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Muscarinic receptor antagonists and b-adrenoceptor agonists

are used in the treatment of obstructive airway disease and

overactive bladder syndrome. Here we review the

pharmacological rationale for their combination. Muscarinic

receptors and b-adrenoceptors are physiological antagonists for

smooth muscle tone in airways and bladder. Muscarinic agonism

may attenuate b-adrenoceptor-mediated relaxation more than

other contractile stimuli. Chronic treatment with one drug class

may regulate expression of the target receptor but also that of the

opposing receptor. Prejunctional b2-adrenoceptors can enhance

neuronal acetylcholine release. Moreover, at least in the airways,

muscarinic receptors and b-adrenoceptors are expressed in

different locations, indicating that only a combined modulation of

both systems may cause dilatation along the entire bronchial tree.

Whileall of these factors contribute to a rationale for a combination

of muscarinic receptor antagonists and b-adrenoceptor agonists,

the full value of such combination as compared to monotherapy

can only be determined in clinical studies.
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Introduction
Obstructive airway diseases such as asthma and chronic

obstructive pulmonary disease (COPD) and urinary

bladder dysfunction such as the overactive bladder syn-

drome (OAB) are typically seen as unrelated conditions.

However, both affect hollow organs and are characterized

by an imbalance between contractile and relaxant smooth

muscle stimuli. Moreover, the sympathetic and the para-

sympathetic nervous system plays important roles in both

cases, although sympathetic innervation may be sparse

[1]; accordingly muscarinic receptor antagonists and

b-adrenoceptor agonists are important therapeutics for

both organ systems. The present manuscript reviews

the molecular, cellular and tissue rationale underlying

the combined use of these two drug classes. We combine

data from airways and urinary bladder to improve the

robustness of emerging concepts.

Clinical background
COPD is a progressive disease associated mainly with

tobacco smoking, air pollution or occupational exposure,

which can cause obstruction of airflow in the lungs result-

ing in debilitating bouts of breathlessness. Inhaled

bronchodilators (b2 adrenoceptor agonists or M3 muscar-

inic acetylcholine receptor antagonists) remain the main-

stay of current management of COPD at all stages of the

disease [2��]. Clinical advances in the treatment of COPD

have centered on improvements of these existing classes

of bronchodilators, by either increasing duration of action

or by improving their selectivity profiles [2��]. The com-

bination of a b2-adrenoceptor agonist with a M3 muscar-

inic receptor antagonist, into a fixed-dose combination

therapy, is currently being pursued by several pharma-

ceutical companies.

The Global Initiative For Asthma defines asthma as a

‘chronic inflammatory disorder of the airways in which

many cells and cellular elements play a role’ (www.

ginasthma.org). In bronchi from asthmatic patients, con-

traction responses to muscarinic receptor agonists are

enhanced and relaxation responses to b-adrenoceptor

agonists are attenuated [3]. This airway hyperresponsive-

ness leads to recurrent episodes of wheezing, breathless-

ness, chest tightness, and coughing, particularly at night
 Commons Attribution-NonCommercial-No Derivative Works License,

edium, provided the original author and source are credited.
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or in the early morning. These episodes are usually

associated with widespread, but variable, airflow obstruc-

tion within the lung that is often reversible either spon-

taneously or with treatment. First-line treatment of

asthma is based on low-to-medium doses of an inhaled

glucocorticoid, but this yields inadequate symptom con-

trol in many patients. Short-acting muscarinic receptor

antagonists and b-adrenoceptor agonists, often in combi-

nation, can be added as acute reliever medication. Long-

acting b-adrenoceptor agonists are an option as additional

controllers, but their safety when used as monotherapy

has been questioned. Alternative/additional controller

medications are needed [4] and the combination of a

long-acting b-adrenoceptor agonist with a long-acting

muscarinic antagonist is considered a possible option.

However, the efficacy and safety of such a combination,

or of monotherapy with a long-acting muscarinic antagon-

ist, has not been fully evaluated and hence is not an

approved use.

OAB is defined by the International Continence Society

by the presence of urgency, with or without incontinence,

usually accompanied by urinary frequency and nocturia

[5]. For a long time muscarinic receptor antagonists have

been the mainstay of OAB treatment [6], but recently

b3-adrenoceptor agonists are emerging as an alternative

treatment option [7�,8�]; the combined use of both drug

classes is currently undergoing clinical exploration.

Accordingly, COPD, asthma and OAB share a number of

features but also exhibit important differences [1]. The

most important one is that obstructive airway disease

leads to considerable morbidity and even mortality,

whereas OAB mainly adversely affects quality of life.

