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a b s t r a c t

Recent work shows that putamen-originating beta power oscillations serve as a carrier for temporal
information during tapping tasks, with higher beta power associated with longer temporal reproduc-
tions. However, given the nature of tapping tasks, it is difficult to determine whether beta power dy-
namics observed in these tasks are linked to the generation or execution of motor programs or to the
internal representation of time. To assess whether recent findings in animals generalize to human studies
we reanalyzed existing EEG data of participants who estimated a 2.5 s time interval with self-paced onset
and offset keypresses. The results showed that the trial-to-trial beta power measured after the onset
predicts the produced duration, such that higher beta power indexes longer produced durations.
Moreover, although beta power measured before the first key-press also influenced the estimated in-
terval, it did so independently from post-first-keypress beta power. These results suggest that initial
motor inhibition plays an important role in interval production, and that this inhibition can be inter-
preted as a biased starting point of the decision processes involved in time estimation.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Perceiving the passage of time is an ubiquitous experience and
a building block for other cognitive processes and behaviors such
as controlling movements in time (Allman et al., 2014; van Was-
senhove, 2009), both in well-controlled laboratory settings (Van
et al., 2014) and in tasks with higher external validity (Matthews
and Meck, 2014; Van Rijn, 2014). However, the neural under-
pinnings of these abilities are not yet well understood. Although it
has been convincingly shown that climbing neural activity (CNA,
Durstewitz, 2003) is somehow linked to time estimation (e.g.,
Macar and Vidal, 2004; Wiener et al., 2012; Wittmann, 2013),
previous studies have found that EEG-based CNA does not co-vary
with trial-to-trial fluctuations in subjective timing (Kononowicz
and Van Rijn, 2011; Van Rijn et al., 2011, cf., Wiener et al., 2012)
whereas electrophysiological potentials evoked by the end of the
interval do covary with the subjective percept Kononowicz and
van Rijn (2014a). However, post-interval evoked potentials cannot
be used to track or index the dynamics of subjective time (also see
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Van Wassenhove and Lecoutre (2014)). Typically, dynamics of
subjective time has been investigated by tracking slow changes in
electric potentials (Macar and Vidal, 2004) or investigated dy-
namics of neuronal spiking patterns such as interval tuning (Crowe
et al., 2014; Merchant et al., 2013), CNA (Merchant et al., 2011) or
scalable population codes (Mello et al., 2015). However, the dy-
namics of neural oscillations has been investigated very rarely (but
see Kononowicz (2015), Parker et al. (2014)).

Interestingly, a recent synchronization-continuation tapping
studies have shown that putamen-originating beta power was
larger for longer durations, suggesting that beta power reflects the
to-be-produced duration (Bartolo et al., 2014; Bartolo and Mer-
chant, 2015), and thus indicating that beta power is linked to the
development of subjective time or to guidance of internally driven
motor sequences. If beta power dynamics is only linked to gen-
eration of motor sequences, without having any relationship to
interval timing, fluctuations in beta power should not correlate
with behavior on a time production task. However, if beta power is
linked to internal sense of time it should covary with the length
produced interval. Moreover, the nature of tapping tasks makes it
impossible to attribute the observed beta power to the onset of a
temporal interval, or to the offset of the previous interval, as each
response is both offset and onset of an interval. Here we focus on a
supra-second time production task in which the onset and the
offset of an interval are separately indicated. Additionally, tapping
tasks typically use intervals below one second. As timing me-
chanism were suggested to differ for intervals shorter and longer
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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than one second, the aim of this paper is to assess whether the
results presented by Bartolo et al. (2014), obtained in a tapping
task with subsecond intervals, generalize to longer intervals.

Therefore, to assess whether beta power as well as other fre-
quency bands can track or index the dynamics of subjective time,
sufficiently long intervals should be used in a paradigm that allows
for distinguishing the onset and offsets of temporal intervals. By
assessing the power of different frequency bands of an existing
data set (Kononowicz and Van Rijn, 2011) that has been previously
used to investigate the relationship between temporal perfor-
mance and the amplitude of contingent negative variation, we
address whether trial-to-trial variability in interval timing is pre-
dicted by oscillatory power, both measured before the onset of the
trial (see, e.g., De Lange., 2013), and immediately after. This setup
allows us to eliminate biases coming from experimentally ma-
nipulated durations and instead focus on the naturally occurring
fluctuations in timing performance.
2. Method

Detailed information on stimuli, experimental procedures and
participants can be found in Kononowicz and Van Rijn (2011).
Below we will provide a summary of the information relevant for
the analyses reported in this work.

