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Input-to-State Stabilizing Control
Under Denial-of-Service

Claudio De Persis and Pietro Tesi

Abstract—The issue of cyber-security has become ever more
prevalent in the analysis and design of networked systems. In
this paper, we analyze networked control systems in the presence
of denial-of-service (DoS) attacks, namely attacks that prevent
transmissions over the network. We characterize frequency and
duration of the DoS attacks under which input-to-state stability
(ISS) of the closed-loop system can be preserved. To achieve ISS,
a suitable scheduling of the transmission times is determined. It is
shown that the considered framework is flexible enough so as to
allow the designer to choose from several implementation options
that can be used for trading-off performance versus communica-
tion resources. Examples are given to substantiate the analysis.

Index Terms— Cyber-physical systems , networked control sys-
tems , switched systems.

I. INTRODUCTION

R ECENT years have witnessed a growing interest towards
cyber-physical systems (CPSs), i.e., systems with a tight

conjoining of computational and physical resources. Their field
of application is immense, ranging from autonomous vehicles
and supply chains to power and transportation networks. Many
of these applications are safety-critical. This has triggered
considerable attention to networked systems in the presence
of attacks, bringing the question of cyber-security into filtering
and control theories [1], [2].

As argued in [1] and [2], security in CPSs drastically differs
from security in general-purpose computing systems. In CPSs,
attacks can in fact cause disruptions that transcend the cyber
realm and affect the physical world. For instance, if a critical
process is open-loop unstable, failures in the plant-controller
communication network can result in environmental damages.
Control theory, on the other hand, is typically concerned with
well-defined uncertainties or faults. In fact, most of networked
control approaches assume that the communication failures
follow a given class of probability distributions [3], [4], which
is hardly justified in case of a malicious adversary.
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In a networked control system, attacks to the communication
links can be classified as either deception attacks or denial-of-
service (DoS) attacks. The former affect the trustworthiness of
data by manipulating the packets transmitted over the network;
see [5]–[9] and the references therein. DoS attacks are instead
primarily intended to affect the timeliness of the information
exchange, i.e., to cause packet losses; see for instance [10], [11]
for an introduction to the topic.

This paper is concerned with DoS attacks We consider
a sampled-data control system in which the plant-controller
communication is networked; the attacker objective is to induce
instability in the control system by denying communication on
measurement (sensor-to-controller) and control (controller-to-
actuator) channels. Under DoS attacks, the process evolves in
open-loop according to the last transmitted control sample. The
problem of interest is that of finding conditions under which
closed-loop stability, in some suitably defined sense, can be
preserved.

A basic question for this problem is concerned with the
modeling of the DoS attacks. As previously noted, it is hard
to justify the incentive for an attacker to follow a probabilistic
packet drop model. In this paper, no assumption is made
regarding the DoS attack underlying strategy. We consider a
general attack model that only constrains the attacker action in
time by posing limitations on the frequency of DoS attacks and
their duration. This makes it possible to capture many different
types of DoS attacks, including trivial, periodic, random and
protocol-aware jamming attacks [11]–[14].

One contribution of this paper is an explicit characterization
of the frequency and duration of DoS attacks under which
closed-loop stability can be preserved. The result is intuitive
as it relates stability with the ratio between the on/off periods
of jamming. The analysis taken here is reminiscent of stability
problems for switching systems [15], a modeling tool which has
already proved effective in networked systems [16]–[18]. In this
paper, however, the peculiarity of the problem under study leads
to specific design solutions.

In this paper, in fact, the design of the transmission times
turns out to be key. To get stability, the transmission times
are selected in such a way that, whenever communication is
possible, the closed-loop trajectories satisfy a suitable norm
bound. Such a choice has two main advantages: i) it can ensure
global exponential input-to-state stability (ISS) with respect to
process disturbances even in the presence of DoS; and ii) it
is flexible enough so as to allow the designer to choose from
several implementation options that can be used for trading-
off performance versus communication resources. The design
of the network transmission times has interesting and perhaps

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on February 21,2022 at 11:08:49 UTC from IEEE Xplore.  Restrictions apply. 



DE PERSIS AND TESI: INPUT-TO-STATE STABILIZING CONTROL UNDER DENIAL-OF-SERVICE 2931

surprising connections with the event-based sampling approach
of [19], though substantial modifications are needed to account
for the presence of DoS and disturbances. More specifically, the
adoption of sampling rules that suitably constrain the closed-
loop trajectories is crucial for achieving a simple Lyapunov-
based analysis of the ISS property during the on/off periods
of DoS.

In the control literature, contributions to this research topic
have been reported in [20]–[25]. In [20] and [21], the authors
consider the problem of finding optimal control policies when
DoS attacks either evolve according to a Bernoulli process
or follow a hidden Markov process model. As noted, such a
problem is however more close to classical networked control
systems literature. A scenario more similar to the present one
is considered in [22] and [23], where the problem is to find
optimal control and attack strategies assuming a maximum
number of jamming actions over a prescribed (finite) control
horizon. There are two main differences with respect to our
framework: in [22] and [23], the authors consider a pure
discrete-time setting, while here we deal with sampled-data
networked systems and the performance analysis is concerned
with the continuous-time process state. Second, we do not
formulate the problem as an optimal control design problem.
The controller can be designed according to any suitable design
method, robustness against DoS attacks being achieved thanks
to the design of the network transmission times.

Perhaps, the closest references to our work are [24] and [25].
In that papers, the authors consider DoS attacks in the form of
pulse-width modulated signals. The goal is to identify salient
features of the DoS signal such as maximum on/off cycle in
order to suitably scheduling the transmission times. For the
case of periodic jamming (of unknown period and duration), an
identification algorithm is derived which makes it possible to
de-synchronize the transmission times from the on periods of
DoS. This framework should be therefore looked at as comple-
mentary more than alternative to the present one, since dealing
with cases where the jamming signal is “well-structured” so
that de-synchronization from attacks can be achieved. Such
a feature is conceptually impossible to achieve in scenarios
such as the one considered in this paper, where the jamming
strategy is not prefixed (the attacker can modify on-line the
attack strategy).

The remainder of this paper is organized as follows. In
Section II, we describe the framework of interest and formulate
the control problem. In Section III, we introduce a class of
sampling logics that achieve ISS in the absence of DoS. The
main results along with a characterization of the considered
class of DoS signals are given in Section IV. Simplifications
that arise in the disturbance-free case are also discussed. In
Section V, we discuss implementation issues and present a
number of sampling strategies that can be used for trading-
off performance versus communication resources. A discussion
of the results is given in Section VI along with a number of
examples. Section VII ends the paper with concluding remarks.

Notation: We denote by R the set of reals. Given α ∈ R, we
let R>α(R≥α) denote the set of reals greater than (greater than
or equal to) α. We let N denote the set of natural numbers and
define N0 := N ∪ {0}. Given a vector v ∈ R

n, ‖v‖ is its Eu-

TABLE I
TABLE OF NOTATIONS

Fig. 1. Block diagram of the closed-loop system.

clidean norm. Given a matrix M , M� is its transpose and ‖M‖
is its spectral norm. Given two sets A and B, we denote by B\A
the relative complement of A in B, i.e., the set of all elements
belonging to B, but not to A. Given a set A and a function
f : A �→ R≥0, we use the convention supx∈A f(x) = 0 when
A is empty. Given a measurable time function f : R≥0 �→ R

n

and a time interval [0, t) we denote the L∞ norm of f(·) on
[0, t) by ‖ft‖∞ := ess sups∈[0,t)‖f(s)‖. Finally, we denote by
L∞(R≥0) the set of measurable and essentially bounded time
functions on R≥0.

Table I summarizes the notation most frequently used
throughout the remainder of the paper.

II. THE FRAMEWORK

A. Process Dynamics and Ideal Control Action

The framework of interest is schematically represented in
Fig. 1. The process to be controlled is described by the differ-
ential equation

d

dt
x(t) = Ax(t) +Bu(t) + w(t) (1)
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where t ∈ R≥0; x ∈ R
n is the state and u ∈ R

m is the control
input; A and B are matrices of appropriate size; w ∈ R

n is an
unknown disturbance: it accounts for process input disturbances
as well as noises on control (controller-to-actuator) and mea-
surement (sensor-to-controller) channels.

The control action is implemented over a sensor/actuator
network. We assume that (A,B) is stabilizable and that a
state-feedback matrix K has been designed in such a way that
all the eigenvalues of A+BK have negative real part. The
control signal is sampled using a sample-and-hold device. Let
{tk}k∈N0

, where t0 := 0 by convention, represent the sequence
of time instants at which it is desired to update the control
action. Accordingly, whatever the logic generating the sequence
{tk}k∈N0

, in the ideal situation where data can be sent and
received at any desired instant of time, the control input applied
to the process is given by

uideal(t) = Kx(tk) (2)

for all t ∈ Ik := [tk, tk+1[.

