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A new method to assess radiation-induced lung toxicity (RILT) using CT-scans was developed. It is more
sensitive in detecting damage and corresponds better to physician-rated radiation pneumonitis than
routinely-used methods. Use of this method may improve lung toxicity assessment and thereby facilitate
development of more accurate predictive models for RILT.

� 2015 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 117 (2015) 4–8
The risk of Radiation-induced lung toxicity (RILT) is the crucial
clinical bottleneck limiting the treatment dose in locally advanced
lung cancer [1,2]. Current models to estimate the risk of developing
RILT are not very discriminative. This may be both due to the large
diagnostic uncertainties of up to 48% in the assessment of radiation
pneumonitis (RP) [3] and due to the absence of reliable objective
tests to measure RILT. This diagnostic uncertainty may be
decreased by using objective quantitative parameters by e.g. imag-
ing of underlying biological effects [4], changes in density [5–7] or
consequential changes in different aspects of pulmonary function
[8,9].

Changes observed on CT-scans may reflect radiation-induced
changes in lung tissue including parenchymal inflammation and
fibrosis [10,11]. Besides direct measurements of biological changes,
several studies therefore utilized quantitative analysis of CT-scans
as a surrogate for histopathological changes after chest
radiotherapy [12–14]. However to explain a broad range of
radiation-induced histopathological changes only (regional) mean
density changes of the lung were quantified. The relation between
this quantity and clinical RP [15] as well as pulmonary function
[16–18] is however weak. Similarly, a weak relation was observed
between changes in mean (local) lung density and symptoms of RP
such as dyspnea and inflammation in a rat model [19]. These find-
ings suggest that the analysis of changes in mean lung density may
be insufficiently sensitive to mirror clearly observable radiation
induced histopathological sequelae.

While extensive fibrosis indeed changes local mean density,
pulmonary inflammation has more influence on the uniformity of
the density which can be quantified by changes in standard devia-
tion of the density [19,20]. To improve the sensitivity of current
methods we previously combined mean density changes with the
standard deviation of the density into one single measure (DS) to
assess CT-derived structural changes [19,20]. Contrary to the mean
density alone, DS strongly correlated with post radiation pul-
monary dysfunction and histopathological changes in rats [19].
Therefore, in the present study we tested whether our
DS-method improves sensitivity to detect tissue damage in
CT-scans and indeed corresponds to clinical RP in patients.
Materials and methods

Study design

Patients with NSCLC (UICC stage II/IIIA/IIIB) or limited-disease
small cell lung cancer (SCLC) referred for chemoradiation were eli-
gible. In the case of NSCLC, the radiation dose was 60 Gy in 25 frac-
tions with weekly low dose gemcitabine (300 mg/m2) after two
induction courses of cisplatin and gemcitabine. SCLC patients were
treated at a dose of 45 Gy/25 fx concurrently with cisplatin and
etoposide. Dose constraints used for treatment planning were
V20 < 35% and MLD < 20 Gy for the lungs and V35 < 65% for the
esophagus. The study was approved by the local medical ethics
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committee and all patients gave written informed consent prior to
treatment.
CT-scans

Deep inspiration breath-hold scans were performed. Settings
included a slice thickness of 1.5 mm, 1.5 mm inter-slice distance,
0.5 s rotation time, pitch 0.75, 512 � 512 pixels. Since typically
radiation pneumonitis is diagnosed within 6 months after treat-
ment, CT-scans were performed prior to the start of radiotherapy
and at 6 and 24 weeks after completion of treatment. To allow
optimal image registration, patient positioning was identical on
all time-points. In brief, patients were positioned supine, with
the arms placed in an elbow support above the head. The head
was placed in retroflexion on a head base, and a knee support
was used. No intravenous contrast agents were used.
Deformable image registration