2.1. Stimuli, procedure and data acquisition

We investigate the role of beta power during the self-paced
production of intervals of 2.5 s (participants indicated both onset
and offset of the interval by a keypress) in a task setup that meets
the criteria for an accurate measurement of beta power. First, the
length of target interval is long enough to allow post-movement
beta power after the initial keypress to fully evolve, and to reach
its peak without strong contamination from upcoming movement
preparation. Second, because visual feedback was provided after
every trial and every trial started with a short waiting period, the
experimental setup enforces a minimum inter-trial interval of
Fig. 1. Time course of an experimental trial. Intervals marked as variable differed sligh
depicts the probability density function (Sheather and Jones, 1991) of observed time pr
2.7 s, allowing beta power associated with the motor response to
the offset of the trial to return to ''baseline'' before the onset of a
next trial.

Although the original dataset consists of two separate experi-
ments, these experiments are identical for the purposes of the
analyses reported here. We will therefore discuss the original data
as one, collapsed, dataset of 32 participants that were tested in a
setup as approved by the Ethical Committee Psychology of the
University of Groningen. The outline of a task is depicted in Fig. 1.
The participants were asked to produce the 2.5 s interval by
pressing the spacebar twice using the right hand index finger.
Visual feedback was presented after each trial indicating the de-
viation from the standard duration. During the entire interval a
small circle served as a fixation point. Before the first keypress, the
circle was shown in light gray on a black background. The first
keypress changed the color of the circle to white, as a visual cue
that the interval had started. The second keypress removed the
circle from the screen, and feedback was presented. The feedback
was delivered as a row of five circles, immediately above the lo-
cation of the fixation point. The middle circle turned green if the
time production was between 2.4 and 2.6 s. If time production was
between 1.8 and 2.4 s or between 2.6 and 3.2 s, the circle just to
the left or right of the middle circle turned green. If the time
production was shorter than 1.8 or longer than 3.2 s, the left or
right outer circle turned red. Before each trial, participants either
saw a short instruction requesting them to blink their eyes, or
where just presented a blank screen, depending on the experi-
ment. The time between the instruction to blink and the onset of
the interval was at least 1.5 s.

2.2. Time-frequency analysis

We selected the 20 electrodes (AFz, F3, Fz, F4, FC3, FC1,FCz, FC2,
FC4, C3, C1, Cz, C2, C4, CP3, CPz, CP4, P3, Pz, P4) that were used in
both original experiments and performed an analysis of oscillatory
power by comparing the 3 pseudo-experimental conditions that
were previously presented by Kononowicz and Van Rijn (2011),
see also Macar (1999): trials in which the response was slightly too
tly between the two experiments. The distribution shown in the lower left corner
oductions ranging from 1.8 to 3.2 for all subjects.



T.W. Kononowicz, H.v. Rijn / Neuropsychologia 75 (2015) 381–389 383
early: Short (2.2–2.4), was Correct (2.4–2.6 s), or was slightly too
late: Long (2.6–2.8 s). More extreme responses are typically not
analyzed in this paradigm (e.g., Macar et al., 1999) and were
therefore not included in the initial time-frequency analyses.
However, we will also report on analyses based on the all "green"
trials (i.e., responses between 1.8 and 3.2 s). On average 149.7 trials
with a response between 2.2 and 2.8 s were analyzed per parti-
cipant, and 212.5 time production trials ranging from 1.8 to 3.2 s.
Time-frequency analysis was performed using FieldTrip (Oos-
tenveld., 2011), an open source Matlab toolbox, using FieldTrip's
default FFT methods.

The 1/f property was removed from the data time domain prior
to the calculation of spectral power by computing the first order
derivative as implemented in FieldTrip. Removing the 1/f trend
ensures that all frequencies of broadband averaged signal con-
tribute equally to beta power estimates and power estimates are
dominated by lower frequencies due to the 1/f property when
absolute baseline normalization is applied (Cohen, 2014). To ana-
lyze oscillatory power we used a single Hanning taper with an
adaptive time window of 6 cycles per frequency in 15 ms steps for
frequencies from 4 to 40 Hz. The amount of spectral smoothing
through multi-tapering was set to 1. We used linear baseline
subtraction, thus the resulting power changes in the time pro-
duction interval were expressed as an absolute power change (e.g.,
Fig. 2. Time-frequency decomposition of the first keypress-locked data measured at FC
2.8 s) conditions with corresponding topographies. Topographical plots are based on a 1
differences in the cluster based analysis. The bottom-most spectrogram depicts the powe
topoplots depict power in uV2/Hz, as depicted in the legend to the right of the second to
test in F-values. F-values for all significant time windows were averaged. For more deta
Wang et al., 2012) relative to the interval before the first keypress
(�0.5 to 0 s) on a trial-to-trial basis. No additional baseline cor-
rection was applied for the second keypress locked data.