B. DoS and Actual Control Action

We refer to Denial-of-Service (DoS) as the phenomenon that
may prevent (2) from being executed at each desired time. In
principle, this phenomenon can affect measurement and control
channels separately. In this paper, we consider the case of
DoS simultaneously affecting both measurement and control
channels. This amounts to assuming that, in the presence of
DoS, data can be neither sent nor received. Specifically, let
{hn}n∈N0

, where h0 ≥ 0, denote the sequence of DoS off/on
transitions, i.e., the time instants at which DoS exhibits a
transition from zero (communication is possible) to one (com-
munication is interrupted). Then

Hn := {hn} ∪ [hn, hn + τn[ (3)

represents the nth DoS time-interval, of a length τn ∈ R≥0,
over which communication is not possible. If τn = 0, the nth
DoS takes the form of a single pulse at time hn.

In the presence of DoS, the actuator generates an input that is
based on the most recently received control signal. Given τ, t ∈
R≥0 with t ≥ τ , let

Ξ(τ, t) :=
⋃

n∈N0

Hn

⋂
[τ, t] (4)

Θ(τ, t) := [τ, t] \ Ξ(τ, t). (5)

In words, for each interval [τ, t], Ξ(τ, t) and Θ(τ, t) repre-
sent the sets of time instants where communication is denied
and allowed, respectively. The reason for considering generic
intervals [τ, t] rather than simply [0, t] will become clear in
Section IV. Accordingly, for each t ∈ R≥0, the control input
applied to the process can be expressed as

u(t) = Kx
(
tk(t)

)
(6)

where

k(t) :=

{
−1, if Θ(0, t) = ∅
sup{k ∈ N0 | tk ∈ Θ(0, t)} , otherwise.

(7)

In words, for each t ∈ R≥0, k(t) represents the last successful
control update. Notice that h0 = 0 implies k(0) = −1, which
raises the question of assigning a value to the control input
when communication is not possible at the process start-up. In
this respect, we assume that when h0 = 0 then u(0) = 0, and
let x(t−1) := 0 for notational consistency.

C. Control Objectives

The problem of interest is that of finding sampling logics
that achieve robustness against DoS, while ensuring that the
control inter-execution times are bounded away from zero.
While robustness is concerned with stability and performance
of the closed-loop system, positive inter-execution times are
required for the control scheme to be physically implementable
over a network.

The following definitions reflect the stated goals.
Definition 1: (cf. [26]) Let Σ be the control system resulting

from (1) under a control signal as in (6). System Σ is said
to be input-to-state stable (ISS) if there exist a KL-function
β and a K∞-function γ such that, for each w ∈ L∞(R≥0)
and x(0) ∈ R

n

‖x(t)‖ ≤ β (‖x(0)‖ , t) + γ (‖wt‖∞) (8)

for all t ∈ R≥0. If (8) holds when w ≡ 0, then Σ is said to be
globally asymptotically stable (GAS). �

Definition 2: A control update sequence {tk}k∈N0
is said to

have the finite sampling rate property if there exists Δ ∈ R>0

such that

Δk := tk+1 − tk ≥ Δ (9)

for all k ∈ N0. �
Here and in the sequel, it is understood that the network can

send information at the sample rate induced by Δ.

III. STABILIZING CONTROL UPDATE POLICIES

We first introduce a class of control update policies ensuring
ISS in the absence of DoS. The results will serve as a basis for
the developments of Section IV.

Consider the closed-loop system resulting from (1) under a
control signal as in (6). As a first step, we rewrite it in a form
that is better suited for analysis purposes. Let

e(t) := x
(
tk(t)

)
− x(t) (10)

where t ∈ R≥0, represent the error between the value of the
process state at the last successful control update and the value
of the process state at the current time. The closed-loop system
can be therefore rewritten as

d

dt
x(t) = Φx(t) +BKe(t) + w(t) (11)
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where Φ := A+BK.
The closed-loop system now depends on the control update

rule through e, which enters the dynamics as an additional
disturbance term. It is then intuitively clear that stability will
not be destroyed if one adopts control update rules that keep
e small in a suitable sense. The notion of “smallness” here
considered, which characterizes the control update rules of
interest, is expressed in terms of the following boundedness
inequality:

‖e(t)‖ ≤ σ ‖x(t)‖+ σ‖wt‖∞ (12)

where σ ∈ R>0 is a suitable design parameter. We anticipate
that (12) is not the control update rule we are going to im-
plement, because of its dependence on the supremum norm
of the disturbance w, that in general unknown. We will rather
adopt different update rules that guarantee that (12) is always
satisfied. Such different update rules, motivated by Lemma 1
below, are discussed in detail in Section V.

As next result shows, provided that σ is suitably chosen, any
control update rule that restricts e to satisfy (12) is stabilizing.
This can be proved by resorting to standard Lyapunov argu-
ments. Given any positive definite matrix Q = Q� ∈ R

n×n, let
P be the unique solution of the Lyapunov equation

Φ�P + PΦ+Q = 0. (13)

Then, by taking V (x) = x�Px as a Lyapunov function, and
computing it along the solution of (11), it is simple to verify
that

α1 ‖x(t)‖2 ≤ V (x(t)) ≤ α2 ‖x(t)‖2 (14a)

d

dt
V (x(t)) ≤ −γ1 ‖x(t)‖2 + γ2 ‖x(t)‖ ‖e(t)‖

+ γ3 ‖x(t)‖ ‖w(t)‖ (14b)

hold for all t ∈ R≥0, with α1 and α2 equal to the smallest
and largest eigenvalue of P , respectively, γ1 equal to the
smallest eigenvalue of Q, γ2 := ‖2PBK‖ and γ3 := ‖2P‖. It
is then immediate to see that, under (12), the second of (14)
does always satisfy a dissipation-like inequality whenever σ is
chosen small enough.

Theorem 1: Consider the control system Σ composed of (1)
and control input (6), where K is such that all the eigenvalues of
Φ = A+BK have negative real part. Given any positive sym-
metric definite matrix Q ∈ R

n×n, let P be the unique solution
of the Lyapunov equation Φ�P + PΦ+Q = 0. Let V (x) =
x�Px. Consider any control update sequence occurring at a
finite sampling rate and satisfying (12) for all t ∈ R≥0, with
σ such that

γ1 − σγ2 > 0 (15)

where γ1 and γ2 are as in (14b). Then, Σ is ISS.
Proof: See the Appendix. �

Inequality (15) can always be satisfied by selecting σ suf-
ficiently small in that γ1 > 0. Given any σ satisfying (15),
the only question that arises is on the possibility of designing
sampling logics that guarantee (12) with finite-sampling rate.

As next result shows, in the absence of DoS, this is always
possible. Given a matrix M ∈ R

n×n, let

μM := max

{
λ| λ ∈ spectrum

{
(M +M�)

2

}}
(16)

denote the logarithmic norm of M [27].
Lemma 1: Consider the same notation as in Theorem 1.

Then, in the absence of DoS, any control update rule with inter-
sampling times smaller than or equal to

Δ̄σ :=

(
σ

1 + σ

)
1

max {‖Φ‖, 1} (17)

when μA ≤ 0, and

Δ̄σ :=
1

μA
log

[(
σ

1 + σ

)
1

max {‖Φ‖, 1}μA + 1

]
(18)

when μA > 0, satisfies (12) for all t ∈ R≥0.
Proof: See the Appendix. �

Remark 1: A boundedness inequality similar to (12) was
considered by [19] in the context of event-based control for
disturbance-free processes. The difference here lies in the
bound imposed on e, which is dictated by the need to take
into account w. With Lemma 1, we explicitly determine inter-
sampling times that ensure (12) without prior knowledge of
an upper-bound on w. A detailed discussion on sampling logic
based on Lemma 1 is given in Section V. �

IV. INPUT-TO-STATE STABILITY UNDER

DENIAL-OF-SERVICE

The analysis of Section III relies on the possibility to satisfy
condition (12) for all t ∈ R≥0. According to Lemma 1, in the
absence of DoS, this is always possible. In the presence of DoS
the analysis becomes more involved since certain control up-
date attempts need not be successful, no matter how we sample.
Failing to reset e may cause (12) to be violated and stability
can be lost in that (14b) need no longer satisfy a dissipation-
like inequality. Thus, a natural question arises on how the
conclusions of Theorem 1 can be extended so as to account for
the presence of DoS. The remainder of this section is devoted to
address this question. In Section IV-A, we introduce and discuss
the class of DoS signals under consideration. The main result is
given in Section IV-B. An interesting simplification arising in
the disturbance-free case is discussed in Section IV-C.

A. Assumptions—Time-Constrained Denial-of-Service

The first question to be addressed is that of determining the
amount of DoS that a system can tolerate before undergoing
instability. In this respect, it is simple to see that such an amount
is not arbitrary, and that suitable conditions must be imposed
on both DoS frequency and duration. To maintain continuity, a
detailed discussion on the assumptions to follow is postponed
to Section VI.

