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a b s t r a c t

When participants are asked to reproduce an earlier presented duration, EEG recordings typically show a
slow potential that develops over the fronto-central regions of the brain and is assumed to be generated
in the supplementary motor area (SMA). This contingent negative variation (CNV) has been linked to
anticipation, preparation and formation of temporal judgment (Macar, Vidal, and Casini, 1999, Experi-
mental Brain Research, 125(3), 271–80). Although the interpretation of the CNV amplitude is problematic
(Kononowicz and Van Rijn, (2011), Frontiers in Integrative Neuroscience, 5(48); Ng, Tobin, and Penney,
2011, Frontiers in Integrative Neuroscience, 5(77)), the observation of this slow potential is extremely
robust, and thus one could assume that magnetic recordings of brain activity should show similar activity
patterns. However, interval timing studies using durations shorter than one second did not provide
unequivocal evidence as to whether CNV has a magnetic counterpart (CMV). As interval timing has been
typically associated with durations longer than one second, participants in this study were presented
intervals of 2, 3 or 4 s that had to be reproduced in setup similar to the seminal work of Elbert et al. (1991,
Psychophysiology, 28(6), 648–55) while co-recording EEG and MEG.

The EEG data showed a clear CNV during the standard and the reproduction interval. In the re-
production interval the CNV steadily builds up from the onset of interval for both stimulus and response
locked data. The MEG data did not show a CNV-resembling ramping of activity, but only showed a pre-
movement magnetic field (preMMF) that originated from the SMA, occurring approximately 0.6 s before
the termination of the timed interval. These findings support the notion that signatures of timing are
more straightforwardly measured using EEG, and show that the measured MEG signal from the SMA is
constrained to the end of reproduction interval, before the voluntary movement.

Moreover, we investigated a link between timing behavior and the early iCNV and late CNV ampli-
tudes to evaluate the hypothesis that these amplitudes reflect the accumulation of temporal pulses.
Larger iCNV amplitudes predicted shorter reproduced durations. This effect was more pronounced for
the 2 s interval reproduction, suggesting that preparatory strategies depend on the length of reproduced
interval. Similarly to Elbert et al. (1991, Psychophysiology, 28(6), 648–55), longer reproductions were
associated with smaller CNV amplitudes, both between conditions and across participants within the
same condition. As the temporal accumulation hypothesis predicts the inverse, these results support the
proposal by Van Rijn et al. (2011, Frontiers in Integrative Neuroscience, 5) that the CNV reflects other
temporally driven processes such as temporal expectation and preparation rather than temporal accu-
mulation itself.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The most well-known electrophysiological marker of interval
timing is the contingent negative variation (CNV), a fronto-central
negative potential in the encephalogram building up until a tem-
porally predictable stimulus has been presented (Walter et al.,
1964) or a temporal decision has been made (e.g., Macar and Vidal,
2003; Ng et al., 2011; Wiener et al., 2012). Although the CNV is
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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widely recognized as a signature of the processes involved in in-
terval timing Elbert et al., 1991; Macar and Vidal, 2004; Walter
et al., 1964; Ruchkin et al., 1977), both in the context of short
(e.g.,o1 s) and longer (4 1 s) intervals, the CMV, the magnetic
counterpart of the CNV, has not received much attention. Work
that has compared the CNV and CMV (e.g., N’Diaye et al., 2004),
suggests that these measures reflect different properties of inter-
val timing tasks. For example, while EEG studies have shown that
the SMA is the main source contributing to the CNV (e.g., Gómez
et al., 2007), the status of this structure with respect to magnetic
activity has not been settled (N’Diaye et al., 2004; Gómez et al.,
2004). As previous CMV studies focused on short intervals, which
are often considered to be different from longer intervals (e.g.,
Lewis and Miall, 2003; Rammsayer, 1999), we investigated slow
electric potentials and magnetic fields related to supra-second
interval timing by co-recording magnetic and electric brain sig-
nals. To allow for a precise comparison between CNV and CMV, we
based our experiment on two classical studies that used a time
reproduction paradigm in which a number of supra-second dura-
tions are used (Elbert et al., 1991; Gibbons and Rammsayer, 2004).
Presenting participants with a number of different durations will
allow us to address the question whether electromagnetic field
power indexes the reproduced duration.

The CNV has been related to several processes such as antici-
pation (Tecce, 1972) or preparation for sensory information pro-
cessing (e.g., Boehm et al., 2014; Brunia and van Boxtel, 2001;
Elbert and Rockstroh, 1987; O’Connell et al., 2009). Two sub-
components can be identified in the CNV (Loveless and Sanford,
1974): the initial iCNV and the terminal tCNV (often referred to as
the CNV, a term we will also use in this document). The iCNV has
been associated with an orienting response (e.g., Bender et al.,
2004; Fischer et al., 2008; Simons et al., 1979) or early anticipation
processes (e.g., Fischer et al., 2010; Lütcke et al., 2009) whereas the
tCNV has been linked to motor preparation (e.g., Loveless and
Sanford, 1974) or anticipation processes (e.g., Boehm et al., 2014).

As the CNV can also be found in a variety of tasks in which a
temporal contingency between two relevant stimuli exists, it has
been associated with the processing of temporal intervals. For
example, influential studies by Elbert et al. (1991) and Gibbons and
Rammsayer (2004) showed that slow cortical potentials measured
during supra-second durations can be used to track processes in-
volved in both perception and reproduction of temporal intervals.
As the development of the CNV during a trial aligns with the
conceptual construct of the accumulation of time (see Van Rijn
et al., 2014, for a review of theories based on this conceptualiza-
tion) or, more general, the notion of climbing neuronal activity
(CNA), many interval timing studies have focused on the role of
the CNV in interval timing tasks (e.g., Macar and Vidal, 2009, but
see Van Rijn et al. (2011), for arguments against this connection).