To quantify the differences between the pseudo-experimental
conditions, we run cluster-based permutation analysis, based on
two-sided Hotteling’s T2 as provided by FieldTrip (Maris and
Oostenveld, 2007) by drawing 1000 sample for the Monte Carlo
approximation and using FieldTrip's default 10–10 neighbor tem-
plate. The randomization method identifies the electrodes whose
statistics exceed a critical value (po0.05). Neighboring electrodes
that exceed the critical value are considered to form a cluster. The
cluster level statistic is defined as the sum of values of a given
statistical test in a given cluster, and is compared to a null dis-
tribution that is created by randomizing the data between condi-
tions across multiple subjects. The p value is estimated based on
the proportion of the randomizations exceeding the observed
maximum cluster-level test statistic.

Both cluster analysis and linear mixed model analyses were
computed for 200 ms time windows with steps of 100 ms from 0
to 1.6 s after the first keypress. The 1.6 s time point was chosen to
reduce the impact of motor preparatory processes as no trials were
included in these analyses with estimations shorter than 2.2 s. All
analyzes were performed on a frequency range associated with
beta power in earlier work (15–30 Hz, e.g., Haegens et al., 2011;
z for the pseudo-experimental Short (2.2–2.4 s), Correct (2.4–2.6 s), and Long (2.6–
5 to 30 Hz frequency band and focus on the time windows that showed significant
r differences for Long minus Short categories. The spectrograms and three top-most
poplot. The topoplot at the bottom depicts the results of cluster based permutation
ils, see the main text.
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Jenkinson and Brown, 2011). As depicted in Fig. 2, post-first-key-
press oscillatory beta power falls within the selected frequency
range. To ensure that any effects observed for beta power are not
an artifact of a general modulation of oscillatory power, we also
assessed the power per pseudo-experimental condition in theta
(4–7 Hz) and alpha (8–14 Hz) bands. For display purposes the data
for beta band frequency was smoothed using an eight-element
kernel, but all reported analyses are based on raw, unsmoothed
data.
Fig. 3. Time course of beta power at FCz. The upper and lower graphs depict first
keypress-locked and second keypress-locked data, respectively. The areas around
the curves indicate one standard error of the mean.
3. Results

As expected in an interval timing experiment in which feed-
back is provided, participants accurately reproduced 2.5 s intervals
as depicted in the density plot inset shown in Fig. 1. Detailed in-
formation on behavioral performance can be found in Kononowicz
and Van Rijn (2011). The three top-most rows of Fig. 2 depict the
time-frequency averages based on the signal recorded at FCz, and
averaged over participants for the three pseudo-experimental
conditions. The two most salient oscillatory events visible for all
three pseudo-experimental groups during the time production
interval are an early increase in beta power (around .6 s after
onset), and a later increase in alpha power (Fig.4, starting around
.5 s after onset and continuing until the 1.5 s of the interval, after
which it starts to decrease). The topoplots shown next to the time-
frequency plots depict the average beta power for the measured
electrodes between 0 and 1.8 s after first keypress, indicating that
for all three conditions the strongest beta power can be found at
left centro-frontal electrodes. The increase in beta power after a
keypress has been interpreted to reflect idling processes in the
sensorimotor cortex, as after an initial peak it slowly decreases
until the next response is given (e.g., Pfurtscheller., 2003). In line
with this explanation, the top-panel of Fig. 3 shows that beta
Fig. 4. Time course of theta power at FCz. The upper and lower graphs depict first
keypress-locked and second keypress-locked data, respectively. The areas around
the curves indicate one standard error of the mean.
power reaches its peak about half a second after the first keypress
and then starts to desynchronize until the participant presses the
key to end the interval (see the bottom-panel of Fig. 3). Interest-
ingly, closer inspection of Fig. 3 further shows that already around
the peak of beta power, differences between the conditions be-
come visible.

