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Abstract 
New insights into the underlying molecular pathophysiology of celiac 
disease (CeD) over the last few years have been guided by major 

and use of the Immunochip genotyping platform paved the way for 
the discovery of 39 non-HLA loci associated to CeD, and for follow-
up functional genomics studies that pinpointed new disease genes, 
biological pathways and regulatory elements. By combining information 
from genetics with gene expression data, it has become clear that 
CeD is a disease with a dysregulated immune response, which can 
probably occur in a variety of immune cells. This type of information is 
crucial for our understanding of the disease and for providing leads for 
developing alternative therapies to the current gluten-free diet. In this 

how they can assist the clinical care of CeD patients.

Introduction

an enormous gain of knowledge, specially due to the development of 
new technologies and techniques, growing disease cohorts, and new 
methods of data analysis and data integration to uncover new disease 
genes, pathways and regulatory networks for complex diseases.
 Nowadays it is possible to analyze almost every kind of biological 
sample. Apart from DNA for genotyping, samples can cover individual 
cell types, RNA for gene expression, and proteins and metabolites 
from serum or plasma. The information extracted from these biological 
systems yields important insights into the complex biology of disease.
 This technological leap initially allowed for the interrogation of 
hundreds of thousands of single nucleotide polymorphisms (SNPs) 
across the human genome, a process called genome-wide association 
studies (GWAS). With genotype information from a random sample of 
the population and from a group of patients, case-control association 



55

studies are able to pinpoint the regions or genes potentially related to 
the pathophysiology of a disease, for example on celiac disease (CeD) 
[1, 2]. Two GWAS studies in CeD on some 4,918 patients and 5,684 
controls led to the discovery of 26 loci outside the well-known HLA 
association. By comparing GWAS results between different diseases, 
we can detect regions and genes common to multiple diseases. 
Such pleiotropic effects can discover common pathways involved in 
phenotypically different, but biologically related pathologies, as shown 
for a group of autoimmune diseases [3]. By 2010, GWAS had found 186 
loci to be associated to ten different autoimmune diseases and many 
of these loci showed association to more than one disease. 
 The genetic analysis of CeD represents an outstanding example 
of this development, with an important number of loci discovered not 
only in Caucasian populations but also in other ethnicities. New disease 
pathways have been linked to these loci [4]. 

Immunochip in celiac disease 
The release of the dedicated Immunochip platform in 2010 gave a 
huge boost to the process of discovering new genetic regions linked 
to autoimmunity. This customized array contains 196,524 SNPs that 
are located in the 186 regions of immunologic interest and includes 
evidence of association based on previous GWAS analyses in ten 
different autoimmune diseases [5]. The Immunochip has become a 
popular genotyping platform because of its customized coverage and 

populations, but it is less informative for other ethnic groups. The chip 
contains SNPs that were known in the public domain by February 
2010 [6], which means it lacks an important number of rare variants 
that have been discovered since then. It has been assumed that these 
rare variants have a stronger effect on disease susceptibility, but they 

studies. Probably one of the major weaknesses of the Immunochip 
is that it does not cover the entire genome, it is now apparent that 
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it eliminates potentially important regions for autoimmune diseases 
from analysis [5]. Nevertheless, the array has proven to be extremely 

Using the Immunochip platform, in 2011 Trynka et al. [7] analyzed CeD 
cohorts from six different countries, encompassing 12,041 cases and 

analyses [1, 2]

of known CeD loci, including the MHC-HLA region, to 40 (Figure 1). 
These loci are represented by 57 independent SNP associations, of 
which 29 were localized to a single gene. With the use of proxies (i.e. 

in the MMEL1, SH2B3 and IRAK1 genes, while other disease SNPs 
where localized in regulatory regions of the RUNX3, RSG1, ETS1, 
TAGAP, ZFP36L1, IRF4, PTPRK and ICOSLG genes. The remaining 
disease SNPs lie in intergenic regions [7]. The genes from these 
associated regions can be connected to multiple biological pathways 
like hematopoiesis, cell differentiation and selection, activation, co-
stimulation and maturation of effector cells, or to regulation of the 
immune processes. 
 By linking genes and potential pathways it is possible to 
pinpoint genes that affect multiple independent autoimmune diseases 
(genes with pleiotropic effects), such as CCR1/CCR2 (on chromosome 
3p21.31) involved in cell differentiation, recruitment and signaling, or 
FASLG (on chromosome 1q24.3) involved in cell selection, survival, 
activation and co-stimulation of T cells. Other genes like IL2, IL21 and 
CTLA4

IFN-g), autoantibodies and the activation of intraepithelial lymphocytes. 
The outcome of this complex interaction network is an impairment of 



of CeD [8].