Although the CNV is correlated with activity in a wide variety of
cortical structures (e.g., ACC, M1, and medial frontal gyrus; Gómez
et al., 2007,, 2003; Mento et al. (2014); Scheibe et al., 2010), the
primarily active structure is the supplementary motor area (SMA,
e.g., Gómez et al., 2007,, 2003; Liu, et al., 2013; Mento et al., 2013;
Nagai et al., 2004; Pouthas et al. 2000; Leuthold et al. 2004, cf.,
Praamstra et al., 2006). This aligns with the central role assumed
for the SMA in theories explaining preparatory and intentional
processes (for a review see Haggard (2008), Nachev et al., (2008),
Penfield and Welch, 1951, Tanji, (1994) and see also Boehm et al.
(2014)), and interval timing (e.g., Bueti and Macaluso, 2011; Coull
et al., 2004; Wiener et al., 2010). It is therefore important to pro-
vide converging evidence for the central role of the SMA in CNA.
As electroencephalographic (EEG) and magnetoencephalographic
(MEG) signals are measured from differently oriented pyramidal
cells (e.g., Hämäläinen et al., 1993), magnetic fields and electric
potentials provide complementary sources of information
regarding brain function (Coull 2009; Hari et al., 2000). In the
context of foreperiod paradigms, in which timing is secondary to
the primary instruction to respond as quickly as possible to an
imperative stimulus, several studies using MEG have observed a
magnetic counterpart of the CNV that was termed the contingent
magnetic variation (CMV; Basile et al., 1994; Dammers and Ioan-
nides, 2000; Elbert et al., 1994; Gómez et al., 2004; Hultin et al.,
1996; Vieth et al., 1991). However, MEG studies on the Be-
reitschaftspotential have shown that the slow buildup that is ty-
pically measured with EEG might be difficult to detect with MEG
(see Erdler et al., 2000) as the SMA is active bilaterally, and the
closely located but opposing dipoles might cancel each other out.

Although most neuroelectromagnetic work in the interval
timing field has focused on CNV activity and the CMV has largely
been neglected, notable exceptions are the studies by N’Diaye et al.
(2004), by Sieroka et al. (2003), by Noguchi and Kakigi (2006), and
recent study by van Wassenhove and Lecoutre (2015). N’Diaye at
al. (2004) co-recorded EEG and MEG during an interval dis-
crimination task with filled durations shorter than one second. In
line with the results discussed above, the CNV was shown to ori-
ginate from mid-frontal structures, but source reconstructions of
sustained auditory magnetic fields did not show any activation
coming from mid-frontal structures such as the SMA. As the in-
tersection of the sources for EEG and MEG mainly involved sen-
sory and supra-modal associative regions, N’Diaye et al. (2004)
suggested that interval timing largely depends on these regions. A
similar lack of observed involvement of the SMA is reported in the
work of Sieroka et al. (2003), as they identified the posterior cin-
gulate gyrus as the source of slow magnetic fields observed during
the perception of 1.4 s intervals, and by the MEG study of Gómez
et al. (2004) in which no involvement of the SMA was found in a
foreperiod paradigm. Offsetting the studies that did not find evi-
dence for the involvement of the SMA, Noguchi and Kakigi (2006)
showed that magnetic activity in the SMA increased during the
perception of intervals shorter than 1 s. This incongruity could
partly be accounted for by the different responding regimes that
were employed. In the study by Noguchi and Kakigi (Noguchi,
2014, personal information) study, participants always responded
with their right thumb, whereas either with the right or left
thumb in the study of N’Diaye et al. (2004). As previous EEG work
(e.g., Ulrich et al., 1998) has shown that recorded amplitude in-
creases as a function of the amount of advance information re-
garding the required movement, it might have been more difficult
to measure any SMA-based activity in studies in which responses
have to be given by either the left or right hand. An alternative
explanation is that restricting responses to the right hand might
have resulted in a larger difference in left and right SMA dipole
activity, making it possible to pick up SMA activity as the asym-
metry in dipole activity prevents a complete canceling out of the
signal.

Interestingly, all these studies used fairly short intervals (i.e.,
o¼1.4 s), whereas interval timing is typically considered to be as
ranging from the short intervals tested in these studies to longer
intervals lasting up to, at least, a couple of seconds (e.g., Buhusi
and Meck, 2005; Gallistel and Gibbon, 2000). One of the reasons
why previous studies might have been limited to shorter time
intervals is that measurement of slow potentials, especially when
measuring MEG, can be contaminated by various environmental
and physiological factors. Moreover, measuring longer durations
are intrinsically associated with higher noise levels and special
care has to be taken with respect to the recording procedure
(Mackert et al., 1999; Sander et al., 2009).

Given the unequivocal results regarding the cortical origins and
the contribution of magnetic fields to supra-second time estima-
tion and the lack of robust information on the potential differential
contribution of slow electric and magnetic fields to the perception
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and production of supra-second intervals, we assessed the role of
the CNV and the CMV in a time reproduction paradigm similar to
that of Elbert et al. (1991) and Gibbons and Rammsayer (2004). In
these studies, participants were asked to perceive non-filled su-
pra-second intervals of different durations presented in random
order, and to reproduce the durations after perceiving them. This
design allows for the assessment of the role of slow electro-
magnetic waves during the pure perceptual stage and the re-
production stage (see Wiener et al. (2012)), and thus for assessing
which neuronal populations contribute to the slowly evolving
activity in the various stages of the interval timing task. Moreover,
by presenting participants with different durations, we can ad-
dress whether the observed field power is a function of the re-
produced duration. This issue, which will be more extensively
addressed in the discussion, is central to the functional role of
climbing neuronal activity in interval timing (Kononowicz and Van
Rijn, 2011, 2014; Macar et al., 1999; Ng et al., 2011; Van Rijn et al.,
2011; Wiener et al., 2012), and to the role of the SMA in decision
making (e.g., Boehm et al., 2014).
2. Method

2.1. Participants

Eighteen students enrolled at the Humboldt, Freie or Technical
University of Berlin with no self-reported hearing/vision loss or
neurological pathology took part in the experiment and received
monetary compensation for participation. Informed consent as
approved by the Ethical Committee Psychology of the University of
Groningenwas obtained before testing. The data of one participant
were not included in the analyses as he fell asleep during the
experiment. The final sample comprised data of 17 participants (all
right handed, 8 males). All cells of the design contained at least 30
observations.