We first investigated differences in oscillatory power among
the pseudo-experimental conditions over all electrodes and time
points ranging from 0 to 1.6 s after the first keypress using a
sliding window of 200 ms in 100 ms steps. Hereto, we ran a
cluster-based permutation analysis, averaging over frequencies
bands between 4 and 7 Hz for theta band, 8 and 14 Hz for alpha
band, and 15 and 30 Hz for beta band, separately for the three
conditions. We did not find any significant effects for theta and
alpha bands (all clusters for all time windows po0.1), but we
found a significant effect of beta power in the following time
windows: 0.4–0.6 s, p¼0.017; 0.5–0.7 s, p¼0.019; 0.8–1 s,
p¼0.035; 0.9–1.1 s, po0.001; 1–1.2 s, p¼0.002; 1.1–1.3 s,
p¼0.006; 1.2–1.4 s, p¼0.002; 1.3–1.5 s, p¼0.007; 1.4–1.6 s,
p¼0.020. The most significant cluster ranging from 0.9 to 1.1 s is
shown in the bottom right of Fig. 2. This significant cluster consists
of all analyzed electrodes with a maximum at FCz. Subtracting the
power observed at FCz in the Short from the Long condition pro-
vides the difference time-frequency plot shown in the bottom
panel of Fig. 2. The dominance of green and blue colors in the beta
range starting at about 0.4 s and continuing for at least the whole
duration of the Short condition illustrates that beta power is
higher in the Long condition. Fig. 3, in which the average beta
power at FCz is plotted over the time course of a trial for the three
pseudo-experimental conditions, supports this interpretation, as
in the top, onset-locked panel the beta power is higher for the
Long condition than for the Short condition, with the Correct
condition in between. The bottom, offset-response-locked panel of



Fig. 5. Time course of alpha power at FCz. The upper and lower graphs depict first
keypress-locked and second keypress-locked data, respectively. The areas around
the curves indicate one standard error of the mean.
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Fig. 3 shows that this difference is driven by the initial increase in
beta power, as no differences between the three pseudo-experi-
ment conditions can be observed in the last second before the
offset-response (p40.1), nor does this Figure suggest any differ-
ences in the speed of desynchronization as the slopes are very
similar.

To quantify the observation that initial beta power increases
with estimated duration, we calculated normalized maximum
power from 0 to 1.6 s after the first keypress using sliding window
of 200 ms in 100 ms steps, for all trials with productions between
1.8 and 3.2 s (the "green" feedback trials). Trials in which theta,
alpha, or beta power deviated more than 4 z-scores were removed
from further analysis (3.6%). As suggested by Cohen and Cavanagh
(2011), single trial power should be predictive of behavioral per-
formance. To this end, we used linear-mixed effects models (e.g.,
Pinheiro and Bates, 2000; Gelman and Hill, 2007; see Bagiella et al.
(2000) for arguments in favor of these methods in psychophy-
siology, and Kononowicz and Van Rijn (2011), Van Rijn (2014),
Boehm et al. (2014) for earlier applications of this technique) to
assess whether oscillatory power as measured on individual trials
can predict the estimated duration associated with that trial. (Note
that duration is entered as continuous variable in these analyses,
not categorized in three pseudo-experimental conditions.) These
regression models include a component for subject-based error
variance and allow for testing the effect of multiple continuous
experimental manipulations while taking the (repeated measures)
structure of the design into account. Moreover, and especially re-
levant to EEG studies, these methods do not require an equal
number of observations in each cell of the design. Multicollinearity
has been assessed using variance inflation factor (VIF). None of the
VIF values exceeded 1.1, indicating that multicollinearity is unlikely
to have had a major influence on the results. Note that Rogerson
(2001) recommended maximum VIF value of 5. F and p values
were calculated based on a Type 3 ANOVA with Satterthwaite
approximation of degrees of freedom, using lmerTest package. We
focused on the FCz electrode, as that electrode showed the highest
values for the cluster statistics, had the overall highest beta power,
and also was the electrode of interest in the previous reports
(Macar et al., 1999; Kononowicz and Van Rijn, 2011). To ensure
that any observed effect can be attributed to modulations of beta
power, and not just to a general modulation of power, we also
determined alpha and theta power and included those in the
analyses as predictors of estimated duration. The time courses of
theta and alpha power averaged over the selected frequency band
are presented in Figs. 4 and 5.

