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Renal fibrosis is the most prominent hallmark of chronic kidney disease (CDK). CKD can 
progress to end stage renal disease (ESRD), a life-threatening condition with currently no 
successful treatment available. The only available options at the moment for ESRD patients 
are dialysis or kidney transplantation (1). ESRD is characterized by severely impaired renal 
function which results from tubular damage and interstitial fibrosis (2). Despite many 
experimental and clinical studies aiming at anti-fibrotic drug discovery and development, 
the nephrology field is still suffering from a lack of clinically approved effective therapeutic 
strategies to halt or reverse renal fibrosis (2). As a consequence, there is a high risk of 
mortality in CKD patients worldwide (2-4). Hence, the development of novel therapeutic 
strategies is imperative. 
	 The myofibroblast plays a key role in the development and progression of renal fibrotic 
lesions, and is therefore under intensive research as a target for anti-fibrotic therapy. 
In order to achieve this goal, a large number of investigations have been performed to 
advance our knowledge on the origin of myofibroblasts (1, 5, 6). Nonetheless, their precise 
cellular origin has been a matter of debate for a long time. To date, several cell populations 
have been suggested as precursors of renal myofibroblasts such as resident fibroblasts, 
bone marrow-derived cells including circulating fibrocytes, pericytes, tubular epithelial 
cells (via epithelial-to-mesenchymal transition, EMT), endothelial cells (via endothelial-to-
mesenchymal transition, EndMT), and perivascular Gli1+ progenitors cells (mesenchymal 
stem cell-like cells) (6-10). However, recent studies show that epithelial cells, endothelial 
cells and leukocytes are not important contributors, whereas pericytes, resident fibroblasts, 
and perivascular mesenchymal stem cells seem to be the main source of cells that 
differentiate into myofibroblasts in kidney disease (9, 11-12). Importantly, it seems that the 
interstitial myofibroblasts can arise from various precursors, and is dependent on the type 
of renal injury and thus highly context-dependent (12, 13). 
	 The complex interplay between different cell types in the tubulointerstitial micro-
environment of the kidney also has impact on the initiation and progression of renal 
fibrosis, e.g. by promoting the differentiation and activation of above-mentioned precursor 
cells toward matrix-producing myofibroblasts. The renal vasculature is highly efficient in 
regulating renal tissue homeostasis by providing oxygen and nutrients to the cells, and also 
by removal of toxic metabolites. Any disturbances in both blood and/or lymphatic capillary 
circulation can have effects on kidney homeostasis due to the reciprocal interactions 
between endothelial cells with other cell types in the kidney microenvironment (14, 15). 
Therefore, in order to halt the progression of renal fibrosis, not only targeting the key 
cells is important, but also normalizing the hostile microenvironment is vital. A disturbed 
microcirculation can activate blood/lymphatic endothelial cells, stimulate angiogenesis and 
lymphangiogenesis, induce microvascular rarefaction, reorganize the influx and/or efflux of 
inflammatory cells, and also promote extracellular matrix remodeling. 
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Collectively, these changes can stimulate a variety of processes which eventually result in 
pro-inflammatory and pro-fibrotic responses. Thus, the kidney microvasculature is another 
potential target in order to prevent the activation of myofibroblasts, and thereby inhibit the 
formation of dysfunctional scar tissue. 
	 Another important aspect in the development of novel therapeutic agents to target 
renal fibrosis is that current conventional drugs require high systemic concentrations in 
order to be effective in the kidney. However, such high dosages induce many unwanted side 
effects in off-target organs. Even if the drug ends up in the kidney, it might not accumulate 
in target cells (16, 17). Moreover, impaired renal function can alter the distribution of the 
therapeutic agents to the kidney. To overcome these shortcomings, targeted drug delivery 
is being used to deliver the intended amount of drugs to the specific target cells, and by 
this way not only increasing the therapeutic index, but also at the same time reducing the 
adverse systematic side effects in off-target organs or cells. 
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Scope of the thesis