Immunochip in other autoimmune diseases

[9], 
[10] [11], autoimmune 

[12]

[13] , multiple 
[15] [16] , 

 [18, 19]

[20] [21] [22]. 
Although the replication and discovery of new loci via Immunochip 
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has been successful for many of these diseases, the results depend 
strongly on the prevalence of the disease, the population under study, 
the sample size, the relative risk conferred by each of the loci under 
analysis (the genetic architecture of the disease), and the proximity of 
the causal variant to the interrogated SNP markers on the Immunochip 
array (Figure 2).
 Most of these autoimmune diseases show a varied prevalence, 
depending on the population (e.g. CeD in Brazil or Argentina is 0.4-0.6% 
compared to 2% in Finland) [23]. Most of the Immunochip analyses so far 
have been carried out in Caucasian populations where the prevalence 
of autoimmune diseases is relatively high, but some studies have been 
conducted in other ethnicities like East Asians and Latin Americans [7, 

11, 19]. 
 The combined Immunochip data of all 14 autoimmune diseases 
(Figure 3) shows that there are fewer than 60 associated loci for most of 
the diseases (from GWAS or Immunochip studies). Only three diseases 
have more associated loci: 110 for IBD, 97 for MS and 101 for RA. A 
common denominator for these three phenotypes is the large sample 
size analyzed in each of the studies. Another factor is the inherent 
genetic architecture of each of the diseases, which is also related to 
the statistical power of the analysis. The huge number of SNPs tested 
in an analysis like Immunochip means that an association must reach 

-8) to be considered as a 
true positive [24]. Such a stringent threshold excludes many common 
SNPs (usually hundreds of them) with suggestive p-values and modest 
risk effects on disease from the current analyses, although together 
these SNPs are known to make a major contribution to the heritability 
of complex diseases [25]. 
 
increase the power of the diseases under study in order to capture all 
the risk SNPs, notwithstanding that they also depend on the disease 
prevalence. There is, however, a trade-off between sample size and 
prevalence in the power to detect genetic associations: a higher 
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prevalence and larger sample sizes increase power. It is interesting 
that AA, AD and SJO show a relatively high disease prevalence (1.7%, 
13% and 0.7%, respectively) while IBD, RA and MS show lower disease 
prevalences (0.5%, 0.8% and 0.2%, respectively). Yet studies on the 

the sample size has lifted the study power substantially (Figure 2). The 
reason why one category of diseases is studied more than another 
might be related to the clinical symptoms and the detrimental effects 
of the condition for the patients. Hence, AA or AD could be seen as 
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Figure 2. Power calculation for autoimmune diseases with a relatively high 
prevalence (alopecia areata, atopic dermatitis and Sjögren syndrome) with a low 
number of discovered loci compared with autoimmune diseases with a low prevalence 

and multiple sclerosis). The power was calculated for rare variants (MAF  1%), low 
frequency variants (MAF 2-5%) and high frequency variants (MAF > 5%), using the 
last sample size reported for each disease. As can be observed, the low prevalence 

a proper statistical power for all the range of frequencies, compared with the high 
prevalence diseases (which in theory could be more easy to obtain a proper sample 
size for analysis).
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diseases with a mere cosmetic component and not life-threatening, 
whereas IBD, RA or MS are severe morbidities. In CeD, the increase 
in the sample size (and number of loci discovered so far) has been 

