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Signature of Anomalous Exciton Localization in the Optical Response
of Self-Assembled Organic Nanotubes
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(Received 30 May 2014; revised manuscript received 30 November 2014; published 17 April 2015)

We show that the disorder scaling of the low-temperature optical absorption linewidth of tubular
molecular assemblies sharply contrasts with that known for one-dimensional aggregates. The difference
can be explained by an anomalous localization of excitons, which arises from the combination of long-
range intermolecular interactions and the tube’s higher-dimensional geometry. As a result, the exciton
density of states near the band bottom drops to zero, leading to a strong suppression of exciton localization.
Our results explain the strong linear dichroism and weak exciton-exciton scattering in tubular J aggregates
observed in experiments and suggest that for nanoscale wirelike applications a tubular shape is to be
preferred over a truly one-dimensional chain.

DOI: 10.1103/PhysRevLett.114.156804 PACS numbers: 73.20.Mf, 71.35.Cc, 73.20.Fz, 78.67.Ch

Introduction.—In the quest for nanoscale functional
materials, low-dimensional supramolecular systems that
form through self-assembly from individual molecules in
solution hold great potential [1–3]. Like in bulk molecular
crystals, the molecules in such systems are not covalently
bonded, but kept together by weaker interactions, such as
van der Waals forces or hydrogen bonding. This makes
self-assembled nanostructures susceptible to structural
disorder, which leads to disorder in the system’s micro-
scopic parameters, such as the site energies and the
intermolecular energy- and charge-transfer rates, which
in turn may hinder the functional properties. For instance, a
one-dimensional molecular chain easily loses its effective-
ness as an energy transport wire because of disorder-
induced localization of the energy-carrying states.
In this Letter, we show how self-assembled tubular

molecular aggregates provide an interesting class of sys-
tems that combine the notion of a wire with the capability
to counteract the strong localization effects of truly one-
dimensional chains. We focus on the optical properties
of tubular aggregates formed by dye molecules; these
properties result from Frenkel excitons, i.e., charge neutral
collective excitations. Recently tubular aggregates have
raised considerable interest. Much studied examples occur
in nature as light-harvesting antennas (chlorosomes) in the
photosynthetic system of green sulphur bacteria [4–8].
Furthermore, various classes of synthetic dye molecules
self-assemble into tubular aggregates with interesting
optical properties [9–24]. All these aggregates have radii
of ∼10 nm and lengths up to μm’s.
The effects of energy and interaction disorder on the

exciton states in linear molecular chains have been studied
in great detail [25–31], leading to a solid understanding of
their optical and energy transport properties. While much
less is known about localization in tubular aggregates
[32,33], experiments suggest that the exciton states in

those systems are much more robust against disorder than
in linear chains. First, in many tubular aggregates, a clear
distinction can be made between absorption bands polar-
ized (predominantly) parallel and perpendicular, respec-
tively, to the tube’s axis [6,9,13,16]. For perfectly ordered
(cylindrically symmetric) tubes, this follows directly from
optical selection rules [34]; apparently, these rules are hard
to break in practice, or in other words, even in the presence
of disorder, the exciton states still tend to wrap around the
cylinder [33]. Second, double-quantum two-dimensional
electronic spectroscopy performed on tubular aggregates
of cyanine aggregates has revealed weak exciton-exciton
scattering, which was interpreted as a sign of strongly
delocalized exciton states [18]. Finally, low-temperature
exciton-exciton annihilation was reported to be surprisingly
efficient in tubular aggregates, which again suggests
strongly delocalized exciton states [9].
The above experimental observations may all be

explained from considering a generic microscopic exciton
model for the tubular aggregate with dipolar intermolecular
resonance interactions and uncorrelated site (diagonal)
disorder. We show that this model predicts anomalous
exciton localization. We approach the problem via the
width of the absorption spectrum, which, due to the effect
of exchange narrowing [26,29], is known to strongly
depend on the exciton localization size. Thermal line
broadening, induced by exciton-vibration scattering is
neglected; if the latter gets strong enough to induce an
exciton coherence size smaller than the disorder-induced
localization size, disorder effects become less important
and all disorder scaling relations will level off [35].
Model and numerical results.—Our model of a tubular

