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Abstract 

 

Nonlinear Mediation in Clustered Data:  A Nonlinear Multilevel 

Mediation Model 

 

Lester Leland Lockhart III, M. A. 

The University of Texas at Austin, 2011 

 

Supervisor:  Gary Borich 

 

Mediational analysis quantifies proposed causal mechanisms through which 

treatments act on outcomes. In the presence of clustered data, conventional multiple 

regression mediational methods break down, requiring the use of hierarchical linear 

modeling techniques. As an additional consideration, nonlinear relationships in multilevel 

mediation models require unique specifications that are ignored if modeled linearly. 

Improper specification of nonlinear relationships can lead to a consistently overestimated 

mediated effect. This has direct implications for inferences regarding intervention 

causality and efficacy. The current investigation proposes a nonlinear multilevel 

mediation model to account for nonlinear relationships in clustered data. A simulation 

study is proposed to compare the statistical performance of the proposed nonlinear 

multilevel mediation model with that of conventional methods. 
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Chapter 1:  Introduction 

Mediational analysis quantifies proposed causal mechanisms through which 

treatments act on outcomes. In its most general conceptualization, mediation exists when 

the effect of a causal agent, T, on an outcome, Y, acts through at least one intervening 

variable, M (Hayes & Preacher, 2010). The validity of the causal implications resulting 

from a mediational analysis is largely dependent on the nature of the experimental design, 

as causality itself is an epistemological issue requiring the fulfillment of certain 

experimental conditions (Bauer, Preacher, & Gil, 2006). More specifically, causality can 

only be inferred when the variables involved covary with each other, when spurious 

results have been eliminated, and when hypothesized causes chronologically precede 

their presumed effects (Frazier, Tix, & Barron, 2004). Additionally, secondary 

manipulation of the mediating variable, M, along with experimental manipulation of the 

primary treatment variable, T, greatly strengthens the ensuing causal inferences (Spencer, 

Zanna, & Fong, 2005). With these issues in mind, mediational methods provide 

researchers the necessary statistical tools to investigate mediated mechanisms. This holds 

direct implications for modifying and improving treatment processes, as mediated effects 

shed light on the underlying causal mechanisms by which treatments are effective (Judd 

& Kenny, 1981). As such, this form of analysis is especially relevant to the social and 

behavioral sciences as investigators frequently seek causal explanations for treatment 

efficacy (Baron & Kenny, 1986). 
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Chapter 2:  Literature Review 

The current prospectus adds to the mediation literature by proposing an 

alternative parameterization to traditional mediation models. First, conventional linear 

mediation models are presented. Next, these traditional single-level methods are extended 

to address hierarchically nested data via mixed linear models. A thorough examination of 

indirect effect calculation and hypothesis testing ensues, as this computation lies at the 

heart of all mediational analyses. This is followed by a discussion of nonlinear multilevel 

extensions for non-normally distributed data. At this point, problems with measures of 

mediation are discussed, followed by presentation of a nonlinear multilevel mediation 

model (NMMM) designed to address these concerns. A simulation study is then 

proposed. Expected results, limitations, implications for applied research, and future 

directions are then discussed.  

TRADITIONAL MEDIATION 

Standard mediational analyses quantify the casual relationships between an 

independent variable (or treatment, T), an outcome variable (or criterion, Y), and a 

mediating variable (or mechanism, M). In conventional mediation, the treatment variable 

typically consists of an indicator variable coded one for those in the treatment condition 

and zero for those in the control group. Alternatively, the treatment variable may consist 

of a continuous variable corresponding to a treatment dosage such as the amount in 

milligrams of a particular drug. Mediating variables are often operationalized as 

constructs or measures hypothesized to describe how or why certain effects occur (Baron 
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& Kenny, 1986; Bruner, 1957). Conceptually, mediation exists when a significant portion 

of the treatment effect operates through a mediating variable. Using path notation (Klein, 

2005), Figure 1 depicts the total effect of T on outcome Y. However, part of this effect 

may function through an intermediate variable, M. The effect of T on Y is then broken 

down into its constituent paths as presented in Figure 2. Here, a represents the effect of T 

on M, b represents the effect of M on Y, and c represents the effect of T on Y that is 

independent of M. T is hypothesized to affect Y both directly (path c’) and indirectly 

through M (paths a and b). The portion of this effect that goes through M is coined the 

indirect effect, whose calculation lies at the heart of mediational analysis.  

