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Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and 
the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a 
serious complication associated with aging and/or chronic inflammation or injury and 
cannot be treated effectively yet. It is characterized by excessive deposition of extra-
cellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macro-
phages. This ultimately destroys the normal structure of an organ, which leads to loss 
of function. Most efforts to develop drugs have focused on inhibiting ECM production 
by myofibroblasts and have not yielded many effective drugs yet. Another option is to 
stimulate the cells that are responsible for degradation and uptake of excess ECM,
i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many 
faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be 
dependent on their origin, as the different organs have tissue-resident macrophages with 
different origins and a various influx of incoming monocytes in steady-state conditions 
and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior 
in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well 
as an understanding of the signals they need to degrade ECM. In this review, we will 
summarize the current state of the art regarding the antifibrotic macrophage phenotype 
and the signals that stimulate its behavior.
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INTRODUCTION

Fibrosis is a serious complication associated with aging and with chronic injury and inflammation 
within an organ. It is characterized by progressive and irreversible destruction of normal architecture 
of an organ by excessive deposition of extracellular matrix (ECM). The excess ECM ultimately leads 
to organ malfunction and death because there are no effective therapies to stop or reverse fibrosis 
development. A mechanistic understanding of how ECM homeostasis is maintained in healthy situa-
tions, the similarities and differences between the various organs, and how it becomes dysregulated in 
fibrosis is of vital importance for defining novel targets for therapy. More insight into these processes 
will help the development of novel antifibrotic drugs.

Production of ECM is part of a normal repair response after tissue damage. Tissue repair has 
distinct stages, including a clotting phase, an inflammatory phase, a (myo)fibroblast proliferation 
phase, and a remodeling phase in which normal tissue architecture is restored (1). During the remod-
eling phase, myofibroblasts produce ECM and promote tissue contraction, which will ultimately 
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lead to resolution of the damage. The current dogma is that 
ongoing microinjury within an organ induces an imbalance in 
ECM homeostasis and subsequently leads to fibrosis (2, 3). In 
most organs, ECM-producing myofibroblasts are found in close 
proximity with macrophages, and there is increasing evidence that 
suggests that normally these two cell types interact in many ways 
to control ECM homeostasis and that these interactions may be 
dysregulated in fibrosis (3–6). Myofibroblasts, as the major pro-
ducers of ECM, have been the focus of fibrosis research for many 
years. Unfortunately, this has not yielded many successful drugs 
yet. Therefore, the role macrophages have in controlling ECM 
production in fibrosis has been getting more attention recently.

Macrophages are important cells in all stages of the fibrotic 
process (7). On the one hand, they have been found to promote 
fibrosis by secreting profibrotic mediators such as transforming 
growth factor beta (TGFβ) and platelet-derived growth factor 
(PDGF) that induce proliferation and activation of myofibroblast 
(7–9). On the other hand, they also facilitate the resolution of 
fibrosis by producing specific matrix metalloproteinases (MMPs) 
and other proteolytic enzymes like cathepsins that degrade fibrotic 
ECM, and they express receptors that can phagocytose pieces of 
degraded ECM (10). Studies in models of pulmonary and liver 
fibrosis have shown that when macrophages are depleted during 
the early, inflammatory phase of fibrosis, ECM deposition was 
reduced but when they are depleted during the remodeling phase, 
ECM deposition was aggravated (8–11). These studies elegantly 
showed that the behavior of macrophages is highly plastic, but 
it remains unclear how the pro- and antifibrotic activities of 
macrophages are regulated. Knowing which signals induce antifi-
brotic behavior of macrophages is particularly important because 
restoration of normal tissue architecture can only proceed if the 
deposited excess ECM is removed. These signals may subsequently 
be used for the development of a whole new class of antifibrotic 
drugs. However, discerning antifibrotic macrophages from other 
macrophages is difficult, since characteristic markers are unclear, 
as are the signals that induce antifibrotic macrophages.

In this review, we will discuss evidence currently present in 
the literature that enables us to identify antifibrotic macrophages 
and the signals that are needed to induce them in order to design 
macrophage-directed antifibrotic therapeutics. Studies used for 
this review were gathered by a systematic search of Pubmed using 
the keywords “macrophages,” “fibrosis,” and “(resolution OR anti-
fibrotic).” Only studies discussing pro- or antifibrotic activities 
of macrophages or phenotypical markers of these macrophages 
were included.

