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Abstract: Based on the Nonlinear Output Frequency Response Functions (NOFRFs), a
novel method is developed to detect the position of nonlinear components in periodic
structures. The detection procedure requires exciting the nonlinear systems twice using
two sinusoidal inputs separately. The frequencies of the two inputs are different; one
frequency is twice as high as the other one. The validity of this method is demonstrated
by numerical studies. Since the position of a nonlinear component often corresponds to
the location of defect in periodic structures, this new method is of great practical

significance in fault diagnosis for mechanical and structural systems.

1 Introduction

Periodic structures are defined as structures consisting of identical substructures
connected to each other in identical manner. The real life systems which can be modelled
as either finite or infinite, one-dimension or multi-dimension periodic structures range
from the simple structures like periodically supported beams [1]~[6], plates[5][6] and
building block [7]. Analysis of the free and forced vibration and the mode analysis of
linear periodic structures are of particular interests [1]-[6]. Mead [8] provides an

excellent review about periodic structure studies.

Attentions also have been paid to the study of nonlinear periodic structures [9]-[13]. Chi
and Rosenberg [9] have studied the existence of classical normal mode motion in one-
dimension non-linear mass-spring-damper systems with many degrees of freedom where
all springs and / or all dampers may be strongly non-linear. Using exact and asymptotic
techniques, Vakakis et al [10] have studied the localized responses of a nonlinear
periodic oscillator chain subjected to harmonic excitations with general spatial
distributions. Royston and Singh [11] have studied the periodic response of mechanical

systems with local nonlinearity using an enhanced Galerkin technique where a new semi-



analytical framework for the study of mechanical systems with local nonlinearities has
been presented. Chakraborty and Mallik [12] have investigated the harmonic vibration
propagation in an infinite, non-linear periodic chain using a perturbation approach where
the case of cyclic one-dimension nonlinear chain has also been discussed. Marathe and
Chatterjee [13] have studied the Wave attenuation in one-dimension nonlinear periodic
structures using harmonic balance and multiple scale method. In engineering practices,
there are considerable periodic structures that behave nonlinearly just because one or a
few components have nonlinear properties, and the nonlinear component is often the
component where a fault or abnormal condition occurs. One of the well known examples
is beam structures [14] with breathing cracks, the global nonlinear behaviors of which are
caused only by a few cracked elements. Therefore it is of great significance to effectively
detect the position of the nonlinear component in a periodic structure. The detection of
damage in large periodic structures has been studied by Zhu and Wu [15]. In their studies,
the periodic structure with damage is still considered to be linear and the locations and
magnitude of damage in large mono-coupled periodic systems have been estimated using
measured changes in the natural frequencies. Based on a one-dimensional periodic
structure model, Sakellariou and Fassois [7][16] have used a stochastic output error
vibration-based methodology to detect the damage in structures where the damage

elements were modeled as components of cubic stiffness.

The Volterra series approach [17] is a powerful method for the analysis of nonlinear
systems, and extends the familiar concept of the convolution integral for linear systems to
a series of multi-dimensional convolution integrals. The Fourier transforms of the
Volterra kernels are known as the kernel transforms, Higher-order Frequency Response
Functions (HFRFs) [18], or more usually Generalised Frequency Response Functions
(GFRFs). These provide a convenient concept for analyzing nonlinear systems in the
frequency domain. If a differential equation or discrete-time model is available for a
nonlinear system, the GFRFs can be determined using the algorithm in [19]~[21]. The
GFRFs can be regarded as the extension of the classical frequency response function
(FRF) for linear systems to the nonlinear case. The concept of Nonlinear Output
Frequency Response Functions (NOFRFs) [22] is an alternative extension of the FRF to
the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow the
analysis of nonlinear systems to be implemented in a manner similar to the analysis of
linear systems, and which provides great insight into the mechanisms which dominate

many important nonlinear behaviors.



In this paper, a novel method is derived based on the NOFRF concept to detect the
position of the nonlinear component in a periodic structure. The detection procedure
requires exciting the nonlinear systems twice using two sinusoidal inputs separately. The
frequencies of the two inputs are required to be different; one frequency is twice as high
as the other one. Numerical studies verify the effectiveness of the method. The new
method is of great practical significance in fault diagnosis for mechanical and structural

systems.