aggregate consists of a two-dimensional sheet of molecules
that is wrapped seamlessly around a cylindrical surface. This
structural model has been used successfully to explain the
optical spectra of the photosynthetic chlorosomes of green
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bacteria and the self-assembled nanotubes of several types
of synthetic dyes [11,13,15,34]. It can be shown that the
aggregate in this model may be considered a stack of N1

equidistant rings of radius R, each ring containing N2

uniformly spaced molecules and with adjacent rings rotated
relatively to each other by a helical angle γ [see inset
of Fig. 1(a)] [34]. Furthermore, the molecular transition
dipoles follow the cylindrical symmetry and are specified by
angles α and β. Here, α is the angle between the projection of
the dipole vector on the ring plane and the local tangent
of the ring, and β gives the angle between the dipole vector
and the cylinder axis [34]. Each molecule is identified by
its position vector n ¼ ðn1; n2Þ, with n1 indicating the ring
on which it resides and n2 labeling the position in the ring.
The optical excitations of the aggregate are described

by a Frenkel exciton model that accounts for molecular
excitation energies En with uncorrelated Gaussian
disorder (mean ω0 and standard deviation σ) and

nonfluctuating intermolecular transfer interactions Jnm
determined by extended transition dipoles. The corre-
sponding Hamiltonian reads

H ¼
X

n

Enjnihnj þ
X

n≠m
Jnmjnihmj; ð1Þ

where jni denotes the state in which molecule n is
excited while all others are in the ground state.
We simulate the linear absorption spectrum, given

by AðEÞ ¼ hPqOqδðE − EqÞi. Here q labels the exciton
eigenstates, Oq is the oscillator strength (i.e., transition
dipole squared) of state q averaged over all cylinder
orientations, Eq gives the energy of state q, and h…i
denotes the average over disorder realizations [32]. The
eigenstates, their energies, and oscillator strengths are
obtained by numerical diagonalization of Eq. (1) for 103

disorder realizations and using the procedure of Ref. [36] to
minimize numerical noise in the spectra. In all calculations,
we considered cylinders of N ¼ 6000 molecules.
In Fig. 1(a), we present the simulated absorption and

linear dichroism spectra for parameters obtained in the
analysis of experiments on tubular cyanine aggregates [13].
Thus, the two-dimensional sheet to be wrapped onto the
cylinder has an oblique Bravais lattice with lattice vectors
of lengths 2.0 and 0.64 nm, making an angle of ϕ ¼ 38.7°.
The molecular transition dipoles lie along the long lattice
vector and have a value of 11.4 Debye and a charge
separation distance of 0.7 nm. This yields α ¼ 0°, the other
geometric parameters depend on the radius of the cylinder
and the angle Θ between the vector over which the sheet
is rolled onto the cylinder and the long unit cell vector of
the Bravais lattice. In the spectrum of Fig. 1(a) a radius
R ¼ 5.455 nm is used and a rolling angle of Θ ¼ ðπ=2Þ −
β ¼ 42.6° [13], leading to a parameter set summarized in
Table I as structure I. The disorder used in Fig. 1(a) has a
magnitude of σ ¼ 600 cm−1, close to the value used to
explain the experimental spectra [13].
The absorption spectrum in Fig. 1(a) clearly reveals

two bands that are redshifted compared to the monomer
spectrum (in this figure, we set ω0 ¼ 0), characteristic for J
aggregates. The broadening of the line shapes is induced by
the energetic disorder. As is clear from the linear dichroism
in Fig. 1(a), the lowest-energy J band stems from exciton

FIG. 1. (a) Isotropic absorption and linear dichroism spectra
of tubular J aggregates calculated for a disorder strength
σ ¼ 600 cm−1 and model parameters taken from Ref. [13]
(structure I, see text for details). The inset illustrates the
cylindrical geometry in the stack of rings representation [34].
(b) Disorder scaling of the FWHM of the lowest absorption band.
Symbols are data points, while the solid curve is the best power
law fit WjjðσÞ ∝ σ2.83. The inset shows the decomposition of the
absorption spectrum into two Lorentzians.

