

 University of Groningen

Interactive Segmentation and Visualization of DTI Data Using a Hierarchical Watershed
Representation
Jalba, Andrei C.; Westenberg, Michel A.; Roerdink, Jos B. T. M.

Published in:
Ieee transactions on image processing

DOI:
10.1109/TIP.2015.2390139

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Jalba, A. C., Westenberg, M. A., & Roerdink, J. B. T. M. (2015). Interactive Segmentation and Visualization
of DTI Data Using a Hierarchical Watershed Representation. Ieee transactions on image processing, 24(3),
1025-1035. https://doi.org/10.1109/TIP.2015.2390139

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1109/TIP.2015.2390139
https://research.rug.nl/en/publications/9a25dad1-3b32-4514-9acb-748c50e45fe4
https://doi.org/10.1109/TIP.2015.2390139

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015 1025

Interactive Segmentation and Visualization
of DTI Data Using a Hierarchical

Watershed Representation
Andrei C. Jalba, Michel A. Westenberg, and Jos B. T. M. Roerdink, Senior Member, IEEE

Abstract— Magnetic resonance diffusion tensor imaging (DTI)
measures diffusion of water molecules and is used to characterize
orientation of white matter fibers and connectivity of neurological
structures. Segmentation and visualization of DT images is
challenging, because of low data quality and complexity of
anatomical structures. In this paper, we propose an interactive
segmentation approach, based on a hierarchical representation
of the input DT image through a tree structure. The tree is
obtained by successively merging watershed regions, based on
the morphological waterfall approach, hence the name watershed
tree. Region merging is done according to a combined similar-
ity and homogeneity criterion. We introduce filters that work
on the proposed tree representation, and that enable region-
based attribute filtering of DTI data. Linked views between the
visualizations of the simplified DT image and the tree enable a
user to visually explore both data and tree at interactive rates.
The coupling of filtering, semiautomatic segmentation by labeling
nodes in the tree, and various interaction mechanisms support
the segmentation task. Our method is robust against noise, which
we demonstrate on synthetic and real DTI data.

Index Terms— DTI, segmentation, watershed, waterfall
algorithm, multiple views.

I. INTRODUCTION

MAGNETIC resonance Diffusion Tensor Imag-
ing (DTI) [1] measures diffusion of water molecules,

and it is mainly used to characterize orientation of white
matter fibers and connectivity of neurological structures.
The spatial resolution is usually quite low, with a voxel
size of about 2 × 2 × 2 mm, and it is hard to obtain good
signal-to-noise ratios. There are also a number of other factors
that can compromise data quality, such as movements, eddy
currents, and discontinuities in magnetic properties at tissue
interfaces. Not only these issues, but also the complexity
of anatomical structures in the brain make analysis and
visualization of 3D DT images challenging.

Manuscript received March 10, 2014; revised September 5, 2014; accepted
December 21, 2014. Date of publication January 8, 2015; date of current
version January 30, 2015.

A. C. Jalba and M. A. Westenberg are with the Department of Mathematics
and Computer Science, Eindhoven University of Technology, Eindhoven 5612
AZ, The Netherlands (e-mail: a.c.jalba@tue.nl; m.a.westenberg@tue.nl).

J. B. T. M. Roerdink is with the Johann Bernoulli Institute for Mathematics
and Computing Science, University of Groningen, Groningen 9712 CP,
The Netherlands (e-mail: j.b.t.m.roerdink@rug.nl).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes a
video that demonstrates the interactive aspects of the segmentation approach.
The total size of the video is 65.3 MB. Contact m.a.westenberg@tue.nl for
further questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2390139

Numerous methods have been proposed for visualizing
DTI data, see [2] for an overview. A popular technique is
fiber tracking (or tractography), which computes streamlines
in the vector field defined by the principal directions of
the DTI tensors obtained by eigen analysis. A limitation of
this approach is that only part of the tensor information is
used (the first eigenvector direction), which is acceptable for
(clinical) applications in which structural connectivity between
regions is studied. An important problem with fiber tracking
is choosing seed points; manual approaches are involved and
automatic methods generate many seed points, resulting in
cluttered visualizations. Clustering of fiber tracts has also been
proposed for producing visualizations of fiber bundles rather
than of individual fibers [3]–[5]. However, the main problem
is that these methods rely on the results of the fiber tracking
algorithm, where part of the tensor information is discarded.

Segmentation of DT images is the process of partitioning a
DT image into multiple, non-overlapping segments, i.e., sets
of DT-valued voxels. Unlike fiber clustering, where one first
extracts fibers and then clusters them, most segmentation
methods (including ours) work with the full diffusion tensor
information. Segmentation offers a viable alternative to fiber
tracking for extracting useful information from the data, and
several methods have been proposed [6]–[12]. However, since
none of these methods achieve a full segmentation completely
automatically, there is a need for interactive approaches that
allow the user to steer the segmentation process.

In this paper, we propose such a method based on a
hierarchical representation of the input DT image. This
representation, which we call a watershed tree, is obtained
by merging watershed regions according to a combined sim-
ilarity and homogeneity criterion. In the scalar case, it was
found that hierarchical, region-based image representations
offer many advantages over traditional, pixel-based represen-
tations [13]–[16]. For example, hierarchical, region-based
representations are much more efficient, as the number of
regions is typically much smaller than the number of original
pixels [15]. The same property enables our system to respond
in real-time to user actions, and moreover, as the representa-
tion scale can be made arbitrarily close to the interpretation
(or decision) scale through simplified views of data aggregated
in regions, the user can focus on the important aspects of the
(segmentation) task. Specifically, the main contributions of our
paper are:

• An interactive method for segmentation of DT images,
based on a novel and efficient hierarchical, region-based
representation – the watershed tree.

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1026 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

• Filters that work on this representation, which enable
region-based attribute filtering of DTI data.

• Linked views of both the simplified DT image and the
very representation itself allow a user to visually explore
the data.

• A collection of tools, coupling filtering, semi-automatic
segmentation and other interaction mechanisms,
to support the segmentation task.

II. RELATED WORK

In recent years, several methods have been developed
for segmenting DT images. Here we focus our overview
only on interactive and closely-related DTI segmentation
techniques.

As in the scalar case, level-set methods constitute the
most popular approach for segmenting tensor-valued images,
see [6]–[10], [17]. Although the level-set formalism allows
elegant formulations of segmentation problems, the resulting
methods have usually high computational demands:
Level-set methods rely on iterative solvers to seek a
local solution of the variational minimization describing the
segmentation problem. Therefore, especially in the presence
of noise, the solution can be far from the desired one.
Furthermore, most methods are sensitive to initialization and
parameter settings. Moreover, as shown in [10], only a certain
formulation based on a specific tensor-dissimilarity measure
is able to correctly segment a simple yet noisy synthetic DT
image, see also section IV-A3.