The work described in this thesis aims to develop cell-specific therapy for the treatment 
of renal fibrosis, as well as to further explore the pathophysiological role and potential 
therapeutic value of renal lymphatic vessels and lymphangiogenesis in renal disease. 
	 In chapter 2, an overview of renoprotective effects of protein kinase inhibitors in chronic 
kidney disease is provided, as well as future directions in this exciting field of research that 
may lead to the development of highly specific pharmacological interventions. Activated 
proximal epithelial cells in the kidney have proved to be central triggers of inflammatory 
and fibrotic processes in a wide range of renal diseases. Based on that, in chapter 3 targeted 
inhibition of the Rho kinase pathway in proximal tubular cells was studied in order to 
reduce inflammation and/or lymphangiogenesis in an acute renal allograft rejection model. 
The Rho kinase inhibitor Y27632 was coupled to lysozyme (Y27632-lysozyme) providing 
a kidney-specific conjugate that can release its drug to proximal tubular cells. A novel 
targeted drug-delivery carrier (PPB: PDGFRβ-recognizing peptide) for the delivery of the 
anti-fibrotic cytokine IFNγ to PDGFRβ-expressing myofibroblasts was studied in chapter 4. 
This compound was tested in vitro as well as in vivo in the unilateral ureteral obstruction 
(UUO) mouse model. In chapter 5, a modification of the approach described in chapter 4 was 
used. In order to further reduce systemic side effects, the efficacy of a targeted (to PDGFRβ 
using PPB) IFNγ-mimetic was tested in vivo. In this mimetic the IFNγR-binding domain of 
IFNγ was removed in order to reduce the proinflammatory effects of IFNγ. Furthermore, in 
chapter 6, an ex vivo model of renal fibrosis, which can provide a step forward towards the 
development of anti-fibrotic compounds, is explored. We developed an ex vivo model of 
renal fibrosis by using precision-cut kidney slices. In this model, early onset of renal fibrosis 
and efficacy of the anti-fibrotic cytokine IFNγ was evaluated. Renal fibrosis appears to be 
associated with lymphangiogenesis although it is not known yet whether this is a response 
to renal damage and fibrosis, or actually precedes fibrosis. Therefore, a time-course of renal 
interstitial lymphangiogenesis and its association with others markers of renal damage was 
investigated in an established rat proteinuria model, as described in chapter 7. In chapter 8 
the obtained results are summarized and future perspectives of anti-fibrotic therapeutic 
approaches are discussed.
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Abstract

The increasing prevalence of end-stage renal disease urges novel therapeutic strategies 
for the treatment of chronic kidney disease. As protein kinases play a pivotal role in renal 
inflammation and fibrosis, specific protein kinase inhibitors have been demonstrated to be 
renoprotective in experimental studies. However, since protein kinases are also involved 
in key physiological mechanisms such as cell differentiation, cell growth and proliferation, 
these beneficial effects have been associated with serious side effects, limiting their clinical 
applicability. 
	 However, the possibility to selectively deliver a drug to cells with a particular phenotype 
(i.e. cells expressing a cell-specific protein to which drugs can be targeted) has increased 
the potential of protein kinase inhibitors in chronic kidney disease. Several studies have 
reported renoprotective effects of protein kinase inhibitors specifically delivered to fibrotic 
cells, or to specific cell types such as proximal tubular epithelial cells or mesangial cells. An 
overview of these studies will be provided, as well as future directions in this exciting field 
of research that may lead to novel highly specific pharmacological intervention strategies. 
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Introduction

Progressive loss of renal function, ultimately resulting in end-stage renal disease (ESRD), is 
a major health problem worldwide. In the United States, the incidence of ESRD, adjusted 
for age, gender and race, increased from 200 per million in 1990 to 354 per million in 2007 
(www.usrds.org). Although the incidence of ESRD may have stabilized in recent years (1), 
the adjusted ESRD prevalence is still rising from 800 per million in 1990 to 1665 per million 
in 2007 in the US. In other parts of the Western world, the numbers of patients are slightly 
lower but similar trends exist (2); as a result, the worldwide ESRD population will soon 
exceed 2 million patients (3). The increasing prevalence of ESRD is caused on one hand 
by the rising prevalence of diabetes and hypertension in the Western world (4). On the 
other hand the all-cause mortality of CKD patients has declined from 250 deaths per 1000 
patient years in 1995 to 200 deaths per 1000 patients years in 2007 (adjusted for race, 
gender, hospitalization, and comorbidities; www.usrds.org). Mortality due to cardiovascular 
disease is generally remarkably increased in patients with ESRD compared with subjects 
with normal renal function (5), but this has improved as well over the last decade. Thus, 
prevalence of ESRD risk factors/determinants has increased, and mortality has decreased. 
	 Besides being a urgency from a medical perspective, ESRD forms an enormous financial 
burden: from 1991 to 2007, total costs of medical care for ESRD patients increased from $9 
billion to $35 billion in the United States (www.usrds.org). These data support the urgency 
of novel therapies that may avoid chronic kidney disease (CKD) to become ESRD.
	 The availability of powerful anti-proteinuric interventions – i.e. blockers of the renin-
angiotensin-aldosterone system (RAAS) – has slowed the rising incidence of end-stage renal 
disease. In spite of this state-of-the-art pharmacological treatment, residual proteinuria due 
to resistance to anti-proteinuric therapy is common. Furthermore, animal experiments have 
suggested that, especially under conditions of a low circulating volume, RAAS blockade may 
induce pre-fibrotic renal lesions (6). On the other hand, animal studies indicate that under 
certain conditions, glomerular sclerosis is reversible (reviewed in (7)), yielding hope to find a 
modality of treatment able to provide regression of renal lesions. In auto-immune-mediated 
renal disorders such as SLE or Wegener’s disease, as well as in kidney transplantation, novel 
therapies (e.g. mycophenolate mofetil) have been proven successful but at the expense 
of side effects. Together, these findings indicate that new treatment modalities, either as 
a substitution of current therapy or as addition on top of current therapy, are urgently 
required.
	 Inhibition of intracellular signaling molecules such as protein kinases may be a 
powerful intervention in CKD. Due to their involvement in various cellular processes 
such as proliferation and cytokine production, protein kinases play a role in chronic 
renal inflammation and fibrosis, processes critically involved in (the progression of) renal 
damage. This article will first discuss the potential role of various protein kinases (e.g. 
mitogen-activated protein kinases, Rho kinase, and growth factor receptor kinases) in the 
progression of renal damage. Next, the therapeutic potential of protein kinase inhibitors 
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in renal disease will be discussed. First studies on systemic treatment with protein kinase 
inhibitors in (experimental) renal disease will be addressed. As it turns out that systemic 
blockade of protein kinases yields a high risk of side-effects and poor tolerability, organ-
specific or even cell type-specific targeting of protein kinase inhibitors has become available. 
Thus, a significant part of this review will be dedicated to protein kinase inhibitors that 
are chemically modified or coupled to achieve target-organ specific delivery of the drug. 
As clinical experience with these types of compounds is limited, the majority of studies 
summarized here are in experimental models of renal damage. However, these preclinical 
data show promising effects, both in terms of efficacy and of reduced side effects. 