MACROPHAGE PLASTICITY

Macrophages have many roles in the immune system and are 
strongly involved in fighting microbial threats, inflamma-
tion, repair and resolution to return to homeostasis. For years, 
researchers have tried to define distinct macrophage polarization 
states or phenotypes that are responsible for these different tasks 
(12). They have been classified in several different ways, mostly 
into two main groups with M1 macrophages as the classically 
activated macrophages and M2 macrophages as the alternatively 
activated macrophages (13, 14). Broadly speaking, M1-activated 

macrophages are associated with inflammatory responses and 
are involved in fighting infections. This phenotype develops after 
exposure to microbial products, and proinflammatory cytokines 
such as tumor necrosis factor alpha (TNFα) and interferon 
gamma (IFNγ). M2-activated macrophages are more difficult to 
capture into one phenotype, and this has led to the suggestion to 
group them into the different subsets M2a, M2b, and M2c (15). 
These subsets are associated with repair processes and resolution 
of inflammation and are induced by a variety of signals such 
as interleukin-4/interleukin-13 (IL-4/IL-13) for M2a, immune 
complexes and lipopolysaccharides (LPS) for M2b, and IL-10/
TGFβ/glucocorticosteroids for M2c. This classification had its 
uses for well-controlled in vitro experiments but could not capture 
the multitude or spectrum of polarization states present in vivo 
leading to much confusion in the field. This has led to the sugges-
tion to identify macrophages through their origin, the polarizing 
substance, and/or markers they do or do not express (16).

The confusion about macrophage polarization is also appar-
ent in the field of fibrosis. The widespread use of the M1/M2 
classification has lead to the suggestion that M1 macrophages 
promote inflammation in the inflammatory stages of wound 
repair and subsequently polarize to or are being replaced by 
M2 macrophages that promote fibrosis. However, the complex 
microenvironment macrophages are exposed to in vivo has many 
stimuli that induce different functions that cannot be captured in 
M1 and M2. Furthermore, the M2 phenotype is a complex collec-
tion of divergent activities that are sometimes even contradictory. 
For example, in mice, M2 macrophages have been described by 
their expression of arginase-1 (Arg-1), and these macrophages 
were considered to be profibrotic. However, Pesce et al. showed, 
using macrophage-specific Arg-1-knockout mice, that these 
Arg-1-expressing macrophages were actually responsible for sup-
pressing fibrosis development (17). This intriguing result shows 
the plasticity of profibrotic and antifibrotic behaviors within the 
M2 macrophage subset in a complex tissue environment.

Other studies have circumvented the M1/M2 dichotomy by 
naming macrophages after their roles in inflammation and tissue 
remodeling: i.e., proinflammatory, profibrotic, proresolution, 
resolving, or scar-associated macrophages (4, 10, 18–20). For 
the purpose of this review, we will be specifically addressing the 
macrophages that are associated with areas of existing fibrosis 
and are responsible for clearing away excess ECM, also known as 
proresolution or antifibrotic macrophages.

MURINE VERSUS HUMAN 
MACROPHAGES

The discovery of macrophages phenotypes has largely been 
driven by murine models. Translation to human steady-state 
conditions or diseases is scarce and hampered by the fact that 
many phenotypical and functional markers are murine-specific, 
and the human counterparts are unknown (12, 21). For instance, 
the widely used M2 markers Ym1 (chitinase 3-like protein 3) and 
FIZZ1 (resistin-like molecule alpha 1/found in inflammatory 
zone 1) are only expressed on murine IL-4/IL-13-activated mac-
rophages and not in their human counterparts. Though firmly 
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associated with development of fibrosis in mouse models, how 
these markers themselves play a role is unclear (22–24), making 
it even more difficult find their human equivalents. Most of the 
information on antifibrotic macrophages will therefore be derived 
from murine studies. Whenever possible we will try to make the 
translation to the human situation.

THE ORIGIN OF TISSUE MACROPHAGES

Mature macrophages in adult tissues can originate from two 
different sources: either from circulating blood monocytes that 
infiltrate the tissues after birth or from embryonic macrophages 
infiltrating tissues before birth and that self-maintain through-
out life (25–32). The distinction between hematopoetic versus 
embryonic origin may be important because this may determine 
their functionality (33). For instance, liver-resident alternatively 
activated macrophages were found to be phenotypically and 
functionally distinct from monocyte-derived alternatively acti-
vated macrophages. The first were found to be key in suppressing 
schistosomiasis-induced chronic inflammation, while the latter 
monocyte-derived ones could slow the progression of fibrosis (34).

Recent experiments have shown that during steady-state 
conditions, in most organs, tissue macrophages are of embryonic 
origin (25–32). These embryonic macrophages can develop 
from yolk sac macrophages directly or, through erythro-myeloid 
progenitors in the fetal liver (25, 30, 35, 36). In the developing 
embryo, hematopoiesis begins in the yolk sac with primitive 
erythrocytes and macrophages developing in the absence of 
hematopoietic stem cells and spreading into developing periph-
eral tissues (37). This primitive hematopoiesis is not sufficient 
to support the developing embryo until hematopoietic stem 
cells are functional. Therefore, a second wave of hematopoiesis 
is supported by erythro-myeloid progenitors migrating from the 
yolk sac to the fetal liver until the hematopoietic stem cells are 
ready to take over after birth (36). During this period of primitive 
hematopoiesis, macrophages spread via the blood into peripheral 
tissues of the fetus, giving rise to tissue-resident macrophages 
that self-maintain throughout life (38). Several organs includ-
ing spleen, pancreas, and kidney exhibit mixed contribution 
from embryonic and hemopoietic stem cell-derived procursors 
(38). Like other tissue macrophages, intestinal macrophages 
are also first established before birth from embryonic precur-
sors. However, unlike macrophages in most other tissues, these 
embryonic macrophages in the gut are replaced shortly after 
birth by blood monocyte-derived macrophages. Thus, intestinal 
macrophages appear to be entirely derived from circulating 
monocytes (39, 40). An overview of the origins of macrophages 
in the different tissues can be found in Table 1.