The paper is organized as follows. Section 2 gives a brief introduction to the new concept
of NOFRFs. Some important properties of the NOFRFs for locally nonlinear MDOF
systems, which were first revealed in the authors’ recent studies [23], are introduced in
Section 3. The novel method for the nonlinear component position detection is presented
in Section 4. In Section 5, three numerical case studies are used to verify the

effectiveness of the proposed method. Finally conclusions are given in Section 6.

2. Output Frequency Response Functions of Nonlinear Systems

2.1 Output Frequency Response Functions under General Input

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems.
The Volterra series extends the well-known convolution integral description for linear
systems to a series of multi-dimensional convolution integrals, which can be used to

represent a wide class of nonlinear systems [18].

Consider the class of nonlinear systems which are stable at zero equilibrium and which

can be described in the neighbourhood of the equilibrium by the Volterra series

X(t)=ZJ.Z---IZhn(rl,...,rn)ﬁu(t—z'i)dz'i (1)

where X(t) and u(t) are the output and input of the system, h, (z,,...,7,) is the nth order
Volterra kernel, and N denotes the order of the Volterra series representation. Lang and
Billings [18] derived an expression for the output frequency response of this class of

nonlinear systems to a general input. The result is
N
X(jo)=Y X,(jo) forve
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This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (2), X(jw) is the spectrum of the

system output, X (jw) represents the nth order output frequency response of the system,

H. (jo,.. jo,)= ff h, (..., )@ @0t emlidr dr, 3)
is the nth order Generalised Frequency Response Function (GFRF) [18], and
[ Hilio jo)[[U(io)da,,
i=1

denotes the integration of H (j®,,..., jo, )HU (jw,) over the n-dimensional hyper-plane
i=1

®, +---+ o, =w . Equation (2) is a natural extension of the well-known linear relationship

X(jo)=H(jo)U(jw) , where H(jw) is the frequency response function, to the

nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the
input. For nonlinear systems described by equation (1), however, the relationship between
the input and output frequencies is more complicated. Given the frequency range of an
input, the output frequencies of system (1) can be determined using the explicit expression
derived by Lang and Billings in [18][24].

Based on the above results for the output frequency response of nonlinear systems, a new
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was
recently introduced by Lang and Billings [22]. The NOFREF is defined as

[ H.(o jo)[[Uli)a,
G, (Jo) === - @)
J- HU ( ja)i )do-n(u
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under the condition that
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Notice that G,(jw) is valid over the frequency range of U (jw), which can be

determined using the algorithm in [18].
By introducing the NOFRFs G, (jw), n=1,---N, equation (2) can be written as
N N
X(jo)=2 X,(jo) =2 G, (jo)U,(jw) (6)
n=1 n=l1

which is similar to the description of the output frequency response for linear systems.

The NOFRFs reflect a combined contribution of the system and the input to the system



output frequency response behaviour. It can be seen from equation (4) that G,(jw)
depends not only on H, (n=1,...,N) but also on the input U( jw). For any structure, the
dynamical properties are determined by the GFRFs H_ (n= 1,...,N). But, according to
equation (4), the NOFRF G (jw) is a weighted sum of H (ja,,..., j®,) over
®, +---+ o, = ® with the weights depending on the test input. Therefore G, (jw) can be
used as an alternative representation of the dynamical properties described by H, . The
most important property of the NOFRF G, (jw) is that it is one dimensional, and thus
allows the analysis of nonlinear systems to be implemented in a convenient manner
similar to the analysis of linear systems. Moreover, there is an effective algorithm [22]
available which allows the estimation of the NOFRFs to be implemented directly using

system input output data.

2.2 Output Frequency Response Functions under Harmonic Inputs

When system (1) is subject to a harmonic input
u(t) = Acos(aet+ f) (7)
Lang and Billings [ 18] showed that equation (2) can be expressed as
. N . 31 . . . .
X(jo)=2 X, (jo)= 2{2_” 2 Hulio s jo Ao Alja, )J (8)
n=1 n=1

By + e+ O =0
where

|Alet=®sif o elkop k=%1}i=1-n

0 otherwise

Acion) = ©)

Define the frequency components of nth order output of the system as €2 . Then
according to equation (8), the frequency components in the system output can be

expressed as

N
Q= )Q, (10)
n=l1
and QQ is determined by the set of frequencies
{a)za)kl+---+wkn|a)ki=ia)F,i:1,---,n} (11)

From equation (11), it is known that if all @, ,---,®, are taken as — @, then @ =-Nw .
If k of these are taken as @, then @ = (—n+2K)®. . The maximal k is n. Therefore the
possible frequency components of X (jw) are

Q. ={(-n+2K)o.,k=0,1,---,n} (12)

Moreover, it is easy to deduce that

N
Q={JQ, = ko, k==N,-~10,1,---,N} (13)

n=l



Equation (13) explains why superharmonic components are generated when a nonlinear
system is subjected to a harmonic excitation. In the following, only those components

with positive frequencies will be considered.