With respect to interactivity, methods based on graph cuts
constitute promising alternatives to level sets. They have
been popularized in image segmentation by Boykov and
collaborators, see [18]. Graph cuts are faster than level-set
approaches, and, for scalar data, interactive methods have been
introduced [19]. However, there is relatively little research
in developing graph-cuts segmentation methods for DTI:
Malcolm et al. [20] and Weldeselassie et al. [11] extend the
scalar method of Boykov et al. [18] to tensor-valued data.
They focus on methodology only and not on interactivity.

Despite being very efficient, and thus potentially interac-
tive, there are only a handful of watershed-based methods
for segmenting DT images [21]–[24]. The over-segmentation
problem, inherent to the (standard) watershed-segmentation
paradigm [25], and the non-optimality of the solution com-
pared to globally-optimal graph cuts, most likely hampered
the development of novel watershed-based DTI segmentation
methods. In Rodrigues et al. [23], a Gaussian scale-space
in the Log-Euclidean framework is used to overcome over-
segmentation. Waterfall methods [25] provide another alterna-
tive to deal with over-segmentation.

Hierarchical, region-based representations of scalar images
have been thoroughly studied, see [14]–[16], [19] and
references therein. Most methods rely on a tree representation,
whose nodes represent regions of aggregated pixels at different
representation scales. In the scalar case, the initial partition
(of regions) from which the tree is built, is given by the set of
flat zones [15] or regional maxima/minima [13], [14] of the
input image, or by an initial over-segmentation [19], through
the morphological watershed transform [25], [26]. Note that,

Fig. 1. Computational flow diagram of our method.

apart from Salembier et al. [15] and Armstrong et al. [19]
who use their representations for segmentation, the other
methods above have image simplification as their foremost
target.

Non-hierarchical, region-based segmentation approaches,
relying on non-parametric clustering in the Log-Euclidean
space were also proposed, see [12]. This iterative segmentation
scheme requires an initial segmentation as an initialization, and
then it essentially performs kernel density estimation to obtain
a fuzzy segmentation.

Simplified representations of scalar images based on tree
data structures have been used for interactive image simplifi-
cation and visualization. The Max-Tree [14], a data structure
in which the nodes represent connected components of all
level sets in a data set, has been extended for the purpose
of interactive volumetric simplification (also called filtering)
and visualization [27]. While the Max-tree offers a more
compact, hierarchical representation of the data set, the tree
itself is still too large to be used as a visual aid to support
the (interactive) segmentation task. In addition, extending the
Max-Tree data structures to tensor-valued data is difficult,
since a total ordering of the level sets of the input tensor image
has to be defined.

The watershed tree, which we introduce in Section III-B,
is much smaller and simpler than the Max-Tree and the
Binary-Partition Trees as used by Salembier and
Wilkinson [16]. To achieve this, we extend the waterfall
method to accommodate tensor-valued data, and build a
multiscale representation. We then demonstrate that the
resulting hierarchical representation constitutes a very
useful visual aid to support the (interactive) segmentation
task in Section III-D, which also performs better than the
segmentation approach based on graph cuts.

III. PROPOSED METHOD

The computational flow diagram of our method is shown
in Fig. 1. In the first pre-processing step (the Log operation),
the input DT image is mapped to a Euclidean tangent space
(see section III-A). In the next step, a hierarchical represen-
tation of the (regularized) image is constructed, based on a
watershed tree (section III-B). This representation is central
to our approach, as it enables interactive exploration and
segmentation of the input DT image (section III-D). Through
this representation, the user interacts with simplified views of
the data aggregated in regions, which can be performed at
interactive frame rates. Finally, in the last pre-processing step
(the Exp operation), the data is mapped back to tensors for,
e.g., visualization purposes.

JALBA et al.: INTERACTIVE SEGMENTATION AND VISUALIZATION OF DTI DATA 1027

Fig. 2. Log S maps X ∈ C to tangent vectors
−→
S X at S. Here C may represent

the 3D cone of 2 × 2 tensors.

A. Tensor Computing

The space of symmetric nonnegative-definite matrices is not
a vector space, but instead it has the structure of a Riemannian
manifold that forms a convex cone C [28]. Accordingly, for
example, distance computations may not be simply Euclidean,
but geodesically on C. This can be accomplished using the
so-called log map, Log S : C → TSC, which maps points
X ∈ C to the tangent plane TSC at S. Specifically, Log S maps
points X ∈ C to the tangent vector

−→
SX at S, given by the initial

velocity of the geodesic curve γ with γ (0) = S to γ (1) = X ,
see Fig. 2. Therefore, given points X, Y ∈ C, the log map
at X is given by [8], [29]

Log X (Y) = X
1
2 log (�)X

1
2 , with � = X− 1

2 Y X− 1
2 , (1)

with log(·) the matrix logarithm, so that the geodesic
distance DR between the two points can be evaluated, e.g., by

DR(X, Y) = ||log (�)||F , (2)

where ||·||F is the Frobenius norm on symmetric matrices.
Unfortunately, such accurate estimates have a high compu-
tational overhead, due to the use of matrix inverse, root,
and logarithm operations. However, mapping to the tangent
space at the identity tensor (a symmetric nonnegative definite
matrix on C), becomes equivalent to the Log-Euclidean (LE)
metric [30]. It has been shown [30] that the LE framework
delivers results similar to the full Riemannian framework [29],
while greatly simplifying the computations involved. In fact,
processing tensors in the LE framework, corresponds to
performing Euclidean computations on vectors. Tensor log-
arithms are turned into vectors by a mapping φ, by keeping
only the independent coefficients and multiplying off-diagonal
elements by

√
2, so that the Frobenius norm on tensors is

comparable to the Euclidean norm on vectors. Thus, given a
tensor X , its vector mapping is Log(X) = φ(log(X)); compare
to Log X (Y) from Eq. (1). Finally, the inverse mapping from
vectors to tensors is Exp(X) = exp(φ−1(X)), where exp(·)
denotes matrix exponentiation, see [30] and references therein
for details.