We first focused on the subset of trials that were categorized as
one of the three pseudo-experimental conditions. Time produc-
tions were entered as dependent variable whereas normalized
theta, alpha, and beta power were entered as predictors. We al-
lowed for random intercepts for subjects. Fig. 6, top panel, depicts
the estimated means and 95% confidence intervals for the three
frequency bands, taken from a model in which all three frequency
bands are entered as predictors. Each of these models was run
separately for all 200 ms windows. As can be seen in Fig. 6, top
panel, theta and alpha power does not correlate with the length of
produced interval in any of the analyzed time windows. However,
the effect of beta power can be found as early as 0.2 to 0.6 s after
the first keypress as indicated by the diamond data points de-
picting estimates from mixed model fit for two windows: 0.2–
0.4 s, β¼6.1, F(4812)¼2.5, p¼0.011; 0.3–0.5 s, β¼5.5, F(4596)¼
2.6, p¼0.009; 0.4–0.6 s, β¼5.5, F(4042)¼2.8, p¼0.006. These es-
timates shows that for every unit increase of absolute power, the
produced interval is estimated to be �6 ms longer.

Beta power was also predictive of time productions later in the
interval: 0.7–0.9 s, β¼4.8, F(4028)¼2.4, p¼0.016; 0.8–1 s, β¼6.4,
F(4363)¼3.3, p¼0.001; 0.9–1.1 s, β¼4.4, F(4528)¼2.0, p¼0.043;
1.1–1.3 s, β¼7.4, F(4715)¼3.5, po0.001; 1.2–1.4 s, β¼6.4, F
(4707)¼2.9, p¼0.003; 1.3–1.5 s, β¼4.2, F(4735)¼2.0, p¼0.044;
1.4–1.6 s, β¼4.8, F(4773)¼2.2, p¼0.026; 1.6–1.8;s, β¼5.5, F
(4773)¼2.4, p¼0.019, which is also depicted in Fig. 6, top row.

Additionally, we also performed an analysis on all trials to
which the participants received "green" feedback, that is, with
time productions from 1.8 to 3.2 s. The estimates of the full model
are shown in the middle panel of Fig. 6. The effect of beta power
was found in several time windows: 0.6–0.8 s, β¼6.2, F(6689)¼
2.1, p¼0.034; 0.7–0.9 s, β¼8.2, F(6688)¼2.8, p¼0.005; 0.8–1 s,
β¼8.0, F(6738)¼2.8, p¼0.006; 0.9–1.1 s, β¼6.9, F(6753)¼2.2,
p¼0.027; 1–1.2 s, β¼7.8, F(6756)¼2.5, p¼0.012; 1.1–1.3 s, β¼2.8,
F(6765)¼4.1, po0.001; 1.2–1.4 s, β¼10.9, F(6763)¼3.5, po0.001;
1.3–1.5 s, β¼7.9, F(6752)¼2.6, p¼0.009; 1.4–1.6 s, β¼8.6, F
(6762)¼2.8, p¼0.005; 1.5–1.7 s, β¼10.8, F(6772)¼3.4, po0.001;
1.6–1.8 s, β¼12.8, F(6760)¼3.8, po0.001. These estimates shows
that for every unit increase of standardized beta (i.e., z-score), the
produced interval is estimated to be �10 ms longer.

Contrary to the analysis for 2.2–2.8 time productions we found
effects of theta power in the following time windows: 0.6–0.8 s,
β¼�3.6, F(6755)¼�1.9, p¼0.046; 0.7–0.9 s, β¼�4.7, F
(6768)¼�2.7, p¼0.008; 0.8–0.1 s, β¼�4.8, F(6755)¼�2.8,
p¼0.006; 0.9–1.1 s, β¼�4.6, F(6752)¼�2.6, p¼0.008; 1–1.2 s,
β¼�3.8, F(6747)¼�2.3, p¼0.023; 1.1–1.3 s, β¼�4.6, F
(6754)¼�2.8, p¼0.005; 1.2–1.4 s, β¼�5.9, F(6752)¼�3.6,
po0.001; 1.3–1.5 s, β¼�6.2, F(6743)¼�3.9, po0.001; 1.4–1.6 s,
β¼�5.9, F(6762)¼�3.6, po0.001; 1.5–1.7 s, β¼�5.6, F
(6777)¼�3.4, po0.001; 1.6–1.8 s, β¼�6.5, F(6767)¼�3.9,
po0.001; as depicted in Fig. 6.