In the simplest single mediator model, paths a, b, c, and c in Figures 1 and 2 can 

be computed as unstandardized ordinary least squares (OLS) regression coefficient 

estimates obtained from the estimation of three regression models (MacKinnon, 2008). 

First, the total effect of a treatment variable (T) on an outcome variable (Y) is defined as 

the c parameter (Figure 1) by using the following linear equation: 

 iiTYi ecTY  ).(0 , (1) 

where iY  represents the outcome score for subject i, 
).(0 TY  represents the intercept for 

the prediction of Y, iT  represents the value of the treatment variable for subject i, c 

represents the total effect of the treatment on the outcome, and ie represents the error term 

for subject i. This model corresponds to the path diagram in Figure 1, representing an 

estimate of the total effect of T on Y without accounting for possible covariates or 

mediators.  
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 To obtain an estimate of path a in Figure 2, M is defined as a function of T 

according to the following model: 

 iiTMi eaTM  ).(0 , (2) 

where iM represents the score on the mediator for subject i, 
).(0 TM represents the 

intercept for the prediction of M, Ti  represents the treatment variable for subject i as in 

Equation 1, and ie represents the error term for subject i. A third regression equation is 

used to provide estimates of b and c. Here, Y is defined as a function of both M and T: 

 iiiMTYi eTcbMY  ').(0 . (3) 

In this equation, 
).(0 MTY  represents the OLS intercept estimate for the prediction of Y 

from M and T, b represents the effect of the mediator on the outcome controlling for the 

effect of the treatment, c represents the direct effect of the treatment on the outcome 

controlling for the mediator, and  represents the error term for subject i.  

Once the path values are estimated, two primary methods exist for quantifying the 

indirect effect of T on Y through M (see, for example, MacKinnon, 2008). First, the 

indirect effect can be calculated according to the mathematical definition of the 

instantaneous indirect effect,  (Stolzenberg, 1980): 

 

























M

Y

T

M
 . (4) 

As exposited by Hayes and Preacher (2010), the first partial derivative of a function with 

respect to a variable identifies the instantaneous rate of change of the former function 

(here, M) with respect to the second variable (here, T). In the context of multiple 



ei


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regression, this instantaneous rate of change is frequently interpreted as the effect of an 

independent variable on a criterion. Extending this to mediational analysis, the effect of T 

on M can be conceptualized as the rate of change of M with respect to T, 



M

T









. 

Applying this to Equation 2, 

 a
T

M













.  (5)

 

 

Similarly, the effect M on Y can be conceptualized as the rate of change of Y with respect 

to M (controlling for T) [i.e., 



Y

M









]. Applying this to Equation 3, 

 .

  

(6) 

Assuming linear relationships between T and M and between M and Y, a one-point 

increase in T results in an a-point increase in M, which in turn results in a b-point 

increase in Y. Within this framework, the mathematical formulation of  (Equation 4) 

defines the indirect effect for linear single mediator models as the product of the a and b 

parameter estimates as follows: 

 . (7) 

More intuitively, path tracing rules (see, for example, Kline, 2005) applied to Figure 2 

provide the same results.  

Alternatively, the indirect effect may be defined as the difference between the 

total effect of T on Y and the direct effect of T on Y accounting for M. Mathematically, 

b
M

Y
















ab
M

Y

T

M

























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this conceptualization of the indirect effect is calculated as )'( cc  , where c and c stem 

from Equations 1 and 3, respectively. In standard single mediator model analyses, the ab 

and )'( cc   methods are equivalent under OLS regression (MacKinnon, 2008).  