For comparison of the pre- and post-treatment CT scans and
incorporation of the dose distribution data, CT data from different
time-points were spatially aligned using deformable image regis-
tration implemented in Elastix [21]. The pre-treatment CT-scan
was used as intra-individual reference-scan for every patient.
More details can be found in the Supplementary methods section.
Quantification of local structural lung changes

Radiation induced-changes in the lung tissue were assessed
locally (in 4.5 � 4.5 � 4.5 mm3 cubes) either by quantifying local
mean density (Dmean) or DS including changes in the structure
[19]. The results from quantification of DS and Dmean were com-
pared to test their sensitivity for detection of radiation-induced
damage at different time points after radiotherapy. Cubes consist-
ing of more than 95% of voxels with low density (HU 6700)
pre-treatment were assumed to be lung parenchyma and included
in the analysis. Cubes inside the planning target volume (PTV)
were excluded, to avoid inclusion of tumor tissue. Dose distribu-
tions were pooled at 5 Gy intervals (i.e. 0–2.5 Gy, 2.5–7.5 Gy, . . .,
62.5–67.5 Gy). More details can be found in the Supplementary
methods section.
Quantification of the sensitivity of Dmean and DS-based methods

To establish the detection thresholds for either method, two
pre-treatment deep-inspiration breath-hold scans were performed
in three patients who were not included in the study.
Subsequently, the pre-treatment scans were geometrically aligned
and Dmean and DS methods were applied to the deformed scans.
Table 1
Patient characteristics.

N Sex Age cTNM Pathology Radiation dose (total dose/fx) Mean lu

1 M 62 cT3 N0 M0 NSCLC 60 Gy/25 fx 13.1
3 M 70 cT4 N3 M0 NSCLC 60 Gy/25 fx 17.7
4 M 82 cT4 N3 M0 NSCLC 60 Gy/25 fx 17.0
5 M 82 cT2 N2 M0 NSCLC 39 Gy/13 fx 12.2
6 M 60 cT2 N1 M0 NSCLC 60 Gy/25 fx 12.8
8 M 77 cTx N3 M0 NSCLC 60 Gy/25 fx 15.3

10 M 59 cT4 N3 M0 NSCLC 60 Gy/25 fx 14.7
11 M 72 cT2 N2 M0 NSCLC 60 Gy/25 fx 16.4
12 M 75 cTxN3 M0 SCLC 50 Gy/25 fx 17.3
14 M 79 cT4 N0 M0 NSCLC 60 Gy/25 fx 11.3
16 V 53 cT3 N0 M0 NSCLC 60 Gy/25 fx 3.7
19 V 52 cT2 N2 M0 NSCLC 60 Gy/25 fx 17.0
20 M 74 cT4 N2 M0 NSCLC 60 Gy/25 fx 10.7
Local values of Dmean and DS maps were averaged inside the
lungs. The values obtained from the 3 patients were subsequently
averaged to define the threshold values: 0.43 ± 0.04 (HU) for
Dmean, and 0.27 ± 0.02 for DS.
Clinical scoring of radiation pneumonitis

Patients were seen by the treating radiation oncologist on the
days the CT scans were performed (6 weeks and 24 weeks after
the completion of radiation treatment) and RP was scored
according to the SWOG criteria. (Grade 1 = radiographic changes
only/symptoms, not requiring steroids, grade 2 = symptoms
requiring steroids, grade 3 = symptoms requiring oxygen.)
Statistics

To test whether the changes in Dmean and DS were statistically
significant from the detection threshold, two-sided independent
samples t-tests were performed. The area under the receiver oper-
ating characteristic curve (ROC curves) was used to assess the cor-
respondence of both methods with the SWOG. The curves were
then compared under a non-parametric assumption. Calculations
were performed using SPSS version 19.0. Statistical significance
was set at p < 0.05.
Results

