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Abstract  

Atrial Fibrillation (AF) is the most common, sustained clinical tachyarrhythmia 

associated with significant morbidity and mortality. AF is a persistent condition with 

progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, 

resulting in cellular changes commonly observed in ageing and in other heart diseases.  

While rhythm control by electrocardioversion or drug treatment is the treatment of 

choice in symptomatic AF patients, its efficacy is still limited. Current research is directed 

at preventing first-onset AF by limiting the development of substrates underlying AF 

progression and resembles mechanism-based therapy. Upstream therapy refers to the use of 

non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific 

mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) or 

recurrence of the arrhythmia following (spontaneous) conversion (secondary prevention). 

Heat shock proteins (HSPs) are molecular chaperones and comprise a large family of 

proteins involved in the protection against various forms of cellular stress. Their classical 

function is the conservation of proteostasis via prevention of toxic protein aggregation by 

binding to (partially) unfolded proteins. Our recent data reveal that HSPs prevent electrical, 

contractile and structural remodeling of cardiomyocytes, thus attenuating the AF substrate 

in cellular, and animal experimental models. Furthermore, studies in humans suggest a 

protective role for HSPs against the progression from paroxysmal AF to persistent AF and 

in recurrence of AF.  

In this review, we discuss upregulation of the heat shock response system as a novel 

target for upstream therapy to prevent derailment of proteostasis and consequently 

progression and recurrence of AF.  
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1. Management of atrial fibrillation by upstream therapy 

Atrial fibrillation (AF) is the most common clinical tachyarrhythmia which 

significantly contributes to cardiovascular morbidity and mortality, mainly through stroke 

and heart failure. The incidence of AF is escalating due to the increased prevalence of risk 

factors constituting a substrate for AF, such as obesity1, metabolic syndrome2 and 

increasing age.3 In addition to the increased first-onset of AF, also the progression of the 

arrhythmia poses problems, as the longer AF persists the less effective pharmacological and 

electrical cardioversion therapies are.4 In patients with symptomatic AF, rhythm control is 

the treatment of choice.5 However, the effective reversal to sinus rhythm is still inadequate. 

Therefore, recent research focuses on the identification of mechanisms underlying AF 

substrate induction and maintenance, which have led to several novel upstream therapeutic 

approaches, including angiotensin-converting enzyme inhibitors, aldosterone antagonists, 

statins and polyunsaturated fatty acids.6 Upstream therapy refers to the use of non-ion 

channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific 

mechanisms of AF with the ultimate aim to prevent the occurrence (primary prevention) or 

recurrence (secondary prevention) of the arrhythmia.7,8 

It has been recognized that electrical and structural remodeling of cardiomyocytes 

create a substrate for AF.9 Nevertheless, the exact molecular mechanisms that underlie 

cardiomyocyte remodeling and AF progression are as yet unidentified. We recently 

obtained evidence that derailment of proteostasis (i.e. the homeostasis of protein 

production, breakdown and function) constitutes an important substrate for induction and 

progression of AF.10-12 Proteostasis involves controlling the concentration, conformation, 

binding interaction, kinetics and location of individual proteins. Derailment of cellular 

proteostasis results in many systemic diseases including cardiovascular disorders.13 Cells 

respond to a loss of proteostatic control by inducing the heat shock response (HSR) 

resulting in the expression of heat shock proteins (HSPs) that facilitate protein folding and 

function.14 Consequently, an emerging target candidate for upstream therapy of AF is the 

upregulation of HSPs. Indeed, HSP induction alleviates the occurrence and recurrence of 

AF in various experimental model systems for AF.12,15-17 Furthermore, studies in humans 

suggest a protective role for HSPs against progression from paroxysmal AF to persistent 

AF15 and the restoration of sinus rhythm in patients with persistent AF (secondary 

prevention).18  

Here we discuss the concept that derailment of cardiomyocyte proteostasis constitutes 

an important aspect of the substrate for AF. In addition we examine the evidence for 

induction of the HSR system as a novel target for upstream therapy to prevent the 

occurrence and the recurrence of AF and address its possible modes of action. 
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2. Mechanisms underlying AF initiation and progression; derailment of proteostasis 

Although the exact molecular mechanism(s) underlying AF initiation, maintenance and 

progression has not yet been completely elucidated, an important recognition was that AF 

induction required a suitable substrate as well as a trigger that acts on the substrate.9 