Protein kinases in chronic kidney disease (CKD)
The protein kinase superfamily consists of several subtypes, which can be divided in serine/
threonine-specific protein kinases, such as mitogen-activated protein (MAP) kinases and 
Rho kinase (ROCK), and thyrosine kinases which are primarily growth factor receptors such 
as platelet-derived growth factor receptor (PDGFR) or epidermal growth factor receptor 
(EGFR). By their capacity to phosphorylate other proteins, protein kinases are crucial signal 
transduction molecules. A major group of protein kinase target molecules are transcription 
factors. Through regulation of transcription factor activity, protein kinases can modulate 
the expression of many genes and thereby affect virtually all types of cellular mechanisms, 
either with beneficial or with deleterious effects.

Figure 1: Structural formulas of some widely used protein kinase inhibitors: p38 MAP kinase inhibitors 
SB239063, SB203580, and RWJ-67657; the JNK inhibitor SP600125; the ERK inhibitor U0126; and Rho 
kinase inhibitors Y27632 and fasudil.
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MAP kinases
The potential role of the MAP kinase p38 in CKD has been subject of many studies. The 
most widely used p38 MAP kinase inhibitors are presented in Figure 1. In experimental 
models, pharmacological inhibition of p38 reduced renal inflammation and fibrosis both 
in experimental models of kidney disease characterized by inflammation such as anti-
GBM glomerulonephritis (8), crescentic glomerulonephritis (9), angiotensin II-mediated 
renal damage (10-12), or chronic allograft nephropathy (13), and in nephrotic models 
such as adriamycin nephropathy (14) and puromycin-aminonucleoside (PAN) nephrosis 
(15). In human renal disease, it was documented that activation of p38, both in intrinsic 
renal cells and in infiltrating leukocytes, was strongly present in biopsies from patients 
with glomerulonephritis, and correlated with renal dysfunction and histopathology (16). 
Similar results were found for diabetic nephropathy (17). These findings suggest that p38 
plays a role in renal inflammation. As p38 regulates a wide variety of genes involved in cell 
proliferation, growth, differentiation, and apoptosis, there could be several mechanisms 
of renoprotection involved. Probably, in the injured kidney, several pathogenic pathways 
are activated such as pro-inflammatory (e.g. through MCP-1, IL-6), pro-fibrotic, and pro-
apoptotic pathways. As p38 is a crucial modulator of many of these pathways, this could 
explain renoprotective effects of p38 inhibition
	 Clinical experience with p38 MAP kinase inhibitors is limited to a small number of trials, 
indicating reduced inflammatory reponse in healthy volunteers (18, 19) and, more recently, 
in COPD patients (20). Studies in Crohn’s disease (21) and rheumatoid arthritis (22, 23) have 
been negative. However, p38 also plays a role in many physiological processes. To some 
extent, many pathways involved in renal damage are in fact physiological mechanisms that 
have become deregulated. It could therefore be expected that p38 MAP kinase inhibition 
might also deteriorate renal damage instead, as repair mechanism could also be blocked 
by this intervention. In addition, cross-talk exists between MAP kinase families. Ohashi 
et al reported that p38 inhibition deteriorates renal damage in a model of renal fibrosis, 
probably through reactive ERK activation and enhanced renal cell proliferation (24). 
	 A crucial next step would be to identify renal cells in which p38 plays a pathogenic role 
in renal disease. Several in vitro experiments, enabling to exclusively study the role of p38 in 
a particular cell type, in different renal cell types and with various readout parameters have 
been performed. Table 1 summarizes effects of p38 activation in several renal cell types. 
This table identifies mesangial cells, tubular epithelial cells, podocytes and fibroblasts as 
potential target cells for specific delivery of p38 inhibitors. The subject of cell type-specific 
drug delivery will be discussed in more detail below. Table 1 also indicates that p38 is 
mainly involved in the regulation of inflammation, e.g. through MCP-1 gene expression, 
and apoptosis. As most types of renal disease are characterized by chronic inflammation 
finally resulting in fibrosis and increased apoptosis, these processes, modulated by p38 
MAP kinase, are targets for intervention in renal disease. 
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Table 1: Overview of renal cell types in which p38 MAP kinase is expressed, and putative effects of p38 
activation in respective cell types. 