Use of OLS regression for estimating the various paths depicted in Figures 1 and 

2 (see Equations 1 through 3) works well for single-level datasets with no clustering of 

level-one units within higher-level units. However, treatments, mediators, and outcomes 

are frequently nested within various hierarchical units as a result of both group-level 

interventions and the natural clustering often inherent in organizational settings. 

Mediational analyses involving these types of data require proper parameterization via 

hierarchical linear modeling techniques to correctly partition variance at the appropriate 

levels. The following section describes this use of multilevel modeling to investigate 

mediation with clustered data.  

MULTILEVEL MEDIATION 

Clustered data presents problems for conventional mediational analysis as 

described in the previous section. More specifically, the dependence of observations 

within a particular cluster results in inaccurate variance component partitioning if the 

clustering is ignored. In standard single-level multiple regression, correlated errors, as 

induced by the nesting of individuals within a level-two unit, lead directly to 

underestimated standard errors, overestimated test statistics, and inflated type I error rates 

(Raudenbush & Bryk, 2002; Barcikowski, 1981; Moulton, 1986; Scariano & Davenport, 

1987; Scott & Holt, 1982; Walsh, 1947). Failure to properly model all levels of nesting 
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further complicates the inferences based on hypothesis tests (Moerbeek, 2004). The 

severity of the clustering effect can be assessed with the intraclass correlation (ICC), 

interpreted as the correlation between individuals belonging to the same level-two unit: 

  
wB

WB

MSkMS

MSMS
ICC

)1( 


 , (8) 

where 
BMS  and WMS  represent the mean squared error between and within clusters, 

respectively, and k represents the number of subjects in each cluster (MacKinnon, 2008). 

The ICC ranges from  to 1, with positive values indicating a violation of the 

independence assumption required in standard multiple regression analyses. The ICC is 

chi-square distributed, and as such can be tested for significance according to the 

following F-statistic (MacKinnon, 2008): 

  













ICC

ICCk
F kgg

1

)1(1
)1(,1 , (9) 

where g is the number of level-two clusters and k is the number of subjects in each 

cluster. In reality, although the ICC may not be statistically significant for all clustered 

data structures, small values can still distort significance tests (Kreft, 1996; Muthén & 

Satorra, 1995). As such, non-zero ICC values require proper modeling via hierarchical 

linear modeling methods. 

Proper mediation model parameterization of clustered observations depends 

largely on the level at which the treatment, mediator, and outcome variables are 

measured. For example, in the context of group-based treatments, cluster randomized 



1

k 1 
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trials assign clusters of individuals to treatment conditions but assess outcomes at the 

level of the participant. The LT → LM → LY notation (where Lk represents the level at 

which variable k is measured) is commonly used to distinguish the different possible 

mediation model designs. For example, in a cluster randomized trial, if the hypothesized 

mediator is measured at the individual level, this design is referred to as an “upper-level” 

or “2→1→1” mediation design (Kenny, Kashy, & Bolger, 1998). Alternatively, the 

mediator in a cluster randomized trial may be measured at the cluster level resulting in  a 

“2→2→1” mediation design. These designs, when parameterized to account for 

clustering at level-two, produce fixed indirect effect estimates with the same statistical 

properties as those resulting from single-level designs.  