Resident tissue macrophages normally have homeostatic 
functions including clearing up debris and apoptotic cells, first-
line defense against microbial threats, downregulating unneces-
sary inflammatory responses of the tissue, and contribution to 
normal ECM turnover. In cases of tissue damage, the steady-state 
conditions change, and the tissue-resident macrophages may 
be supplemented with macrophages derived from incoming 
monocytes to fight incoming threats and help wound healing. In 
mice, two populations of monocytes have been identified based 

TABLE 1 | An overview of the origins of macrophages in the different 
tissues.

Tissue-resident 
macrophages

Embryonic progenitor Adult 
hematopoietic 
stem cellsYolk sac Fetal liver 

monocytes

Spleen (27) √ √
Pancreas (27) √ √
Kidney(27) √ √
Brain (microglia) (41) √
Heart (31) √ √ √ (small number)
Skin (Langerhans cells) (30) √
Skin (dermal macrophages) 
(42, 43)

√

Gut (39, 40) √
Lung (alveolar macrophages) 
(25)

√

Liver (Kupffer cell) (28, 44) √ √

on the expression of the surface molecule lymphocyte antigen 6C 
(Ly6C). Monocytes with high expression of Ly6C are generally 
called classical or inflammatory monocytes, and these patrol the 
extravascular tissues in homeostatic conditions (29). During this 
patrolling function, they remain monocytic and do not commit 
to being macrophages. During inflammation, however, they 
respond with rapid extravasion into the affected tissues and they 
can readily transform into macrophages with limited potential for 
migration (29). Monocytes with low expression of Ly6C are called 
non-classical monocytes and patrol the blood vessels to monitor 
endothelial cell homeostasis (45, 46). They develop from the 
Ly6C-hi subset (26, 47, 48), and this can also take place in injured 
or inflamed tissue with subsequent conversion to wound-healing 
macrophages that can proliferate locally (49, 50).

In humans, similar monocytes’ subsets are found based on the 
expression of CD14 and CD16 (51). Classical monocytes express 
high levels of CD14 and no CD16, while non-classical mono-
cytes express high levels of CD16 and low levels of CD14. Both 
in humans and mice, an intermediate third subset is suggested 
to exist characterized in humans by high levels of CD14 and 
intermediate levels of CD16. The functions of this subset are not 
well understood, although they have been found to preferentially 
accumulate in inflamed human livers and have been postulated 
to play a role in fibrogenesis (52).

Unfortunately, there are no reliable markers to distinguish 
between macrophages from embryonic or hematopoietic/mono-
cytic origin, which makes it difficult to study the contributions of 
the two types of macrophages to changes in homeostatic condi-
tions, especially in humans. In mice, some lineage-tracing studies 
have been performed with special mouse models in the context 
of fibrosis to get some insight into the origin of macrophages in 
fibrotic tissues, and these studies are discussed below.

THE ORIGIN OF MACROPHAGES DURING 
FIBROSIS

Several papers have investigated the various origins of mac-
rophages in the context of fibrosis. There is a clear role for 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://www.frontiersin.org


TABLE 2 | Origins of antifibrotic macrophages.

Organ Antifibrotic macrophages

Tissue resident Ly6C-lo-recruited 
monocyte

Peritoneal √ (63) √ (63)
Lung √ (8, 64, 65) √ (59, 66)
Liver (Kupffer cell) √ (60)
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infiltrating Ly6C-hi monocytes in fibrosis. These monocytes have 
high expression of CCR2 (C–C motif chemokine receptor type 2) 
and have been shown to CCR2-dependently infiltrate the kidney, 
liver, heart, and lung after acute injury (8, 53–56). Less fibrosis is 
found when this migration is prevented either by specific deple-
tion of the Ly6C-hi subset or by interfering with CCR2 function 
(53, 57). In liver and lung, it was shown that Ly6C-hi monocytes 
clearly facilitate the progression of fibrosis, but without obviously 
engrafting into the tissue as macrophages, which may indicate 
that their patrolling behavior of extravascular tissues is not 
restricted to steady-state conditions (8, 53).