[2]: with 778 cases 
 [1], and 12,041 cases in 

the Immunochip analysis [7] (Figure 1).
 Despite the difference in the number of loci discovered for each 
disease, it is possible to observe relationships among the biological and 
genetic factors involved in the individual diseases (Figure 4). Some loci 

or commons steps in the development of autoimmunity, whereas those 
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Figure 3. Number of loci discovered in different autoimmune diseases since 
2009. The bubbles plot shows each of the diseases in which Immunochip has 
been applied to discover new genetic associations (with the exception of T1D and 
SLE). Each of the bubbles represents one disease and its size correlates with the 
number of samples analyzed. Note that none of the diseases, with the exception of 
RA, MS and IBD, reach the threshold of 50 associated loci (this is also related to the 
sample size). Alopecia areata (AA), atopic dermatitis (AD), ankylosing spondylitis (AS), 
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(PBC), psoriasis (PS), rheumatoid arthritis (RA), primary sclerosing cholangitis (PSCh), 
Sjögren’s syndrome (SJO) and systemic scleroderma (SS).
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processes. 
 It is important to realize that nearly all the genetic associations 
to autoimmune diseases that have been found so far correspond to 
common variations (frequency  5%) with very modest effects (odds 
ratio (OR < 1.5). Only in some exceptions have associations been 
seen to rare or low frequency variants (in CeD, IBD, PBC and RA), 
and these are often related to the number of samples analyzed and 
hence the study’s power or methodology (e.g. the use of sequences 
instead of genotypes) [26]. Two examples serve to demonstrate the 
complex analysis leading to the discovery of rare variants. A recent 
exome sequencing study in CeD, using extended families (in a linkage 
analysis) and with re-sequencing of GWAS candidate genes, did not 

[27]. A 
similar scenario was presented by Hunt et al., who, after re-sequencing 

a nearly “common” non-synonymous variant with very modest effect 
(rs17849502, minor allele frequency (MAF = 0.049, OR = 1.35) in the 
NCF2 gene [26]. With hindsight, this variant was also found to be present 
in the CeD Immunochip study by Trynka et al., but it had been removed 
from further analysis by their quality control criteria [7]. 
 The common variants explain a very small proportion of the 
phenotypic variation in the population attributable to the genetic 
variation among individuals, which is also known as heritability [28]. The 
explained heritability also depends on the type of study used for the 
analysis (family studies or case-control GWAS data), the prevalence 
of the disease, the allelic frequency of the variables included in the 
model (which will depend on the population under analysis) and the 
risk provided by those variables. According to our estimates based 
on case-control GWAS data, 41% of the heritability of CeD resides in 

[29]. However, based on family studies, 87% of the total heritability of 
CeD can be explained [30]. The 40% difference between the heritability 
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explained by known variants and by family studies is known as the 
“missing” heritability. It might be explained in part by thousands of 
common variants with very low effects  – or rare variants with modest 

power issues. A recent study suggested that another 2,550 common 
SNPs with modest effect may contribute to CeD susceptibility [25, 28].

Figure 4. It is well known that phenotypically different autoimmune diseases are 
related biologically, although the amount of overlap between diseases is not 
completely clear yet.
of the diseases share at least one locus, even though some loci are associated to only 
one disease. Both scenarios are interesting, since those loci only associated to one 

could be involved in the initial steps of autoimmune deregulation.  The number of loci 
found so far (in parenthesis) is shown for each disease represented in the circus plot.
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The majority of CeD SNPS map to regulatory 
variations
One of the biggest challenges lies in the interpretation of the genetic 

CeD, more than 90% of the disease SNPs are located outside protein-
coding genes, which suggests they may have a regulatory role [31], 
although how this works is not yet clear.
 One way to test if disease-associated SNPs are regulatory is 
to investigate if they regulate the expression of nearby protein-coding 
genes (so-called cis-eQTLs) (Figure 5). At the same time, expression 
quantitative trait loci (eQTL) analysis allows for prioritization of genes 
from regions of association that often contain more than one gene 
[8]

of the disease SNPs were cis-eQTLs [1]

than would be expected by chance (P = 9.3×10 ) and indicates that 
CeD-associated SNPs are greatly enriched for cis-eQTLs. Despite the 
importance of blood as an informative tissue in CeD due to the role 

manner, highlighting the importance of performing cis-eQTLs analyses 
in other relevant tissues (Table 1) [32].
 Based on the hypothesis that the thymus plays a role in the 
deregulation of T cells in the development of CeD, Amundsen et al. 
analyzed thymic tissue for cis-eQTL effects of 50 SNPs located in the 
39 non-HLA regions associated with CeD [33]. They found that 54% 
of the SNPs analyzed showed a cis-eQTL effect, of which 11 SNPs 