For example, a typical 2→1→1 cluster randomized trial may randomly assign 

level-two units (e.g., treatment sites) to different treatments with outcomes and mediators 

measured at the level of the individual subjects within each site. In this instance, 

estimates of a, b, c, and c’ should be obtained using multilevel modeling. Using standard 

HLM notation (Raudenbush & Bryk, 2002), the c parameter for the total effect of the 

treatment on the outcome is estimated by the following model for the outcome at level-

one for subject i in site j: 

 ijjTYij rY  ).(0 , (10)    i jjTYi j rY  ).(0 , (10) 

and at level-two: 

 jjjTY ucT 000).(0   , (11) 
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where ijY represents the outcome for subject i in site j, 00  represents the overall intercept 

across all sites, c represents the total effect of the treatment on the outcome, jT  represents 

the level of treatment received in site j, and ijr  and ju0 represent level-one and level-two 

random effects, respectively. Here, clustering is accounted for by modeling jTY ).(0  as 

randomly varying across level-two units, indicated by the inclusion of the level-two 

residual, ju0 . This model assumes that the level-one residuals, ije , are independently and 

normally distributed with a mean of zero and a constant variance. Additionally, the level-

two residuals, ju0 , are assumed independently and normally distributed with a mean of 

zero and a constant variance in addition to being independent of the level-one residuals. 

To estimate the a parameter, the mediator model for subject i in site j at level-one is 

specified as: 

 ijjTMij rM  ).(0 , (12) 

and at level-two: 

 jjjTM uaT 000).(0   ,
 

(13)  

where ijM represents the score on the mediator for subject i in site j, 00  represents the 

overall intercept across all sites, a represents the effect of the treatment on the mediator, 

jT represents the treatment condition administered to cluster j, and ijr  and ju0  represent 

level-one and -two residuals, respectively. Again, level-one residuals are assumed 

independently and normally distributed with a mean of zero and a constant variance. 

Level-two residuals are assumed independently and normally distributed with a mean of 
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zero and a constant variance in addition to being independent of the level-one residuals. 

Similarly, b and c' estimates are obtained from a multilevel model for the outcome 

variable with the following equation at level-one: 

 ijijjMTYij rbMY  ).(0 , (14) 

and at level-two: 

 jjjMTY uTc 000).(0 '   , (15)  

where ijY  represents the outcome score for subject i in site j, b and c' correspond to the 

paths depicted in Figure 2, 00  represents the overall intercept across all sites, and ijr  and 

ju0  represent level-one and -two residuals, respectively. Statistical assumptions for the 

level-one and level-two residuals are identical to those mentioned above for Equations 10 

through 13. The estimate of a obtained in Equation 13 is multiplied by the estimate of b 

in Equation 14 to obtain the indirect effect, which can then be tested for statistical 

significance (MacKinnon, 2008). Alternatively, the c’ parameter obtained in Equation 15 

can be subtracted from the c parameter obtained in Equation 11 to yield a )'( cc   

estimate of the indirect effect. Although the ab and )'( cc   methods for calculating the 

indirect effect are not mathematically equivalent in multilevel mediation models, the 

difference in the indirect effect calculated by the ab method and the )'( cc   method is 

typically negligible (MacKinnon, 2008). 

As an alternative to the 2→1→1 design, treatment sites (i.e., level-two units) may 

be randomly assigned to treatment conditions, with a mediator measured at the site level 

and the outcome measured at the individual level. This results in a 2→2→1 design, again 
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requiring a series of multilevel models to estimate the relevant parameters. First, the total 

effect, c, of the treatment on the outcome is specified as in the 2→1→1 design 

(Equations 10 and 11). Next, because the mediator and the treatment variables are 

measured at the same level (level-two), OLS regression is used to estimate the effect of 

the treatment on the mediator (a). This is modeled as in Equation 2. Finally, since the 

outcome, Y, is nested within level-two units, a multilevel model is used to model this 

clustering in estimating the b and c parameters.  At level-one, the model for the outcome 

for subject i in level-two unit j is: 

 ijjMTYij rY  ).(0 , (16) 

and at level-two: 

 jjjjMTY uTcbM 000).(0 '    (17) 

where 00  represents the overall intercept, and all other parameters are defined as above. 