Let F : � ∈ R
3 → S+(3) denote the input DT image, so

that for all x ∈ �, F(x) is a diffusion tensor in S+(3), the
space of 3 × 3 real, symmetric, nonnegative-definite matrices.
Note that, in this case, C ≡ S+(3), and through the LE
framework and φ, diffusion tensors are mapped to 6D vectors.
Thus, given two diffusion tensors X, Y ∈ S+(3), the LE

distance DL E between them becomes [30]

DL E (X, Y) = ||Log(X) − Log(Y)||2 , (3)

where ||·||2 is the Euclidean norm on vectors. The squared
norm of the gradient at location x can be computed similar
to [10], but in the LE framework, by

|∇F(x)|2 = 1

2

3∑

k=1

∑

s=±1

D2
L E (F(x), F(x + sek)) , (4)

where ek, k = 1, 2, 3 denote the canonical basis of R
3, and

together with s are used to access neighbors of x in �.
The LE mean X̄ of a set {Xi } of N diffusion tensors is

given by [30]

X̄ = Exp

(
1

N

N∑

i=1

Log(Xi)

)
. (5)

Furthermore, given two sample sets {Xi }, {Yi } of sizes Nx

and Ny , drawn from two independent multivariate normal
distributions with sample means X̄ and Ȳ , the unbiased, pooled
covariance matrix estimate is

W =
∑Nx

i=1(Log(Xi) − Log(X̄))(Log(Xi) − Log(X̄))T

Nx + Ny − 2

+
∑Ny

i=1(Log(Yi) − Log(Ȳ))(Log(Yi) − Log(Ȳ))T

Nx + Ny − 2
,

(6)

so that Hotelling’s two-sample, T-square statistic [31] is

t2 = Nx Ny

Nx + Ny
(Log(X̄)−Log(Ȳ))T W−1(Log(X̄)−Log(Ȳ)).

(7)

The quantities from Eqs. (4), (5) and (7) are required by
our method. Although similar expressions can be established
within the full Riemannian framework, the computations
involved are much more expensive, while the results are
comparable to those of the LE framework. Moreover, after
mapping tensors to vectors through a global Log(F) operation,
all required quantities can be computed once, and only at the
end of the pre-processing step (for rendering purposes), the
resulting 6D vectors are mapped back to tensors, by Exp(F).
For our application, we found that the results delivered by
the full Riemannian framework were very similar to those of
the LE framework, and due to the substantial difference in
computational requirements between the two, we rely on the
LE framework for all our tensor computations.

B. Hierarchical Representation: Watershed Tree

In our tree-based, multiscale representation, the leaves of the
tree represent the initial partition of the image domain. Internal
nodes represent regions obtained by merging the regions
corresponding to their children. The root node represents the
entire image support. Thus, the tree represents a set of regions
at different scales, and it can be regarded as a hierarchical,
region-based representation of the input image. Clearly, the
tree does not encode all possibilities for merging regions

1028 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

Fig. 3. Synthetic example illustrating the steps (corresponding to the while loop in Algorithm 1) of the waterfall algorithm by [32]; see also text.

Algorithm 1 Construction of the Watershed Tree T , See Fig. 1
and Text

belonging to the initial partition, but merely the most useful
merging steps. Thus, both the merging order and the region
model upon which the tree-construction process relies [15],
have to be carefully chosen.

The region model is given in our method by the LE mean
(see Eq. (5)) of the vectors belonging to a region. During
the merging process, the mean vector of the resulting region,
corresponding to a parent node, is updated to reflect the union
of the regions spanned by its child nodes. The merging order
prioritizes regions which are both similar and homogeneous,
and it is determined by Hotelling’s two-sample, T-square
statistic, Eq. (7). As a direct generalization of Student’s
t-value to multivariate data, this measure is useful to test
the differences between the multivariate means of different
populations. Therefore, we use it to quantify the dissimilarity
between sets of tensors belonging to different regions, thus
defining the order in which regions are merged by the waterfall
algorithm, see below. When the region model is updated during
the merging process, the merging order is also recomputed.

The tree representation employed by our method builds
upon the waterfall method [25], extended to DT images.
Specifically, the construction of the watershed tree T is shown
in Algorithm 1. Our algorithm is largely based on the fast,

greedy method in [32] for computing waterfalls. In the first
step of the algorithm (line 1), the gradient-magnitude image
E is computed using Eq. (4). The initial partition P is given by
the regions computed through the watershed transform [25] of
the gradient-magnitude image E . We use a specific algorithm
based on a hierarchical queue [26], which can be regarded as
Dijkstra’s algorithm on the (image) graph, modified to allow
multiple sources. These sources are located at the regional
minima of E , corresponding to extrema of the input DT
image F . Initially, the regions of P constitute the leaves
of T . After the Region Adjacency Graph (RAG) G of P
is constructed, the waterfall algorithm [32] is employed, to
construct T in a bottom-up manner. Figure 3 illustrates the
steps of the waterfall algorithm, corresponding to the while
loop in Algorithm 1.

Essentially, this specific waterfall algorithm repeatedly
performs watershed transforms on the Minimum Spanning
Trees (MST) Tm of G, line 9. In our method, edge costs
are given by Hotelling’s T-square statistic from Eq. (7), thus
defining the merging order of our representation. A minimum
edge ei , from which the watershed propagation on Tm is
started, is defined as an edge surrounded by direct edges
which all have costs larger then or equal to that of ei ,
see also Fig. 3. The newly-obtained regions (shown colored
in Fig. 3) represent parent nodes of the corresponding regions
at the previous tree depth. Thus, parent-child relations are now
established, line 11. The algorithm continues until the number
of vertices in G (corresponding to image regions) equals one.
The last region, spanning the whole image domain, is assigned
to the root node of the tree.

Once the tree representation has been created, the input DT
image can be discarded, since in our framework any interactive
segmentation and visualization task can be accomplished using
solely information available in the tree nodes, i.e., average
tensors computed by the Exp(F) mapping in section III-A (last
pre-processing step in Fig. 1). In addition to average tensors,
each node in the tree stores an attribute value describing
(the size or shape of) the region it represents, see section III-C.

JALBA et al.: INTERACTIVE SEGMENTATION AND VISUALIZATION OF DTI DATA 1029

C. Watershed-Tree Filtering

In general, there are two approaches for simplifying a hierar-
chical tree representation: pruning and non-pruning strategies,
see [15], [16]. Both strategies have been used in previous
work to reconstruct filtered scalar images from simplified tree
representations [14]–[16]. Here, however, we employ them to
simplify the views of the data aggregated into image regions,
represented by the tree, to facilitate easier user manipulation
and interaction through these views.