1) DoS Frequency: Consider first the frequency at which
DoS can occur, and let Λn := hn+1 − hn, n ∈ N0, denote the
time elapsing between any two successive DoS triggering. One
immediately sees that if Λn ≤ Δ for all n ∈ N0 (DoS can

Authorized licensed use limited to: University of Groningen. Downloaded on February 21,2022 at 11:08:49 UTC from IEEE Xplore.  Restrictions apply. 



2934 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 11, NOVEMBER 2015

Fig. 2. Example of DoS signal. Off/on transitions are represented as ↑,
while on/off transitions are represented as ↓. Off/on transitions occur at
3 s, 9 s, and 18.5 s and the corresponding DoS intervals have duration 3 s, 4 s,
and 1.5 s, respectively. This yields for instance: n(0, 1) = 0, n(1, 10) = 2
and n(10, 20) = 1, while Ξ(0, 1) = ∅, Ξ(1, 10) = [3, 6[∪[9, 10[, and
Ξ(10, 20) = [10, 13[∪[18.5, 20[.

occur at the same rate as the minimum possible sampling rate
Δ) then stability can be lost regardless of the adopted control
update policy. It is intuitively clear that, in order to get stability,
the frequency at which DoS can occur must be sufficiently
small compared to the minimum sampling rate. As discussed
in Section VI, a natural way to express this requirement is via
the concept of average dwell-time, as introduced by [28]. Given
τ, t ∈ R≥0 with t ≥ τ , let n(τ, t) denote the number of DoS
off/on transitions occurring on the interval [τ, t[.

Assumption 1—(DoS Frequency): There exist η ∈ R≥0 and
τD ∈ R>Δ such that

n(τ, t) ≤ η +
t− τ

τD
(19)

for all τ, t ∈ R≥0 with t ≥ τ . �
2) DoS Duration: In addition to the DoS frequency, one

also need to constrain the DoS duration, namely the length of
the intervals over which communication is interrupted. To see
this, consider for example a DoS sequence consisting of the
singleton {h0}. Assumption 1 is clearly satisfied with η ≥ 1.
However, if H0 = R≥0 (communication is never possible) then
stability is lost regardless of the adopted control update policy.
Recalling the definition of Ξ(τ, t) in (4), the assumption that
follows provides a quite natural counterpart of Assumption 1
with respect to the DoS duration.

Assumption 2—(DoS Duration): There exist κ ∈ R≥0 and
T ∈ R>1 such that

|Ξ(τ, t)| ≤ κ+
t− τ

T
(20)

for all τ, t ∈ R≥0 with t ≥ τ . �
Fig. 2 exemplifies values of n(τ, t) and Ξ(τ, t) for a given

DoS pattern.
Remark 2: Assumption 1 and 2 specify the class of DoS

signals that will be considered throughout the remainder of this
paper. It is worth noting that no assumption is made on the
information available to the attacker about the process dynam-
ics, state-feedback matrix and sampling logic. The assumptions
do only constrain DoS in terms of its frequency and duration.
Limiting the DoS frequency and duration, in addition to render
the control problem meaningful, does also have a practical
motivation. In fact, there are several provisions that can be
taken in order to mitigate DoS attacks, including spreading
techniques and high-pass filtering; e.g., see [10], [13], [14].

These provisions decrease the chance that a DoS attack will
be successful, and, as such, limit in practice the frequency and
duration of the time intervals over which communication is
effectively denied. �

B. ISS Under Denial-of-Service

We are now in position to derive the main result of this sec-
tion, which can be expressed in words as follows: any control
update rule attaining the conditions of Lemma 1 preserves ISS
for any DoS signal that satisfies Assumption 1 and 2 with τD
and T sufficiently large. Although the proof of this result is
rather involved, the underlying approach is very intuitive. We
decompose the time axis into intervals where it possible to
satisfy (12) and intervals where, due to the occurrence of DoS,
(12) need not hold. We then analyze the closed-loop dynamics
as a system switching between stable and unstable modes, and
determine values of τD and T under which the stable behavior
is predominant with respect to the unstable one.

Consider a sequence {tk}k∈N0
of sampling times, along with

a DoS sequence {hn}n∈N0
. Let

S :=

{
k ∈ N0 | tk ∈

⋃
n∈N0

Hn

}
(21)

denote the set of integers related to a control update attempt
occurring under DoS.

The following result holds.
Theorem 2: Consider the control system Σ composed of (1)

and control input (6), where K is such that all the eigenvalues of
Φ = A+BK have negative real part. Given any positive sym-
metric definite matrix Q ∈ R

n×n, let P be the unique solution
of the Lyapunov equation Φ�P + PΦ+Q = 0. Let V (x) =
x�Px. Consider any control update sequence occurring at a
finite sampling rate and with inter-sampling times smaller than
or equal to Δ̄σ as in Lemma 1, with σ satisfying (15). Consider
any DoS sequence satisfying Assumption 1 and 2 with arbitrary
η and κ, and with τD and T such that

Δ∗
τD

+
1

T
<

ω1

ω1 + ω2
(22)

where Δ∗ is a nonnegative constant satisfying

sup
k∈S

Δk ≤ Δ∗ (23)

Δk is as in (9), ω1 := (γ1 − γ2σ)/2α2 and ω2 := 2γ2/α1,
where α1, α2, γ1 and γ2 are as in (14). Then, Σ is ISS.

Proof: See the Appendix. �
In connection with (23), we note that, in accordance with the

adopted notation, supk∈S Δk = 0 when S = ∅.
Remark 3—(Performance Bounds): The considered class

of sampling logics provides quite strong stability properties,
namely exponential ISS with linear bounds on the disturbance-
to-state map. In particular, from the proof of Theorem 2 one has

‖x(t)‖ ≤
√

α2

α1
e

κ∗(ω1+ω2)

2 e−( β∗
2 )t ‖x(0)‖

+
√
δ∗

[
1 + 2eκ∗(ω1+ω2)

eβ∗τDη

1− e−β∗τD

] 1
2

‖wt‖∞. (24)
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where

κ∗ := κ+ (1 + η)Δ∗ (25)

β∗ := ω1 − (ω1 + ω2)

(
Δ∗
τD

+
1

T

)
(26)

δ∗ :=
(γ3 + γ2σ)

2

(γ1 − γ2σ)
max

{
α2

α1(γ1 − γ2σ)
,

1

4γ2

}
(27)

with α1, α2, γ1, γ2 and γ3 as in (14). One sees that the conver-
gence rate of the closed-loop dynamics as well as the amount
of DoS that one can tolerate can be increased by decreasing
the sampling rate upon the DoS occurrence, i.e., by decreasing
Δ∗. We will discuss a number of sampling logics exploiting this
property in Section V. �

Remark 4—(DoS-Induced Actuation Delay): Decreasing Δ∗
can also by viewed as reducing the DoS-induced actuation de-
lay. Assume for instance that the kth sampling instant belongs
to S . Since tk ∈ S , the process will evolve in open-loop under
out-of-date control up to time tk+1, even if DoS ceases before
tk+1. Thus decreasing Δ∗ has the effect of reducing the delay
in the actuation of the new control sample. In general, due
to the finite sampling rate, such a delay is non-zero. In fact,
Δ∗ = 0 only in two cases. The first one is when S = ∅. Such
a case is not interesting since if S = ∅, then DoS is ineffective
and ISS follows directly from Theorem 1. The second case
is when S �= ∅ and, for each DoS interval Hn containing a
tk, the control update is scheduled exactly at hn + τn. This
case is, however, unrealistic since hn and τn are unknown. The
case S �= ∅ and Δ∗ = 0 becomes of interest when considering
control under DoS in a purely continuous-time framework. In
fact, if the control action is continuous then Δ∗ = Δ̄σ = 0.
Under such circumstances, (22) reduces to 1/T < ω1/(ω1 +
ω2), which is independent of τD. In fact, in a continuous-time
setting, slow-on-the-average DoS in the form of pulses has no
effect on closed-loop stability. �

C. Disturbance-Free Case

An interesting simplification arises in the disturbance-free
case. Specifically, when w ≡ 0 then Assumptions 1 and 2 can
be relaxed as follows (to maintain continuity, a discussion on
these relaxations is postponed to Section VI).

