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Abstract Training in meditation has been shown to affect
functioning of several attentional subsystems, most promi-
nently conflict monitoring, and to some extent orienting.
These previous findings described the effects of cueing
and manipulating stimulus congruency on response times
and accuracies. However, changes in accuracy and response
times can arise from several factors. Computational pro-
cess models can be used to distinguish different factors
underlying changes in accuracy and response times. When
decomposed by means of the drift diffusion model, a gen-
eral process model of decision making that has been widely
used, both the congruency and cueing effects, is subserved
by a change in decision thresholds. Meditators showed a
modest overall increase in their decision threshold, which
may reflect an ability to wait longer and collect more
information before responding.

Keywords Meditation · Computational models ·
Attention · Decision making · Drift diffusion model

Introduction

Given the emphasis on attention in meditation instructions,
which usually start with “pay attention to your breath”, it
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is not surprising that many of the early scientific studies
of meditation focused on attention (Jha et al. 2007; Slagter
et al. 2007; Tang et al. 2007). Those articles showed that the
attentional blink was reduced in expert meditators relative
to novice controls (Slagter et al. 2007), and in a follow-
up study, van Vugt and Slagter (2013) showed that this
attentional blink reduction was related to the type of medita-
tion that was practiced. Other studies showed after intensive
meditation training, attention can be sustained for longer
periods of time (MacLean et al. 2010) and becomes less
variable (Lutz et al. 2009).

In addition, Jha et al. (2007) showed that while begin-
ning meditators improved in their ability to orient their
attention to relevant locations in space after a mindfulness
course, more experienced meditators were better at dealing
with conflicting information, and after a retreat additionally
improved in their ability to orient themselves to informa-
tion occurring at a specific moment in time. The finding
of improved orienting was replicated in a later study by
van den Hurk et al. (2010) in a group of meditators from
a different tradition. Another study showed that a specific
form of meditation—Integrated Body Mind Training—was
associated with improvements in conflict monitoring (Tang
et al. 2007). Similarly, conflict monitoring was improved
for meditation practitioners, when compared to a relaxation
control group (Ainsworth et al. 2013).

Attentional functioning in many previous studies was
assessed with the Attention Network Task (ANT; see Fig. 1),
a task in which participants have to judge whether a
centrally-presented arrow is pointing left- or right-ward
(Fan et al. 2002). This center arrow can point either in
the same direction as the flankers (no conflicting stimulus
information) or in the opposite direction (conflicting stim-
ulus information). Preparedness is manipulated with cues.
A cue before the main stimulus alerts the participant to

http://crossmark.crossref.org/dialog/?doi=10.1007/s12671-015-0464-x&domain=pdf
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Fig. 1 Attentional network task
(ANT) paradigm. Participants
are asked to respond to the
direction of the central arrow. a
Time line for a trial. b Cueing
conditions, manipulating the
ability to prepare for upcoming
information. c Congruency
conditions, manipulating the
ability to deal with conflicting
information. Adapted from van
den Hurk et al. (2010)
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an upcoming flanker stimulus. Cueing the location on the
screen where the upcoming stimulus is likely to be pre-
sented gives spatial information. By comparing conditions
with different types of cues or information, the orienting,
alerting, and conflict monitoring components of attention
are assessed.

Computational modeling could help to distinguish
whether the response time changes underlying these atten-
tional components are related to changes in speed-accuracy
trade-off, bias, or ability to extract information from a stim-
ulus (Voss et al. 2013; Wagenmakers et al. 2007; White
et al. 2010). The drift diffusion model (Ratcliff 1978) can
help to make this distinction. The drift diffusion model
(DDM) is a stochastic differential equation that describes
a participant’s responses as arising from a noisy evidence
accumulation process. From the start of each trial, evi-
dence drifts towards one of the two decision thresholds,
corresponding to the response options (in the ANT “left”
and “right”). When the evidence crosses a threshold, the
corresponding decision is made. The model’s predicted
response time is the time needed to cross the threshold plus
some fixed perceptual and motor latencies (“non-decision
time”).