Renal cell type Possible role of p38 Reference

Mesangial cells MCP-1 expression [134]

Collagen expression [135]

Apoptosis [136]

Nitric oxide production [137]

Tubular epithelial cells MCP-1 expression [138]

Epithelial mesenchymal transition [65]

TGF-beta and collagen I expression [139]

Apoptosis [140]

Angiotensinogen production [141]

Podocytes Apoptosis [137] [142]

MCP-1 production [143]

Fibroblasts Extracellular matrix production [144]

ICAM-1 induction [145]

Besides p38 MAP kinase, other MAP kinases like ERK (extracellular signal-regulated kinase) 
and JNK (c-Jun N-terminal kinase) are activated in and have been associated with the 
severity of human renal disease (25-27). We have found that JNK may play an important role 
in renal inflammation by regulation of MCP-1 (monocyte chemoattractant protein-1) gene 
expression in renal tubular epithelial cells (26). JNK activates the transcription factor c-Jun, 
which is part of the AP-1 (activator protein-1) complex that is involved in regulation of many 
genes. The gene encoding MCP-1, which is a crucial chemokine attracting inflammatory 
cells to sites of renal injury, contains multiple binding sites for the AP-1 complex (28). 
Other studies confirmed that JNK may play a role in the inflammatory response to (tubular) 
renal damage in cultured tubular cells (e.g. HK-2 cells (25)), experimental models (anti-
GBM glomerulonephritis (29), ischemia/reperfusion (30)), and in human transplantation 
(31). Under pathological conditions, JNK may also play a role in tubular cell apoptosis, as 
indicated by studies in JNK knockout mice (32). Given the data summarized here, tubular 
epithelial cells are the renal cell types that would be most suitable for specific delivery of JNK 
inhibitors. Alternatively, specific JNK inhibition in macrophages might be a good approach, 
as infusion of JNK-/- macrophages in macrophage-depleted mice with renal damage provided 
renoprotection (29, 33). JNK may be involved in the inflammatory response through effects 
on other cell types as well, as documented for podocytes (inflammatory cytokines released 
by macrophages cause podocyte injury mediated by JNK and p38) (34), endothelial cells and 
renal interstitial fibroblasts (where activated JNK is found in animals with glomerulonephritis 
(35)), and mesangial cells (36).
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Similar to p38, systemic treatment with JNK inhibitors may have important side effects. A 
recent study indicated that db/db mice (a widely used animal model for type 2 diabetes 
mellitus) treated with a JNK inhibitor as well as JNK2 knockout mice made diabetic by 
streptozotocin injection both displayed reduced insulin resistance but, surprisingly, 
increased albuminuria (37). These findings indicate that a particular protein kinase inhibitor 
may not be beneficial under all circumstances, and that besides the target organ or tissue, 
also the underlying disease must be taken into account.
	 While p38 and JNK are considered key players in inflammation, fibrosis and apoptosis, 
the MAP kinase ERK is involved mainly in cell growth and differentiation. Therefore, it is not 
surprising that activated ERK is abundantly found in the developing (embryonic) kidney (38). 
The Ras-Raf/MEK/ERK pathway is under intense investigation as a candidate target for renal 
cell carcinoma (39). The Raf kinase inhibitor sorafenib is currently registered in the US and in 
Europe for the treatment of advanced renal cell carcinoma. In addition, systemic treatment 
with an (upstream) inhibitor of ERK reduced inflammation and apoptosis in experimental 
models of renal damage such as cisplatin nephrotoxicity (40) and angiotensin II-mediated 
renal damage (11). Although renal targeting of ERK inhibitors might be a suitable approach 
in CKD, more experience with systemic administration in experimental models of CKD would 
be required.

