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Distributed rendez-vous algorithms for a class of cyberphysical systems

Claudio De Persis and Romain Postoyan

Abstract—The objective is to design distributed coordination
strategies for a network of agents in a cyber-physical envi-
ronment. In particular, we concentrate on the rendez-vous of
agents having double-integrator dynamics with the addition
of a damping term in the velocity dynamics. We start with
distributed controllers that solve the problem in continuous-
time, and we then explain how to implement these using event-
based sampling. The idea is to define a triggering rule per
edge using a clock variable which only depends on the local
variables. The triggering laws are designed to compensate for
the perturbative term introduced by the sampling, a technique
that reminds of Lyapunov-based control redesign. We first
present an event-triggered solution which requires continuous
measurement of the relative position and we then explain
how to convert it to a self-triggered policy. The latter only
requires the measurements of the relative position and velocity
at the last transmission instants, which is useful to reduce both
the communication and the computation costs. The strategies
guarantee the existence of a uniform minimum amount of times
between any two edge events. The analysis is carried out using
an invariance principle for hybrid systems.

I. INTRODUCTION

Most coordination algorithms ignore the fact that the
agents have limited computation and communication capaci-
ties in practice. Nevertheless, these limitations may severely
impact the desired convergence property. It is therefore es-
sential to develop control strategies that take these constraints
into account in their design. This problem can be addressed
via the construction of event-based strategies, see e.g. [3], [6],
[8], [7], [9], [16]. In that way, each agent updates its control
input only at a sequence of time instants which depends on
the local state variables, and not continuously. In [11], we
presented a new type of triggering rules as well as novel
proof concepts for the event-based rendez-vous of coupled
agents, whose dynamics are modeled by double-integrators
with the addition of a damping term in the velocity dynamics.
The objective of this paper is to extend our preliminary
results in [11] to networks of N agents, where N can be
strictly bigger than 2. This generalization exhibits nontrivial
challenges in terms of modelling, synthesis and analysis as
we explain in the following.

Claudio De Persis is with the Faculty of Mathematics and
Natural Sciences, University of Groningen, the Netherlands,
c.de.persis@rug.nl. His work is partially supported by the
Dutch Organization for Scientific Research (NWO) under the auspices
of the project QUICK (QUantized Information Control for formation
Keeping).
R. Postoyan is with the Université de Lorraine, CRAN,
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We start from distributed controllers proposed in [1]
which solve the coordination problem while ignoring the
computation and communication constraints. We then design
a triggering condition per edge which only relies on the
knowledge of the relative position of the two agents under
consideration. To do so, we define a clock variable for each
edge of the network and the mechanism works as follows.
Consider the edge !. After each update, the clock variable φ!
is reset to a designed constant b!, and its evolution until the
next triggering time is given by the solution to an ordinary
differential equation which depends on the relative position
associated to the edge !. The next triggering instant occurs
when φ! is equal to a designed constant a!. To design
the clock dynamics, we start from an energy-like Lyapunov
function available for the continuous-time system and add
an additional term that takes into account the ‘energy’
associated with the sampling error. We let this extra term
depend on the clock variables. We then select the latter in
such a way that the overall Lyapunov function computed
along the trajectories of the system remains monotonically
decreasing despite the sampling. Hence, the triggering rule
is the result of a Lyapunov redesign. We stress that, although
the vast majority of the results available in event-based
control of multi-agent systems is based on Lyapunov analysis
and design, to the best of our knowledge this is the first time
in the context of event-based control of network systems that
the candidate ‘physical’ Lyapunov function is extended to
take into account the ‘cyber part’ of the system and gives
rise to the triggering rule. Note that the idea to introduce
clocks to define the triggering rule is inspired by the work
on sampled-data systems in [2], which has been adapted to
event-triggered control in [12].
We first assume that the relative position is continuously

available, in which case we derive event-triggered control
laws. These policies are relevant to limit the actuators wear
and to reduce the actuators energy consumption (as the
control input is less often updated). Afterwards, we explain
how to derive self-triggering rules which only require the
knowledge of the relative position and velocity at the last
triggering instant. In that way, both the communication and
the computation costs are reduced. While in [11] we could
exactly recover the relative positions between two events
because N was equal to 2, this is no longer possible for
arbitrary values of N . We overcome this issue by synthesiz-
ing estimates of the relative position, which are then used in
the design of the self-triggering laws.
The overall system is modelled as a hybrid system using