Twenty patients were enrolled. Treatment parameters and
patient characteristics are shown in Table 1. Three patients refused
further CT-scans after treatment, in two patients the pre-treatment
CT was lost, two patients died within 6 weeks after completion and
another four patients died 6–24 weeks after treatment. As such, 13
CT scans were available at week 6, and 9 CT scans were available at
24 weeks after treatment. Patient #5 received palliative radiother-
apy without chemotherapy, consisting of 39 Gy/13 fx instead of the
planned 60 Gy/25 fx because of deteriorating general condition.
DS method is more sensitive in detecting structural lung changes than
Dmean method

The sensitivity to detect CT-changes of the two methods –
irrespective of the given dose – was compared quantitatively
employing the respective detection thresholds (0.43 ± 0.04 HU
and 0.27 ± 0.02 for Dmean and DS, respectively, see Methods and
Materials). In each patient, voxels were grouped based on their DS
value falling in the same range. Subsequently, DS and Dmean values
of these groups of voxels were averaged. Finally, these Dmean and
DS values were again averaged over all the patients. Fig. 1a shows
ng dose (Gy) V5 V10 V15 V20 Concurrent SWOG score
chemotherapy radiation pneumonitis

56 28 22 21 Yes 2
74 60 41 32 Yes 0
53 42 31 28 Yes 2
51 35 30 27 No 1
49 30 25 21 Yes 2
55 43 34 29 Yes 0
53 42 30 26 Yes 0
56 36 29 26 Yes 2
65 50 38 33 Yes 1
44 22 18 17 Yes 1
10 7 6 5 Yes 0
63 48 42 39 Yes 0
38 20 18 17 Yes 1



Fig. 1. DS method is more sensitive in detecting structural lung changes than Dmean method. (a) The sensitivity of Dmean and DS methods was compared quantitatively
regarding the detection threshold and irrespective of the given dose at week 6 (left) and 24 post-treatment (right). The horizontal and vertical dotted lines: level of the
detection threshold of the damage by Dmean and DS methods, respectively. (b) DS and Dmean sensitivities in detecting damage were visualized in patient #4 at 6 (left) and
24 (right) weeks post-RT. Six weeks post-treatment, dense consolidation of lung tissue is observed suggestive of radiation pneumonitis (left) which resolved at 24 weeks but
then fibrosis developed according to the beam arrangement (right). Six weeks post-RT, DS, incorporating non-uniformity of the density, could detect structural changes that
were not detected using Dmean, only based on the density itself (indicated by the red arrows). (c) Dose response of DS (left) and Dmean (right) was shown in the patient
population at weeks 6 and 24 post-RT. A clear steep dose-dependent increase of DS was observed. Regarding the detection threshold of DS method (dotted line) the increase
in DS is significant starting already at 0–2.5 Gy regions at both time-points (***p < 0.001 wk-6 and ���p < 0.001 wk-24). Changes in Dmean are observed above threshold at
7.5 Gy and 22.5 Gy, however they are not statistically significant above 22.5 Gy (*p < 0.05) and 27.5 Gy (�p < 0.05) at weeks 6 and 24 respectively. Data are presented as
mean ± SEM. Dotted lines: detection threshold of the damage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

6 A new method to assess lung density changes
the combination patient-averaged Dmean and DS values. Unlike
Dmean, all values of the DS were above its detection threshold (ver-
tical dotted lines), indicating the higher sensitivity of the DS
method, both at week 6 and week 24 (Fig. 1a). This higher sensitivity
was visualized in an example (Fig. 1b). Here, in the post-treatment
CT-scan of week 6, DS could detect structural changes that were not
detected using Dmean (indicated by the red arrows).