Rho kinase (ROCK)
Rho kinase (ROCK) is a protein kinase belonging to the family of serine-threonine kinases. An 
overview of the main cellular functions of ROCK is provided in Figure 2. ROCK is a downstream 
effector protein of the small GTPase Rho, which is one of the major regulators of the 
cytoskeleton. A major function of ROCK is stabilization of actin filaments to maintain integrity 
of the cytoskeleton (41). In line with this, ROCK is involved in cytokinesis (42) and cell cycle 
control (among others through Cdc42) (43). Besides regulation of the cytoskeleton, ROCK is 
also involved in infiltration of inflammatory cells (44, 45). Recent studies demonstrated that 
mainly ROCK1 is involved in recruitment of neutrophils and macrophages, at least in part 
through regulation of the tumor suppressor gene PTEN (phosphatase and tensin homolog 
deleted on chromosome 10) (46). Thirdly, ROCK plays an important role in regulation of 
the vascular tone. The binding of vasopressors (e.g. angiotensin II) to G protein-coupled 
receptors (e.g. the angiotensin II type 1 (AT1) receptor) leads to vascular smooth muscle 
contraction through a Ca2+-dependent pathway and through Rho kinase (47). The Ca2+-
dependent pathway causes smooth muscle contraction and hypertension through activation 
of phospholipase C, increased protein kinase C activity, and phosphorylation of myosin II 
regulatory chain [48]. The ROCK pathway increases Ca2+ sensitization of smooth muscle 
contraction (49) (i.e. an increase of the contractile response to an increase in intracellular 
calcium) and modulates the phosphorylation of myosin light chain. Through (deregulation 
of) these processes, Rho kinase may be involved in the development of hypertension, both 
in situations of disturbed (50) and normal renal function (51, 52). Fourthly, inhibition of 
the Rho kinase pathway has pleiotropic effects, as investigated most deeply in studies on 
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the protective effects of statins. Statins prevent the synthesis of other important factors 
of the cholesterol biosynthetic pathway, including farnesylpyrophosphate (FPP) and 
geranylgeranylpyrophosphate (GGPP) that are downstream from L-mevalonic acid (53). 
These factors are involved in post-translational modification of proteins such as nuclear 
lamins, Ras, Rho, Rac and Rap (54). In particular, by inhibiting mevalonate synthesis, statins 
prevent membrane targeting of Rho and its subsequent activation of ROCK (55). Indeed, 
many pleiotropic effects of statins are modulated by Rho kinase, as demonstrated in in vitro 
studies (56-58). A recent study by Liu et al confirmed that simvastatine reduces Rho kinase 
activity in dyslipidemic human subjects without cardiovascular disease (59). Treatment with 
ezetimibe similarly reduced LDL cholesterol but did not affect Rho kinase. The renoprotective 
role of ROCK inhibitors has been demonstrated in several experimental models of renal 
disease. Anti-inflammatory and anti-fibrotic effects of the ROCK inhibitor Y-27632 were 
shown in the unilateral ureteral obstruction (UUO) model (60) and ischemia/reperfusion 
renal injury (61). In an experimental model of nephrotic syndrome PAN nephrosis), Y-27632 
was renoprotective as well (62). In an experimental model of kidney transplantation, 
Y-27632 reduced chronic allograft nephropathy (63). Given the important effects of ROCK 
downstream of G protein-coupled receptors such as the AT1 receptor, it is not surprising 
that ROCK inhibition is also beneficial in angiotensin II-mediated renal damage (64). In vitro 
studies elucidated an additional important renoprotective mechanism by showing that 
ROCK inhibition reduces EMT of tubular epithelial cells, induced by angiotensin II (65).
	 Besides monotherapy, specific intervention in the ROCK pathway has also been 
performed in combination with “classical” renoprotective therapy, namely blockade of the 
renin-angiotensin-aldosterone system. A recent study reported on renoprotective effects 
of dual therapy with the ROCK inhibitor fasudil and an ACE inhibitor (66). Studies with 
combinations of kinase inhibitors and shRNAs demonstrated that, as opposed to inhibition 
of a single kinase, combined inhibition of either ROCK and ZEB1/2 or ROCK and TGFbeta 
type I receptor kinase, respectively, were successful to reverse the process of epithelial-to-
mesenchymal transformation (EMT) in tubular epithelial cells (67). 
	 Although Y-27632 is the most widely used Rho kinase inhibitor in experimental studies, 
the only clinically available Rho kinase inhibitor is fasudil. The oral formulation of fasudil has 
demonstrated effectiveness in patients with angina pectoris (68, 69), after previous studies 
had demonstrated that fasudil reduces coronary artery spasm (70, 71). Other formulations 
of fasudil include an intravenous form which is under investigation for the treatment of 
ischemic stroke (72). Organ-specific therapy (besides renal targeting) with Rho kinase 
inhibitors in patients has been applied in patients with pulmonary hypertension (fasudil as 
aerosol) (73) and in patients with ocular disease to reduce intra-ocular pressure (SNJ-1656 
as topical agent) (74, 75). 
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Figure 2: Figure summarizing possible cellular effects of Rho kinase: 1. Maintaining integrity of the 
cytoskeleton (and, consequently, cytokinesis and cell proliferation); 2. Secretion of chemoattractants 
such as MCP-1; 3. Contraction of smooth muscle cells, thereby regulating vascular tone; 4. Pleiotropic 
effects such as eNOS secretion and cell proliferation. For more in-depth discussion of the effects of Rho 
kinase refer to the text.