The model produces a distribution of response times
and accuracies that are compared to a participant’s actual
response times and accuracies. Search algorithms are then
used to find the model parameters that create the best
match between the predicted and observed response times
and accuracies. These parameters can be interpreted as the
causes of each individual’s behavior. The first parameter
is the speed with which the evidence accumulation moves
towards a threshold (i.e., the ability to extract information
from the stimulus) is the drift rate. The height of the deci-
sion threshold captures response caution. A starting point
captures decision biases; by starting evidence accumulation
closer to the preferred option, a bias is modeled. Fluctua-
tions in sustained attention are captured by variability in the

speed of evidence accumulation (“drift variability”); vari-
ability in the starting point allows the model to predict fast
guesses, while variability in non-decision time allows the
model to predict the leading edge of the response time dis-
tribution (Smith and Ratcliff 2014). In a previous study
(van Vugt and Jha 2011), the parameter that changed after
intensive meditation practice was the drift rate, thought to
reflect the quality of the evidence on which is decided. An
open question is whether that previously reported increase
in drift rate generalizes to the ANT, or whether alternatively,
the observed effects changes in ANT scores (van den Hurk
et al. 2010; Jha et al. 2007) are associated with a different
mechanism.

There are several previous applications of the DDM to
ANT-like tasks, focusing on the comparison between con-
gruent and incongruent flankers (one of the manipulations
in the ANT). Some previous studies showed that incon-
gruent stimuli were associated with a lower drift rate than
congruent stimuli (Dillon et al. 2015; Pe et al. 2013; White
et al. 2011), but in none of these studies the threshold was
allowed to account for congruency effects. In another study
where the decision threshold was allowed to vary between
conditions (King et al. 2012), this parameter accounted for
congruency effects. The authors suggested that this reflected
the preparedness for exerting cognitive control, such that a
higher decision threshold reflected more cognitive control
and reduced impulsiveness.

The aims of this paper are two-fold. First, we asked
what model parameters capture the effects of cue type and
congruency manipulations, respectively, in the ANT task.
Since congruency reflects the ability to handle conflicting
information, we hypothesized that the decision threshold
(caution in responding) increases for incongruent relative to
congruent trials (King et al. 2012). Cues, on the other hand,
can help to improve the processing of the information that
is presented and therefore could be reflected in increases in
the drift rate. Second, we asked what parameters (if any)
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differed between meditators and controls. Based on our pre-
vious experiments, we expected that the drift rate, reflecting
the quality of attention, would be higher for meditators.

Method

Participants In this paper, we combine two datasets. One
of these (Experiment 1) has been reported in a previous
publication (van den Hurk et al. 2010). Experiment 1 has
a purely cross-sectional design, while experiment 2 has a
combined cross-sectional/longitudinal design. In both cases,
the experimental and control groups are matched one-by-
one on education, age, and gender. For most of the analyses,
we use only the first test (pre-intervention) of experiment
2. In experiment 1, 20 meditators (mean age 48.1 years,
SD = 9.0, range 31–60 years; nine female) and 20 con-
trols (mean age 48.1 years, SD = 9.1, range 30–63; nine
female) were recruited. Meditators had on average 14.5-year
experience (SD = 11.1; range 0.25–35 years) and practiced
between 60 and 420 min per week. They practiced both
concentration meditation (maintaining focus on the med-
itation object) and insight meditation (primarily training
meta-awareness).

For experiment 2, 24 meditators participated in a Vipas-
sana retreat. A retreat is a period of secluded, continuous
and intensive group practice of meditation. The retreat
group had a mean age of 44.9 years (SD = 11.0, range 28–
62 years; seven male) and the control group a mean age
of 44.8 years (SD = 10.9, range 28–63 years; seven male).
All subjects were Caucasian. All but one participant in the
retreat group had previous meditation experience, which
ranged from several months to 27 years.

Across the two experiments, none of the participants
had any known psychological or neurological deficits. They
all had normal or corrected-to-normal vision. A signed
informed consent form was obtained from each participant
before the experiment. The study was conducted according
to the principles expressed in the Declaration of Helsinki.