Various clinical conditions, e.g. several heart diseases, hypertension and cardiac surgery, 

are risk factors for the first-onset of AF, as they create a substrate(s) and/or trigger(s) for 

the initiation of AF (Figure 1)19-21. Key AF promoting factors have been identified, 

including inflammation, oxidative stress, active Rho-GTPase, fibrosis and atrial muscle 

bundle dissociation22,23, which induce loss of proteostatic control, creating a substrate for 

AF. Subsequent triggers will act on the substrate and will induce AF.24-27 

 

Figure 1： Overview of AF-promoting factors contributing to first-onset AF. Various clinical conditions 
induce AF promoting factors. These factors can induce triggers for AF or are responsible for the loss of 

proteostatic control, thereby inducing remodeling and creating a substrate for AF.  Triggers will act on the 

vulnerable substrate to induce first-onset AF. Prevention and/or normalization of the cardiomyocyte 
proteostasis by inducing HSP expression could prevent AF substrate formation and prove an effective 

approach in preventing first-onset AF in response to various AF promoting factors.  

Once AF is initiated, AF itself will induce further electrical and structural remodeling 

in a manner that contributes to AF maintenance and progression.28 A conceptual model is 

depicted in Figure 2. Electrical remodeling resulting in shortening of action potential 

duration (APD), slowing of conduction and abnormal calcium handling will favor AF 

maintenance.29 When AF persists, the calcium overload causes irreversible changes in 

structural remodeling, especially cardiomyocyte hibernation.30-32 Hibernation is 

characterized by irreversible degradation of the myofibril structure (myolysis) and 

mitochondrial damage, implying impaired energy production and release of reactive oxygen 

species, which leads to contractile dysfunction.33-36 Other characteristics are redistribution 

of nuclear chromatin and pathological gene expression revealing a deficiency in healthy 
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cardiomyocyte proteostasis.30,34,37-40 While early electrical remodeling is reversible41, the 

derailment of proteostasis underlies irreversible structural remodeling and thereby AF 

progression.32,39,42-44 We and others identified various molecular mechanisms that underlie 

derailment of proteostasis and AF progression and recurrence.32,45-49 

 

Figure 2: Overview of AF-induced derailment of cardiomyocyte proteostasis. AF induces time-related 

progressive myocyte remodeling. First, AF causes cellular Ca2+ overload and oxidative stress, which results 
in a direct inhibition of the L-type Ca2+ channel, shortening of action potential duration and contractile 

dysfunction. These changes have an early onset and are reversible. The early processes protect the 

cardiomyocyte against Ca2+ overload but at the expense of creating a substrate for persistent AF. When AF 
persists, derailment of proteostasis occurs via activation of calpain, kinases/phosphatases, RhoA-GTPase, 

and exhaustion of protective HSPs. The key modulators also activate each other. Derailment of proteostasis 

results in irreversible myolysis/hibernation, alterations in structural proteins and pathological gene 
expression, which are substrates for impaired contractile function and AF persistence. Upstream therapies are 

directed at modifying the substrate for AF progression. Normalization of the cardiomyocyte proteostasis by 

inducing HSP expression might represent an effective approach to manage clinical AF.  

2.1. Ion channel currents and calcium handling 

During AF, atrial cardiomyocytes are subjected to very rapid (400-600 times per min) 

and irregular firing, causing a rapid Ca2+ overload resulting in functional down-regulation 

of the L-type Ca2+ channel, which leads to shortening of the action potential duration and 

contractile dysfunction (hypocontractility), thus providing a further substrate for AF 

(Figure 2).45,50-53 Decreased ICaL has been consistently found in atrial remodeling, which is 

believed to significantly contribute to electrical remodeling and AF progression.54,55 The 
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functional changes have a rapid onset following initiation of AF and are reversible.41 In 

addition to the L-type Ca2+ channel, also other channel currents are affected, as  previously 

reviewed.29 Ion channel currents are regulated by expression level, phosphorylation and 

redox status of the channel, all of which are altered during AF.29,56-59 

In dog atrial cardiomyocytes, tachypacing induced the activation of calcineurin via the 

Ca2+/calmodulin system, which in turn changes cardiomyocyte proteostasis by stimulating 

nuclear translocation of NFAT, resulting in transcriptional and translational downregulation 

of the L-type calcium channel resulting in atrial remodeling and AF progression.53 