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs [25]
as

1 . . . .
An ZHn(Ja)kla"'akan)A(Ja)kl)"'A(kan)

B+ O =0

1

G (jo)= (n=1,...,N)(14)

2 Ao Aljo,)

2” O+ Oy =0
under the condition that

. 1 . .
Alo)=—5 D Alio ) Aljay, ) %0 (15)

Obviously, G (jw) is only valid over Q, defined by equation (12). Consequently, the
output spectrum X ( jw) of nonlinear systems under a harmonic input can be expressed as

N N
X(j@)= X, (jw) =3 G, (jo) A (jo) (16)
n=1 n=1
When k of the n frequencies of @, ,---,@, are taken as @; and the remainders are as
— e , substituting equation (9) into equation (15) yields,
AN+ 2K, ) = | AP Clel 20 (7

Moreover
1 K n—k
S Ha(G0e - Jon S joc o) | AT Clelcns
GH(j(-n+2K)o; ) =

1 n KAi
j(=n+2k)p
2T| Al" Cke
k n—k

:Hn(ija'“aja)Fa_ ja)Fa"'a_ja)F) (18)

where H,(j®,,..., Jo,) is assumed to be a symmetric function. Therefore, in this case,

G/ (jw) over the nth order output frequency range QnZ{(—n+2k)a)F,k =O,1,---,n} is
equal to the GFRF H, (ja,,..., Jo,) evaluated atw, = =0, =0, @, = =0, =—0,
k=0,---,n.

Substituting equations (17) and (18) into (16), it can be derived that the output spectrum
Y (j®) of nonlinear systems subjected to a harmonic input can be expressed as

[(N=k+1)/2

]
X(Jkaor) = Zng(n—l)(jka)F)Ak+2(n—l)(jka)|:) (k=0,1,---,N) (19)
n=1

where [-] denotes the operator of taking the integral.



3. NOFRFs of Nonlinear Periodic Structures

Consider the one-dimension nonlinear periodic structures where the Lth component is
nonlinear, which have be used in [7], [12], [13] and [15], shown in Figure 1.

u(t)
m kn  my

Ky m Ki-1 Kioo meg n-1

MLy k mg

e B b e T

Figure 1, a locally nonlinear multi-degree freedom oscillator

Assume the restoring forces S, (A) and S, (A) of the Lth spring and damper are the

polynomial functions of the deformation A and A respectively, e.g.,

SLS(A):ZP:riAi > SLD(A):ZP:WiAi (20)

where P is the degree of the polynomial. Without loss of generality, further assume
L #1,n. Denote

P . P .

NonF = w, (X, —X)' + > (X, — X))’ 1)
i=2 i=2
L-2 n-L

NF ={0---0 NonF —NonF 0---0 (22)

Then the motion of the nonlinear oscillator in Figure 1 is described in a matrix form as.

MX + Cx + Kx =—-NF + F(t) (23)
where M is the system mass matrix,
m 0 0
M| O m 0
0 0 m,
and
[c,+¢c, -, 0 0 | [k, +k, -k, 0 0
-¢, C,+¢c, —¢, ' : -k,  k,+k, -k, :
C=| O ' ' 0 K= 0 B "
: . —-C,, C,,+C, -C, : -k, , k,,+k, —Kk,
| 0 0 -C, C, | | 0 0 -k, K,

are the system mass, damping and stiffness matrix respectively. X =(X,,---,X,) is the
displacement vector, and



J-1 n-J '
F () =(0,---,0,u(t),0,---,0) (24)
is the external force vector acting on the J™ mass of the oscillator.

The system described by equation (23) is a typical locally nonlinear periodic structure.
The Lth nonlinear component can lead the whole system to behave nonlinearly. In this
case, the Volterra series can be used to describe the relationships between the

displacements X;(t) (i=1,---,n) and the input force u(t) as below
X, () = ZL'”LO Nij) (717 D] JUt=7,)d7, (25)
j=1 Z=1

where h; ; (7,,...,7;) is the jth order Volterra kernel associated to the ith mass. In the

frequency domain, the relationship (16) can be expressed as
N N
X;(jo)=2 X, (jo) =2 Gy (jo,(jo) (i=1--,n)(26)
1=1 1=1
where G;, (jo) is the Ith order NOFRF associated to the ith mass.

