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PRINCIPAL COMPONENTS ANALYSIS ON A MIXTURE OF QUANTITATIVE AND
QUALITATIVE DATA BASED ON GENERALIZED CORRELATION COEFFICIENTS'

Henk A.L. Kiers®

University of Groningen

In this paper a methed for principal components analysis
(PCA) is proposed that yields a compromise between PCA on
generalized correlation coefficients for a mixture of
qualitative and quantitative vaciables, as suggested by
Janson and Vegelius, and a generalization of multiple
correspondence analysis {or the analysis of such variables.
The method proposed here is based on INDSCAL on a set of
similarity matrices, that are used as quantification
matrices for each of the variables. This method is compared
to the two original methods between which it is a
Compromise.

Principal Components Analysis {PCA) is a useful technique for the
explotatory analysis of quantitative variables. The purpose of PCA is to
yicld optimal representations of the variables and the observation units
{called “objects” here) simultaneously. That is, PCA yields component scoves
for the ubjects on a limited number of componeats such that these component
scores are the best possibie predictors for the scores of the objects on the
variables. Optimal representation of the variables is given in an analogous
way. The usefulness of PCA lies in the possibility of describing most of the
information present in one's data by means of a nwnber of components that is
usually much smaller than the number of variables.

PCA can only provide such a solution when the variables are
guantitative. For qualitative variables an essentially different approach is
needed, On the one hand, there are methods that optimally represent
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qualitative variables, but do not represent objects at all. On the other hand
there are methods that optimally represent objects, bul by no means represent
the gualitative variables in any oplunal way. In fact, it seems iupossible to
obtain an optimal representation of variables and objects simultaneously,
when the variables are qualitative. Therefore, Riers {in press) proposed a
method that offers a compromise between inethods that optimally represent the
variabies without representing the objects al all and methods that optimally
H.mvmm....m:n objects only. Kiers’ method is a compromise between those two Lypes
of methods in that it yields the best possible representation for the
variables which simultaneously yields a representation for the objects.
hiers’ approach only applies to data sets that consist exclusively of
qualitative variables. For the exploratory analysis of data consisting of a
mixture of qualitative and quantitative variables a different approach is
needed.

The exploratory analysis of a mixture of qualitative and quantitative
variables seems Lo have received far less atiention than ihe exploratory
analysis of qualitative variables. Two Lypes of approaches have been
considered, both of which are generalizatious of methods for the exploralory
analysis of qualitative variables. The first type of method generalizes
Multiple Correspondence Analysis (MCA) 10 the effect that it can handle o
mixture of qualitative and quantitative variables. The second type of method
is based on PCA on generalized correlation coefficients that measure the
association belween a qualilative and a quantitative variable. As has been
shown by Kiers (in press) for the case of qualitative variables, neither MCA
nor PCA based on generalized correlation coefficients [or qualitative
variables are “complete”. That is, MCA does nolL provide an optimal
representation of the variables and PCA based on generalized correlation
coeflicients for qualitalive variables does not provide a  useful
representation for the objects, In the present paper it will be shown that
the Lwo ypes of methods currently available for the analysis of a mixiure of
Yualitative and yuantitative variables are similarly incomplete, The purpose
ol the present paper is Lo propose a method thal yields a compromise belween
the two existing types of methods for the analysis of a mixture of
yualitalive and guantitative variables, Before discussing this comprotise a
more detailed discussion of the Lwo existing types of methods will be given.

The first type of method has been proposed independemtly by many
authors (De Leeuw, 1973; HiYl & Smith, 1976; Tenenhaus, 1977; Wemnr=taRIm-
dde-besus 18%; Escolier, 1979; Nishisato, 1980, pp.103-107). Must of these
authors present their methods as generalizations of MCA to the effect that

they can handle a inixiure of gualitative and quantitative variables. Although
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the methods slightly differ in the way in which quantitative variables are
transformed, all methods essemtially use the same approach to handle
qualitative variables. That is, al} methods can be described as a kind of PCA
ot 2 matrix containing as columns the indicator variables for the categories
of the qualitative variables and (a transformation of) the quantitative
variables. The particular method that performs PCA on the indicator matrices
of the gualitative variables and on standardized versions of the quantitative
variables will be denoted here as MCAMIX. This is the generalization of MCA
as it has been proposed originally by Hill and Smith (1976), Tenenhaus
{1977) ~and Young, Takane-ame-Debeeuw-(-1673}