Nevertheless, it appears helpful to look at all three

conditions concomitantly as they share important features

with regard to the roles of the sympathetic and parasym-

pathetic system and its interaction. Such interaction can

occur at the level of exposure to the sympathetic and

parasympathetic mediators (which importantly includes

non-neuronal acetylcholine release in both airways and

bladder) and the level of smooth muscle tone.

Descriptive interaction studies between
muscarinic and b-adrenergic agents
Several studies have explored how concomitant exposure

to b-adrenergic and muscarinic receptor ligands affects

the response to each other. While there always is a

physiological antagonism between contractile and relax-

ant stimuli, it appears that this interaction is more pro-

nounced between relaxation by b-adrenoceptor agonist

and contraction by muscarinic receptor ligands than by

contracting agonists acting upon other types of receptors.

This section will describe the ‘privileged interaction’

between the b-adrenergic and muscarinic system in air-

ways and bladder. Subsequent sections will explore the

underlying mechanism for these interactions.
Current Opinion in Pharmacology 2014, 16:31–42 
Airway studies

Physiological resting tone in airways is mediated by

parasympathetic innervation of airway smooth muscle,

via muscarinic receptors. Muscarinic receptor subtypes

M2 and M3 are expressed at a 4:1 ratio [9] but the

contraction response is mediated predominantly if not

exclusively by the M3 subtype [10–12]. Regulation is

disturbed under pathological conditions [13,14]. In

addition to agonists of the muscarinic pathway, other

contractile mediators are released during pathological

conditions, including histamine and bradykinin, receptors

for which (H1 and B2, respectively) are located on airway

smooth muscle [15–17].

Airway smooth muscle relaxation is primarily mediated

by b-adrenoceptors, in humans and most other mammals

their b2-subtype [3,18]. This relaxation provides a phys-

iological antagonism of the contraction induced by

mediators such as carbachol and histamine. However,

there is a disparity between contractile agonists in their

ability to attenuate b2-adrenoceptor-mediated relaxation,

even when matched for initial extent of contraction. For

instance, the inhibitory potency of isoprenaline (pEC50)

to cause relaxation in canine airways was 8.0 against

histamine but only 7.0 against acetylcholine; even

100 mM isoprenaline did not fully reverse acetylcholine-

induced contraction [19]. The relative resistance of

muscarinic contraction to b2-adrenoceptor-induced relax-

ation was confirmed in human airway preparations [20–
22]. Whether the resistance to b2-adrenoceptor-mediated

relaxation was caused by activation of an M2 or M3

receptor has not been resolved conclusively [21,23,24]

but it may be mediated by PKC [25]. Thus, a privileged

interaction exists between b2-adrenoceptors mediating

relaxation and muscarinic receptors mediating contrac-

tion, whereby muscarinic receptor-induced contraction is

more resistant to b2-adrenoceptor induced relaxation,

than that induced by agonists acting independent of

muscarinic receptors. This may explain why combined

administration of a muscarinic antagonist and a b2-adre-

noceptor agonist causes greater airway relaxation than

monotherapy [26–30]. Moreover, while a long-acting

muscarinic antagonist had no significant effect by itself,

it enhanced the ability of a long-acting b2-agonist to

antagonize histamine-induced bronchoconstriction [31].

Moreover, in some of these studies combination treatment

not only reduced elevated smooth muscle tone but also had

greater anti-inflammatory effects than monotherapy.

Bladder studies

Muscarinic receptors are the primary mediator of urinary

bladder contraction during physiological voiding but, in

contrast to humans, non-cholinergic mediators can sig-

nificantly contribute to bladder contraction in the healthy

bladder of various animal species [32]. However, in both

animals and humans, non-cholinergic mediators such as

ATP or bradykinin become increasingly important under
www.sciencedirect.com
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Figure 1
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Relaxation of rat bladder strips with passive tension or precontracted

with KCl, carbachol, bradykinin or serotonin by the b-adrenoceptor

agonist isoprenaline. Note that both the potency and the efficacy of

isoprenaline against carbachol were significantly smaller than against all

other conditions.

Taken from [44].
pathological conditions [33–35]. Despite the much

greater expression of M2 than M3 receptors in the bladder

of humans and most other mammalian species (see ‘Re-

ceptor expression patterns in airways and bladder’ sec-

tion), the direct contractile effects of muscarinic agonists

is mediated primarily if not exclusively by the minor

population of M3 receptors [36]. The primary mediator

of bladder relaxation is b-adrenoceptors; in humans this

occurs primarily if not exclusively via the b3-subtype, but

in other species, for example, rats, additional subtypes

may be involved [37]. However, it should be noted that

the tone of detrusor smooth muscle is not only regulated

directly by autonomic receptors expressed by these cells

but also indirectly via muscarinic and b-adrenergic recep-

tors located on the urothelium and the afferent nerve

endings [38��].