As before, this model assumes that the level-one residuals are independently and 

normally distributed with a mean of zero and a constant variance. Additionally, the level-

two residuals are assumed independently and normally distributed with a mean of zero 

and a constant variance in addition to being independent of the level-one residuals. As 

with 2→1→1 designs, ab or )'( cc estimates of the indirect effect can be calculated 

from their respective parameter estimates. These multilevel specifications of 2→1→1 

and 2→2→1 cluster randomized designs are not exhaustive of all cluster randomized data 

structures or model specifications. See Pituch and Stapleton (2008) and Pituch, Stapleton, 

and Kang (2006) for other exemplar multilevel model specifications.  
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In contrast to designs where sites or clusters are randomly assigned to treatment 

conditions, an intervention may be randomly assigned to individuals that are clustered 

within higher-level units. In these “1→1→1” or “lower-level” mediation designs (Kenny, 

Korchmaros, & Bolger, 2003), all variables included in the mediation analysis are 

measured at the lowest level (level-one). These designs may contain either fixed or 

random indirect effect estimates that may require unique considerations. Given the 

clustering of individuals within relevant contexts (e.g., students within classrooms, 

patients within hospitals, etc.) multilevel modeling must be used to handle the resulting 

dependence of observations.  

In lower-level mediation models, the total effect c is estimated with the following 

model at level-one: 

 ijijjjTYij rTcY  ).(0 , (18)    (18) 

and at level-two: 

 








jj

jjTY

ucc

u

1

000).(0 
, (19)    (19) 

where ijY  represents the outcome for subject i in cluster j, 00  represents the overall 

intercept, ijT  represents the value on the treatment variable for subject i in cluster unit j, 



c j  represents the total effect of the treatment on the outcome for cluster j, ijr  represents 

the level-one residual, and ju0  and ju1  represent random effects corresponding to jTY ).(0  

and 



c j , respectively. This model assumes that the level-one residuals are independently 

and normally distributed with a mean of zero and a constant variance. The level-two 
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residuals are assumed independently and normally distributed with a mean of zero and a 

constant variance in addition to being independent of the level-one residuals. In this 

instance with multiple level-two residuals, however, the level-two residuals are allowed 

to covary with each other. The a, b, and c parameters can be obtained by estimating the 

following multilevel model for the mediator, M, at level-one: 

 ijijjjTMij rTaM  ).(0 , (20) 

and at level-two: 

 








jj

MMjTM

uaa

u

1

0).(0 
, (21)  

and for the outcome, Y, at level-one: 

 ijijijjjMTYij rTcMbY  ').(0 , (22) 

and at level-two: 

 















jj

jj

YjYjMTY

ucc

ubb

u

3

2

0).(0

'



, (23) 

where a, b, and c’ represent the corresponding parameters used in the indirect effect 

calculation. The statistical assumptions for the residuals are identical to those for the 

residuals in Equations 18 and 19. The intercept terms jTM ).(0  and jMTY ).(0  have similar 

random effects specifications at level-two, indicating that the intercept for each level-two 

unit varies from the overall mean intercept. In Equations 21 and 23, the effects of the a, 

b, and c’ parameters are modeled as varying across level-two units, as indicated by the 
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presence of the 
ju1
 term in Equation 21 and the ju2  and 

ju3
 terms in Equation 23. In this 

scenario with random a and b parameters, however, the expected value of the ab product 

is no longer the product of the individual fixed effects parameters. Instead, the expected 

value for the indirect effect is as follows (Goodman, 1960): 

  abjj abbaE )( , (24) 

where and  represent random variables, and 



 a b represents the covariance between 

them. This covariance term must be included for unbiased estimation of the indirect 

effect. However, if either the a or the b parameter is modeled as fixed, (i.e., if 
 
or 

 

are removed from the model in Equations 21 and 23), the indirect effect is now fixed with 

an expected value equal to the ab product as before (Kenny et al., 2003).  