Many models of fibrosis consist of toxic injury (e.g., carbon 
tetrachloride and bleomycin) with an acute inflammatory phase 
followed by a fibrotic phase and a resolution phase with a return 
to fairly normal tissue structure. In these models, it was shown 
that depletion of macrophages in the resolution phase slowed 
down the process of resolution (8, 18, 57–62). These restorative 
macrophages appear to be derived from the recruited Ly6C-hi 
monocytes that undergo a phenotypic switch to a Ly6C-lo phe-
notype (18, 57). However, in a study by Baeck et al. inhibiting a 
transient CCR2-dependent accumulation of Ly6C-hi monocytes 
in the resolution phase accelerated scar resolution in two models 
of hepatic fibrosis (62). Therefore, contributions of both recruited 
Ly6C-lo monocytes and tissue-resident macrophages are also 
likely (8, 59–61). Corroboration for involvement of Ly6C-lo 
monocytes comes from a study showing that deletion of the 
fractalkine receptor CX3CR1 (C–X3–C motif chemokine recep-
tor 1), which is highly expressed on Ly6C-lo monocytes, inhibits 
resolution of hepatic fibrosis (60). Gibbons et  al. showed that 
ablation of tissue-resident macrophages in the lung during the 
resolution phase of bleomycin-induced injury also slowed down 
resolution (8).

In conclusion, macrophages of various origins, hematopoietic 
and embryonic, contribute to fibrosis and its resolution. The 
evidence available points at antifibrotic macrophages being either 
derived from CX3CR1-expressing Ly6C-lo monocytes and/
or embryonically derived tissue-resident macrophages, while 
ly6C-hi monocytes appear to be profibrotic. For a summary of 
the available data also see Table 2.

ANTIFIBROTIC MACROPHAGES: HOW TO 
IDENTIFY AND INDUCE OR RECRUIT 
THEM?

Within fibrotic parts of tissues, higher numbers of macrophages 
were shown to be present as compared to the healthy parts, and 

these were shown to be important for fibrosis resolution (61, 67, 
68). One of the main tasks of these antifibrotic macrophages is 
clearance of fibrotic ECM, in particular of fibrillar types of collagen. 
Macrophages are important sources of various matrix-degrading 
enzymes, and they can take up partially degraded collagen frag-
ments (6). The expression of these matrix-degrading enzymes and 
of the receptors for uptake of collagen fragments could therefore 
potentially be markers of antifibrotic macrophages in vivo.

Collagen fibers are cleaved extracellularly by proteases, such as 
MMPs and cathepsins. Intact fibrillar collagen can only be cleaved 
by a subset of MMPs (MMP1, MMP8, MMP13, and MMP14) and 
by other proteases, such as cathepsin K (69–71). Subsequently, col-
lagen pieces are further degraded by other members of the MMP 
family like MMP2 and MMP9 (6). The main cellular source of 
matrix-degrading enzymes is macrophages. Huang et al. showed 
expression of different MMPs in the various macrophage pheno-
types in vitro (72). Therefore, MMP expression by macrophages 
might serve as a functional marker to identify antifibrotic mac-
rophages in vivo. Scar-associated macrophages were shown to be 
a source of MMP13 and a strong correlation between the presence 
of MMP13-positive macrophages, and enhanced regression was 
shown in fibrotic carbon tetrachloride mouse livers (68). Not only 
MMP13 but also other members of the MMP family (MMP3, 
MMP8, MMP9, MMP12, and MMP14) were identified in scar-
associated macrophages and associated with resolution activities 
in liver (73, 74). The presence of MMP-expressing macrophages 
in scar tissue was also seen in other fibrotic tissues, such as lung, 
kidneys, heart, and spinal cord. Shechter et al. showed MMP13-
expressing macrophages in glial scar tissue and related this to 
a resolving macrophage phenotype (58). Cabrera et al. showed 
increased MMP9 expression in alveolar macrophages that appear 
in the regression phase of the bleomycin-induced lung fibrosis 
(75). Also, Popov et al. showed that MMP9, in contrast to MMP12 
and MMP13, was particularly induced during resolution and 
higher expressed than during fibrogenesis (74). Within lung and 
liver, MMP9 expression is particularly observed in macrophages, 
as can be checked in immunohistochemical stainings provided by 
the human protein atlas (76).

In addition to MMPs, macrophages also express other 
ECM-degrading enzymes, such as the cysteine proteases, i.e., 
cathepsins (71). MMPs are traditionally considered to be the 
main agents of ECM degradation, but the lysosomal cathepsins 
can also be secreted into the extracellular space where they can 
remain proteolyticaly active and degrade various components of 
the ECM (71). Cathepsin K is the only protease with the ability 
to degrade intact fibrillar collagen, both at the ends of the fibril 
and at multiple sites within the triple helix. Overexpression of 
cathepsin K-protected animals from developing bleomycine or 
silica-induced pulmonary fibrosis, while deleting it accelerated 
the development of fibrosis (66, 77, 78). These findings all sug-
gest high antifibrotic activity of cathepsin K, and therefore of 
macrophages in the lung. Alveolar macrophages in the resolution 
phase are also reported to produce plasmin, a protease associated 
with reducing TGFβ1 levels and thus with reduced stimulation of 
collagen synthesis (64).