Procedure In experiment 1, the ANT was administered
once. In experiment 2, the ANT was administered twice (the
day when the retreat began and the day when the retreat
finished). In this study, the retreats had a duration vary-
ing from 8–11 days. Meditation instructions were similar
across retreats, and all retreats were in the Vipassana tradi-
tion. As such, mindfulness meditation was practiced, which
is composed of both concentration meditation (samatha) and
insight (Vipassana) meditation. Whereas during samatha
meditation, the practitioner is trained to maintain focus on
an object for a (theoretically) unlimited period of time, dur-
ing Vipassana meditation a specific type of meta-awareness

is trained (Teasdale et al. 1995). Retreats were held in med-
itation centers in the Netherlands and led by teachers with
extensive experience in teaching and practicing mindfulness
meditation. The control group was tested twice on the ANT
with 8–11 days in-between. During this time, the control
participants went on with their regular lives.

Measures Participants were seated in front of a 19-inch
computer screen at a distance of 65 cm. Stimuli were pre-
sented with Presentation software (Version 10.1, Neurobe-
havioral Systems, Albany, USA). Participants were asked to
respond as quickly and accurately as possible to the direc-
tion of a central arrow presented with four flanking stimuli
(Fig. 1). The flanking stimuli could be either arrows, point-
ing in the same or opposite direction of the central arrow or
horizontal bars. Participants indicated their responses with
mouse-clicks with their left- and right thumbs.

To manipulate the ability to deal with conflicting infor-
mation, congruency was varied. Matching flankers and
central arrows made up the congruent condition, while mis-
matching flankers and central arrows made up the incongru-
ent condition. The neutral condition consisted of flanking
stripes. To manipulate the ability to prepare for upcoming
information, cues were used. When one asterisk (“centre
cue”) or two asterisks (“double cue”) were presented in
the center of the screen preceding the stimulus display, this
gave the participant information about the timing of the
upcoming stimulus display (which was presented above or
below fixation with equal probability). The center cue gives
slightly less information than the double cue because it
directly replaces the fixation cross making it more difficult
to make out. A cue could also be presented at the loca-
tion of the to-be-presented stimulus display, adding spatial
information (“time-space cue”).

The complete task consisted of 24 training trials, fol-
lowed by three test blocks with 94 trials each. Participants
were encouraged to take a break after each block. Each trial
started with a variable (400–1600 ms) interval during which
a fixation cross was presented. This was followed by a cue
(if applicable) presented by 100 ms, followed by the tar-
get stimulus after an interval of 400 ms. The target was
presented for 1700 ms or until the participant responded.
The response-to-stimulus interval was variable subject to
the constraint that the trial duration was 3500 ms. All trial
types were presented in random order within each block.

Data Analysis Data were combined between the two
experiments, where we only used the pre-retreat data from
experiment 2 to make it comparable to experiment 1.
We analyzed the data with linear-mixed effects models
(Bates et al. 2014). Linear-mixed effect models are able
to deal with unbalanced data and are robust to violations
of independence. Post hoc t tests were performed with
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Table 1 Model comparison investigating the effect of stimulus
congruency

model Experiment 1 Experiment 2

# of participants # of participants

vary a, η, v 23 26

vary a, η 9 10

vary a, η, v, Ter 0 0

vary a, v, Ter 8 12

total 40 48

The table indicates the number of participants for which each model
was the best model with the lowest Bayesian Information Criterion. a
= decision threshold; v= drift rate; Ter= non-decision time; η = drift
variability

R’s lmerTests package (Kuznetsova et al. 2015) with a
Sattarthwaite approximation for the degrees of freedom.

The DDM (Ratcliff 1978) was fitted in Matlab by means
of the DMA toolbox (VandeKerckhove and Tuerlinckx
2007, 2008). Fitting involves simulating the 5 quantiles (0.1,
0.3, 0.5, 0.7, and 0.9) of the correct and error response
time distributions for all conditions. The model parameters
that best reproduce these quantiles are found using sim-
plex minimization. Four different models were tried, and
the best-fitting model was determined by means of the
Bayesian Information Criterion. This best-fitting model was
then used to draw conclusions about the involvement of
model parameters in attentional cueing.

Results

Wewill first show how attentional cueing effects manifest in
DDMmodel parameters. Then, we will examine how that is
affected by the practice of meditation. All analyses are done
on the combined data of experiment 1 and experiment 2.