In porcine bladder and urethra the presence of isoprena-

line reduced the Emax and pEC50 of carbachol-induced

contraction [39,40]. In a follow-up study from the same

group isoprenaline caused parallel right-ward shifts of the

carbachol concentration–response curve but did not affect

maximum contraction; in urothelium-denuded bladder

strips isoprenaline caused greater right-ward shifts

than in the presence of urothelium, indicating that the

b-adrenoceptor agonist may in part act on the urothelium

[41]. In murine bladder isoprenaline reduced the potency

and efficacy of contractions by the muscarinic agonist

oxotremorine [24]. However, in M3 receptor knock-out

mice oxotremorine elicited only a small contractile

response, which was considerably enhanced in the pre-

sence of a,b-methylene ATP and isoprenaline, an effect

not observed in M2/M3 double knock-out mice [42].

The opposite experiment, that is, testing effects of a

muscarinic agonist on bladder relaxation by a b-adreno-

ceptor agonist, was largely performed in rats, a species

where relaxation involves not only b3-adrenoceptors but

also other subtypes [37]. Isoprenaline-induced relaxation

of rat bladder strips was less potent and less efficacious

against tone induced by carbachol than that induced by

KCl (pEC50 5.32 vs. 7.24, remaining tone 35% vs. full

relaxation) [43]. In another rat study relaxant responses to

isoprenaline were significantly less potent and less effi-

cacious against carbachol than against passive tension,

KCL, bradykinin or serotonin [44] (Figure 1). In a follow-

up study from the same group it was found that both M2

and M3 receptors contributed to the attenuation of the

isoprenaline response by muscarinic agonists [45�]. Other

follow-up work from these investigators reported that

relaxation responses to the b3-selective agonist KUC-

7322 were also weaker against carbachol than against

the other responses (Cernecka, Sand and Michel; unpub-

lished observation). Another b3-selective agonist, TRK-

380, was less efficacious against carbachol than against

KCl in human detrusor strips [46]. Similarly, the phos-

phodiesterase inhibitor papaverine was less potent in
www.sciencedirect.com 
causing relaxation against carbachol- than against KCl-

induced tone in guinea pig [47], rat [48] and human

bladder [49]. Similarly, isoprenaline-induced relaxation

was enhanced in M2 receptor knock-out mice [24,42].

However, some conflicting data have been reported as

relaxation by a single high isoprenaline concentration was

similarly effective against KCl and carbachol-induced

contraction in canine bladder [50].

In conclusion most bladder data indicate that muscarinic

receptor agonists inhibit relaxation by b-adrenoceptor

agonists more than contractile stimuli acting independent

of muscarinic receptors. A stronger inhibition of b-adre-

noceptor responses by muscarinic agonists than by other

contractile stimuli has also been reported in esophagus

[51], ileum [24,52], colon [53] and the iris sphincter [54].

These findings support the concept of a privileged inter-

action between muscarinic and b-adrenergic pathways in

control of bladder smooth muscle tone and support the

combined use of a muscarinic antagonist and b-adreno-

ceptor agonist also in the bladder. In support of this

hypothesis the potency and efficacy of relaxant effects

of the b3-selective agonists CL 316,243, mirabegron and

solabegron in rat bladder against field stimulation was

enhanced in the presence of muscarinic receptor

antagonists [55].

Receptor expression patterns in airways and
bladder
The expression pattern of subtypes of muscarinic and

b-adrenergic receptors in airways and bladder has been

studied at the mRNA and protein level. While mRNA
Current Opinion in Pharmacology 2014, 16:31–42
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detection techniques are unequivocal, their predictive

value for corresponding functional receptor protein

remains uncertain. Expression at the protein level can

be assessed using antibodies in immunoblot or immuno-

histochemistry studies, but most available receptor

antibodies lack suitable specificity [56]. It can also be

tested using radioligands in tissue homogenates or auto-

radiography; while this works well for b2-adrenoceptors,

radioligands for b3-adrenoceptors are just emerging [57]

and those for muscarinic receptors typically lack subtype-

selectivity. Despite these limitations, the combined

mRNA, protein and functional data allow a reasonably

clear picture on the expression of these receptors in

airways and bladder. Of note, expression in nerve term-

inals is typically not detected in most studies as they

represent only a minor fraction of the overall expression.