As has been demonstrated by Kiers (in press), the very fact that MCA
perforins a PCA on the complete set of indicator variables for all qualitative
variables causes it 10 yield a non-optimal representation of the qualitative
variables. In fact, MCA vields an optimal representation of the categories of
the qualitative variables, not of the variables themselves. Analogously, the
generalizations of MCA for analyzing 2 mixture of qualitative and
quantitative variables, optimally represent only the categories of the
qualitative variables, rather than the qualitative variables themselves,
because they use the same approach for the qualitative variables as MCA does.

The second Lype of method has been cutlined by Saporta [1976). Saporta’s
method finds an optimal representation of a mixture of qualitative and
quantitative variables by means of a PCA on a matrix of generalized
correlations between all variables. For the generalized correlation between
two qualitative variables, Saporta chooses Tschuprow’s T® coefficient
(Tschuprow, 1939), which is the x° measure normalized 1o the effect that its
maximum is 1. For the generalized correlation between a qualitative and a
quantitative variable, he proposes to use the correlation ratio, also
norinalized such that its maximum is 1. Saporta does not explicitly mention
which teasure one should take for the correlation between two quantitative
variables, but following his line of reasoning it is clear that this should
be the squared product moment correlation. Janson and Vegelius (1978,1982)
propose . several generalized correlation coefficients for the purpose of
performing 2 PCA on the generalized correlation matrix. Zegers and Ten Berge
{1956) discuss the coefficients proposed by Janson and Vegelius, and show
some advantages of some of these coefficients above others.

The generalized correlation coefficients proposed by Saporta {1976) and
Janson and Vegelius (1982) share one basic property. That is, all these
peneralized correlation coelficients are normalized scalar products between
“uperators™ as Saporta calls them, or “quantification matrices™ as Zegers and

Ten Berge (1986) choose to name them, A quantification matrix is a matrix of
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similarities between objects. Each n:EEJQ»:c: matrix uniquely represents
a variable. For a quantitative variable usually the matrix thal is the outer
product moment of the standardized colunn of scores on the variable is used.
For a qualitative variable many different quantification matrices might be
used (Janson & Vegetius, 1978). All of these are transfornnations of the
indicator matrix lor the variable concerned.

Because the generalized correlation coellicients between variables that
result from the quantification matrices are scalar products, the variables
can be analyzed by means of PCA ou the matrix of generalized correlations.
This PCA will yield an optimal representation of the variables. llowever, in
general, it does not provide a representation for the objects. For the case
witl only qualitative variables, Cazes, Bonnefous, Bawnerder and Pages {1976)
do propuse a method for representing objects after a PCA has been performed
on generalized correlation coefficients. This method could also be used for
representing objects alter a PCA on generalized correlation coeflicients for
4 mixture of qualitative and quantitative variables. However, their method
for representing objects is based on the first principal component of the
variables only. lu this way, the representation of the objects is based ouly
on part of the information present in the solution for the variables, which
might unply an undesirable amount of loss of information.

Above, it has been shown that MCAMLX and its variants do not provide an
optimal representation for the variables, and that Saporta’s method does not
provide an optimal representation for the objects. In the preseut paper a
compromise is provided thal yiclds representations of the variables and of
the objects sinullaneously. U will be shiown that this method yields a better
representation for the variables than MCAMEX does, but this representation is
noL a5 good as the une provided by Saporta’s method. On the uther haad, Lhis
method provides a representation for the objects whichi is better Wian the vie
that might be given by Saporta’s method, because these are defined for all
principal components, and not only for the first. As in Kiers (in press), the
comprontise is given by applying a variant of INDSCAL {Carroll & Cliang, 1970)
0 the sel of quantification matrices that are defined for cach of the
variables. Firstly, this variant of INDSCAL will be treated. Secondly, he
INDSCAL analysis for a mixture of qualitative and quantitative variables witl
be described. Next, it will be shown that this method is a comnprotnise between
the wo existing ypes of melhods for the analysis of a mixture of
qualitalive and quantitative variabies.