the formalism of [5]. The case where N > 2 induces some
technical difficulties due to the need to carefully define



the jump map for the system to satisfy the hybrid basic
conditions stated in Chapter 6 in [5] (which are needed in
the analysis). We then analyse the stability of the system
using an hybrid invariance principle of [5]. The technical
developments are more involved than in the case where
N = 2, due to the distributed nature of the problem and
the fact that the hybrid systems will be shown to generate
solutions which have an average dwell-time (as opposed to
a dwell-time in [11]).
There are several contributions to the problem of dis-

tributed event-based control (see [3], [16], [6], [8], to name
a few, and references therein). What differentiates our con-
tribution from the vast majority of the existing results is that
(i) it pursues a Lyapunov-based redesign of the triggering
functions and (ii) it adopts a hybrid invariance principle from
[5] to infer the results. These two features make the proposed
approach general enough to be applicable to other classes
of systems and other event-based coordination problems as
we show in [10]. This paper focuses on a specific type of
agents dynamics in order to facilitate the presentation of the
proposed methodology only. Moreover, in this case, we can
take advantage of the particular agents dynamics to design
the self-triggered controllers. All the proofs are omitted for
space reasons and can be found in [10] in a more general
setting.

II. PRELIMINARIES
Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞),

Z≥0 := {0, 1, 2, . . .}, and Z>0 := {1, 2, . . .}. For (x, y) ∈
Rn+m, (x, y) stands for [xT, yT]T. A function γ : R≥0 →
R≥0 is of class K if it is continuous, zero at zero and
strictly increasing and it is of class K∞ if in addition it is
unbounded. A set-valued mapping M : Rm ⇒ Rn is outer
semicontinuous if and only if its graph {(x, y) : y ∈ M(x)}
is closed (see Lemma 5.10 in [5]). The notation I denotes
the identity matrix, and 1 and 0 are respectively the vector
composed of 1 and 0 whose dimensions depend on the
context. We use diag {A1, . . . , An} to represent the block-
diagonal matrix with square matrices A1, . . . , An on the
diagonal.
We will study hybrid systems of the form below using the

formalism of [5]

ẋ ∈ F (x) for x ∈ C, x+ ∈ G(x) for x ∈ D,
(1)

where x ∈ Rn is the state, F is the flow map, G is the jump
map, C is the flow set and D is the jump set. A solution1
φ to (1) is: maximal if it cannot be extended; complete if its
domain domφ is unbounded; precompact if it is complete
and the closure of its range is compact, where the range of
φ is rgeφ := {y ∈ Rn : ∃(t, k) ∈ domφ such that y =
φ(t, k)}. We introduce the following definition to denote
hybrid systems which generate solutions that have uniform
average dwell-times.
Definition 1: The solutions to (1) have a uniform

semiglobal average dwell-time if for any ∆ ≥ 0, there exist

1See [5] for the definition of solutions to (1).

τ(∆) > 0 and n0(∆) ∈ Z>0 such that for any solution φ to
(1) with |φ(0, 0)| ≤ ∆

k − i ≤
1

τ(∆)
(t− s) + n0(∆), (2)

for any (s, i), (t, k) ∈ domφ with s+ i ≤ t+ k. We say that
the solutions to (1) have a uniform global average dwell-
time when τ and n0 are independent of the ball of initial
conditions. "

We say that a solution φ approaches the set S ⊂ Rnx

([15]) if for any ε > 0 there exists (t∗, k∗) ∈ domφ such that
for all (t, k) ∈ domφ with t+k ≥ t∗+k∗, φ(t, k) ∈ S+εB,
where B is the unit ball.

III. PROBLEM STATEMENT

The objective is to construct distributed controllers to
ensure the rendez-vous of networked systems with limited
communication and/or computation capacities. In particular,
we consider N agents which are interconnected over a con-
nected2 undirected graph G = (I, E) where I := {1, . . . , N}
is the set of nodes and E is the set of pairs of nodes connected
by edges. The dynamics of the nodes is given by