Growth factor receptor kinases
Growth factor receptor kinases are mainly, but not solely, tyrosine kinases. Tyrosine kinases 
can be divided into two subfamilies: the receptor tyrosine kinases, of which more than 50 
are currently known, and non-receptor or cytoplasmic tyrosine kinases. In recent years, 
tyrosine kinases have been under intense investigation as targets for treatment of various 
types of cancer, including hematologic malignancies. Several excellent review papers on this 
subject have been published elsewhere (76-79). 
	 A limited number of recent studies addressed the possible renoprotective effects of 
tyrosine kinase inhibitors. A selective inhibitor of spleen tyrosine kinase (Syk) demonstrated 
remarkably strong reduction of renal fibrosis, with regression of existing lesions, in 
association with strong anti-inflammatory effects (i.e. reduction of glomerular macrophage 
and CD8+ cell numbers, and renal MCP-1 and IL-1beta) (80). Previously, the same Syk 
inhibitor (R788) had shown renoprotection in a mouse model of lupus nephritis (81). 
	 Imatinib, a selective tyrosine kinase inhibitor blocking among others the PDGFR, 
reduced renal inflammation and fibrosis in a rat model of anti-GBM nephritis (82) as well 
as in lupus nephritis (83). In transgenic rats overexpressing renin (Ren2), characterized by 
activation of the RAAS, treatment with imatinib reduced renal microvascular hypertrophy 
and perivascular fibrosis, and furthermore displayed cardioprotective effects (84). 
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Studies of the renoprotective effect of vascular endothelial growth factor (VEGF) inhibition 
have been conflicting. Specifc inhibition of VEGF by a pan-VEGF receptor tyrosine kinase 
inhibitor, SU5416, reduced albuminuria in a mouse model of type 2 diabetic nephropathy 
(db/db) (85), although studies in a model of glomerulonephritis suggested that blockade of 
VEGF may also increase proteinuria through loss of nephrin in podocytes (86). In line with 
the latter result, early studies on VEGF in renal disease were based on the concept that 
VEGF improves repair of the glomerular capillary network (87, 88). In experimental kidney 
transplantation, preliminary studies suggest that deregulation of VEGF may play a role in 
the development of chronic allograft nephropathy (CAN), although additional studies are 
required to further elucidate the possible role of VEGF in CAN (89). 
	 The epidermal growth factor receptor (EGFR) may also play a role in renal damage, as 
the EGFR may link urinary albumin to the activation of ERK and increased expression of 
inflammatory cytokines such as IL-8 (90). A recent study demonstrated that EGFR inhibition 
reduces renal damage in the ischemia/reperfusion model (91) and in the L-NAME model 
characterized by nitric oxide (NO) deficiency-induced hypertension (92). Given the rapidly 
growing availability of EGFR inhibitors that have been developed for studies and for clinical 
application in cancer, future studies on renoprotective effects of EGFR inhibitors in other 
models are expected in the near future.
	 Transforming growth factor-beta (TGF-beta) as well as its receptors TGF-beta type I 
receptor, also known as activin receptor-like kinase 5 (ALK5), and TGF-beta type II receptor, 
which act as serine/threonine kinases, have been extensively targeted to treat fibrotic 
renal damage. Compounds targeting the TGF-beta pathway that have demonstrated 
renoprotective effects include a soluble TGF-beta type II receptor that binds TGF-beta1 
(93), TGF-beta neutralizing antibodies (94), and small-molecule ALK5 inhibitors such as 
SB-431542 (95) in vitro, SB-525334 in PAN nephritis (96), SD-208 in ischemia/reperfusion 
injury (97), IN-1130 in UUO (98), and GW788388 in diabetic nephropathy (98, 99). As for 
the Rho kinase pathway, also the TGF-beta pathway has been targeted in combination with 
RAAS inhibition, resulting in powerful anti-fibrotic effects in rats with established diabetic 
nephropathy, in which progression of renal damage was halted (100). 