-70~

Orthogonally Constrained INDSCAL

INDSCAL is a method for the analysis of a set ol objects by objects
similarity matrices. Each similarity matrix may represent simijarities
according 1o one judge, or more generaily based on one “aspect”. The method
is designed to represent the objects in one (low-)dimensional space such that
the similarities between objects with respect 1o each aspect are
approximated, Because it is assumed that for different aspects the dimensions
of the space have different saliencies, the similarities are approximated by
means of weighted scalar products with different sets of weights for the
dimensions, for each of the different aspects.

Let the matrix of similarities between n objects pertaining to the £
aspect be given by $y (n x n), let the matrix of coordinates for the objects
in a p-dimensional space be denoted by X (r x p, p < nr}, and let W) denote
the px p diagonal matrix providing the set of weights for the k™ aspect,
k = 1,..,m Then INDSCAL is the method that finds matrices X and diagonal

matrices W) such that the loss function

m
X Wy W) = E 1| S - XWX |7 (1
ka1

is minimized over X and W¥,,.. ¥ ,,. Although no constraints need be imposed on
the matrix X, it is often useful to do so. We constrain matrix X to be a
column-wise orthonormal matrix, that is X'X = [,, and call the resulting
method “orthogonally constrained INDSCAL". Apart from being useful in a
technical way, this constraint simplifies the interpretation of the resulty
when the method is applied to quantification matrices for qualitative
varinbles,

As has been shown by Kiers {in press), the problem of ninimizing (1)
aver X and diagonal matrices #y,.., W, subject to X'X = [, is equivaleut 10
choosing V), = Diag{ X'§,.X) and maximizing

f(X) = £ u(DgtX ST (2)
kw1
over X, subject to XX = [, It is useful to note that {{X} can equivalently
be expressed as
m p .
[X) =T F (xS, (3)
k=1 lml
where x, detotes the I column of X.

As in Kiers (in press), the maximum of (3), subject to X'X = /,, can be
found by means of the algorithm proposed by Ten Berge, Knol and Kiers (1984).
This completes the description of orthogonally constrained INDSCAL. In the
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next section it will be discussed how orthogunally constrained INDSCAL can be
applied 10 a set of quantification matrices for a mixture of qualitative and

quanlitative variables.

INDSCAL for the enalysts of & muxture of qualitetive and
quantitative variables

Above, it has been mentioned that various quantifications can be chosen
for quantifying qualitative data. ln the present paper the yuantification
matrices that have been used by Saporta {1976) are chosen. In case the £
variable is a qualitative variable then let Gy denote the n xm, indicator
matrix for the k% variable, where m, is the number of categories of variable
k. lev ) be defined as the diagonal matrix of [requencies of the categories
of this variable, and let the m xn matrix J be defined by J = (f«11"/n),
where 1 is the vector of order » with unit elements and J is the centering
operator. Then the quantification matrix ¢chosen here is defined as

Py = mmmbme JGDIGY . (4)

I

For a quaniitative variable the quantification matrix can be described

h . . . .
as follows. When the k™ variable i quantitative, then let the column vecior
2, contzin the scores of the n objects on the quantitalive variable k. The

quantification mmatrix for variable & is then given by

Dk = ! L—N&Nk.oh. Tnvu
Ty STy

From (4) and (5) it follows that we have tr P = 1 and tr Q% = 1. That
is. just as in ordinary PCA, the variables are normalized to unit sums of
sguares.

In the sequet the orthogonally constrained verston of INDSCAL described
above, with matrix Sy chosen as Py when variuble & is qualitative, wnd us Qi
when variables & s quantitative, k = 1.0, will be denoved as "INDSCAL Tor

mixed variabies™,

INDSCAL for waxed varmables es a comprongse between

Suporta’s method and HCAMIY
INDSCAL for mixed variables can be interpreted in a number of different
ways. 1L will be shown that the analysis can be interpreted as a medhiod that

vplinally represents relations between variables {as a PCA uechnique docs)

: 2

while retaining a clear link with the representation of the objects. In order
w do this it is necessary lo explain the idea behind Saporta’s method in
mathematical terms, because it supplies a good basis for interpreting INDSCAL
for mixed variables.