ṗi = vi, v̇i = −vi + ui, (3)

where pi ∈ R is the position, vi ∈ R is the velocity, ui ∈ R

is the control input, i ∈ I. This dynamics corresponds
to agents modeled as double integrators with the addition
of a damping term possibly due to friction. For the sake
of simplicity, the agents are supposed to evolve on a line
(see Remark 3 below for a discussion on this point). In
continuous-time, the control input ui is defined as ([1])

ui =
∑

j∈Ni

ψij(zij) (4)

where Ni is the set of neighbours of the node i ∈ I, i.e.
Ni := {j ∈ I : (i, j) ∈ E}, and

zij := pj − pi (5)

is the relative position of agent i with respect to agent j.
The functions ψij : R → R, (i, j) ∈ E , are designed and
are required to be continuously differentiable, nondecreasing
and odd, that implies that (x − y)(ψij(x) − ψij(y)) ≥ 0
and ψij(−x) = −ψij(x) for x, y ∈ R. These functions are
synthesized such that ψij = ψji for i ∈ I and j ∈ Ni.
According to [1], the controllers in (4) guarantee that all the
positions pi, i ∈ I , asymptotically converge towards each
other, which means that the rendez-vous is achieved.
In this paper, we take into account the resources limitations

of the system in terms of communication and/or computation.
Hence, we envision a setting where the agents only receive
measurements from their neighbours and/or update their
control inputs at some given time instants to be determined.
The control input ui in (4) becomes, for i ∈ I,

ui =
∑

j∈Ni

ψij(ẑij) (6)

2A graph is connected if, for each pair of nodes i, j, there exists a path
which connects i and j, where a path is an ordered list of edges such that
the head of each edge is equal to the tail of the following one.



where ẑij is a sampled version of zij , which is locally
maintained by agent i. This variable is held constant between
two successive updates, i.e. ˙̂zij = 0 and is reset to the actual
value of zij at the update time instant, which leads to the
jump equation

ẑ+ij = zij . (7)

A sequence of update time instants will be generated and
assigned to each pair (i, j) ∈ E . These are time instants that
are generated at agent i and that are triggered by measure-
ments relative to neighbor j ∈ Ni. Symmetrically, agent j
will generate update time instants based on measurements
relative to i. The triggering conditions will be such that the
events generated by agent i relative to neighbor j and by
agent j relative to neighbor i are the same. For this reason
we term these instants as edge events. At each event of the
edge (i, j) ∈ E , the agents i and j communicate with each
other and both of them update the sampled variables ẑij and
ẑji according to (7), which leads to an update of the control
inputs ui and uj in view of (6).
Our goal is to define the sequence of edge events in

order to save resources while still ensuring the rendez-
vous. We first propose an event-triggered solution, which
works as follows. For any i ∈ I, agent i knows its relative
position with any of its neighbours at any time instant and
the corresponding part of the control input is only updated
whenever a certain edge-dependent triggering condition is
satisfied (see e.g. [13], [4], [3]). Afterwards, we explain
how to construct self-triggered policies. In this case, for
any i ∈ I, agent i has access to the relative position and
velocity of agent j ∈ Ni (by relative velocity, we mean
vj − vi) and updates the corresponding sampled variables
only at edge events (see [3], [8], [9]). The next edge event is
determined by the values of the relative position and velocity
of agents i and j at the last transmission. This scheme
reduces both the usage of the CPU and of the agents sensors
or of the communication channel. It typically generates more
edge events compared to event-triggered control but it does
not require the continuous measurement of the neighbours
relative position.
The proposed strategies ensure the existence of a uniform

strictly positive amount of time between two successive
events of a given edge. This property is crucial as it pre-
vents arbitrarily close-in-time edge events (and thus Zeno
executions), which would exceed the hardware capacities and
render the proposed hybrid controllers not realizable. We do
tolerate the occurrence of a finite number of simultaneous
edge events as in [3], [8], [9]. We assume that the hardware
handles this situation by prioritizing the edge events, which
typically leads to small-delays in the control input. We do
not address the analysis of the effect of these delays in this
paper.