Renal targeting of protein kinase inhibitors
As summarized above, renoprotective effects of protein kinase inhibition have been 
demonstrated in a wide range of experimental studies, both in vitro and in vivo. Yet, 
the clinical application of protein kinase inhibitors in clinical studies has been extremely 
limited. Probably, the limited initiation of phase I studies with protein kinase inhibitors in 
CKD patients, as well as the lacking progress towards clinical application of these agents, 
is related to side-effects. As clarified in the first part of this review, protein kinases have 
diverse physiological functions throughout the body (e.g. proliferation, differentiation) that 
cannot be inhibited (chronically) without serious side effects. It can be expected that if 
serious side effects are noted in early clinical studies, no data will be published and further 
development of the research on this agent will probably be cancelled. In addition, the 
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severity of side effects that is acceptable in CKD patients may well be different from that in 
cancer patients, in whom no (curative) treatment possibilities exist. 
	 An important strategy to reduce side effects and to increase efficacy of a certain drug is 
to deliver this drug specifically to the cells that play a pathogenetic role by specific targeting. 
For example, the mannose-6-phosphate/insulin-like growth factor-II receptor (M6P/IGFIIR) 
is expressed not only by several types of tumor cells (101), but also by fibrogenic (i.e. 
damaged) renal cells [102]. Targeting of the antifibrinogenic drug mycophenolic acid (MPA) 
to fibrogenic cells using M6P-human serum albumin resulted in renoprotection in a model 
of RAAS-mediated renal damage (Ren2) (102). Similarly, the platelet-derived growth factor 
(PDGF) receptor has been used for targeting, allowing compounds to be delivered only to 
fibrotic cells (103); this approach has also allowed specific targeting of anti-cancer drugs 
to tumor cells (104). Moreover, targeting of myofibroblasts through gene therapy directed 
against alpha-smooth muscle actin has been proposed (105). Another elegant solution to 
reduce side effects observed in systemic treatment with a given drug is to selectively deliver 
the drug to the target organ, where it is released. Indeed, several drugs have now been 
chemically modified to allow specific targeting to the kidney. Renal targets in the kidney 
include cells in the glomerulus (the filtering unit of the nephron), tubular epithelial cells 
(mainly involved in water and electrolyte homeostasis) and interstitial cells (e.g. fibroblasts). 
As any of these cell types may contribute to progression of renal damage, they could be 
relevant candidate targets for protein kinase inhibitors.

Table 1: Overview of drugs that have been coupled to carriers to achieve selective delivery to the 
kidney

IBCA, Isobutylcyanoacrylate; Esel, E-selectin; GBM, glomerular basement membrane; ACE, angiotensin I converting enzyme; 
BP, blood pressure; SB202190, p38 MAP kinase inhibitor; I/R, ischemia/reperfusion; TKI, TGF-beta receptor kinase inhibitor; 
UUO, unilateral ureteral obstruction; Y27632, Rho kinase inhibitor; LMWC, 50% N-acetylated low molecular weight chitosan.