Saporta'’s method consists of performing PCA on a mixture of qualitative
and guantitative variables. This PCA is based on quantification matrices for
the qualitative and quantitative variables. Such a quantification matrix can
be seen as & vector in R™™. Such vectors that are in fact matrices strung
out row-wise as vectors will be denoted here as tensors, because they are
vectors of order n° representing n % n product moment matrices. The rank of
such a tensor is defined as the rank of the corresponding product moment
matrix. As has been mentioned above, Saporta chooses P, as quantification
matrix when the £ variable is qualitative and Q, when the k* variable js
quantitative.

Mathematically, Saporta’s method can be described as follows. Let Sy
denote the quantification matrix for the £™ variable, then Saporta's method
consists of maximizing the function

m p
gFn. . Fd =T L r F5F, (6)
b ] tm)

over the n x m matrices £, I=l,..,p, representing “factors™ or
“components™ of the variables, subject to the constraint tr F'Fp. = &y .
where & denotes the Kronecker symbol. It is well~known that maximizing the
sum of squared loadings defines a PCA. Because tr F;'S, can be considered as
the loading of the vector representing variable k in R™" on the vector

TINTL

representing component [ in R™, maximizing (6) can be seen as PCA on the
variables represented by the quantification matrices.
Above, INDSCAL for mixed variables has been shown to be the method

maximizing (3), with 5, chosen as P, or (,, when the £ variable is

qualitalive or quantitative, respectively. Function () can be rewritten as

o P 2 m P . 2
f(X)= L Z(Sx) = L T (trxx5), (7}
kel {wi kwl l=l
which has 1o be maximized over matrix X, subject to XX = [,. Obviously,
maximizing  g(#y,..,Fp} over F,..,Fp, subject to the constraint
tr FrFL =6y and subject to the additional constraint F=xx,/ is
ecquivalent 1o maximizing (X} over X, subject to the constraint
(XX, XX ) == &y, The latter constraint can be reformulated as
T
)

Lr{% X, XX ) = (X %)” = &y This in turn is equivalent to XX =1,

which shows that, when F;=xX/, the constraints tr F{F. =6, and
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XX =1, are equivalent. As a colsequence, maxinizing g(F,,..,F,) over
Fiy..\F,, subject 10 the constraint tr iR = oy, for all pairs ! and I,
and to the additional comstraint that £ has rank one for all 4, is
equivalent Lo maximizing (7) over X, subject to XX = 1, Hence, INDSCAL for
mixed variables can be interpreted as a method of PCA on a mixiure of
qualitative and quantiialive variables subject 10 the additional cotstraint
that F; be a rank-1-tensor.

As has been mentioned above, Saporta’s method is problematic in that it
does not provide coordinates for the objects. An advantage of INDSCAL for
mixed variables over Saporta’s method is that it does yield coordinates for
the objects. The constraint that the compaonents are rank-l-lensors,
Fy= xx,, implies that for every coinponent of the variables there iy a set
of courdinates on a dimension in 2 low—dimensional space R for the objeets.
Lo this way, each dimension for the variables is directly and uniquely linked
to a dunension for the objects. Moreover, because the rank-~i-temsors are
required to be orthogonal, the object coordinate dimensions are orthogonal as
well.

It is well-known that the MCAMIX solution yields object coordinates for
which X°X = [, (¢f. Tenenhaus, 1977), That is, the MCAMIX soluLion satisfies
thie constraints imposed on the components in INDSCAL [or mmixed variables.
Subject W these constraints, INDSCAL for mixed variables yields the besy
possibie representation of the variables. Therefore, INDSCAL for mixed
varisbles yields a representation of the variables that is better than the
onie given by MCAMEX.