IV. EVENT-TRIGGERED CONTROL

A. Triggering conditions and hybrid model
Consider the agent i ∈ I. To define the events associated

with the edge (i, j) where j ∈ Ni, we introduce a variable

φij ∈ R, which we call a clock. The idea is to reset φij to a
constant bij > 0 after each event associated with (i, j) and to
trigger the next one when φij becomes equal to aij ∈ [0, bij).
The constants aij and bij are designed parameters. Between
two successive edge events, φij is given by the solution to
the ordinary differential equation below

φ̇ij = − 1
σij

(

1 + φ2ij (∇ψij(zij))
2
)

, (8)

where σij is a strictly positive constant which will be
specified in the following, ∇ψij represents the gradient of
the function ψij , and we recall that zij = pj − pi. We
notice that φij strictly decreases on flows in view of (8).
The length of the inter-event times depends on the choice
of the constants aij and bij . To take aij small and bij
large typically helps enlarging the inter-event time, at the
price of a degraded speed of convergence as the evolution
of the velocities depends on the sampled control input, see
for an illustration the simulation results in Section VI. The
clock φij can be locally implemented on agent i provided
that continuous measurements of zij are available, which is
assumed to be the case in this section.
Remark 1: The clock dynamics (8) descends from the

Lyapunov analysis we follow, which is provided in [10]. In
[10], we first introduce an energy-like Lyapunov function
which is commonly used in the stability study of the net-
worked systems (3), see [1]. During the continuous evolution
of (3) under the sampled-data control (6) (see (12) below
for a formal description of the overall dynamical system
under consideration), extra terms due to the sampling appear
in the time derivative of this Lyapunov function along the
solutions to the system. These terms disrupt the monotonic
decrease of the energy-like Lyapunov function and hence the
desired convergence property. To overcome this obstacle, we
introduce an additional term in the Lyapunov function that
takes into account the ‘energy’ associated with the sampling
errors (and to which we refer to as the ‘cyber’ part of the
Lyapunov function) and then design the update law, which
regulates the sampling, in such a way that the combination
of the ‘physical’ and the ‘cyber’ Lyapunov functions does
not increase over time. !

The dynamics of the agent i ∈ I can be described by the
hybrid system below, where j ∈ Ni,

ṗi = vi
v̇i = −vi +

∑

j∈Ni

ψij(ẑij)

˙̂zij = 0

φ̇ij = − 1
σij

(

1 + φ2ij (∇ψij(zij))
2
)























∀j ∈ Ni

φij ∈ [aij , bij ]

p+i = pi
v+i = vi

(

ẑ+ij
φ+ij

)

=















(

zij
bij

)

φij = aij
(

ẑij
φij

)

φij > aij































∃j ∈ Ni φij = aij .

(9)
The jump map in (9) means that only the pairs (ẑij ,φij),
j ∈ Ni, for which φij is equal to aij , are reset to (zij , bij);



the others remain unchanged. We see that the control input
updates are edge-dependent and distributed as desired. In
the analysis that follows, it is essential that each agent
i maintains a local sampled version of the measurement
zij , j ∈ Ni, which is consistent with the local sampled
version of the corresponding quantity zji by the agent j.
To be more specific, for (i, j) ∈ E , it must be true that
ẑij(t, k) = −ẑji(t, k) for all (t, k) in the domain of the
solution. To guarantee this property, we make the following
assumption.
Assumption 1: The following hold for any (i, j) ∈ E .

(i) aij = aji, bij = bji, σij = σji.
(ii) The variables ẑij and φij are respectively initialized at

the same values as −ẑji and φji. !

Item (i) of Assumption 1 introduces no conservatism as
the constants aij , aji, bij , bji, σij , σji are designed by the
agents. Item (ii) of Assumption 1 is convenient for the
analysis. When it is not verified, the clocks φij and φji,
(i, j) ∈ E , will be different and this will imply that the
updates for ẑij and ẑji will occur at different times and
that the two measurements are different. This causes an
asymmetry in the control laws of the neighboring agents
i, j that may disrupt the convergence of the algorithms.
Robustness of our algorithm to asymmetric initializations is
an important open problem.
Remark 2: In different scenarios, item (ii) of Assumption

1 may be less critical. In fact, the scenario that was discussed
above assumes that when the clock φij reaches aij , the agent
updates ẑij with the information collected by its sensor. A
different scenario could be as follows. Assume that the two
clock variables φij and φji, (i, j) ∈ E , are initially different
until one of these, say φij , becomes equal to bij (recall that
bij = bji in view of item (i) of Assumption 1). At this
time instant, we can envision the case in which agent i (the
one whose clock variable has become equal to bij) notifies
(without delay) agent j to update its own clock variable.
Hence, (ẑij ,φij) and (ẑji,φji) are updated respectively to
(zij , bij) and (zji, bij). In that way, the pairs (φij , ẑij) and
(φji,−ẑji) are equal for all future times in view of3 (9) and
the convergence results presented hereafter do apply in this
case. !