In the glomerulus, mesangial cells can be targeted using immunoliposomes decorated with 
OX7 F(ab′) fragments (106, 107). Within the kidney these fragments bind to the Thy1.1 
antigen that is specifically expressed by mesangial cells. Tuffin et al demonstrated that the 
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use of immunoliposomes to deliver doxorubicin indeed selectively damaged mesangial 
cells. Another type of nanoparticles, isobutylcyanoacrylate nanoparticles, have also been 
used to target a drug (in this case actinomycin D) to mesangial cells (108). However, no 
reports on mesangial delivery of protein kinase inhibitors are available yet.
	 A similar approach was used to target endothelial cells: in this case, immunoliposomes 
were decorated with anti-E-selectin antibodies (Ab(Esel)), which bind to inflamed 
endothelium (109). Efficacy of Ab(Esel) liposomes delivery was investigated by developing 
dexamethason-loaded Ab(Esel) liposomes. These liposomes reduced albuminuria in a 
model of anti-GBM nephritis without binding to nontargeted renal microvasculatures (110). 
	 Although the glomerulus has previously been considered the pathophysiologically most 
relevant subunit of the nephron, research of the last decade has clearly underlined a crucial 
role of tubulointerstitial damage in the pathogenesis of progressive renal damage (111). 
Tubulointerstitial damage, which may or may not be secondary to glomerular injury (112), 
has become an important target for pharmaceutical intervention (113). In order to target 
tubular epithelial cells, glomerular filtration is the first step to reach the tubuli. It has been 
demonstrated that particles with a hydrodynamic diameter below 5–7 nm are rapidly cleared 
by renal filtration and urinary excretion (114). However, most particulate drug carriers have 
a size in the 10–200 nm range and thus renal targeting to tubular cells has not been studied 
with these systems. Rather, kidney-selective proteins and small synthetic polymers have 
been used for renal tubular cell targeting (as reviewed in (115)). Among these, one of the 
most used carrier for drug targeting to tubular epithelial cells is lysozyme. Lysozyme is a 
low-molecular weight protein that is filtered by the glomerulus and subsequentially taken 
up by tubular epithelial cells via megalin-mediated endocytosis, where it is degraded in 
lysosomes (116, 117). If coupled to lysozyme, a compound is thereby released locally in 
tubular epithelial cells or in the tubular lumen. Using this approach, the non-steroidal 
anti-inflammatory drug (NSAID) naproxen (118) and the ACE inhibitor captopril (119, 120) 
have been targeted to renal tubular epithelial cells. Lysozyme-captopril resulted in longer-
lasting ACE inhibition as compared to the free drug, whereas systemic blood pressure was 
not affected by the coupled drug, as opposed to the free drug (121). In a recent study, 
we demonstrated that renal targeting of a p38 MAP kinase inhibitor not only reduced p38 
activation in renal tubular epithelial cells, but this compound also reduced the renal pre-
fibrotic marker alpha-smooth muscle actin, confirming local efficacy of the drug (122). The 
SB202190-lysozyme complex remained stable in serum but was dissociated, releasing the 
drug, in kidney homogenates (122). Similarly, a TGF-beta receptor kinase inhibitor was 
coupled to lysozyme, and tested for specific renal effects (123). Of note, we found that 
a single dose of the coupled drug inhibited the activation of tubular cells and fibroblasts 
in UUO (unilateral ureteral obstruction) rats and reduced renal inflammation. In contrast, 
free TGF-beta kinase receptor inhibitor at an equimolar (low) dosage exhibited little effects. 
Finally, we have coupled the Rho kinase inhibitor Y27632 to lysozyme (61). Y27632-lysozyme 
strongly reduced renal inflammation and fibrosis in a rat model of ischemia/reperfusion. As 
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opposed to the free drug, the coupled drug did not affect systemic blood pressure. Lysozyme-
immunostaining confirmed selective localization of the conjugate in renal tubular epithelial 
cells. Together, these studies indicate that of low molecular weight proteins, lysozyme has 
been mostly used as carrier to target drugs specifically to the kidney. Lysozyme-coupled 
drugs have been demonstrated efficacy in several models of renal damage, without systemic 
(side-)effects as in the respective free drug. Thus, lysozyme-based drug targeting strategies 
could very well make it closer to clinical application, although extensive safety studies are 
lacking to date. 
	 Similar to lysozyme, randomly 50% N-acetylated low molecular weight chitosan (LMWC) 
is another low molecular weight carrier that could be used to target drugs to tubular 
epithelial cells. Yuan et al have demonstrated selective accumulation of prednisolone in the 
kidney when prednisolone was covalently coupled to LMWC (124); the tubular uptake was 
megalin-dependent (125). 
	 Besides tubular epithelial cells, also interstitial cells have been targeted. Interstitial 
fibroblasts are an important target for anti-fibrotic therapy, since these cells produce 
large amounts of extracellular matrix – one of the characteristic components of interstitial 
fibrosis (126). Yet, studies targeting interstitial fibroblasts are limited to gene therapy (not 
delivery of compounds) and data are preliminary (127-129). Gene targeting to the kidney 
has been reviewed excellently elsewhere (130, 131) and will not be discussed in detail here. 
Nevertheless, it is anticipated that selective drug targeting to renal interstitial fibroblast 
may be within reach within the coming decade. 

Conclusions

The rising prevalence of ESRD urges the development of new therapies to reduce or even 
halt the progression of renal damage. One of the most promising classes of drugs that have 
been developed in recent years are protein kinase inhibitors. Yet, these compounds have 
been used mainly in haemato-/oncological clinical trials, and are available in the clinic for a 
limited number of patients with progressive malignant diseases. However, as the tolerability 
and safety of these compounds is improving, these drugs may become available to patients 
with other types of disease (e.g. renal disease) as well. 
	 As discussed above, inhibitors of MAP kinases, Rho kinase and growth factor receptors 
may play a role in the development and/or progression of renal damage. Specific inhibitors 
of several of these protein kinases have been developed, most of which have demonstrated 
renoprotective effects in animal models. However, the translation to clinical practice 
has been impeded by poor tolerability and side-effects of protein kinase inhibitors (132, 
133). Yet, the development of more sophisticated compounds, as well as organ-specific or 
even cell type-specific delivery of drugs, is expected to improve efficacy while reducing 
systemic side effects. Indeed, these improvements have been reported in animal studies. 
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Although the clinical safety of locally delivered compounds themselves should be taken into 
account – many linker constructs for example contain platinum – the experimental data as 
summarized above are promising. 
	 Where should we go from here? Now that the proof of principle for selective drug 
targeting without detectable systemic side effects has been demonstrated for several 
targeted drugs in several experimental models of renal disease, the next step is to transfer 
this experience to the clinic. Obviously, some multi-protein kinase inhibitors that have been 
in clinical trials and approved for haemato-oncological indications could be relatively easily 
tested for other indications as well, although the balance between efficacy and safety will 
remain a major issue. Whether or not organ-specific and/or cell type-specific drug delivery 
will turn out to be a clinically feasible therapy within the coming years remains a question. 
The positive results obtained in recent years in experimental models of renal damage, 
combined with the urgent need for (adjunct) therapies in CKD patients, may however speed 
up the development of pharmacological therapies specifically directed towards the kidney. 
This should allow halted progression or even repair of tissue damage, without systemic 
side-effects. 
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