One way to simplify the views of the data is by filtering
the watershed tree. In our method, filtering is governed by
a criterion involving shape or size attributes of the regions
represented by the tree nodes. Attributes describing region
homogeneity or similarity among regions are superfluous,
because such region characteristics are used in our representa-
tion in its very construction process. Furthermore, filtering is
only based on the shapes or sizes of the regions represented
by tree nodes and not on tensor values. For more complex
criteria, which go beyond the scope of this paper (e.g., texture
and motion), yet pertinent to scalar images, see [15], [16].

Tree filtering is a pruning strategy, if the filtering criterion
is increasing [16]. However, since most (shape) attributes
are non-increasing, filtering becomes a non-pruning strategy.
Thus, in the latter case it makes sense to speak about filtering
rules, see also [15], [16]. In the filtering step, the attribute of
each tree node is assessed against a filtering criterion, i.e., each
node attribute’s value is compared to a given threshold τ . If its
attribute value is smaller than τ , the node does not meet the
criterion and is labeled accordingly. In the final tree traversal,
branches are pruned from leaves up to the first ancestor that
has been preserved by the filtering step. Technically, this
corresponds to the max filtering rule in [15]. Currently, only
one attribute at a time is used for filtering. However, the
extension to simultaneous filtering criteria (vector attributes)
is straightforward, and can be done by taking simple boolean
combinations of the outcomes of the different criteria. Our
method supports the following size and shape attributes of a
region R: volume, non-compactness, elongation, flatness, and
sparseness; see [27] and [33] for definitions and details on
their incremental computation.

In general, it is not possible to select a threshold value τ
fully automatically before the segmentation step, since the
structure of the neural fibers is not a priori known. In fact,
identifying fiber structures represents the very purpose of
the segmentation task. If however, e.g., an atlas describing
the fiber structures were available, one could arguably infer
appropriate (yet probably error prone) threshold values for
certain attributes, e.g., elongation. Instead, in our method,
whenever the user changes the threshold of a certain attribute,
the tree is quickly filtered and its views are updated.

D. Interactive Segmentation

Our watershed tree constitutes a flexible, hierarchical rep-
resentation of the input DT image, allowing various strategies
for tree simplification to support the interactive segmentation
task. The general work flow of interactive segmentation is
depicted in Fig. 4. There are two main components: a Tree

Fig. 4. Interactive segmentation work flow.

view that provides a visualization of the watershed tree itself
and the Volume rendering that provides a visualization of
the simplified DTI data. These two visualizations are linked,
and the user can interact with both components in various
ways. In the supplementary material, we provide more details
about the user interface and interactions that our implemen-
tation supports. In this section, we describe our approach
to interactive segmentation, which involves simplification of
the tree in various ways, and performing segmentation by
different selection methods. The process is carried out in a
loop, during which the segmentation is refined until the desired
final segmentation result is obtained.

1) Visualization: The Volume rendering component shows
a visualization of the simplified DTI data, and is based
on a standard graphics hardware accelerated approach [34].
We use a color scheme that maps the principal eigenvector
V1 to color [2]: (r, g, b) = (|V1 · (1, 0, 0)T |, |V1 · (0, 1, 0)T |,
|V1 · (0, 0, 1)T |). To support the viewer in interpreting this
color scheme, we display the color axes in the visualization.
The transparency of the colors is derived from the fractional
anisotropy (FA): the higher the FA, the more opaque. The FA
is calculated from the three eigenvalues of the diffusion tensor,
and it is a measure for the spatial distribution of the diffusion
rates over the major axes.

The Tree view component shows a visualization of the
watershed tree itself. The nodes are positioned by a radial
layout algorithm [35], which puts the root node in the center,
and arranges the other nodes on concentric circles around the
root. The depth of the tree determines the number of circles
required to lay out the entire tree, and each subtree is allocated
a sector of the circle proportional to its size. A node is sized
proportionally (on a logarithmic scale) to the volume of the
region associated with it. The color of a node depends on the
average orientation of the tensors in the corresponding region.
The color scheme is as described above.

2) Tree Browsing: In our method, Tree browsing is a
pruning strategy which performs a cut at the same depth d
along each path from leaf to root. All nodes on the

1030 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

Fig. 5. (a) Synthetic data set representing two crossing fibers. The full
watershed tree (at depth D) is shown on the right. (b) Tree collapsed to depth
D − 1. The corresponding regions in the DTI volume have been merged, for
details, see text. One leaf (red triangle) now corresponds to the background,
and the other leaf (blue triangle) to the fibers. (c) The blue leaf node is
expanded one level deeper to depth D − 2. Now the individual components
of the fibers can be separated. For clarity, each has been assigned a different
color manually.

leaf-side of the cut are collapsed onto the last surviving
ancestors along the root-side of the cut. At any depth d , Tree
browsing can be regarded as a region-based clustering method,
using a simultaneous region similarity and homogeneity cri-
terion. Due to the fact that the support region of any node
at a depth d is included into that of a node at depth d + 1
(its parent), the effect of Tree browsing at depth d results
in simplified views as d increases from 0 (leaves) to the
maximum D (root).

Figure 5 shows an example of Tree browsing on a synthetic
data set of two crossing fibers. The full tree and corresponding
volume rendering are shown in Fig. 5(a). In Fig. 5(b) the tree
has been collapsed to depth D − 1. There are now two leaves:
one represents the background (the red triangle), and the other
(the blue triangle) represents the fibers. In Fig. 5(c), the blue
leaf has been expanded to depth D − 2, which reveals all
components of the crossing fibers as separate leaves. The color
assignment has been done manually.

3) Label Propagation: Our method relies on a simple
yet powerful and interactive segmentation mechanism, through
the so-called morphological marker (label) propagation
approach [15], [25]; for more involved approaches, see [19].
Label propagation works in three main steps:

• Interactive label assignment (object of interest or
background) to some leaf nodes in the tree;

• Bottom-up propagation of labels to parents, in the
absence of conflicts between labels (i.e., as long as
parent nodes can be labeled as either object or
background regions);

• Top-down propagation of labels, such that sub-trees
rooted in the children of the nodes with labeling conflicts
have the same label as their root node.