For the full range of "green" responses, the analysis shows that
for every unit increase of standardized beta, the produced interval
is estimated to be �12 ms longer, and every unit increase of theta



Fig. 6. The estimated effects and associated 95% confidence intervals derived from the linear mixed model fitted to theta, alpha, and beta power data. The upper panel is
based on time productions ranging from 2.2 to 2.8 s, the standard pseudo-experimental groups. The bottom panel shows the estimated effects for the extended range of time
productions, ranging from 1.8 to 3.2 s. The time label indicates onset of a time window (200 ms) in which a given model was fitted.

Fig. 7. The estimated effects and associated 95% confidence intervals derived from
the linear mixed model fitted to theta, alpha, and beta power data as measured
before the keypress starting the interval, based on the trials with time productions
ranging from 1.8 to 3.2 s.
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reduces the estimated duration with �15 ms.
These changes in beta power after the first keypress can reflect

induced or phasic oscillatory changes. However, pre-movement,
preparatory beta power has been shown to index fluctuations in
decision biases (De Lange et al., 2013), and thus any preparatory
beta effects could influence the observed post-keypress effects. On
the other hand, the beta power measured before the subject-paced
onset could influence subsequent behavior independently from
the motor-response evoked beta, mimicking the correlations be-
tween pre-stimulus oscillatory activity and stimulus processing
(Busch and VanRullen, 2010; for reviews see, Deco and Romo
(2008), Engel et al. (2001)). Therefore, we also measured stan-
dardized beta power over the 0.5 s interval prior to the first key-
press for all "green" trials (i.e., productions larger than 1.8 and
smaller than 3.2 s) and subjected this data to similar linear mixed
effect analyses. (Similar analyses of the restricted dataset showed
numerically similar effect sizes, but these failed to reach sig-
nificance.) Fig. 7 shows the parameters of linear mixed model,
again indicating a stronger effect of beta power than of theta or
alpha. Indeed, formal model comparisons, by means of Akaike
Information Criterion (AIC, see for example Wagenmakers and
Farrell, 2004), showed that the comparison of a model including
pre-interval beta to a model that only including an intercept
confirmed that inclusion of pre-interval beta power is justified
(ΔAIC¼2, χ2(1)¼4.7, p¼0.031; and including theta and alpha was
not warranted, ps40.3, c.f., Anliker, 1963; Ng et al., 2011). The
effect of beta on produced duration was significant (β¼20.0, F
(1,2261)¼2.3; p¼0.019). Interestingly, when both pre-interval, or
pre-first-keypress beta and post-first-keypress beta power is en-
tered in an analysis, both predictors contribute to the model in
case of all time windows ranging from 0.4 to 1.8 s after first key-
press. (all po0.05) and the correlation between both fixed effects
is low (all VIFo1.5) indicating that both components reflect in-
dependent aspects of the interval timing task.
4. Discussion

According to Bartolo et al's recent study (2014; also see Bartolo
and Merchant (2015)) in monkeys, beta power originating from
the putamen may index temporal durations, such that bigger beta
power coincides with longer durations between consecutive taps.
Here we tested whether this effect extends to interval timing in
humans in a reproduction paradigm while controlling for a num-
ber of potential artifacts and explicitly tested whether both pre-
first-keypress and post-first-keypress beta power contribute to
this effect. In line with the earlier results, we showed that trial-to-
trial beta power positively correlates with the length of produced
duration in a 2.5 s time production study, generalizing the original
findings of Bartolo et al. (2014) by extending it to longer durations.
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Thus, beta power at the onset of an interval is a reliable index of
trial-to-trial fluctuations in produced duration, allowing us to
predict how long the estimate of an interval will be about two
seconds before participants actually end the production.

