ > 0} ⊂ Rk
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where Γ is a non-zero vector in Rk defines a half-line called a ray in direction
Γ ∈ Rk emanating from x ∈ Rk. An extreme direction Γ of a convex cone K is a
vector corresponding to a half-line face that is a ray emanating from the origin. A
nonzero direction Γ in K is extreme if and only if

λ1Γ1 + λ2Γ2 6= Γ,∀λ1, λ2 > 0,∀Γ1,Γ2 ∈ K \ {λΓ | λ > 0}.

When the number of extreme points and directions of a convex set is finite, the
set of extreme elements is called a set of minimal generators for that convex set. A
convex cone with minimal generators, which possibly has empty interior, is called
a polyhedral cone.

Example 2.1. Consider the convex polyhedral cone given as in Figure 2.1. The
coordinations of the apexesA,B andC are (1, 1, 2), (1, 2, 1) and (2, 1, 1) respectively.
Then the vectors (1, 1, 2)T , (1, 2, 1)T and (2, 1, 1)T are extreme directions. The set
of minimal generators for this convex cone is composed of the origin O, which is
the trivial extreme point, and these three extreme directions.

Figure 2.1: The convex polyhedral cone with three extreme directions.

Finally, let us recall some notations from linear algebra. A linearly dependent
set is called minimal if every proper subset is linearly independent.

Proposition 2.4. For a minimal linearly dependent set {ξ1, . . . , ξk} there exists a unique
(up to a multiplier) non-trivial linear combination c1ξ1 + . . .+ ckξ

k which is equal to 0

while none of its coefficients ci is 0.

Lemma 2.5 (Lemma 3.2.9 in [38]). Given a digraph G with incidence matrix B, then
the set of minimal generators of the polyhedral cone kerB ∩ Rm>0 is composed of positive
circuits.
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Proof. First, from Theorem 2.3 we have that the kernel of B is spanned by the
vectors which are defined as the circuits of Go. Hence all the positive circuits
belong to kerB ∩ Rm>0. Next, we need to show that ξC where C is a positive circuit
is an extreme direction. Indeed, the columns of B corresponding to any strict
subset of supp(ξC) are linearly independent which implies that ξC is an extreme
direction. In other words, any positive circuit corresponds to a minimal linearly
dependent set of the columns of the incidence matrix. Hence a positive circuit is
an extreme direction.

Next we will show that an extreme direction of kerB ∩ Rm>0 is also a positive
circuit (up to a multiplier). First we notice that an extreme direction must have a
minimal support. In fact, suppose the vector v ∈ kerB ∩ Rm>0 being an extreme
direction does not have minimal support, i.e., there exists a circuit C $ {ei ∈ E |
i ∈ supp(v)}. Then there exists a ε > 0 such that v ± εξC ∈ kerB ∩Rm>0. Therefore

v =
1

2
(v − εξC) +

1

2
(v + εξC), (2.1)

which is a contradiction to the fact that v is an extreme direction. Hence for any
extreme direction v, the columns of B corresponding to nonzero components of
v are minimal linearly dependent, i.e., {ei ∈ E | i ∈ supp(v)} forms a circuit in
Go. By the fact that v ∈ Rm>0, we have the set {ei ∈ E | i ∈ supp(v)} forms a
positive circuit in G, i.e., v is equal to a vector defined by a positive circuit (up to a
multiplier).

Definition 2.6. A convex function f : R→ R ∪ {−∞,+∞} is proper if the set

{x ∈ R | f(x) < +∞} (2.2)

is nonempty and the function never attains −∞.

Definition 2.7. The convex conjugate of a convex function f , denoted f∗, is defined
as

f∗(x∗) = sup
x∈R
{〈x, x∗〉 − f(x)}. (2.3)

Definition 2.8. A relationR ⊂ Rn × Rn is said to be monotone if

〈x1 − x0, x
∗
1 − x∗0〉 > 0 (2.4)

for every (x0, x
∗
0), (x1, x

∗
1) ∈ R.
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2.3 Network optimization theory

In this section, we review some notations and two classical optimal problems
from network optimization theory as can be found in [61]. A network is given
by a digraph G = (V, E) with the vertex set V = {v1, . . . , vn} and the edge set
E = {e1, . . . , em}. As in Section 2.1, the incidence matrix of G is denoted by
B ∈ Rn×m.

By a flow of a network G, we mean a vector µ = (µ1, . . . , µm)T where the value
µi, called the flux in the edge ei, is interpreted as the quantity of material flowing
through the edge ej . Given a flow of a network, the total departing flow from vi
minus the total arriving flow at vi is called the divergence of the flow at the vertex
vi and it will be denoted by ui. We call the vector u = (u1, . . . , un)T the divergence
vector associated with the flow µ. This definition is summarized by

u+Bµ = 0. (2.5)

Duality in the study of flows is closely tied to the following notion. A potential
in a network G is a vector y = (y1, . . . , yn) where the value yi is called the potential
at the vertex vi. With an edge ek = (vi, vj), one associates the potential difference
as ζk = yi − yj . This defines the tension vector ζ = (ζ1, . . . , ζm) which is the
differential of the potential y, i.e., ζ can be expressed as

ζ = BT y. (2.6)

The relation between the pair of flows and tension and the pair of potentials
and divergence is expressed by the conversion formula:

µT ζ = −yTu. (2.7)

The optimal flow problem attempts to optimize the flow and divergence in a
network subject to the constraint (2.5). Each edge and node are assigned a convex
flux cost Cfluxk (µk) and a convex divergence cost Cdivi (ui), i.e.,

min
u,µ

n∑
i=1

Cdivi (ui) +

m∑
k=1

Cfluxk (µk)

s.t u+Bµ = 0.

(2.8)

The problem (2.8) admits a dual problem, called the optimal potential problem,
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which is given as

min
y,ζ

n∑
i=1

Cpoti (yi) +

m∑
k=1

Ctenk (ζk)

s.t ζ = BT y,

(2.9)

where Cpoti and Ctenk are the conjugate functions of Cdivi and Cfluxk respectively,
i.e., Cpoti = Cdiv,∗i and Ctenk = Cflux,∗k . The duality of problem (2.8) and (2.9) is a
well-known result, here for the sake of completeness, we attach the proof of it as
follows.

Proof of the duality of (2.8) and (2.9). The optimal flow problem (2.8) is equivalent
to the following problem

min
u,ũ,µ,µ̃

n∑
i=1

Cdivi (ũi) +

m∑
k=1

Cfluxk (µ̃k)

s.t u+Bµ = 0,

ũ = u,

µ̃ = µ.

(2.10)

By introducing the Lagrangian multipliers y and ζ for the constraints ũ = u and
µ̃ = µ, the conjugate of (2.10) is

min
u,ũ,µ,µ̃

n∑
i=1

Cdivi (ũi) +

m∑
k=1

Cfluxk (µ̃k)− yT (ũ− u)− ζT (µ̃− µ)

s.t u+Bµ = 0,

(2.11)

which is equal to

min
ũ,µ,µ̃

n∑
i=1

Cdivi (ũi) +

m∑
k=1

Cfluxk (µ̃k)− yT (ũ+Bµ)− ζT (µ̃− µ). (2.12)

By the definition of convex conjugate function, the function (2.12) can be equiva-
lently expressed as

min
ũ,µ,µ̃

−
n∑
i=1

Cdiv,∗i (yi)−
m∑
k=1

Cflux,∗k (ζk)− µT (BT y − ζ), (2.13)
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which is equal to
−

n∑
i=1

Cdiv,∗i (yi)−
m∑
k=1

Cflux,∗k (ζk) if ζ = BT y,

−∞ if ζ 6= BT y.

(2.14)

Hence the Lagrange dual problem of (2.8) is given as

max
y,ζ
−

n∑
i=1

Cdiv,∗i (yi)−
m∑
k=1

Cflux,∗k (ζk)

s.t ζ = BT y,

(2.15)

which is equivalent to the optimal potential problem (2.9).

2.4 Port-Hamiltonian systems

The port-Hamiltonian framework is aimed at providing a unified framework for
the modeling of systems belonging to different physical domains (mechanical,
electrical, hydraulic, thermal, etc.). This is achieved by recognizing energy as
the ’lingua franca’ between physical domains, and by identifying ideal system
components capturing the main physical characteristics. This section is based on
[69].

The term port in the name stands for power ports which provide an interface
for the sub-models within the model to interact with each other. Each port is
composed by pairs (f, e) of equally dimensioned vectors of flow and effort variables.
The flow vector f belongs to the flow space F and the effort vector e belongs to
the effort space E which is the dual space of F , i.e., E := F∗. The duality product
< e | f >, that is, the linear functional e ∈ E = F∗ acting on f ∈ F , denotes the
instantaneous power transmit through the link. The space of the port variables is
defined as F × E .

Central in the definition of a port-Hamiltonian system is the notion of a Dirac
structure. Basic property of a Dirac structure is power conservation: the Dirac
structure links the various port (flow and effort) variables f and e in such a way
that the total power < e | f > is equal to zero.

Definition 2.9 (Dirac structure). Consider a finite-dimensional linear spaceF with
E = F∗. A subspace D ⊂ F × E is a Dirac structure if

1. < e | f >= 0, for all (f, e) ∈ D,

2. dimD = dimF .
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The port-Hamiltonian system consists of energy-storing elements with ports
(fS , eS), energy-dissipating (resistive) elements with ports (fR, eR), and external
ports (fP , eP ) which are interconnected by a Dirac structure. The formal definition
is given as follows.

Definition 2.10. Consider a state space manifold X and a Hamiltonian

H : X → R, (2.16)

defining energy-storage. A port-Hamiltonian system on X is defined by a Dirac
structure

D ⊂ TxX × T ∗xX × FR × ER ×FP × EP , (2.17)

having energy-storing port (fS , eS) ∈ TxX ×T ∗xX , where TxX is the tangent space
of X at x ∈ X , and a resistive structure

R ⊂ FR × ER, (2.18)

corresponding to an energy-dissipating port (fR, eR) ∈ FR × ER. Its dynamics are
specified by

(
− ẋ(t),

∂H

∂x
(x(t)), fR(t), eR(t), fP (t), eP (t)

)
∈ D(x(t)), (2.19)

(fR(t), eR(t)) ∈ R(x(t)), t ∈ R. (2.20)

In the remainder, we only consider finite-dimensional port Hamiltonian sys-
tems. Under certain assumptions on the Dirac structure and the resistive relation,
the port-Hamiltonian system can be written as

ẋ = (J(x)−R(x))
∂H

∂x
(x) + g(x)u,

y = gT (x)
∂H

∂x
(x)

(2.21)

with skew-symmetric interconnection matrix J(x) = −JT (x), positive semi-
definite dissipation matrix R(x) = RT (x) > 0, input matrix g(x), and Hamiltonian
H(x). The system (2.21) is called an input-state-output port-Hamiltonian system.

If H is nonnegative, then it can be verified that system (2.21) is passive [2] with
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respect to the input-output (u, y) with the storage function H(x), i.e.,

Ḣ(x(t)) =
∂TH

∂x
(x)(J(x)−R(x))

∂H

∂x
(x) +

∂TH

∂x
(x)g(x)u

= −∂
TH

∂x
(x)R(x)

∂H

∂x
(x) +

∂TH

∂x
(x)g(x)u

6 yTu.

(2.22)

This inequality expresses the basic fact that the increase of the internally stored
energy (the Hamiltonian) is always less than or equal to the externally supplied
power.

2.5 Equilibrium-independent passivity

Port-Hamiltonian systems are closely related to several notions of passivity. In
this thesis we focus on the Equilibrium-independent passivity. The name first
appeared in [40]; however the essence of this idea has been proposed by several
researchers, see e.g. [43] and the references therein. This section is based on [40].

Consider a general dynamical system Σ of the form

ẋ = f(x, u),

y = h(x, u)
(2.23)

with x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, y ∈ Y ⊂ Rm..
Assume that there exists a set U∗ ⊂ U such that for every u∗ ∈ U∗ there exists a

unique x∗ ∈ X such that f(x∗, u∗) = 0. Define

kX : U∗ → X such that x∗ = kX (u∗) (2.24)

and assume it to be once differentiable. We call this function the equilibrium
input-state map.

We also define the equilibrium input-output map

kY(u) : U∗ → Y (2.25)

by y∗ = kY(u∗) = h(kX (u∗), u∗).

Definition 2.11 ([40]). Σ is equilibrium-independent passive on U∗ if for every u∗ ∈
U∗ there exists a once differentiable and positive definite storage function Vu∗ :

X → R such that Vu∗(x∗) = 0 and

∂TVu∗

∂x
(x)f(x, u) 6 (u− u∗)T (y − y∗) (2.26)
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for all u ∈ U , x ∈ X , where y = h(x, u) and y∗ = kY(u∗).

Definition 2.12 ([40]). Σ is output strictly equilibrium-independent passive on U∗ if

∂TVu∗

∂x
(x)f(x, u) 6 (u− u∗)T (y − y∗)− ρ(y − y∗) (2.27)

for some positive definite function ρ(·).

Lemma 2.13 ([40]). If Σ is equilibrium-independent passive, then the equilibrium input-
output map kY(u) is monotonically increasing.

In Section 3.4, we will present a more general definition of equilibrium-
independent passivity where we replace the equilibrium input-output map with a
monotone relation. This extension is motivated by [18].

The port-Hamiltonian system (2.21) is equilibrium-independent passive if the
Hamiltonian H ∈ C2 is strictly convex and J(x)−R(x) is an invertible constant
matrix. In this case, the equilibrium input-output map is

kY(u) = −GT (J −R)−1Gu. (2.28)

Since J = −JT and R 6 0, we have

(J −R)−1 + (J −R)−T = (J −R)−T
(
(J −R) + (J −R)T

)
(J −R)−1

6 0
(2.29)

which implies that kY is monotonically increasing. Furthermore, the storage
function Vu∗ can be taken as H(x)− ∂TH

∂x (x∗)(x− x∗)−H(x∗), where x∗ satisfies
(J −R)∂H∂x (x∗) +Gu∗ = 0.

2.6 Non-smooth analysis and stability

In the rest of this chapter we give some definitions and notations regarding
Filippov solutions and non-smooth stability analysis which are used in this thesis
(see [24] for further information). Let X be a map from Rd to Rd, and 2R

d

be the
collection of all subsets of Rd. Consider the differential equation

ẋ(t) = X(x(t)), (2.30)

with X possibly discontinuous. We interpret the solution of (2.30) in the Filippov
sense. For each x ∈ Rd, the Filippov set-valued map is defined as follows.
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Definition 2.14. Define the Filippov set-valued map of X F [X] : Rd → 2R
d

as

F [X](x) ,
⋂
δ>0

⋂
m(S)=0

co{X(B(x, δ)\S)}, (2.31)

where B(x, δ) is the open ball centered at x with radius δ > 0, S is a subset of Rd,
m denotes the Lebesgue measure and co denotes convex hull.

Notice that if X is continuous at x, then F [X](x) = {X(x)}.

Example 2.2. Consider a function f : R2 → R2 defined as follows

f(x1, x2) =

[
sign(x2 − x1)

sign(x1 − x2)

]
. (2.32)

Denote the set S = {(x1, x2) ∈ R2 | x1 = x2} which has zero Lebesgue measure in
R2. Notice that at any point x ∈ R2 \ S, the function f is continuous. Hence the
Filippov set-valued map of f is equal to the singleton {f(x)}, i.e.,F [f ](x) = {f(x)}.
However, the function f is discontinuous at any point x ∈ S. In this case, for any
δ > 0, there exist points y, z ∈ B(x, δ)\S such that f(y) = (1,−1)T and f(z) =

(−1, 1)T . Hence the Filippov set-valued map F [f ](x) = co{(1,−1)T , (−1, 1)T } for
any x ∈ S.

Definition 2.15. A Filippov solution of the differential equation (2.30) on [0, t1] ⊂ R
is an absolutely continuous function x : [0, t1]→ Rd that satisfies the differential
inclusion

ẋ(t) ∈ F [X](x(t)) (2.33)

for almost all t ∈ [0, t1].

A Filippov solution t → x(t) is maximal if it cannot be extended forward in
time, that is, if t→ x(t) is not the result of the truncation of another solution with a
larger interval of definition. Since the Filippov solutions of a discontinuous system
(2.30) are not necessarily unique, we need to specify two types of invariant set. A
set S ⊂ Rd is weakly invariant for (2.33) if, for each x0 ∈ S, S contains at least one
maximal solution of (2.33) with initial condition x0. Similarly, S ⊂ Rd is strongly
invariant for (2.33) if, for each x0 ∈ S, S contains all the maximal solutions of (2.33)
for initial condition x0.

A time-invariant set-valued map F : Rd → 2R
d

is upper semi-continuous
(respectively, lower semi-continuous) at x ∈ Rd if, for all ε ∈ (0,∞), there exists
δ ∈ (0,∞) such that F (y) ⊂ F (x) + B(0, ε) (respectively, F (x) ⊂ F (y) + B(0, ε))
for all y ∈ B(x, δ), where B(x, δ) is the open ball centered at x with radius δ > 0. It
is proved in [34] that the Filippov set-valued map F [X] is upper semi-continuous.

Some properties about computing the Filippov set-valued maps are summa-
rized below.
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Proposition 2.16. ([24]) Product Rule: If X1 : Rd1 → Rd2 and X2 : Rd1 → Rd3 are
locally bounded at x ∈ Rd1 , then

F [(X1, X2)T ](x) ⊆ F [X1](x)×F [X2](x). (2.34)

Moreover, if either X1 or X2 is continuous at x, then equality holds.
Chain Rule: If X1 : Rd1 → Rd2 is continuously differentiable at x ∈ Rd1 with

Jacobian rank d2, and X2 : Rd2 → Rd3 is locally bounded at X1(x) ∈ Rd2 , then

F [X2 ◦X1](x) = F [X2](X1(x)). (2.35)

Matrix Transformation Rule: If X1 : Rd1 → Rd2 is locally bounded at x ∈ Rd1 and
Z : Rd1 → Rd1×d2 is continuous at x ∈ Rd1 , then

F [ZX1](x) = Z(x)F [X1](x). (2.36)

The stability analysis of the differential inclusion (2.33) is done by the Lyapunov
method with a candidate function which is possibly non-smooth. This Lyapunov
function is assumed to be regular and locally Lipschitz in the following sense.

Definition 2.17. Let f be a map from Rd to R. The right directional derivative
f ′(x; v) of f at x in the direction of v ∈ Rd is defined as

f ′(x; v) = lim
h→0+

f(x+ hv)− f(x)

h
,

whenever this limits exists.

Definition 2.18. Let f be a map from Rd to R. The generalized derivative fo(x; v) of
f at x in the direction of v ∈ Rd is given by

fo(x; v) = lim sup
y→x
h→0+

f(y + hv)− f(y)

h
= lim
δ→0+

ε→0+

sup
y∈B(x,δ)
h∈[0,ε)

f(y + hv)− f(y)

h
.

Definition 2.19. We call a function f regular at x if f ′(x; v) = fo(x; v) for all v ∈ Rd.

Notice that a convex function is regular [23]. In order to study the evolution of
the Lyapunov function along the trajectories of (2.33), we also need to introduce
the definitions of generalized gradient and set-valued Lie derivative.

Definition 2.20 ([23]). If f : Rd → R is locally Lipschitz, then its generalized gradient
∂f : Rd → 2R

d

is defined by

∂f(x) := co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf}, (2.37)



22 2. Preliminaries

where Ωf ⊂ Rd denotes the set of points where f fails to be differentiable and
S ⊂ Rd is a set of measure zero that can be arbitrarily chosen to simplify the
computation.

Notice that from Rademacher‘s Theorem [23], we have that locally Lipschitz
functions are differentiable almost everywhere, i.e., m(Ωf ) = 0.

Definition 2.21. Given a locally Lipschitz function f : Rd → R, the set-valued Lie
derivative of f with respect to the Filippov set-valued map F [X] at x is defined as

L̃F [X]f(x) = {a ∈ R | ∃ν ∈ F [X](x) such that ζT ν = a for all ζ ∈ ∂f(x)}. (2.38)

The following result is a generalization of LaSalle’s invariance principle for
discontinuous differential equations (2.30) with non-smooth Lyapunov functions.

Theorem 2.22 (LaSalle Invariance Principle). Let f : Rd → R be a locally Lipschitz
and regular function. Let S ⊂ Rd be compact and strongly invariant for (2.33), and
assume that max L̃F [X]f(y) 6 0 for each y ∈ S. Then, all solutions x : [0,∞)→ Rd of
(2.33) starting at S converge to the largest weakly invariant set M contained in

S ∩ {y ∈ Rd | 0 ∈ L̃F [X]f(y)}. (2.39)

where we define max∅ = −∞. Moreover, if the set M consists of a finite number of
points, then the limit of each solution starting in S exists and is an element of M .

Besides the Filippov solution, another commonly used notion is that of
Krasovskii solution.

Definition 2.23. We define the Krasovskii set-valued map of X K[X] : Rd → 2R
d

as

K[X](x) ,
⋂
δ>0

co{X(B(x, δ))}. (2.40)

Definition 2.24. A Krasovskii solution of the differential equation (2.30) on [0, t1] ⊂
R is an absolutely continuous function x : [0, t1]→ Rd that satisfies the differential
inclusion

ẋ(t) ∈ K[X](x(t)) (2.41)

for almost all t ∈ [0, t1].

Obviously, if X is locally bounded, any Filippov solution is also a Krasovskii
solution. The following proposition provides a condition such that any Krasovskii
solution is also a Filippov solution.

Proposition 2.25 ([19]). If there exists a disjoint decomposition Rn = ∪Ωi, with Ωi =

int Ωi and continuous functions Xi : Rn → Rn such that X = Xi on Ωi, then each
Krasovskii solution of (2.30) is a Filippov solution.
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2.7 Notation

Given a vector x, the notation xi denotes its i-th entry. Given a matrix D, the
notation Di,k denotes its ik-th entry. The ith row and jth column of matrix D are
denoted as Di· and D·j respectively.

For µ−, µ+ ∈ Rm the notation µ− 6 µ+ will denote element-wise inequality
µ−i 6 µ+

i , i = 1, . . . ,m. For µ− 6 µ+ the multidimensional saturation function
sat(· ;µ−, µ+) : Rm → Rm is defined as

sat(µ ;µ−, µ+)i =


µ−i if µi < µ−i ,

µi if µ−i 6 µi 6 µ+
i ,

µ+
i if µi > µ+

i ,

i = 1, . . . ,m, (2.42)

where µ− and µ+ are the vectors of lower and upper bounds of the saturation
respectively. If M(t) =

(
mij(t)

)
m×n is integrable, i.e., mij(t) is integrable for all

i, j, then
∫ b
a
M(t)dt =

( ∫ b
a
mij(t)dt

)
m×n.

With R−, R+ and R>0 we denote the sets of negative, positive and nonnegative
real numbers, respectively.

Definition 2.26. We say that a function ϕ : R→ R is sign preserving if

(i) yϕ(y) > 0 for all y ∈ R \ {0}while ϕ(0) = 0, and

(ii) for ∀y 6= 0, ∃ε, δ > 0, such that for ∀y′ ∈ B(y, δ), |ϕ(y′)| > ε.