Note that label propagation does not necessarily assign labels
to all leaves. Indeed, only those leaves of the sub-trees rooted

Fig. 6. Label propagation on a synthetic input data set. Left: volume rendering
of input data and corresponding tree. Center: label propagation using the cut-
plane interactor for seed placement; one background seed and one foreground
seed are placed at the shown locations (top). Label propagation is initiated
from the two leaves highlighted by red squares (bottom). The result after label
propagation is shown in the tree, where blue corresponds to foreground and
black to background. Right: final segmentation and corresponding tree.

in children of nodes with labeling conflicts are assigned a
label. Thus, label assignment is controlled by the similarity
between regions, marked as either object or background by
the user. Finally, the user can refine the segmentation, by
further assigning labels to leaves and then propagating them
and e.g., by Tree browsing. Both views are updated in real-
time to reflect the current segmentation. An example for a
synthetic data set is shown in Fig. 6. A volume rendering of
the input data and the corresponding tree are shown on the
left. In the center, a foreground label is assigned to a part on
the inside of the helix structure, and a background label to a
point outside the object. Label assignment is done by a cut
plane, see the top center image. The leaves corresponding to
the marked points in this plane are highlighted by a red square
in the tree visualization (see the center image on the bottom
row). In this example, label propagation can be done up to the
level directly under the root, before reaching a conflict. The
subtree containing the helix is then labelled foreground (blue),
and the other subtree is labelled background (black). The right
image shows the foreground object in a selected state.

4) Direct (Manual) Selection of Nodes: Manual segmen-
tation of the regions defined by the watershed tree can be
performed by selecting nodes in the Tree view, and assigning
them a color via the user interface. The corresponding nodes
become part of the segmentation, which is indicated by a
small cross drawn over the node. An example of manual color
assignment is shown in Fig. 5(c).

IV. RESULTS

In this section we present results for interactive segmen-
tation by our method, on both synthetic and real DTI data
sets, and we compare our approach to the graph cuts method
by [11]. The evaluation is qualitative in terms of efficiency
and visual inspection of the segmentation results. Note that,
because no repository of real DTI data sets, including ground-
truth segmentation exists, a quantitative evaluation is not feasi-
ble. All experiments were performed on a machine equipped

JALBA et al.: INTERACTIVE SEGMENTATION AND VISUALIZATION OF DTI DATA 1031

Fig. 7. Segmenting the Crossing Fibers data set. Left-to-right: direct volume
renderings of the segmentation results. (a) Tree browsing outcomes at depths
d = 0, 5, 10, where d = 0 corresponds to the leaves and d = D = 11 to the
root node. (b) Volume filtering results with τ = 50, 1, 000, 43, 000.

with an Intel Core 2 Quad CPU at 2.4 GHz, 6 GB RAM
and a GeForce GTX 280 GPU. We refer to reader also to the
video (see supplementary material), which demonstrates how
to obtain some of these results with our prototype.

A. Synthetic Data

The tensors of the synthetic data sets follow the shapes of
the geometrical figures, such that the more twisted the shape is,
the larger the tensor variability becomes, and thus the more
difficult it is for the watershed tree to represent the whole
object by a single region. Furthermore, all synthetic data sets
used in our experiments were corrupted by Gaussian noise,
generated as suggested in [10]. The volume renderer uses the
standard DTI colors as described in Section III-D1.

1) The Crossing Fibers Data Set: In the first experiment
we use a synthetic data set depicting the crossing of two fiber
bundles. Within the bundles, in the noise-free data set, the
fractional anisotropy decreases slightly with the distance from
their center-lines. In the crossing region itself, the tensors are
disk shaped, whereas in the background they have spherical
shapes. As in [10], Gaussian noise with zero mean tensor and
(Frobenius) norm of the covariance matrix, ||C||F = 0.028,
was used to corrupt the data.

The results of Tree browsing this data set are shown
in Fig. 7(a). The watershed tree has a maximum depth of
12 levels, 17, 971 leaves and an average branching factor
of 2.5. Note that even though the data set was corrupted by
noise, at tree depth d = 10, almost all noise is removed. The
same could be achieved after volume-filtering the watershed
tree (using τ = 43, 000), see Fig. 7(b). In both cases, the
desired segmentation could easily be obtained by manual
selection of nodes or label propagation. As has been shown
by [10] on a similar (Y-shaped) synthetic data set, level-set
methods have a performance that is comparable to our
approach.

2) The Torus Data Set: Next we consider another example,
where the tensors follow the tangent of the center-line of a
torus, so that the orientation variability is larger. This data
set was corrupted by Gaussian noise at the same levels as

Fig. 8. Left-to-right, top-to-bottom: Initial segmentation by label propagation
at d = 8 with noise structures (highlighted) attached to the torus object;
tree view showing a highlighted node corresponding to noise structures; after
expanding the selected node by two levels and performing manual selection
of the expanded nodes (marked with squares), the object is nicely segmented.

the Crossing Fibers DT image. Segmentation can be easily
performed by Tree browsing in conjunction with manual
selection, or by label propagation, see Fig. 8. This data set
has proven to be challenging to level-set approaches, where
the surface evolution can get trapped in a local minimum if a
Euclidian probability metric is used [10].

3) The Helix Data Set: In the last synthetic example,
we consider a helicoidal object, such that the tensors of the
clean Helix data set are also oriented along the tangent of
its center-line. The fractional anisotropy of the tensors within
the object varies around each spire, and also, their orientation
spans a broader variability range than for the Torus data set.
The noise level was as in the previous experiments. The water-
shed tree had a maximum depth of 12 levels, 10, 156 leaves
and an average branching factor of 2.3.

As argued in [10], it is highly desirable for any segmentation
method to succeed on such data sets, since this tensor-variation
pattern is fairly realistic with respect to real DT images.
However, in [10] it is shown that the only (level-set) method
that correctly manages to segment a similar data set uses
statistical estimates computed within the computationally
expensive, full Riemannian metric. The other (level-set) meth-
ods, based on estimates in the Euclidean and J-Divergence
probability metrics [9], both fail to correctly segment the
object. As shown in Fig. 9(a), in our method segmentation
can be again easily performed, e.g., by Tree browsing at depth
d = 7 and manual selection. Moreover, filtering the watershed
tree using elongation or sparseness attributes also delivers very
good results, see Fig. 9(b).

B. Real DTI Data

The last experiment was performed on a 148×190×160 DT
image of a human brain. The voxel size of the data set

1032 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

Fig. 9. Segmenting the noisy Helix data set. (a) Tree browsing and
manual selection. Left-to-right, first row: tree browsing (and segmentation)
at depths d = 0, 3, 7, second row: corresponding views of the watershed tree.
(b) Attribute filtering using elongation (first row) with τ = 5.2, and sparseness
(second row) with τ = 4.2.

is 1 × 1 × 1 mm. Due to noise and the fact that only
6 diffusion-weighted images were used for acquisition, not all
samples have positive eigenvalues; this is tackled by setting
such eigenvalues to small positive values. The watershed tree
has a depth D = 14 and 60, 524 leaves, and the average
branching factor is about 2.9.