Airway studies

Muscarinic receptors are unevenly distributed in the

lung, exhibiting a greater expression in submucosal

glands and airway ganglia than in airway smooth muscle

[58]. The receptor present on smooth muscle from both

large and small airways was described as being entirely of

the M3 subtype in early studies, while the M1 receptor

was exclusively expressed in alveolar walls [9]. Recent

studies in human lung found the M3 receptor more

abundantly expressed in segmental than subsegmental

bronchus and entirely absent in the parenchyma, whereas

the M2 subtype was widely distributed throughout the

lung, and M1 was found only in parenchyma [59�].

Expression of lung b-adrenoceptors was also reported to

be higher in epithelium, alveolar walls and submucosal

glands than in airway and vascular smooth muscle [60].

The subtype responsible for labeling airway smooth

muscle was entirely b2, whereas co-expression of both

b1 and b2 was observed in bronchial submucosal glands

and alveolar walls, with the b1 subtype dominating, as also

confirmed in human lung [59�]. Interestingly, the expres-

sion level of b2 increased along the airways, with levels

being lowest in the segmental bronchus and highest in the

parenchyma [59�,60]. Thus, the relative roles of muscar-

inic and b-adrenergic receptors appear to differ, with the

former more prominent in the more proximal and the

latter in the more distal airway segments. Therefore,

maximal bronchodilation in all regions of the human lung

may require a combination of a muscarinic antagonist and

a b2-adrenoceptor agonist. Regulation of receptor expres-

sion in animal models of [61] and patients with obstructive

airway disease [62�] may contribute to the pathophysiology

and treatment responses and may additionally support the

use of such combination treatment.

Bladder studies

Studies in whole human bladder have largely detected

mRNA for M2, M3 and M4 receptors and much less M1

expression [63]. This apparently applies similarly to
Current Opinion in Pharmacology 2014, 16:31–42 
smooth muscle [64] and urothelial cells [65,66]. Radioli-

gand binding studies confirm that muscarinic receptors in

the bladder of humans and animals largely belong to the

M2 subtype, with a smaller contribution of M3 and even

smaller one of other subtypes [67–69].

Studies in whole human bladder have reported that

b3-adrenoceptors contribute about 95% of total b-adre-

noceptor mRNA [70], whereas other subtypes may be

more prominently expressed in experimental animal

species such as rats [71]. Moreover, the relative contri-

bution of b-adrenoceptor subtypes at the mRNA level

may be different in human urothelium [66]. The relative

contribution of subtypes to total bladder b-adrenoceptor

expression at the protein level has been more difficult to

determine due to a lack of suitable radioligands or anti-

bodies [72], but some radioligand binding studies have

suggested that mostly b3-adrenoceptors may be present

[73]. On the basis of more recently emerging antibody

validation data [74�], the presence of b3-adrenoceptors in

the human bladder has also been demonstrated by immu-

nohistochemistry, surprisingly showing an apparently

greater abundance in urothelium than in smooth muscle

[75,76]. Despite these uncertainties, there is overwhelm-

ing functional evidence that relaxation of human detrusor

smooth muscle occurs predominantly if not exclusively

via the b3-subtype, but in other species such as rats

additional subtypes may contribute [37].

Prejunctional modulation of transmitter
release
Smooth muscle tone is regulated by both the parasympa-

thetic and sympathetic nervous systems but the exact

contribution of each of these systems in maintaining tone

in physiology and disease is unclear in airways [77��] and

bladder. Transmitter release from parasympathetic and

sympathetic nerve endings can be modulated by prejunc-

tional auto- and hetero-receptors, with M2 (and perhaps

M4) receptors typically inhibiting transmitter release from

both types of nerve terminals and M1 muscarinic and b2-

adrenergic receptors facilitating it [78]. Thus, prejunc-

tional receptors provide an additional level for an inter-

action between the two systems. Because of sparse

sympathetic innervation there has been limited attention

to modulation of noradrenaline release in airways [79] or

bladder [80], but several studies have explored the modu-

lation of neuronal acetylcholine release. As in many other

tissues, acetylcholine release can also come from non-

neuronal sources in airways [81��] and bladder [82]. While

such non-neuronal release is considered important,

particularly in disease, little is known about its regulation

by muscarinic or b-adrenergic receptors; hence it will not

be discussed here.

In the airways direct assessment of b-adrenoceptor

effects on acetylcholine release has yielded conflicting

results. The facilitation of transmitter release by
www.sciencedirect.com
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autoreceptors on sympathetic nerves was also demon-

strated for the heteroreceptors on parasympathetic

nerves in equine [83,84] and guinea pig airways [85];

in one of these studies, however, such facilitation was

only detectable when inhibitory muscarinic autorecep-

tors were blocked [84]. In contrast, inhibition of acetyl-

choline release by b-adrenoceptor agonists was observed

in rat and guinea pig [86] and in bovine airways [87].