In conclusion, we see INDSCAL for mixed variables as a methiod that
optusally  represeats relations among & mixtere of qualitalive and
{uatititalive variables, and sitnultanecusly yields a representation of objects
thal is linked 10 the representation of the variables. Clearly, in this way,
INDSCAL for mixed variables is a compromise between Saporta’s method and
MCAMLX, in that it consists of a (constrained) PCA on the variables {like
Saporia'’s method) and simultaneously yields coordinates for Lhe objects (like
MCAMIX doesy.

Interpretation of results of an INDSCAL enalysis for mixed wveriables

Bocause INDSCAL for iixed variables js a compromise beltween Saporta’s
method and MCAMIX, ity results partly parallel those of Saporia’s method and
partly parallel thuse of MCAMIX. Tha is, like in MCAMLX, INDSCAL for mixed
variables provides object cuordinates, collected in a matrix Y. These can Le

iterpreted o the same way as in MCAMIX, but while doitg this, it should be

noted that MCAMIX and INDSCAL for mixed variables stress different aspects.
That is, whereas MCAMIX stresses optimal representation of objects and
cazegories, INDSCAL for mixed variables stresses optimal representation of
variables. As a consequence, MCAMIX does not provide an optimal
representation for the variables, and INDSCAL for mixed variables does not
provide an optimal representation for the categories. Yet, it is possible to
provide category coordinates for the INDSCAL solution, by simply computing
for every category of a qualitative variable the centroid of the object
coordinates of the objects that fall in the category concerned.

The results of INDSCAL for mixed variables share with the solution of
Saporta’s method that a representation of variables is given. This
representation is provided by means of the solution for the diagonal matrices
Wy. The elements of these matrices can be interpreted as the loadings of the
variables on the axes that represent the variables in a tensor space. In
[NDSCAL for mixed variables these loadings are always non-negative. This
might seem Lo restrict the quality of these loadings, but, considering that
relations between a mixture of qualitative and quantitative variables cannot’
sensibly be expressed in terms of negative correlations, (Janson & Vegelius,
1982}, the non-negativity of these loadings merely reflects the-
inappropriateness of negative correlations for such pairs of variables .

Finally, we have an overall value for evaluating the quality of the
solution. To this end, we use the proportion of explained inertia of the
quantification matrices 5. This proportion is given by the maximal value of
X} (cf.(3)), divided by the total inertia. The total inertia of matrix S,
is equal 10 I, hence the overall total inertia is equal to m. Therefore, the
proportion of explained inertia is given by the “quality measure™ for INDSCAL
(QM;) as

ozhu «w M m Axm.wnx;u. Amv
kel =l

In order to provide an indication of the quality of the INDSCAL
solution, it is useful to compare this measure 10 the inertia of the
<uantification matrices that is explained by means of Saporta’s method and
MCAMIX, respectively. For Saporta’s method, as in ordinary PCA, the
proportion of explained inertia of the quantification matrices is given by
the sum of the (irst p eigenvalues of the “correlation™ matrix, divided by m.
In case the object coordinates are computed by means of MCAMIX, one
ntight compute the proportion of explained inertia by means of (8} with the
MCAMIX object coordinates substituted for the INDSCAL object coordinates. It
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should be noted, however, that the thus computed “proportion of explained
inertia” is the explained inertia of the MCAMLIX object courdinates when the
quantification matrices are represented by the INDSCAL model. Another
interesting measure for the quality of the MCAMIX solution would be a measure
that is based on the model for quantification matrices that is actually fit
by MCAMLX. It can be shown that MCAMEX fits the quantification matrices to
the model

.w.wﬂkgk.. ﬁou

for k =1,.,m, where W is a diagonal matrix, and X is the orthonormal matrix
of object coordinates {cf. Kiers, in press), Clearly, this model is a special
case of the INDSCAL model. That is, MCAMLX fits the INDSCAL model, subject o
the additional constraing that W, =W, for all k, or, equivalently, subject
te the additional constraint that the matrices ¥y, be equal, This model
i au interesting model in itsell, because, when it adequately represents the
yuantification matrices, it implies that all variables can be represented by
the same coordinates in the variable space. It can be shown that the
explained inertia of this model is expressed by
a 27, o z A
My = Hnn%»\mnn.m.nunu a5 (10)
ke k=1 W imi
wliere & is the eigenvalue of m 5. Comparing QM to QM; provides the

ki
user witlt a4 Lool 1o choose belween representing the variables by means of

INDSCAL and representing the variables by means of the simpler mode) with
puorer i, MCAMIX,