Assumption 3—(DoS Frequency—Disturbance-Free Case):
There exist η ∈ R≥0 and τD ∈ R>Δ such that

n(0, t) ≤ η +
t

τD
(28)

for all t ∈ R≥0. �
Assumption 4—(DoS Duration—Disturbance-Free Case):

There exist κ ∈ R≥0 and T ∈ R>1 such that

|Ξ(0, t)| ≤ κ+
t

T
(29)

for all t ∈ R≥0. �
The following result holds.
Corollary 1: Consider the control system Σ composed of (1)

and control input (6), where K is such that all the eigenvalues of

Φ = A+BK have negative real part. Given any positive sym-
metric definite matrix Q ∈ R

n×n, let P be the unique solution
of the Lyapunov equation Φ�P + PΦ+Q = 0. Let V (x) =
x�Px. Consider any control update sequence occurring at a
finite sampling rate and with inter-sampling times smaller than
or equal to Δ̄σ as in Lemma 1, with σ as in (15). Consider any
DoS sequence satisfying Assumption 3 and 4 with arbitrary η
and κ, and with τD and T satisfying (22). Then, Σ is GAS.

Proof: See the Appendix. �
Following the same lines as in Remark 3, it is easy to

see that the convergence rate of the closed-loop trajectories is
exponential.

V. RESILIENT CONTROL LOGICS

The considered framework is flexible enough so as to allow
the designer to choose from several implementation options
that can be used to tradeoff performance versus communica-
tion resources. Although the solutions described in the sequel
originate from fundamentally different logics, they exhibit the
common feature of resilience, by which we mean the ability
to adapt the sampling rate to the occurrence of DoS and,
sometimes, to the closed-loop behavior. Hereafter, only few
sampling logics will be discussed. Combinations and variants
thereof can be easily envisaged.

A. Periodic Sampling Logics

The simplest architecture one can think of for implementing
the control action is through periodic sampling. In accordance
with Theorem 2, the sampling rate affects the amount of DoS
that one can tolerate via (22). Since (22) does only depend on
the sampling rate which is adopted during DoS, a convenient
strategy consists in making use of a two-mode switching rule,
where, upon DoS, the sampling rate is increased so as to reduce
the DoS-induced delay.

Proposition 1: Let δ1 and δ2 be positive constants such that
δ1 ≤ δ2 ≤ Δ̄σ , where Δ̄σ is as in Lemma 1. For each k ∈ N0,
let the sampling times be given by

tk+1 =

{
tk + δ1, if k ∈ S
tk + δ2, otherwise

(30)

where S is as in (21). If the conditions of Theorem 2 hold true
with Δ∗ = δ1, then the control system Σ composed of (1) and
(6) is ISS. Moreover, the inter-sampling times are bounded from
below by Δ = δ1.

Proof: By (30), the control update occurs at finite time
with inter-sampling time not larger than δ2 ≤ Δ̄σ . Hence, ISS
descends immediately from Theorem 2. The bounds on Δ∗ and
Δ hold by construction. �

B. Event-Based/Periodic Sampling Logics

As discussed in [19], [29], and [30], event-based sampling is
a very effective solution for saving communication resources.
The basic idea is that periodic sampling can be relaxed by
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triggering the control updates only when certain conditions
(events) are met. In its basic formulation, this is achieved by
measuring continuously the state x and triggering a control
update whenever

‖x(tk)− x(t)‖ = σ ‖x(t)‖ (31)

where σ is as in (15). In the disturbance-free case, this allows
for less frequent sampling, while preserving the existence of
a lower bound Δ on the inter-execution times, which can be
computed as the time satisfying φ(Δ) = σ, where φ(t) is the
unique solution of the generalized scalar Riccati equation

d

dt
φ(t) = ‖Φ‖+ (‖Φ‖+ ‖BK‖)φ(t) + ‖BK‖φ2(t) (32)

with initialization φ(0) = 0. A similar reasoning, though with
some noticeable differences, can be adopted also in the present
context. Specifically, a suitable strategy still consists of a two-
mode switching rule: in the absence of DoS, sampling is based
on (31); upon DoS occurrence, the sampling rate is increased
so as to reduce the DoS-induced delay. Notice that in this case
there is no need to enforce the upper-bound Δ̄σ on the sampling
rate since (31) automatically implies (12). However, since (31)
in general guarantees nonzero inter-execution times only in the
absence of disturbances, a lower-bound on the sampling rate
must be imposed a priori.

Let

ρk := inf {t ∈ R>tk : ‖x(tk)− x(t)‖ = σ ‖x(t)‖} (33)

for all k ∈ N0. We have at once the following result:
Proposition 2: Let δ1 and δ2 be positive constants such that

δ1 ≤ δ2 ≤ Δ̄σ , where Δ̄σ is as in Lemma 1. For each k ∈ N0,
let the sampling times be given by

tk+1 =

{
tk + δ1, if k ∈ S
tk + δ2, if k �∈ S ∨ ρk < tk + δ2
ρk, otherwise

(34)

where S is as in (21). If the conditions of Theorem 2 hold true
with Δ∗ = δ1, then the control system Σ composed of (1) and
(6) is ISS. Moreover, the inter-sampling times are bounded from
below by Δ = δ1.

Proof: The inter-sampling times associated with (34) are
equal to δ1, δ2, or ρk − tk. By (34), the sampling time tk+1

equals ρk only if k �∈ S . Under such circumstances, since tk
does not belong to any DoS interval, e(t) = x(tk)− x(t) for
all t ∈ [tk, tk+1[, with e(tk) = 0. Hence, if tk+1 = ρk we have
from (33) that ‖e(t)‖ ≤ σ‖x(t)‖ for all t ∈ [tk, tk+1[ since e
in continuous on [tk, tk+1[ and e(tk) = 0. Thus (34) guarantees
that either the inter-sampling times equal δ1 or δ2, in which case
they are not larger than Δ̄σ , or they are equal to ρk in which
case (12) is satisfied. In view of this fact, a minor variation of
Theorem 2 shows the thesis. The bounds on Δ∗ and Δ hold by
construction. �

Interestingly, a logic similar to (34) has been recently con-
sidered in [31] for achieving finite sampling rate in the context
of nonlinear output feedback for event-based controllers.

C. Self-Triggering Sampling Logics

Event-based sampling has the positive feature of potentially
saving communication resources but requires the continuous
monitoring of the process state, and, hence, hardware specif-
ically available for this purpose. An alternative way to relax
periodic implementations consists in selecting Δk based on the
value of the process state at the measurement instants. Logics
of this kind are typically referred to as “self-triggering” in that
the next update instant is computed directly by the control unit;
e.g., see [30], [32].

Given t, τ ∈ R≥0 with t ≥ τ , let

χ(t, τ) :=

⎡
⎣eA(t−τ) +

t∫
τ

eA(t−s)BK ds

⎤
⎦x(τ). (35)

Thus, χ(tk, tk(tk)) provides a prediction of x(tk) based on
the last successful measurement of the process state. Notice
that since the disturbance is not available for measurements,
this prediction cannot take into account the influence of the
disturbance and is an approximate estimate of the actual state.
Define

z(tk) =

{∥∥χ (
tk, tk(tk)

)∥∥ , if k ∈ S
‖x(tk)‖ , otherwise.

(36)

The idea is then to schedule the next control update based on
z(tk), where χ(tk, tk(tk)) replaces x(tk) when the latter is not
available: the larger z(tk) the smaller Δk and vice versa, which
corresponds to increasing the sampling rate as the distance of
the process state from the origin gets larger.1

Proposition 3: Let δ1 and δ2 be positive constants such that
δ1 ≤ δ2 ≤ Δ̄σ , where Δ̄σ is as in Lemma 1. For each k ∈ N0,
let the sampling times be given by

tk+1 = tk + δ2 − (δ2 − δ1)ϕ (z(tk)) (37)

where ϕ : R≥0 �→ [0, 1] is an arbitrary class K function. If the
conditions of Theorem 2 hold true with Δ∗ = δ2, then the
control system Σ composed of (1) and (6) is ISS. Moreover,
the inter-sampling times are bounded from below by Δ = δ1.

Proof: By definition, ϕ takes value in the interval [0, 1]
and therefore the inter-sampling time induced by the control
update rule (37) ranges in the interval [δ1, δ2]. This implies that
the bounds on Δ∗ and Δ hold true. Thus ISS descends directly
from Theorem 2. �

Compared with (30), (37) achieves larger bounds on Δ∗,
hence larger DoS-induced actuation delays. However, it poten-
tially decreases the number of control updates since, upon DoS,
the sampling rate is not set to δ1 but is chosen depending on the
inferred process state magnitude.

1We have implicitly assumed that the sampling logic is located at the
controller side. In case the sampling logic is located at the process side, then
(37) simplifies. In fact, under such circumstances, x can always be assumed to
be available for measurements so that z(tk) reduces to x(tk).
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VI. DISCUSSION AND EXAMPLES

In this section, we discuss in more details the considered
assumptions and provide examples in order to substantiate the
analysis.