2.2. Stimuli and procedure

Fig. 1 depicts the time course of one trial. Each trial started with
the presentation of a “þ” sign. After a randomly sampled duration
(either 2.5, 3.5 or 4.5 s), the standard interval (SI) was presented
by means of two tone bursts (5 ms, 1 kHz, �75 dB) either 2, 3 or
4 s apart. The “þ” remained on the screen during the presentation
of the SI and remained on the screen for either 1.5 or 2.5 s after the
SI, after which the reproduction interval (RI) started. The start of
the RI was signaled by another tone burst and a change of the
fixation character to an “x”. Participants were instructed to press
the mouse button with their right hand when they thought the “x”
was on the screen for the same amount of time as the just pre-
sented standard interval. Pressing the mouse button initiated the
Fig. 1. Time course of the experimental trials in the time reproduction task.
offset tone burst, and the “x” was removed from the screen. After
an inter-trial interval (either 1.5 or 2.5 s, randomly sampled) the
next trial started. Each of the three SI durations was presented 40
times. The 120 trials were presented in blocks of 10 trials, each
block containing at least 3 repetitions of each SI in randomized
order. Between blocks, participants got adaptive feedback on their
performance indicating how many trials were responded to cor-
rectly. The range of correct feedback was initially set to 20% de-
viation of the target interval. This range was dynamically adjusted
by decreasing (2.5%) or increasing (0.5%) the range after each
correct or incorrect trial, respectively. Participants were asked to
reproduce the durations as accurately as possible and maximize
number of correct trials in each block. Before the experimental
trials started, participants were presented five practice trials.

2.3. Simultaneous MEG–EEG recordings

In a dimly-lit, standard magnetically-shielded room (Ak3b,
Vacuumschmelze, Hanau, Germany) located at the PTB Berlin, each
participant lay horizontally with eyes open looking at a screen that
was used to present visual stimuli using a projector located out-
side of the magnetically shielded room. Participants were asked to
cross their arms in front of their chest, as earlier work has shown
this position to be most comfortable during longer recording
sessions, and to respond by clicking a button on a computer mouse
which was held in the right hand, but was located at their left
upper body. Measurements were carried out with a Yokogawa
MEG system (Yokogawa Electric Corporation, Japan), containing
125 axial gradiometers and three reference magnetometers. Elec-
trical brain activity was measured with a custom-built low noise
biosignal amplifier (PTB, unpublished, Scheer, 2006). Both EEG and
MEG signals were recorded with a sampling rate of 500 Hz. EEG
signal was recorded from 30 scalp locations using Ag–AgCl elec-
trodes (EasyCap, Germany), with impedances kept below 5 kΩ.
Vertical and horizontal EOG activity and both mastoids were
registered.

The head position with respect to the sensor helmet was
measured using coils attached to the scalp at anatomical land-
marks (nasion and preauricular points). The locations of the coils
and EEG electrode positions were digitized with respect to three
anatomical landmarks with a 3D digitizer (Zebris, Isny, Germany).

The brief auditory bursts indicating the start and end of the
intervals were presented binaurally via MEG-compatible tube
earphones (Etymotic research, Elk Grove Village, USA) at sound
levels set for each participant individually, but was generally at
about 75 dB. Stimuli were presented using a PC running Pre-
sentation software (Neurobehavioral Systems).
3. Data analysis

The data were analyzed using FieldTrip (Oostenveld et al., 2011;
version 20130713) and customwritten Matlab code. The MEG data
was denoised by computing noise cancelation weights using three
reference channels. First, PCA was computed on the reference
channels and then projected to the gradiometer channels and
subtracted from the data of interest. This computation was per-
formed separately for each trial using FieldTrip's ft_denoise_pca
function. A 50 Hz notch filter and a bandpass FIR filter (0.01–
130 Hz) were applied to the EEG and MEG data. Trials containing
excessive ocular artifacts, movement artifacts, amplifier saturation,
or SQUID artifacts were selected by visual inspection and excluded
from further processing. Eye blinks, heart beat, and muscle arti-
facts were corrected using Independent Component Analysis (Bell
and Sejnowski, 1995). As we were interested in slow shifts of ac-
tivity (see also N’Diaye et al. (2004)), EEG and MEG data were



Fig. 2. Probability density functions (Sheather and Jones, 1991 ) of time re-
productions plotted for the three conditions separately.
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filtered with a lowpass 7 Hz FIR filter prior to averaging and
baselined to the average activity calculated over 200 ms preceding
the tone onset. The 7 Hz filtered data were used for all subsequent
analyses. The MEG data were not spatially realigned prior to the
averaging, thus EEG-like averages were obtained for the sensor
space data.

All analyses of brain imaging data focused on the amplitude of
slow components using non-parametric cluster-based permuta-
tion tests which controls for multiple comparisons (Maris and
Oostenveld, 2007), based on two-sided Hotteling's T2 and MAN-
OVA dependent sample F-tests test using FieldTrip's default
methods. This analysis method allows us to include all electrodes
into analysis instead of having to predefine a particular subset of
electrodes as is typically done in CNV research. Apart from the
obvious advantage that this reduced the risk of an outcome driven
by a confirmation bias, it also allows us to keep EEG and MEG
analyses as similar and consistent as possible. The permutation
distribution was approximated by drawing 1000 random permu-
tations of the observed data. The p values are informative about
the null hypothesis that the probability distribution of the condi-
tion-specific averages is independent of the conditions. For all
cluster-based analyses we averaged data over indicated time in-
tervals, but did not average over the channel dimension, allowing
us to identify significant clusters of neighboring electrodes or
sensors (neighbor configuration was based on Fieldtrip's default
EEG 10-10 neighbor template). As mentioned, the cluster-based
analysis differs from most CNV analyses, as these are often based
on an ANOVA-driven analysis of a subset of electrodes. However,
to allow for the comparison with earlier work, we follow a more
typical approach for the visualization of the EEG data as we plotted
all effects for predefined clusters based on earlier literature (e.g.,
Ng et al., 2011; Verleger et al., 2000). As the MEG data analysis is
more exploratory and we did not want to commit to specific re-
gions, we used dynamic criteria based on maximum amplitudes in
a certain time range to select the data for visualization.

Earlier work by Elbert et al. (1991) or Gibbons and Rammsayer
(2004) assessed the CNV during the RI based on stimulus-locked
data (RISL). However, as the reproduced durations follow a relative
wide distribution, we assess the buildup during the later parts of
the reproduction on the response-locked data (RIRL). Obviously, for
the initial-CNV/initial-CMV (iCNV/iCMV) effects, RISL data will be
used. Following earlier work, the last 500 ms before the response
were used for the response locked CNV/CMV data (Gibbons and
Rammsayer, 2004; Gibbons and Stahl, 2008). To assess the iCNV
and iCMV components, we focused on the 300 ms time window
ranging from 0.3 to 0.6 s after the onset of the duration. All be-
tween-condition CNV/CMV statistics for the stimulus locked EEG
and MEG data (RISL) are based on the 500 ms time interval ranging
from 1.5 to 2 s after the onset of the duration.