Matrix metalloproteinases can also contribute to other activi-
ties, such as cellular migration (79) and activation of cytokines 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://www.frontiersin.org


November 2015 | Volume 2 | Article 815

Adhyatmika et al. The Elusive Antifibrotic Macrophage

Frontiers in Medicine | www.frontiersin.org

and growth factors (80, 81). The expressions and activities of 
MMPs are therefore not limited to the resolution phase. Certain 
subtypes are more enhanced during fibrogenesis as compared to 
resolution, e.g., MMP2 in liver fibrosis (74). This might hamper 
the use of certain MMPs as markers for antifibrotic macrophages. 
Based on the current knowledge about the expression patterns 
of matrix-degrading enzymes in macrophages in fibrosis and 
resolution, in particular MMP9, MMP13, and cathepsin K seem 
suitable markers to discern antifibrotic macrophages in vivo from 
other macrophage phenotypes.

In addition to the matrix-degrading activities of antifibrotic 
macrophages, candidate markers of antifibrotic macrophages 
could also be proteins involved in the induction of proteolytic 
enzymes and proteins involved in clearance of degraded ECM 
proteins. After extracellular degradation, further processing of 
collagen fragments occurs intracellularly, predominantly in the 
lysosomal compartments of the cell. To that end, collagen frag-
ments are internalized via phagocytosis, macropinocytosis, or 
receptor-mediated endocytosis (6).

Phagocytosis, for instance, is mediated by binding of collagen 
fragments to cellular membrane integrin α2β1. For receptor-
mediated endocytosis binding to transmembrane mannose 
receptor CD206 or mannose receptor 2 (Mrc2; also called 
Endo180) is required (6, 82–84). López -Guisa et  al. showed 
upregulation of Mrc2 in a subset of macrophages at sites of renal 
fibrosis directing the process of repair. Renal fibrosis was signifi-
cantly worse in Mrc2-deficient mice, which was related to lower 
collagen turnover. In addition, treatment of wild-type mice with 
a cathepsin inhibitor, which blocks the proteases implicated in 
Mrc2-mediated collagen degradation, worsened UUO-induced 
renal fibrosis (83).

The extracellular bridging glycoprotein Mfge8 (milk fat 
globule-EGF factor 8) has also been described to be involved 
in the cellular uptake of collagen fragments (6, 65, 85). Atabai 
et al. showed that Mfge8 decreased the severity of tissue fibrosis 
in a mouse model of pulmonary fibrosis by binding and target-
ing collagen for cellular uptake through its discoidin domains 
(85). Reddy et al. showed that nitrated fatty acids regulated the 
expression of Mfge8 in alveolar macrophages and thus stimulated 
collagen uptake and its further degradation (65). The usefulness 
of these receptors, involved in the cellular uptake of collagen, in 
identifying antifibrotic macrophages has not been investigated in 
great detail and will require more studies.

Other proteins expressed by macrophages that have been 
shown to contribute to the antifibrotic phenotype of macrophages 
are Arg-1 (17) and FIZZ1 (22). Both were shown to limit Th2-
dependent responses that are required for the development of 
fibrosis.

As is clear from the previous sections, production of matrix-
degrading enzymes is one of the key characteristics of antifibrotic 
macrophages. Therefore, to induce this type of macrophage, it 
will be helpful to understand the signals involved in attracting 
these macrophages to the fibrotic areas and/or the signals that 
induce the expression of matrix-degrading enzymes and collagen 
uptake receptors. These could be cytokines such as TNFα, IL-1β, 
IFNα/β, and IL-4, growth factors, chemokines, or even processes 
(58, 81, 86–88).

Popov et  al. showed that the enhanced proteolytic activity 
of macrophages was induced after phagocytosis of apoptotic 
cholangiocytes that were increasingly present in the resolu-
tion phase of biliary fibrosis (74). The receptor involved in this 
phagocytosis-induced proteolytic activity was most probably the 
tyrosine-protein kinase Mer receptor (MERTK), which is highly 
expressed on macrophages (74, 89, 90). Gene variants of MERTK 
have been shown to be risk factors for the progression of hepatitis 
C-induced liver fibrosis (91, 92). Through no functional data of 
the gene variants of MERTK were shown, making it hard to inter-
pret this data. Similar phagocytosis-induced proteolytic activity 
was reported in the lung, in which apoptotic cell instillation 
induced peroxisome proliferator-activated receptor-γ (PPARγ) 
expression in macrophages and subsequently stimulated resolu-
tion of bleomycin-induced fibrosis (93). Whether MERTK and 
PPARγ are useful markers for antifibrotic macrophages needs to 
be investigated in further detail. PPARγ seems to be a promising 
candidate as agonists of PPARγ have been investigated as a pos-
sible antifibrotic therapy in multiple settings (65, 94–100).

Some of the cytokines or their receptors that induce antifi-
brotic behavior are expressed by macrophages themselves; there-
fore these cytokines or their receptors could potentially also be 
markers of antifibrotic macrophages. However, their ubiquitous 
expression by various other cells may hamper their use in vivo.