In view of Assumption 1, we see that we no longer need
to distinguish φij from φji. We can therefore define a single
clock φ! instead, where # is the index associated with the
edge (i, j) ∈ E . A similar remark applies for the sampled
variables ẑij and ẑji as ẑij = −ẑji. For that purpose, we
assign to each edge of E an arbitrary direction and we
denote by M the number of edges of the graph G which
we number. We define the incidence matrix D of G as
D = [di!](i,!)∈I×{1,...,M} with di! = 1 if the node i is the
positive end of the #th edge, di! = −1 if the node i is the
negative end of the #th edge, and di! = 0 otherwise. In that

3Note that (∇ψij(zij))
2 = (∇ψji(zji))

2 in (8) as zij = −zji from
(5) and ψ is odd in view of Section III.

way, we define, for the #th edge corresponding to (i, j) ∈ E ,

z! :=

{

zij if j is the positive end of the edge #
zji if i is the positive end of the edge #,

and

ẑ! :=

{

ẑij if j is the positive end of the edge #
ẑji if i is the positive end of the edge #.

For the #th edge corresponding to (i, j) ∈ E , we rewrite the
dynamics in (8) as

φ̇! = − 1
σ!

(

1 + φ2! (∇ψ!(z!))
2
)

, (10)

where σ! := σij = σji, a! := aij = aji and b! := bij = bji
(in view of Assumption 1).
We are not ready yet to present a model of the overall

system. Indeed, it appears that the map which defines the
jump equation in (9) and which becomes with the notation
introduced above, with Ei the set of edges connected to agent
i,

p+i = pi
v+i = vi

(

ẑ+!
φ+!

)

=















(

z!
b!

)

# ∈ Ei and φ! = a!
(

ẑ!
φ!

)

# ∈ Ei and φ! > a!,

(11)

is not outer semicontinuous. This is an issue because the outer
semicontinuity of the jump map is a necessary condition for
a hybrid system to be (nominally) well-posed (see Chapter
6 in [5]) which is required to apply the invariance principles
of Chapter 8 in [5] we invoke to prove rendez-vous.
To overcome that issue, we redefine the jump map. We

use the technique proposed in [14] for that purpose. Instead
of doing it for the model of a single agent, we directly do
it on the model of the overall system. Hence, we define
the concatenated vectors p := (p1, p2, . . . , pN ) ∈ RN ,
v := (v1, v2, . . . , vN ) ∈ RN , φ := (φ1, . . . ,φM ) ∈ RM ,
z := (z1, . . . , zM ) ∈ RM , and ẑ := (ẑ1, . . . , ẑM ) ∈ RM .
The system is modeled as follows

ṗ = v
v̇ = −v −DΨ(ẑ)
˙̂z = 0

φ̇ = −Σ−1

(

I +
(

∂Ψ(z)
∂z

Φ
)2

)

1























∀# φ! ∈ [a!, b!]

p+ = p
v+ = v

(

ẑ+

φ+

)

∈ G(z, ẑ,φ)















∃# φ! = a!,

(12)
where Ψ(z) := (ψ1(z1), . . . ,ψM (zM )), Ψ(ẑ) :=
(ψ1(ẑ1), . . . ,ψM (ẑM )), Σ = diag{σ1, . . . ,σM} and Φ =
diag{φ1, . . . ,φM}. Inspired by [14], the set-valued jump
map G is defined as, for z, ẑ,φ ∈ RM ,

G(z, ẑ,φ) := {G!(z, ẑ,φ) : # ∈ {1, . . . ,M} and φ! = a!},
(13)

with G!(z, ẑ,φ) :=
(

ẑ1, . . . , ẑ!−1, z!, ẑ!+1, . . . , ẑM ,φ1, . . . ,
φ!−1, b!,φ!+1, . . . ,φM

)

for # ∈ {1, . . . ,M}. In that way,



when the clock φ! is the only one which is equal to its
lower bound a!, the pair (φ!, ẑ!) is reset to (b!, z!), while the
others remain unchanged. In contrast to (11), when several
clocks have reached their lower bound, the jump map (13)
only allows a single edge to reset its clock and its sampled
variable. Consequently, a finite number of jumps successively
occurs in this case, until all the concerned edge variables
have been updated. A couple of remarks about system (12)
need to be added. First, the mapping G in (13) is defined
on R3M . When the states are in the jump set its definition
is clear from (13), when these are not in the jump set, i.e.
when φ! != a! for any " ∈ {1, . . . ,M}, it reduces to the
empty set. Second, G is indeed outer semicontinuous as its
graph is given by the union of the graphs of the mappings
G!, " ∈ {1, . . . ,M}, which are closed since these mappings
are continuous.