Without loss of generality, assume L<J, as revealed in [23], for any two consecutive masses,
the NOFRFs of system (23) satisfy following relationships

il s Gi (ja)) i+l /o= Gi (Ja))
/12, I(Ja)):G(,Z) i :___:/1,\,‘ 1(10)): (i,N) :
1.2 (J@) Giun (JO)
(1<i<n-1)(27)
., G, (] G, ., (j .,
2 () = 0D Ban UG
Giapn(Jo) Gz (Jo)
(I<i<L-2o0r J<i<n-1;2<Z<N)(28)
. G, (j G, , (j .
/1'1’”1(]0)): (|,1)(Ja)) o (|,Z)(Ja)) —/1'2"“(]'60)

Girpy (10) G(m,z)(ja’)_
(L-1<i<J-1,2<Z <N)(29)

Based on these relationships of the NOFRFs, a novel method can be developed to

determine the position of the nonlinear element in system (23).

As equations (27)~(29) are the basis of this study, but the derivation and justification of
these equations can take quite a lot of contents and, therefore, the elaboration of them
are not given in this paper. However, for the sake of completion, a numerical case is
given here to justify equations (27)~(29). The numerical case study is conducted on a
damped 8-DOF oscillator whose fourth spring (L = 4) was nonlinear. As widely used in
modal analysis, the damping was assumed to be proportional to the stiffness, e.g., C = 1K .
The values of the system parameters are taken as

m=--=mg=1, r,=k ==k, =3.5531x10*, £=0.01

r,=08xr’, r,=04xr’, w, = ur, W, =0.1°K,,w, =0



and the input was a harmonic force acting on the 6" mass (J = 6), u(t) = Asin(2z x 20t).

If only the NOFRFs up to the 4™ order is considered, according to equations (16) and (17),
the frequency components of the outputs of the 8§ masses can be written as

Xi(jor) = G(| n(Joe)U, (JC‘)F)+G(| »(Jo)U;(jop)

Xi(j20) = G i) (J20:)U, (Jza)F)+G(| »(J20:)U,(J20:)

Xi(j3w:)= G(| 3 (130U, (j30r)

Xi(j4op) = G(|4)(J4a)F)U4(j4a)F) (i=1---,8) (30)
From equation (30), it can be seen that, using the method in [22], two different inputs with
the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4™
order. Therefore, in this numerical study, two different inputs are used with A=0.8 and
A=1.0 respectively. The simulation studies were conducted using a fourth-order Runge-

Kutta method to obtain the forced response of the system.

The evaluated results of G (jor), G (jor), GY (j2w.) and G/ (j2w,) for all
masses are given in Table 1. According to relationships (27)~(29), it is known that the

following relationships should be tenable.

/’LI{H—](JCI) )_ |-(|I1)(J F) (I3)(J F) ||+1(Ja)F) fOI' |:1’2’6’7
G(|+1 1)(Ja)|=) G(|+1 3)(] F)
el (jor) (Joe) . :
/1‘1’H1(J0)F) _ (| 1) F (I 3) F — i|3,|+1(1a)':) for i= 3’4’5
(|+1 1)(]0)F) (|+1 3)(J £)
N . 20 20 N .
/1|2,|+1(120)F): '-(|I,2)(J- F) |-(|I4)(J F) :/1|4’|+1(J20)F) forl:l,---,7
G(i+1,2)(12w|:) G(i+1,4)(12 )
€2y
Table 1. The evaluated results of G (jw;), G (jo.) GY (j2w;) and G (j2w;)
H, s H o, H, o Ho,
G (jor) Gy (Jor) G, (J2w¢) G, (J2w¢)
(x10°°) (x107) (x10) (107
Mass 1 -1.9442+2.87761 5.4586-7.36631 6.0215-12.9855i1 -1.9521-3.4108i
Mass 2 -4.1766+4.83831 11.5721-12.28121 18.5089-19.14121 -1.3474-7.18551
Mass 3 -6.7369+5.0611 18.3492-12.57361 38.1986-9.32551 3.9767-10.03501
Mass 4 -9.2319+2.952i1 -12.7969+5.45571 -38.0890+6.21651 -4.6556+9.51671
Mass 5 -10.7758-1.66431 -5.4352+7.5922i -16.5271+16.85451 1.1500+6.37851
Mass 6 -10.1014-8.3275i1 1.2207+7.2432i1 -1.2526+13.2872i 2.7770+2.39071
Mass 7 | -15.1122-0.83771 6.0974+5.91041 6.2132+5.7292i1 2.2699-0.48171
Mass 8 | -17.3365+3.5237i 8.6436+4.87951 8.6698+0.5735i1 1.5053-1.85071