Except for the inhibition in rat (apparently b1-adreno-

ceptor-mediated), all facilitating and inhibitory effects

on acetylcholine release were b2-mediated.

Indirect evidence in this regard comes from studies in

which the inhibition of airway contraction induced by

either electrical field stimulation of exogenously applied

acetylcholine was compared. Isoprenaline and several

b2-adrenoceptor agonists inhibited the response to field

stimulation more potently and/or effectively than that to

acetylcholine in equine [83,84] and human airways

[88,89]. On the other hand, isoprenaline was similarly

potent against both contractile stimuli in guinea pig

trachea [85]. Interestingly, the inhibition of acetylcholine

release may involve not only cAMP but also BKCa [87].

Thus, the functional role of prejunctional b-adrenocep-

tors on parasympathetic nerves in the airways has not yet

been fully resolved. Species differences are possible but

technical differences in the preparations being employed

may also have contributed, particularly blockade of

muscarinic autoreceptors or presence of functional epi-

thelium [85,87]. Nevertheless, it has been argued that both

the facilitatory and the inhibitory effect would be in favor

of combining a muscarinic antagonist and a b2-agonist [90].

If it is facilitatory, the muscarinic antagonist will overcome

the mitigation of direct smooth muscle effects of b-agonist;

if it is inhibitory, the combined effect at the smooth muscle

effect will be stronger than either agent alone.

Studies in the bladder have not focused on b-adrenocep-

tors but rather on muscarinic autoreceptors regulating

acetylcholine release. Irrespective of the use of direct

measurements of acetylcholine release or of modulation

of contraction induced by field stimulation, these studies

have unequivocally demonstrated a role for facilitatory

M1 receptors and inhibitory M2 and M4 receptors in rat

[63,91–93], mouse [42], rabbit [94] and human bladder

[95]. As the non-subtype-selective atropine enhanced

acetylcholine release in several of those studies, the

net effect of the various muscarinic autoreceptors appears

to be inhibitory. This may limit the usefulness of a

muscarinic antagonist (unless it has very low M1 affinity)

and further supports the concept of combination treat-

ment with a b-adrenoceptor agonist.

Intra-cellular signaling cross-talk
The prototypical primary signaling pathway of M2 and M3

muscarinic receptors is inhibition of adenylyl cyclase and

stimulation of phospholipase C (PLC), respectively, the
www.sciencedirect.com 
latter leading to formation of inositol phosphates and

diacylglycerol, which in turn mobilize Ca2+ from intra-

cellular stores and activate protein kinase C (PKC),

respectively [96]. Additionally, coupling to a phospho-

lipase D and, as a downstream event of all of the above,

myosin light chain phosphorylation and activation of rho

kinase have been demonstrated. Given the role of Ca2+ in

initiating smooth muscle contraction, it seems plausible

that the PLC activation is the molecular basis of muscar-

inic receptor mediated smooth muscle contraction in

airways and bladder, but this view has been challenged.

The prototypical signaling pathway of all b-adrenoceptor

subtypes is stimulation of adenylyl cyclase leading to

formation of cAMP, which can activate protein kinase A

(PKA) [97]. More recently it became clear that cAMP may

alternatively also activate the exchange protein activated

by cAMP (Epac) pathway [98��]. While various cAMP-

elevating agents such as the direct adenylyl cyclase acti-

vator forskolin or phosphodiesterase inhibitors can induce

airway and bladder relaxation, many studies have ques-

tioned whether cAMP formation indeed underlies relaxa-

tion induced by b-adrenoceptor agonists. Moreover,

b-adrenoceptors can couple to activation of several potass-

ium channels, mostly large conductance, Ca2+-activated

channels (BKCa). An overview on the signal transduction

pathways of muscarinic and b-adrenergic receptors in

smooth muscle cells is shown in Figure 2.

Airway studies

While the involvement of PLC and PKC in muscarinic

receptor-mediated airway contraction is plausible, there is

only little experimental proof. However, in its support

PKC inhibition enhanced the ability of methacholine to

contract bovine trachea [25].

b-Adrenoceptor agonist-induced smooth muscle relaxa-

tion in airways involves activation of potassium channels,

mostly BKCa channels [99]. Activation of such channels

and relaxation may involve partly cAMP/PKA-dependent

and partly cAMP-independent pathways in airways

[100,101], possibly involving direct coupling of b-adre-

noceptor-activated Gsa to BKCa [100].