interesting results still need to be replicated due to the limited sample 

for some of the eQTLs they found.
 The analysis of cis-eQTLs could be even more complex because 
some of them are also stimulus-dependent. Fairfax et al. found that 
more than 50% of the cis-eQTL overlapping GWAS loci were observed 
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only in cells after stimulation with IFN-gamma [34]. In a similar study 
[35], in which dendritic cells were stimulated with lipopolysaccharides 
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Figure 5. Some SNPs play a regulatory role in the expression of genes located 
nearby (cis-eQTL effect) or several thousands of nucleotides away, even in different 
chromosomes (trans-eQTL effect). This effect can be measured in nearly all kinds of 

tissue analyzed.
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stimulation. In this case, Lee et al. observed that a SNP associated to 
CeD and RA affected the expression of TRAF1, a gene playing a role in 
cell survival and apoptosis in dendritic cells after stimulation with LPS 

[35].
 A recent study [36] mapped cis-eQTLs using intestinal biopsies 
from CeD patients with active disease, from patients who had followed 
a gluten-free diet (GFD), and from healthy individuals. In this study, 44 
SNPs and 45 candidate genes were investigated, which resulted in four 
cis-eQTL as well as multiple CeD SNPs that affected the expression of 
genes far away (often on other chromosomes, so-called trans-eQTLs). 
In agreement with the other studies mentioned above, they also found 
some stimulus-dependent eQTLs [36]. To obtain a full picture, more 

different conditions, in order to prioritize the candidate genes from the 
associated loci. 

Non-coding RNAs and CeD
Non-coding RNAs (ncRNAs) are functional molecules that are not 
translated into proteins [3], and their role in the immune system and 
immune diseases has been recently reviewed [37]. Long non-coding 
RNAs (lncRNAs) and microRNAs (miRNAs) are two important classes 
of ncRNAs: lncRNAs are transcribed RNA molecules longer than 200 
nucleotides, while miRNAs are small (22 nucleotides on average). Both 

manner.
 In previous work we have shown that 10% of the SNPs 
associated to 11 immune-mediated diseases overlapped with lncRNAs 
[3], suggesting a possible role in the gene regulation of these diseases. 
To test if disease SNPs also can affect the expression of ncRNA genes, 
similar to that observed for protein-coding genes, Kumar et al. performed 

the GWAS catalog [38]. This number is low since they used a platform in 
which microarrays contained only a small fraction of all ncRNA genes. 
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Reported candidate genes Blood Thymus Monocytes Dentritic 
cells

Celiac 
disease 
biopsies

1 1p36.32 57 C1orf93, MMEL1, TTC34
PLCH2, 

TNFRSF14, 
C1orf93, 
MMEL1

HES5, PANK4

1 1p36.11 160  RUNX3
GRHL3, 
IL28RA, 
IL22RA1

1 1q24.3 48  FASLG/ TNFSR18 TNFS18
1 1q31.2 35  RGS1 DDX59 RSG13, 

TROVE2 RGS1

1 1q32.1 237 C1orf106 DDX59
GPR25, 
DDX59, 
KIF21B

2 2p16.1 82 PUS10 AHSA2
AHSA2, 
C2orf74, 

XPO1
2 2p16.1 82 PLEK and FBX048 PLEK, 

PPP3R1
2 2q12.1 62 IL18R1, IL18RAP IL18RAP IL18RAP, 

TMEM182 IL18R1
2 2q31.3 29  UBE2E3 and ITGA4
2 2q32.3 45  STAT4
2 2q33.2 40  CD28, CTLA4 and ICOS RAPH1 ICOS
3 3p22.3 73 CCR4 and GLB1
3 3p21.31 236 CCR1, CCR2, CCR3 and 