For the empty set, we adopt the convention that max∅ = −∞. The vectors
e1, e2, . . . , en denote the canonical basis of Rn.





Chapter 3





Output agreement of dynamical distribution
networks with flow constraints and
unknown in/outflows

3.1 Introduction

In this chapter we study a basic model for the dynamics of a distribution network.
Identifying the network with a directed graph we associate with every vertex of
the graph a state variable corresponding to storage, and with every edge a control
input variable corresponding to flow, which is constrained to take value in a given
closed interval. Furthermore, some of the vertices serve as terminals where an
unknown but constant flow may enter or leave the network in such a way that
the total sum of inflows and outflows is equal to zero. The control problem to be
studied is to derive necessary and sufficient conditions for a distributed control
structure (the control input corresponding to a given edge only depending on the
difference of the state variables of the adjacent vertices) which will ensure that
the outputs associated to all vertices will converge to the same value equal to the
average of the initial condition, irrespective of the values of the constant unknown
inflows and outflows.

We will first show how in the absence of constraints on the flow input variables
a distributed proportional-integral (PI) controller structure, associating with every
edge of the graph a controller state, will solve the problem if and only if the
graph is weakly connected. This will be shown by identifying the closed-loop
system as a port-Hamiltonian system, with state variables associated both to the
vertices and the edges of the graph, in line with the general definition of port-
Hamiltonian systems on graphs [3, 4, 5, 6]; see also [16, 77]. The proof of asymptotic
load balancing will be given by modifying, depending on the vector of constant
inflows and outflows, the total Hamiltonian function into a Lyapunov function.
In examples the obtained PI-controller often has a clear physical interpretation,
emulating the physical action of adding energy storage and damping to the edges.

The main contribution of this chapter resides in Section 3.3, where the same
problem is addressed for the case of constraints on the flow input variables. In
Section 3.3 we derive criteria, only depending on the structure of the graph and
the flow constraints, to decide for what kind of in/outflows the system will reach
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asymptotic output agreement using the distributed PI controller proposed in
Section 3.2.

The proof in Section 3.3 is based on Lyapunov theory and LaSalle’s invariance
principle. The Lyapunov function has a clear energy-based explanation which
follows from the notion of equilibrium-independent passivity. This is discussed in
Section 3.4.

The distribution network is closely connected to the theory of optimization,
see e.g. [61]. In Section 3.5, we establish the relation between the dynamical dis-
tribution network with flow constraints and a pair of dual network optimization
problems. This is done by extending the static input-output gains of the plant sys-
tems at the vertices and the controller systems at the edges to maximal monotone
relations in a specific manner. We derive an equivalent expression of the main
result in Section 3.3 from an optimization perspective.

In Section 3.6 and 3.7 we present some extensions and applications of the main
result. In Section 3.6, we propose a modified PI controller which can drive the
outputs of the vertices to an arbitrary feasible vector for the cases with and without
flow constraints. In Section 3.7, we consider the case that the in/outflows are
zero and the flow constraints are not too much different from each other, i.e., the
intersection of all the flow constraints contains an open interval. It will be shown
that the outputs of the vertices converge to consensus if and only if the network is
weakly connected and balanced.

Finally, Section 3.8 contains the conclusions.
Related work can be summarized as follows. In [54], a class of cooperative

control algorithms is proposed for distribution networks with time-varying ex-
ogenous in/outflows. However, the constraint intervals for the control inputs
are assumed to be symmetric with respect to the origin, which turns out to be
a major simplifying assumption with regard to the general constraint intervals
considered in the present thesis. Furthermore, the output functions at each ver-
tex are assumed to be linear. In [12], the main problem is the joint presence of
buffer/flow capacity and of the unknown in/outflows. A discontinuous control
strategy is proposed to drive the state variables, corresponding to storage at the
vertices, to consensus for all constant in/outflows, by using a constrained control
input of proportional type. Similarly, in [10] a saturated proportional controller is
employed to achieve practical stability and optimality at steady-states. In Section
III of [58], the author considered vehicles with double-integrator dynamics. In
order to let all the vehicles reach consensus in position and velocity, a smoothly
saturated PI controller is employed. More precisely, the input constraints, which
are assumed to be between −1 and 1, are imposed on the proportional and in-
tegral part separately. The results from our previous work [68, 71] are sufficient
conditions for stability of output agreement of the model we considered in this
chapter. Finally, in [73] we investigated the asymptotic output agreement problem
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of dynamical distribution network with state constraints.

3.2 Dynamical model of the distribution network

In this section we introduce the dynamical distribution network defined on a
digraph G = {V, E} with |V| = n and |E| = m. On the vertices, we consider
nonlinear integrators, given as

ẋ = u, x, u ∈ Rn,

y =
∂H

∂x
(x), y ∈ Rn,

(3.1)

where H : Rn → R is a differentiable function, and ∂H
∂x (x) denotes the column

vector of partial derivatives ofH . Here the ith element of x and u, i.e. xi and ui, are
the state and input variable associated to the ith vertex of the graph respectively.
System (3.1) defines a port-Hamiltonian system [2, 67], satisfying the energy-
balance

d

dt
H =

∂TH

∂x
(x)ẋ = uT y. (3.2)

As a next step we will extend the dynamical system (3.1) with a vector d of
inflows and outflows

ẋ = u+ Ed̄, d̄ ∈ Rk,

y =
∂H

∂x
(x),

(3.3)

with E an n × k matrix whose columns consist of exactly one entry equal to 1

(inflow) or −1 (outflow), while the rest of the elements is zero. Thus E specifies
the k terminal vertices where flows can enter or leave the network.

In this chapter we will regard d̄ as a vector of constant disturbances, and we
want to investigate control schemes which ensure asymptotic output agreement of
system (3.1) irrespective of the (unknown) disturbance d̄. By asymptotic output
agreement, we mean that there exists a constant α ∈ R such that

∂H

∂x
(x(t))→ α1, as t→∞. (3.4)

Furthermore, we denote the set

Ω = {x | ∂H
∂x

(x) = α1, α ∈ R} (3.5)

as the output agreement set. A necessary condition for output agreement is
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Assumption 3.1. There exists x̄oa ∈ Rn such that ∂H∂x (x̄oa) ∈ span{1}.

We consider the following general controllers defined on the edges of the
digraph G

η̇k = fk(ηk, ζk),

µk = gk(ηk, ζk), k = 1, 2, . . . ,m
(3.6)

where ηk, ζk, µk are respectively the states, input and output of the controller on
the kth edge of G. Denote the stacked vectors of ηk, ζk, µk as η, ζ, µ respectively.
With the controller (3.6), the state variables xi, i = 1, 2, . . . , n, are controlled by the
controller output µk, k = 1, 2, . . . ,m, in the following manner

u+Bµ = 0, (3.7)

where B ∈ Rn×m is the incidence matrix of the digraph G. In addition, the
controller is driven by the relative output of the systems (3.1) on vertices, i.e

ζ = BT y (3.8)

The closed-loop system of (3.1), (3.6), (3.7), (3.8) is given in Figure 3.1.
Note that this defines a distributed control scheme if H is of the form H(x) =

H1(x1) + . . .+Hn(xn). For the case d̄ = 0 we have d
dtH = −µT ζ.

Example 3.1 (Hydraulic network). Consider a hydraulic network, modeled as a
digraph with vertices corresponding to reservoirs, and edges corresponding to
pipes. Let xi be the volume of fluid stored at vertex i, and µj the flow through
edge j. Then the mass-balance of the network is summarized as (3.1) and (3.7), i.e.,

ẋ = −Bµ+ Ed̄, (3.9)

where B is the incidence matrix of the graph. Let furthermore H(x) denote the
stored energy in the reservoirs (e.g., gravitational energy). Then Pi := ∂H

∂xi
(x), i =

1, . . . , n, are the pressures at the vertices, and the vector ζ = BT ∂H∂x (x) is the vector
whose kth element is the pressure difference Pi − Pj across the kth edge linking
vertex i to vertex j. Output agreement in this case indicates that the pressures at
the vertices are the same.

Example 3.2 (Thermodynamical systems). Consider the thermal network, mod-
eled as an undirected graph with vertices corresponding to masses with different
temperatures, and edges corresponding to heat exchanging channels. Let xi be the
entropy of the mass i, and µj be the entropy flow through edge j. Then the energy
balance of the masses is summarized as (3.1) and (3.7). Let Hi(xi) = Qi denote
the energy in the mass i. For thermodynamically reversible processes, ∂Hi

∂xi
= Ti
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Figure 3.1: The closed-loop system of (3.1), (3.6), (3.7), (3.8) where Σi is the nonlin-
ear integrator (3.1) on ith vertex, Ck is the controller (3.6) defined on kth edge, and
B is the incidence matrix.

is the absolute temperature of mass i. Hence the jth element of the input to the
controller given as in (3.8) is the temperature difference Ti − Tk across the jth edge.
If the controller Hamiltonian Hc(·) = 1

2‖ · ‖
2
2, then the proportional and integral

part of the controller (3.14) is the temperature difference and the accumulated
temperature difference respectively.

The simplest control possibility is to apply a proportional output feedback

µ = Rζ = RBT
∂H

∂x
(x), (3.10)

where R is a diagonal matrix with strictly positive diagonal elements r1, . . . , rm.
Note that this control protocol is decentralized (see e.g.,[41]), namely the control
action on each edge is only based on the vertices it affects. This control scheme
leads to the closed-loop system

ẋ = −BRBT ∂H
∂x

(x) + Ed̄. (3.11)
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In case of zero in/outflows d̄ = 0 this implies the energy-balance

d

dt
H = −∂

TH

∂x
(x)BRBT

∂H

∂x
(x) 6 0. (3.12)

Hence if H is radially unbounded it follows that the trajectories of the closed-loop
system (3.11) will converge to the set

Ω := {x | BT ∂H
∂x

(x) = 0}.

and thus to the output agreement set

Ω = {x | ∂H
∂x

(x) = α1, α ∈ R} (3.13)

if and only if kerBT = span{1}, or equivalently [14], if and only if the graph is
weakly connected.

In particular, for the standard Hamiltonian H(x) = 1
2‖x‖

2 this means that the
state variables xi(t), i = 1, . . . , n, converge to a common value α as t→∞. Since
d
dt1

Tx(t) = 0 it follows that this common value is given as the average value
α = 1

n

∑n
i=1 xi(0).

For d̄ 6= 0, a proportional control µ = Rζ will not be sufficient to reach load bal-
ancing, since the disturbance d̄ can only be attenuated at the expense of increasing
the gains in the matrix R. Hence we consider the proportional-integral (PI) control
given by the dynamic output feedback 1

η̇ = ζ,

µ = Rζ + ∂Hc

∂η (η),
(3.14)

where Hc(η) denotes the storage function (energy) of the controller. Indeed, we
have

d

dt
Hc(η) =

∂THc

∂η
(η)η̇,

6 µT ζ

(3.15)

which implies that the controller (3.14) is passive with respect to the input-output
pair (ζ, µ). Note that this PI controller is of the same distributed nature as the
static output feedback µ = Rζ.

The jth element of the controller state η can be regarded as an additional state
variable corresponding to the jth edge of G. Thus η ∈ Rm, the edge space of the

1The same strategy and analysis for handling constant disturbances in port-Hamiltonian systems
was already given in [63].
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network. The closed-loop system resulting from the PI control (3.14) is given as[
ẋ

η̇

]
=

[
−BRBT −B

BT 0

][ ∂H
∂x (x)

∂Hc

∂η (η)

]
+

[
E

0

]
d̄, (3.16)

This is again a port-Hamiltonian system2, with total Hamiltonian Htot(x, η)

:= H(x) +Hc(η), and satisfying the energy-balance

d

dt
Htot = −∂

TH

∂x
(x)BRBT

∂H

∂x
(x) +

∂TH

∂x
(x)Ed̄ (3.17)

Consider now a constant disturbance d̄ satisfying the following assumption.

Assumption 3.2. There exists a controller state η̄ such that

Ed̄ = B
∂Hc

∂η
(η̄). (3.18)

By using Assumption 3.2, the closed-loop (3.16) can be written as[
ẋ

η̇

]
=

[
−BRBT −B

BT 0

]∂Vd̄

∂x (x)

∂Vd̄

∂η (η)

 ,
with

Vd̄(x, η) := H(x) +Hc(η)− ∂THc

∂η
(η̄)(η − η̄)−Hc(η̄).3 (3.19)

The function Vd̄ will serve as a candidate Lyapunov function; leading to the
following theorem.

Theorem 3.3. Consider the system (3.3) on the graph G in closed loop with the PI-
controller (3.14). Let the constant disturbance d̄ be such that there exists a η̄ satisfying
the matching equation (3.18). Assume that Vd̄(x, η) is radially unbounded. Then the
trajectories of the closed-loop system (3.16) will converge to an element of the load balancing
set

Etot = {(x, η) | ∂H
∂x

(x) = α1, α ∈ R, B
∂Hc

∂η
(η) = Ed̄ }. (3.20)

if and only if G is weakly connected.

2See [3, 4, 5, 6] for a general definition of port-Hamiltonian systems on graphs. The addition of a
PI-controller can be also interpreted as ’control by interconnection’, see e.g. [52]

3This function was introduced for passive systems with constant inputs in [43].
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Proof. Suppose G is weakly connected. By (3.17) we obtain, making use of (3.18),

d

dt
Vd̄ =− ∂TH

∂x
(x)BRBT

∂H

∂x
(x) +

∂TH

∂x
(x)Ed̄

− ∂THc

∂η
(η̄)BT

∂H

∂x
(x)

=− ∂TH

∂x
(x)BRBT

∂H

∂x
(x) 6 0.

(3.21)

Hence by LaSalle’s invariance principle the system trajectories converge to the
largest invariant set contained in

{(x, η) | BT ∂H
∂x

(x) = 0}. (3.22)

Substitution of BT ∂H∂x (x) = 0 in the closed-loop system equations (3.16) yields η
constant and −B ∂Hc

∂η (η) + Ed̄ = 0. The last equality holds because of the radial
unboundedness of Vd̄. Indeed, if −B ∂Hc

∂η (η) + Ed̄ 6= 0, we have ‖x(t)‖ → ∞
as t → ∞ within the invariant set. By the radial unboundedness of Vd̄, this is
a contradiction to the fact Vd̄ is decreasing along the trajectories of the system
(3.16). Since the graph is weakly connected BT ∂H∂x (x) = 0 implies ∂H

∂x (x) = α1.
If the graph is not weakly connected then the above analysis will hold on every
connected component, and the common value α will be different for different
components.

Corollary 3.4. If kerB = 0, which is equivalent ([14]) to the graph having no circuits,
then for every d̄ there exists a unique η̄ satisfying (3.18), and convergence is towards the
set Etot = {(x, η̄) | ∂H∂x (x) = α1, α ∈ R, η = η̄}.

A necessary condition for Assumption 3.2 being satisfied for all d̄ is

imE ⊂ imB. (3.23)

Furthermore, a necessary (and in case the graph is weakly connected necessary
and sufficient) condition for the inclusion imE ⊂ imB is that 1TE = 0. In its turn
1TE = 0 is equivalent to the fact that for every d̄ the total inflow into the network
equals to the total outflow. The condition 1TE = 0 also implies

1T ẋ = −1TBµ+ 1TEd̄ = 0, (3.24)

yielding (as in the case d = 0) that 1Tx is a conserved quantity for the closed-loop
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system (3.16). In particular it follows that the limit value limt→∞ x(t) ∈ span{1} is
determined by the initial condition x(0).

Corollary 3.5. In case of the standard quadratic Hamiltonians H(x) = 1
2‖x‖

2, Hc(η) =
1
2‖η‖

2 there exists for every d̄ a controller state η̄ such that (3.18) holds if and only if

imE ⊂ imB. (3.25)

Furthermore, in this case Vd̄ equals the radially unbounded function 1
2‖x‖

2 + 1
2‖η − η̄‖

2,
while convergence will be towards the load balancing set Etot = {(x, η) | x = α1, α ∈
R, Bη = Ed̄}.

Example 3.3 (Hydraulic network continued). The proportional part Rζ of the
controller corresponds to adding damping to the dynamics (proportional to the
pressure differences along the edges). The integral part of the controller has the
interpretation of adding compressibility to the hydraulic network dynamics. Using
this emulated compressibility, the PI-controller is able to regulate the hydraulic
network to a load balancing situation where all pressures Pi are equal, irrespective
of the constant inflow and outflow d̄ satisfying the matching condition (3.18). Note
that for the Hamiltonian H(x) = 1

2‖x‖
2 the pressures Pi are equal to each other if

and only if the fluid levels xi are equal.

In this example we show the simulation of the closed-loop system (3.16), where
H(x) = 1

2‖x‖
2, Hc(η) = 1

2‖η‖
2 and R = I . The underlying network is given as

in Figure 3.2 and the in/outflows d̄ satisfy 1TEd̄ = 0. The time evolutions of the
state x1(t), . . . , x5(t) of the closed-loop are shown in Figure 3.3.

1

2

3

4

5

e1

e2

e3

e4

e5

e6

e7

Figure 3.2: Network used in the examples of this chapter
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Figure 3.3: The trajectories of the state variables of dynamical system in Example
3.3.

3.3 Dynamical distribution network with con-
strained flows

3.3.1 Main results

In many practical cases, the elements of the vector of flows µ ∈ Rm corresponding
to the edges of the graph will be constrained, that is

µ ∈M := {µ ∈ Rm | µ− 6 µ 6 µ+} (3.26)

for certain vectors µ− and µ+ satisfying µ−i 6 µ+
i , i = 1, . . . ,m. A general con-

strained version of the PI controller is given as

η̇ = ζ,

µ = sat
(∂Hc

∂η
(η) +Rζ ;µ−, µ+

) (3.27)

Before we continue with constrained flows, we assume throughout this section
that the controller Hamiltonian Hc satisfies the following assumption.

Assumption 3.6. The controller Hamiltonian Hc is convex and {∂Hc

∂η (η) | η ∈
Rm} = Rm.

Notice that the previous assumption is sufficient to guarantee the radial un-
boundedness of Hc(η)− ∂THc

∂η (η̄)(η − η̄)−Hc(η̄) for any η̄ ∈ Rm. Notice that the
controller (3.27) is different from the one in [58] where the saturation is imposed
separately on the proportional and integral part of the controller. Moreover, the
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constrained controller (3.27) does not satisfy incremental observability as defined in
[55]. Hence the methodology in [55] for output synchronization is not applicable
here.

The closed-loop system resulting from the interconnection of (3.3), (3.7), (3.8)
with the constrained PI controller (3.27) is given as

ẋ = −B sat
(
RBT ∂H∂x (x) + ∂Hc

∂η (η) ;µ−, µ+
)

+ Ed̄,

η̇ = BT ∂H∂x (x),
(3.28)

The problem studied in the present section concerns the following question.
Given arbitrary (but fixed) flow constraints, for what kind of in/outflows does the
closed-loop system(3.28) achieve asymptotic output agreement.

Similar to Assumption 3.2 in the unconstrained case, if output agreement is
achieved for (3.28) then the constrained controller needs to satisfy the following
condition.

Assumption 3.7. There exists a vector zd̄ ∈ Rm such that zd̄ ∈M and Ed̄ = Bzd̄.

For any vector z ∈M, we define the subset Ē(z;µ−, µ+) of E as

Ē(z;µ−, µ+) = {ei ∈ E | zi ∈ (µ−i , µ
+
i )}. (3.29)

Furthermore, if z ∈ M ∩ kerB, we denote Ē(z;µ−, µ+) as E0(z;µ−, µ+) and
E \ E0(z;µ−, µ+) as E1(z;µ−, µ+). The subgraphs Ḡ(z;µ−, µ+) and G0(z;µ−, µ+)

are defined as {V, Ē(z;µ−, µ+)} and {V, E0(z;µ−, µ+)} respectively. We omit the
constraint intervals [µ−, µ+] from the previous notations if they are unambiguous
from the context.

The following condition on the in/outflows is stronger than the one in As-
sumption 3.7, and will turn out to be crucial for formulating the main results of
this paper.

Definition 3.8 (Manageable in/outflows). For a given network with multi-
dimensional constraint interval [µ−, µ+] for the edges, we say that the vector
of in/outflows Ed̄ is manageable with respect to [µ−, µ+] if there exists zd̄ ∈ M
such that Ed̄ = Bzd̄ and the subgraph Ḡ(zd̄;µ−, µ+) is weakly connected.

The intuitive explanation of manageable in/outflows is explained in the follow-
ing example.

Example 3.4. Consider the production-distribution network as formulated by
system (3.1) and (3.7). In this example the Hamiltonians are given as H(x) =
1
2‖x‖

2 and Hc(η) = 1
2‖η‖

2. The vertices of the network, representing the system
warehouses, are fed by the flows of the incident edges. Thus, x(t) represents
the amount of resources in the warehouses. These resources are raw materials,
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intermediate and finished products, as well as any other resource used in the
production processes. µ(t) is the vector of controlled resource flows between
warehouses, and Ed̄ represents the vector of supplies and demands depending on
external factors where the positive components of Ed̄ correspond to supplies and
the negative ones correspond to demands. As follows from Theorem 3.3, the
controller (3.14) is able to let the storage of the resources among all the warehouses
reach consensus with the supply/demand satisfying Assumption 3.2. In many
practical cases, the flow µ is bounded. Hence the supply/demand can not be
arbitrarily large. Instead, the notion of manageability is introduced. Intuitively, the
network can provide the manageable supply/demand without violating the flow
constraints while it has enough flow capacity to regulate the storage among the
warehouses. More precisely, the network with manageable in/outflows is able to,
first transfer the in/outflows through the network, and second have enough spare
capacity (on a weakly connected subnetwork) to regulate the storage.

The following theorem is the main result of this chapter.

Theorem 3.9. Consider the closed-loop system (3.28) defined on a weakly connected
directed graph with flow constraints [µ−, µ+] on the edges. Suppose the Hamiltonian
H(x) ∈ C1 is radially unbounded and the controller HamiltonianHc satisfies Assumption
3.6. Then the trajectories converge to

Etot = {(x̄, η̄) | ∂H
∂x

(x̄) = α1n, B sat(
∂Hc

∂η
(η̄) ;µ−, µ+) = Ed̄}, (3.30)

if and only if the in/outflows Ed̄ are manageable.

Instead of proving the theorem directly, we shall prove an equivalent formula-
tion of it.

Definition 3.10 (Interior Point Condition). Given a directed graph with multi-
dimensional constraint interval [µ−, µ+], the network will be said to satisfy the
Interior Point Condition if there exists a vector z ∈ M ∩ kerB such that the
subgraph G0(z) is weakly connected.

Denote the subset E ′ ⊂ E as

E ′ = {ei | µ−i < µ+
i }. (3.31)

Notice that satisfaction of the Interior Point Condition implies that the subgraph
{V, E ′} is weakly connected.