A. Slow-on-the-Average DoS: Discussion and Examples

As noted in Section IV-A, both Assumptions 1 and 2 pose
constraints on DoS that are reminiscent of average dwell-time
conditions [28]. In the present context, the rationale behind
Assumption 1 is that occasionally DoS can occur at the same
rate as (even faster than) Δ, i.e., Λn = hn+1 − hn ≤ Δ for
some n ∈ N0, but the average interval between consecutive
DoS triggering is greater than Δ. By (19), one may in fact
have intervals where Λn ≤ Δ; hence, intervals where n(τ, t)
is greater than or equal to the maximum number �(t− τ)/Δ�
of control updates that can be executed over [τ, t[. However,
over large time windows, i.e., when the term (t− τ)/τD is
predominant compared to η, the number of DoS triggering
is at most of the order of (t− τ)/τD, hence smaller than
�(t− τ)/Δ�.

Assumption 2 expresses a similar requirement with respect
to the DoS duration. In fact, it expresses the property that, on
the average, the time instants over which communication is
interrupted do not exceed a certain fraction of time, as specified
by the constant T ∈ R>1. Similarly to η, the constant κ ∈ R≥0

plays the role of a regularization term. It is needed because
during a DoS interval, one has |Ξ(hn, hn + τn)| = τn > τn/T
since T > 1. Hence, κ serves to make (20) consistent.

The considered assumptions are general enough to capture
several different situations, as exemplified hereafter. More com-
plex scenarios can be easily envisaged.

Example 1: In analogy with [23], consider the situation
where, on every interval which contains N communication
attempts, a number M < N of these attempts can be denied. A
simple way to account for this situation is to regard the DoS as
a train of pulses, M of which are superimposed to the sampling
times. This implies that Assumption 2 holds true with κ = 0
and T = ∞. As for Assumption 1, assume a lower bound Δ on
the control executions. One sees that

n(τ, t) ≤
⌈
t− τ

ΔN

⌉
M (38)

for all τ, t ∈ R≥0 with t ≥ τ . Then, for each N , (19) holds
true with η = M and τD = ΔN/M . In connection with
Theorem 2, this means that stability is preserved whenever
(ΔN)/(Δ∗M) > (ω1 + ω2)/ω1. Using logics that sample at
rate Δ upon DoS, then stability is preserved whenever N/M >
(ω1+ω2)/ω1. For instance, this means that if (ω1+ω2)/ω1=5,
then up to the 20% of the communication attempts can be
denied without destroying stability. The value of N affects both
closed-loop performance and robustness against DoS: the larger
N is, the larger is the number of consecutive communication at-
tempts that can be denied without destroying stability. However,
this potentially results in larger overshoots since η = M . �

Example 2: Another interesting scenario is when DoS is
sustained. One can account for this situation by modeling the

DoS signal as a rectangular wave of a (possibly) variable
period and duty cycle [13]. Let Pn and Dn = τn/Pn denote
the period and duty cycle of the nth DoS attack, respec-
tively. Also let Pmin := infn∈N0

Pn, Dmax := supn∈N0
Dn and

τmax := supn∈N0
τn. Suppose that Pmin > Δ, Dmax < 1 and

τmax < ∞. Since the maximum number of off/on transitions
of DoS during the interval [τ, t[ can be upper bounded as
n(τ, t) ≤ �(t− τ)/Pmin�, Assumption 1 holds true with η = 1
and τD = Pmin. Let now

n(t) :=

{
−1, if t < h0

sup{ n ∈ N0|hn ≤ t }, otherwise
(39)

where τ−1 := 0. For any τ, t ∈ R≥0 with t ≥ τ , it is possible to
write

|Ξ(τ, t)| ≤ max
{
0, hn(τ) + τn(τ) − τ

}
+min

{
t− hn(t), τn(t)

}
+Dmax

∑
n∈N0;

hn(τ)<hn;

hn<hn(t)

Pn. (40)

Hence, one sees that Assumption 2 holds true with κ = 2τmax

and T = D−1
max. This example includes as a special case the so-

called periodic jamming where both period and duty cycle are
constant. �

Example 3: In connection with Example 2, we pointed out in
Section IV-A that the requirements Pmin > Δ and Dmax < 1
are in a wide-sense necessary for closed-loop stability unless
other conditions are imposed on DoS (as for τmax < ∞, cf.
Section IV-C). These conditions, however, rule out for example
the possibility of DoS signals with off/on transitions occa-
sionally faster than the maximum transmission rate. Consider
first Assumption 1 and suppose that Pmin > 0. Let f(τ, t) :=
(t− τ)/n(τ, t) represent the average dwell-time of DoS off/on
transitions on [τ, t[. Assume that for some τD ∈ R>Δ, there
exists a γ ∈ R>0 such that

f(τ, τ + γ) ≥ τD (41)

for all τ ∈ R≥0, which implies that the DoS off/on transitions
are slower than Δ on every sufficiently large time-interval.
Then, it is easy to verify that Assumption 1 holds true with
η = �γ/Pmin�. In fact, if t− τ ≤ γ then n(τ, t) ≤ n(τ, τ + γ)
where n(τ, τ + γ) ≤ �γ/Pmin�. If instead t− τ > γ, let m
denote the largest integer m such that mγ < t− τ . Then

n(τ, t) =

m−1∑
k=0

n (τ + kγ, τ + (k + 1)γ)

+ n(τ +mγ, t)

=
m−1∑
k=0

γ/f (τ + kγ, τ + (k + 1)γ)

+ n(τ +mγ, t) ≤ mγ/τD + �γ/Pmin� (42)

as it follows from (41) and the definition of m. Then the claim
follows by recalling that mγ < t− τ . As for Assumption 2,
let D(τ, t) := |Ξ(τ, t)|/(t− τ), which can be thought of as the
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Fig. 3. Simulation example for system (46) under state feedback (48) and sampling logic (37) with δ1 = 0.01, δ2 = 0.1 and ϕ(·) = 2/π arctan(·). Top:
closed-loop state response under initial conditions x = [1− 1]�, disturbance w uniformly distributed in [−1, 1], and sustained DoS attack with variable period
and duty cycle, generated randomly, with Pmin = 0.01 s and Pmax = 10 s. The resulting DoS signal has an average duty cycle of ∼42%. The vertical grey
stripes represent the time-intervals over which DoS is active. Bottom: inter-sampling times determined by the logic (37). In terms of regulation performance, very
similar results are obtained with the other logics described in Section V.

average DoS duty cycle over [τ, t]. Assume that for some T ∈
R>1, there exists a δ ∈ R>0 such that

D(τ, τ + δ) ≤ 1/T (43)

for all τ ∈ R≥0. Reasoning as before, it is simple to verify
that Assumption 2 holds true with κ = δ. In connection with
Example 2, the conditions just stated allows one to consider
more general DoS classes. For instance, let

τave := lim
m→∞

1

m+ 1

m∑
n=0

(hn+1 − hn) (44)

Dave := lim
m→∞

1

m+ 1

m∑
n=0

Dn (45)

denote the average dwell-time of DoS off/on transitions and
the average DoS duty cycle, respectively. Then (41) and (43)
with τD = τave and T = D−1

ave are sufficient to conclude that
the DoS signal is also slow-on-the-average in the sense of
Assumptions 1 and 2 with respect to τave and Dave. �

B. A Numerical Example

For the sake of clarity, a numerical example illustrating the
theory as well as the discussion of Section VI-A is reported.

Consider the following open-loop unstable system [33]

d

dt
x(t) =

[
1 1
0 1

]
x(t) + u(t) + w(t) (46)

under LQR gain

K =

[
−2.1961 −0.7545
−0.7545 −2.7146

]
. (47)

Solution of the Lyapunov equation Φ�P + PΦ+Q = 0 with
Q = I2 yields α1 = 0.2779, α2 = 0.4497, γ1 = 1, and γ2 =
2.1080. From this we deduce that we must select σ such that
σ < 0.4744. Picking for instance σ = 0.26, Lemma 1 yields
Δ̄σ = 0.1005, where ‖Φ‖ = 1.9021 and μA = 1.5. Δ̄σ spec-
ifies the inter-sampling time of maximal length that guarantees
ISS. Further, ω1/(ω1 + ω2) = 0.0321. This latter value deter-
mines the DoS signals which are admissible in accordance
with the present analysis. In connection with Example 1 in
Section VI-A, this means a maximum of ∼3% of communi-
cation denials on the average. As for Example 2 (Example 3),
this implies a maximum (average) duty cycle of ∼3% in case of
a sustained DoS attack. The value obtained for ω1/(ω1 + ω2) is
conservative: as shown in Fig. 3, the bounds can in practice be
much smaller than the theoretical one. This was also confirmed
by extensive simulations.
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Fig. 4. Maximum inter-sampling time and value of ω1/(ω1 + ω2) versus
choice of σ using the LQR gain and Q = I2.

The conservativeness of the bound comes from two main
sources: i) the bounds on the growth of the Lyapunov function
under DoS (cf. (72)–(79)). In this respect, the approach in [34]
which does not rely on Lyapunov functions (albeit restricted
to the disturbance-free case) can provide a possible alternative
to the present analysis; and ii) the generality of the considered
scenario. In fact, tighter bounds are likely to be obtained when
more “structure” is assumed for the DoS. In this respect, inter-
esting results in case of periodic jamming have been recently
reported in [24], [25].