We now show how to segment the corpus callosum, corona
radiata, and the projection fiber. To accomplish this task the
following (interaction) strategy was used. First, we quickly
previewed the data set by Tree browsing. We also employed
volume filtering with τ = 400, to remove very small regions.
Then, we started selecting nodes in the tree view, at depth
d = 8, where from a total of 846 leaves, about 230 remained
after volume filtering, see the first image of Fig. 10(a).
By selecting several large nodes at higher levels, and observing
the selections in the rendering window, it was immediately
clear that the desired objects were part of the regions corre-
sponding to these compound nodes. After refining the selection
a bit, and assigning different colors to the identified structures,
we obtained the segmentation shown in the third image of
Fig. 10(a). Next, we used label propagation at depth d = 8 to
‘grow’ the corona radiata from the segmented corpus callosum.
The final segmentation is shown in Fig. 10(b). To add context
to the visualization of the segmentation result, fiber tracts
were generated by tracing streamlines seeded uniformly in the
segmented regions.

This example demonstrates the versatility of our approach,
and shows that it can be used to segment different structures

Fig. 10. Segmenting brain structures in a real DT image. (a) Segmentation of
the corpus callosum, cingulum and projection fibers. First row: Tree browsing
at depth d = 8; zoom-in showing sub-trees corresponding to the segmented
structures; second row: Segmented structures and streamlines. (b) ‘Growing’
the corona radiata from the corpus callosum by label propagation. Left: label
propagation at d = 8, right: final segmentation combined with streamlines.

in the brain. In related work, segmentation results on real data
are only provided for large structures, such as the cardiac
wall [11] and corpus callosum [6], [7], [9], [11]. Using the
Riemannian framework, only [10] show a segmentation of the
corona radiata, which took considerable effort to obtain.

C. Efficiency

Our interactive segmentation method is computationally
very efficient. For example, the time required during pre-
processing to construct the watershed-tree representation of
the DT brain image of size 148 × 190 × 160 was 40 seconds.
Moreover, once the tree representation has been computed, it
can be saved to external memory, for later usage.

The (interaction) time required to obtain the segmentation
in Fig. 10(a) was about 5 minutes, using the strategy described
above. Further, obtaining its refined version from Fig. 10(b)
required only a few seconds extra. For comparison, the level
set method of [10] took about 10 minutes to obtain a simpler,
one-region segmentation, on a (brain) DT image four times
smaller than ours. If multiple regions have to be segmented,
or if a segmentation has to be changed/refined, the whole

JALBA et al.: INTERACTIVE SEGMENTATION AND VISUALIZATION OF DTI DATA 1033

Fig. 11. Segmentation of the crossing fibers by the graph-cuts method
of [11]; left-to-right: initialization (foreground–white and background–black
seeds) and segmentation results for different weights λ, see text.

Fig. 12. Segmentation of the noisy torus by graph cuts with two different
initializations.

initialization and level-set propagation process has to be
repeated. Moreover, if the result after propagation does
not meet certain requirements parameter adjustment has
to be done, and the whole process has to be repeated.
By contrast, in our method one can just continue assigning
new segments (or refine existing ones), at the same or another
tree depth, by filtering, manual selection, or label propagation,
see Fig. 4.

D. Comparison to Graph Cuts

As mentioned in Section II, segmentation methods based
on graph cuts represent popular alternatives to level-set
approaches. The standard technique optimizes an energy func-
tional over the segmentation (binary labeling) of image voxels
regarded as nodes of the image graph. Typically, the energy
functional is the weighted sum of two terms, representing
(i) the likelihood of a node to belong to foreground or back-
ground (region term) and (ii) the penalty for two neighboring
nodes for having different labels (boundary term).

Here, we compare DT-MRI segmentation results by
our method to those of the graph-cuts method by [11].
We chose this method for comparison since it is (i) based
on globally-optimal graph-cuts, (ii) semi-automatic, and
(iii) faster than standard level-set approaches, see [11] for
details. Furthermore, we used the same (noisy synthetic)
data sets as input. The results of this method are shown
in Figs. 11, 12 and 13; the value of the weighting parameter λ,
specifying the relative importance of the region term versus
the boundary term, is indicated in each figure.

Figure 11 shows that the graph-cuts method can successfully
segment the crossing fibers (with λ = 0.1), although the
initialization (manual placement of seeds) was performed in
only one slice, and moreover, foreground seeds were located
in only one part of one of the crossing fiber bundles. Note
though that the parameter λ needs to be chosen carefully, to
avoid noise in the final segmentation result.

Fig. 13. Segmentation of the noisy helix by graph cuts; First row: results
when seeds were placed only in a few slices, second row: results with seeds
placed in each slice along the whole centerline of the helix.

Fig. 14. Segmentation of the Brain data set by graph cuts. Left: seeds placed
along the whole corpus callosum structure and around it in the background,
in one slice. Right: segmentation result.

For the noisy Torus data set, a similar type of initialization
results in only a partial segmentation of the torus object, see
the top row in Fig. 12. The quality of the result in this case
was independent of the parameter value λ. To obtain the whole
object, we had to place foreground seeds inside both the red
and green colored regions of the torus; the corresponding
segmentation result is shown in Fig. 12 on the bottom row.

The Helix data set proved to be problematic for the
graph-cuts method, see Fig. 13 and also our discussion
in Section IV-A3. The first row shows segmentation results
obtained by placing seeds in only a few slices. In this case, the
result consists of only regions near the seed points (small λ),
only some parts of the helix (medium λ), or a large amount of
noise (high λ). If foreground seeds are placed in every slice
and along the centerline of the entire helix a better segmenta-
tion can be obtained as shown in Fig. 13 on the bottom row.
However, even then the helix object is not obtained completely.
Such laborious initializations are not realistic for real data
sets, because the sought structures are not a priori known.
However, if an atlas is available, the initial seed placement
can be performed using a registration-like approach, which
could potentially improve the final segmentation results for
graph-cuts (and level-set) methods.

Figure 14 shows a segmentation of the corpus callosum in
the Brain data set. Note that this structure is recovered only
partially. To obtain this result, we had to carefully place seeds
and tune the parameter λ. Therefore, we had to fully re-run the
method several times, which was very time consuming as each

1034 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

run required about 5 minutes. In contrast, using our method,
we were able to extract much more detail from this data set
(see Fig. 10), in about the same time.