Several studies have explored how b-adrenoceptor acti-

vation affects contraction-relevant signaling by muscar-

inic receptors in the airways (corresponding bladder data

are largely lacking). Whether b-adrenoceptor agonists and

other cAMP-elevating or mimicking agents suppress

muscarinic receptor-mediated inositol phosphate for-

mation has remained controversial. Lack of inhibition

was reported by some investigators in canine [102] or

bovine tracheal smooth muscle [15,103], but inhibition

was observed in porcine [104] and canine tracheal smooth

muscle by others [105,106]; interestingly, the inhibition at

the 24 hours time point in the dog study was abolished by

the protein synthesis inhibitor cycloheximide.
Current Opinion in Pharmacology 2014, 16:31–42
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Figure 2
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Schematic representation of assumed signal transduction pathways involved in the regulation of smooth muscle contraction by muscarinic and

b-adrenergic pathways. AC, adenylyl cyclase; AR, adrenoceptor; DAG, diacylglycerol; IP3, inositol-tris-phosphate; MLC, myosin light chain; PKA,

protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PLD, phospholipase D; SR, sarcoplasmic reticulum. Red and green lines and arrows

represent pathways activated by muscarinic and b-adrenergic receptors, respectively.
On the other hand, inhibition of muscarinic agonist-

induced intracellular Ca2+ elevation in airway smooth

muscle by b-adrenoceptor agonists or other cAMP-related

agents was consistently observed in bovine [103,107],

porcine [108], murine [109] and canine preparations

[105,110], although it was reported to wane over time

in the latter [106]. Several mechanisms have been pro-

posed how b-adrenoceptor agonists may attenuate Ca2+

elevations: firstly, cAMP/PKA-mediated inhibition of

L-type Ca2+ channels [111]; secondly, reductions of

Ca2+ oscillations [108,112], which have been linked to

reducing Ca2+ release from internal stores under control

of inositol phosphate receptors [109]; thirdly, activation of

the sarcoplasmatic reticulum Ca-ATPase (SERCA) [18];

fourthly, reduction of the detectable number of inositol-

1,4,5-trisphosphate binding sites [113]. Moreover, b-adre-

noceptor stimulation apparently reduces not only Ca2+

elevations but also the Ca2+ sensitization of contractile

filaments induced by muscarinic agonists [114] or

histamine [112]. On the other hand, in contrast to most

other cell types, b-adrenoceptor agonists not only sup-

press Ca2+ elevations or lower basal Ca2+ concentrations
Current Opinion in Pharmacology 2014, 16:31–42 
[115] but at least in some cases can also increase it in

airway smooth muscle cells [107] and this effect may

differ between subcellular compartments [116]. Similarly,

they can both activate phospholipase D in porcine tra-

cheal smooth muscle and inhibit such activation caused

by muscarinic stimulation [104]. However, it remains

difficult to understand how b-adrenoceptor-mediated

Ca2+ elevations or phospholipase D activation can be

related to smooth muscle relaxation, unless they are

restricted to subcellular compartments not linked to

the contractile machinery.

Other studies have explored how muscarinic receptor

activation affects relaxation-relevant signaling by

b-adrenoceptors. Although direct contractile effects of

muscarinic stimulation occur almost exclusively via the

M3 subtype, attenuation of relaxation involves both M2

and M3 receptors based on knock-out mouse data [24].

Muscarinic receptor-mediated inhibition of cAMP

accumulation is a bona fide M2 response and well docu-

mented in airway smooth muscle [117–119]. Additional

evidence comes from experiments in bovine airway
www.sciencedirect.com
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Figure 3
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Epac as a novel effector of airway smooth muscle relaxation. Cumulative

concentration response curves of the selective Epac activators 8-pCPT-

2’-O-Me-cAMP (8-pCPT) and Sp-8-pCPT-20-O-Me-cAMPS on

methacholine (0.3 mM) precontracted guinea pig tracheal open ring

preparations in the absence (control) or presence of 100 mM of the

selective protein kinase A inhibitor Rp-8-CPT-cAMPS. Results are

means � SEM of 3-8 independent experiments. Stress fiber formation

was measured by phalloidin staining in guinea pig airway smooth

muscle. Results are expressed as percentage of stress fiber-positive

cells relative to the total number of cells. Representative images of 5

experiments are shown. These data demonstrate that cAMP generated

upon b-adrenoceptor stimulation may relax airway smooth muscle via

the Epac pathway.

Taken from [123�].
smooth muscle where isoprenaline or the cAMP-mimetic

8-bromo-cAMP lowered basal Ca2+ concentration; car-

bachol abolished such lowering but did not affect Ca2+

lowering by release of caged cAMP, indirectly indicating

that this interaction occurred through inhibition of ade-

nylyl cyclase by muscarinic receptors [115]. While an

obvious explanation for adenylyl cyclase inhibition is an

effect mediated by M2 receptors acting via Gi, M3 recep-

tors may also be involved. Elevation of Ca2+ inhibited

isoprenaline-stimulated adenylyl cyclase in human bron-

chial smooth muscle cells, apparently acting on the

cyclase isoform AC6 which was also shown to colocalize

with b2-adrenoceptors [120].