3.1. Source reconstruction

As 26 electrodes are not sufficient for reliable source re-
constructions, we refrained from reconstruction analyses based on
EEG data, and only present source reconstructions for the MEG
data. Each participant's head position was realigned with respect
to SQUID sensors using the digitalized anatomical landmarks. For
group statistics and for illustrative purposes, source activities were
projected onto a standard Montreal Neurological Institute brain
(FieldTrip/SPM8). The forward solution for the MEG data was
calculated using a semi-realistic single shell model (Nolte, 2003).
The source model was computed with 9 mm resolution. Finally,
lead field matrices corresponding to the two tangential orienta-
tions were computed for each grid point.

For source reconstructions we used a spatial filtering based on
linearly constrained minimum variance beamformer (LCMV, Van
Veen et al., 1997) as implemented by FieldTrip. The covariance
matrices of the unaveraged single trial data were computed for the
corresponding time windows. Subsequently, these covariance
matrices and lead fields were used to compute the coefficients of
spatial filters for each grid point in the source model. The neural
activity index (NAI, Van Veen et al., 1997) was determined by
normalizing the activity in the window of interest with noise es-
timated directly from the data by obtaining the smallest singular
value of singular value decomposition. This analysis provided us
with noise-normalized estimates of source power derived from
beamformer filters, termed as pseudo-z (Robinson and Vrba, 1999)
or as NAI (Van Veen et al., 1997). Activity in each grid point was
projected to its strongest orientation. To investigate neural sources
driving CMV signals we followed the procedure presented by
Gomez et al., (2003), meaning that NAI values were normalized for
each subject using z–score statistics and the source reconstruc-
tions were averaged over subjects. To prevent smearing of z-va-
lues, prior to visualization, these averaged reconstructions were z-
transformed again. For visualization of the sources of magnetic
activity we used the values that exceeded one standard deviation,
which corresponds to the threshold utilized in Gómez et al.
(2003).

We applied the LCMV method as, despite some theoretical
caveats, it has been successfully utilized in many paradigms in-
vestigating phase locked responses (e.g., Hillebrand et al., 2005;
Darvas et al., 2004). Moreover, LCMV beamformer has been suc-
cessfully used in the localization of signals from the bilateral au-
ditory cortices (Todorovic et al., 2011), anterior cingulate cortex
(Keil et al., 2010) and it has been successfully applied to slow pre-
movement magnetic fields originating from bilateral premotor
structures (Cheyne et al., 2006).
4. Results

4.1. Behavioral results

Fig. 2 shows the density functions of all time reproductions for
each condition. The three separate peaks signify that participants
did distinguish between the temporal intervals. The 3 s and 4 s
conditions were clearly underestimated which is confirmed by t-
tests against target duration [3 s, t(16)¼4.2, po0.001; 4 s: t(16)¼
5.4, po0.001]. Numerically, the 2 s condition was slightly over-
estimated, but not different from 2 s (to1). Underestimation of
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longer durations, or more generally a regression towards a (sub-
jective) mean, is typically observed (i.e., Vierordt's Law, e.g., Le-
jeune and Wearden, 2009) in studies in which multiple intervals
are presented in intermixed fashion (e.g., Taatgen and van Rijn
(2011)).

4.2. Identification of CNV

Fig. 3 depicts the EEG data observed during the perception and
reproduction of the temporal intervals. The left column depicts the
development of the CNV during the SI for both a frontal (top row)
and a parietal group (second row) of electrodes, with similar plots
presented for RISL and RIRL (middle and right column).

Ramping patterns typical for a CNV can be observed in all plots,
and non-parametric cluster-based permutation tests (Maris and
Oostenveld, 2007) confirm these patterns. For these CNV analyses,
we compared the average amplitude in the time window 0.5 s
before the offset of the SI for the SI-based analyses and 0.5 s before
the participant-indicated end of the RI (i.e., RIRL) to a baseline
defined as the 200 ms before the onset of the SI or RI. All three
conditions in SI (2 s: p¼0.001, for a cluster consisting of AFz, F7, F3,
Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CPz, CP2,
CP6, P3, Pz, P4, P8, 3 s; p¼0.002, for AFz, F7, F3, Fz, F4, F8, FC5, FC1,
FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CPz, CP2, CP6, P3, Pz, P4, P8; 4 s:
p¼0.01, for AFz, F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4,
CP5, CP1, CPz, CP2, P3, Pz, P4, P8], and RIRL (2 s: p¼0.006; for AFz,
F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CPz,
CP2, CP6, P3, Pz, P4; 3 s: p¼0.026, for AFz, F7, F3, Fz, F4, F8, FC5,
FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CPz, CP2; 4 s: p¼0.043, for
AFz, F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1,
CP2) showed significant differences between the baseline and the
end of the interval. The observed activity in both SI and RIRL and
the fronto-central intersection of electrodes is in line with the
typical observations in interval timing studies (e.g., Elbert et al.,
1991; Gibbons and Rammsayer, 2004; Gibbons and Stahl, 2008;
Wiener et al., 2012). The topographies plotted in Fig. 3, showing
corresponding topographical distributions of the mean activity
during the SI and RI, resemble the typical distribution associated
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Fig. 4. Each cell represents magnetic fields plotted for all sensors and averaged across all participants for all experimental conditions. Left, middle, and right rows depict the
SI stage, RI stage and response locked data in the RI stage, respectively. Topographical plots depict averaged activity as indicated by gray labels (i.e., 1–2 s, 2–3 s, and 3–4 s).
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with a CNV (e.g., Boehm et al., 2014).

4.3. Identification of CMV

Fig. 4 shows the MEG data, using the same trials and alignment
as used for Fig. 3, with each row representing one duration. Each
subfigure contains a plot of all individual sensors because no
a-priori subsets of relevant sensors were defined. Visual inspection
of the SI MEG data does reveal clear auditory evoked fields, but
does not reveal any slow build-up of activity, which should be
visible as a divergence of magnetic fields amplitude among the
sensors between the two tone bursts. Non-parametric cluster-
based permutation tests indeed provided no evidence (all p40.1)
for any differences between the magnetic fields (0.5 s to offset of
SI) during the SI stage and the baseline (�0.2 s to onset of SI).
Although these results might be slightly different if spatial rea-
lignment was performed, the observation of auditory fields in-
dicates that the omission of spatial realignment of the sensor
space data is not severely reducing group average fields.