E. Discussion

The results on the Crossing Fibers and Torus data sets show
that level sets, graph cuts, and our method perform similarly.
However, even for these simple data sets, the parameters for
both the level sets and graph cuts approaches have to be
chosen carefully to obtain the desired result. In our approach,
this is not very critical, and the segmentations were easy
to obtain.

The Helix data set, representing more realistic data, could
not be recovered completely by the graph cuts approach,
despite an elaborate initialization. The level-set approach only
segmented this data set successfully in the full Riemannian
metric [10]. As demonstrated, segmentation of this data set
was straightforward with our approach by simplifying the
data by tree browsing or attribute filtering, followed by label
propagation or manual selection of nodes in the tree.

On the Brain data set, it was possible to recover the corpus
callosum partially with the graph cuts approach. This is also
possible with level sets, but smaller structures could only be
obtained in the Riemannian framework [10]. We showed that
such smaller structures are easily obtained by our method. The
results on this data set demonstrate that the interaction mech-
anisms, simplification strategies, fast filtering and response
to parameter changes result in an effective and efficient,
interactive segmentation method.

V. CONCLUSIONS

We have presented an efficient, interactive method for
segmenting DT images. Our method relies on a hierarchi-
cal representation, the watershed tree, obtained by merging
watershed regions, through a waterfall algorithm. The region
model is given by average tensors computed within the
regions, whereas the merging order prioritizes homogeneous
and similar regions. We have demonstrated the performance
of our approach on (noisy) synthetic and real DTI data,
and by a comparison to other (semi-automatic) segmentation
approaches.

The current method has a number of shortcomings. First,
very small structures cannot properly be recovered, due
to our region-based representation. This is inherent to the
approach and can only be solved by applying other techniques.
Secondly, errors introduced early, at low depth levels, in the
merging process propagate up in the tree at subsequent levels.
In such cases, automatic label propagation may fail (depending
on the initialization), and in general, more user interaction
is required to, e.g., expand regions and seek for the desired
structures. Such merging errors may be corrected during the
interactive segmentation by using graph cuts as proposed by
[19]. A further improvement consists in replacing the sample
mean and covariance estimators, defining the region model and
merging order, by robust measures of location and dispersion,
e.g., median and Minimum Volume Ellipsoid, respectively.

REFERENCES

[1] P. J. Basser, J. Mattiello, and D. LeBihan, “Estimation of the effective
self-diffusion tensor from the NMR spin echo,” J. Magn. Reson., B,
vol. 103, no. 3, pp. 247–254, 1994.

[2] A. Vilanova, S. Zhang, G. Kindlmann, and D. Laidlaw, “An intro-
duction to visualization of diffusion tensor imaging and its applica-
tions,” in Visualization and Processing of Tensor Fields (Mathematics
and Visualization), J. Weickert and H. Hagen, Eds. Berlin, Germany:
Springer-Verlag, 2005, pp. 121–153.

[3] B. Moberts, A. Vilanova, and J. J. van Wijk, “Evaluation of fiber
clustering methods for diffusion tensor imaging,” in Proc. IEEE Vis.,
Oct. 2005, pp. 65–72.

[4] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin,
“Clustering fiber traces using normalized cuts,” in Medical
Image Computing and Computer-Assisted Intervention—MICCAI
(Lecture Notes in Computer Science), vol. 3216. Berlin, Germany:
Springer-Verlag, 2004, pp. 368–375.

[5] W. Chen et al., “A novel interface for interactive exploration of DTI
fibers,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 1433–1440,
Nov./Dec. 2009.

[6] L. Zhukov, K. Museth, D. Breen, A. H. Barr, and R. Whitaker, “Level
set modeling and segmentation of diffusion tensor magnetic resonance
imaging brain data,” J. Electron. Imag., vol. 12, no. 1, pp. 125–133,
2003.

[7] M. Rousson, C. Lenglet, and R. Deriche, “Level set and region based sur-
face propagation for diffusion tensor MRI segmentation,” in Computer
Vision and Mathematical Methods in Medical and Biomedical Image
Analysis (Lecture Notes in Computer Science), vol. 3117, M. Sonka,
I. A. Kakadiaris, and J. Kybic, Eds. Berlin, Germany: Springer-Verlag,
2004, pp. 123–134.

[8] C. Lenglet, M. Rousson, R. Deriche, O. Faugeras, S. Lehericy, and
K. Ugurbil, “A Riemannian approach to diffusion tensor images segmen-
tation,” in Information Processing in Medical Imaging (Lecture Notes
in Computer Science), vol. 3565, G. E. Christensen and M. Sonka, Eds.
Berlin, Germany: Springer-Verlag, 2005, pp. 591–602.

[9] Z. Wang and B. C. Vemuri, “DTI segmentation using an information
theoretic tensor dissimilarity measure,” IEEE Trans. Med. Imag., vol. 24,
no. 10, pp. 1267–1277, Oct. 2005.

[10] C. Lenglet, M. Rousson, and R. Deriche, “DTI segmentation by sta-
tistical surface evolution,” IEEE Trans. Med. Imag., vol. 25, no. 6,
pp. 685–700, Jun. 2006.

[11] Y. T. Weldeselassie and G. Hamarneh, “DT-MRI segmentation using
graph cuts,” Proc. SPIE, Med. Imag., Image Process., vol. 6512,
p. 65121K, Mar. 2007.

[12] S. P. Awate, H. Zhang, and J. C. Gee, “A fuzzy, nonparametric
segmentation framework for DTI and MRI analysis: With applications
to DTI-tract extraction,” IEEE Trans. Med. Imag., vol. 26, no. 11,
pp. 1525–1536, Nov. 2007.

[13] E. J. Breen and R. Jones, “Attribute openings, thinnings, and granulome-
tries,” Comput. Vis. Image Understand., vol. 64, no. 3, pp. 377–389,
1996.

[14] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive
connected operators for image and sequence processing,”
IEEE Trans. Image Process., vol. 7, no. 4, pp. 555–570,
Apr. 1998.

[15] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval,” IEEE Trans. Image Process., vol. 9, no. 4, pp. 561–576,
Apr. 2000.

[16] P. Salembier and M. H. F. Wilkinson, “Connected operators,”
IEEE Signal Process. Mag., vol. 26, no. 6, pp. 136–157,
Nov. 2009.

[17] C. Feddern, J. Weickert, and B. Burgeth, “Level-set methods for tensor-
valued images,” in Proc. 2nd IEEE Workshop Geometric Level Set
Methods Comput. Vis., Oct. 2003, pp. 65–72.