TABLE I. Set of parameters characterizing different tubular
aggregate structures: R (radius), N2 (commensurability), β
(dipole orientation), and γ (helicity). The last column represents
the corresponding FWHM disorder scaling exponent B. The
angle α ¼ 0° in all cases. Significant changes in parameter values
are indicated in bold.

Structure R (nm) N2 β (degrees) γ (degrees) B

I 5.455 2 47.4 6.74 2.83
II 5.476 2 −1.1 16.7 3.29
III 3.619 2 45.3 10.1 3.15
IV 5.410 2 43.1 93.4 2.83
V 5.428 53 51.6 3.0 2.84

PRL 114, 156804 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

17 APRIL 2015

156804-2



transitions polarized mainly along the tube axis, while the
other band is mainly polarized perpendicular to this axis.
The occurrence of two bands and their polarization proper-
ties are consistent with the optical selection rules for
ordered aggregates; there, the rotational symmetry around
the cylinder axis imposes a Bloch form [exp ð2πik2n2=N2Þ]
for the exciton wave function in the azimuthal (n2)
direction and only exciton bands with wave numbers k2 ¼
0 (polarized parallel to the cylinder axis) and k2 ¼ �1
(perpendicularly polarized) contain states that can carry
oscillator strength [34].
Next, we establish the disorder scaling of the optical

linewidth for aggregates of structure I. We focus on the
lowest-energy absorption band, because its position at the
lower exciton band edge makes its shape less sensitive to
finite size effects than the high-energy one. To obtain the
linewidth Wjj, we first decompose the spectrum into the
sum of two Lorentzian line shapes to filter the contribution
of the high-energy absorption band to the width of the low-
energy peak [see inset of Fig. 1(b)]. The width Wjj of the
low-energy peak is taken as the full width at half maximum
(FWHM) of the corresponding Lorentzian. Figure 1(b)
displays the results for disorder values in the interval of
σ ¼ 425–700 cm−1 (symbols), together with the best
power law fitWjjðσÞ ∝ σB (solid line). The disorder interval
considered is bound from below due to finite size effects
and from above because of overlap between the two
absorption bands; we believe, however, that the power
law fit accurately describes the width to considerably
higher disorder values [37]. WjjðσÞ increases more than
linearly with σ, because the number of dye molecules that
coherently share an excitation decreases if σ becomes
larger, thereby reducing the effect of exchange narrowing.
The resulting power law exponent B ¼ 2.83 differs mark-
edly from that for one-dimensional molecular aggregates,
where B ¼ 4=3 for nearest-neighbor interactions and only
slightly higher for long-range dipolar coupling [25,27,30].
Besides structure I, we also calculated the disorder

scaling of Wjj for four other tubular structures, all based
on the same molecular sheet. For each geometry, one of the
model parameters R (radius), N2 (commensurability), γ
(helicity), or β (dipole orientation) was varied drastically
(Table I), while the other parameters were kept close to
those of structure I (within the requirements imposed by the
fact that rolling the molecular sheet should lead to a
seamless result). The values for R, N2, γ, and β in the
different structures are listed in Table I. The numerically
obtained power-law exponents (also given in Table I) are
similar for all structures considered, namely, B ≈ 3.
Discussion.—To gain insight into the numerically

obtained (large) value of the scaling exponent B, we apply
the coherent potential approximation (CPA), which pro-
vides a powerful method to calculate the optical properties
of disordered systems [27,32]. We closely follow the
procedure outlined in Ref. [27] for one-dimensional sys-
tems. The absorption spectrum is given by

AðEÞ ¼ 1

π

ℑ½VðEÞ�
ðE −ℜ½VðEÞ�Þ2 þ ðℑ½VðEÞ�Þ2 ; ð2Þ

whereℜ½VðEÞ� andℑ½VðEÞ� are the real and imaginary parts
of the coherent potential VðEÞ, representing the disorder-
induced shift and the half-width of the absorption spectrum,
respectively. They are found as the solutions of a self-
consistent equation which, in the weak disorder limit, reads