Phosphorylation status of ion channels are altered due to changes in activity of various 

kinases and phosphatases, such as enhanced CAMKII, PP1 and PP2a activity.29,60 Further, 

oxidative stress during AF can contribute to changes in redox status, thereby altering ion 

channel currents.29,58 

2.2. Kinome activity and target proteins 

Kinome is a global description of kinases and kinase signaling.Various kinases and 

phosphatases become activated during AF and contribute to AF-induced remodeling and 

contractile dysfunction.48,60-64 In addition to modification of ion channel currents through 

(de)phosphorylation, also the function of other downstream target proteins are affected by 

the altered activity of kinases and phosphatases, including calcium handling proteins, such 

as RyR2 and PLB.65-68 Modification of calcium handling protein function will contribute to 

calcium overload and subsequent contractile dysfunction.64 Furthermore, also kinases 

involved in post-translational modifications of structural proteins, such as actin, have been 

implicated in AF-induced remodeling. Tachypacing-induced activation of RhoA-GTPase 

and downstream Rho-kinase (ROCK), induces F-actin stress fiber formation (Figure 2).48 

Prevention of stress fiber formation by ROCK-inhibition or HSP expression prevented 

tachypacing-induced remodeling.48 These findings imply a key role for alterations in  

kinome in causing derailment of  proteostasis and progression of AF. 

2.3. Protease activity 

The cysteine protease calpain is activated during AF. Calpain is persistently activated 

by the AF-induced intracellular Ca2+ overload, which results in degradation of contractile 

and structural proteins32,69, leading to myolysis, thereby further contributing to irreversible 

structural remodeling and AF progression.   

Thus, AF-induced derailment of proteostasis includes changes in ion-channel function, 

kinome, and calpain activation and underlies reversible electrical remodeling and 

irreversible structural remodeling and thereby AF initiation and progression. 
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3. Heat shock proteins protect against AF initiation and progression 

It has been recognized that heat shock transcription factor 1 (HSF1) is an important 

regulator of proteostasis by controlling the expression of major HSPs, including HSPB1 

(HSP27), HSPA1A (HSP70) and HSPC1 (HSP90), that facilitate protein folding, 

localization and function.70,71 Induction of HSPs provides cytoprotective effects against 

stress induced derailment of proteostasis and is beneficial in various cardiac diseases (Table 

1).46,48,70-83, Therefore, recent studies have investigated the cardioprotective potential of 

HSPs in AF, focusing on AF induction as well as progression. 

Table 1; Major cardioprotective heat shock proteins, localization, expression and cardiac disease 

protective effects. 

Family 

name 

Protective member 

(alternative name) 
Cardiac disease localization 

Cardiac 

Expression 
References 

HSPA HSPA1A (HSP70) 
ischemic heart disease, 

hypertrophy 
cytosol +++ 72,73,78 

DNAJ 

DNAJA3 (HSC40) dilated cardiomyopathy 
cytosol/ 
nuclear 

+++ 76 

DNAJB5 (HSP40) hypertrophy 
cytosol/ 

nuclear 
+++ 82 

HSPB 

HSPB1 (HSP25, 

HSP27,HSP28) 
AF, ischemic heart disease cytosol +++ 46,48,74,79 

HSPB5 (αβCrystallin, 
CRYAB,CRYA1) 

(dilated) cardiomyopathy cytosol ++++ 
77,81 

 

HSPB6 (HSP20, p20) AF, ischemic heart disease cytosol ++ 48,83 

HSPB7 (cvHSP) AF cytosol +++++ 48 

HSPB8 (HSP22,H11) AF cytosol ++ 48 

HSPD HSPD1 (HSP60) heart failure mitochondria ++++ 80 

HSPC HSPCA (HSP90) ischemic heart disease cytosol ++++ 75 

4. HSPs in the prevention of first-onset AF (primary prevention) 

HSPs protect against a variety of AF-promoting factors contributing to first-onset AF 

(Figure 1). Protective effects of HSPs against cell death, fibrosis, Rho-GTPase activation, 

oxidative stress and inflammation have been described, indicating their potential in 

preventing loss of proteostatic control and formation of AF substrates.48,84-86 It is unclear if 

HSPs could affect the formation of triggers. However, since triggers need a vulnerable 

substrate to act on22, the prevention of AF substrate formation might be sufficient to protect 

against first-onset AF. Indeed in various models for first-onset AF, HSPs provide protection 

against AF-substrate formation and hence AF initiation. In a canine model (acute) atrial 
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ischemia related AF, GGA pretreatment induced HSPA1A expression and revealed 

protection against prolongation of effective refractory period (ERP) and atrial conduction 

abnormalities46,87, thereby preventing AF initiation. These observations suggest that HSP 

induction may protect against some forms of AF in patients with coronary artery disease. 