Lemma 3.11. Given a network with multi-dimensional constraint interval [µ−, µ+] and
in/outflows Ed̄. Then Ed̄ is manageable if and only if for any w satisfying Ed̄ = Bw,
the network with multi-dimensional constraint interval [µ− − w, µ+ − w] satisfies the
Interior Point Condition.
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Proof. Sufficiency: Suppose the network with constraint interval [µ− − w, µ+ − w]

satisfies the interior point condition, i.e., there exists z ∈ [µ− − w, µ+ − w] ∩ kerB

such that the subgraph {V, E0(z;µ−−w, µ+−w)} is weakly connected. This implies
that the network with constraint interval [µ−−w−z, µ+−w−z] satisfies the interior
point condition with respect to the zero vector. Hence w + z ∈ [µ−, µ+], and the
subgraph {V, Ē(w + z, µ−, µ+)} is weakly connected. Since Ed̄ = B(w + z) = Bw,
this implies that Ed̄ is manageable.

Necessity: Let Ed̄ be manageable with zd̄ such that Bzd̄ = Ed̄ and zd̄ ∈ M.
Then it is straightforward to see that the network with constraint interval [µ− −
zd̄, µ+ − zd̄] satisfies the interior point condition with zero vector z. Then for any
w such that Ed̄ = Bw, w = zd̄ + w0 for some w0 ∈ kerB. Hence the network
with constraint interval [µ− −w, µ+ −w] satisfies the interior point condition with
−w0.

Next we will present an equivalent statement of Theorem 3.9. For any vector of
in/outflows Ed̄ satisfying Assumption 3.7 for a vector zd̄, the closed-loop system
(3.28) can be rewritten as

ẋ = −B sat
(
BT

∂H

∂x
(x) +

∂H̃c

∂η
(η) ;µ− − ∂Hc

∂η
(η̄d̄), µ+ − ∂Hc

∂η
(η̄d̄)

)
,

η̇ = BT
∂H

∂x
(x),

(3.32)

where ∂Hc

∂η (η̄d̄) = zd̄ and H̃c(η) = Hc(η) − ∂THc

∂η (η̄d̄)(η − η̄d̄). Furthermore, by
Lemma 3.11, the vector of in/outflows Ed̄ being manageable is equivalent to
the constraint interval [µ− − ∂Hc

∂η (η̄d̄), µ+ − ∂Hc

∂η (η̄d̄)] satisfying the interior point
condition. Hence the system (3.28) with manageable in/outflows Ed̄ is equivalent
to system (3.28) with Ed̄ = 0 and constraint interval [µ−, µ+] satisfying the interior
point condition. As a consequence, Theorem 3.9 is equivalent to the following
theorem.

Theorem 3.12. Consider the dynamical system (3.28) defined on a weakly connected
directed graph with flow constraint interval [µ−, µ+] and in/outflows Ed̄ = 0. Suppose
the Hamiltonian H(x) ∈ C1 is radially unbounded, then the trajectories will converge to

Etot = {(x̄, η̄) | ∂H
∂x

(x̄) = α1n, B sat(
∂Hc

∂η
(η̄) ;µ−, µ+) = 0}, (3.33)

if and only if the network satisfies the interior point condition.

The proof of Theorem 3.12 will be given in the next section.
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3.3.2 Convergence analysis

In this section we shall prove Theorem 3.12 for (3.28) with in/outflows Ed̄ = 0,
i.e.,

ẋ = −B sat
(
RBT ∂H∂x (x) + ∂Hc

∂η (η) ;µ−, µ+
)
,

η̇ = BT ∂H∂x (x).
(3.34)

In order to simplify the structure of the proof, we will assume throughout the
rest of this section that

µ+
i > µ−i > 0, i = 1, 2, . . . ,m, (3.35)

where the two equality signs do not hold at the same time. We will say that the
orientation of the graph is compatible with the flow constraints if (3.35) holds. The
condition (3.35) can be assumed without loss of generality by considering two
types of modifications of the network.

(i) Replacing any bi-directional edge whose constraint interval satisfies µ−i < 0 <

µ+
i by two uni-directional edges with constraint intervals [µ−i , 0], [0, µ+

i ] and
the same orientation. This follows from the equality

sat(ν ;µ−i , µ
+
i ) = sat(ν ;µ−i , 0) + sat(ν ; 0, µ+

i ) (3.36)

for any µ−i < 0 < µ+
i . Replacing the bi-directional edges by the uni-

directional ones does not change the dynamics of x in system (3.34). Hence,
the output agreement property of (3.34) is not affected. This will be illustrated
by the following example.

Example 3.5. (Compatibility between orientation and flow constraints) Con-
sider the system (3.34) defined on the graph in Fig. 3.4 (left) with constraint
interval [−1, 2] and initial condition (x1(0), x2(0), η(0))T ∈ R3. The dynamic
of x1(t) and x2(t) are the same as the ones of the system defined on the graph
in Fig.3.4 (middle) with constraint intervals [−1, 0] and [0, 2] on the edge e1

1

and e2
1 respectively, and initial condition (x1(0), x2(0), η(0), η(0))T ∈ R4.

1 2
e1

1 2

e1
1

e2
1

1 2
e1

Figure 3.4: Compatibility between orientation and flow constraints
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(ii) Changing the orientation of the graph. This follows from the equality

sat(−ν ;µ−i , µ
+
i ) = − sat(ν ;−µ+

i ,−µ
−
i ). (3.37)

Changing the orientation of the graph does not change the dynamics of the
state variables x in system (3.34) as illustrated by the following example.

Example 3.6. (Compatibility between orientation and flow constraints contin-
ued) Consider the dynamical system (3.34) defined on a graph with constraint
interval [µ−, µ+] and initial condition (x1(0), x2(0), η(0)). Then the dynamics
is the same as the dynamics of the following system

ẋ = −B̃ sat
(
RB̃T ∂H∂x (x) + ∂H̃c

∂η̃ (η̃) ;−µ+,−µ−
)
,

η̇ = B̃T ∂H∂x (x).
(3.38)

where H̃c(η̃) = Hc(−η̃) and B̃ = −B with initial condition
(x1(0), x2(0),−η(0)). In other words, by modifying the controller Hamil-
tonian Hc and initial condition, we can reverse the orientations of the edges
such that the constraints intervals are [−µ+,−µ−]. Notice that H̃c satisfies
Assumption 3.6 if and only if Hc does.

After splitting bi-directional edges into uni-directional edges, and changing ori-
entations, we can therefore assume, without loss of generality, that the orientation
of the graph is compatible with the flow constraints.

Next, we note that if G is strongly connected, then it must contain positive
circuits. Indeed, by the definition of strong connectedness, for any two vertices
vi and vj , there exists a directed path from vi to vj . Similarly, there exists a
directed path from vj to vi. Then these two directed paths must contain a positive
circuit. Hence any circuit can be written as a linear combination of positive circuits,
with possibly non-positive coefficients. More precisely, consider a circuit C with
ξC /∈ Rm>0 nor Rm60. Without loss of generality, suppose ξCk < 0 where ek = (vi, vj)

while the other components of ξC are nonnegative. By the strong connectedness of
G there exists a directed path from vj to vi denoted as P . Then P with the edge
ek and with the rest of edges from C can form two positive circuits, denoted as C′
and C′′, satisfying ξC′ , ξC′′ ∈ Rm>0 respectively. Then ξC = ξC′′ − ξC′ . The previous
analysis leads to the following lemma.

Lemma 3.13 ([14]). For a strongly connected digraph G, the positive circuits compose a
basis of the space kerB.

Let us denote all the positive circuits of G as PC = {C1, . . . , Cr} with ξCi ∈ Rm>0.

Lemma 3.14. The vector z in the interior point condition can be chosen such that E0(z) =

E ′.
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Proof. Recall the notations

E ′ = {ei ∈ E | µ−i < µ+
i }

and
E0(z;µ−, µ+) = {ei ∈ E | zi ∈ (µ−i , µ

+
i )}.

where z ∈M∩ kerB. Furthermore E1(z;µ−, µ+) := E \ E0(z;µ−, µ+).
Let z ∈ M ∩ kerB be such that G0(z) is weakly connected, and E1(z) 6= ∅.

If the edge ek ∈ E1(z;µ−, µ+) and zk = µ−k , then, since the subgraph G0(z) is
weakly connected, the edge ek together with some of the edges belonging to
E0(z) compose a circuit, denoted as C. Furthermore, take the vector ξC as the
representation of C such that ξCk = 1. Then there exists a sufficient small ε > 0

such that E0(z + εξC) = E0(z) ∪ {ek}. Hence after a finite number of steps, there
exists a vector z′ ∈M∩ kerB such that E0(z′) = E ′.

Remark 3.15. By using the previous lemma and Lemma 3.11, the notion of manage-
able in/outflows coincides with Assumption 1 in [12] which is given as follows

Ed̄ ∈ intBM. (3.39)

In view of the previous lemma, we assume in the rest of this chapter that
the vector z in the interior point condition satisfies E0(z) = E ′. Furthermore, by
Lemma 2.5

z =

r∑
i=1

αiξCi , (3.40)

with αi > 0. This implies

Lemma 3.16. Let G be a weakly connected directed graph with compatible constraint
intervals [µ−, µ+]. Then G is strongly connected if it satisfies the interior point condition.

The main tool in the proof of Theorem 3.12 is LaSalle’s invariance principle
which asks for a compact invariant set. One option for providing such a compact
invariant set is proposed in the following lemma.

Lemma 3.17. Suppose H is radially unbounded and Hc satisfies Assumption 3.6. Con-
sider the function

V (x, η) = 1TS(η) +H(x), (3.41)

where
Si(ηi) =

∫ ηi

0

sat(
∂Hc

∂ηi
(τ) ;µ−i , µ

+
i )dτ. (3.42)

If the network satisfies the interior point condition, then the set S = {(x, η) | −Di 6
ξTCiη 6 Di, i = 1, . . . , r} ∩ {(x, η) | V (x, η) 6 Dr+1}, where Di, i = 1, . . . , r + 1, are
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constants such that S 6= ∅, is compact and forward invariant for (3.34).

Proof. Denote the projections of S on Rn and Rm as

Sη = {η | ∃x such that (x, η) ∈ S}, (3.43)

Sx = {x | ∃η such that (x, η) ∈ S}. (3.44)

First we notice that for any vector z ∈ M∩ kerB satisfying Lemma 3.14, the
function zT η : Rm → R is bounded on Sη . This can be seen from (3.40).

Since S is closed by definition, the compactness of S is equivalent to bound-
edness. We will prove this by showing that the function V (x, η) is radially un-
bounded on S as follows.

Firstly, observe that for any (x, η) ∈ S when ‖η‖ → ∞, there must exist at least
one edge ei ∈ E ′ such that |ηi| → ∞. Otherwise, suppose |ηj | → ∞ only on the
edge ej ∈ E \ E ′. By definition of S, along any positive circuit Ck containing the
edge ej , there exists at least one edge belonging to (E \ E ′) \ {ej}. This implies
that the set E \ E ′ contains a cut of the graph. Indeed, if we denote ej ∼ (vp, vq),
then there will be no path from vq to vp only using the edges from E ′. This is a
contradiction with the fact that {V, E ′} is weakly connected.

Secondly, note that if |ηi| → ∞, then by Assumption 3.6

Si(ηi) =

{
µ−i ηi if ηi < 0,

µ+
i ηi if ηi > 0,

(3.45)

up to a constant. If ei ∈ E ′, then (µ−i − zi)ηi → ∞ whenever ηi → −∞ and
(µ+
i − zi)ηi → ∞ whenever ηi → ∞. Hence 1TS(η) − zT η → ∞ as ‖η‖ →
∞. Furthermore, by the fact that H(x) is bounded from below on Rn and the
boundedness of the function zT η, the function V (x, η) tends to infinity as ‖η‖ → ∞.
Hence the set Sη is bounded.

Finally, the boundedness of Sη implies that the function 1TS(η) is bounded
from below on S . Hence the boundedness of the set Sx can be derived by the radial
unboundedness of H(x). In conclusion, the set S is bounded, hence compact.

To prove the forward invariance of the set S, we notice that for (3.34) we
have ξTCi η̇ = 0, i = 1, . . . , r. Hence ξTCiη is constant along the trajectories of (3.34).
Furthermore, V̇ = ∂TH

∂x B
(

sat(∂Hc

∂η ;µ−, µ+) − sat(RBT ∂H∂x + ∂Hc

∂η ;µ−, µ+)
)
6 0.

Hence S is forward invariant.

We are ready to prove the main theorem.

Proof of Theorem 3.12. Sufficiency:
Suppose the network satisfies the interior point condition with vector z ∈

M∩ kerB. Consider (3.41) as a Lyapunov function. By Lemma 3.17 and LaSalle’s
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invariance principle, it follows that (x(t), η(t)) converges to the largest invariant
set I contained in

{(x, η) | V̇ = 0 } = {(x, η) | sat(
∂Hc

∂η
;µ−, µ+) = sat(RBT

∂H

∂x
+
∂Hc

∂η
;µ−, µ+)}.

We claim that in I the output of the controller, i.e., sat(RBT ∂H∂x + ∂Hc

∂η ;µ−, µ+) =

sat(∂Hc

∂η ;µ−, µ+) is constant. Indeed, if not, then suppose there exists t1 < t2

such that sat(∂Hc

∂η ;µ−, µ+) = sat(RBT ∂H∂x + ∂Hc

∂η ;µ−, µ+) is time-varying on the
time interval [t1, t2]. Then by the continuity of ∂H

∂x and ∂Hc

∂η , it must hold that
∂Hc

∂η (η(t)) = RBT ∂H∂x (x(t))+ ∂Hc

∂η (η(t)) ∈M for t ∈ [t1, t2]. HenceBT ∂H∂x (x(t)) = 0

which implies that η(t) is constant on [t1, t2]. Then the vector ∂Hc

∂η (η(t)) is constant
as well on [t1, t2], which yields a contradiction.

For the trajectories contained in I, let us denote the output of the controller
as µ̄ = sat(RBT ∂H∂x + ∂Hc

∂η ;µ−, µ+) which is constant. Then x(t) is also a constant
vector, denoted as x̄. Indeed, since ẋ(t) = −Bµ̄ with µ̄ constant, if ẋ(t) 6= 0,
we would have ‖x‖ → ∞, which is a contradiction to the boundedness of the
trajectories. So x(t) = x̄ and Bµ̄ = 0. Then η̇ = BT ∂H∂x (x̄) is constant. This
implies that BT ∂H∂x (x̄) has to be zero by Lemma 3.17. In conclusion, for the weakly
connected network the largest invariant set is given as

I = {(x̄, η̄) | ∂H
∂x

(x̄) = α1n, B sat(
∂Hc

∂η
(η̄) ;µ−, µ+) = 0}.

Necessity:
First of all, ifM∩ kerB = ∅, then the dynamical system (3.34) does not have

any equilibrium. Suppose now the network does not satisfy the interior point
condition, i.e., for any vector z ∈ M ∩ kerB the subgraph G0(z) is not weakly
connected. In this case, we will show that the outputs of the dynamical system
(3.34) will cluster, by selecting suitable initial conditions (x(0), η(0)) such that
BT ∂H∂x (x(0)) 6= 0 and ẋ(t) = 0, t > 0. ’Clustering’ means that the outputs break up
in groups converging to different values.

Consider the map |E0(·)| :M∩ kerB → {1, 2, . . . ,m}. Suppose |E0(·)| attains
its maximum at a vector z̄. The first observation about z̄ that is for any positive
circuit C satisfying C ∩ E1(z̄) 6= ∅, there exist ei, ej ∈ C such that z̄i = µ+

i and
z̄j = µ−j where i and j are possibly equal. Indeed, if there exists a positive circuit
C satisfying C ∩ E1(z̄) 6= ∅ and µ−i < z̄i 6 µ+

i for any ei ∈ C, then there exists a
sufficient small ε > 0 such that E0(z̄ − εξC) = E0(z̄) ∪ C where ξC ∈ Rm>0. Hence
E1(z̄ − εξC) ∩ C = ∅ and |E0(z̄ − εξC)| > |E0(z̄)|. Similarly, if there exists a positive
circuit C satisfying C ∩ E1(z̄) 6= ∅ and µ−i 6 z̄i < µ+

i for any ei ∈ C, we have
|E0(z̄ + εξC)| > |E0(z̄)| for small enough ε > 0 and ξC ∈ Rm>0.

The second observation about the vector z̄ is that, along any circuit C satisfying
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C ∩ E1(z̄) 6= ∅ and ξCi = ξCj for any ei, ej ∈ C ∩ E1(z̄), at least one component
of z̄ on the edge in C ∩ E1(z̄) is equal to the upper saturation boundary and at
least one component of z̄ on the edge in C ∩ E1(z̄) is equal to the lower saturation
boundary. Indeed, if z̄i = µ+

i and ξCi = 1 for all ei ∈ C ∩ E1(z̄), then there exists
ε > 0 small enough such that E0(z̄ − εξC) = E0(z̄) ∪ C. This follow from the fact
that z̄j ∈ (µ−j , µ

+
j ) for all ej ∈ C ∩ E0(z̄). Hence we have a contradiction to |E0(z̄)|

being the maximum. The same conclusion holds if z̄i = µ−i for all ei ∈ C ∩ E1(z̄).
The graphical explanation of the previous two observations is given in Figure 3.5.

Denote the weakly connected components of G0(z̄) by Gi0(z̄), i = 1, . . . , `. By
the second observation, we have that on all the edges from Gi0(z̄) to Gj0(z̄), i.e.,
ek ∼ (vp, vq) satisfying vp ∈ Gi0(z̄) and vq ∈ Gj0(z̄), the corresponding components
z̄k of z̄ reach the same saturation boundaries (upper or lower) at the same time.

Notice that the partitioning Gi0(z̄), i = 1, . . . , `, is the same for any choice of
z̄ which maximize the map |E0(·)|. In fact, suppose there exists a vector z′ ∈
M ∩ kerB such that |E0(z′)| = |E0(z̄)| being the maximum, but there exist two
vertices vi, vj which belong to the same component of G0(z̄) but two different
components of G0(z′). In other words, there exists ek ∈ E1(z′) ∩ E0(z̄). Then
for the vector z̄+z′

2 which belongs to M ∩ kerB, we have ek ∈ E0( z̄+z
′

2 ) and
|E0( z̄+z

′

2 )| − |E0(z′)| > 1. This is a contradiction to the fact that the map |E0(·)|
reaches its maximum at z′. Hence the partitioning is unique.

Finally we can select a suitable initial condition of the system (3.34) on G to
be such that ẋ = 0, BT ∂H∂x (x) 6= 0,∀t > 0. Based on the vector z̄, we can set
∂Hc

∂η (η(0)) = z̄. Furthermore, we can assign to ∂H
∂x (0) the same value within each

weakly connected component of G0(z̄). More precisely, if there exists an edge
ek ∈ E1(z̄) from Gi0(z̄) to Gj0(z̄) such that z̄k = µ+

k , then we set ∂H
∂xp

(0) > ∂H
∂xq

(0)

for any vp ∈ Gi0(z̄) and vq ∈ Gj0(z̄); if there exists an edge ek ∈ E1(z̄) from Gi0(z̄)

to Gj0(z̄) such that z̄k = µ−k , then we set ∂H
∂xp

(0) < ∂H
∂xq

(0) for any vp ∈ Gi0(z̄) and

vq ∈ Gj0(z̄). As a result, we have η̇k > 0 for ek ∈ E1(z̄) and z̄k = µ+
k , η̇k < 0 for

ek ∈ E1(z̄) and z̄k = µ−k , and sat
(
RBT ∂H∂x (x) + ∂Hc

∂η (η) ;µ−, µ+
)

= z̄. Furthermore,
since z̄ ∈M∩ kerB, we have that ẋ = 0 for all t.

Example 3.7. Consider the dynamical system (3.34) defined on the network given
in Figure 3.2 with H(x) given as Fig.3.6 (above). The constraint intervals are µ− =

[0, 1, 2, 0, 0, 0, 0]T and µ+ = [1, 3, 3, 2, 2, 1, 2]T . In order to check the interior point
condition, we can take z = [1, 2, 3, 1, 1, 1, 1]T in which case E0(z) = {e2, e4, e5, e7}
and G0 is weakly connected. As can be seen from Fig.3.6 (below), the outputs
converge to consensus. Here we emphasize that radial unboundedness of the
Hamiltonian H is sufficient for output agreement, i.e., H is not necessarily convex.
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(a) A positive circuit for the first
observation
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1
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6
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G1
0(z) G2

0(z)

(b) A circuit for the second obser-
vation

Figure 3.5: The graphical explanation for the two observations in the proof of
Theorem 3.12. In (a), suppose the saturation boundaries are [µ−i , µ

+
i ] = [0, 1], i =

1, 2, 3, then the components of the vector z = 13 reach the upper saturation
bounds on the corresponding edges. Hence |E0(z)| = 0 is not the maximum of
the map |E0(·)|. In this case, the maximum is 3. In (b), G1

0(z) and G2
0(z) are two

weakly connected components of G0(z). Along the circuit, denoted as C, we have
ξC1 = ξC2 . Suppose z1 = µ+

1 and z2 = µ+
2 , then by the fact that zk ∈ (µ−k , µ

+
k ) for

any ek ∈ C \{e1, e2}, there exists small enough ε such that (z−εξC)i ∈ (µ−i , µ
+
i ) for

any ei ∈ C. Hence, |E0(z)| is not the maximum over all the vectors inM∩ kerB.

3.4 Connection to Equilibrium Independent Passiv-
ity

As we will see in this section, the stability of the closed-loop system (3.16) can be
alternatively derived from the theory of passivity.

We start by introducing the definition of Equilibrium Independent Passivity on
the set Ω which is modified from the original definition in [18, 40] (see Section 2.5).

Definition 3.18. The system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm,
y = h(x, u), y ∈ Rm

(3.46)

is called equilibrium independent passive (EIP) on the set Ω ⊂ Rn if there exists a
monotone relation

R ⊂ Rm × Rm,

called the steady state input-output gain, such that for every pair of (ū, ȳ) ∈ R for
which there exists an x̄ ∈ Ω satisfying

0 = f(x̄, ū), ȳ = h(x̄, ū), (3.47)
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Figure 3.6: In Example 3.7. Above, the Hamiltonian function H . Below, the simula-
tion result showing the trajectories of the outputs of the plants.

there exists a function Vx̄(·) : Rn → R that is bounded from below, called the
storage function corresponding to x̄, such that along the trajectories of (3.46)

d

dt
Vx̄(x(t)) 6 (u− ū)T (y − ȳ). (3.48)

Furthermore, the system (3.46) is output, respectively input, strictly EIP on Ω if

d

dt
Vx̄(x(t)) 6 (u− ū)T (y − ȳ)− ρ(y − ȳ) (3.49)

d

dt
Vx̄(x(t)) 6 (u− ū)T (y − ȳ)− ρ(u− ū) (3.50)

respectively, for some positive definite function ρ(·).
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In the absence of constraints we obtain the following proposition about the
EIP property of the system composed of (3.1) together with (3.7) and (3.8) which is
given as in the dashed box in Figure 3.7 (right), and of the controller system (3.14).

Figure 3.7: Right: within the dashed box, we have the system composed of (3.1)
together with (3.7) and (3.8). In this case, the input is µ and the output is ζ. Left:
within the dashed box, there is the system (3.1) with input u and output y.