It is interesting to observe that the value of ω1/(ω1 + ω2)
also depends on a number of design parameters. In fact, it
depends on the Lyapunov equation Φ�P + PΦ+Q = 0, and,
as such, on Q and the state-feedback matrix K. For instance, a
choice

K =

[
−4.5 −1
0 −6

]
(48)

achieves a bound ω1/(ω1 + ω2) = 0.0971, thus allowing for an
average duty cycle ∼10% in case of a sustained attack. This
suggests investigation of analytic or numeric methods to find
the Q and K that could maximize robustness against DoS.
In practice, another possibility for increasing ω1/(ω1 + ω2) is
to reduce the value of σ. This, however, has to be traded-off
against the inter-sampling times. For instance, using the LQR
gain and letting Q = I2, the choice σ = 0.1 is sufficient to
increase ω1/(ω1 + ω2) to 0.0547. As an offset, Δ̄σ drops to
0.0462. This phenomenon is illustrated in Fig. 4.

C. Slow-on-the-Average DoS: Disturbance-Free Case

We close with few remarks on the results of Section IV-C.
In the disturbance-free case, both Assumptions 1 and 2 can
be relaxed. In fact, while Assumptions 3 and 4 are similar in
concept, they pose constraints on DoS frequency and duration
which must hold on [0, t) only, rather than on each sub-interval
[τ, t) of [0, t). This makes it possible to face more general DoS

classes, including DoS signals that deny communication for
unbounded periods of time.

Consider for instance the example of Section VI-B along
with a DoS signal given by

hn =(n+ 1) +
1

2
n(n+ 1)− 1

α
(n+ 1)

τn =
1

α
(n+ 1) (49)

where n ∈ N0 and α ∈ R>1. It is straightforward to verify that
the resulting DoS signal satisfies Assumptions 3 and 4 with η =
τD = 1, κ = 0, and T = α. Picking Δ̄σ = 0.01 and recalling
that ω1/(ω1 + ω2) = 0.0321, one sees that (22) holds true for
α ≥ 50. Since the conditions of Corollary 1 are satisfied, then
the closed-loop system is GAS despite the fact that the length
of the DoS intervals grows unbounded with n. This is possible
since, the closer the state is to the origin, the less the effect
of DoS.

In the presence of disturbances, the situation just described
is no longer true since w may always cause the state to deviate
from its nominal trajectory. It is in fact easy to see that for open-
loop unstable systems, no sampling logic exists that achieve
ISS in the presence of unbounded DoS. As for Theorem 2,
boundedness of the DoS intervals is implicit in Assumption 2.
In fact, (4) with τ = hn and t = hn + τn implies supn∈N0

τn ≤
κT/(T − 1).

VII. CONCLUDING REMARKS

We have investigated stability of networked systems in the
presence of DoS attacks. One contribution of this paper is an
explicit characterization of the frequency and duration of DoS
attacks under which closed-loop stability can be preserved. The
result is intuitive as it relates stability with the ratio between the
on/off periods of jamming. An explicit characterization of sam-
pling rules that achieve ISS was given. This characterization
is flexible enough so as to allow the designer to choose from
several implementation options that can be used for trading-off
performance versus communication resources.

The results lend themselves to many possible extensions.
As for the framework considered here, identifying optimal
attack and counter-attack strategies with respect to some pre-
scribed performance objective, represents an interesting re-
search venue. Moreover, we have not investigated the effect of
possible limitations on the information, such quantization and
delays. As additional future research topics, we also envision
the use of similar techniques to handle output feedback con-
trollers as well as nonlinear systems. As for the latter case,
preliminary results have been reported in [35]. Finally, an
interesting research line is to address the case where control
and measurement channels can be interrupted asynchronously.
In this respect, the self-triggering logic described in Section VI,
which relies on predictions of the process state, appears as a
convenient tool for updating the control action in case of DoS
of the measurement channel.

One of the main motivations for considering control over
networks descends from problems of distributed coordination
and control of large-scale systems [36]–[40]. Investigating our
approach to control under DoS for self-triggered coordination

Authorized licensed use limited to: University of Groningen. Downloaded on February 21,2022 at 11:08:49 UTC from IEEE Xplore.  Restrictions apply. 



2940 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 11, NOVEMBER 2015

problems such as those in [40] does also represent an interesting
research venue.

APPENDIX

Proof of Theorem 1: Substituting (12) into (14b) yields

d

dt
V (x(t)) ≤ −γ4 ‖x(t)‖2 + γ5 ‖x(t)‖ v(t) (50)

where v(t) := sup{‖w(t)‖, ‖wt‖∞}, γ4 := (γ1 − σγ2) and
γ5 := (γ3 + σγ2). Here, we recall that γ1 is the minimal
eigenvalue of Q, γ2 = ‖2PBK‖, γ3 = ‖2P‖, and σ < γ1/γ2.
Observe that for any positive real δ, the Young’s inequality (e.g.,
see [41]) yields

2 ‖x(t)‖ v(t) ≤ 1

δ
‖x(t)‖2 + δv2(t). (51)

By letting δ := γ5/γ4, we get

d

dt
V (x(t)) ≤ − γ4

2
‖x(t)‖2 + γ6v(t)

2

≤ − ω1V (x(t)) + γ6v(t)
2 (52)

where ω1 := γ4/(2α2) and γ6 := γ2
5/(2γ4). Note now that

‖vt‖∞ = ‖wt‖∞ for any t ∈ R>0. Thus, standard comparison
results for differential inequalities yield

V (x(t)) ≤ e−ω1tV (x(0)) + γ7‖wt‖2∞ (53)

where γ7 := γ6/ω1. Using (14a), we get

‖x(t)‖2 ≤ α2

α1
e−ω1t ‖x(0)‖2 + γ7

α1
‖wt‖2∞. (54)

Since a2 + b2 ≤ (a+ b)2 for any pair of positive reals a and b,
we finally get

‖x(t)‖ ≤
√

α2

α1
e−(

ω1
2 )t ‖x(0)‖+

√
γ7
α1

‖wt‖∞ (55)

which yields the desired result. �
Proof of Lemma 1: In the absence of DoS, any control

update attempt is successful. Thus, in accordance with (10), the
dynamics of e satisfies

d

dt
e(t) = −Ax(t)−BKx(tk)− w(t)

=Ae(t)− Φx(tk)− w(t) (56)

for all t ∈ Ik and for all k ∈ N0, where e(tk) = 0. Recall now
that ‖eAt‖ ≤ eμAt for all t ∈ R≥0. Using this property we then
have

‖e(t)‖ ≤ κ1

t∫
tk

eμA(t−s) [‖x(tk)‖+ ‖w(s)‖] ds (57)

for all t ∈ Ik and all k ∈ N0, where κ1 := max{‖Φ‖, 1}. Let
f(t− tk) :=

∫ t

tk
eμA(t−s)ds. Using the fact that x(tk) = e(t) +

x(t), we obtain

‖e(t)‖ ≤ κ1f(t− tk) ‖e(t)‖
+κ1f(t− tk) (‖x(t)‖+ ‖wt‖∞) . (58)

Observe now that f(0) = 0 and f(t− tk) is monotonically
increasing with t. Accordingly, for any positive real Δ such that

f(Δ) ≤ 1

κ1

σ

(1 + σ)
(59)

then any control update rule such that Δk ≤ Δ will satisfy (12)
for all t ∈ R≥0. To conclude the proof, we derive an explicit
expression for Δ. Let first μA ≤ 0. In this case, f(Δ) ≤ Δ, so
that (17) yields the desired result. If instead μA > 0, we have

f(Δ) =
1

μA
(eμAΔ − 1) (60)

and (18) yields the desired result. �
Proof of Theorem 2: As pointed out in Section III, the idea

is to decompose the time axis into intervals where it possible to
satisfy (12) and intervals where, due to the occurrence of DoS,
(12) need not hold. We then analyze the closed-loop dynamics
as a system that switches between stable and unstable modes.
For clarity of exposition, the proof is divided into three steps.