Furthermore, a recent study in rats showed that induction of HSPA1A prevents both the 

Angiotensin II mediated atrial fibrosis and increased atrial vulnerability for AF induction.85 

The findings suggest HSPA1A to play a role in inhibiting the development of a non-

cardiomyocyte substrate for AF induction. In two clinical studies, HSPA1A has been 

implicated as cardioprotective, showing a correlation between HSPA1A atrial expression 

levels and reduced incidence of post-operative AF in patients in sinus rhythm undergoing 

cardiac surgery.88,89  

In addition to HSPA1A, other HSPs might be involved in primary prevention of AF. In 

patients with AF, increased mitochondrial HSP expression levels, i.e. HSPD1, HSPE1 and 

mortalin (HSPA9B)90 have been reported. In addition, increased HSPD1 antibody levels in 

the serum of patients have been associated with the occurrence of post-operative AF91, 

suggesting HSPD1 as a marker for mitochondrial and cardiac damage and subsequent 

increased risk for AF. Increased expression of mitochondrial chaperones could contribute to 

an increased protection against oxidative stress. Therefore, these HSP family members 

might contribute to survival of cardiomyocytes by maintaining mitochondrial integrity and 

capacity for ATP generation. To date, however, several studies showed opposing 

correlations between the expression of mitochondrial HSPs and AF90-92, thereby obscuring 

their involvement in protection against AF. 

5. HSPs in the prevention of AF progression and recurrence (secondary prevention)  

Various in vitro and in vivo models for tachypacing-induced AF progression identified 

HSPs to protect against the derailment of proteostasis and cardiomyocyte remodeling. In 

tachypaced HL-1 atrial cardiomyocytes for AF, a general HSP induction via a mild heat 

shock or by a HSP-inducing drug geranylgeranylacetone (GGA), conserved cardiomyocyte 

proteostasis during tachypacing and protected against subsequent electrical, contractile and 

structural remodeling.15,46 Furthermore, in canine models for AF progression, GGA 

pretreatment induced HSP (HSPA1A and HSPB1) expression and revealed protective 

effects against shortening of ERP, shortening of APD, reductions in L-type Ca2+ current 

and AF progression.46,87 Also, in clinical studies, a potent HSR and high HSPB1 levels have 

been associated with restoration of normal sinus rhythm in patients with permanent AF 

after mitral valve surgery.18 Two other studies comparing paroxysmal versus persistent AF 

and sinus rhythm, found an inverse correlation between HSPB1 atrial expression and AF 

duration and extend of myolysis.15,92 Suggesting, a temporary activation of the HSR during 
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a short duration of AF but exhaustion in time related to the duration of AF. Consequently, 

cardiomyocytes lose the ability for proteostatic control, inducing remodeling, which will 

result in AF progression and recurrence.  

Further studies investigated the role of individual HSPs in protection against 

tachypacing-induced remodeling. HSPB1, and not HSPA1A, was found to play an 

important role, as its exclusive overexpression appears sufficient to protect against 

tachypacing-induced remodeling, comparable to GGA pre-treatment.15,46 Conversely, the 

protective effect of a general HSR or GGA pre-treatment on tachypacing-induced changes 

was annihilated by a selective knockdown of HSPB1. However, in addition to HSPB1, also 

other HSPB family members (HSPB6, HSPB7 and HSPB8) protect against AF-induced 

structural remodeling independently from HSPB1.48 Hence, multiple HSPB family 

members prevent against AF-induced cardiomyocyte remodeling and AF progression by 

preserving cell proteostasis, thereby demonstrating their therapeutic potential in AF. 

Taken together, there seems to be a strong case for induction of HSPs to prevent AF 

initiation, recurrences and progression, by attenuation of electrical, contractile and 

structural cardiomyocyte remodeling. There are strong indications that this effect is via 

normalization of cell proteostasis. 

6. Mode of action for HSPs to normalize proteostasis  

It has been recognized that HSPs protect against derailment of proteostasis by 

preventing cardiomyocyte remodeling at different stages (Figure 1 and 2). The exact 

mechanisms in prevention of AF initiation (primary prevention) and recurrences (secondary 

prevention) are not known, but are likely due to HSP regulated protection against various 

AF promoting factors that induce the substrate for AF initiation and progression. 