Bauer et al. (2006) outlined a method for dataset configuration and linear model 

parameterization that provides estimates of a, b, and 



 a b when calculating the indirect 

effect in a 1→1→1 design. To do so, Bauer et al. combine the models for both the 

mediator (Equations 20 and 21) and the outcome (Equations 22 and 23) into a single 

equation by including a dummy coded variable for each portion of the model pertaining 

to each outcome. Combining these two models’ equations to allow estimation of a single 

model requires stacking the dataset so that each subject’s data is contained in two 

observations or rows. One observation contains variables relevant to the mediator model 

(Equations 20 and 21), and the other observation contains variables necessary for the 

outcome model (Equations 22 and 23). Each observation also contains two dummy-coded 

indicators, 



SY  and 



SM , coded such that 



SY  equals one if the associated observation 



a j



b j



u1 j



u2 j
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contains data for the outcome model and zero otherwise, and 
MS  equals one if that 

observation contains data for the mediator model and zero otherwise.  

For 1YS  , a new outcome variable, Z, contains Y values, and for 1MS , 

MZ  . This results in the following model at level-one: 

 ZijijjijjjMTYYijjjTMMij rTcMbSTaSZ  )()( ).(0).(0  ,
 

(25) 

and at level-two: 
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u
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0).(0
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, (26) 

producing the following combined equation: 

ZijijjijjYjYYijjMMMij rTucMubuSTuauSZ  ])()()[(])()[( 3200  . (27) 

This specification simultaneously provides all parameters for both the mediator and 

outcome model specifications, including covariance estimates for all model parameters. 

The random effects in Equation 26 are assumed normally distributed with means equal to 

the average population effects, and a covariance structure that, at its most parameterized, 

can assume that each random effect covaries with every other random effect.  Borrowing 

notation from Bauer et al. (2006), the following covariance structure can be assumed: 
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All level-two random effects are assumed independent of the level-one residuals. The 

covariance between the a and b estimates,



 a b, can then be obtained from estimating this 

model. Alternatively, the )'( cc   method of calculating the indirect effect avoids the 

need to estimate the covariance between the a and b parameters.  This is because the total 

effect, c, in a 1→1→1 mediation model is defined according to the following equation 

(Kenny et al., 2003): 

 ababcc  '  (29) 

Subtracting c’ from both sides of the equation provides the following formula for )'( cc 

in 1→1→1 mediation: 

 ababcc  )'( . (30) 

Hence, in the 1→1→1 scenario, the )'( cc   method for calculating the indirect effect 

provides an easier solution to the problem of estimating the indirect effect because it 

eliminates the need to estimate the covariances between any parameters. Again, although 

the ab and )'( cc   methods for calculating the indirect effect are not mathematically 

equivalent in multilevel mediation models, the difference is typically negligible 

(MacKinnon, 2008). With the a, b, c, and c’ parameters thus calculated, the statistical 
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significance of the indirect effect may be tested. The following section outlines 

commonly used methods of assessing the statistical significance of indirect effects, 

identifying the strengths and weaknesses of each test.  

TESTS OF THE STATISTICAL SIGNIFICANCE OF THE INDIRECT EFFECT  

Once the indirect effect is calculated, various procedures exist to assess its 

statistical significance. Of these, the causal steps approach outlined by Baron and Kenny 

(1986) is by far the most commonly used procedure (Preacher & Hayes, 2008). The 

causal steps procedure requires that parameters c, a, and b be sequentially statistically 

significant in order to infer mediation. Partial or complete mediation is then based on the 

significance of the c parameter. This approach, although computationally simple, lacks 

statistical power and lowers the observed Type I error rate (MacKinnon, 2008; Pituch, 

Whittaker, & Stapleton, 2005). Additionally, some researchers (Collins, Graham, & 

Flaherty, 1998; Judd & Kenny, 1981; MacKinnon, Krull, & Lockwood, 2000; Shrout & 

Bolger, 2002) have suggested that a significant c parameter is not necessary for mediation 

to occur, calling into question the viability of the causal steps method. 