Model Parameters Capturing Stimulus Congruency

Participants performed worse and more slowly on the in-
congruent (accuracy; M = 0.94, SE = 0.01 and response
time; M = 661, SE = 8 ms) relative to the other
trials (accuracy; M = 0.99, SE = 0 and response time;
M = 550, SE = 4 ms; all post hoc t statistics comparing to
the incongruent condition > 9.6, p < 0.001). These con-
clusions were substantiated by linear-mixed effects models
(main effect of condition on accuracy, F(2, 162.8) = 49.0,
p < 0.001, and RT, F(2, 148.4) = 589.1, p < 0.001).

To investigate which model parameter captures stimu-
lus congruency, we compared a set of models in which
different parameters varied across congruency conditions.
As shown in Table 1, of the models tried, the best model
(i.e., lowest Bayesian Information Criterion, BIC) is one
in which the decision threshold, drift rate, and variability
in drift rate are all allowed to vary between conditions.
There is a main effect of condition on decision threshold
(F(2, 150.5) = 33.4, p < 0.001; Fig. 2). This parame-
ter is significantly (post hoc t > 6, p < 0.001) larger
for the incongruent (M = 0.27, SE = 0.01) than for the
other two conditions (M = 0.23, SE = 0.01). The drift
rate, reflecting the amount of evidence that can be extracted
from the stimulus, also shows a main effect of condition
(F(2, 155.2) = 9.5, p < 0.001). It is significantly (post
hoc t > 3.3, p < 0.001) lower for the incongruent con-
dition (M = 0.58, SE = 0.04) than for the other two
conditions (M = 0.79, SE = 0.04). The same is true
for the drift variability, which also shows a main effect of
condition (F(2158.1) = 4.4, p < 0.05). Specifically, it
is significantly (post hoc t > 2.0, p < 0.05) smaller for
the (M = 0.05, SE = 0.01) than for the other conditions
(M = 0.07, SE = 0.01). These results demonstrate that
stimulus incongruency is associated with a decrease in drift
rate, its variability and an increase in response caution
relative to congruency.
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Fig. 2 Congruency affects decision thresholds (a), drift rates (b), and drift variability (c). Incongruent stimuli are associated with increased
decision thresholds, decreased drift rates, and drift variability. Error bars reflect within-subject standard error of the mean
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Table 2 Effects of cues on behavior

accuracy (SE) RT (ms) (SE)

no cue 0.96 0.005 638 5

center cue 0.98 0.002 583 5

double cue 0.98 0.002 575 5

time-space cue 0.98 0.002 555 5

Accuracy improves and response time becomes faster when cues
provide more information

Model Parameters Capturing Cueing Effects

Cues affected behavior in the expected ways (Table 2).
There was a main effect of cue type on accuracy
(F(3, 305.0) = 12.5, p < 0.001). Overall, the more infor-
mation the cues gave, the more accuracy improved, as all
cues were significantly different from the “no cue” condi-
tion (post hoc t test, all t > 4.4, p < 0.001). Response time
also showed a main effect of cue type (F(3, 304.7) = 21.7,
p < 0.001). Post hoc t tests indicated that the no-cue con-
dition led to significantly (all t > 4.2, p < 0.001) slower
(M = 647, SE = 7 ms) response times than all other
conditions (M = 576, SE = 4 ms). Among the cues, the
time-space cue led to significantly (all t > 2.9, p < 0.005)
faster response times than the other cues.

In contrast to congruency, there is no prior literature on
what DDM parameters are sensitive to cueing effects. A
model comparison revealed that the most successful model
is one in which decision threshold, drift, and drift variability
vary across conditions (Table 3). All three parameters var-
ied significantly across conditions. Figure 3a shows that the
main effect of cue type on decision threshold (F(3, 141) =
69.9, p < 0.001) reflects a threshold that decreases
with more cue information. The smallest decision thresh-
old occurs for time-space cues (M = 0.2, SE = 0.01),
which were different all other conditions (post hoc t > 3.54,
p < 0.001). The highest decision threshold was found for
the no-cue condition (M = 0.28, SE = 0.01), which
was larger than all other conditions (post hoc t > 6.62,

Table 3 Model comparison investigating the effect of cueing

model Experiment 1 Experiment 2

# of participants # of participants

vary a, η, v 22 25

vary a, η 18 15

vary a, η, v, Ter 0 0

vary a, v, Ter 0 8

This table lists the number of participants for which each model is the
best model (lowest BIC). a = decision threshold; v = drift rate; Ter =
non-decision time; η = drift variability
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Fig. 3 Cues affected decision threshold (a) and drift variability (b).
Decision thresholds decreased and drift variability increased with the
amount of information that cues provided. Error bars reflect standard
error of the mean

p < 0.001). This indicates that participants adjust their
decision threshold upon seeing a cue. The time-space cue
was also associated with a trend towards a main effect of
drift variability (F(3, 303.6) = 2.5, p < 0.1). Specifically,
drift variability was significantly (post hoc t > 2.2, p <

0.05) larger for the time-space cue (M = 0.08, SE = 0.01)
than for the other cue types (M = 0.06, SE = 0; Fig. 3b).