6.1. Ion channel currents  

An ion channel current is dependent on the expression level, phosphorylation and 

redox status of the channel29,58,93, as well as the stability of the cytoskeleton94 and Rho-

GTPase activity.95 The HSP-inducing drug GGA previously showed protective effects 

against tachypacing-induced reductions in L-type Ca2+ current and shortening of APD.46 

Furthermore, several studies have shown protective effect of HSPs on almost all of these 

regulating factors. HSPs are known to interact and, in some cases, inhibit kinases and 

phosphatases, who’s activity is altered during AF83,96-100, thereby potentially preventing or 

normalizing the phosphorylation status of ion channels, especially L-type Ca2+ channel.61 

Furthermore, several HSPs (including HSPB1) were shown to provide protection against 

oxidative stress, thereby potentially preventing or restoring the redox status of the ion 

channels.101 If HSPs can influence the expression levels of ion channels is currently not 
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known. Lastly, also the stability of the actin cytoskeleton and Rho-GTPase activity are 

regulated by the small HSP family members (see below).46,48,49,102-105 The findings reveal a 

protective role of HSP against AF-induced changes in ion channel current, including 

reductions in the L-type Ca2+ current. 

6.2. Kinome activity and target proteins  

Various kinases and phosphatases reveal changed activity during AF, which 

contributes to cardiomyocyte remodeling depending on their target proteins.48,60-64 In 

addition to ion-channels, known targets are transcription factors, various calcium handling 

proteins and the actin cytoskeleton. Changes in transcription factor phosphorylation, 

regulates gene expression and hence can induce an altered gene expression profile, possibly 

contributing to cardiomyocyte hibernation. Interestingly, HSPB1 was shown to interact 

with certain (downstream) kinases, such as IkappaB kinase and c-Jun N-terminal kinase 

(JNK), thereby suppressing activation of the transcription factor NF-kappaB.106,107 

Interestingly, these kinases have also been found to be modulated during AF.108,109 In 

addition, HSPB1 is known to interact with other kinases and phosphatases and thereby 

might prevent the activation of other downstream transcription factors.83,96-100 

Changes in phosphorylation status of calcium handling proteins will affect the calcium 

homeostasis in cardiomyocytes. It is generally accepted that AF-induced abnormalities in 

intracellular Ca2+ handling leads to atrial cardiomyocyte stress and induces remodeling that 

contributes to the progression of AF.53,110 A calcium overload can be caused by an increase 

in L-type Ca2+ channel activity, or a changed activity of calcium handling proteins such as 

RyR2, SR Ca2+ ATPases or Na+/Ca2+ exchanger. These rapid changes in activity of proteins 

involved in calcium handling are modulated by kinases and/or phosphatases, including 

CAMKII and PP1, of which the activities are increased during AF.61,111 Interestingly, 

studies showed that HSPs interact with CaMKII99, calcineurin97 and PP1.98,83 Furthermore, 

HSPB6 was shown to inhibit PP1 activity.100 Also, HSPs increase SR Ca2+ ATPase activity 

and stimulate both the reuptake of Ca2+ into the SR and the extrusion of Ca2+ out of the 

cardiomyocyte via Na+/Ca2+ exchanger.112,113 These findings suggest that HSPs can protect 

against (tachypacing-induced) changes in calcium handling proteins, resulting in 

attenuation of AF progression.  

AF is known to activate RhoA-GTPase and ROCK and induces subsequent F-actin 

stress fiber formation contributing to contractile dysfunction.48 Several HSPB family 

members (HSPB1, HSPB6 and HSPB7) were recently shown to bind to actin and prevent 

F-actin stress fiber formation downstream of RhoA/ROCK. HSPB1 and HSPB6 even 

promoted actin stress fiber disassembly. HSPB8 did not directly bind actin, but instead 

inhibited upstream RhoA GTPase activation, thereby preventing F-actin stress fiber 



Loss of proteostatic control as a substrate for Atrial Fibrillation 

 35 

 

 

 

 

2 

 
 

 

  

 

 

 

 
 

 

 
 

 
 

 

 

 

 

formation.48 As most HSPB family members are known to protect the actin cytoskeleton 

from remodeling, this action likely represents an important mechanism by which HSPBs 

attenuate AF-induced derailment of proteostasis and cardiomyocyte remodeling.  