Step I. Modeling of the Intervals Related to Stable and
Unstable Dynamics: In this step we characterize the intervals
of time where (12) holds and those where it need not hold.
During these intervals, the closed-loop system evolves obeying
to stable and possibly unstable dynamics, respectively. The
characterization of these intervals is essential for the Lyapunov-
based analysis we carry out in the forthcoming steps and can be
formalized as follows:

Lemma 2: For any τ, t ∈ R≥0, with 0 ≤ τ ≤ t, the interval
[τ, t] is the disjoint union of Θ̄(τ, t) and Ξ̄(τ, t), where Θ̄(τ, t)
(respectively, Ξ̄(τ, t)) is the union of sub-intervals of [τ, t] over
which (12) holds (respectively, need not hold). Specifically,
there exists two sequences of non-negative and positive real
numbers {ζm}m∈N0

, {vm}m∈N0
such that

Ξ̄(τ, t) :=
⋃

m∈N0

Zm ∩ [τ, t] (61)

Θ̄(τ, t) :=
⋃

m∈N0

Wm−1 ∩ [τ, t] (62)

where

Zm := {ζm} ∪ [ζm, ζm + vm[ (63)

Wm := {ζm + vm} ∪ [ζm + vm, ζm+1[ (64)

and where ζ−1 = v−1 := 0.
Proof of Lemma 2: Let Sn := {k ∈ N0|tk ∈ Hn} denote

the set of integers related to a control update attempt occurring
over Hn, n ∈ N0. Define

λn :=

{
τn, if Sn = ∅
tsup{k∈N0:k∈Sn} − hn, otherwise (65)

Λn :=

{
0, if Sn = ∅
Δsup{k∈N0:k∈Sn}, otherwise. (66)

Thus,

H̄n := {hn} ∪ [hn, hn + λn + Λn[ (67)
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specifies the nth time interval where (12) need not hold, which
consists of Hn plus the corresponding DoS-induced actuation
delay. Note that λn + Λn ≥ τn for all n ∈ N0. Notice now that
the intervals H̄n and H̄n+1 may overlap each other in that hn+1

may belong to H̄n. For analysis purposes, it is convenient to
regard these overlapping intervals as a single interval of the
form (63). This can be done by defining an auxiliary sequence
{ζm}m∈N0

, which is recursively defined from {hn}n∈N0
as

follows:

ζ0 := h0 (68)

ζm+1 := inf{ hn > ζm | hn > hn−1 + λn−1 + Λn−1} (69)

for all m ∈ N, and letting

vm :=
∑
n∈N0;

ζm≤hn<ζm+1

|H̄n\H̄n+1| (70)

for all m ∈ N0. Given τ, t ∈ R≥0, define Ξ̄(τ, t) as in (61).
Hence, by construction, Ξ̄(τ, t) represents the union of sub-
intervals of [τ, t] where, due to the occurrence of DoS, (12) need
not hold.

Let Wm be as in (64). Given τ, t ∈ R≥0, let Θ̄(τ, t) as in
(62). Note that over each [τ, t], the sets Ξ̄(τ, t) and Θ̄(τ, t)
are complementary since their union equals [τ, t] and their
intersection is the empty set. Also notice that Θ̄(τ, t) represents
the union of sub-intervals of [τ, t] where (12) holds true. In fact,
by construction, for each m ∈ N0, a successful control update
necessarily occurs at ζm + vm and there is no DoS over Wm.

�
Step II. Lypaunov Function Analysis: Consider the intervals

Wm, m ∈ N0, where (12) holds true by construction. From (53)
we get

V (x(t)) ≤ e−ω1(t−ζm−vm)V (x (ζm + vm)) + γ7‖wt‖2∞
(71)

for all t ∈ Wm and all m ∈ N0. Here and in the sequel, all the
relevant constants are as in the proof of Theorem 1. In par-
ticular, we recall that γ7 = α2(γ3 + σγ2)

2/(γ1 − σγ2)
2 with

σ < γ1/γ2.
Consider next the intervals Zm, m ∈ N0, over which the

inequality (12) does not necessarily hold. To derive a bound
on the growth of V (x(t)) in this case, some intermediate steps
are needed. We first prove that for each m ∈ N0

‖e(t)‖ ≤ (1 + σ) ‖x(ζm)‖+ ‖x(t)‖+ σ‖wt‖∞ (72)

for all t ∈ Zm. Recall that

e(t) = x
(
tk(ζm)

)
− x(t) (73)

for all t ∈ Zm, where x(tk(ζm)) represents the value of the
process state at the last successful control update up to ζm. If
ζ0 = 0, then x(tk(ζ0)) = 0 by definition so that (72) is valid.
Consider next the case ζ0 > 0. By construction, (12) holds true
for all t ∈ Wm. Hence, by continuity of x one has

‖e(ζm)‖ ≤ σ ‖x(ζm)‖+ σ‖wζm‖∞ (74)

for all m ∈ N0. Hence,∥∥x (
tk(ζm)

)
− x(ζm)

∥∥ ≤ σ ‖x(ζm)‖+ σ‖wζm‖∞ (75)

and (72) follows by applying the triangular inequality.
Substituting (72) into (14b) yields

d

dt
V (x(t)) ≤ (γ2 − γ1) ‖x(t)‖2

+ γ2(1 + σ) ‖x(t)‖ ‖x(ζm)‖
+ (γ3 + σγ2) ‖x(t)‖ v(t) (76)

where v(t) := sup{‖w(t)‖, ‖wt‖∞}. We then proceed as in
the proof of Theorem 1. Using (51) with δ = (γ3 + γ2σ)/
(γ1 − σγ2), simple calculations yield

d

dt
V (x(t)) ≤ γ2(1− σ) ‖x(t)‖2

+γ2(1 + σ) ‖x(t)‖ ‖x(ζm)‖+ γ6v
2(t) (77)

where we recall that γ6 = (γ3 + γ2σ)
2/(2(γ1 − σγ2)). Note

that

d

dt
V (x(t))≤ω2 max{V (x(t)) , V (x(ζm))}+ γ6v

2(t) (78)

where ω2 := 2γ2/α1. Since ‖vt‖∞ = ‖wt‖∞ for any t ∈ R≥0,
we then have

V (x(t))≤eω2(t−ζm)V (x(ζm)) + γ8e
ω2(t−ζm)‖wt‖2∞ (79)

for all t ∈ Zm, where γ8 := γ6/ω2.
Combining (71) and (79), we can prove the following result.
Lemma 3: For all t ∈ R≥0, the Lyapunov function satisfies

V (x(t)) ≤ e−ω1|Θ̄(0,t)|eω2|Ξ̄(0,t)|V (x(0))

+γ∗

⎡
⎢⎣1+2

∑
m∈N0;

ζm≤t

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

⎤
⎥⎦‖wt‖2∞ (80)

where γ∗ := max{γ7, γ8}.
Hereafter, in accordance with (62), it is understood that

|Θ̄(ζm + vm, t)| = 0 whenever t < ζm + vm.
Proof of Lemma 3: We use an induction argument. First,

we show that the inequality holds true over W−1 = [0, ζ0]. If
ζ0 = 0, the claim trivially holds. Suppose ζ0 > 0. Over W−1

the Lyapunov function obeys (71); thus, (80) follows by noting
that |Θ̄(0, t)| = t and |Ξ̄(0, t)| = 0 for all t ∈ W−1 and the sum
term in (80) is zero.

Assume next that (80) holds true over the interval [0, ζp],
where p ∈ N0. By hypothesis, and since V (x) is continuous,
we have

V (x(ζp)) ≤ e−ω1|Θ̄(0,ζp)|eω2|Ξ̄(0,ζp)|V (x(0))

+ γ∗

⎡
⎢⎣1 + 2

∑
m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,ζp)|eω2|Ξ̄(ζm,ζp)|

⎤
⎥⎦ ‖wζp‖2∞.

(81)

Then, consider first the interval Zp. Over Zp, the Lyapunov
function obeys (79) with

Authorized licensed use limited to: University of Groningen. Downloaded on February 21,2022 at 11:08:49 UTC from IEEE Xplore.  Restrictions apply. 



2942 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 11, NOVEMBER 2015

V (x(t)) ≤ eω2(t−ζp)V (x(ζp)) + γ∗e
ω2(t−ζp)‖wt‖2∞. (82)

Notice that t− ζp = |Ξ̄(ζp, t)| for all t ∈ Zp. Hence,

∣∣Ξ̄(0, t)∣∣ = t− ζp +
∣∣Ξ̄(0, ζp)∣∣ (83)∣∣Θ̄(0, t)

∣∣ = ∣∣Θ̄(0, ζp)
∣∣ (84)

for all t ∈ Zp. Thus, multiplying eω2(t−ζp) by the first term on
the right-hand side (RHS) of (81) we get the first term on the
RHS of (80). In addition, multiplying eω2(t−ζp) by the sum term
in (81), we obtain

eω2(t−ζp)
∑

m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,ζp)|eω2|Ξ̄(ζm,ζp)|

=
∑

m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)| (85)

for all t ∈ Zp because |Θ̄(ζm + vm, ζp)| = |Θ̄(ζm + vm, t)|
and t− ζp + |Ξ̄(ζm, ζp)| = |Ξ̄(ζm, t)| for all t ∈ Zp. Overall,
the factor multiplying the disturbance term can be therefore
rewritten as

2γ∗e
ω2(t−ζp) + 2γ∗

∑
m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

= 2γ∗
∑

m∈N0;

ζm≤ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

= 2γ∗
∑

m∈N0;

ζm≤t

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)| (86)

where the first equality follows from |Θ̄(ζp + vp, t)| = 0 and
t− ζp = |Ξ̄(ζp, t)| for all t ∈ Zp, while the second equality
holds because condition ζm ≤ ζp is equivalent to ζm ≤ t for
all t ∈ Zp. Hence, (80) holds true for all t ∈ [0, ζp + vp].