It can be seen in the RISL data (Fig. 4, middle column) that after
an initial peak at around 0.4 s, the magnetic fields return to
baseline level and at about 1 s the magnetic fields in all three
conditions start to slowly diverge again. Although this cursory
inspection of the RISL data shown in the middle column of Fig. 5
might hint at slow drifting magnetic fields, one should note that a
strong field is typically observed in MEG data after a motor



Fig. 5. Sensor-space results for the MEG data. Time courses depict RMS across the MEG sensors significantly different from the baseline interval (marked by bold dots in the
topoplots). To identify the most sensitive sensors the data was collapsed over all three conditions and tested against the baseline interval. The left and right panels depict RISL
and RIRL data, respectively. Topoplots depict CMV (1.5–2 s), iCMV (0.3–0.6 s), and preMMF (�0.5 to 0 s) components.
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response. This post-movement magnetic field (postMMF) consists
of two waves that correspond to reafferent activity and a post-
movement positive wave similar to those typically seen in the EEG
data (e.g., Praamstra et al., 2003). Given that time reproductions in
the RISL data are distributed around the target duration (see Fig. 2)
the increased magnetic fields could have been driven by a jittered
postMMF. This interpretation is supported by at least two ob-
servations. First, the response locked analyses, shown in the right
column of Fig. 4, show that the increase in magnetic fields during
the interval is much reduced when the jitter is removed. Second,
the similar topographies of the apparent CMV in the RISL data
(Fig. 4, middle column, all topographical plots) and the postMMF
in the RIRL data (Fig. 4, right column, right topographical plot), but
different RIRL pre-response topographies (Fig. 4, right column, left
topographical plot) suggest a common underlying mechanism. To
exclude the influence of the postMMF on the observed RISL data,
we decided to limit our analyses to trials with reproduced dura-
tions longer than 2 s, and to focus on the interval between 1.5 and
2 s. Running individual analyses per sensor, without taking any
repeated testing into account, showed that some sensors were
different from the baseline interval. These most-sensitive sensors
are depicted in the lower panel of Fig. 5. Although these sensors
are quite scattered over the scalp, we calculated a root mean
square (RMS) that can be interpreted as overall field strength
across given set of sensors. This average field strength for RISL,
depicted in the top-left panel of Fig. 5, shows slight signatures of
ramping activity. However, non-parametric cluster-based permu-
tation tests showed that no magnetic fields differed from baseline
(�0.2 s to onset of RI) for the conditions (all p40.1).

Obviously, any RIRL analysis that focuses on data before the
response will not be contaminated by a postMMF. Apart from the
postMMF, another potential source of contamination are the fields
evoked by the tone that signals the onset of the reproduction in-
terval. Therefore, we excluded all trials with reproduced durations
shorter than 1.5 s, and focused our RIRL analysis on the last 500 ms
of the reproduced interval. This set of criteria results in at least 1 s
between the onset of the interval and the start of the analysis
window. Non-parametric cluster-based permutation tests showed
that the last 500 ms of the RIRL was indeed different from the
baseline (�0.2 s to onset of RI) for the three conditions (2 s: po-
sitive cluster, p¼0.042; 3 s: negative cluster, p¼0.005; 4 s: nega-
tive cluster, p¼0.001; positive cluster, p¼0.085, where a positive
cluster indicates an outflowing field and negative indicates an
inflowing field). Fig. 5 depicts the topographies of the magnetic
fields, with dots indicating the sensors that are significantly dif-
ferent from the baseline interval (without correction). The time
courses of the sensors different from the baseline interval can be
seen in the upper-right panel of Fig. 5, with the time courses de-
picting RMS across the MEG sensors significantly different from
the baseline interval (note that all significant sensors, without
performing cluster correction, were selected to better depict the
time courses of magnetic fields). Indeed, the RIRL plots show a
clear buildup that starts around 0.6 s before the response that
terminates reproduction interval. Earlier work has linked this pre-
movement magnetic field (preMMF) with preparation-based pro-
cesses (Cheyne et al., 2006).

For better topographical visualization and to determine the
source of the observed effects, we reconstructed sources for the
data analyzed for RISL and RIRL. Fig. 6 shows the source re-
constructions obtained using LCMV beamformer for both RISL and



Fig. 6. Source-space results for the MEG data in the RI. Functional data depicts NAI exceeding first standard deviation for the CMV (top row) and preMMF (bottom row).

Fig. 7. Normalized source power as obtained in the supplementary motor area. Red
region marked on the template brain depicts the SMA label used to obtain beam-
former weights. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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RIRL. For RISL, the midfrontal areas are active in the all conditions.
However, as the duration becomes longer it can be noticed that
activations become less visible. This decrease is likely caused by
the smaller contribution of the preMMF activity in the time period
ranging from 1.5 to 2 s for longer intervals. Thus, this supports the
idea that the CMV-like patterns that might be visible in the RISL
data should be interpreted as a product of dispersed preMMFs.

Source reconstructions for the RIRL did show strong and clear
activations (Fig. 6) in the SMA (BA 6) and superior frontal gyrus
(BA 6) for all three durations, implicating the involvement of the
SMA in the final stages of duration reproduction. This finding is
corroborated by the reconstruction of activity specifically gener-
ated in the SMA. To construct source space time series, a matrix of
beamformer weights was obtained for each subject and subse-
quently multiplied with a matrix containing sensor space data,
with anatomical labels obtained from the Anatomical Automatic
Labeling atlas (Tzourio-Mazoyer et al., 2002). Fig. 7, depicting the
activity generated from the SMA, shows a steady buildup of ac-
tivity starting approximately 0.6 s prior to the second key press.
This SMA time course closely resembles the SMA dipole time
course that was identified by Praamstra et al. (1996, Fig. 4) just
before (voluntary) movement.

In sum, the magnetic data does not provide a CNV-like, steady
build up of activation that starts at the interval onset as can be
observed in the EEG data. However, the MEG data does provide
evidence for a preMMF originating from the SMA that builds up
about 6 s before the response that indicates the end of the interval
is given, most likely reflecting preparatory processes.