Proposition 3.19. Suppose the function (3.19) is radially unbounded. The system com-
posed of (3.1) together with (3.7) and (3.8), i.e.,

ẋ = −Bµ+ Ed̄

ζ = BT
∂H

∂x
(x),

(3.51)

with input µ and output ζ, is EIP on {x | ∂H∂x (x) ∈ span1n} while the controller system
(3.14) is input strictly EIP on {η | B ∂Hc

∂η (η) = Ed̄}.

Proof. Consider any (−µ̄, ζ̄) for which there exists a steady state x̄ satisfying

0 = −Bµ̄+ Ed̄,

ζ̄ = BT
∂H

∂x
(x̄),

(3.52)

and ∂H
∂x (x̄) ∈ span1n. Then Vx̄(x) := H(x) satisfies

d

dt
Vx̄(x) = (−µ+ µ̄)T (ζ − ζ̄). (3.53)
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With regard to the controller system (3.14) take any pair of (ζ̄, µ̄) such that ∃η̄ for
which

0 = ζ̄, µ̄ =
∂Hc

∂η
(η̄), (3.54)

and B ∂Hc

∂η (η̄) = Ed̄. Then define the storage function as Vη̄(η) := Hc(η) −
∂THc

∂η (η̄)(η − η̄). It follows that

d

dt
Vη̄(η) = (µ− µ̄)T (ζ − ζ̄)− (ζ − ζ̄)TR(ζ − ζ̄) (3.55)

Finally, from the radial unboundedness of (3.19), it follows that Vx̄(x) and Vη̄(η)

are bounded from below. Hence, the system (3.51) and (3.14) are EIP and input
strictly EIP respectively.

Notice that the function Vx̄(x) +Vη̄(η) is the same as the modified Hamiltonian
function in (3.19). Hence the same conclusion in Theorem 3.3 can be derived from
the point of view of equilibrium independent passivity.

Remark 3.20. The equilibrium independent passivity of (3.51) is only based on
the radial unboundedness of (3.19). However, in order to prove the equilib-
rium independent passivity of (3.1), which is given as in Figure 3.7 (left) on
{x | ∂H∂x (x) ∈ span1n}, the radial unboundedness of H is not sufficient. Hence
a stronger condition is needed, for example strict convexity of H . In this case a
possible storage function is V (x) = H(x)− ∂TH

∂x (x̄)(x− x̄)−H(x̄), where x̄ satisfies
∂TH
∂x (x̄) ∈ span1n. Note that the radial unboundedness of H is not sufficient to

guarantee that V is bounded from below.

We obtain the following extension to the case with constraint intervals.

Proposition 3.21. The system (3.27) with µ+ > µ− where Assumption 3.6 satisfied is
EIP on Rm.

Proof. For any steady-state pair (ζ̄, µ̄) of the constrained controller (3.27) for which
there exists η̄ such that

0 = ζ̄, µ̄ = sat(
∂Hc

∂η
(η̄);µ−, µ+), (3.56)

we define the function

V̂η̄(η) := 1TS
(
η ;µ−, µ+

)
− satT

(∂Hc

∂η
(η̄);µ−, µ+

)
(η − η̄), (3.57)

where S
(
η ;µ−, µ+

)
is given as in (3.42). Then

d

dt
V̂η̄(η) 6 (µ− µ̄)T (ζ − ζ̄) (3.58)
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which follows from satT (∂Hc

∂η (η))ζ 6 satT (∂Hc

∂η (η)+Rζ)ζ . By Assumption 3.6 each
component of the function S

(
η ;µ−, µ+

)
is convex. Hence the function V̂η̄(η) is

bounded from below. In conclusion, the controller (3.27) is EIP.

Remark 3.22. The controller (3.27) is EIP but not input strictly EIP, which makes the
analysis of the convergence of the closed-loop system (3.28) to output agreement
less straightforward than in the unconstrained case.

Remark 3.23. In [58] a constrained controller is considered where the saturation is
present on the proportional and integral part separately, i.e.,

η̇ = ζ,

µ = sat
(
∂Hc

∂η (η)
)

+ sat(Rζ)
(3.59)

with saturation intervals µ− = −µ+ = −1n. In this case, for any steady-state
input-output pair (ζ̄, µ̄), the function V̂ dη̄ (η) satisfies

d

dt
Sη̄(η) 6 (µ− µ̄)T (ζ − ζ̄)− (sat(Rζ)− sat(Rζ̄))T (ζ − ζ̄), (3.60)

yielding input strictly EIP.

3.5 An optimization perspective on the Interior Point
Condition

In Section 3.3, it is shown that for system (3.34), the interior point condition is
essential for its stability. In this section we will establish the relation between the
system (3.34) and a static optimization problem. This optimization problem can
be also used as a test for the interior point condition. Specifically, in this section
we consider the dynamics on each vertex given as

ẋi = ui,

yi =
∂H

∂xi
(x).

(3.61)

Our approach is based on the following classical result [61] on maximal mono-
tonicity.

Definition 3.24 ([61]). A relation Λ ⊂ R2 is said to be maximally monotone in R2 if
and only if

(i) For any (ρ, σ) ∈ Λ and (ρ′, σ′) ∈ Λ, one has either (ρ, σ) 6 (ρ′, σ′) or (ρ′, σ′) 6
(ρ, σ), and
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(ii) For an arbitrary (ρ, σ) /∈ Λ, there exists (ρ′, σ′) ∈ Λ such that neither (ρ, σ) 6
(ρ′, σ′) nor (ρ′, σ′) 6 (ρ, σ). That is, Λ is maximal with respect to property (i).

Proposition 3.25. Any maximal monotone relation M ⊂ R × R is the graph of the
sub-gradient of a proper, convex, lower semi-continuous function K : R→ R ∪ {±∞}.

In [17], the authors already established the relation between EIP systems with
the set of steady-state input-output values being a maximal monotone set. How-
ever, in our case the set of steady-state input-output values of the plant (3.61) and
the constrained controller (3.27) is monotone but in general not maximal.

In the following part of this section, we first show that for a general single-input
single-output (SISO) system with a monotone set of steady-state input-output
values, this set can be extended to a maximal monotone relation. Consider a
general SISO system given as

ẋi = fi(xi, ui), xi ∈ Rni , ui ∈ R,
yi = gi(xi, ui), yi ∈ R,

(3.62)

with set of steady-state input-output values defined as

κi : = {(ūi, ȳi) | ∃x̄i s.t. 0 = fi(x̄i, ūi) and ȳi = gi(x̄i, ūi)}
⊂ R× R

(3.63)

being a monotone relation. Denote

(u+
i , y

+
i ) = max

(ūi,ȳi)∈κi

(ūi, ȳi)

(u−i , y
−
i ) = min

(ūi,ȳi)∈κi

(ūi, ȳi).
(3.64)

If u+
i , y

+
i , u

−
i and y−i are finite, i.e., |u+

i | + |y
+
i | + |u

−
i | + |y

−
i | < ∞, we define

the following sets
κri = {(ūi, ȳi) | ūi > u+

i , ȳi = y+
i }

κ`i = {(ūi, ȳi) | ūi 6 u−i , ȳi = y−i }
(3.65)

Then the extended set of steady-state input-output values, denoted as κei , is define
as

κei =


κi ∪ κri ∪ κ`i if |u+

i |+ |y
+
i |+ |u

−
i |+ |y

−
i | <∞,

κi ∪ κri if |u−i |+ |y
−
i | =∞ and |u+

i |+ |y
+
i | <∞,

κi ∪ κ`i if |u+
i |+ |y

+
i | =∞ and |u−i |+ |y

−
i | <∞,

(3.66)

The specific procedure of the extension of the input-output gain of (3.61) when
{(0, ∂H∂xi

(x̄)) | x ∈ Rn} ⊂ {0} × (R \ {±∞}) can be explained by Figure 3.8. With
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ūi
y−i

y+
i

ȳi

(a) the original static input-output
gain

ūi
y−i

y+
i

ȳi

(b) the extended input-output gain
being a maximal monotone

Figure 3.8: The extension of the set of steady-state input-output values given in (a),
which is monotone, to a maximal monotone relation given as in (b).

a slight abuse of the notation, we denote the extended steady state input-output
gain of (3.61) by κei . By Proposition 3.25, for each κei ⊂ R× R there exists a convex
function Ke

i such that∇Ke
i = κei . For example, when y+

i and y−i are finite

Ke
i (ūi) =

{
y+
i ūi ūi > 0

y−i ūi ūi < 0,
(3.67)

When y+
i = +∞ and y−i is finite, Ke

i (ūi) = y−i ūi + I(−∞,0)(ūi) where IA is the
indicator function of the set A. When y−i = −∞ and y+

i is finite, Ke
i (ūi) =

y+
i ūi + I(0,∞)(ūi). When y+

i and y−i are both equal to infinity, Ke
i (ūi) = I{0}(ūi).

For controllers (3.27), the extension of the definition of static input-output gain
can be done in the same manner. We denote the static input-output gain and the
extended one as γk(ζ̄k) and γek(ζ̄k) respectively. Furthermore Γek(·) : R→ R

Γek(ζ̄k) =

{
µ+
k ζ̄k ζ̄k > 0

µ−k ζ̄k ζ̄k < 0,
(3.68)

is the convex function satisfying ∇Γek = γek. Notice that the convex conjugate of
Γek is Γe∗k (µ̄k) = I[µ−k ,µ

+
k ](µ̄k).

Employing the terminologies of Section 2.3, we consider the functions Γe∗k
and Ke

i as the costs for the flux µ̄k and the divergence ūi respectively. Hence the



3.5. An optimization perspective on the Interior Point Condition 51

optimal flow problem (2.8) is given as

min
ū,µ̄

n∑
i=1

Ke
i (ūi) +

m∑
k=1

Γe∗k (µ̄k)

s.t ū+Bµ̄ = 0

(3.69)

Furthermore, the optimal potential problem, dual to (3.69), is given as

min
ȳ,ζ̄

n∑
i=1

Ke∗
i (ȳi) +

m∑
k=1

Γek(ζ̄k)

s.t ζ̄ = BT ȳ

(3.70)

where Ke∗
i (ȳi) = I[y−i ,y

+
i ](ȳi). The optimal solutions of (3.69) and (3.70) are de-

noted as (u,µ) and (y, ζ) respectively.
By using the optimization problem (3.70), we have an equivalent condition to

the interior point condition.

Theorem 3.26. Consider a network, defined as a digraph, with dynamics (3.61) on the
vertices and flow constraints [µ−, µ+] on the edges. Suppose y−i < y+

j for all i, j =

1, 2, . . . , n. Then the network satisfies the interior point condition if and only if any (y, ζ)

which is an optimal solution of (3.70) satisfies ζ = 0.

Remark 3.27. The condition ζ = 0 for any (y, ζ) being an optimal solution of (3.70)
implies that y ∈ span{1}, i.e., the steady-state output of (3.61) achieves consensus.
In Theorem 3.26, we will show that this condition is equivalent to the interior
point condition.

Proof of Theorem 3.26. Notice that the condition y−i < y+
j for all i, j = 1, 2, . . . , n,

implies that
∃ȳ ∈ span{1} ∩ (y−, y+). (3.71)

Necessity: Suppose the network satisfies the interior point condition, and by
Lemma 3.14, we take a vector z ∈ M∩ kerB such that E ′ = E0(z). Then for any
ζ̄ = BT ȳ, we have zT ζ̄ = 0 which implies that (3.70) is equivalent to

min
ζ̄,ȳ

n∑
i=1

I[y−i ,y
+
i ](ȳi) +

m∑
k=1

Γek(ζ̄k)− zTk ζ̄k

s.t. ζ̄ = BT ȳ.

(3.72)

Furthermore, since on the edge ek ∈ E \ E ′, Γk(ζk) = zkζk, the optimization
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problem (3.72) can be rewritten as

min
ζ̄,ȳ

n∑
i=1

I[y−i ,y
+
i ](ȳi) +

∑
ek∈E′

Γek(ζ̄k)− zTk ζ̄k

s.t. ζ̄ = BT ȳ.

(3.73)

Notice that on the edge ek ∈ E ′, we have zk ∈ (µ−k , µ
+
k ). Thus Γk(ζk) − zkζk

is convex and has a unique minimum at ζk = 0. Furthermore, by (3.71), the
minimum of (3.73) which is zero is attained. Moreover, since {V, E ′} is weakly
connected, ζ in the optimal solution of (3.70) can only be zero.

Sufficiency: In (3.70), the objective functions Γek, k = 1, 2, . . . ,m, are convex and
the constraint ζ̄ = BT ȳ is affine, so the Karush–Kuhn–Tucker (KKT) condition is
sufficient and necessary, i.e. (ζ, y, λ) is an optimal solution of (3.70) if and only if

0 ∈ ∂Γek(ζk)− λk, k = 1, 2, . . . ,m (3.74)

0 ∈ Bλ + ∂I[y−i ,y
+
i ](yi) (3.75)

ζ = BT y (3.76)

where λ ∈ Rm is the corresponding Lagrangian multiplier. Since (y, 0) where
y ∈ span{1} ∩ (y−, y+) is one optimal solution of (3.70) and ∂Γek(ζ̄k)|ζ̄k=0 =

[µ−k , µ
+
k ] and ∂I[y−i ,y

+
i ](ȳi)|ȳi=yi = 0, the conditions (3.74) and (3.75) imply that

kerB ∩M 6= ∅.
Now we will prove the conclusion by contradiction. Recall that for a vector

z ∈ [µ−, µ+] ∩ kerB, the subgraph G0(z;µ−, µ+) is defined as {V, E0(z;µ−, µ+)}
with E0(z;µ−, µ+) = {ei ∈ E | zi ∈ (µ−i , µ

+
i )}. We omit µ− and µ+ from the

previous notations in the remaining part of this proof. Suppose the network does
not satisfy the interior point condition, i.e., for any vector z ∈ M ∩ kerB, the
graph G0(z) is not weakly connected. In this case we show that there exists a
optimal solution of (3.70) with corresponding Lagrangian multiplier, denoted
as (ȳ, ζ̄, λ̄), satisfying (3.74),(3.75),(3.76) and ζ̄ 6= 0. Indeed, similarly as in the
necessity part of the proof of Theorem 3.12, we assume that the maximal value
of the map |E0(·)| : M∩ kerB 7→ {1, 2, . . . ,m} is attained at λ̄. Hence (3.75) is
satisfied. Denote the weakly connected components of G0(λ̄) as G1

0(λ̄), . . . ,G`0(λ̄).
We construct a vector ȳ such that

(i) ȳi = ȳj for any vi, vj belonging to the same weakly connected component of
G0(λ̄);

(ii) ȳi > ȳj if there exists an edge ek ∼ (vi, vj) and λ̄k = µ+
k ;

(iii) while ȳi < ȳj if there exists an edge ek ∼ (vi, vj) and λ̄k = µ−k .
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It can be verified that ȳ satisfies the conditions (3.74) and (3.76). This is a contra-
diction. In conclusion, the network satisfies the interior point condition.

Remark 3.28. The radial unboundedness of the Hamiltonian H implies that 0 ∈
(y−i , y

+
i ). For the dynamical system (3.34), the radial unboundedness of H and

the interior point condition imply the convergence of the trajectories of (3.34) to
output agreement. At the same time, for the optimization (3.70), y−i < y+

j for all
i, j = 1, 2, . . . , n, and the interior point condition imply that any optimal solution
(y, ζ) of (3.70) satisfies ζ = 0 and y ∈ span{1}.

Remark 3.29. When the network satisfies the interior point condition, the set of
optimal solutions of (3.69) and (3.70) is

O := {u,µ, y, ζ | u = Bµ = 0, BT y = ζ = 0,µ ∈ [µ−, µ+], y ∈ [y−, y+]}, (3.77)

which represents the set of equilibria for the dynamical network (3.7),(3.8),(3.27)
and (3.61). Theorem 3.12 proves the convergence of u(t), µ(t), y(t), ζ(t) to O.

Example 3.8. Consider an optimization problem defined on a digraph given as in
Fig.3.4 (left). Suppose the flow constraint on e1 is [0, 1]. Then the network does
not satisfy the interior point condition. Hence by Theorem 3.26, there exists an
optimal solution (y, ζ) of (3.70) such that ζ 6= 0. Indeed, it can be verified that
any (y, ζ), satisfying ζ = y1 − y2 where y1 < y2 and yi ∈ (y−i , y

+
i ), i = 1, 2, is an

optimal solution of (3.70).

3.6 Convergence to arbitrary output vector

In Section 3.2 and 3.3 we showed that in the unconstrained case the controller
(3.14) and in the constrained case the controller (3.27) will drive the plant to output
agreement. In the present section we will show how both controllers can be
modified in such a way that the vector of outputs will converge to any desirable
vector in an admissible set A, which, for a connected graph, is defined as

A = {∂H
∂x

(x) | 1Tx = 1Tx(0)}, (3.78)

where x(0) is the initial condition of the system.
First we start with the unconstrained case. Define the modified controller

η̇ = (ζ − ζ∗)

u = R(ζ − ζ∗) +
∂Hc

∂η

(3.79)
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where ζ∗ = BT ∂H∂x (x∗) is the desirable value with ∂H
∂x (x∗) ∈ A. Then the closed-

loop resulting from (3.1), (3.7), (3.8) and (3.79) is given as[
ẋ

η̇

]
=

[
−BRBT −B

BT 0

][∂H
∂x (x)− ∂H

∂x (x∗)

∂Hc

∂η (η)

]
+

[
E

0

]
d, (3.80)

Theorem 3.30. Suppose H ∈ C2 has a diagonal positive definite Hessian matrix, the
controller Hamiltonian Hc satisfies Assumption 3.6, and the in/outflows satisfy the
matching condition (3.18). Consider the system (3.80) defined on a weakly connected
digraph G. Then for any desirable output vector ∂H

∂x (x∗) in the admissible set A, the
trajectories will converge to

Etot = {(x∗, η̄) | B∂Hc

∂η
(η̄) = Ed̄}. (3.81)

Hence limt→∞
∂H
∂x (x(t)) = ∂H

∂x (x∗).

Proof. Consider the modified Hamiltonian

H∗(x, η) = H(x)− ∂TH

∂x
(x∗)(x− x∗)−H(x∗)

+Hc(η)−Hc(η̄)− ∂THc

∂η
(η̄)(η − η̄)

(3.82)

as Lyapunov function. By the fact that H ∈ C2 has a diagonal positive definite
Hessian matrix, which implies thatH is strictly convex, and by Assumption 3.6, we
have that H∗(x, η) is radially unbounded. Then by LaSalle’s Invariance principle
it follows that the trajectories will converge to

{(x̄, η̄) | B∂Hc

∂η
(η̄) = Ed̄,

∂H

∂x
(x̄)− ∂H

∂x
(x∗) ∈ span{1}}. (3.83)

By the fundamental theorem of calculus applied to H ∈ C2

∂H

∂x
(x̄)− ∂H

∂x
(x∗) = (

∫ 1

0

∂2H

∂x2
(x∗ + th)dt) · h (3.84)

where h = x̄− x∗ is orthogonal to span{1}. Since ∂H
∂x (x̄)− ∂H

∂x (x∗) ∈ span{1}, we
have that

0 = hT (
∂H

∂x
(x̄)− ∂H

∂x
(x∗)) = hT · (

∫ 1

0

∂2H

∂x2
(x∗ + th)dt) · h (3.85)

Furthermore, since ∂2H
∂x2 is positive definite and therefore also

∫ 1

0
∂2H
∂x2 (x∗ + th)dt,
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this implies h = 0. In conclusion we proved that the state x will converge to x∗,
and thus limt→∞

∂H
∂x (x(t)) = ∂H

∂x (x∗).

Remark 3.31. In [12], the authors considered the problem of driving the state
of system (3.1) and (3.7), i.e., ẋ = −Bµ + Ed, to an arbitrary desirable state
x̄ satisfying 1T x̄ = 1Tx(0) by designing feedback µ = µ(x, x̄). The resulting
controller is discontinuous (bang-bang type strategy).

Remark 3.32. If the underlying network is not weakly connected, then the admissi-
ble set can be defined for each connected component. In fact, suppose the graph
has k components, and xni

∈ Rni , i = 1, 2, . . . , k, represent the corresponding state
variables in each component. The admissible set is now defined as

A′ = {∂H
∂x

(x) | 1Tni
(xni − xni(0)) = 0, i = 1, 2, . . . , k}, (3.86)

and for any value within the admissible set A′ Theorem 3.30 remains to hold.

For the constrained case the definition of the controller system is further modi-
fied to

η̇ = (ζ − ζ∗)

µ = sat(R(ζ − ζ∗) +
∂Hc

∂η
(η), µ−, µ+)

(3.87)

and we obtain the following result. The closed-loop system composed of (3.1),
(3.7), (3.8) and (3.87) is given as

ẋ = −B sat (RBT (∂H∂x (x)− ∂H
∂x (x∗)) + ∂Hc

∂η (η) ;µ−, µ+) + Ed̄,

η̇ = BT (∂H∂x (x)− ∂H
∂x (x∗)),

(3.88)

Corollary 3.33. Consider the same assumptions on H and Hc as in Theorem 3.30. Then
for any output vector ∂H

∂x (x∗) belonging to the admissible set A, the trajectories of the
closed-loop system (3.88) converge to

Etot = {(x∗, η̄) | B sat(
∂Hc

∂η
(η̄) ;µ−, µ+) = Ed̄}. (3.89)

if and only if the in/outflows Ed̄ are manageable.

Proof. By Lemma 3.11, it is equivalent to prove that the closed-loop system
(3.1),(3.7),(3.8),(3.87) converges to (3.89) if and only if the network satisfies the
interior point condition with Ed̄ = 0. By using the function

V (x, η) = 1TS(η) +H(x)− ∂TH

∂x
(x∗)(x− x∗)−H(x∗), (3.90)
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Figure 3.9: The trajectories of the state variables of dynamical system in Example
3.9.

as Lyapunov candidate function, where S(η) is given as in (3.41), the conclusion
follows from Theorem 3.12 and the fundamental theorem of calculus.

Example 3.9 (Hydraulic network of Example 3.3 continued). Instead of driving
the levels of the fluid in the reservoirs to consensus, the controller (3.79) is able
to drive the fluid in the reservoirs to arbitrary levels belonging to the admissible
set A. Assume the initial levels are 6, 7, 9, 2, and 10, while the desirable levels are
5, 6, 8, 4, and 11. It can be seen from Figure 3.9 that the fluid levels in the reservoirs
converge to the desirable values.

If the flows are constrained, the dynamical system is given as in (3.88). It is
shown in Figure 3.10 that, the fluid in the reservoirs converge to the desirable
levels 5, 6, 8, 4, and 11 still.

3.7 Two corollaries of the interior point condition

In this section, we consider two corollaries of the interior point condition.
The first corollary concerns a special type of networks with bidirectional flow

constraints on all the edges, i.e., µ−i < 0 < µ+
i , i = 1, 2, . . . ,m. For this case, the

result in Theorem 3.12 can be formulated as follows.

Corollary 3.34. Consider the closed-loop system (3.34) and constraint intervals [µ−i , µ
+
i ]

satisfying µ−i < 0 < µ+
i , i = 1, . . . ,m. Then the trajectories will converge to the set

(3.33) if and only if the network is weakly connected.