Table 2, the evaluated values of 2" (jo.), 25" (jor) A" (j2wp ) and 1] (j20;)

A (jor) 2" (jor) A (j2w) i (j2r)
i=1 0.5396-0.0639i 0.5396-0.0639i 0.5078-0.1764i 0.5078-0.1765i
i=2 0.7412-0.1614i 0.7412-0.1614i 0.5727-0.3613i 0.5729-0.3613i
i=3 0.8211-0.2856i -1.5678 +0.3142i | -1.0158+0.0791i -1.0158+0.0791i
i=4 0.7955-0.3968i 1.2730+0.7743i 1.3178+0.9677i 1.3176+0.9674i
i=5 0.7160-0.4255i 0.8963+0.9014i 1.3735+1.1144i 1.3735+1.1145i
i=6 0.6969+0.5124i 0.6969+0.51241 0.9568+1.2563i 0.9568+1.2562i
i=7 0.8277+0.2166i 0.8277+0.2166i | 0.7570+0.6108i 0.7570+0.6108i

From the NOFRFs in Table 1, ' (jo.), A" (jo.), 4" (j2wp) and 2" (j20.)
(1=1,---,7) can be evaluated, and the results are given in Tables 2. The results shown in
Tables 2 have a strict accordance with the relationships in (31). Therefore, the numerical

study verifies relationships (27)~(29).

4. The Nonlinear Component Position Detection Method

When the input U(t) is a sinusoidal type force of frequency @ , according to the

definition of NOFRFs under a harmonic input in Section 2.2, it is known from equations
(27)~(29), that
G(i,l)(ja)F ) _ G(i,3)(ja)F ) _
Gy (Jor)

G(i+1,2D+l)(ja)F)
(D=12,---)(1<i<L-2o0or J<i<n-1)(32)

. Gi2owy (J0F) = 2 (o)
G(i+1,3)(ij) i

G(i,l)(j-a)F) » G(i,B)(j-a)F) o G(i,2D+1)(j-a)F) :"'Zﬂ,i’”l(ja)lz)
G(i+1,1)(Ja)F) G(i+l,3)(Ja)F) G(i+l,2D+l)(Ja)F)
(D=12,---) (L-1<i<J-1)(33)
G(i,z)(j_sz) _ G(i,4>(j:2a’F) L G(i,ZD)(j:za)) = (200
G(i+l,2)(12wF) G(i+1,4)(J2a)F) G(i+l,2D)(J2a))
G (130¢) _ G5 (130¢) L Gi 204y (130¢) == (30,

h G(i+1,2D+l)(j3a)F)
(D=12,--) (i=1---,n=1) (34)

According to equation (19), the first harmonic components of X;(t) (i=1,---,n) can be

G(i+1,3) (j3w¢) G(i+1,5) (J3w¢)

written as
[N/2

]
Xi(jog)= ZG(?,ZK—I)(ja)F) Ay (Jog) (i=1--,n)(35)

10



For the masses which are on the left of the nonlinear spring or on the right of the input

force, substituting equation (32) into (35) yields

[N/2]

Xi(jog)= li’m(ja)l:) ZG(?Jrl,Zk—l)(ja)F) A (o) = /1i’i+l(ja)|=)xi+1(ja)|:)
k=1

(1<i<L-2o0orJ<i<n-1)(36)
Therefore,
Xi(Jog)
Xia(jop)
For the masses located between the nonlinear spring and the input force, substituting
equation (33) into (35) yields,

,1i»i+1(ja,F): (1<i<L-2or J<i<n-1)(37)

N/2

Xi(jog) = 4" (jo )G,y (Jog ) A(joe)+ 2 (jor) D G s (106) Ay (Jo)
k=1

[N/2]

# A (joe )G(?H,l) (Joe) A(joe)+ e (joe) ZG(il,zkH) (Joe) Ay (Jog)
k=1

:ﬂ'i’m(ij)Xm(ij)
(L-1<i<J-1)(38)
Obviously,
2 (o) » 1 U2e) (L-1<i<J—1)(39)
X i+l ( Ja)F )
According to equation (19), the second harmonic components of X;(t) (i=1,---,n) can be

written as
[(N-1)/2]