4.4. CNV amplitude enhancement for shorter duration

The earlier work by Elbert et al. (1991, cf. Gibbons and
Rammsayer, 2004) has shown that the reproductions of shorter
intervals were associated with more negative amplitudes, a find-
ing which is at odds with the assumption that the CNV reflects the
accumulator. Visual inspection of Fig. 3 (right column) indicates
that also in this study, for both the fronto-central and the centro-
parietal CNV, a more negative build-up can be observed for the 2-s
condition than for the 3- and 4-s conditions in RISL and RIRL stages.
To quantify this observation, we performed a cluster-based non-
parametric permutation test implementing MANOVA F-test on the
RISL data for two time periods from 0.3 to 0.6 s (iCNV) and from
1.5 to 2 s (CNV) after the tone indicating the start of RI. We found a
significant cluster for the iCNV (p¼0.035; AFz, F7, F3, Fz, F4, FC5,
FC1, FCz, FC2, C3, Cz, CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8), and
for the CNV (p¼0.045, AFz, F7, F3, Fz, F4, FC5, FC1, FCz, FC2, C3, Cz,
CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8). For the RIRL data,
cluster-based permutations showed significant differences for the
mean activity in last 500 ms of the reproduced interval (p¼0.018;
C3, Cz, CP1, CP2, P3, Pz). No such effects were found for the MEG
data (all p values40.1).

Both iCNV and CNV topographies (Fig. 3) indicate that 2 s
condition is mainly enhanced at the fronto-central sites,
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suggesting that response preparation drives the difference be-
tween conditions (e.g., Lütcke et al., 2009).

Given that the magnetic data does not provide a CNV-like,
steady build up of activation that starts at the interval onset, we
did not perform comparison for time period ranging from 1.5 to
2 s. There was no significant difference for the iCMV time interval
(0.3–0.6 s) among three RI conditions (p40.1).

4.5. Slow fields/potentials correlate with interval timing performance

Previous studies have linked CNV to motor preparation (e.g.,
Loveless and Sanford, 1974). As participants in our study were
asked to terminate the reproduction interval by a key press, the
CNV measured in the RI is likely to index the level of (motor)
preparedness. If CNV and CMV are primarily linked to motor
preparation, larger CNV/CMV amplitude should be associated with
shorter reproduced intervals as higher level of preparedness
should cause faster terminations of the interval. To test this pre-
diction the mean amplitude ranging from 1.5 s to 2 s was taken for
every participant and correlated with the average time reproduc-
tion (see Fig. 8). To obtain the average CMV and CNV amplitude, all
MEG sensors and EEG electrodes that differed from the baseline
were used. The CMV data was based on RMS values to prevent
from canceling out of inflowing and outflowing magnetic fields. To
allow for inclusion of all three reproduction intervals into one
model we used linear mixed models (Pinheiro and Bates, 2006).
The CNV/CMV amplitude and condition were entered as pre-
dictors and subject was used as a random factor and subject was
used as a random factor.

Formal model comparisons showed that the CNV amplitude
measured during the RI predicts the length of reproduced duration
expressed as a ratio between reproduced duration and target
duration (note that no evidence was found for the SI CNV ampli-
tude influencing reproduced duration). This conclusion is based on
a comparison of a model that includes both RI CNV amplitude and
SI duration to a model that only includes an effect of SI duration (2,
3, 4 s). This comparison demonstrated that the inclusion of the
CNV amplitude is justified (ΔAIC¼4, χ2(1)¼ 5.35, p¼0.020), but
extending this model with the interaction term between condition
and CNV amplitude is not warranted (ΔAIC¼4, χ2(2)¼0.42,
p¼0.810). The estimated effect for the CNV amplitude effect was
significant (β¼0.022, F(1,36.7)¼6.4, p¼0.016, based on a Type
3 ANOVA with Satterthwaite approximation of degrees of
Fig. 8. Correlations between the CNV/CMV amplitude and the length of reproduced inte
the CNV/CMV amplitude per participant and per condition.
freedom), as was the factor encoding SI duration (F(1,31.6)¼52.5,
po0.001). Note that the estimated effect for the CNV amplitude is
positive, indicating that the more negative the amplitude, the
shorter the estimated reproduction – a finding at odds with the
hypothesis that the CNV reflects the accumulator.

Although MEG data, shown in the right panel of Fig. 8, resulted
in fairly similar slope lines, the individual data points are much
more scattered. An analogical model fitting procedure as executed
for the CNV data was applied to the MEG data, showing that in-
cluding the MEG amplitude did not improve the fit (ΔAIC¼1.9,
χ2(1)¼0.1, p¼0.752), nor was the inclusion of the interaction be-
tween SI duration and CMV warranted (ΔAIC¼0.9, χ2(1)¼3.12,
p¼0.209).

In line with the above model comparisons, the estimated effect
for MEG amplitude failed to reach significance (β¼-0.001, F(1,
45.3)¼1.3, p¼0.268), but the condition factor did reach sig-
nificance (F(2,32.7)¼46.7, po0.001). These numerical differences
steam from the fact that the mean reproductions used in the CNV
and CMV models differed as trials shorter than 2 s were removed
in the previous analyzes of the MEG data to exclude the influence
of the postMMF on the RISL data. All trials were kept for the ana-
lysis of the CNV. To assess whether MEG amplitudes might im-
prove the fit of the EEG-based models, we extended the best fitting
EEG-model by adding the MEG amplitudes as additional predictor.
However, addition of the MEG data to the model containing CNV
data was not warranted (ΔAIC¼0.7, χ2(2)¼2.78, p¼0.096). As
predicted, the correlation analysis showed that the shorter inter-
vals were associated with larger CNV amplitude. This result is in
line with the notion that the CNV amplitude in the reproduction
stage indexes the level of preparedness.

4.6. iCNV amplitude correlates with interval timing performance

The EEG data in the RI stage, as depicted in Fig. 3, also shows
larger amplitudes for the iCNV when participants reproduced the
2 s interval. This effect suggests that participants initiate pre-
paratory and anticipatory processes right after the first tone onset,
or even before the onset of the reproduction interval (Gaillard and
Näätänen, 1973; Riehle, 1991; Weinrich et al., 1984). If the iCNV
indeed reflects the initial state of preparedness and anticipation,
the measured iCNV should predict the length of the reproduced
duration more accurately for the short (2 s) duration than for the
longer (3 and 4 s) durations. To test this prediction the mean
rval (expressed as ratio between reproduced and target interval). Each point depicts
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amplitude ranging from 0.3 s to 0.6 s was calculated per condition
for every participant, and we assessed to what extend the ampli-
tude predicts the averaged time reproduction (see Fig. 9). In ad-
dition to iCNV amplitude, we also assessed the iCMV amplitude.
The average iCMV and iCNV amplitudes are based on all MEG
sensors and EEG electrodes that differed from the baseline. As for
the CMV analysis, the iCMV data was based on absolute values to
prevent that inflowing and outflowing magnetic fields cancel each
other out. The iCNV or iCMV amplitude and condition were en-
tered as predictors, subject was used as a random factor, and the
average reproduced duration was entered as dependent variable.
To assess whether the predictive value of the iCNV amplitude
differs per condition, we compared a model that included iCNV
amplitude and condition as main effects, and a model that in-
cluded both main effects and the interaction. The more complex
model including interaction term was justified (ΔAIC¼2.6, χ2( 2)¼
6.55, p¼0.038). Closer inspection of the model with the interac-
tion term showed that the estimated effect for the iCNV amplitude
under 2 s condition was significant (β¼0.64, t(37.2)¼3.1,
po0.005). Importantly, in line with the notion that iCNV indexes
initial level of preparation at the onset or event before the onset of
RI, the estimated effect for the iCNV amplitude under 3 s condition
(β¼0.015, t(29.4)¼2.3, p¼0.031) and 4 s (β¼0.014, t(28.7)¼2.2,
p¼0.033) condition was lower as compared to 2 s condition. The
analyses with iCMV as predictor did not result in any significant
effects. Additionally, inclusion of the iCMV data in the model
containing iCNV data was not warranted (ΔAIC¼0.2, χ2(2)¼ 2.17,
p¼0.141). providing an additional point suggesting that the iCNV
and iCMV are functionally different components.
5. Discussion