LTF
CCR3, 
CDCR6

TSP50, CCR1, 
LRRC2

3 3q13.33 64 ARHGAP31 ARHGAP31
3 3q25.33 30 SCHIP1 and IL12A IL12A
3 3q28 44 LPP
4 4q27 42 KIAA1109, ADAD1, IL2, 

IL21 NUDT6
6 6p25.3 30 IRF4 (NM_002460.3)
6 6q15 75BACH2 (NM_001170794.1)
6 6q22.33 39 PTPRK (NM_002844.3)
6 6q23.3 67  OLIG3 and TNFAIP3
6 6q25.3 92 TAGAP (NM_152133.1) TAGAP EZR-AS1
7 7p14.1 42 ELMO1 ELMO1 ELMO1 ELMO1
8 8q24.21 59  PVT1
10 10p15.1 65 PFKFB3 and PRKCQ
10 10q22.3 79 ZMIZ1 ZMIZ1 PPIF
11 11q23.1 70  POU2AF1, C11orf93
11 11q23.3 171 TREH and DDX6
11 11q24.3 49  ETS1 (NM_001162422.1)

12 12q24.12 20 SH2B3 and ATXN2
SH2B3, 
ALDH2, 

TMEM116
FAM109A, 

ERP29
14 14q24.1 52  ZFP36L1
15 15q24.1 76 CLK3, CSK
16 16p13.13 71 CIITA C16orf75
16 16p13.13 71 SOCS1, PRM1 and PRM2 
18 18p11.21 142 PTPN2 SLMO1
21 21q22.3 195 UBASH3A 
21 21q22.3 195 ICOSLG RRP1 PDXK
22 22q11.21 195 UBE2L3, YDJC UBE2L3 UBE2L3, 

TOP3B, HIC2
X Xq28 244HCFC1, TMEM187, IRAK1 TMEM187

Table 1. Overview of eQTLs in loci associated to celiac disease



[38]

indeed show that many of the immune-mediated disease loci contained 

immune cell types [39]

 [39]

immune cell types analyzed, suggesting they do indeed play a role in 
immune processes. 
 

mononuclear cells from 629 healthy individuals, we have shown that 

[36].
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 MiRNAs are also recognized as important in CeD. A recent 
study found that 20% of the miRNAs studied in intestinal biopsies from 
children with CeD and in healthy controls were differentially expressed 
[40]. For example, miR-449a was found to be overexpressed in patients. 
This miRNA is known to target and reduce the levels of NOTCH1 and 
KLF4, which were shown to correlate with a lower number of goblet 
cells in the small intestine of CeD patients [40]. The differences in the 
levels of miRNAs were not only related with the disease status (healthy 
or affected), but also with the phenotype expression: for example, 
miR-194-5p and miR-368 were found to be differentially expressed in 
anemic CeD patients [41]. 

Cellular and animal models in CeD
In order to understand how the different genes associated with CeD 
relate to the disease biology, in vitro or in vivo models can be useful. In 
addition, the limited number of phenotypes that can be safely measured 
in humans contrasts with the potentially exhaustive manipulation that 
can be performed in a model organism [42, 43]. The in vitro models of CeD 
include non-T cells (epithelial cells, macrophages, dendritic cells and 
monocytes) or T cell cultures propagated from small intestinal biopsies 
of patients and tumor cell lines (THP monocytic or Caco-2 cell lines) [44, 

45]. These models have helped to evaluate the contribution of different 
cell types to disease, as key cell types relevant to a disease can be 
selectively isolated by using cell sorting or magnetic separation, then 
expanded with growth factors, cytokines and/or antigen cocktails, and 

[46]. An example 
is the potential use of regulatory T cells (Tregs) as immuno suppressive 
agents to repress autoimmune diseases, or the ex vivo expansion of 
intra 
in CeD to evaluate the mechanisms involved in their expansion [47]. 
 Despite the importance of in vitro models, there are limitations in 
mimicking the environment, hormones, signals and cell-cell interactions 
in the organs. In vivo models for spontaneous or induced CeD have 
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been developed in dog, monkey, rabbit, rat and mouse. Although each 
animal model has a typical pathophysiology and both strengths and 
weaknesses, they have provided essential information towards the 
systematic understanding of diseases [48, 49]. For example, the most 
widely used animal models in CeD are mice that express the HLA 
genes DQ8 or DQ2, the major genetic risk factor contributing to CeD. 

enteropathy characterized by shortened villi. Thus, this stresses the 
importance of the non-HLA loci [48].
 