Xi(j20:) = ZG(T,Zk)(jsz)AZK(jsz) (i=1--,n) (40)

Substituting equation (34) into (40) yields

[(N-1)/2]

Xi(J20) = ZG(?,zk)(jsz) A (J2ar)

[(N-1)/2]

= /1i’”1(j2a)p) ZG(?+1,2k)(j2a)F) A, (J2op) = /1i’m(j2a)F )X (J20¢)
k=1

(i=1---,n-1) (41)
Consequently
A (20, ) =t U20). (i=1+n-1) (42)
Xi+1(12wF)
Similarly, it can be deduced that
4 (D, = 1UD2e) (D22.i=1--.n—1)(43)
Xi+1(JDa)F)

When using two sinusoidal inputs, the frequencies of which are @, and w,, to excite

the nonlinear system under study, it is easy to extract the harmonic components from the

11



FFT spectra of the system responses, denote them as X ¢;,(jDag,) and X ¢, ; (jD@¢,)
(i=1---,n;D=1,2,--+) respectively. It can be known from (37), (39) and (43) that
X(Fz,i)(ja)Fz)

/?f’i”(jcom): - (ISISL—Z, OI'JS'Sn—l)(44)
X(Fz,i+1)(Ja)F2)
- X2 (J
P ) w2 (e:) (L—1<i<J—1)(45)
X 2o (JOF,)
- X e (JD
4 (D, ) = iy (1D@)) (i=1,--,n—1) (46)

X(Fl,i+1)(jDa)F1)

If w;, =wg,/P and P is an integral, then for the P™ harmonic components of X ey

(i=1,---,n), obviously, equation (46) can be rewritten as
. X o(jJPo . .
2Py =00 g, (i=1-,n-1) (47)
X risn (JP@;)
From (44), (45) and (47) it can be known that
X(Fl,i)(ijFl) _ X(Fz,i)(ja)FZ)

X(Fl,i+l)(jpa)F1) - X(Fz,i+l)(ja)F2)

(1<i<L-2or J<i<n-1)(48)
and
X(Fl,i)(ijFl) » X(Fz,i)(ja)Fz)
X(Fl,i+1)(ijFl) X(FZ,i+l)(ja)F2)
The relationships given in (48) and (49) provide a simple way to detect the position of

(L-1<i<J—1)(49)

nonlinear components in the MDOF nonlinear systems using dual sinusoidal excitations.
Usually, for simplicity and convenience, w;, can be chosen as g, =(1/2)w., . The

detection procedure is summarized as:

1) Excite the nonlinear system by two sinusoidal inputs separately whose
frequencies are wg, and @, respectively, and oy, =1/2w,.

2) Calculate the FFT spectra of the two sets of system responses, denote them as
Xy and X gyg0, (i=1,---,0).

3) Extract the first harmonics X ¢, (J@g,) from X ,; , and the second harmonics
Xy (J20g) from X, (i=1---,n).

4) Calculate Xy (Joe))/ Xgyiuy (J@6,) and X5 (J206)/ X gy (J200,)
denote them as R} (jo,) and RZ™(j2a,), (i=1,---,n—1).

5) Find out the masses where R\ (jor,) # RE™ (j2w,) , then the component on

the right side of the furthest left mass is the nonlinear one.

It 1s worth noting here that, if the force position is located on the left side of the nonlinear
component, that is, J <L, then, at the 5t step of the above detection procedure, the

nonlinear component is the one on the right side of the furthest right mass which satisfies

12



the relationship RiF’i2+1(ja)F2)¢ RiF’i1+l(j2a)Fl) . In addition, if there are no nonlinear
components in the system, then there is no superharmonic component in the system

response spectrum. Therefore there is no need to use the above detection procedure.

The novel nonlinear component position detection method requires only two tests where
the MDOF system excited by two different sinusoidal forces. This is obviously very easy
to carry out in practices. In the following section, the effectiveness of this method will be

demonstrated using numerical studies.

5 Numerical Studies

In order to verify the nonlinear component position detection method, the same oscillator

used in Section 3 was adopted.