5.1. Different time courses in CNV and CMV

Although the CNV measured in the encephalogram has been
recognized as a signature of the processes involved in interval
timing (Elbert et al., 1991; Walter et al., 1964; Ruchkin et al., 1977),
both in the context of short (e.g.,o1 s) and long (4 1 s) intervals,
the CMV, the magnetic counterpart of the CNV, has not received
much attention. The work that has compared the CNV and CMV
(N’Diaye et al., 2004), suggests that these measures reflect differ-
ent properties of interval timing tasks. As these previous studies
Fig. 9. Correlations between the iCNV/iCMV amplitude and the length of reproduced int
depicts per participant and per condition iCNV/iCMV amplitude.
focused on short intervals, which are often considered to be dif-
ferent from longer intervals, we investigated slow electric poten-
tials and magnetic fields related to supra-second interval timing by
co-recording magnetic and electric brain signals. While some
studies have shown that the SMA is the main source contributing
to CNV (e.g., Gómez et al., 2007), the status of this structure with
respect to magnetic activity has not been settled (N’Diaye et al.,
2004). To this end, we replicated two classical studies that used
the time reproduction paradigm using supra-second durations
(Elbert et al., 1991; also see Gibbons and Rammsayer (2004)).

Similarly to the previous work, we obtained a clear ramping
activity in the EEG data for both perception (SI) and reproduction
(RI) stages. CNV was obtained irrespective of whether trials were
averaged in stimulus-locked or response-locked manner, and was
maximal at fronto-central locations. These results are in line with
the previous work on which this study was based (Elbert et al.,
1991; Gibbons and Rammsayer, 2004).

With respect to the MEG data, a more diffuse picture emerged.
No magnetic signal related to the encoding of temporal intervals
was found. Nevertheless, the SMA and midfrontal structures were
involved in the reproduction stage. Although the stimulus locked
analysis showed signs of slow rising activity in the MEG data,
these effects were absent in the response locked data. For the
response locked data we found a magnetic field that starts rising
approximately 0.8 s before the key press terminating the timed
interval, whereas the response locked CNV starts to build up ear-
lier. As has been suggested by previous work (e.g., Cheyne et al.,
2006) this slow magnetic field (termed preMMF) is directly related
to late movement preparation. The small effects present in the RISL
might therefore well reflect a smeared preMMF (a hypothesis
supported by the similar source reconstructions of the RISL and
RIRL data), and should therefore be interpreted with caution.

As the CMV-like pattern is caused by smeared preMMF and
originate from the SMA, this work demonstrates the role of mag-
netic fields originating from the SMA in the late stages of re-
production of temporal intervals, however this paradigm does not
allow to distinguish between SMA involvement in motor pre-
paration and motor timing. At the same time this finding is by no
means trivial as the involvement of the SMA in movement gen-
eration has been extensively debated (e.g., Praamstra et al., 1996).
Factors that could enhance the SMA activity in our paradigm, apart
from movement control, of course, could be related to timing and
timing related processes (e.g., Baker et al., 2012) as the time re-
production task demands precise timing of movement.
erval (expressed as ratio between reproduced and target interval). Each single point
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Of course, the activation of the SMA in our task is at odds with
the results of N’Diaye et al. (2004) who did not find any activation
in midfrontal areas. However, as we used a time reproduction task,
the observed SMA activity could be partially driven by the re-
sponse required to end the RI. This interpretation is further sup-
ported by the observation that the evidence for sustained activity
in the SI stage was much weaker than in the RI stage.

Unlike the MEG data, the EEG data provide a signal that is
compatible for RIRL and RISL averages. This compatibility is mani-
fested by the similarity between RIRL and RISL time courses and
their topographies. Therefore, by means of the difference in mor-
phology of the RIRL and RISL plots for the EEG and MEG data, the
CNV can be interpreted as the continuous signal related to timed
interval, whereas the CMV/preMMF signal builds up only prior to
the interval termination. If one assumes that the CNV also re-
presents preparatory processes, it is interesting to note that the
CNV RIRL data showed a much longer (up to 3 s) buildup (Fig. 3,
right column) than the MEG RIRL data. As the preMMF generated in
the SMA has been linked to preparatory processes (Praamstra
et al., 1996), these results suggest that although both electric and
magnetic data might reflect a build up of preparatory processes,
the dissimilarity of associated time-frames hints at different as-
pects of preparation. However, the question remains how these
components relate to the timing performance.