Tumor necrosis factor alpha receptor (TNFαR) or the pro-
duction of TNFα may be potential inducers and/or markers of 
antifibrotic macrophages, though this depends on the stage of the 
disease limiting their use. Macrophages are important producers 
of TNFα and thereby contribute to inflammation after injury. 
Inhibiting TNFα at this point has been shown to lead to less fibro-
sis in models of kidney, liver, heart, and lung fibrosis (101–105). 
However, TNFα has also been shown to have antifibrotic activi-
ties, especially in the resolution stage of fibrosis. Recent research 
showed that intratracheal delivery of TNFα reduced lung collagen 
levels and improved lung architecture. In addition, mice deficient 
in TNFα exhibited delayed resolution of bleomycin-induced 
pulmonary fibrosis, further showing that TNFα may be impor-
tant in the resolution phase of fibrosis by inducing antifibrotic 
macrophages (106). A study in patients with pulmonary fibrosis 
showed that release of TNFα by macrophages and monocytes 
of these patients was higher than of controls, which may be a 
sign that the lung is trying to degrade excess collagen or a sign 
that inflammation is still important in patients diagnosed with 
pulmonary fibrosis (107). The fact that anti-inflammatory drugs 
such as corticosteroids are harmful to pulmonary fibrosis patients 
indicates that TNFα is probably involved in attempted resolution 
(108). Production of TNFα by antifibrotic macrophages may have 
an effect on macrophages themselves through TNFα type 1 and/
or 2 receptors or affect other cells. Both in the heart and in the 
kidney, TNFα type 2 receptor expression on macrophages was 
found to essential for accelerating fibrosis resolution (109, 110). 
A recent publication by Lemos et  al. showed that the effect of 
TNFα in muscle fibrosis was through induction of apoptosis of 
myofibroblast progenitors (111).

Treatment of liver macrophages with interferon-a2b induced 
a higher MMP13 expression, and these macrophages also 
showed a higher expression of IL-10 (88). Similar findings were 
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TABLE 3 | Markers of antifibrotic macrophages and potential therapeutic 
approaches inducing or attracting antifibrotic macrophages or inhibiting 
the recruitment of profibrotic monocytes.

Markers Prospective drug

TNF receptor (109, 110) TNFα (106)
CX3CR1 (60) RANKL (122–124)
TNFα (106, 107, 111) PPARγ agonist (93–100)
CXCL10 (59, 117, 118) IFNγ (59, 125)
CXCL9 (117, 118) IFNα (58, 88)
MMP9 (73–75) Asprin-triggered lipoxin A analogs (126)
MMP13 (68, 118) CCL2 inhibitors (62)
Cathepsin K (66, 71, 77, 78)
MERTK(89, 90)
PPARγ (93–100)
MRC1 (120)
MRC2 (121)
MFGE8 (6, 65, 85)
Arg-1 (17)
FIZZ1 (22)
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reported in glial scars by Shechter et al. (58). The effect of IL-10 
on fibrosis, however, is not clear since increased levels of IL-10 
were accompanied by reduced fibrosis in one study (73), while 
other studies have reported that IL-10 acts profibrotic (112, 
113).

Cytokines and chemokines that are involved in recruitment 
antifibrotic macrophages are macrophage migration inhibitory 
factor (MIF), CX3C ligand 1 (fractalkine), and vascular endothe-
lial growth factor (VEGF) (60, 61, 114). CD74, CXCR2, and 
CXCR4 are receptors for MIF, and their expressions appear to be 
associated with recruitment of resolving macrophages (61, 115, 
116). This also is the case for chemokine receptor CX3CR1, and 
this receptor may also be helpful in the detection of antifibrotic 
macrophages (60). Another chemokine involved in the recruit-
ment of resolution-promoting monocytes appears to be VEGF. 
Treatment with a neutralizing antibody against VEGF during 
fibrosis resolution delayed resolution, and this was shown to be 
dependent on CXCL9 and MMP13 (114). In addition, enhanced 
expression of CXCL10 in macrophages has been shown to acceler-
ate resolution of pulmonary fibrosis (59, 117, 118). Interestingly, 
in the study by Tighe et al., IFNγ was found to be able to stimulate 
production of CXCL10 in macrophages, and this may therefore 
contribute to the known antifibrotic effects of IFNγ (59, 119).

In conclusion, various studies indicate the existence of antifi-
brotic macrophages that play a key role in resolving fibrotic ECM, 
and therefore these macrophages may be a target for therapeutic 
intervention. Identification of this subset in  vivo is not easy, 
but various options can be explored. One of the most obvious 
is the expression of matrix-degrading enzymes in macrophages, 
in particular, MMP9, MMP13, and cathepsin K. Other options 
include the chemokines CXCL10 and CXCL9, chemokine recep-
tor CX3CR1, M2 markers Arg-1, FIZZ1, and PPARγ, collagen-
uptake receptors MRC1, MRC2, and MFGE8, and cytokines like 
TNFα (see also Table 3). However, most of these proteins are not 
specific to macrophages and even the different phenotypes of 
macrophages in the proinflammatory/fibrotic phase and in the 
resolution phase seem to use them.