Case Study 1 (L < J):
Table 3, X ;) (j20¢,) and R (j20¢,) (i=1,....8)
- _8 "' 1 -

X (J20:)) (x107) Re™ (j20)
i=1 -0.4384 + 0.57931 0.5078 - 0.1764i
i= -1.1240 + 0.7503i

0.5727 - 0.3613i
i=3 -1.9951 + 0.0516i

-1.0158 + 0.0791i
i=4 1.9562 + 0.1014i

1.3177 +0.9677i
i=5 1.0011 - 0.6582i

1.3735 + 1.1144i
i=6 0.2051 - 0.6456i

0.9568+ 1.2563i
i=7 -0.2466 - 0.3510i

0.7570 + 0.6108i
i=8 -0.4239- 0.1217i

In this case study, the 4 spring are nonlinear, that is L = 4. The two sinusoidal forces used
are U, (t) =sin(2z x20t) and u, (t) =sin(27 x 40t) respectively, and were imposed on the
6" mass of this system, that is J = 6. The responses of the system were obtained using a
fourth-order Runge—Kutta method to integrate equation (31). The second super-harmonics

were used to calculate R\ (j2wy,), which were extracted from the FFT spectra of the

13



responses of the system subjected to U, (t). The results of the second super-harmonics are
given in Table 3 together with the calculated values of RiF’i1+l(j20)F1) (i=1,...,7). Table 4
gives the first harmonics of the FFT spectra of the responses of the system subjected to
u, (t), together with the values of RS (jw,,) (i=1,...,7). The moduli of RY"(j2e;,) and
REY(jo,) (i=1,...,7) are given in Table 5.

Table 4, X ¢,;,(j®g,) and RYY' (joog,) (i=1,...,8)

X(Fz,i)(ijz) (x107) RiF’izﬂ(ja)Fz)
i=1 0.4874-0.2344i 0.5078-0.1765i
i=2 0.9996-0.1142i

0.5730-0.3611i
i=3 1.3385+0.6442i

0.5045-0.4136i
i=4 0.9605+2.0646i

0.4783-0.3916i
i=5 -0.9134+3.5687i

0.4844-0.3797i
iI=6 -4.7447+3.6478i

0.9568+1.2562i
i=7 0.0172+3.7901i

0.7570+0.6107i
i=8 2.4604+3.0218i

Table 5, Moduli R!"(j2w,,) and RS (joor,) (i=1,...,7)

RE (j205)) RE (jor,)|
i=1 0.5376 0.5376
i=2 0.6772 0.6773
i=3 1.0189 0.6524
i=4 1.6349 0.6181
i=5 1.7687 0.6155
i=6 1.5791 1.5791
i=7 0.9727 0.9726
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The results given in Table 6 clearly show that R (j2wq,)# RE'(jor,) ati=3,4.5.
According to the detection method in Section 4, it can be known that the component on

the right side of the 3" mass is the nonlinear one, that is, the 4™ spring component.
Case Study 2 (L = J):

In this case study, the 4™ spring are nonlinear, that is L=4. The sinusoidal forces used in
this case are the same as the ones used in Case 1, but were imposed on the 4™ mass of this
system, that is J=4, so L=J. The results of X ; (j2w¢,) and R (j2wg,) (i=1,...,8) are
given in Table 6, and the results of X ¢,; (jor,) and R (jor,) (i=1,...,8) are given
in Table 7. Table 8 gives the moduli of RY™ (j2w,) and R (jog,) (i=1,...,7).

Table 6, X ¢,;,(j2w¢,) and RE (j20;,) (i=1,...,8)

; -8 i+l o
X ey (J20) (x107) ReT (J2w¢))
=1 0.3146 — 2.7024i 0.5078 - 0.1764i
=2 22027 — 4.5564i

0.5727 - 0.36131

i=3 6.3414 — 3.9554i

-1.01578+ 0.07911

i= -6.5065+ 3.3876i

1.3177 +0.9678i

i=5 -1.9809 + 4.0258i

1.3736 + 1.11433i
i=6 0.5642 + 2.4732i

0.9568 + 1.2563i
i=7 1.4624 + 0.6647i

0.7571 + 0.6108i
i=8 0.1599 - 0.0412i

Table 7, X ¢, (j®g,) and R (joor,) (i=1,...,8)
X(Fz,i)(ja)Fz) (XIO_S) RII:’IZH(ja)FZ)

i=1 0.1007 +0.1188i 0.5078-0.17651

i= 0.1044 + 0.2702i

0.5730-0.3611i

=3 -0.0823 + 0.4198i
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0.5030-0.4096i
i=4 ~0.5070 + 0.4216i