Differences in Model Parameters Between Meditators
and Controls

We then investigated how DDM model parameters dif-
fered between meditators and controls (Table 4). There was
a significant main effect of group on decision threshold
(F(1, 88.9) = 5.8, p < 0.05), indicating that the deci-
sion threshold was higher for meditators (M = 0.25,
SE = 0.01) than for controls (M = 0.2, SE = 0.01).
The significant interaction between congruency and group
(F(2, 151.9) = 5.0, p < 0.01) indicated that this thresh-
old increase was particularly pronounced for the incongru-
ent condition (post hoc t tests indicated the incongruent

Table 4 Statistics (F value, p value from the linear-mixed effects
model) for the effect of meditation on model parameters

parameter group condition × group interaction

congruency manipulation

a F(1, 88.9) = 5.8, p < 0.05 F(2, 151.9) = 5.0, p < 0.01

v n.s. n.s.

η n.s. n.s.

cue manipulation

a F(1, 86.0) = 3.2, p = 0.08 n.s.

v n.s. n.s.

η n.s. n.s.

a is the decision threshold; v is the drift rate; η is the drift variability.
n.s. is the not significant
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Fig. 4 Effects of meditation on the decision threshold parameter.
Meditators have a larger decision threshold and adapt it more to the
congruency of the stimulus. Error bars reflect standard error of the
mean

condition was different from all others; t > 6.3, p < 0.001;
Fig. 4). In contrast, there was no difference between med-
itators and controls as a function of cueing. None of the
other parameters differed significantly between meditators
and controls.

Finally, we repeated the model fitting separately for the
tests before and after the retreat (only experiment 2). We did
not observe any change in the decision threshold or any of
the other parameters as a function of the retreat (all F for
interaction between group and time < 1.16).

Discussion

We set out to describe the underlying decision processes in
an attentional cueing task and how these differed between
meditators and controls. The manipulation of conflicting
information was associated with an increase in the deci-
sion threshold (reflecting readiness for cognitive control)
and a decrease in drift rate (quality of information) and
its variability (sustained attention). For cueing, the more
information the cues gave, the lower the decision threshold,
higher the drift rate, and higher drift variability.

This mapping of task manipulations on DDM parame-
ters partly concurs with previous studies. Some previous
studies have suggested that drift rate is the DDM parame-
ter that reflects stimulus congruency (Dillon et al. 2015; Pe
et al. 2013; White et al. 2011). However, in those studies,
the decision threshold was not allowed to vary with stimulus
congruency, and hence, it could not predict stimulus con-
gruency. Our results are more in agreement with King et al.
(2012), who allowed their decision threshold parameter to

vary with congruency. The increase in decision threshold
for incongruent stimuli is thought to reflect preparedness to
exert cognitive control. There have been no previous stud-
ies of the effect of cue type on DDM parameters. Here,
we showed that decision threshold decreased and drift rate
increased for more informative cues. This is in agreement
with the idea that cues increase the amount of information
that a participant can extract from the stimulus.

Meditation practice only has a modest effect on DDM
parameters: we observed a higher decision threshold for the
meditators relative to the controls. The difference in deci-
sion threshold was particularly pronounced for incongruent
information. There were no effects of meditation practice
on processing cueing information. Short-term meditation
retreats did not affect any model parameters.

Our findings extend previous studies of the ANT that
showed that meditation improved orienting scores and con-
flict monitoring scores (Ainsworth et al. 2013; van den Hurk
et al. 2010; Jha et al. 2007; Tang et al. 2007). Viewed
through the lens of the DDM, our results indicate that
participants improved their ability to deal with conflicting
information by increasing their level of response caution
specifically for the most difficult condition.