VðEÞ ¼ σ2G½E − VðEÞ�: ð3Þ
Here, GðEÞ¼N−1P

k½E−Ekþ i0þ�−1 is the disorder-free
excitonGreen’s function. The energiesEk are obtained from
diagonalizing Eq. (1) for σ ¼ 0.
To solve Eq. (3), the Green’s function is decomposed in

its real and imaginary parts, GðEÞ ¼ ℜ½GðEÞ� þ iℑ½GðEÞ�.
For weak disorder, ℜ½GðEÞ� is a smooth function in the
vicinity of the exciton band bottom and can be approxi-
mated well by a negative constant [38]. On the other hand,
ℑ½GðEÞ� equals the disorder-free density of states (DOS),
defined as DðEÞ ¼ N−1P

kδðE − EkÞ.
In Fig. 2, we show the calculated DOS of the tubular

aggregate of structure I in a histogram with bin size
140 cm−1 over the entire exciton band, as well as its
behavior near the lower exciton band edge, E0 (inset). The
inset also displays the best power-law fit DðEÞ ∝
ðE − E0Þκ (solid curve). This reveals that the DOS drops
to zero near the band bottom, approximately in a square-
root-fashion, κ ¼ 0.5. This low density of states near the
band edge leads to weak disorder-induced scattering of
excitons in this region; this even holds for moderate
disorder (see below).
From the above, it follows that the Green’s function

to a good approximation can be expressed as GðEÞ ¼
−Cþ iDðE − E0Þ1=2, where C > 0 and D > 0 are real
constants. Substituting this expression into Eq. (3), we

FIG. 2. Histogram (bin size 140 cm−1) of the numerically
calculated DOS DðEÞ in the absence of disorder for the tubular
aggregate with parameters identical to those used in Fig. 1
(structure I). The inset shows the DOS near the lower band edge
and its best power law fit (solid line) DðEÞ ∝ ðE − E0Þ0.44�0.06.
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obtain the coherent potential VðEÞ near the exciton band
bottom, which, to lowest order in σ, reads

VðEÞ ¼ −Cσ2 þ iC1=2Dσ3: ð4Þ
Thus, the CPA results in a σ3 dependence of the FWHM of
the exciton absorption spectrum, in agreement with the
scaling numerically found above, Wjj ∝ σ2.83. We found
that also for the other structures in Table I, the scaling of
DðEÞ near the band bottom is similar (κ ≈ 0.5), consistent
with the above observation that the scaling powers of the
FWHM all are close to B ¼ 3.
The fact that the scalings for the different structures

considered are similar is a consequence of the fact that all
structures derive from the same molecular sheet. Indeed, for
radii large compared to a single unit cell, one intuitively
expects the lattice sums of dipole-dipole interactions,
underlying the exciton dispersion relations on the cylinder,
not to differ much from those on a flat sheet and not to
depend on the radius and rolling direction anymore. It is
hard to show this analytically, due to the complicated and
long-range nature of these interactions. Of course, for
shrinking radius, the deviations from two-dimensional
behavior will grow and for very small radii one recovers
the scaling relation of a one-dimensional chain. This
transition cannot be described in a continuous way, due
to the restrictions on rolling a two-dimensional lattice onto
a cylinder in a seamless way.
Exciton localization.—The physical origin of the high

value of the power B for the cylinder lies in a suppression
of exciton localization near the exciton band edge, leading
to an enhanced exchange narrowing effect. This suppression
is a direct consequence of thevanishingDOS,which, in turn,
can be traced back to an anomalous, subquadratic exciton
dispersion, arising from the combination of lattice structure
and long-range interactions. Indeed, for a simple two-
dimensional square lattice with nearest-neighbor coupling
only, one obtains B ¼ 2 [25], in agreement with DðEÞ ¼
const near the band edge (quadratic dispersion, κ ¼ 0).
The anomalously large exciton localization for the