Exemplary analysis

In order to give an idea of what resulls of INDSCAL for mixed variables
ay look like, a simple data sel, has been analyzed by all three methods, That
Is, the data is analyzed by means of Saporta’s method, a variant of MCAMIX,
and INDSCAL for mixed variables. For the variant of MCAMIX Lhe method is

chosen what computes the object coordinates as the first P Cigettvectors of
n

L e with 5, chosen as Py or {, depending cn the Incasurement level of
k=

vanable k. Thiy differs slightly tom MCAMIX because in MCAMIX S is chosen

equal w0 JGD Gy, instead of Py, when variable k s qualitative, The

chioice lor this variant of rgwx. is made for comparative purpuses only.
The (artificial) data ser thal s analyzed here, s given by

Hartigan (1975, P.228). The data consist of 24 objects like screws and nails,

~1h-

that are classified according to 5 categorical variables {Whether or not they
have a THread, what type of HEad they have, what INdeatation they have in the
heads, what kind of BOttom they have and whether or not they are made of
BRass). In addition their LEogth (in half inches) is measured, which is
considerad as a numerical variable in the present analysis. In all analyses,
the one-, two—, three-, and four-dimensional solutions were studied. For the
INDSCAL solutions the percentages of explained inertia were 31.9 % for r = 1,
50.0 & (or r=2, 62.0 % for =3 and 68.5 % for r = 4. Because after the
third dimension (with 62.0 % of explained inertia) the rate of increase in
explained inertia was considerably diminished, it has been decided that the
three~dimensional solution was the most useful. For r = 3, Saporta’s method
explained 72.1 % of the inertia, and the model fitted by MCAMIX explained
32.5 % of the inertia of the quantification matrices. The MCAMIX object
coordinates used in the INDSCAL model explained 52.4 % of the inertia.

For reasons of space only the coordinates for the variables and the
objects on the two mos: impertant dimensions resulting from the INDSCAL
analysis with 7 = 3 are provided, in figure 1 and figure 2, respectively. The
third dimension was dominated by the {numerical) variable [Ength. The object
coordinates on this dimension mainly reprasent the objects along this axis
according to increasing length,

axis 1
axis 1
il S
-
- HE unit
axis 2 -80 circle
BB T o -
esTacks, nails -LE .mm. -
Poholts, screws _ axiz 2
sabrass objects
Figure 1. Obiect coordinates Figure 2. Variable loadings

from INDSCAL for mixed varizbles.  from INDSCAL for mixed variables.

Clearly, Saporta’s method represents the variables best, and the medel
for MCAMEX yields the poorest representation for the variables, The quality
of the representation provided by INDSCAL lies in between these two extremes.
In conclusion, when one is interestad in a PCA on variables that also
provides object ¢oordinates than one should certainly prefer to represent
the present examplary data set by means of the INDSCAL model to representing
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it by means of MCAMLX.

The interpretation of the results is facilitated by the lact that the
the axes for the objects and those for the variables are linked. l'rom the
plot (or the variables it is clear that the [irst (vertical) axes represents
quite well the variables THread, HEzd, [Ndentation and 80uiom. These
variables are precisely the variables that distinguish screws and the like
from nails and the like. This interpretation of the first axis corresponds
well o the coordinates of the objects on this axis. That is, this axis
contrasts two clusters of objects: the screws and the nails. It should be
noted that this contrast had not been used as a variable explicitly in the
analysis. The second axis is dominated by the variable BRass. In the objects
plot it contrasts the (few) brass objects Lo those thal are made of other
material. The {act that the variables BRass and LEngth can only be
reprexented by means of extra dimensions is in agreement with the generat
notion that the distinction beiween screws and nails has nothing to do with
the material they are made of or with their length, [t can be conluded that
the INDSCAL analysis of these data yieids well interpretable results.