B. Main result

We are ready to state the main result of this section.
Theorem 1: Consider system (12) and select the constants

σ1, . . . ,σM > 0 such that

max
!∈Ei

σ! ≤
1− ε

2 degi
(14)

where degi is the degree4 of agent i, ε ∈ (0, 1), i ∈ I.
The solutions have a uniform semiglobal average dwell-time
and the maximal solutions are precompact and approach the
set {(p, v, ẑ,φ) : z = 0, v = 0, φ! ∈ [a!, b!] for " ∈
{1, . . . ,M}}. !

We see that each agent only needs to know the degree
of its neighbours to synthesize its constants σ!. This can be
achieved via an initial communication round during which
the agents communicate their degrees to their neighbours for
instance.
Remark 3: We concentrate in this paper on the case where

pi, vi ∈ R (see (3)). We have verified that the conclusions
of Theorem 1 still hold when pi, vi ∈ Rn with n ∈ Z>0,
in which case we take φ̇! = − 1

σ!

(

1 + φ2!‖∇ψ!(z!)‖2
)

for
" ∈ {1, . . . ,M}, instead of (10), where ‖∇ψ!(z!)‖ is the
induced matrix Euclidean norm of the matrix ∇ψ!(z!). !.

V. SELF-TRIGGERED CONTROL

The results of the previous section require continuous
measurements of the relative positions, which may be dif-
ficult to achieve in practice. We explain in this section
how to overcome this potential issue by implementing the
event-triggering laws in a self-triggered fashion. In that way,
measurement of the relative position (and velocity) are only
collected at the edge events. The idea consists in replacing
∇ψ!(z)2 in (10) by a variable λ! which is obtained based
on the values of z! and the corresponding relative velocity
w! (i.e. w! = vj − vi if z! = pj − pi, (i, j) ∈ E) at the last
event of edge " ∈ {1, . . . ,M}.

4The degree of a node is the number of edges incident to the node, i.e.
degi is equal to the cardinality of Ei.

A. Construction of λ!
Let " ∈ {1, . . . ,M}. An additional property for the

function ψ! must be put in place, namely that there exists a
positive number ψ̄ such that

|ψ!(z)| ≤ ψ ∀z ∈ R, (15)

which is reasonable as the functions ψ! are designed by the
agents.
Assume that " is the edge which links the agents i and j

and let q be a solution to (12). Let (t!k, k) ∈ dom q be such
that φ!(t!k, k) = b! and assume that no other edge triggers an
event until (t!k+1, k). We make this assumption without loss
of generality only to simplify the presentation. For almost
all t ≥ t!k with (t, k) ∈ dom q,

ż!(t, k) = w!(t, k), (16)

and, in view of (9) and (15),

w!(t, k) ≤ w!(t, k) ≤ w!(t, k), (17)

where
w!(t, k) := exp(−(t− t!k))w!(t!k, k) +∆!(t, k)
w!(t, k) := exp(−(t− t!k))w!(t!k, k) +∆!(t, k)

(18)
with ∆!(t, k) := (1 − exp(−(t − t!k))(degi +degj)ψ and
∆!(t, k) := −∆!(t, k). Consequently, for all (t, k) ∈ dom q
with t ≥ t!k,

z!(t, k) ≤ z!(t, k) ≤ z!(t, k), (19)

where z!(t, k) := z!(t!k, k) +

∫ t

t!k

w!(s, k)ds and z!(t, k) :=

z!(t!k, k)+

∫ t

t!k

w!(s, k)ds. The estimate of (∇ψ!(z))
2 we use

to generate the events of edge " is defined as, for (t, k) ∈
dom q with t ≥ t!k,

λ!(t, k) := max
z!(t,k)≤z≤z!(t,k)

(∇ψ!(z))
2 , (20)

which is continuous with respect to t.
Remark 4: When we select the functions ψ! such that

∇ψ! is nonincreasing on R≥0 (as it is the case with sigmoid
functions for instance), (20) becomes

λ!(t, k) :=







(∇ψ!(z!(t, k)))
2 when z!(t, k) > 0

(∇ψ!(z!(t, k)))
2 when z!(t, k) < 0

(∇ψ!(0))
2 when z!(t, k)z!(t, k) ≤ 0.