systems considered here can be demonstrated directly by
calculating the exciton participation numbers, defined as
PNq ¼ ½PnjνqðnÞj4�−1, where νqðnÞ is the exciton wave
function in the site representation. The PN reflects the
spatial spread of the state. Figure 3 shows the disorder
scaling of the PN (for structure I) averaged over all exciton
states occurring below the bare exciton band bottom. We
stress, first, that the PN has an appreciable value (order of
103 molecules) even for a moderate disorder magnitude up
to σ ≈ 400 cm−1. Second, the disorder scaling of the PN is
linear in σ within the interval 0 < σ ≤ 400 cm−1; this is a
clear signature for the perturbative nature of the disorder.
This linear scaling persists up to surprisingly large values
of σ, justifying the weak-disorder limit considered when
applying the CPA.
The spatial structure of the wave functions is illustrated

in the inset of Fig. 3, which shows the excitation density on

each molecule of the tubular aggregate for the state close to
the band edge with the largest oscillator strength for one
particular realization of the disorder. Compared to truly
one-dimensional localized excitons, the state displayed
here illustrates several interesting anomalous localization
aspects. First, the exciton winds around almost the entire
tube in a strongly anisotropic way: the helicity of the state
follows the direction of the strongest intermolecular inter-
actions on the cylinder. Second, there are multiple distinct
regions on the tube, where the excitation density has an
appreciable amplitude, reminiscent of the fractal nature of
the wave functions typical for disordered two-dimensional
systems [39]. Finally, the state shows long excitation tails,
i.e., regions of small but nonvanishing excitation proba-
bilities. This suggests that to a certain extent correlations
between excitations in the tube can be maintained over
unusually large distances, which is a favorable feature for
energy transport applications.
The above features are not restricted to the underlying

Bravais lattice used above. We have considered a range of
Bravais lattices, defined by the ratio r of the lengths of the
lattice vectors and the angle ϕ between them and have found
that for 0.25≲ r≲ 0.40 and 25°≲ ϕ≲ 55° the DOS near
the band edge vanishes, leading to suppression of localiza-
tion and a scaling exponent B > 2. These characteristics are
maintained independently of the rolling conditions, as long
as the radius is large compared to a unit cell. Interestingly,
the recently proposed and frequently studied structure for the
chlorosomes in green sulphur bacteria [5,40,41] corresponds
to r ¼ 0.44 and ϕ ¼ 36°, on the edge of the above range.
Indeed, both optical experiments and simulations have
shown clear polarization properties in these systems, indica-
tive of strong exciton delocalization [40].
Conclusions.—We have shown that excitons in self-

assembled tubular molecular aggregates may be strongly

FIG. 3 (color online). Disorder scaling of the average partici-
pation number of states below the bare band bottom calculated for
structure I in Table I. The inset shows the excitation density on
each molecule of the aggregate for the state with largest oscillator
strength for a particular disorder realization with σ ¼ 400 cm−1.
The PN of the state displayed is 829; this picture is quite typical
and its main features are recovered in other disorder realizations
as well.
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delocalized, even at the exciton band edge and for moderate
values of the disorder. Theweak tendency to localize derives
from the fact that the DOS near the band edge vanishes,
thus substantially suppressing disorder-induced exciton
scattering. The vanishing DOS originates from the long-
range (dipolar) intermolecular interactions in combination
with the higher-dimensional structure of the aggregate.
While ourmodel calculationswere restricted to uncorrelated
diagonal disorder, the DOS scaling near the band edge will
give rise to similar robustness against localization for other
disorder models, such as off-diagonal disorder. The anoma-
lous localization properties explain recent experiments on
tubular aggregates of dye aggregates: strongly delocalized
excitons may easily wrap around the cylinder (inset of
Fig. 3), explaining the fact that optical spectra show strong
polarization properties with respect to the tube’s orientation
[13,16]; strongly delocalized excitons also lead to small
site occupation overlap for different exciton states, which
explains the weak exciton-exciton scattering found in
Ref. [18]. In addition to understanding experimental obser-
vations, we have predicted that the peculiar localization
properties leave a signature in a strong disorder scaling of the
absorption bandwidth. More generally, the weak tendency
to localize in tubular structures may prove advantageous for
their application in functional materials, such as artificial
light-harvesting systems and energy transport wires.

We acknowledge D. L. Huber for fruitful discussions on
the CPA.
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