Proof. If the constraint intervals satisfy µ−i < 0 < µ+
i , i = 1, . . . ,m, then the

network satisfies the interior point condition, by taking z = 0 in Definition 3.10, if
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Figure 3.10: The trajectories of the state variables of dynamical system in Example
3.9.

and only if it is weakly connected. Hence the conclusion follows from Theorem
3.12.

For the rest of this section we consider the closed-loop system (3.34) with more
specific constraint boundaries µ−, µ+, i.e., we assume the following.

Assumption 3.35. The constraint intervals satisfy 0 6 µ−i < µ+
i , i = 1, . . . ,m, and

∩mi=1(µ−i , µ
+
i ) 6= ∅.

The next result can be seen as an extension of Theorem 3.12.

Corollary 3.36. Consider the system (3.34) defined on a digraph G. Then for any flow
constraints µ− and µ+ satisfying Assumption 3.35, the trajectories of (3.34) converge to

Ω = {(x̄, η̄) | ∂H
∂x

(x̄) = α1, α ∈ R, B sat(
∂Hc

∂η
(η̄) ;µ−, µ+) = 0 } (3.91)

if and only if the digraph G is weakly connected and balanced.

In order to prove Theorem 3.36 we need the following lemma. Recall that a
digraph is balanced if every vertex has in-degree (number of incoming edges) equal
to its out-degree (number of outgoing edges). Furthermore, we will say that two
circuits of a graph are non-overlapping if they do not have any edges in common.

Lemma 3.37. A weakly connected digraph G is balanced if and only if it can be covered
by non-overlapping positive circuits, i.e., there exist positive circuits C1, . . . , Ck, satisfying
ξCi ∈ Rm>0 and 1m = ξC1 + . . . + ξCk , while supp(ξCi) ∩ supp(ξCj ) = ∅ for all
i, j = 1, . . . , k with i 6= j.
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Proof. Sufficiency: If a graph can be covered by non-overlapping positive circuits,
then 1m ∈ kerB, i.e., every vertex has the same in-degree and out-degree, hence
by Lemma 2.1 this graph is balanced.

Necessity: Since any weakly connected and balanced digraph is also strongly
connected, the digraph G contains positive circuits. Consider a circuit C1 ⊂ G,
and suppose the set of the columns of the incidence matrix B is minimal linearly
dependent. I.e., if G itself is a cycle, then 1m = ξC1 . Otherwise we continue
with the vector 1m − ξC1 ∈ kerB ∩ Rm>0. If the set {Bi | i ∈ supp(1m − ξC1)} is
minimal linearly dependent, then 1m − ξC1 = ξC2 where C2 is a positive circuit.
Otherwise we conduct the previous analysis with 1m−ξC1−ξC2 . Since the digraph
G is finite, this analysis will stop after a finite number of steps. Hence we have
1m = ξC1 + . . .+ ξCk .

Proof of Corollary 3.36. Notice that by Theorem 3.12, it is equivalent to prove that
for any constraint interval satisfying Assumption 3.35, the network satisfies the
interior point condition if and only if the digraph G is weakly connected and
balanced.
Sufficiency:

Since the graph G is balanced, it follows that 1 ∈ kerB. By Assumption 3.35,
there exists α ∈ R such that α1 ∈ (µ−, µ+). Hence the network satisfies the
interior point condition for α1, i.e., E0(α1;µ−, µ+) is weakly connected. Then the
conclusion follows from Theorem 3.12.
Necessity: It is equivalent to prove that if for any constraint interval satisfying As-
sumption 3.35, the network satisfies the interior point condition, then the digraph
is weakly connected and balanced. The weak connectedness is straightforward. In
fact it is proved in Lemma 3.16 that the digraph G is actually strongly connected.

Since the digraph is strongly connected, we have that the set kerB ∩ Rm>1 is
nonempty. Let us consider the convex programming problem

min
ω∈kerB∩Rm

>1

‖ω‖∞ (3.92)

where the minimal value, denoted as T , is finite and is attained (see [62], Theorem
27.2). If T > 1, clearly [1, T1] satisfies Assumption 3.35. Furthermore, it is proved
in Lemma 3.14 that there exists a vector z ∈ kerB ∩ (1, T1) if the network satisfies
the interior point condition. Then we have that

max
i
zi < T.

This is a contradiction to the fact that T is the minimal value of (3.92). Hence T = 1

which implies 1 ∈ kerB, i.e., the digraph G is balanced.
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The above proof is illustrated by the following example.

Example 3.10. Consider the dynamical system (3.34) defined on a digraph given
as in Figure 3.2 with H(x) = 1

2‖x‖
2
2, Hc(η) = 1

2‖η‖
2
2 and [µ−, µ+] = [17, 317], that

is
ẋ = −B sat(RBTx+ η ;17, 317),

η̇ = BTx.
(3.93)

The purpose of this example is to show that there exists an initial condition x(0)

and η(0) such that x(t) does not converge to consensus as t → ∞. By taking
x(0) = (3, 7, 5, 1, 4)T and η(0) = (1,−1,−1, 1, 1, 1, 1)T , the state x in system (3.93)

will converge to the vector ν with ν2 = ν3 > ν5 > ν4 > ν1 as is illustrated by
the numerical simulation in Figure 3.11. This is also deduced by the following

0 5 10 15 20 25 30 35 40 45 501

2

3

4

5

6

7

Time t

x

x1
x2
x3
x4
x5

Figure 3.11: The time-evolutions x1(t), x2(t), x3(t), x4(t), x5(t) of the system (3.93).

analysis. Indeed, a minimizing vector for minω∈kerB∩Rm
>1
‖ω‖∞ is

ω = (1, 2, 3, 1, 1, 1, 1)T

Hence, if we take the lower and upper bound as 1 and 3 respectively, then E1 =

{e3}, E2 = {e1, e4, e5, e6, e7}. By setting ν2 = ν3 > ν5 > ν4 > ν1, the flow in
e3 reaches its upper bound, while the flows in e1, e4, e5, e6, e7 reach their lower
bounds, i.e.,

sat(−BT ν −BT νt− η̃(0) ;1, 31) = T, ∀t > 0. (3.94)

Thus there exists an equilibrium ν satisfying BT ν 6= 0.
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3.8 Conclusions

We have discussed a basic model of dynamical distribution networks where the
flows through the edges are controlled by distributed PI controllers, and satisfy
flow constraints. The main result of this chapter is that the manageability of
the in/outflows is a sufficient and necessary condition for asymptotic output
agreement. For the case without in/outflows, manageability is equivalent to an
interior point condition which depends on the graphical structure of the network
and on the constraint intervals. The analysis is based on the construction of
Lyapunov functions and LaSalle’s Invariance principle. By a modification of the
PI controller, under the additional assumption of convexity of the Hamiltonian
function, it is shown how the outputs of the system can be driven to any desirable
vector in an admissible set.

We also established a relation between a distribution network with flow con-
straints and a static optimization problem, where the latter can be used as a test for
the interior point condition. Furthermore, by employing the notion of equilibrium-
independent passivity, it is shown how the Lyapunov function can be obtained as
the total storage function of the plant and controller system.

An obvious open problem is how to handle the distribution network with
time-varying flow constraints. Another problem concerns the extension of the
obtained results to the case where the in/outflows are not assumed to be constant,
but are e.g. periodic functions of time; see already [54].



Chapter 4





Output agreement of dynamical distribution
networks with state constraints

4.1 Introduction

In this chapter we continue our study of the dynamics of distribution networks.
Identifying the network with a directed graph we associate with every vertex of the
graph a state variable corresponding to storage, and with every edge a control input
variable corresponding to flow, possibly subject to constraints. In the previous
chapter it has been shown under which conditions a constrained proportional-
integral (PI) controller will regulate the system towards output agreement in the
presence of unknown constant external disturbances (corresponding to constant
in/outflows of the network).

In many cases of practical interest it is natural to require that the state variables
of the distribution network will remain larger than a given minimal value, e.g.
zero. A hydraulic network with state variables being the storage of fluid is a
clear example of such a situation. On the other hand, the previously developed
PI-controller can give rise to damped oscillatory behavior which may violate such
state constraints. The aim of the current chapter is to modify the PI-controller in
such a way that the lower bounds for the state variables will be satisfied for all
time, while the system will still converge to output agreement. This is done by
adapting the constraints of the PI controller.

The main related work for this chapter can be summarized as follows. In [54]
the same problem is studied. However, the approach taken in [54] does not respect
mass conservation. In [13], the authors considered a different model by distin-
guishing two types of flows. By using a saturated network-decentralized control
protocol, the distribution network can be asymptotically stable to consensus.

The structure of this chapter is as follows. In Section 4.2, we formulate the
problem as the adaptation of the constraints of the PI-controller such that the
system will reach output agreement while the state variables satisfy the state
constraints, and introduce the method we will use in this chapter. In Section 4.3
an optimal control protocol for the adaptation of the flow (control) constraints
is developed. For the distribution network with the resulting flow constraints,
we prove that all Filippov solutions satisfy the state constraints and converge to
output agreement. The conclusions are contained in Section 4.4.
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4.2 Problem formulation

As summarized in Sections 3.2 and 3.3, both the PI controller with flow constraints
and without flow constraints are successful in obtaining output agreement for the
plant (3.1). However, the PI controller introduces oscillatory behavior which may
cause the state variables x to become smaller than some given lower bounds. For
certain applications this may be undesirable or infeasible, as is illustrated by the
following example.

Example 4.1 (Hydraulic network continued). Consider the hydraulic network
described in Examples 3.1 and 3.3. Here we consider the specific case that the
reservoirs at each vertex of the network are cylindric. Then xi = Sihi, Hi =
1
2ρSigh

2
i = ρg

2Si
x2
i where Si is the bottom area, hi is the height of liquid of ith

reservoir respectively, and g is the gravity coefficient. Hence the pressures at the
vertices are Pi := ∂H

∂xi
(x) = ρghi = ρgxi

Si
, i = 1, . . . , n. Although the PI controller

(3.14) can regulate the pressure differences among the reservoirs, it also introduces
an oscillatory behavior which can result in a negative value of the amount of fluid
x (see e.g. Figure 3.3).

Motivated by the previous example, in order to keep the state variable of
(3.16) satisfying certain constraints, the flow provided by the controller (3.14)
needs to be regulated. In this section we focus our attention on system (3.1) with
zero in/outflows d̄ and controller (3.14), where Hc(η) ∈ C1. Furthermore, the
Hamiltonian H is assumed to be of the form H(x) =

∑n
i=1Hi(xi) ∈ C2, where

Hi(·) : R → R is strictly convex. Moreover, we only consider the case that the
graph Go is a tree and weakly connected. Hence the number of the edges is n− 1.
Denote the set

Q = {(x, η) ∈ R2n−1 | xi > γi, i = 1, 2, . . . , n}. (4.1)

where γi := arg minHi(xi). The control aim is to regulate the flow provided by the
PI controller (3.14) such that output agreement of (3.1) is achieved asymptotically,
while the evolution of the state variables xi(t) is such that xi(t) ∈ Q for t > 0.
More specifically, the flow we will design in this section is of the following form

sat(µ(x, η);−|φ∗(x, η)|, |φ∗(x, η)|), (4.2)

where µ is the output of (3.14), i.e.,

µ(x, η) = RBT
∂H

∂x
(x) +

∂Hc

∂η
(η),

and φ∗(x, η) is the state-dependent saturation boundary to be designed.
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Remark 4.1. Note that when H(x) = H1(x1) + . . . + Hn(xn) and Hi are convex,
the control aim can be equivalently formulated as keeping the vector ∂H

∂x in the
positive orthant Rn>0. Note that the proportional controller (3.10) automatically
fulfills this control aim. In this case the closed-loop system (3.11) with d̄ = 0,
which amounts to

ẋ = −BRBT ∂H
∂x

(x),

remains in the set Q whenever xi(0) > γi. This directly follows from the prop-
erties of the weighted Laplacian matrix BRBT : whenever at a certain moment
∂Hi

∂xi
(xi(t)) = 0, then ẋi(t) = −

∑
j rk(∂Hi

∂xi
(xi(t)) − ∂Hj

∂xj
(xj(t))) > 0, where rk is

the kth diagonal element of R and ek ∼ (vi, vj). However for the second-order
system (3.16), in order to achieve the control aim the flows on the edges need to
be regulated.

4.3 The design of the flow constraints

This section is devoted to the design of the flow constraints φ∗(x, η) shown in (4.2).
The main result of this section is stated as Theorem 4.5.

We start the analysis by dividing the vertices of the network into the following
two subsets, referred to as white and gray vertices

VW (x) = {vi ∈ V | xi > γi}
VG(x) = {vi ∈ V | xi 6 γi}.

(4.3)

Notice that this division is time-dependent.

The basic idea is to saturate the flows in the edges which are adjacent to the
gray vertices, i.e., vi ∈ VG, such that the state variable xi is not decreasing. In the
other edges the flows are unconstrained, i.e., are equal to µ which is the output of
the PI-controller. This idea is formulated in Algorithm 4.1, which solves a finite
number of optimization problems. Furthermore, the final solution of Algorithm
4.1, denoted as φ∗(x, η), gives us the flow constraints in (4.2).
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Algorithm 4.1 Flow constraints algorithm

1: Initialization: φ0 = µ,
2: while VB(x, φ`) = {vi | xi 6 γi and Bi·φ` < 0} 6= ∅ do
3:

φ`+1 = arg min
ω

∑
ej∈EBout(t)

1

2|φ`j |

((
ωj − φ`j

)2
+ ω2

j

)
(4.4)

s.t. Bi·ω = 0,∀vi ∈ VB(x, φ`), (4.5)

ωk = φ`k,∀ek ∈ E \ EBout(x, φ`), (4.6)

where
EBout(x, φ`) = ∪vi∈VB(x)f

out
vi ,

foutvi (φ`) = {ej ∈ E | Bijφ`j > 0}.
(4.7)

Remark 4.2. We first show that in each step of Algorithm 4.1, the optimal solu-
tion exists. In fact, since each weakly connected component of the subgraph
GB = {VB(x, η), EBout(x, η)} has at least one edge with one end node belonging
to VB(x, η), while the other one belongs to V \ VB(x, η). This implies that the
coefficient matrix in the system of linear equations (4.5) has full row rank. Hence
the vector φ`+1 exists. Furthermore, it can be verified that 0 < |φ`+1

k | < |φ`k|, for
ek ∈ EBout(x, φ`).

Example 4.2. Consider the digraph given as in Figure 4.1(a), and suppose the
positive flows µ are assigned on each edge. If the black nodes are v1, v3, then the
subgraph GB = {VB(x, η), EBout(x, η)} is given as in Figure 4.1(b). Notice that each
component of GB has at least one edge, from VB(x, η) to V \VB(x, η) or conversely,
on which the flows are saturated.

v1 v2

v3

v4

v5 v6 v7

e1

e2 e3

e4 e5

e7

(a) The whole graph

v1

v3

e1

e2 e3

e5

(b) The subgraph GB =
{VB(x, η), EBout(x, η)}

Figure 4.1: Network structure of Example 4.2.
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Remark 4.3. Since the digraph G is acyclic, Algorithm 4.1 stops after a finite number
of steps (at most n− 1).

We denote the final result of Algorithm 4.1 as φ∗(x, η).
We can write Algorithm 4.1 in a more precise manner. Notice that the vectors

Bi· for vi ∈ VB are linearly independent. Furthermore, for each node in VB , the
φ`+1
k s on the outgoing edges eks only depend on the φ` on the incoming edges.

Hence the optimization problem (4.4),(4.5),(4.6) can be solved in a distributed
fashion, i.e., it can be solved independently for each vertex in VB . Indeed, for
each vi ∈ VB(x, φ`) we denote f invi (φ`) = {ej ∈ E | Bijφ`j 6 0}. Then the optimal
solution φ`+1

j with ej ∈ foutvi (φ`) satisfies

φ`+1|fout
vi

(φ`) = arg min
ω

∑
ej∈fout

vi
(φ`)

1

2|φ`j |

(
(ωj − φ`j)2 + ω2

j

)
(4.8)

s.t.
∑

ej∈fout
vi

(φ`)

Bijωj +
∑

ek∈fin
vi

(φ`)

Bikφ
`
k = 0. (4.9)

By the standard Lagrange multiplier method, the optimal solution φ`+1
j is given

as

φ`+1
j =

∑
ek∈fin

vi
(φ`) |φ`k|∑

ej∈fout
vi

(φ`) |φ`j |
φ`j , ej ∈ foutvi (φ`). (4.10)

Hence Algorithm 4.1 can be written as follows.

Algorithm 4.2 Flow constraints algorithm

1: Initialization: φ0 = µ,
2: while VB(x, φ`) = {vi | xi 6 γi and Bi·φ` < 0} 6= ∅ do
3:

φ`+1
j =

∑
ek∈fin

vi
(φ`) |φ`k|∑

ej∈fout
vi

(φ`) |φ`j |
φ`j , ej ∈ foutvi (φ`), (4.11)

φ`+1
k = φ`k, ek ∈ E \ EBout(x, φ`). (4.12)

An intuitive example of the previous analysis is given as follows.

Example 4.3. Let us consider a part of the network given as given in Fig.4.2. This
example shows how the flow is regulated at each step of Algorithm 4.2. Suppose
that at time t the state variable at v2, i.e., x2(t), is equal to γ2, and the flows on
e1, e2, e3 take the positive values φ`1, φ`2, φ`3. Furthermore, assume φ`1−φ`2−φ`3 < 0.
Then at the `+ 1th step of Algorithm 4.2, the flows on e2 and e3 are saturated to
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|φ`
1|

|φ`
2|+|φ`

3|
φ`2 and |φ`

1|
|φ`

2|+|φ`
3|
φ`3 respectively.

v1 v2

v3

v4

e1
e2

e3

Figure 4.2: Explanation about how the outgoing flows of black vertices are regu-
lated.

Lemma 4.4. For the acyclic digraph G, the flow constraint function φ∗(x, η) given by
Algorithm 4.1 is continuous at almost every (x, η) ∈ R2n−1. More precisely, the function
φ∗(x, η) is continuous on R2n−1 \ Qx where

Qx = Qx1
∪ · · · ∪ Qxn

(4.13)

and
Qxi = {(x, η) | xi = γi}. (4.14)

Proof. Notice that Qx is composed of a finite number of hyperplanes. Hence it
has zero measure in R2n−1. We will prove that φ∗ is continuous at any (x, η) ∈
R2n−1 \ Qx.

We start the analysis with the first step of Algorithm 4.1 where φ0 = µ.
For the flow φ0, we define the following two sets

QBφ0 = QB1·φ0 ∪ · · · ∪ QBn·φ0 ,

Qφ0 = Qφ0
1
∪ · · · ∪ Qφ0

m
,

(4.15)

where
QBi·φ0 = {(x, η) | Bi·φ0 = 0},
Qφ0

i
= {(x, η) | φ0

i = 0}.
(4.16)

We will show that the vector-valued function φ1 is continuous at (x, η) ∈
R2n−1 \ Qx by analyzing three cases:

1. For any (x, η) ∈ R2n−1 \ (Qx ∪QBφ0 ∪Qφ0), there exists a δ such that for any
(x′, η′) ∈ B

(
(x, η), δ

)
, the sets VB and EBout are constant, i.e.,

VB(x′, φ0(x′, η′)) = VB(x, φ0(x, η))

EBout(x′, φ0(x′, η′)) = EBout(x, φ0(x, η)).
(4.17)

For fixed sets VB(x, φ0) and EBout(x, φ0), the optimal solution φ1 is a contin-
uous function of φ0, hence a continuous function at (x, η) ∈ R2n−1 \ (Qx ∪
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QBφ0 ∪Qφ0). Furthermore, φ1
i 6= 0 for all i = 1, . . . ,m.

2. For any (x, η) ∈ Qφ0 ∩ (R2n−1 \ Qx), by the fact that |φ1
k| 6 |φ0

k|, we have
that

lim
(x′,η′)→(x,η)

φ1(x′, η′) = φ1(x, η).

3. For any (x, η) ∈ QBφ0 ∩ (R2n−1 \ Qx), i.e., Bi·φ0(x, η) = 0 for some vertices
vi ∈ V , then for any ek = foutvi we have φ1

k = φ0
k. For any (x′, η′) ∈ B((x, η), δ),

if Bi·φ0(x′, η′) > 0, then φ1
k(x′, η′) = φ0

k(x′, η′) for any ek ∈ foutvi ; if

Bi·φ
0(x′, η′) < 0, then φ1

k(x′, η′) =

∑
ej∈fin

vi
|φ0

j (x′,η′)|∑
ej∈fout

vi
|φ0

j (x′,η′)|φ
0
k(x′, η′) for ek ∈ foutvi .

They all converge to φ1
k(x, η) = φ0

k(x, η) as (x′, η′)→ (x, η).

Hence φ1 is continuous at (x, η) ∈ R2n−1 \Qx. Repeating the previous analysis,
we have that φ`+1 is continuous at any (x, η) ∈ R2n−1 \Qx. Since the Algorithm 4.1
stops after a finite number of steps (at most n− 1), we have that φ∗ is continuous
at any (x, η) ∈ R2n−1 \ Qx.

Now the modification of the closed-loop system (3.16) with the time-varying
flow constraints can be written as

ẋ = −B satφ∗(x,η)

(
RBT

∂H

∂x
(x) +

∂Hc

∂η
(η)
)

η̇ = BT
∂H

∂x
(x),

(4.18)

where satφ∗(x,η)(µ) = sat(µ;−|φ∗(x, η)|, |φ∗(x, η)|).
Since the right-hand side of (4.18) is discontinuous, we consider its solution

in the Filippov sense, i.e., an absolutely continuous function (x(t), η(t)) for t > 0

which satisfies the following differential inclusion almost everywhere.[
ẋ(t)

η̇(t)

]
∈

[
F [−B satφ∗(x,η)(RB

T ∂H
∂x (x) + ∂Hc

∂η (η))](x, η)

F [BT ∂H∂x ](x)

]
(4.19)

By the matrix transformation rule (2.36) and the continuity of ∂H∂x (x), the previous
differential inclusion can be equivalently written as[

ẋ(t)

η̇(t)

]
∈

[
−BF [satφ∗(x,η)(RB

T ∂H
∂x (x) + ∂Hc

∂η (η))](x, η)

BT ∂H∂x (x).

]

The existence of a complete solution of (4.19) follows from the fact that
satφ∗(t)(µ(t)) 6 µ(t) and the system (3.16) has complete solutions.
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We can delete the points in Qx to simplify the calculation of the Filippov
set-valued maps in (4.19).

Before continuing, let us make the following observation. By Lemma 4.4, the
saturation bound functions φ∗(x, η) are piece-wise continuous in R2n−1. Thanks
to Proposition 2.25, any Krasovskii solution of (4.19) is a Filippov solution. Hence
the Carathéodory solution of (4.18) 1 being a Krasovskii solution is also a Filippov
solution.

Theorem 4.5. Consider the system (4.19) on a digraph G with saturation bounds φ∗(x, η)

given by Algorithm 4.1. Assume that H(x) =
∑n
i=1Hi(xi) ∈ C2 and Hc ∈ C1 are

radially unbounded. Furthermore, assume Hi is strictly convex with arg minHi(xi) =

γi, i = 1, . . . , n. Then

(i) for any Filippov solution (x(t), η(t)) satisfying x(0) ∈ intQ, we have x(t) ∈ Q for
all t > 0;

(ii) all the trajectories will converge to an element of the output agreement set

Etot = {(x, η) | ∂H
∂x

(x) = α1, α ∈ R+, B
∂Hc

∂η
(η) = 0 }.

if and only if G is weakly connected.