How could meditation practice have affected the deci-
sion threshold? According to one view, meditation practice
consists of four phases: a focus phase, a mind-wandering
phase in which one becomes distracted, an awareness
phase in which one becomes aware of the distraction,
and a shifting phase in which one reorients attention to
the object of focus (Hasenkamp et al. 2012). In partic-
ular, the skill of awareness with which people observe
their own performance while at the same time not becom-
ing too entangled in it is being trained in meditation
(Lutz et al. 2008; Vago and Silbersweig 2012; van Vugt
2015). In fact, it has been suggested that meditation train-
ing involves the “continuous monitoring and adjustment of
one’s attentional focus” (Malinowski 2013). This monitor-
ing capability may allow them to observe their behavior
more precisely, adjusting to the level of conflict present
in the stimuli, as we observed in the modulation of deci-
sion thresholds. It is also in agreement with previous
findings that meditation reduces impulsivity (Hendrickson
and Rasmussen 2013; Murphy and MacKillop 2012; Peters
et al. 2011). The ability to set the decision threshold more
precisely may have been further improved by a reduction in
the amount of “mental noise” that tends to be present (Lutz
et al. 2009; van Vugt and Jha 2011), allowing for better
monitoring of the desired level of control.

Decision threshold adaptations have previously been
observed in the context of ADHD, anxiety, and aging.
Mulder et al. (2010) showed that participants with ADHD
had more difficulty in adjusting their decision threshold
in response to changes in the required speed-accuracy
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trade-off. This suggests that meditation—if it helps to fine-
tune decision threshold setting—may be beneficial to this
population. White et al. (2010) showed that high-anxiety
participants have also been shown to increase their decision
threshold after an error, whereas controls did not. Ratcliff
et al. (2006) demonstrated that for people who were aging,
the responses slowed due to increases in decision thresh-
olds, reflecting response conservativeness, in combination
with non-decision time.

In a previous study of meditators, van Vugt and Jha
(2011) observed that engaging in a meditation retreat
resulted in an increase in drift rate and decrease in decision
threshold in a visual recognition memory task. Although
this latter finding of a meditation-induced change in drift
rate may appear to contradict the current results, it should
be noted that DDM parameters may adaptively change in
different tasks. In a visual recognition memory task with
difficult-to-distinguish stimuli, most room for improvement
will lie in the ability to distinguish signals and noise. In
contrast, in a flanker task, stimuli are already easy to dis-
tinguish, but performance is determined by the ability to
optimally trade off speed and accuracy correctly, and this is
where there is room for improvement. Previous work (van
den Hurk et al. 2010) suggested that meditators were better
able to extract information from stimuli because they were
more accurate than controls with the same response time.
However, that could also be interpreted as the increase in
response caution that we observe.

The effects of meditation on DDM parameters were
modest. One reason for such small effects is the cross-
sectional design. If individual differences are large, then
cross-sectional studies are very insensitive. In addition, in
cross-sectional designs, any observed effects could be due
to pre-existing differences between the groups unrelated to
their meditation practice. Yet, it should be mentioned that
our dataset was matched—every participant in the medita-
tor group was matched to a specific individual in the control
group on age, education, and gender. We did not observe
effects of a short meditation retreat on model parameters.
Yet, even with relatively modest differences between groups
in task performance, there could still be differences in the
strategy that participants use to perform the task. For exam-
ple, participants could prepare more for incoming stimuli,
such that cues have less of an effect. These strategy dif-
ferences could potentially be distinguished by means of
neural activity (Formisano and Goebel 2003; O’Doherty
et al. 2007). Future studies should employ such neuro-
science measures together with longer-duration longitudinal
designs to further explore the effects of meditation practice
on the attention system.

In short, we have shown that both cueing and congruency
manipulations in the ANT map onto the decision thresh-
old, drift, and drift variability parameters of the DDM.More

informative cues increase the model’s drift rate and decrease
its decision threshold. Incongruent information results in
a decreased drift rate and increased decision threshold.
We also showed how meditators showed overall higher
decision thresholds, especially for incongruent information.
This higher decision threshold may reflect an ability to wait
longer to be able to exert sufficient cognitive control. By
decomposing behavior into cognitively interpretable param-
eters, this study helps to build a theoretical basis for how
meditation affects cognition.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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