Consider next the interval Wp. Over Wp, the Lyapunov
function obeys (71). In particular,

V (x(t)) ≤ e−ω1(t−ζp−vp)eω2vpV (x(ζp))

+γ∗
[
1 + e−ω1(t−ζp−vp)eω2vp

]
‖wt‖2∞ (87)

for all t ∈ Wp, with V (x(ζp)) as in (81). To see that this
implies again (80), notice that t− ζp − vp = |Θ̄(ζp + vp, t)|
and |Θ̄(0, ζp)| = Θ̄(0, ζp + vp)|. Hence,

∣∣Θ̄(0, t)
∣∣ = t− ζp − vp +

∣∣Θ̄(0, ζp)
∣∣ (88)

for all t ∈ Wp. Moreover, vp = |Ξ̄(ζp, ζp + vp)| and |Ξ̄(ζp +
vp, t)| = 0 for all t ∈ Wp. Hence,

∣∣Ξ̄(0, t)∣∣ = vp +
∣∣Ξ̄(0, ζp)∣∣ (89)

for all t ∈ Wp. Thus, multiplying e−ω1(t−ζp−vp)eω2vp by the
first term on the RHS of (81) we get the first term on the RHS
of (80). Moreover, multiplying e−ω1(t−ζp−vp)eω2vp by the sum
term in (81), we obtain

e−ω1(t−ζp−vp)eω2vp

∑
m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,ζp)|eω2|Ξ̄(ζm,ζp)|

=
∑

m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|. (90)

Overall, the factor multiplying the disturbance term can be
therefore rewritten as

γ∗
[
1 + 2e−ω1(t−ζp−vp)eω2vp

]
+ 2γ∗

∑
m∈N0;
ζm<ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

= 2γ∗
∑

m∈N0;

ζm≤ζp

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

= 2γ∗
∑

m∈N0;

ζm≤t

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|. (91)

As before, the second equality holds because, for all t ∈ Wp,
condition ζm ≤ ζp is equivalent to ζm ≤ t. Thus (80) holds true
for all t ∈ [0, ζp+1], which concludes the proof. �

Step III. Bounds on DoS Frequency and Duration: In order
to conclude the proof, we need to bound the sum term in (80).
The following can be proven:

Lemma 4: Under Assumptions 1 and 2 and condition (22),
the sum ∑

m∈N0;

ζm≤t

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)| (92)

is bounded from above by

e(ω1+ω2)κ∗
eβ∗τDη

1− e−β∗τD
(93)

where the constants ω1, ω2, τD, κ∗ and β∗, are defined in Theo-
rem 2, (25) and (26).

Proof of Lemma 4: First notice that∣∣Ξ̄(τ, t)∣∣ ≤ |Ξ(τ, t)|+ (1 + n(τ, t))Δ∗ (94)

for all τ, t ∈ R≥0 with t ≥ τ . In words, |Ξ̄(τ, t)| can be upper
bounded by the total length of DoS over [τ, t] plus the maximum
actuation delay Δ∗, which may occur once at the beginning of
the interval [τ, t] (as a result of a previous DoS) plus n(τ, t)
times, where n(τ, t) represents the number of off/on transitions
of DoS occurring over [τ, t[. Using Assumptions 1 and 2 we
have ∣∣Ξ̄(τ, t)∣∣ ≤κ+

t− τ

T
+

(
1 + η +

t− τ

τD

)
Δ∗

= : κ∗ +
t− τ

T∗
(95)
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where κ∗ := κ+ (1 + η)Δ∗ and T∗ := τDT/(τD + TΔ∗).
With this in mind, we can now analyze the sum term in (92).
From the above inequality, we have

∣∣Ξ̄(ζm, t)
∣∣ ≤ κ∗ +

t− ζm
T∗

(96)

for all t ∈ R≥ζm , m ∈ N0. Consider next |Θ̄(ζm + vm, t)|. We
have ∣∣Θ̄(ζm + vm, t)

∣∣ = t− ζm −
∣∣Ξ̄(ζm, t)

∣∣ (97)

for all t ∈ R≥ζm , m ∈ N0. To see this, consider first the interval
Zm. For all t ∈ Zm, we have |Ξ̄(ζm, t)| = t− ζm so that (97)
holds true since, by definition, |Θ̄(ζm + vm, t)| = 0 whenever
t < ζm + vm. For all t ∈ R≥ζm+vm

we have∣∣Θ̄(ζm + vm, t)
∣∣ = t− ζm − vm −

∣∣Ξ̄(ζm + vm, t)
∣∣

= t− ζm −
∣∣Ξ̄(ζm, t)

∣∣ (98)

where the second equality follows because∣∣Ξ̄(ζm + vm, t)
∣∣ = ∣∣Ξ̄(ζm, t)

∣∣− ∣∣Ξ̄(ζm, ζm + vm)
∣∣

=
∣∣Ξ̄(ζm, t)

∣∣− vm (99)

for all t ∈ R≥ζm+vm
, m ∈ N0. Hence,∑

m∈N0;

ζm≤t

e−ω1|Θ̄(ζm+vm,t)|eω2|Ξ̄(ζm,t)|

≤ e(ω1+ω2)κ∗
∑

m∈N0;

ζm≤t

e−[ω1−(ω1+ω2)/T∗](t−ζm)

= e(ω1+ω2)κ∗
∑

m∈N0;

ζm≤t

e−β∗(t−ζm) (100)

where β∗ = ω1 − (ω1 + ω2)/T∗. Under condition (22), we
have β∗ > 0. Moreover, Assumption 1 yields

t− ζm ≥ τDn(ζm, t)− τDη. (101)

This implies∑
m∈N0;

ζm≤t

e−β∗(t−ζm) ≤ eβ∗τDη
∑

m∈N0;

ζm≤t

e−β∗τDn(ζm,t). (102)

Let

m(t) :=

{
−1, if t < ζ0
sup{m ∈ N0|ζm ≤ t}, otherwise.

(103)

We then have

∑
m∈N0;

ζm≤t

e−β∗τDn(ζm,t) =

m(t)∑
m=0

e−β∗τDn(ζm,t). (104)

Since

n(ζm, t) ≥ m(t)−m (105)

then

m(t)∑
m=0

e−β∗τDn(ζm,t) =

m(t)∑
m=0

e−β∗τD(m(t)−m)

=

m(t)∑
m=0

e−β∗τDm ≤ 1

1− e−β∗τD
.

(106)

The relations (100), (102), (104), (106) yield the desired
bound (93). �

We can now finalize the proof of Theorem 2. First observe
that the first term on the RHS of (80) is bounded by

eκ∗(ω1+ω2)e−(ω1−ω1+ω2
T∗ )tV (x(0)) (107)

where we have exploited the equality |Θ̄(0, t)| = t− |Ξ̄(0, t)|,
and the inequality (95). Moreover, β∗ = ω1 − (ω1 + ω2)/T∗.
Hence, from (80) and (93), one sees that the Lyapunov function
V (x) computed along any trajectory x(t) satisfies

V (x(t)) ≤ eκ∗(ω1+ω2)e−β∗tV (x(0))

+γ∗

[
1 + 2eκ∗(ω1+ω2)

eβ∗τDη

1− e−β∗τD

]
‖wt‖2∞. (108)

Letting δ∗ := γ∗/α1 we readily get

‖x(t)‖ ≤
√

α2

α1
e

κ∗(ω1+ω2)

2 e−(β∗/2)t ‖x(0)‖

+
√
δ∗

[
1+2eκ∗(ω1+ω2)

eβ∗τDη

1−e−β∗τD

] 1
2

‖wt‖∞. (109)

Note that δ∗ = ((γ3 + γ2σ)
2/(γ1 − γ2σ))max{(α2/(α1(γ1 −

γ2σ))), (1/4γ2)} is a positive constant, i.e., independent of
the process initial condition and the disturbance w. Since
Δ∗ is a positive constant, then also κ∗ = κ+ (1 + η)Δ∗ and
β∗ = ω1 − (ω1 + ω2)((Δ∗/τD) + (1/T )) are independent of
the process initial condition and w. Thus ISS follows at once.

�
Proof of Corollary 1: It follows directly from the one of

Theorem 2 by: i) noting that the rightmost term in (80) is zero;
and ii) exploiting the equality |Θ̄(0, t)| = t− |Ξ̄(0, t)|, and the
inequality (95) with τ = 0, where the sets Ξ̄(τ, t) and Θ̄(τ, t)
are defined in (61) and (62), respectively. �
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