Proof. In order to simplify the exposition, we denote the right-hand side of (4.18)
as X(x, η), and denote

Fx[X](x, η) := −BF [satφ∗(x,η)

(
µ)](x, η). (4.20)

(i) Recall the definitions (4.14) of Qxi and (4.1) of Q. Denote the open regions of
R2n−1 divided by the hyperplanes Qx1

, . . . ,Qxn
as R1, . . . ,RN with R1 =

intQ.

For any (x, η) ∈ Ri \ Qµ, i = 1, . . . , N , by the continuity of EBout and φ∗

we have that the right-hand side of (4.18) is continuous. More specifically,
for any (x, η) ∈ Ri \ Qµ, i = 2, . . . , N , without loss of generality, suppose
xij < γij , j = 1, . . . , k and xij > γij , j = k + 1, . . . , n, we have

Fx[X](x, η)ij = {0}, j = 1, . . . , k. (4.21)

Hence for any (x, η) ∈ Qx, there exists a vector ν ∈ F [X](x, η) which is
tangent toQx. Therefore, by the result in [24, p. 52] (in the section "Piecewise
Continuous Vector Fields and Sliding Motions"), the trajectory (x(t), η(t))

will not cross Qx but slide on it or return to Q.
1A Carathéodory solution of (4.18) is an absolutely continuous function that satisfies (4.18) for

almost all t > 0.
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(ii) Sufficiency.

Consider the Hamiltonian function

V (x, η) := H(x) +Hc(η), (4.22)

as candidate Lyapunov function. Notice that V is differentiable. Hence the
set-valued Lie derivative L̃F [X]V : R2n−1 → 2R of V with respect to F [X] at
(x(t), η(t)) is given as

L̃FV = {(∇V )T ν | ν ∈ F [X](x(t), η(t))}

=
∂TH

∂x
(x(t))Fx[X](x(t), η(t)) +

∂TH

∂x
(x)B

∂Hc

∂η
(η(t))

=

n∑
i=1

−∂
TH

∂x
(x(t))B·iF [satφ∗(x,η)(µi)](x(t), η(t))

+
∂TH

∂x
(x(t))B·i

∂Hc

∂ηi
(η(t))

(4.23)

We calculate the Filippov set-valued map F [satφ∗i (x,η)(µi)](x(t), η(t)) by con-
sidering two cases, i.e., |φ∗i (x, η)| = |µi(x, η)| and |φ∗i (x, η)| < |µi(x, η)|.

For the first case, consider two subcases. If µi(x, η) = 0, by the fact
that |φ∗i (x, η)| 6 |µi(x, η)| we have that F [satφ∗i (x,η)(µi)](x(t), η(t)) =

{µi} = {0}. If |µi(x, η)| > 0 and ei ∈ foutvj with xj > γj , then
F [satφ∗i (x,η)(µi)](x(t), η(t)) = {µi}. If |µi(x, η)| > 0 and ei ∈ foutvj

with xj 6 γj , then by Algorithm 4.1 we have Bj·µ > 0. Hence
F [satφ∗i (x,η)(µi)](x(t), η(t)) = {µi}, which follows from Lemma 4.4. In con-
clusion, the Filippov set-valued map in this case is the singleton {µi}, and

− ∂TH

∂x
(x(t))B·iF

[
satφ∗i (x,η)(µi)

]
(x(t), η(t)) +

∂TH

∂x
(x(t))B·i

∂Hc

∂ηi
(η(t))

= −∂
TH

∂x
(x)B·iB

T
·i
∂H

∂x
(x).

(4.24)

For the second case, we have that any element νi in the set
F
[

satφ∗i (x,η)(µi)
]
(x(t), η(t)) can be written as

νi = (1− λi)0 + λi(µi(t)), for some λi ∈ [0, 1]. (4.25)
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Then

− ∂TH

∂x
(x(t))B·iF

[
satφ∗i (x,η)(µi)

]
(x(t), η(t))

+
∂TH

∂x
(x(t))B·i

∂Hc

∂ηi
(η(t))

={−λi
∂TH

∂x
(x(t))B·iB

T
·i
∂H

∂x
(x(t)) + (1− λi)

∂TH

∂x
(x(t))B·i

∂Hc

∂ηi
(η(t))

| λi ∈ [0, 1]}
(4.26)

By Algorithm 4.1, ei is an outgoing edge of a grey vertex. Then we have either

(a) BT·i
∂H
∂x (x) > 0 and µi < 0, or

(b) BT·i
∂H
∂x (x) 6 0 and µi > 0.

Both (a) and (b) imply that ∂TH
∂x (x)B·i

∂Hc

∂ηi
(η) 6 −∂

TH
∂x (x)B·iB

T
·i
∂H
∂x (x).

Hence any element in the set (4.26) is smaller than or equal to
−∂

TH
∂x (x)B·iB

T
·i
∂H
∂x (x).

Hence we conclude that max L̃FVd̄(x, η) 6 −∂
TH
∂x (x)BBT ∂H∂x (x).

By LaSalle’s Invariance Principle any Filippov solution of (4.19) will converge
to the largest invariant set, denoted as Ω, within the set {(x, η) | V̇ = 0}, i.e.,
{(x, η) | BT ∂H∂x (x) = 0}. Within Ω we have

−BT ∂
2H

∂x2
B satφ∗(x(t),η(t)(

∂Hc

∂η
(η(t))) = 0, (4.27)

which implies that x remains at a constant value in Ω, denoted by x̄, for which
∂H
∂x (x̄) = α1. Furthermore, in view of 1T x̄ > 1T γ and the convexity of H , it
follows that α > 0. By the optimal control protocol given in Algorithm 4.1,
we have that all the vertices will be white for large enough t, which implies
that at steady state B ∂Hc

∂η (η) = 0.

Necessity. If the graph is not weakly connected then the above analysis
will hold on every connected component, and the common value α will be
different for different components.

Example 4.4. Consider the dynamical system (4.19) defined on the graph given in
Figure 4.1(a), with flow constraints given as in Algorithm 4.1. Take Hi(xi) = 1

2x
2
i

and R = I . The x-part of a Filippov solution of one of the trajectories of (4.19) for
initial condition [x(0), η(0)] = [0, 0.5, 1, 2, 0, 5, 9, 3, 0,−1,−2,−4] is given in Figure
3.6. It can be seen that the volume of each reservoir is kept nonnegative for all
times. Furthermore the pressures of the reservoirs converge to a common value.
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Figure 4.3: One solution of system (4.19) defined on the graph as in Figure 4.1(a)
using the flow constraints given by Algorithm 4.1.

4.4 Conclusions

We have considered a basic model of dynamical distribution networks with state
inequality constraints. We have formulated a distributed PI controller structure
with time-varying flow constraints which achieves consensus and maintains the
state constraints. The flow constraints have been expressed in terms of solutions
of an optimization problem. We have discussed the existence of solutions for
the system in the sense of Filippov, and carried out the stability analysis of the
network by taking the Hamiltonian of the system as the Lyapunov function.

The results of this chapter can be extended in a straightforward way to the case
where the flows on the edges obey a priori constraints. It is of interest to investigate
the extension of the results of this chapter to general graphs containing circuits.
One problem in such an extension is the fact that if the graph contains circuits,
then Algorithm 4.1 requires an infinite number of steps. In order to guarantee the
continuity of φ∗, we need the uniform convergence of φ` which is not clear yet.





Chapter 5





Consensus dynamics with arbitrary
sign-preserving nonlinearities

5.1 Introduction

The consensus problem for multi-agent systems is one of the most active fields of
systems and control theory since at least one decade. The basic continuous-time
linear consensus protocol can be summarized as

ẋi(t) = −
∑
j∈Ji

αij(xi(t)− xj(t)) (5.1)

where Ji represents the set of agents whose information is available to agent i,
and αij denotes a positive weight. The protocol (5.1) can be written in matrix
form as ẋ = −Lx where L is the Laplacian matrix of the underlying digraph. It is
well-known that consensus is asymptotically achieved if the digraph contains a
directed spanning tree. This result has been extended to several other scenarios,
including switching topologies and communication delays [51, 57, 59].

Apart from linear consensus protocols, also nonlinear consensus protocols
have recently attracted attention of many researchers. The nonlinear consensus
protocols may arise due to the nature of the controller, see e.g. [42, 46, 65] or
may describe the physical coupling existing in the network, see e.g. [17, 49]. In
general, starting from the model (5.1), the nonlinearity can appear in three places.
Firstly, the measurement of the state xi and xj in the right-hand side of (5.1)
can be nonlinear, i.e., fi(xi) and fj(xj) instead of xi and xj , for some nonlinear
functions fi, fj . Secondly, we can replace the difference xi(t)−xj(t) by a nonlinear
function f(xi(t) − xj(t)). Thirdly, the dynamics of each agent can be nonlinear,
i.e., ẋi = fi(−Li·x) instead of ẋi = −Li·x.

In this chapter, we investigate a general nonlinear consensus protocol which
contains the previous three cases. The topology among the agents is assumed
to be a directed graph containing a directed spanning tree, which, as mentioned
above, for the linear consensus protocol is known to be a sufficient and necessary
condition for reaching consensus.

There are many related works on nonlinear consensus protocols. In [45, 53],
continuous nonlinear functions are considered, which is a special case of our set-up
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where the nonlinear functions are allowed to be discontinuous. Nonlinearities in
the form of sign functions were considered in [26]. In [29], the authors considered
a similar control protocol as in [26] in a hybrid dynamical systems framework with
a self-triggered communication policy. In addition, in [29] practical consensus
is considered, that is, the states of the agents are not exactly equal to but close
enough to each other. The results in [26, 29] are restricted to undirected graphs.

As a special type of nonlinear consensus protocols, quantized consensus proto-
cols have been studied from different viewpoints. In [20], the authors considered
the case when the measurements of the states of the agents are quantized. In
[31, 39], the authors investigate the case when the measurement of relative states
of the agents are quantized. In this thesis, we will only focus on the first case.

The contributions of this chapter are twofold. Firstly, a general nonlinear
consensus protocol is considered with the weakest topology assumption, i.e.,
a directed graph containing a directed spanning tree. Secondly, the nonlinear
functions considered can be discontinuous. In order to study the behavior of the
nonlinear consensus protocols for discontinuous nonlinearities, we employ the
notion of Filippov solutions and prove the convergence to consensus.

The structure of this chapter is as follows.

The main results are presented in Section 5.2. The general problem is intro-
duced in Section 5.2.1. Then in Sections 5.2.2 and 5.2.3, two important subcases
are considered. Finally in Section 5.2.4, the results of Sections 5.2.2 and 5.2.3 are
combined. In Section 5.3, we consider a special case when the underlying topology
is strongly connected and the nonlinear functions are continuous. In this case we
obtain a port-Hamiltonian formulation and prove stability within this framework.
In Section 5.4, we consider the consensus protocol where we do not have precise
measurement of the state of each agent, i.e., a quantized consensus protocol. In
this section we extend the result in [20] to the directed graph case. The main results
of the chapter are stated as Theorem 5.4, 5.9 and 5.15.

5.2 The model with precise measurement of the states

5.2.1 Problem formulation

In this chapter we consider a network of n agents, where the communication
topology is given by a weighted digraph G = (V, E , A). In this network, agent i
receives information from agent j if and only if there is an edge from node vj to
node vi in the graph G. We denote the state of agent i at time t as xi(t) ∈ R, and
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consider the following dynamics for agent i

ẋi = fi(

n∑
j=1

aijgij(xj − xi)) =: hi(x), (5.2)

where fi and gij are functions from R to R and aij are the elements of the adjacency
matrix A.

The functions fi describe how agent i handles incoming information, while the
functions gij are concerned with the flow of information along the edges. For the
rest of the chapter, we assume the following.

Assumption 5.1. The functions fi and gij are sign-preserving (see Definition 2.26)
and piecewise continuous.

Notice that the previous assumption includes functions like the signum func-
tion sign and the saturation function sat.

To handle possible discontinuities in the right-hand side of (5.2), we consider
Filippov solutions of the differential inclusion

ẋ(t) ∈ F [h](x(t)). (5.3)

Here we assume the existence and completeness of Filippov solutions of (5.3) for
any initial condition. Notice that when the functions hi are globally bounded, e.g.
if fi and gij are chosen as signum or saturation functions, then the completeness
of Filippov solution of (5.3) is guaranteed by Theorem 1 in Chapter 2 § 7 of [34].

The agents of the network are said to achieve consensus if they all converge to
the same value, that is for any initial state x0

lim
t→∞

x(t) = η1

for some η ∈ R, where x(t) = [x1(t), . . . , xn(t)]T is any solution of (5.2) for x(0) =

x0. It is well known that if all functions fi and gij are the identity function, then
the agents will achieve consensus if and only if the graph G contains a directed
spanning tree [1, 76]. In this chapter we investigate the consensus problem for
general functions fi and gij satisfying Assumption 5.1. First, in Section 5.2.2, we
consider the special case that the functions gij are equal to the identity function,
that is ẋ = fi(

∑n
j=1 aij(xj − xi)). Thereafter, in Section 5.2.3, we consider the case

where the functions fi are the identity function, that is ẋi =
∑n
j=1 aijgij(xj − xi).

Finally, in section 5.2.4, we will combine these results.
The following examples motivate why the sign-preserving condition is needed

for all functions fi and gij .
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v1 v2e12

(a) Digraph with spanning tree

v1 v2

e12

e21

(b) Strongly connected digraph

Figure 5.1: Two digraphs with two nodes for Examples 5.1, 5.5 and 5.6.

Example 5.1. Consider the following system defined on the graph given in
Fig. 5.1(a)

ẋ1 = f1(0)

ẋ2 = f2(x1 − x2),
(5.4)

with fi = sat(; 0, 1), i = 1, 2. Notice that the function sat(· ; 0, 1) is not sign pre-
serving. In this case the existence of a directed spanning tree is not a sufficient
condition for convergence to consensus. Indeed, if the initial condition satisfies
x2(0) > x1(0), then x1(t) = x1(0) and x2(t) = x2(0) for all t > 0. Hence, the agents
do not reach consensus.

Example 5.2. The condition (ii) in Definition 2.26 can be motivated by the fol-
lowing counter example. Consider the system (5.4) defined on the digraph in
Fig. 5.1(a) with fi are defined as

fi(y) =


y + 1 if y < −1,

y if − 1 6 y 6 1,

y − 1 if y > 1,

i = 1, 2. (5.5)

Then the function fi satisfies (i), but not (ii) in Definition 2.26. Consider the point
x∗ = [0, 1]T , we have

F [f ](x∗) = co{[0,−1]T , [0, 0]T }.

Hence x∗ is a steady state of the differential inclusion ẋ(t) ∈ F [h](x(t)). In fact, it
can be verified that

x1 = 0

x2 = 1 + e−t

is a solution of (5.4) which is converging to x∗. However, if fi is replaced by any
functions which satisfies (ii) in Definition 2.26, [0, 0]T /∈ F [h](x∗) which implies
that the vector x∗ is not a steady state of the differential inclusion ẋ(t) ∈ F [h](x(t)).
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5.2.2 Node nonlinearity

We first consider the system (5.2) where the functions gij are all the identity
function, and focus our attention on the functions fi, which describe how agent
i handles the incoming information flow. In this case, the total dynamics of the
agents can be written as

ẋ = f(−Lx), (5.6)

where L is the graph Laplacian induced by the information flow digraph G =

(V, E , A), and f : Rn → Rn is defined as

f(y) = [f1(y1), f2(y2), . . . , fn(yn)]T .

This leads to the consideration of the Filippov solutions of the differential inclusion

ẋ(t) ∈ F [h](x(t)), (5.7)

where h(x) := f(−Lx). Since L is a singular matrix, we have F [f ](−Lx(t)) $
F [h](x(t)) in general.

The aim of this section is to investigate under which conditions the Filippov
solutions of the system (5.7) achieve consensus. Because of possible discontinuity
of the right-hand side of (5.6), it turns out that there can be Filippov solutions that
are unbounded. The following example illustrates this unwanted behavior.

Example 5.3. Consider a dynamical system (5.6) defined on an undirected graph
with three nodes, as given in Fig. 5.3(a), where the functions fi are all given by the
signum function:

ẋ1 = sign(x2 + x3 − 2x1)

ẋ2 = sign(x1 + x3 − 2x2)

ẋ3 = sign(x1 + x2 − 2x3).

Suppose that at time t0 we have x(t0) ∈ span{1}, then

F [h](x(t0)) = co {ν1, ν2, ν3,−ν1,−ν2,−ν3} , (5.8)

where ν1 = [1, 1,−1]T , ν2 = [1,−1, 1]T , ν3 = [−1, 1, 1]T . Since 1
3

∑3
i=1 νi = 1

31, we
have that {η1 | η ∈ [− 1

3 ,
1
3 ]} ⊂ F [h](x(t0)). Indeed, the Filippov set-valued map

F [h](1) is given as the polyhedron in Figure 5.2. Hence, any time-function x(t) =

η(t)1 with η(t) differentiable almost everywhere and satisfying η̇(t) ∈ [− 1
3 ,

1
3 ] is a

Filippov solution for this system. A complete analysis of this example is given in
the Appendix.

Thus the values of x1, x2, x3 converge to each other, but not to a fixed consensus
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1
0

-11
0

-1

1

0.5

0

-0.5

-1

Figure 5.2: The polyhedron is the Filippov set-valued map of sign at x ∈ span{1}.
The sphere centers at the origin with radius

√
3

3 . The sphere is contained in the
polyhedron and is tangent to two surfaces of it. Hence for any α ∈ [− 1

3 ,
1
3 ], the

vector α1 belongs to the polyhedron.

v1 v2

v3

(a) Undirected graph

v1 v2

v3

(b) Directed graph

Figure 5.3: Two graphs with three nodes, one undirected and one directed graph,
used in Examples 5.3, 5.4, 5.7 and 5.9.

value. The undesirable behavior x(t) = η(t)1 in the previous example will be
called sliding consensus. Note that this example shows that for the validity of
Theorem 11 in [26] we need extra conditions. In fact, it will turn out that the
occurrence of sliding consensus can be excluded by replacing the signum function
for at least one node by a function that is continuous at the origin. This motivates
to introduce the following subsets of the node set of a digraph G with index set
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I = {1, 2, . . . , n}:

Ir = {i ∈ I | vi is a root of G} (5.9)

Ic = {i ∈ I | fi is continuous at the origin}. (5.10)

First we state two preparatory lemmas.

Lemma 5.2. Consider a digraph G = (V, E , A). The subgraph corresponding to the roots
of G is strongly connected.

Proof. If there is just one root, the statement is trivial. If G has more than one root,
let vi and vj be two distinct roots, and let G′ = (Ir, E ′, A′) denote the subgraph
corresponding to the root set Ir. Since vi is a root, there is a directed path from vi
to vj in the graph G. Vice versa, there is a directed path from vj to vi. Combining
these two paths, we get a directed cycle containing both vi and vj . Note that every
node in this cycle is a root as well. Therefore, all the edges in this cycle are in E ′,
and hence there is a directed path in G′ from every root vi to any other root vj .

Note that if a node vk is a root, then ekj ∈ E implies that vj is a root as well.
Hence, (−Lx)k =

∑
j∈Ir akj(xj − xk).

Lemma 5.3. The following functions are regular and Lipschitz continuous,

V (x) := max
i∈I

xi, W (x) := −min
i∈I

xi. (5.11)

Proof. Since any convex function is regular ([23], Prop. 2.3.6), it is enough to prove
that V (x) and W (x) are convex. The projection function pj(x) = xj is linear, hence
convex and concave. Since the maximum of a finite number of convex functions
is again convex, it follows that V (x) is convex. Since W (x) can be rewritten as
maxi∈I(−xi), also W is convex. The function V (x) is Lipschitz continuous since
|V (x)− V (y)| = |maxi xi −maxi yi| 6 ‖x− y‖∞ for all x, y ∈ Rn. Similarly, W (x)

is Lipschitz continuous as well.

The following theorem is the main result of this section.

Theorem 5.4. Consider system (5.7) defined on a digraph G = (V, E , A). If one of the
following three conditions holds, i.e.,

(i) Ic ∩ Ir is not empty,

(ii) |Ir| = 1,

(iii) |Ir| = 2 and fi(0−) = −fi(0+) for i ∈ Ir,
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where fi(0−) and fi(0+) are the left and right-hand limits of fi at the origin respec-
tively, then all the trajectories of system (5.7) achieve consensus, for any initial condition.
Furthermore, they will remain in the set [mini xi(0),maxi xi(0)]n for all t > 0.

Proof. Notice that in all cases Ir is nonempty, which implies that the graph G
contains a directed spanning tree. Condition (i) implies that the digraph G has a
root vi for which fi is continuous at the origin.

Consider the candidate Lyapunov functions V and W as given in (5.11). Even-
tually, we will apply LaSalle’s Invariance principle to both V and W . By Lemma
5.3, V and W are regular and Lipschitz continuous. Let x(t) be a trajectory of (5.7).
Define α(t) := {i ∈ I | xi(t) = V (x(t))}.

Let the set Ψ be defined as

Ψ = {t > 0 | both ẋ(t) and
d

dt
V (x(t)) exist}. (5.12)

Since x is absolutely continuous and V is locally Lipschitz, Ψ equals [0,∞) minus
a set Ψ̄ of measure zero. By Lemma 1 in [8], we have

d

dt
V (x(t)) ∈ L̃F [h]V (x(t)) (5.13)

for all t ∈ Ψ and hence the set L̃F [h]V (x(t)) is nonempty for all t ∈ Ψ. For t ∈ Ψ̄,
we have L̃F [h]V (x(t)) = ∅. Hence max L̃F [h]V (x(t)) = −∞ < 0 by definition.
Next we want to show that max L̃F [h]V (x(t)) 6 0 for all t ∈ Ψ by considering the
two possible cases: Ir * α(t) or Ir ⊆ α(t).

If Ir * α(t), then there exists an i ∈ Ir such that xi(t) < V (x(t)). Furthermore,
there exists j ∈ α(t) such that −(Lx)j < 0. Indeed, the index j ∈ α(t) can be
chosen such that the path from vi to vj has the least number of edges. By the
definition of the Filippov set-valued map and the fact that the function fj is sign-
preserving, we have that if ν ∈ F [h](x(t)), then νj < 0. The generalized gradient
of V is given as [23, Example 2.2.8]

∂V (x(t)) = co{ej ∈ Rn | j ∈ α(t)}. (5.14)

Let a ∈ L̃F [h]V (x(t)). By definition, there exists a νa ∈ F [h](x(t)) such that
a = νa · ζ for all ζ ∈ ∂V (x(t)). Consequently, this νa satisfies

νai = νaj ∀i, j ∈ α(t).

Since for any ν ∈ F [h](x(t)) there exist j ∈ α(t) such that νj < 0, then any
a ∈ L̃F [h]V (x(t)) satisfies a < 0. By the fact that L̃F [h]V (x(t)) is a closed set, we
have max L̃F [h]V (x(t)) < 0.