Although K+ channels, specifically BKCa critically con-

tribute to b-adrenoceptor-mediated airway smooth

muscle relaxation, muscarinic modulation of such acti-

vation has received only limited attention. While it would

be expected that BKCa inhibition if anything should

enhance smooth muscle contractility, the opposite was

found in BKCa knock-out carbachol-contracted murine

airways [121]. Concomitantly, relaxation responses to

isoprenaline were enhanced. This paradoxical effect

reduction of muscarinic and enhancement of b-adrener-

gic responses in BKCa knock-out mice was explained by a

compensatory upregulation of the cGMP pathway.

Some studies have explored how muscarinic and b-adre-

nergic pathways interact at the level of the contractile

machinery. In an early study in canine trachea it was

found that forskolin raised cAMP levels and myosin light

chain kinase phosphorylation but lowered myosin phos-

phorylation; in contrast, methacholine caused myosin

phosphorylation but did not significantly affect cAMP

content or myosin light chain kinase phosphorylation;

when forskolin was added to methacholine, relaxation

occurred which was accompanied by a lowered cAMP

content, some reduction of myosin phosphorylation but

no change in myosin light chain kinase phosphorylation

[119]. Myosin light chain phosphatase activity was

increased by isoprenaline in bovine tracheal smooth

muscle, whereas carbachol lowered basal and isoprena-

line-stimulated phosphorylation [18]. Activation of rho

and rho kinase may link the proximal signaling of muscar-

inic receptors to changes in myosin light chain kinase

activity. The carbachol-induced activation of rho and rho

kinase in bovine trachea was not affected by pretreatment

with isoprenaline or salmeterol, but adding the b-adre-

noceptor agonist after carbachol reduced activities of rho,

rho kinase, myosin light chain kinase and also reduced

contractile tone [122]; these findings were interpreted as

indication that some interaction between the muscarinic

and b-adrenoceptor pathways can occur at the rho and rho

kinase level, but the major part may occur at the myosin

light chain kinase level. Experiments in guinea pig and

human airways demonstrated that cAMP may cause re-

laxation of methacholine-contracted airways not only via
www.sciencedirect.com 
the PKA but also via the Epac pathway [123�] (Figure 3).

Epac activation reduced methacholine-induced rho A

activation and Rac1 inhibition and also myosin light chain

phosphorylation.

Bladder studies

The muscarinic receptor subtypes involved in attenuation

of b-adrenoceptor-mediated bladder relaxation have been

studied based on pharmacological inhibitors [45�] and

muscarinic subtype knock-out mice [24,42]. Both

approaches have shown that, similar to airways, direct

contractile effects of muscarinic stimulation occur almost

exclusively via the M3 subtype, but attenuation of relaxa-

tion involves both M2 and M3 receptors. The M3 com-

ponent of such attenuation was blocked by inhibition of

PLC or PKC [45�], both of which had not attenuated M3-

mediated direct contractile responses in the bladder [124].

Surprisingly, multiple studies in rat, mouse and human

bladder have demonstrated that muscarinic agonists

induce contraction largely independent of PLC and

rather rely on the opening of L-type Ca2+-channels and
Current Opinion in Pharmacology 2014, 16:31–42
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the activation of rho kinase, indicating that influx of

extracellular Ca2+ through such channels and Ca2+ sen-

sitization of contractile filaments may be more important

than mobilization of Ca2+ from intracellular stores [124].

However, it should be noted that muscarinic receptor

stimulation can not only directly cause smooth muscle

contraction, largely via the M3 subtype, but can also

attenuate b-adrenoceptor-mediated relaxation, at least

partly via the M2 subtype, and that the latter may involve

at least partly distinct signaling pathways.

Although b-adrenoceptor agonists stimulate cAMP for-

mation in the bladder, cAMP appears to play only a minor

if any role in bladder relaxation mediated by these

receptors [124]. Whether muscarinic receptors mediate

inhibition of cAMP accumulation in the bladder has

remained controversial [68,125].