Beyond INDSCAL

In the present paper, INDSCAL for a mixture of quatitative and
quantitative variables has been described as a method that can be seen as a
comprontise between MCAMEX and Saporta’s method. 1t is a compromise in that
iL yields a good representation {or the variables (like Saporta’s method) and
at the same time it yields object coordinates (like MCAMIX). However, INDSCAL
for mixed variables is not the only method that yiclds such a comprotnise. fn
fact, at least two other methods provide a compromise between MCAMIX and
Saporta’s method, These are TUCKALS-3 (Kroonenberyg & De Leeuw, 1980: cf.
Marchetti, 1988) and uncoustrained INDSCAL, both applied 1o quantilication
matrices. Kiers (1588) has shown that T UCKALS -3, unconstrained INDSCAL and
orthogonally consirained INDSCAL, wogether with two other three-way
tnethods form a hierarchy, such that the matrices 10 which these are applied
are increasingly well fitted. In fact, it readily follows [rom Kiers (19u4)
Uat for methods for the analysis of a mixture of qualitubive  and
guintitative variables a similar hierarehy is pussible, as follows. MCAMIX
yields the poorest representation of the quantilication matrices, INDSCAL
for nuxed variables yields a Leter representation for the quantification
matrices, wnconstrained INDSCAL yields a vepresentation thatl s still better
than the one given by (orthogonally constrained) INDSCAL, TUCKALS -3 yickds

A representation which is even betier than the one given Ly unconsteained
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INDSCAL, and Saporta’s method yields the best possible representation for
the quantification matrices. As explained by Kiers (1988), increase of fit
is obtained ai the cost of growing complexity of the model. Therefore, a
priori it is never clear which method might be the most usefu! [or
representing one's data. The data analyst must decide on the basis of the fit
vaiues and interpretability of the results of the various methods, which

method yields the most useful representation for the data set at hand.
Discussion

In the present paper, a particular choice has been made (or the
quantification matrices for the qualitative and quantitative variables. This
choice served two purposes. On the one hand, it provided a basis from which a
series of methods could be worked out in detail. On the other hand, the
specific choice made here resulted in a series of methods of which the two
extremes are methods that have been proposed before (Saporia’s method and
MCAMIX). However, as has been said, it is an open question whether other
¢hoices of quantification matrices might be more useful, It is conceivable
that the choice of quantification matrices can only be made sensibly on the
basis of the one data set at hand and the research question, which is to be
answered. Further research is needed to develop a strategy for choosing
quantification matrices. An important consequence of the possibility of
differemt choices for quantification matrices is that, apart form INDSCAL on
other quantification matrices, also allernatives for MCAMIX and Saporta’s
method can be developed. That is, alternatives of MCAMIX can be developed as
methods that find object coordinates as the first p eigenvectors of the sum
of the (aliernative) quantification matrices. Likewise, alternatives for
Saporta’s methods are conceivable, and have in [act been preposed by Janson
and Vegelius (1978, 1982), by representing the associations in 2 sel of
qualilative and quantitative variables by other generalized correlation
coefficients than the ones chosen by Saporta (1976). .

The analysis of a set of only qualitative variables can be performed
equally well by the methiod "INDSCAL for categorical data”, described by Kiers
{in press), as by the methods provided in the present paper. [n fact, if all
variables are qualitative, chuosing Sy = Py, lor all &, then INDSCAL for
mixed variables and INDSCAL for categerical data yield exactly the same
results. lence the method developed in the preseut paper generalizes the
method developed by Kiers (in press). On the other hand, INDSCAL for mixed
variables can also be applied to a set of only quantitative variables. In

that case, PCA is performed on the matrix of squared product moment
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correlations between quantitative variables. Typically, this PCA will not
yield the same solution as ordinary PCA on quaniitative varizbles, The
resulting object coordinates will equal those of ordinary PCA only, in case
MCAMIX is used for analyzing the quantification matrices for the quantitative

variables.
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