To assess the sensitivity of the two methods in detecting
radiation-dose-dependent lung damage, curves of DS and Dmean
as a function of dose were generated for the entire population
(Fig. 1c). In the highest dose bin (62.5–67.5 Gy), a steep rise or
decrease in lung density was observed in some patients. This phe-
nomenon has been observed in other studies [22] and may be due
to density increases complicating proper segmentation and regis-
tration of lung tissue. Comparing changes in DS with Dmean with
reference to their detection levels (dotted horizontal lines), DS
changes can be detected at lower dose levels than Dmean
(Fig. 1c). Since the range of mean density changes measured in
the present study was comparable with a study using similar
radiotherapy techniques [12], our results suggest that the DS
method is more sensitive in detecting radiation damage from CT
scans than the Dmean method.
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DS corresponds better to physician-rated score and symptoms

We next investigated whether the DS method corresponds bet-
ter than the Dmean method to physician-rated pneumonitis. The
outcomes of both methods at 6 weeks post-treatment were there-
fore related to RP SWOG scoring P1 and RP SWOG scoring P2.
Although the number of patients in the current study was small,
the ROC curve analysis showed that the DS method was more sen-
sitive and specific than Dmean in detecting clinical assessment of
RP SWOG scoring P1 (Supplementary Fig. S4a) and SWOG scoring
P2 (Supplementary Fig. S4b). This suggests that inclusion of vari-
ation in the uniformity of the density (DS-method) may account
for inflammation changes explaining the additive value of DS
above Dmean for assessing the damage at 6 weeks post-treatment.
Discussion

Dose that can be administered to thoracic tumors is still limited
by the risk of e.g. pulmonary complications. Better prediction of the
risk of such complications would facilitate further individualization
of the treatment of these tumors. The accuracy of predictive models
for radiation pneumonitis, however, is determined by e.g. the qual-
ity of the data they are based on. Unfortunately the assessment of
pulmonary toxicity is subject to considerable inter-observer vari-
ability [23].

To overcome this, various quantitative imaging methods have
been proposed. Some focus on quantification of mechanisms
involved in the development of the toxicity [4]. However, although
related to the mechanism by which toxicity develops, the exact rela-
tionship to clinical symptoms is not straightforward. Moreover, the
requirement of clearly non-routine investigations (e.g., hyperpolar-
ized (1)(3)C-pyruvate Magnetic Resonance Spectroscopic Imaging)
limits its clinical applicability, Alternatively the consequential
changes in different aspects of pulmonary function [8,9] have been
quantified. However, also here the relationship to patient com-
plaints and physician assessment remains weak [8,9]. Others rather
quantify the net outcome in terms of changes in density [5–7,24,25].
Since radiological change is one of the criteria of physician-rated
toxicity, density changes are related to it, but this relation is not very
strong [24,25]. To improve this, we investigated the incorporation of
other features, such as the non-uniformity of the tissue into the
quantitative analysis of CT images. Indeed, we found that the mean
density and the non-uniformity were related to the fibrotic and
inflammatory response respectively [19,20]. Moreover, in the pre-
sent work we show that it relates well to the physician-assessed
clinical toxicity based on the same images.

As such, we developed a new more sensitive and specific
CT-based method to assess radiation-induced lung toxicity, results
of which correspond better to physician-rated radiation pneumoni-
tis than currently-used standard methods [19,20]. Use of this
method may improve the assessment of RILT and thereby facilitate
development of more accurate predictive models for the risk of RILT.

It should be noted, however, that the present study is a first
clinical test to establish the usefulness of DS as a quantification
of local tissue damage in the lungs. As such, the small number of
patients included results in considerable uncertainties in the esti-
mates of e.g. the area under the ROC curve (Fig. S4). Moreover,
the optimal translation of local damage into a global score to be
related to clinical symptoms may differ from the presently-used
method of averaging DS over the whole lung. Achieving better
estimates of the ROC curve as well as comparison of the presently
used mean over the whole lung to alternatives, however, requires a
considerably larger study.
Conclusion

We developed a new more sensitive and specific method to
assess radiation-induced lung toxicity using CT-scans, that was sig-
nificantly more sensitive than the most frequently used method
(i.e. measuring differences in mean density). In addition, compared
to the routinely used CT-based tools to detect RILT, the DS method
corresponds better to physician-rated radiation pneumonitis.
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