Of course, as participants had to initiate a time interval by
pressing a key, the increase in beta power reflects a post move-
ment synchronisation, which has been associated with a me-
chanism of active motor inhibition (Joundi et al., 2012, Pfurt-
scheller et al., 2003; Pogosyan et al., 2009; for a review see Kilavik
et al. (2013) in the supplementary motor area and motor cortex
(Jurkiewicz et al., 2006; Koelewijn et al., 2008). After this increase
in inhibition at the interval onset, the process of recovery, ex-
pressed as a gradual desynchronisation of beta power, continues
until the interval is terminated. However, the analyses reported
here show that the intensity of the initial post-movement syn-
chronization has a long lasting effect, as the estimated power of
the synchronization determines when a response is given about
two seconds later. Obviously, instead of the power after onset,
these effects on estimated duration might also be caused by dif-
ferent desynchronization speeds, but the second keypress-locked
data did not show any differences in the gradual beta desyn-
chronisation. Thus, these results suggests that the length of the
produced duration changes as a function of the amount of initial
inhibition set at the trial onset, a finding supported by the inter-
pretation that post-movement beta power indexes an amount of
inhibition (Pfurtscheller et al., 2003) or balance between excitation
and inhibition (Jensen et al., 2005; Kaminski et al., 2012). The
notion that post-movement beta power at the trial onset is related
to inhibition is supported by Parkinson studies. Praamstra and
Pope (2007) described a reduction in post movement beta syn-
chronisation in Parkinson patients who experience motor and
perceptual timing difficulties, both caused by an aggravated do-
paminergic system (Jahanshahi et al., 2010). Moreover, the hy-
pothesis of motor inhibition for timing is congruent with ob-
servation that monkeys in the synchronization-continuations task
time the pauses and not the kinematics of their movements
(Donnet et al., 2012).

Apart from beta modulation at the interval onset, we also found
that beta power as measured before the onset of the interval
predicts the produced duration (cf., De Lange et al., 2013; Mazaheri
et al., 2009). This suggests that a to be estimated duration is partly
determined by the brain state before the interval initiation. Ob-
viously, as participants could initiate the onset of trial, it might be
that these tonic effects are partly based on participant-induced
preparation effects. However, these results do add to the general
notion that trial-to-trial fluctuation in the amount of beta power
can influence timing behavior, presumably by pre-setting the level
of inhibition or by affecting the starting point or other parameters
of the decision process.

The data reported here were originally reported in a paper that
focused on the role of the contingent negative variation (CNV) in
time estimation. It has been proposed that the amplitude of the
CNV reflects accrual of subjective temporal information (Macar
et al., 1999; Wittman, 2013). However, recent empirical work has
questioned this assumption (e.g., Kononowicz and Van Rijn, 2011,
Van Rijn, 2014, Ng et al., 2011). In our earlier work (Kononowicz
and Van Rijn, 2011), we did not find any evidence for a relation
between the estimated duration and the CNV amplitude, but we
did find habituation effects in the CNV – a finding at odds with an
accumulation account. However, the reanalysis of this data set,
together with the results of Bartolo et al. (2014), demonstrate that
beta power at trial onset index timing performance, suggesting
that timing mechanisms (e.g., motor inhibition) typically not
considered in the theories of interval timing may be important in
time production. Interestingly, recent work has linked the notion
of inhibition, beta power, and dopamine level in the nigrostratal
pathway, proposing that the dopamine level can be traced by beta
power fluctuations (Jenkinson and Brown, 2011, also see Meyniel
and Pessiglione, 2014). Within this framework, larger beta power
is caused by a low level of dopamine: An increase in beta power is
signaling the maintenance of a status quo in the sensorimotor
system (Engel and Fries, 2010) whereas a decrease of beta power
in the cortical-basal ganglia system increases the likelihood for a
new action (Jenkinson and Brown, 2011). It also has been shown
that dopamine impacts interval timing in humans (e.g., Ramm-
sayer, 1997, 1999) and animals (e.g., Meck, 1986, 2006, also see
Narayanan et al., 2012), and it has been argued that dopamine
might play an indirect role in the built-up of temporal ex-
pectancies (Matthews et al., 2014). More specifically, it has been
shown that the administration of dopamine agonizts speeds-up,
and antagonists slows down, the internal passage of time (Meck,
1996). Since dopamine agonizts would result in reduced beta-band
synchronization, and antagonists would result in increased beta-
band synchronization, and thus in shorter and longer estimates,
the framework proposed by Jenkinson and Brown (2011) is con-
sistent with the effects of neuropharmacological manipulations on
time estimation. However, as the time production task used in this
experiment requires both the timing component and motor ac-
tions, it is difficult to dissociate both components, if that is at all
possible given the interactions of the cognitive and motor circuits
in the corticostriatal loop (Frank, 2011). For example, Coull et al.,
(2012) have shown that in a time estimation task dopamine
modulates the nigrostriatal dopaminergic “motor” pathway in-
cluding the putamen and SMA, even if the task is purely percep-
tual (also see Arnal and Giraud (2012), Fujioka et al. (2012), Teki
(2014) for the role of beta power in predictive timing). In the light
of these considerations, the observed beta power, evoked by ac-
tivity in corticostriatal circuits, is likely caused by a process central
to the estimation of time.