1.3180+0.9670i
i=5 -0.0975 + 0.3914i

1.3733+1.1145i
i=6 0.0966+ 0.2066i

0.9568+1.2562i
i=7 0.1412+ 0.0306i

0.7570+0.6107i
i=8 0.1327-0.0667i

Table 8, Moduli R!"'(j2w,,) and RS (jor,) (i=1,...,7)

‘Rli:’i;l(jza)m)‘ ‘Rli:’izﬂ(ja)l:z)‘
i=1 0.5376 0.5376
i=2 0.6772 0.6773
i=3 1.0189 0.6487
i=4 1.6350 1.6346
i=5 1.7687 1.7686
i=6 1.5791 1.5791
i=7 0.9727 0.9726

The results given in Table 8 clearly show that R{\"(j2wg,)# RS (jo,,) only at i = 3.
According to the detection method in Section 4, it can be known that the component on

the right side of the 3" mass is the nonlinear one, that is, the 4™ spring component.
Case Study 3 (L>J):

In this case study, the 7™ spring are nonlinear, that is L=7. The sinusoidal forces used in
this case are the same as the ones used above cases, but were imposed at the 4™ mass of this
system, that is J=4, so L>J. The results of X ;,(j20¢,), R (J20%)) s Xe0i (10¢,)
and RS (jog,) (i=1,...,8) are given in Table 9 and Table 10 respectively. Table 11

i+l i+l

gives the moduli of RF" (j2w¢,) and R (jog,) (i=1,...,7).
Table 9, X ;) (i20¢,) and RE(j20,) (=1.....8)

X e (1206,) (x107) RE™ (j2ag))
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0.5078 - 0.17651

0.5730 - 0.36111

0.5046 - 0.4142i

0.4783 - 0.3913i1

i=1 -0.0691 + 0.0115i
=2 -0.1284 - 0.0220i
i=3 -0.1430 - 0.1286i
i= -0.0444 - 0.2913i
i=5 0.2429 - 0.4103i
i=6 0.7221 - 0.2811i

0.4842 - 0.37981

-0.4947 + 0.3951i

-1.1682 - 0.36491

-0.1405 + 0.63561

0.7568 + 0.6112i

Table 10, X ¢,, (jor,) and REY' (jog,) (i=1,...,8)

X(F2,i)(ja)F2) (x107)

RiF’inrl (jog,)

0.5078 - 0.17651

0.5730 - 0.3611i

0.5047 - 0.4142i1

1.3192 +0.9672i

1.3736 + 1.1183i

0.9580 + 1.2488i

i=1 0.1013 +0.1193i
i=2 0.1052 + 0.2714i
=3 -0.0822 + 0.4218i
= -0.5073 + 0.41953i
i=5 -0.0985 + 0.3902i
iI=6 0.0960 + 0.2059i
iI= 0.1409 +0.0313i
i=8 0.1330 - 0.0660i

0.7570 + 0.6107i

Table 11, Moduli RZ"(j2w,) and RE (jaor,) (i=1,...,7)

‘Rli:’ilﬂ(jza)Fl)‘

‘Rli:’izﬂ(ja)l:z)‘

i=1

0.5376

0.5376
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= 0.6772 0.6773

i=3 0.6528 0.6529
i=4 0.6179 1.6357
i= 0.6154 17712
i=6 1.2238 1.5740
i= 0.9727 0.9726

The results given in Table 11 clearly show that RE™(j2w,)# REY (jowg,) ati=4, 5, 6.
According to the detection method in Section 4, it can be known that the component on

the right side of the 6™ mass is the nonlinear one, that is, the 7" spring component.
g pring p

6 Conclusions and Remarks

Based on the properties of NOFRFs, a novel method is developed to detect the position of
the nonlinear component in a periodic structure. The detection procedure requires
exciting the nonlinear system under study twice using two sinusoidal inputs separately.
The frequencies of the two inputs are different; one frequency is twice as high as the
other one. Three numerical studies have been used to demonstrate the effectiveness of
this method. The distinct advantage of this method is that it only needs the test data under
two sinusoidal input forces, which can be readily carried out in practices. Since the
positions of the nonlinear components in periodic structures often correspond to the
locations of faults, the nonlinear component position detection method is of practical
significance in the fault diagnosis for mechanical and structural systems. It is worthy to
note here that in real periodic structures there are always minor non-linearities between
each component and, such structures therefore should be better to model as weakly
nonlinear chains which have been by Chakraborty and Mallik [12]. For such structures,
the problem is then changed to detect the components with strong nonlinear property in
the weakly nonlinear chains. It is a more complicated problem we are planning to

investigate in future studies.
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