(21)
!

B. Self-triggering rules
To define the events of edge " ∈ {1, . . . ,M}, we simply

implement the dynamics below instead of (10)

φ̇! = − 1
σ!

(

1 + φ2!λ!
)

, (22)

where λ! is given by (20). This ordinary differential equation
can be solved on-line based on the last received mea-
surements. When a closed-form expression of the solution



to (22) can be obtained or when sufficient computational
resources can be dedicated to the resolution of (22) when the
measurements are received, the proposed self-triggering rules
are also useful for scheduling purposes as the agent knows in
advance the next instant when it will need to communicate
with its neighbours and to compute a new control input.

C. Hybrid model & analytical guarantees

The overall system is modelled as

ṗ = v
v̇ = −v −DΨ(ẑ)
˙̂z = 0

τ̇ = −1















∀" τ! ≥ 0

p+ = p
v+ = v

(

ẑ+

τ+

)

∈ Γ(z, ẑ, τ)















∃" τ! = 0,

(23)

where τ := (τ1, . . . , τM ) and τ!, " ∈ {1, . . . ,M}, is a clock
used to trigger the events of edge ". The jump map Γ is
defined similarly to (13)

Γ(z, ẑ, τ) := {Γ!(z, ẑ, τ) : " ∈ {1, . . . ,M} and τ! = 0},
(24)

with Γ!(z, ẑ, τ) :=
(

ẑ1, . . . , ẑ!−1, z!, ẑ!+1, . . . , ẑM , τ1, . . . ,
τ!−1, T!(a!, b!, z!, w!), τ!+1, . . . , τM

)

for " ∈ {1, . . . ,M}
where T!(a!, b!, z!, w!) is the time it takes for the solution
to (22) to decrease from b! to a! given z! and w!.
The following result is obtained by following the same

lines as for proving Theorem 1.
Corollary 1: Consider system (23) with σ1, . . . ,σM > 0

such that (14) holds. The solutions have a uniform semiglobal
average dwell-time and the maximal solutions are precom-
pact and approach the set {(p, v, ẑ, τ) : z = 0, v = 0, τ! ∈
[0,σ!(b! − a!)] for " ∈ {1, . . . ,M}}. !

VI. SIMULATIONS

We have run simulations for a line graph of N = 5 nodes.
The consensus protocol has been designed with ψ!(z) =
10 arctan z for z ∈ R and " ∈ {1, . . . , 4}. Hence (15) holds
with ψ = 10. We have implemented the self-triggering rules
developed in Section V with the parameters σ! = 1−ε

2 degi
,

i ∈ {1, . . . , 5}, " ∈ {1, . . . , 4}, ε = 1/4, a! = 0, b! = b and
different values of b have been selected. We have simulated
the system for 20 initial conditions of p randomly distributed
in [1, 2], v(0, 0) = 0, ẑ(0, 0) = DTp(0, 0), φ(0, 0) = b1,
with a simulation time of 20s in order to study the influence
of b. Table I provides the obtained average of the total
number of edge events, and the average of the time it takes
for |z| to become less than 5% of its initial value, which
we denote t5%. These results suggest that to increase the
value of b reduces the number of edge events at the price of
a longer convergence time. The parameters b! (equivalently
a!), " ∈ {1, . . . , 4}, may therefore be adjusted to reduce the
communication and computation cost at the price of a slower
convergence speed.

b = 1 b = 10 b = 100

Average # edge events 2276 2101 2107

Average t5% 13.62 15.14 15.86

TABLE I
SIMULATION RESULTS (#: NUMBER OF).

VII. CONCLUSION
We have extended our preliminary results in [11] to

the event-based rendez-vous of a network composed of an
arbitrary finite number of agents. We believe that this work
demonstrates the potential of the proposed triggering rules
and exemplify the interest of casting event-based coordina-
tion problems within the hybrid framework of [5].
The considered class of systems is a particular case of

systems of the form ṗi = yi and v̇i = fi(vi, ui) (with pi ∈
Rnp and vi ∈ Rnvi ), where the vi-system satisfies a strict-
passivity property, with i ∈ I. We show in [10] that the
proposed approach extends to such systems as well as to
other coordination objectives.
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