Prioritization of causal variants and genes by an 
integrative approach
The availability of huge amounts of functional data in the public domain 
and the integration of this information across different cell types have 
contributed to the development of new prioritization methods for causal 
variants and genes, revealing new pathways involved in disease. For 
example, Kumar et al. prioritized 41 SNPs and 49 genes as causal for 
CeD [8] after intersecting the SNPs associated to CeD with regulatory 
elements generated by the ENCODE consortium, such as DNase I 
hypersensitive sites (DHS), DNase I footprints, and transcription factor 
binding motifs. Interestingly, they observed that 60% of the SNPs 

earlier observations based on eQTLs. Looking at the enrichment of 

role for T-cells in CeD and also discovered B-cells to be important 
players [8]. Using co-expression analysis, they implicated four genes 
in the intestinal barrier function, further substantiating a role for this 
pathway in CeD [50]. They also observed that 30% of the prioritized 

CeD.
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The future of CeD genetics 
Studies of human genetics have been extremely successful over the 
last 10 years and led to major new insights into human disease. This 

furthered our understanding of the biological pathways predisposing 
to disease. However, translating this knowledge to the clinical and 
molecular phenotyping of disease has been slow. One key aspect has 
been the time required to collect large numbers of patient samples and 
the time needed to develop cost-effective molecular biology techniques. 
These important steps have so far mostly been implemented in studies 
of Caucasian populations. Some small steps have been taken in other 
ethnicities. Senapati et al. studied a cohort of North Indian CeD patients 
and compared the results with a similar sized Caucasian sample 
using the Immunochip platform [4]. Apart from the MHC-HLA region, 

also replicated in the North Indian samples (corresponding to FASLG/
TNFSF18, SCHIP1/IL12A, PFKFB3/PRKCQ, ZMIZ1 and ICOSLG). 
Two other loci, PFKFB3/PRKCQ and PTPRK/THEMIS, also showed 

differences in genetic background. This type of cross-ethnic analysis 
has also been applied to other immune-related diseases, such as 
RA and asthma, and to non-immune related disease, such as type 2 
diabetes, lipid levels, body mass index, and cancer [51-55]. These studies 
have demonstrated the effective use of this methodology in the process 
of discovering new variants and pathways involved in disease, as well 
as opening up the possibility of performing cross-population analyses 
for different diseases. 

Is the current genetic information useful in clinical 
practice?
In silico analysis and experimental models of CeD may provide 
mechanistic insights which might lead to the development of novel 
treatments [19, 42, 56]. An interesting example of how genetic data can 



have on translational medicine . 
 

[58]. 

Practice points:

researchers. 

helpful in identifying new cross-disease therapies.

of patients.

Research agenda

pathways involved in disease pathogenesis.
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variants associated to celiac disease should be performed in tissues 
and cells relevant to the disease, such as intestinal biopsies and 
gluten-restricted T cells.
 Further studies exploring the non-coding part of the genome will 

increase our understanding of the key regulators in celiac disease. 
 Larger sample sizes and studies in different populations is needed 

to discover  new loci contributing to celiac disease. 

Summary
Just four years after the release of the Immunochip platform, the results 
of immunochip studies in a wide range of autoimmune diseases have 
greatly expanded our knowledge on disease etiology. We have seen 
a large number of loci discovered for all autoimmune disorders, an 
ever-increasing number of samples being studied, and the translation 
to functional studies to enhance our understanding of the biological 
roles of the individual disease genes from the associated loci. At the 
same time only a modest part of the genetic variation can be explained, 
suggesting that many more the genetic variants remain to be 
discovered. We also do not fully understand how genetics contributes 
to the diverse phenotype expression. We also need to determine how 
genetics can be used to predict disease susceptibility, or how genetic 
factors can be used to develop new treatments. 
 
47% of the genetic variation. Most of the genetic variants have a role 
in gene regulation, presumably leading to a dysregulation of immune 
homeostasis in the intestinal immune system.
 In CeD, both the development of novel statistics and functional 
disease models will help to further our understanding of the biological 
pathways underlying the disease phenotype, how these pathways are 
regulated, and to develop new therapies to treat patients.

For CeD 41 different loci have been identified explaining 
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