If Ir ⊆ α(t), we will consider the conditions (i), (ii) and (iii) separately.
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(i) In this case Ic ∩ Ir ⊆ α(t). For any i ∈ Ic ∩ Ir, we have that fi is continuous
at 0 and satisfies fi(0) = 0. Hence for any ν ∈ F [h](x(t)) it satisfies νi = 0.
Using the same argument as in the first case, we can conclude that the set-
valued Lie derivative L̃F [h]V (x(t)) equals the singleton {0}.

(ii) Let Ir = {i}. Then we have that Li = 0 where Li is the ith row of L. Hence,
for any ν ∈ F [h](x(t)), νi = 0, which again implies that L̃F [h]V (x(t)) = {0}.

(iii) Let Ir = {i, j}. By Lemma 5.2 the dynamics of xi and xj are given as ẋi =

fi(aij(xj−xi)) and ẋj = fj(aji(xi−xj)), respectively. Since {i, j} = Ir ⊆ α(t)

we have xi(t) = xj(t). By the fact that fk(0−) = −fk(0+) for k ∈ Ir, we see
that for any ν ∈ F [h](x(t)) we have[

νi
νj

]
⊆ co{

[
fi(0

−)

fj(0
+)

]
,−
[
fi(0

−)

fj(0
+)

]
}. (5.15)

Hence, any ν ∈ F [h](x(t)) with νi = νj must satisfy νi = νj = 0. This implies
that L̃F [h]V (x(t)) = {0}.

For all three conditions, we have that L̃F [h]V (x(t)) = {0}, and hence

max L̃F [h]V (x(t)) 6 0.

Define β(t) = {i ∈ I | xi(t) = −W (x(t))}. By using similar arguments, we find
that max L̃F [h]W (x(t)) < 0 if Ir * β(t), and max L̃F [h]W (x(t)) 6 0 if Ir ⊆ β(t).

We conclude that V (x(t)) and W (x(t)) are non-increasing along the trajectories
x(t) of the system (5.7). Hence, the trajectories are bounded and remain in the
set [mini xi(0),maxi xi(0)]n for all t > 0. Therefore, for any N ∈ R+, the set
SN = {x ∈ Rn | ‖x‖∞ 6 N} is strongly invariant for (5.7). By Theorem 2.22, we
have that all solutions of (5.7) starting from SN converge to the largest weakly
invariant set M contained in

SN ∩ {x ∈ Rn : 0 ∈ L̃F [h]V (x)} ∩ {x ∈ Rn : 0 ∈ L̃F [h]W (x)}. (5.16)

From the argument above we see that 0 ∈ L̃F [h]V (x(t)) is possible only if Ir ⊆ α(t),
and 0 ∈ L̃F [h]W (x(t)) can only happen if Ir ⊆ β(t). This implies that for every
root vi, the state xi converges simultaneously to maxi∈I xi and to mini∈I xi, i.e.,
the trajectories x(t) of the system achieve consensus for any initial condition.

The conditions (i), (ii) and (iii) in Theorem 5.4 all exclude the possibility of
sliding consensus. Each condition will be illustrated by an example.
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Example 5.4. Consider system (5.6) defined on the undirected graph in Fig. 5.3(a),
defined as

ẋ1 = f1(x2 + x3 − 2x1)

ẋ2 = f2(x1 + x3 − 2x2)

ẋ3 = f3(x1 + x2 − 2x3).

Suppose condition (i) in Theorem 5.4 is satisfied. For example, assume that
f1 is continuous at the origin. Then the sliding consensus is not a Fillippov
solution. Indeed, if at time t0 we have x(t0) ∈ span{1}, then the first component
of the Filippov set-valued map F [h](x(t0)) is equal to {0}. This implies that
x1(t) = x1(t0) and therefore x(t) = x(t0), for all t > t0.

Example 5.5. Consider system (5.6) defined on the digraph in Fig. 5.1(a) given by

ẋ1 = f1(0) (5.17)

ẋ2 = f2(x1 − x2). (5.18)

It satisfies condition (ii) of Theorem 5.4. Since f1(0) = 0, the state of the root v1 is
constant. Consensus is achieved by the fact that f2 is sign-preserving.

Example 5.6. Consider the system (5.6) defined on the digraph given in Fig. 5.1(b).
The dynamics is defined as

ẋ1 = f1(x2 − x1)

ẋ2 = f2(x1 − x2).

First, let f1 and f2 be signum functions, in which case condition (iii) of Theorem
5.4 is satisfied. If the trajectory achieves consensus at time t, then the image of
the Filippov set-valued map F [h](x(t)) is co{[1,−1]T , [−1, 1]T }, which intersects
span{1} only at [0, 0]T . Hence L̃F [h]V (x) = L̃F [h]W (x) = 0, which implies that
the trajectory remains constant, i.e., there is no sliding consensus. See Figure 5.4
for a graphical explanation.

If the condition (iii) is not satisfied, i.e., fi(0−) 6= −fi(0+) for i = 1, 2, then
sliding consensus can be a Filippov solution. For instance, take

fi(x) =


2 if x > 0,

0 if x = 0,

−1 if x < 0,

i = 1, 2,

Suppose that at t0 the state x achieves consensus. Then the Filippov set-valued
map at x(t0) is co{[−1, 2]T , [2,−1]T } which intersects span{1} at [ 1

2 ,
1
2 ]T . Then

x(t) = 1
21t+ x(t0) is a Filippov solution for t > t0.
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x1

(f1(0−), f2(0+))

(f1(0+), f2(0−))

x2

Figure 5.4: For a digraph with two nodes, the Filippov set-valued map at any point
in span{1} is the solid line segment which intersect span{1} at the origin. Hence
the sliding consensus can not be a Filippov solution.

5.2.3 Edge nonlinearity

In this section we consider the case where the functions fi are all the identity
function, that is,

ẋi =

N∑
j=1

aijgij(xj − xi) =: hi(x). i ∈ I (5.19)

We consider two cases, corresponding to the underlying graph G = {V, E} being
undirected or directed.

We start with the undirected case.

Assumption 5.5. For all (vj , vi) ∈ E , gij(0−) = −gji(0+).

Theorem 5.6. Consider the dynamics (5.19) defined on a connected undirected graph.
Suppose the functions gij satisfy Assumption 5.5 (on top of Assumption 5.1). Then the
trajectories of the system (5.19) achieve consensus asymptotically.

Proof. Consider the Lyapunov candidate functions V and W as defined in (5.11).
We use the same notations as in the proof of Theorem 5.4. Similarly, as in the
proof of Theorem 5.4, we only prove that max L̃F [h]V (x(t)) < 0 for all t ∈ Ψ where
R>0 \Ψ is a set of measure zero and the set L̃F [h]V (x(t)) is nonempty for all t ∈ Ψ.
Denote S = {x ∈ Rn | ∃i, j ∈ I such that xi = xj}, which is a measure zero set
in Rn. We consider two possible cases for a given time t: x(t) /∈ span{1}, and
x(t) ∈ span{1}.

First, x(t) /∈ span{1}. For small enough δ, all y ∈ B(x(t), δ)\S satisfy yj−yi < 0

whenever i ∈ α(t) and j 6∈ α(t). Notice that α(t) = {i ∈ I | xi(t) = V (x(t))}.
By Assumption 5.5, for i, j ∈ α(t) we have gij(yj − yi) + gji(yi − yj) → 0 for all
y ∈ B(x(t), δ) \ S as δ → 0. As we are considering undirected graphs, these two
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statements, together with the sign-preserving property of the functions gij , imply
that for small enough δ there exists an ε > 0 such that for all y ∈ B(x(t), δ) \ S we
have ∑

i∈α(t)

∑
j∈Ni

aijgij(yj − yi) < −ε.

Thus, for any ν ∈ F [h](x(t)) we have
∑
i∈α(t) νi < 0. It follows that

L̃F [h]V (x(t)) is contained in R−. By the fact that L̃F [h]V (x(t)) is closed we have
max L̃F [h]V (x(t)) < 0.

Secondly, x(t) ∈ span{1}. Then by Assumption 5.5, for any y ∈ B(x(t), δ) \ S,
we have

〈1, h(y)〉 =
∑
i∈I

∑
j∈Ni

aijgij(yj(t)− yi(t))

which approaches zero for δ → 0. On the other hand, by definition of the Filippov
set-valued map, for any vector ν ∈ F [h](x(t)) it can be formulated as

ν = lim
y∈B(x(t),δ)\S

δ→0

h(y). (5.20)

Hence we have that any vector ν ∈ F [h](x) is orthogonal to 1. Since 1 ∈ ∂V (x(t)),
we have L̃F [h]V (x(t)) = {0}.

So far we have max L̃F [h]W (x(t)) < 0 if x(t) /∈ span{1} and L̃F [h]W (x(t)) =

{0} if x(t) ∈ span{1}.
The above analysis implies that the trajectories are bounded. Indeed for any

N ∈ R+ the set SN = {x ∈ Rn | ‖x‖∞ 6 N} is strongly invariant. By Theorem
2.22, the conclusion follows.

Remark 5.7. The stronger assumption gij(x) = −gji(−x) for all ∀eij ∈ E implies
that 1T ẋ = 0. In this case, the trajectories converge to a consensus value defined
by the average of the initial conditions.

Example 5.7. If gij(0−) 6= −gji(0+), then sliding consensus may occur. For in-
stance, consider the system (5.19) defined on the undirected graph in Fig. 5.3(a)
given by

ẋ1(t) = g12(x2(t)− x1(t)) + g13(x3(t)− x1(t))

ẋ2(t) = g21(x1(t)− x2(t)) + g23(x3(t)− x2(t))

ẋ3(t) = g31(x1(t)− x3(t)) + g32(x2(t)− x3(t))

(5.21)

where

gij(x) =


1.5 if x > 0,

0 if x = 0,

−0.5 if x < 0,

∀(vj , vi) ∈ E ,
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Suppose that at time t0 the state satisfies x(t0) ∈ span{1}. Then F [h](x(t0)) is the
closed convex hull of

{[−1, 1, 3]T , [−1, 3, 1]T , [1,−1, 3]T , [3,−1, 1]T , [1, 3,−1]T , [3, 1,−1]T }. (5.22)

Hence, 1 is an element in F [h](x(t0)) and thus x(t) = t1 + x(t0) is a Filippov
solution for t > t0. The graphical explanation is given in Figure 5.5.

3

2

1

0

-13

2

1

0

-1
-2

-1

0

1

2

3

Figure 5.5: The surface is the convex hull of the vectors in (5.22) and the line
spanned by 1. They intersect at the point [1, 1, 1]T .

Example 5.8 (Example 5.7 continued). Consider the dynamical system (5.21) with
gij(x) = sign(x). In this case, the Filippov set-valued map at x(t0) ∈ span{1} is
the closed convex hull of

{[−2, 0, 2], [2, 0,−2], [−2, 2, 0], [2,−2, 0], [0,−2, 2], [0, 2,−2]} (5.23)

which intersects span{1} at the origin. The graphical explanation is given in Figure
5.6.

Finally, let us briefly consider the case of a directed graph. In this case, As-
sumption 5.5 is not sufficient to guarantee convergence to consensus as shown by
the following example.

Example 5.9. Consider system (5.19) on the directed graph as in Fig. 5.3(b), where
the functions gij are the signum function. Hence the dynamics can be written as

ẋ1 = sign(x3 − x1)

ẋ2 = sign(x1 − x2)

ẋ3 = sign(x2 − x3).
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1
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-1

-22
1.5
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-0.5
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-1.5

-2
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-1
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Figure 5.6: The surface is the convex hull of the vectors in (5.23) and the blue line
is spanned by 1. They intersect at the origin.

Suppose that at time t0, the state satisfies x(t0) ∈ span{1}. Then the Filippov
set-valued map F [h](x(t0)) is the same as in (5.8). Hence by the same argument
as in Example 5.3, sliding consensus is a Filippov solution, and thus there is no
convergence to consensus.

For digraphs, we quote the following result from [53].

Theorem 5.8. Consider the system (5.19) with continuous functions gij . If the under-
lying graph G = {V, E} contains a directed spanning tree, then the trajectories of (5.19)
achieve consensus asymptotically.

Extension of Theorem 5.8 to the case of discontinuous functions gij is a topic
for further research.

5.2.4 Combining results

The multi-agent system given in (5.2) can be seen as a combination of system (5.6)
and system (5.19). We have the following result.

Theorem 5.9. Consider system (5.2) defined on a digraph G = {V, E}, with continuous
functions gij . If one of the following three conditions holds, i.e.,

(i) Ir ∩ Ic is not empty,

(ii) |Ir| = 1,

(iii) |Ir| = 2 and fi(0−) = −fi(0+) for i ∈ Ir,

then all Filippov solutions of system (5.2) achieve consensus, for all initial conditions.
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Proof. Since the proof is similar to the proof of Theorem 5.4, we only provide a
sketch of the proof. Recall that α(t) = {i ∈ I | xi(t) = V (x(t))} and β(t) = {i ∈
I | xi(t) = −W (x(t))}.

Similarly we use V and W as Lyapunov functions. We will show that
max L̃F [h]V 6 0 by considering two cases: Ir * α(t) and Ir ⊆ α(t).

When Ir * α(t), there exists a k ∈ α(t) satisfying
∑n
j=1 akjgkj(xj − xk) < 0.

This implies that the kth component of F [h](x(t)) is contained in R−. Hence,
max L̃F [h]V < 0.

When Ir ⊆ α(t), we can use similar arguments as in the proof of Theorem 5.4
to see that the set-valued Lie derivative L̃F [h]V (x(t)) is either {0} or ∅ if one of
the conditions (i), (ii) and (iii) holds. Hence max L̃F [h]V (x(t)) 6 0.

Similarly, we have that max L̃F [h]W (x(t)) < 0 if Ir * β(t), and

max L̃F [h]W (x(t)) 6 0

if Ir ⊆ β(t). Based on Theorem 2.22, the conclusion follows.

5.3 Port-Hamiltonian formulation

In Section 5.2.2, we considered the system (5.6) defined on a digraph G = {V, E}
containing a directed spanning tree. In this section we consider the special case
when the functions fi are continuous and the underlying digraph G is strongly
connected. In this case, (5.6) admits classical solutions. We provide another point
of view about the stability of system (5.6) by using a port-Hamiltonian formulation,
which is of interest in itself. Some basic information on port-Hamiltonian systems
can be found in [6, 67, 69].

First, we state a preparatory lemma. Consider the singular transformation
z = −Lx. In [44], the following lemma was proved for the case fi(·) = sat(·;−1, 1);
here we consider the general case where we do not assume that the functions fi
are sign-preserving.

Lemma 5.10. Assume the digraph G contains a directed spanning tree and the functions
fi are continuous. Then the following two statements are equivalent:

1. The trajectories of the system (5.6) asymptotically converge to span{1} for any
initial condition.

2. The trajectories of the system
ż = −Lf(z) (5.24)

with initial condition z(0) satisfying

z(0) ∈ imL (5.25)
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asymptotically converge to the origin.

Proof. (2 ⇒ 1). Let x(t) be a solution of (5.6). Then z(t) = −Lx(t) is a solution
of ż(t) = −Lẋ(t) = −Lf(−Lx(t)) = −Lf(z(t)) with z(0) = Lx(0) ∈ imL. Hence
z(t) = −Lx(t) → 0, and thus x(t) → kerL. Since the digraph G contains a
directed spanning tree, we have that kerL = span{11} [76], that is, x(t) converges
to span{1}.

(1 ⇒ 2). Let z(t) be a solution of (5.24) satisfying (5.25). Then z(t) ∈ imL for
t > 0, and hence z(t) = −Lx̃(t) for some function x̃ satisfying

L ˙̃x = Lf(−Lx̃(t)). (5.26)

Define φ(t) = ˙̃x − f(−Lx̃(t)) ∈ kerL and x(t) = x̃(t) −
∫ t

0
φ(τ)dτ . Then z(t) =

−Lx(t), while

ẋ(t) = ˙̃x(t)− φ(t) = f(−Lx̃(t)) = f(−Lx(t)). (5.27)

Therefore, x(t) is a solution of system (5.6), and hence x(t) converge into
span{11} = kerL. Hence, z(t) = −Lx(t)→ 0 for t→∞.

Property 5.11 ([15], Theorem 1.37). The graph Laplacian matrix L of a balanced and
strongly connected graph G satisfies

L+ LT =
1

2
L0, (5.28)

where L0 represents the graph Laplacian matrix of the undirected graph Go obtained by
neglecting the orientation of the edges.

Theorem 5.12. Suppose the digraph G = (V, E) is strongly connected and the func-
tions fi are continuous. Let z = −Lx. Then system (5.24) can be written in the
port-Hamiltonian form

ẇ = (J −R)
∂H

∂w
(w)

where w = Σz for some invertible n× n matrix Σ, J ∈ Rn×n is skew-symmetric,
R ∈ Rn×n is symmetric and positive semidefinite, and H(w) is a positive definite and
radially unbounded function. Furthermore, the trajectories of (5.24) asymptotically
converge to the origin, and hence solutions of (5.6) achieve consensus.

Proof. Since G is strongly connected, there exists a vector σ ∈ Rn+ such that σTL = 0

[14, Theorem 14 on p.58]. Define the diagonal matrix Σ := diag(σ1, . . . , σn), then
the matrix ΣL is the Laplacian matrix of a balanced graph.
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Since the functions fi are sign-preserving, for each fi there exists a positive
definite function Fi : R→ R such that

∇Fi = fi. (5.29)

Denote F = [F1, F2, . . . , Fn]T . By introducing new coordinates w = Σz, we have

ẇ = −ΣLf(Σ−1w) (5.30)

= −ΣL
∂H

∂w
(w) (5.31)

where H(w) = σTF (Σ−1w) is positive definite and radially unbounded. Hence
system (5.30) can be written as

ẇ = (J −R)
∂H

∂w
(w), (5.32)

where J = 1
2 (LTΣT−ΣL) is skew-symmetric andR = 1

2 (LTΣT+ΣL) is symmetric.
Furthermore, by Property 5.11,R is positive semi-definite, representing a Laplacian
matrix of an undirected graph. Finally,

d

dt
H(w(t)) = −∂

TH

∂w
R
∂H

∂w
6 0. (5.33)

Denote Ω = {w | Ḣ(w(t)) = 0}. By ∂H
∂w (w) = f(z), we have Ω = {z | f(z) ∈

span{1}}. Since z ∈ imL for all t, we see that σT z = 0. Because the functions fi are
sign-preserving and σ ∈ Rn+, we have that Ω = {0}. By using LaSalle’s Invariance
principle, the trajectories of the system (5.24) will converge to the largest forward
invariant set in Ω, i.e., z → 0. Hence by Lemma 5.10, the solutions of the system
(5.6) achieve consensus.

Remark 5.13. If the underlying digraph G is balanced and weakly connected 1,
then the vector σ in the proof of Theorem 5.12 can be chosen as 1. In this case the
system (5.24) can be written in the port-Hamiltonian form

ż = (Jb −Rb)
∂Hb

∂z
(z) (5.34)

where Jb = 1
2 (LT − L), Rb = 1

2 (LT + L), Hb(z) =
∑n
i=1 Fi(zi) and the functions

Fi satisfy (5.29).

In Example 5.1 we showed that if the nonlinear functions fi in (5.6) are equiva-
lent to saturation functions with the lower or upper bounds being zero, then the

1Note that a balanced digraph G is strongly connected if and only if it is weakly connected.
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condition that the underlying digraph G contains a spanning tree is not sufficient
to guarantee the convergence of the states to consensus. A sufficient condition for
consensus for the system

ẋ = sat(−Lx(t) ;u−, u+) (5.35)

with either u− or u+ being equal to zero can be formulated as follows.

Proposition 5.14. Consider system (5.35) and suppose the underlying digraph G is
strongly connected. Let the saturation bounds satisfy u− = 0 and u+ ∈ Rn+ (respectively,
u− ∈ Rn− and u+ = 0), then the trajectories of the system (5.35) converge to the maximal
(minimal) value of the initial condition, i.e., to maxi∈I xi(0) (mini∈I xi(0)).

Proof. We only consider the case u− = 0 and u+ ∈ Rn+. For the case u− ∈ Rn− and
u+ = 0 the conclusion follows similarly.

By Lemma 5.10, it is equivalent to prove that the state of the system

ż = −L sat(z ; 0, u+) (5.36)

with initial condition z(0) ∈ imL converges to zero asymptotically. By taking
σ, Σ and w = Σz as in the proof of Theorem 5.12, we can write the dynamics of
w in the port-Hamiltonian formulation as in (5.32), with Hamiltonian function
H(w) = σT Sat(Σ−1w) where Sat : Rn → Rn is defined as

Sat(z)i =

∫ zi

0

sat(τ ; 0, u+
i )dτ. (5.37)

Notice that each component of Sat(z) is not radially unbounded since u−i is zero.
However, because z ∈ imL for all t and σTL = 0 we have that σT z = 0, which
implies that σT Sat(z) is radially unbounded, and hence H(w) is too. Indeed,
suppose ‖z‖ → ∞, then by σT z = 0 there must exist a component zi with zi →∞.

Let us denote Ω = {w | Ḣ(w(t)) = 0} = {z | sat(z ; 0, u+) ∈ span{1}}. Since
σT z = 0, we have sat(z ; 0, u+) = 0. Hence Ω = {z | z = 0n}. By using LaSalle’s
Invariance principle, the trajectories of system (5.24) will converge to the largest
invariant set in Ω, i.e., z → 0.

Hence, the states of system (5.35) with u− = 0 and u+ ∈ Rn+ achieve consensus.
From equation (5.35) we see that for every component xk we have ẋk(t) > 0.
Furthermore, if xk satisfies xk(t) = maxi∈I xi(t), then ẋk(t) = 0. Hence, by
continuity of x(t), all states converge to maxi∈I xi(0).
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5.4 The model with imprecise measurement of the
states: quantized consensus

The linear consensus protocol given as

ẋi(t) = −
∑
j∈Ni

αij(xi(t)− xj(t))

describes an idealized case in the sense that each agent has exact information
about itself and its neighbors. A natural question is that what would happen if the
information is imprecise for each agent. Specifically, in this section we consider
the case that the measurements are quantized.

5.4.1 Problem formulation

In this section we consider a multi-agent system, which is different from system
(5.2), in the sense that the nonlinearities are added on the measurement of the state
of each agent. More precisely, we consider the following dynamics for agent i

ẋi =

n∑
j=1

aij
(
qj(xj)− qi(xi)

)
(5.38)

where qi : R → R, i = 1, . . . , n are sign-preserving and monotone. For general
functions qi, the stability is beyond the scope of this thesis. Here we consider the
special case that all the functions qi are all identical to the quantizer q : R→ ∆Z
which is defined as

q(z) =
⌊ z

∆
+

1

2

⌋
∆. (5.39)

Note that the quantizer satisfies |q(z)− z| 6 ∆
2 . If x ∈ Rn, we denote with some

abuse of notation q(x) = (q(x1), . . . , q(xn)T . Hence the dynamics (5.38) can be
written in the vector form as

ẋ = −Lq(x). (5.40)

Since the right-hand side of (5.40) is discontinuous, we interpret the solution
of it in the Filippov sense, namely as any solution of the differential inclusion

ẋ(t) ∈ F [−Lq](x(t))

= −LF [q](x(t)),
(5.41)

where the second equality is implied by the matrix transformation rule in Proposi-
tion 2.16. Moreover, by Proposition 1 in [19], the Krasovskii and Filippov solutions
of (5.40) are equal.
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Figure 5.7: Diagram of the quantizer q(x) and the Filippov set-valued map F [q](x)
with ∆ = 1.