Induction or recruitment of antifibrotic macrophages is 
even less well defined. Monocytes that turn into antifibrotic 
macrophages appear to be recruited by CX3C ligand 1 or VEGF. 
Cytokines that can induce antifibrotic behavior of macrophages 
in well-defined circumstances are TNFα, IFNα, or IFNγ.

FROM CONCEPT TO MARKET: 
THERAPEUTIC APPLICATIONS AND 
CHALLENGES

As antifibrotic macrophages can be crucial in the resolution of 
fibrosis in various organs, they constitute a valid novel target for 
therapeutic intervention. Therefore, understanding of how to 
specifically induce their beneficial activities may lead to a genera-
tion of new antifibrotic compounds.

In addition to the aforementioned TNFα, IFNγ, and IFNα, 
only a few potential therapeutic compounds affecting antifi-
brotic macrophages have been described in literature. One of 
the few examples is the use of PPARγ agonists that can induce 
antifibrotic properties in macrophages. Experimental stud-
ies in kidney, liver, heart, and lung have shown that various 
PPARγ agonists can alleviate fibrosis, though not all have 
investigated macrophages specifically (65, 94–100). There is 
even phase 1 safety study in clinicaltrials.gov describing the 
use of PPARγ-agonist rosiglitazone for the treatment of focal 
glomerulosclerosis. This study ended in 2007, but no results 
have been posted yet.

A currently unexplored option is the possible use of recep-
tor activator of nuclear factor-κB ligand (RANKL). Many tissue 
macrophages express the receptor RANK for this ligand, and 
there are several studies showing that RANKL stimulation 
induces the release of proteases, which can degrade ECM (76). 
Wittrant et  al. showed that RANKL stimulated MMP9 and 
cathepsin K expression (122), and Matsumoto et al. also showed 
that RANKL induced cathepsin K gene expression (123). Another 
study showed that RANKL, through binding to RANK, activated 
the nuclear factor-κB pathway and induced MMP9 expression. 
They also suggested that by costimulating with IL-1β or TNFα, 
it was possible to synergize with RANKL to further enhance 
MMP9 expression (124). We are currently investigating whether 
RANKL can indeed induce antifibrotic macrophages in settings 
of established fibrosis.

Another option described was the use of a Spiegelmer-based 
inhibitor of CCL2, named mNOX-E36, that was found to inhibit 
recruitment of Ly6C-hi monocytes and thereby accelerated 
resolution of liver fibrosis (62). The last of the few examples was a 
synthetic analog of asprin-triggered lipoxin A(4). Lipoxins have 
potent proresolution effects, and this synthetic analog called 
ATLa reversed collagen deposition by inducing Arg-1-positive 
macrophages in a bleomycin model of pulmonary fibrosis (126). 
A summary of the origin and all characteristics of antifibrotic 
macrophages is depicted in Figure 1.

One factor worth considering is the translation of these 
results in rodents to the human situation. As said before, an 
obstacle in this translation is that most knowledge so far is 
obtained with mouse models, and the markers and effector 

FIGURE 1 | Antifibrotic macrophages, derived from either embryonic tissue macrophages and/or Ly6C-lo monocytes, contribute to fibrosis 
resolution by expressing extracellular matrix (ECM)-degrading enzymes and receptors to take up pieces of degraded ECM and by expression of 
proteins that downregulate Th2-associated inflammation. These antifibrotic macrophages can be induced or attracted by a number of signals, such as 
cytokines, chemokines and growth factors. Abbreviations: MIF, macrophages migration inhibitory factor; CX3CR ligand 1, ligand for C–X3–C motif chemokine 
receptor 1; VEGF, vascular endothelial growth factor; CXCL9 and -10, C–X–C motif chemokine ligand-9 and -10; RANKL, receptor activator of nuclear factor-κB 
ligand; TNFα, tumor necrosis factor α; TNFαR1/2, tumor necrosis factor receptor type 1 or 2; IFNγ, interferon γ; IFNα, interferon α; MMP9 and MMP13, matrix 
metalloproteinases 9 and 13; Mfge8, milk fat globule-EGF factor 8; MERTK, tyrosine-protein kinase Mer receptor; Mrc1 and Mrc2, mannose receptors 1 and 2; 
PPARγ, peroxisome proliferator-activated receptor-γ; Arg-1, arginase-1; FIZZ1, resistin-like molecule alpha 1; Th2, T helper 2 lymphocyted-mediated.
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Induction or recruitment of antifibrotic macrophages is 
even less well defined. Monocytes that turn into antifibrotic 
macrophages appear to be recruited by CX3C ligand 1 or VEGF. 
Cytokines that can induce antifibrotic behavior of macrophages 
in well-defined circumstances are TNFα, IFNα, or IFNγ.