[18] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-D image
segmentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131,
2006.

[19] C. J. Armstrong, B. L. Price, and W. A. Barrett, “Interactive segmen-
tation of image volumes with live surface,” Comput. Graph., vol. 31,
no. 2, pp. 212–229, 2007.

[20] J. Malcolm, Y. Rathi, and A. Tannenbaum, “A graph cut approach to
image segmentation in tensor space,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2007, pp. 1–8.

JALBA et al.: INTERACTIVE SEGMENTATION AND VISUALIZATION OF DTI DATA 1035

[21] T. Schultz, H. Theisel, and H.-P. Seidel, “Segmentation of
DT-MRI anisotropy isosurfaces,” in Proc. EuroVis, Joint
Eurograph.-IEEE VGTC Symp. Vis. (VisSym/EUROVIS), May 2007,
pp. 187–194.

[22] L. Rittner and R. de Alencar Lotufo, “Segmentation of DTI based
on tensorial morphological gradient,” Proc. SPIE, Med. Imag., Image
Process., vol. 7259, pp. 72591E-1–72591E-12, Mar. 2009.

[23] P. R. Rodrigues, A. C. Jalba, P. Fillard, A. Vilanova, and
B. M. ter Haar Romeny, “A multi-resolution watershed-based approach
for the segmentation of diffusion tensor images,” in Proc. MICCAI
Workshop Diffusion Modelling, London, U.K., 2009, pp. 161–172.

[24] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed
cuts: Thinnings, shortest path forests, and topological watersheds,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 925–939,
May 2010.

[25] S. Beucher and F. Meyer, “The morphological approach to segmentation:
The watershed transformation,” in Mathematical Morphology in Image
Processing, E. R. Dougherty, Ed. New York, NY, USA: Marcel Dekker
Inc., 1993, pp. 433–481.

[26] J. B. T. M. Roerdink and A. Meijster, “The watershed transform: Def-
initions, algorithms and parallelization strategies,” Fundam. Informat.,
vol. 41, nos. 1–2, pp. 187–228, Mar. 2000.

[27] M. A. Westenberg, J. B. T. M. Roerdink, and M. H. F. Wilkinson, “Vol-
umetric attribute filtering and interactive visualization using the max-
tree representation,” IEEE Trans. Image Process., vol. 16, no. 12,
pp. 2943–2952, Dec. 2007.

[28] P. Thomas Fletcher and S. Joshi, “Principal geodesic analysis on sym-
metric spaces: Statistics of diffusion tensors,” in Computer Vision and
Mathematical Methods in Medical and Biomedical Image Analysis (Lec-
ture Notes in Computer Science), vol. 3117, M. Sonka, I. A. Kakadiaris,
and J. Kybic, Eds. Berlin, Germany: Springer-Verlag, 2004,
pp. 87–98.

[29] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for
tensor computing,” Int. J. Comput. Vis., vol. 66, no. 1, pp. 41–66, 2006.

[30] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean
metrics for fast and simple calculus on diffusion tensors,” Magn. Reson.
Med., vol. 56, no. 2, pp. 411–421, Aug. 2006.

[31] H. Hotelling, “Multivariate quality control,” in Techniques of Statistical
Analysis, C. Eisenhart, M. W. Hastay, and W. A. Wallis, Eds. New York,
NY, USA: McGraw-Hill, 1947.

[32] B. Marcotegui and S. Beucher, “Fast implementation of waterfall based
on graphs,” in Proc. 7th Int. Conf. ISMM, 2005, pp. 177–186.

[33] A. C. Jalba and M. A. Westenberg, “A comparison of two tree repre-
sentations for data-driven volumetric image filtering,” in Mathematical
Morphology and Its Applications to Image and Signal Processing
(Lecture Notes in Computer Science), vol. 6671, P. Soille, M. Pesaresi,
and G. Ouzounis, Eds. Berlin, Germany: Springer-Verlag, 2011,
pp. 405–416.

[34] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman,
“High-quality volume rendering using texture mapping hardware,” in
Proc. EUROGRAPHICS/SIGGRAPH Workshop Graph. Hardw., 1998,
pp. 69–76.

[35] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1999.

Andrei C. Jalba received the B.Sc. and M.Sc.
degrees in applied electronics and information
engineering from the Politehnica University of
Bucharest, Bucharest, Romania, in 1998 and 1999,
respectively, and the Ph.D. degree from the Institute
for Mathematics and Computing Science, University
of Groningen, Groningen, The Netherlands, in 2004.
He is currently an Assistant Professor with the Eind-
hoven University of Technology, Eindhoven, The
Netherlands. His research interests include computer
graphics and vision, shape processing, and parallel

computing.

Michel A. Westenberg is currently an Assistant
Professor in visualization with the Eindhoven
University of Technology, Eindhoven, The
Netherlands. He received the Ph.D. degree
in mathematics and natural sciences and the
M.Sc. degree in computing science from
the University of Groningen, Groningen, The
Netherlands, in 2001 and 1996, respectively. He
was a recipient of a Humboldt Research Fellowship
by the Alexander von Humboldt Foundation in
2004, which funded a post-doctoral position with

the Institute for Visualization and Interactive Systems, University of Stuttgart,
Stuttgart, Germany. He returned as a Post-Doctoral Researcher with the
Institute for Mathematics and Computing Science, University of Groningen,
in 2006. Since 2008, he has been with the Department of Mathematics
and Computer Science, Eindhoven University of Technology. His research
interests include biological and biomedical data visualization and image
processing.

Jos B. T. M. Roerdink (SM’03) received the
M.Sc. degree in theoretical physics from the
University of Nijmegen, Nijmegen, The Netherlands,
in 1979, and the Ph.D. degree from the University of
Utrecht, Utrecht, The Netherlands, in 1983. He was
a Post-Doctoral Fellow with the University of
California at San Diego, San Diego, CA, USA, in
1983 and 1985, where he was involved in the area
of stochastic processes. He was with the Centre for
Mathematics and Computer Science, Amsterdam,
The Netherlands, from 1986 to 1992, where he

was involved in image processing and tomographic reconstruction. He was
appointed as an Associate Professor and a Full Professor with the Johann
Bernoulli Institute for Mathematics and Computer Science, University of
Groningen, Groningen, The Netherlands, in 1992 and 2003, where he is
currently the Chair of Scientific Visualization and Computer Graphics. His
research interests include mathematical morphology, biomedical visualization,
neuroimaging, and bio/neuroinformatics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