On the other hand, similar to the airways, the b-adreno-

ceptor agonist-induced smooth muscle relaxation in blad-

der involves activation of potassium channels, mostly BKCa

channels [124,126]. However, muscarinic modulation of

such activation has received only limited attention. In mice

with either constitutive or smooth muscle-specific induci-

ble BKCa knock-out bladder contractions elicited by elec-

trical field stimulation, a response largely mediated by

muscarinic receptors, were enhanced [127]. This was

accompanied by an enhanced suppression of such contrac-

tions by a b-adrenoceptor agonist. Interestingly, this sup-

pression was more pronounced in the inducible than the

constitutive knock-out, apparently reflecting reduced

L-type Ca2+ current density and increased expression of

cAMP-dependent protein kinase in the constitutive

knock-outs. Collectively, these data demonstrate that

muscarinic and b-adrenergic signaling opposes each other

at multiple levels of their signaling cascade; however, they

also illustrate that the molecular mechanisms underlying

such interaction may differ between airways and bladder.

Chronic cross-regulation of receptor
expression and desensitization
A key feature of long-term administration of receptor

agonists and antagonists is that they may cause desensi-

tization and sensitization, respectively, of their cognate

receptors. Perhaps more importantly in the present con-

text, chronic activation of one receptor may also affect the

function of a physiologically opposing receptor. Such cross-

regulation has extensively been studied in the heart, largely

representing M2 and b1 subtypes [128�], but due to invol-

vement of different receptors subtypes and physiological

differences between cardiomyocytes and smooth muscle

cells these cardiac findings have limited applicability to

airways and bladder and will not be considered here.

Studies with extended exposure to agonists in airways and

bladder have reported both sensitization and attenuation

of the opposing pathway. An early study reported that
Current Opinion in Pharmacology 2014, 16:31–42 
a 28-day treatment of rabbits with albuterol enhanced

the in vitro contractile response of main bronchi to

methacholine [129]; as KCl responses were not altered,

these findings already pointed to a specific interaction

with the muscarinic receptors and their signaling. Pro-

longed b-agonist exposure may also sensitize the function

of other pro-contractile receptors in the airways, for

example, bradykinin or histamine receptors [130,131].

This concept has been further explored using mice which

either lacked b2-adrenoceptors or overexpressed them

[132]; the former exhibited a reduced bronchoconstrictor

response to methacholine and other agents, whereas the

latter had an increased response, and both findings were

related to a reduced or enhanced expression of PLC-b1.

The intracellular Ca2+-handling protein phospholamban

was also identified as a target explaining increased

bronchoconstrictor sensitivity upon b2-adrenoceptor

overexpression [133]. Using a similar approach, these

investigators also explored consequences of overexpres-

sion of the G-protein Gia2, which mediates signals of M2

muscarinic receptors, or of a peptide inhibitor of this G-

protein [134]; as expected, overexpression of Gia2 atte-

nuated bronchodilator responses to b2-adrenoceptor ago-

nists while inhibition enhanced them. On the other hand,

overexpression of Gia2 unexpectedly decreased contrac-

tile response to methacholine, whereas its inhibition

enhanced them. The former was linked to a reduced

PLC and the latter to an increased PKCa expression. A

PKC activator was found to enhance agonist-induced

desensitization of b2-adrenoceptor function in bovine

airways [135]. Much less data is available for the urinary

bladder, but one recent study reported shown that rat

bladder b-adrenoceptors can desensitize upon prolonged

exposure to some agonists, which is accompanied by a

reduced contractile response to carbachol [136�]. Taken

together, these data show that chronic activation of one

pathway may have effects on the opposing pathway, but

the direction of such cross-regulation may differ among

experimental models and also from the interaction seen

upon acute agonist administration.

Conclusions and clinical implications
The above data demonstrate that the muscarinic and

b-adrenergic systems in airways and bladder oppose each

other at multiple levels, including mediator release,

receptor signal transduction and receptor regulation, all

funneling into functional antagonism at the level of

smooth muscle tone. While there are distinct differences

between airways and bladder in these interactions, both

organs have pathologies characterized by too much

muscarinic and too little b-adrenergic input. Therefore,

the above data support the concept of combining muscar-

inic receptor antagonists and b-adrenoceptor agonists in

obstructive airway disease and OAB. While such combi-

nations have long been part of medical practice for

short-acting drugs in obstructive airway disease and

are guideline-recommended (www.ginasthma.org), the
www.sciencedirect.com
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combination of long-acting muscarinic antagonists and

b-adrenoceptor agonists is currently undergoing clinical

investigation [90]. Actually, such combinations may not

only have beneficial direct effects on airway smooth

muscle tone but also on airway inflammation [137�]. Less

evidence for the use of such combinations is available for

OAB treatment [55], but some clinical studies have been

completed and are awaiting reporting (SYMPHONY

study NCT01340027) or are ongoing. In both therapeutic

areas additional clinical studies will be required to fully

understand the role of combination treatment, particu-

larly with regard to the use of long-acting compounds and

long-term treatment outcomes.
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