FROM CONCEPT TO MARKET: 
THERAPEUTIC APPLICATIONS AND 
CHALLENGES

As antifibrotic macrophages can be crucial in the resolution of 
fibrosis in various organs, they constitute a valid novel target for 
therapeutic intervention. Therefore, understanding of how to 
specifically induce their beneficial activities may lead to a genera-
tion of new antifibrotic compounds.

In addition to the aforementioned TNFα, IFNγ, and IFNα, 
only a few potential therapeutic compounds affecting antifi-
brotic macrophages have been described in literature. One of 
the few examples is the use of PPARγ agonists that can induce 
antifibrotic properties in macrophages. Experimental stud-
ies in kidney, liver, heart, and lung have shown that various 
PPARγ agonists can alleviate fibrosis, though not all have 
investigated macrophages specifically (65, 94–100). There is 
even phase 1 safety study in clinicaltrials.gov describing the 
use of PPARγ-agonist rosiglitazone for the treatment of focal 
glomerulosclerosis. This study ended in 2007, but no results 
have been posted yet.

A currently unexplored option is the possible use of recep-
tor activator of nuclear factor-κB ligand (RANKL). Many tissue 
macrophages express the receptor RANK for this ligand, and 
there are several studies showing that RANKL stimulation 
induces the release of proteases, which can degrade ECM (76). 
Wittrant et  al. showed that RANKL stimulated MMP9 and 
cathepsin K expression (122), and Matsumoto et al. also showed 
that RANKL induced cathepsin K gene expression (123). Another 
study showed that RANKL, through binding to RANK, activated 
the nuclear factor-κB pathway and induced MMP9 expression. 
They also suggested that by costimulating with IL-1β or TNFα, 
it was possible to synergize with RANKL to further enhance 
MMP9 expression (124). We are currently investigating whether 
RANKL can indeed induce antifibrotic macrophages in settings 
of established fibrosis.

Another option described was the use of a Spiegelmer-based 
inhibitor of CCL2, named mNOX-E36, that was found to inhibit 
recruitment of Ly6C-hi monocytes and thereby accelerated 
resolution of liver fibrosis (62). The last of the few examples was a 
synthetic analog of asprin-triggered lipoxin A(4). Lipoxins have 
potent proresolution effects, and this synthetic analog called 
ATLa reversed collagen deposition by inducing Arg-1-positive 
macrophages in a bleomycin model of pulmonary fibrosis (126). 
A summary of the origin and all characteristics of antifibrotic 
macrophages is depicted in Figure 1.

One factor worth considering is the translation of these 
results in rodents to the human situation. As said before, an 
obstacle in this translation is that most knowledge so far is 
obtained with mouse models, and the markers and effector 

FIGURE 1 | Antifibrotic macrophages, derived from either embryonic tissue macrophages and/or Ly6C-lo monocytes, contribute to fibrosis 
resolution by expressing extracellular matrix (ECM)-degrading enzymes and receptors to take up pieces of degraded ECM and by expression of 
proteins that downregulate Th2-associated inflammation. These antifibrotic macrophages can be induced or attracted by a number of signals, such as 
cytokines, chemokines and growth factors. Abbreviations: MIF, macrophages migration inhibitory factor; CX3CR ligand 1, ligand for C–X3–C motif chemokine 
receptor 1; VEGF, vascular endothelial growth factor; CXCL9 and -10, C–X–C motif chemokine ligand-9 and -10; RANKL, receptor activator of nuclear factor-κB 
ligand; TNFα, tumor necrosis factor α; TNFαR1/2, tumor necrosis factor receptor type 1 or 2; IFNγ, interferon γ; IFNα, interferon α; MMP9 and MMP13, matrix 
metalloproteinases 9 and 13; Mfge8, milk fat globule-EGF factor 8; MERTK, tyrosine-protein kinase Mer receptor; Mrc1 and Mrc2, mannose receptors 1 and 2; 
PPARγ, peroxisome proliferator-activated receptor-γ; Arg-1, arginase-1; FIZZ1, resistin-like molecule alpha 1; Th2, T helper 2 lymphocyted-mediated.
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molecules of antifibrotic macrophages in humans are largely 
unexplored (127).

In addition, several fibrosis-inducing agents, such as carbon 
tetrachloride, bleomycine, silica, and nutritional interventions, 
are highly effective in establishing advanced fibrosis in mice, but 
they do not represent key elements of human disease completely.

CONCLUSION

The flurry in new studies investigating antifibrotic behavior of 
macrophages in recent years has made the elusive antifibrotic 
macrophage slightly more tangible. This subset of macrophages 
appears to be derived from embryonic tissue-resident macrophage 
or recruited Ly6C-lo monocytes and expresses a variety of mark-
ers traditionally assigned to both M1 and M2 macrophages, 
including MMP9, MMP13, cathepsin K, CXCL10, CXCL9, 
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TNFα. Although therapy aimed at the antifibrotic macrophage is 
still in its infancy, it is expected that more targets for therapeutic 

entities will appear when antifibrotic macrophages are better 
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