The contribution of this section is to extend the result in Section 3 of [20], which
is about the stability of system (5.41) defined on a undirected graph, to the digraph
case.

Let us denote D as

D = {x ∈ Rn | ∃k ∈ Z such that q(xi) = ∆k, i = 1, . . . , n}. (5.42)

By the definition of F [q](x), the closure of D can be written as

D̄ = {x ∈ RN | ∃k ∈ Z such that ∃ν ∈ F [q](x) satisfying ν = k∆1}. (5.43)

It is known that without the precise measurement of the states, exact consensus
can not be achieved. Instead, the notation of practical consensus will be employed.
We say that the state variables of the agents converge to practical consensus, if
x(t)→ D̄ as t→∞.

5.4.2 Stability analysis

In order to study the stability of system (5.41), we will use the functions V and W
as given in (5.11) as candidate Lyapunov functions.

Consider the digraph G with at least one root. Let us denote the subgraph
spanned by the roots as Gr, which is by Lemma 5.2 strongly connected. Further-
more, let nr = |Ir| where Ir is given as in (5.9), and denote the Laplacian of Gr as
Lr. Hence there exists a vector σ ∈ Rnr

+ such that σTLr = 0.

Theorem 5.15. If the digraph G satisfies Ir 6= ∅, then the trajectories of (5.41) converge
to D̄ asymptotically.
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Proof. Consider the candidate Lyapunov functions V and W as given in (5.11).
By Lemma 5.3, V and W are regular and Lipschitz continuous. Let x(t) be a
trajectory of (5.41). Similarly, as in the proof of Theorem 5.4, we only prove that
max L̃−LF [q]V (x(t)) < 0 for all t ∈ Ψ where R>0 \Ψ is a set of measure zero and
the set L̃−LF [q]V (x(t)) is nonempty for all t ∈ Ψ.

Define α(t) = {i ∈ I | xi(t) = V (x(t))}. From [23, Example 2.2.8], we have

∂V (x) = co{ej ∈ Rn | j ∈ α(t)}. (5.44)

For any a ∈ L̃−LF [q]V (x(t)) for which there exists a ν ∈ −LF [q](x(t)) such that
a = ν · ζ for all ζ ∈ ∂V (x), we have that the vector ν satisfies νi = νj for all
i, j ∈ α(t).

Next we show that max L̃−LF [q]V (x(t)) 6 0 by considering two possible cases
Ir * α(t) or Ir ⊆ α(t).

If Ir * α(t), then there exists i ∈ α(t) such that ∃j ∈ Ni satisfying xj < xi.
Hence q(xj) 6 q(xi) and νj 6 νi for any νj ∈ F [q](xj), νi ∈ F [q](xi). This
implies that the ith component of the Filippov set-valued map, i.e., −LiF [q](x),is
contained in R60, where Li is the ith row of L. Hence L̃−LF [q]V (x(t)) ⊆ R60

which implies that max L̃−LF [q]V (x(t)) 6 0.
If Ir ⊆ α(t), then for any a ∈ L̃−LF [q]V (x(t)) there exists ω ∈ −LF [q](x) such

that a = ωT ζ,∀ζ ∈ ∂V . Furthermore, ω = −Lν for some ν ∈ F [q]. If |Ir| = 1, i.e.,
there is only one root denoted as i, then ωi = 0. Hence L̃−LF [q]V (x(t)) = {0}. If
|Ir| > 1, we have that νi = νj , i, j ∈ Ir, which implies L̃−LF [q]V (x(t)) = {0} again.
Indeed, if not, {ωi : i ∈ Ir} has positive and negative components simultaneously.
This implies L̃−LF [q]V (x(t)) = ∅, which is a contradiction to the fact that t ∈ Ψ.
Hence L̃−LF [q]V (x(t)) = {0}.

By using a similar computation, we have that max L̃−LF [q]W (x(t)) 6 0.
So V andW are not increasing along the trajectories of the system (5.41). Hence

the trajectories are bounded. Therefore for any N ∈ R+, SN := {x ∈ Rn | ‖x‖∞ 6
N} is strongly invariant for (5.41).

By Theorem 2.22, we have that all solutions of (5.41) starting at SN converge to
the largest weakly invariant set Ω contained in

SN ∩ {x ∈ Rn : 0 ∈ L̃−LF [q]V (x)} ∩ {x ∈ Rn : 0 ∈ L̃−LF [q]W (x)}. (5.45)

At last, we analyze the set {x ∈ Rn : 0 ∈ L̃−LF [q]V (x)} in detail. We will show

that for any x ∈ {x ∈ Rn : 0 ∈ L̃−LF [q]V (x)}, there exists m ∈ Z such that for any
i ∈ Ir ∪ α(t) there exists νi ∈ F [q](xi) satisfying νi = m∆. Indeed, if Ir ⊂ α(t),
this is straightforward. If Ir * α(t), there exists m ∈ Z such that for any i ∈ α(t)

there exists νi ∈ F [q](xi) satisfying νi = m∆. Suppose there exists j ∈ Ir such that
νj 6 (m− 1)∆ for any νj ∈ F [q](xj), then there exists a vertex k on the directed
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path from the vertex j to i ∈ α(t) such that ∃νk ∈ F [q](xk) satisfying νk = m∆ and
−LkF [q](x(t)) 6 −∆. Hence xk is strictly decreasing, and after finite time period,
we have νk 6 (m − 1)∆ for any νk ∈ F [q](xk). Then we repeat this analysis for
the directed path from the vertex k to i. Eventually, there exists i ∈ α(t) such that
νi 6 (m− 1)∆ for any νi ∈ F [q](xi). This is a contradiction to the fact that i ∈ α(t).
Hence, for any x ∈ {x ∈ Rn : 0 ∈ L̃−LF [q]V (x)}, there exists m ∈ Z such that for
any i ∈ Ir ∪ α(t) there exists νi ∈ F [q](xi) satisfying νi = m∆.

A similar conclusion holds for the set {x ∈ Rn : 0 ∈ L̃−LF [q]W (x)}. Hence it is
straightforward to see that Ω = D̄.

5.5 Conclusions

This chapter studies consensus problems for multi-agent systems defined on
directed graphs where the consensus dynamics involves nonlinear and discon-
tinuous functions. Since the right-hand sides of the differential equations are
discontinuous, we interpret the solutions in the Filippov sense. We considered
two types of nonlinear consensus protocols, namely with and without precise
measurement of the states. For the first case, sufficient conditions, involving the
nonlinear functions and the topology of the underlying graph, for the agents to
converge to static consensus are provided. The result in Section 5.2.2 can be seen as
a modification and extension of the result in [26, 27]. For a special case, namely the
multi-agent system defined on a strongly connected graph with continuous func-
tions, we showed the convergence by using a port-Hamiltonian formulation. For
the second case, we considered specifically the quantized consensus and extended
the result in [20] about undirected graphs to directed graphs.
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Conclusions

6.1 Conclusions

In Chapter 3, a basic model of dynamical distribution networks with flow con-
straints has been discussed. In order to address the output agreement problem
of the vertices we propose a distributed PI controller which controls the flows
through the edges. The main result is that the manageability of the in/outflows
is a sufficient and necessary condition for asymptotic output agreement. This
result is alternatively expressed into an interior point condition for an equivalent
system without in/outflows. In this case the output agreement only depends on
the flow constraints and the graphical structure of the network captured by the
interior point condition. The stability proof of the closed-loop system is based
on the construction of Lyapunov functions and LaSalle’s Invariance principle.
By employing the notion of equilibrium independent passivity, the Lyapunov
function can be interpreted as the storage function of the network. By a modifi-
cation of the PI controller, under the additional assumption of convexity of the
Hamiltonian functions, it is shown how the outputs of the system can be driven to
any desirable vector in an admissible set instead of to consensus. By establishing a
relation between distribution networks with flow constraints and the monotropic
optimization problem [61], an equivalent expression of the interior point condition
is given from the viewpoint of optimization theory.

In Chapter 4, dynamical distribution networks with PI controllers on the edges
and state inequality constraints have been investigated. The control aim is to
design the flow constraints which regulate the flows through the edges such that
the asymptotic output agreement is achieved, while state constraints are satisfied
for all time. The design of flow constraints is given by an algorithm. Since the
right-hand side of the resulting closed-loop system is discontinuous, the proof of
stability is based on the use of Filippov solutions.

In Chapter 5, several general nonlinear consensus protocols have been dis-
cussed. These models are divided into two parts, namely with and without exact
measurement of the states. For the first type, sufficient conditions, involving the
nonlinear functions and the topology of the underlying graph, for the agents
to converge to consensus are provided. The result in Section 5.2.2 can be seen
as a modification and extension of the result in [26, 27]. For a special case, i.e.,
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the consensus protocol defined on a strongly connected graph with continuous
nonlinearities, we show the convergence by using a port-Hamiltonian formulation.
For the second type, we consider a special case, namely quantized consensus, and
extend the result in [20] on undirected graphs to directed ones. Notice that all the
nonlinear functions are allowed to be discontinuous, and hence we interpret the
solutions in the Filippov sense.

6.2 Future research and recommendations

For distribution networks:

1. It is of interest to extend the distribution network model considered in
this thesis to the case with time-varying in/outflows. In this case, an open
problem is how to design the distributed controller on the edges such that
asymptotic output agreement of the vertices is achieved. A centralized
continuous controller for this problem based on the internal model principle
was given in [54].

2. It is of importance to investigate the distribution network under time-
varying flow constraints, such as switching saturation levels, which includes
many practical situations.

3. The results of Chapter 4 can be extended in a straightforward way to the
case where the flows on the edges obey a priori constraints.

4. The extension of the results in Chapter 4 to general graphs containing circuits
is an interesting topic for future investigations. One obstacle is that when
the graph contains circuits, the execution of Algorithm 4.1 may involve an
infinite number of steps. In order to guarantee the continuity of φ∗, we need
the uniform convergence of φ` which is not straightforward.

For consensus protocols:

1. The problem formulation of Chapter 5 can be extended to allowing sliding
consensus in the problem of achieving consensus. For this extended
formulation, providing sufficient conditions on the nonlinearities is an open
problem. Note that all the counterexamples in Chapter 5 correspond to
sliding consensus. Clearly, sign-preservation is not enough, which already
can be seen from Example 5.3. Another issue is that in this case LaSalle’s
Invariance principle may not be useful, since it asks for a compact invariant
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set. However once there is sliding, boundedness of the trajectory is not
guaranteed.

2. The extension of the consensus protocol with quantization to arbitrary sign-
preserving nonlinear functions is under investigation.

3. For the node nonlinearity proposed in Section 5.2.2, the problem of finite-
time convergence to consensus is open.

4. Higher-order consensus protocols are also commonly used in practice, e.g.,
acceleration control in formation control. It is of importance, both for theoret-
ical and practical reasons, to provide a uniform framework for the stability
of higher-order nonlinear consensus protocols.
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Appendix: Complete analysis of Example 5.3

In this section, we provide a complete analysis of the system

ẋ = sign(−Lx), x ∈ R3

=: f(x)
(A.1)

where

L =

 2 −1 −1

−1 2 −1

−1 −1 2

 . (A.2)

as already given as Example 5.3 in Chapter 5.
Notice that the right-hand side of the dynamical system (A.1) is piece-wise

continuous. Indeed, it is discontinuous at every x belonging to one of the three
planes P1 = {x | x2 +x3 = 2x1}, P2 = {x | x1 +x3 = 2x2} and P3 = {x | x1 +x2 =

2x3}. These planes divide R3 into six parts, denote by D1, . . . ,D6 (Figure A.1).

Figure A.1: The three planes on which the right-hand side of (A.1) is discontinuous.

Denote the restriction of f to Di as fDi and the continuous extension of fDi to
the closure Di as f|Di

. Suppose the regions Di and Dj are adjacent, then at any
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(a)

(b)

Figure A.2: The vector field defined by sign(−Lx) from two different angles.

x ∈ (Di ∩ Dj) \ {1}, the vector f|Di
(x) points into Dj while f|Dj

(x) points into Di.
This can be seen from description given in Figure A.2. Hence the trajectories of
(A.1) will follow the sliding consensus once it reach one of P1,P2 and P3.

The evolution of the trajectories of (A.1) with initial condition x0 = [0, 6, 9]T is
given in Figure A.3.
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Figure A.3: For initial condition x0 = [0, 6, 9]T , the Filippov solution is unique
before it reaches span{1}. The boundaries of the green area have slope

√
3

3 and
−
√

3
3 respectively. In this example, the trajectory reaches span{1} at t = 4.5. For

any time t > 4.5, the trajectories can be anywhere in the green area with derivatives
(if existing) belonging to [−

√
3

3 ,
√

3
3 ]. This is in contrast to the simulation given in

[26].

Notice that the green area in Figure A.3 does not correspond to simulation of
differential equations like in a standard ode package in Matlab. In fact, standard
ode packages are not able to handle discontinuous dynamical systems with non-
unique Filippov solutions. A special package like FilippovSim.zip 1 can be useful.
The simulation of Filippov solutions is itself a challenging topic, see e.g.[30, 56].

1available at http://www.staff.science.uu.nl/~kouzn101/MiniFilippov/
FilippovP1.html

http://www.staff.science.uu.nl/~kouzn101/MiniFilippov/FilippovP1.html
http://www.staff.science.uu.nl/~kouzn101/MiniFilippov/FilippovP1.html
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Summary

Dynamical distribution networks and nonlinear multi-agent systems are two main
topics of this thesis. We use tools from port-Hamiltonian systems, discontinuous
dynamical systems, passivity, optimization, and graph theory. The problems
studied in this thesis are listed as follows.

For dynamical distribution networks, we consider the output agreement prob-
lem of the vertices with flow and state constraints.

Firstly, we study a basic model for the dynamics of a distribution network
defined on a directed graph without any constraints. On each vertex, we assign a
nonlinear integrator of which the state variable is controlled by the flows through
the edges. Besides, some of the vertices serve as terminals where unknown but
constant in/outflows may enter or leave the network in such a way that the total
sum of inflows and outflows is equal to zero. With any such type of in/outflows,
we prove that a nonlinear PI controller defined on the edges, which controls the
flows, can achieve output agreement among the vertices. This can be proved by
making use of the port-Hamiltonian formulation of the closed-loop system.

Secondly, the model of the dynamical distribution network is extended to
the more practically meaningful case that the flows on the edges are constrained.
Based on the constraint intervals and topology of the network, we can define the
notion of manageable in/outflows which coincides with Assumption 1 in [12]. We
prove that with such manageable in/outflows and flow constraints on the edges,
the PI controller providing the flows through the edges can still achieve output
agreement of the vertices.

As a variation of the flow constraint problem, we study the case that the
in/outflows are zero, in which instance the output agreement property of the
vertices depends on a property of the constraint intervals. We formulate this
property as an interior point condition and prove that asymptotic output agree-
ment of the vertices is achieved if and only if the constraint intervals satisfy the
interior point condition. The proof is based on a Lyapunov function and LaSalle’s
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Invariance principle. Several extensions and applications of the case with zero
in/outflows considered in this thesis are given as follows. First, the stability of
closed-loop system with constant flow constraints can be interpreted from the
equilibrium-independent passivity point of view. Hence the Lyapunov function
also can be interpreted as a storage function. Secondly, by using monotropic
optimization theory we formulate an equivalent expression of the interior point
condition. Thirdly, under certain conditions, the PI controller can be modified such
that the output of the vertices can converge to an arbitrary feasible vector instead
of to consensus. Finally, for any constraint intervals of which the intersection
contains an open interval, the asymptotic output agreement is achieved if and
only if the underlying directed graph is weakly connected and balanced.

The last problem about the dynamical distribution network is the case with
state constraints. We provide a protocol which gives a state-based constraint for
the flow. With such state-based constraints, we prove that the PI controller can
achieve output agreement while the states do not violate the state constraints. The
analysis is conducted on an acyclic graph, and this conclusion holds for all the
Filippov trajectories.

In the last part of this thesis, we deal with nonlinear multi-agent systems where
we focus on general nonlinear first-order consensus protocols. All the nonlinear
functions are assumed to be sign-preserving and piecewise continuous, which
includes many typical nonlinear functions used in practice, e.g., saturation, sign

and quantization. The solutions of the models in this part are understood in the
Filippov sense.

Firstly, the state of each agent is driven towards the direction which is given
by the value of a nonlinear function of the weighted average of the states of
its neighbors and itself. This model is called node nonlinearity. We provide a
sufficient condition with respect to the nonlinear function to guarantee that all
the solutions converge to constant consensus. The underlying directed graph is
assumed to contain a directed spanning tree.

Secondly, in the linear first-order consensus protocol, the state of each agent
is driven toward the direction which is given by the weighted summation of
difference between the states of its neighbors and itself. In the analogous nonlinear
model, we consider the case that the state difference is measured by an arbitrary
sign-preserving nonlinear function. This model is called edge nonlinearity. In
this case, we only provide sufficient conditions with respect to the nonlinear
functions such that asymptotic consensus is achieved when the underlying graph
is undirected. For the combined case, i.e., node and edge nonlinearity, sufficient
conditions for constant consensus are also provided.

The last model of nonlinear multi-agent systems we consider in this thesis
is the quantized consensus protocol. We extend the result in [29] on undirected
graph case to directed graphs containing a directed spanning tree.



Samenvatting

Dynamische distributienetwerken en niet-lineaire multi-agentsystemen zijn twee
hoofdonderwerpen van dit proefschrift. We gebruiken instrumenten van poort-
Hamiltonse systemen, discontinue dynamische systemen, passiviteit, optimalisatie
en grafentheorie. De volgende problemen worden in dit proefschrift behandeld.

Voor dynamische distributienetwerken beschouwen we het probleem van
output consensus met beperkingen op de stroming en op de toestand.

We beginnen met het bestuderen van een basismodel voor de dynamica van
een distributienetwerk op een gerichte graaf, zonder enige beperkingen. Op elke
knoop van de graaf wijzen we een lineaire integrator toe, waarvan de toestands-
variabele wordt geregeld door de stroming door de takken. Daarnaast dienen
sommige punten als aansluitpunten, waar een onbekende, maar constante, stroom
het netwerk kan verlaten of kan instromen, op een zodanige manier dat de som
van de in- en uitgaande stroom gelijk is aan nul. We bewijzen dat een niet-lineaire
PI-regelaar, die gedefinieerd is op de takken van de graaf en de stroming regelt,
output-consensus kan bewerkstelligen. Dit kan bewezen worden door gebruik te
maken van de poort-Hamiltonse formulering van het gesloten-lus systeem.

Daarna breiden we het model van het dynamische distributienetwerk uit naar
een praktischer geval, waarin de stroming door de takken van de graaf beperkt
is. Gebaseerd op de berperkingsintervallen en de topologie van het netwerk,
kunnen we een handelbare in- en uitgaande stroom definiëren, wat samenvalt met
Aanname 1 in [12]. We bewijzen dat met deze handelbare in- en uitgaande stroom
en stromingsbeperkingen op de takken, de PI-regelaar op de takken nog steeds
output-consensus kan bereiken.

Als variatie op de stromingsbeperkingen, bestuderen we het geval waarbij de
in- en uitgaande stroom nul is. In dit geval hangt de de output-consensus af van
een eigenschap van de beperkingsintervallen: het hebben van een gemeenschap-
pelijk inwendig punt. We bewijzen dat asymptotische output-consensus bereikt
wordt dan en slechts dan als de beperkingsintervallen aan deze voorwaarde vol-
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doen. Het bewijs is gebaseerd op een Lyapunov functie en het invariantieprincipe
van LaSalle. Verscheidende uitbreidingen en toepassingen van het geval zonder in-
en uitstroom worden in dit proefschrift behandeld. Ten eerste kan de stabiliteit van
het gesloten-lus systeem met constante stomingsbeperkingen bekeken worden
vanuit het perspectief van evenwichtsonafhankelijke passiviteit; de Lyapunov
functie kan als opslag worden geïnterpreteerd. Ten tweede formuleren we een
equivalente uitdrukking van de voorwaarde van het hebben van een gemeen-
schappelijk inwendig punt, met behulp van monotropische optimalisatietheorie.
Ten derde kan, onder bepaalde voorwaarden, de PI-regelaar zo worden aangepast
dat de output van de knopen convergeert naar een willekeurige vector, in plaats
van naar consensus. Tenslotte, indien de doorsnijding van de beperkingsinterval-
len een open interval bevat, wordt output-consensus bereikt dan en slechts dan
als de onderliggende gerichte graaf zwak samenhangend en gebalanceerd is.

Het laatste probleem dat we behandelen met betrekking tot dynamische distri-
butienetwerken is het geval van beperkingen op de toestand. We presenteren een
protocol dat een toestandsgebaseerde beperking voor de stroming geeft. We bewij-
zen dat de PI-regelaar dan output-consensus kan bereiken, terwijl de toestanden
voldoen aan de beperkingen. De analyse is uitgevoerd op een acyclische graaf, en
de conclusie geldt voor alle Filippov oplossingen.

In de rest van dit proefschrift bestuderen we niet-lineaire multi-agentsystemen,
waarbij we ons richten op de eerste-orde consensus protocollen. We nemen aan dat
alle niet-lineaire functies tekenbehoudend en stuksgewijs lineair zijn. Dit behelst
onder andere veel typische niet-lineare functies die in de praktijk gebruikt worden,
zoals verzadiging, de signum-functie en kwantisering. In dit deel beschouwen we
Filippov oplossingen.

Eerst bestuderen we het geval waarin de toestand van iedere agent afhangt
van een niet-lineare functie van een gewogen gemiddelde van de toestanden
van zijn buren en zichzelf. Dit model noemen we niet-lineair in de knopen. We
geven een voldoende voorwaarde met betrekking tot de niet-lineaire functie om
te garanderen dat alle oplossingen naar constante consensus convergeren. We
nemen aan dat de onderliggende gerichte graaf een gerichte opspannende boom
bevat.

Als tweede beschouwen we het geval waarin de toestand van elke agent af-
hangt van een gewogen som van toestandsverschillen tussen zichzelf en zijn
buren, waarbij het toestandsverschil wordt gemeten door een willekeurig teken-
behoudende, niet-lineare functie. Dit model noemen we niet-lineair in de takken.
We geven voldoende voorwaarden met betrekking tot de niet-lineaire functies
voor de asysmptotische stabiliteit van constante consensus voor het geval dat de
onderliggende graaf ongericht is. Voor het geval dat het model niet-lineair is in
zowel de knopen als in de takken geven we eveneens voldoende voorwaarden
voor constante consensus.
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Het laatste model van niet-lineaire multi-agentsystemen dat we in dit proef-
schrift behandelen is het gekwantificeerde consensusprotocol. We breiden het
resultaat voor ongerichte grafen in [29] uit naar gerichte grafen die een gerichte
opspannende boom bevatten.
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