5.2. Amplitude of electromagnetic signals and timing behavior

The secondary goal of this study was to investigate how the
amplitude of slow electromagnetic fields relates to timing per-
formance as it is typically formalized in terms of the information
processing theory of interval timing (Treisman, 1963). This fra-
mework has proposed that the pacemaker emits pulses that are
integrated by the accumulator, a conceptual account of timing that
is the core of many models of interval timing (Gibbon et al., 1984;
Taatgen et al., 2007; Van Rijn and Taatgen, 2008). Importantly, this
process of accumulation of temporal information, so-called
climbing neural activity, has been proposed to be indexed by the
slow brain activity that primarily originates from the SMA and is
instantiated by the CNV (Macar et al., 1999). What processes are
reflected in the CNV, and to what extend they are linked to the
conceptual models of interval timing, have recently become a
subject of a lively debate (e.g., Tamm et al., 2014; Wittmann 2013;
Wiener et al., 2012; Van Rijn et al., 2011). The notion of temporal
accumulation predicts that longer intervals should be associated
with larger amplitude of the CNV. Strikingly, the CNV amplitude in
the RISL and RIRL data was larger under the 2 s condition than
under the 3 s and 4 s conditions. Although the larger amplitude in
the 2 s interval in the RISL data could be caused by the narrower
distribution of responses under the 2 s condition, we also found
enhanced amplitudes for the 2 s interval in the RIRL data, a finding
that cannot be attributed to the wider distributions of time re-
productions for longer intervals. This enhanced CNV amplitude is
clearly at odds with the notion that the CNV originating from the
SMA represents the temporal accumulator (e.g., Herbst et al., 2014;
Macar et al., 1999; Wiener et al., 2012; cf., Bueti and Macaluso,
2011; Kononowicz and Van Rijn, 2011; Ng et al., 2011; Wiener and
Thompson, 2015). Instead, this work provides additional evidence
in support of the notion that the CNV is linked to enhanced pre-
paratory and expectancy processes (Van Rijn et al., 2011). Namely,
the absolute CNV amplitude is negatively correlated with re-
produced durations across subjects. Importantly, as shown by the
model selection, this correlation holds for all the three reproduc-
tion durations

The idea that motor preparation explains the enhanced CNV
amplitude under the 2 s condition is at odds with previous inter-
pretation of similar decrease in the CNV amplitude for longer
intervals (Elbert et al., 1991; cf., Gibbons and Rammsayer, 2004).
Elbert et al. (1991) proposed that timing mechanisms for intervals
longer than 3 s are different from the timing mechanisms for in-
tervals shorter than 3 s. However, the results of the source locali-
zation of the MEG data and topographies of the EEG data do not
support that view. Instead, our data suggest that reproduction of
temporal intervals might differ in terms of timing of engagement
and initiation of preparatory processes as reflected by the CNV.
Importantly, our interpretation is in line with the foreperiod stu-
dies, demonstrating a decrease in the late component of the CNV
amplitude for long intervals (Müller-Gethmann et al., 2003). In the
time reproduction task, similarly to the foreperiod paradigm, ex-
pectancy can be affected by a decrease in the accuracy of internal
timing signal as a temporal interval ages (Gibbon, 1977; Gibbon,
1992; Gibbon et al., 1984). Thus this decreased accuracy of internal
timing signal could influence the CNV amplitude via expectancy or
changes of temporal uncertainty, both of which are expressed in
the modulation of the amplitude of CNA (Trillenberg et al., 2000;
Janssen and Shadlen, 2005). These effects, in turn, suggest that the
late part of the CNV is not exclusively devoted to motor prepara-
tion, but it also exhibits a cognitive-based activity (Baker et al.,
2012; Boehm et al., 2014). Summarizing, these studies support the
view that many different cognitive systems are involved in the
timing of an interval (e.g., Taatgen et al., 2007; Gu et al., (2015)).

Interestingly, a similar line of reasoning holds for the early
component (iCNV). The electric data in the RI stage also showed
larger amplitude for the iCNV, when participants reproduced the
2 s interval. The enhancement of the iCNV can also be explained,
assuming that participants initiate preparatory and anticipatory
processes right after the first tone onset or even before the onset
of the reproduction interval, something that has been supported
using very short foreperiod intervals (Gaillard and Näätänen,
1973). This interpretation is further supported by correlation be-
tween iCNV amplitude and reproduced durations across partici-
pants. Importantly, we showed that this correlation is significantly
stronger in 2 s RI than in the 3 s and 4 s RI, suggesting that on top
of the overall amplitude effect there is also a functional difference
in how initial iCNV process is utilized. Interestingly, Cui et al.
(2009) have found that the signal in the SMA codes for probability
of event occurring at the end of a current delay period, and in-
dexes learned expectations. Although the iCNV effects were pre-
sent at the beginning of temporal interval, it still could reflect
updating of expectancy. In our design the beginning of the re-
production interval is preceded by the presentation of the stan-
dard interval. The expectancy level at the interval onset and
temporal certainty should be higher for the shorter RI, as the
preparation level before the start of the interval is larger for
shorter intervals (Gaillard and Näätänen, 1973; Riehle, 1991;
Weinrich, et al., 1984). Building on that, our results could suggest
that the enhancement of the iCNV component is related to the
enhanced expectancy for an internal signal that will impact timing
of the response (c.f., Kononowicz, 2015).

The CNV that we have found in the RI phase should be dis-
tinguished from the SI phase, as these two stages of time re-
production task have different cognitive demands. This is sup-
ported by more frontal distribution of the CNV in the SI stage.
Frontal activations have been associated with cognitive and an-
ticipatory processes (Brunia, 1988, 1999; Brunia and Van Boxtel,
2001; Leynes et al., 1998). The fMRI studies also localized this
anticipatory activity in the frontal regions, especially the inferior
frontal gyrus (Coull et al., 2013; Macar, et al., 2006; Wencil et al.,
2010). As participants are not required to react in the SI interval, it
is unlikely that the buildup is driven by motor preparation. For the
MEG data, we did not identify any consistent pattern of ramping
activity in the SI stage.

As the setup used in this study does not allow for the reliable
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source localization based on the EEG data, further studies should
utilize more dense EEG recordings (Acar and Makeig, 2013). To-
gether with MEG signals, they could be utilized for a combined
source reconstruction which should significantly increase the
spatial precision of sources involved in the interval timing (Palva
et al., 2010; Huotilainen et al., 1998). It is also important to con-
sider the type of MEG sensors used. Both the current study and the
study by N’Diaye et al. (2004) employed magnetometers. However,
Noguchi and Kakigi (2006) used planar gradiometers, which might
have allowed them to find slow magnetic shifts. Moreover, in the
context of unraveling weak magnetic fields from the SMA and
ACC it may be crucial for future studies to obtain individual brain
scans that can tremendously improve the accuracy of source
reconstruction.

To summarize, in line with N’Diaye’s et al. (2004) we found
different activity patterns for the CNV and the CMV data, sup-
porting the conclusion that the CNV signal might be a better
marker for the investigation of the continuous preparatory pro-
cesses in interval timing than the CMV. However, the MEG signal
may be especially useful and advantageous over the EEG signal
when investigating late stages of preparatory and anticipatory
(motor) processes, or decisions involved in timing (Gaillard, 1976;
Ikeda et al., 1997).
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