6.3. HSPs and oxidative stress  

Interestingly, in AF patients, an increase in oxidative stress markers has been observed 

and anti-inflammatory or anti-oxidant treatment with glucocorticoids and statins114-117 

suppressed atrial remodeling and have shown some clinical value in prevention of post-

surgery AF (primary prevention)5, substantiating a role for oxidative stress in AF-induced 

remodeling. Glucocorticoids and statins have been reported to induce several HSPs 

(HSPB1, HSPB5 and HSPA1A)118,119, leaving open the possibility that part of their 

protective pleiotropic effects is due to overexpression of HSPs. HSP induction can provide 

protection against oxidative stress by several mechanisms. HSPB1 is known to regulate the 

redox status of cardiomyocytes by maintaining glutathione in its reduced form, thus 

decreasing the amount of reactive oxygen species (ROS) produced in cells exposed to 

oxidative stress or tumor necrosis factor TNFalpha.120 HSPB1 may therefore prevent 

tachypacing-induced alterations in redox status of cardiomyocytes and thereby preserve cell 

proteostasis and electrophysiological and contractile function of the cardiomyocyte in AF. 

In addition to alterations in redox state, oxidative stress can also contribute to actin 

cytoskeleton instability, resulting in impairment of cardiomyocyte contractile function. 

Several members of the HSPB-family were found to bind the actin filaments and prevent 

their disruption in response to various stresses, including AF.46,49,102-105 

7. Therapeutic potential of HSP inducing drugs in AF  

Pharmacological approaches preventing the substrate for AF are being studied, with the 

hope that they might be useful therapeutic agents in treating AF.121 So far, the efficacy of 

commonly used drugs, including glucocorticoids and statins, on remodeling is limited121 

and (serious) adverse effects have been reported, indicating the need for more effective 

therapeutic agents with less adverse effects. Since derailment of cellular proteostasis results 

in cardiomyocyte remodeling and AF progression and derailment is counteracted by HSPs, 

pharmacological induction of the HSR seems to represent a key target for upstream therapy.  

Currently, GGA represents the most promising compound for the pharmacological 

induction of HSPs. Until now it is the most efficacious HSP boosting drug.122 Furthermore, 

in contrast to other HSP inducers, GGA is a nontoxic compound shown to be capable of 

inducing HSP expression in various tissues, including gastric mucosa, intestine, liver, 

myocardium, retina, kidney, and central nervous system. In addition GGA is used clinically 

in Japan since 1984 as an antiulcer drug123 and no serious adverse reactions have been 
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reported.124-127 GGA rapidly induces HSP expression (HSPB, HSPA1A, HSPC family 

members) via activation of the heat shock transcription factor HSF1, in response to a 

variety of stresses, whereas its effect is weaker under non-stress conditions, providing its 

main effect when and where needed.128,129 

The protective effect of GGA-induced HSP expression on early and late remodeling, 

suggests that it has value in the prevention of clinical AF, although this still needs to be 

assessed in clinical trials.46,87,130 So far, the protective action of GGA has been established 

regarding electrical, contractile and structural remodeling in in vitro HL-1 and dog atrial 

cardiomyocytes and in in vivo dog models for AF. GGA also has beneficial effects in AF of 

different origin, as observed in AF induced by congestive heart failure and acute 

ischemia.87,116 The broad protective effects of GGA against AF-related derailment of 

proteostasis and atrial remodeling suggest that inducers of the HSR have substantial 

therapeutic value for clinical AF. Other drugs that induce HSP expression, such as 

bimoclomol, atorvastatin, cyclosporine A, dexamethasone, still need to be tested for their 

protective effects against AF-induced remodeling. Nevertheless, their therapeutic potential 

in other cardiac diseases, such as ischemic heart disease, have already been 

documented.74,131-135 

In summary, AF results in a derailment of cardiomyocyte proteostasis by inducing 

reversible electrical and irreversible structural remodeling. There is strong evidence that 

induction of HSPs, in particular HSPB family members, normalizes proteostasis and 

thereby prevents electrical and structural remodeling. Known upstream targets for HSP 

protection include L-type Ca2+ channel, calcium handling proteins, calpain, RhoA-GTPase 

and F-actin stress fibers. Ultimately, the induction of HSPs, by proteostasis regulators such 

as GGA, may prevent the occurrence of AF (primary prevention) and may contribute to 

enhance therapeutic efficacy and treatment options for patient with AF in delaying 

progression towards persistent AF and/or improve the outcome of cardioversion (secondary 

prevention). 
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