Alternatively, instead of describing time production as a release
from a state of inhibition over time, one might also consider that
the beta power indexes parameters of an evidence accumulation
process that is underlying interval timing (e.g., Balci and Simen,
2014; Luzardo et al., 2011; Simen et al., 2013; Van Rijn et al., 2011).
According to accumulation-to-bound models, a decision is reached
by accrual of sensory evidence over time. Interestingly, beta band
power has already been associated with a build up of activity re-
flecting integrated sensory evidence (e.g., Donner et al., 2009;
Gould et al., 2012; Haegens et al., 2011; Tzagarakis et al.,2010;
Wyard et al., 2012). The time it takes to reach a bound can be
influenced by either the accumulation rate, by changes in the
starting point, or by fluctuations in a decision threshold. However,
as the beta power at the onset of the trial predicts duration, and
the second keypress-locked data did not show any differences in
the ramping beta desynchronization, these data align best with
the suggestion that the beta power at the onset of a trial could
influence the starting point of an accumulation process that has to
decide on when to end the interval. Interestingly, the fact that only
the initial beta power influences time production could suggest
that interval termination is a ballistic process (Schurger et al.,
2012; see also Taatgen et al. (2007), Van Rijn and Taatgen (2008),
Taatgen and Van Rijn (2011), for similar explanations in terms of
classical information processing models), where a parameter at
the interval onset influences a cascade of neural events leading to
the final outcome. Of course, this parameter could be linked to
motor inhibition (Pfurtscheller et al., 2003) or to an initial urgency
to respond (Cisek et al., 2009) that is going to increase over time
and will serve as a multiplication factor for incoming evidence.
Note that according to the urgency gating idea, ramping activity is
not accumulating any kind of quantity, but is reflecting an increase
in urgency (Boehm et al., 2015).

Theta power is assumed to play an important role in interval
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timing (see, for example, Gu et al., 2015). It is therefore not un-
expected to also find modulations in theta power at the interval
onset (i.e., a negative correlation between theta power and time
productions). Although the effect of theta power is opposite to the
beta power effect, the observed effects are not contradicting the
interpretations of beta power. For example, Cravo et al., 2011 did
find that fronto-central theta power increases under conditions of
larger motor preparation and temporal anticipation, regulated
through the mechanism of cortical excitability (Cravo et al., 2011).
Similarly, in time production tasks, bigger theta power could re-
flect an enhanced anticipatory state at the interval onset. More-
over, modulations of theta power have been associated with a
reduction of response threshold (Cavanagh et al., 2011), but also
with other features of drift diffusion models (Van Vugt et al.,
2012), which aligns with the accumulation model-based inter-
pretations of the beta power effects. Of course, the notion of ex-
citability and cortical inhibition and response thresholds are clo-
sely intertwined and theta and beta power may index modulations
of cortical inhibition or properties of diffusion process (Simen
et al., 2011). Interestingly, Cravo et al. (2011), also see Arnal et al.
(2014) found that the coupling between theta phase and beta
power contributes to a mechanism controlling excitability levels
according to temporal expectation, providing further support for
the notion that theta and beta band power might be signatures of
temporal performance. In addition, preliminary analyses also
showed signatures of an effect in the gamma band, as in Bartolo
et al. (2014). As pointed out by an anonymous reviewer (see also
Oswal et al., (2013), these effects could be due to participants
holding the button depressed for a longer period of time in the
trials categorized as long. As gamma and beta power seem to in-
dex independent components (Muthukumaraswamy, 2014), it is
unlikely that differences in the way the key was pressed are
driving the result. As no information on the duration of the key-
press was recorded, we have refrained from inferences on the
basis of these effects, but future studies could measure the re-
sponse duration or force to elucidate the role of gamma effects in
interval timing.

The observed relationship between beta power, both before
and after the keypress triggering the start of the trial, and the
produced duration provides strong evidence in favor of the notion
that the amount of beta power at the onset of a trial is an im-
portant marker for the duration of a subsequent time production,
allowing us to predict at the onset of a trial when the participant
will end that trial about two seconds in the future.
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