To address this, the joint significance approach (MacKinnon, Lockwood, 

Hoffman, West, & Sheets, 2002) has been suggested. This approach requires that both the 

a and b parameters be statistically significant in order to infer mediation. This procedure 

does not require statistical significance of the estimate of the c parameter. This approach 

has been found to improve power when compared to the causal steps approach when used 

with single-level designs (MacKinnon et al., 2002), although use of this approach is often 

criticized for failing to provide a confidence interval for the indirect effect (e.g., Pituch et 
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al., 2006). Additionally, simulation studies have found that this approach provides lower 

power in multilevel designs than other statistical tests of the indirect effect (Pituch et al., 

2005; Pituch et al., 2006). 

In an effort to provide confidence limits for the indirect effect, Sobel (1982, 1986) 

used Gaussian confidence limits through the calculation of a z-score based on the ab 

product and its standard error. However, the assumption of normality associated with use 

of a standard normal critical statistic is violated because the sampling distribution of 

estimates of the ab product is skewed, kurtotic, or both depending on the true value of the 

ab parameter (Springer & Thompson, 1966; Craig, 1936; Lomnicki, 1967). As such, z-

score-based critical values and associated confidence intervals as used with Sobel’s test 

are inappropriate. This is evidenced by simulation study results showing an asymmetry in 

the proportion of replications in which the true value falls to the left versus the right of 

the Sobel-calculated confidence interval estimates (Stone & Sobel, 1990; MacKinnon, 

Lockwood, & Williams, 2004).  

To address these issues, bootstrap resampling methods (Shrout & Bolger, 2002) 

have been used to derive the empirical sampling distribution of the ab product estimate. 

Confidence intervals can be constructed using the resulting empirical distribution, with 

intervals excluding zero interpreted as evidence for mediation. Although several versions 

of bootstrapping exist, the bias corrected parametric percentile bootstrap has been shown 

to be the most accurate of the available methods for both single-level and multilevel 

designs (MacKinnon et al., 2004; Pituch et al., 2006). In multilevel designs, researchers 

are given two options when bootstrapping confidence intervals for the indirect effect: 
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bootstrapping of residuals or bootstrapping of cases. In general, bootstrapping of 

residuals is preferred to bootstrapping of cases for two reasons (Pituch et al., 2006). First, 

multilevel models assume that values for the explanatory variables are fixed across 

samples; resampling cases with replacement would clearly change the distribution of the 

explanatory variables, violating this assumption. Second, resampling cases at any one 

level of a multilevel design may fail to reproduce the dependency present in the data or 

may produce inefficient parameter estimates. Pituch et al. (2006) outline the steps 

required to produce appropriate bias-corrected parametric percentile bootstrap estimates 

of the indirect effect. To summarize their steps for a 1→1→1 design: 

1. Sample residuals for as many level-one and level-two units (as corresponds with 

the original sample) from a normal distribution with a mean of zero and variance 

equal to the estimated variance associated with that level. 

2. Substitute the residuals and the original sample’s observed values on the 

treatment variable into the equation for the mediator (Equations 20 and 21) to 

produce each case’s value on the mediator variable.  

3. Substitute values of the mediator obtained in Step 2 along with the resampled 

level-one and two residuals and treatment variable values into the equations for 

the outcome, Y (Equations 22 and 23).  

4. Rerun the original mediation analysis (Equations 20 through 23) on the 

bootstrapped data to obtain estimates of the a, b, and c’ parameters for each 

bootstrapped sample. 
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5. Repeat steps 1 through 4 for each of the number, nb, of bootstrapped samples 

required (typically 1,000). 

6. Compute the ab product for each of the nb replications. The values at the 2.5
th

 and 

97.5
th

 percentile in this distribution serve as the lower and upper limits of a non-

bias corrected 95% confidence interval. 

7. Calculate the z-score ( 0z ) in the standard normal distribution that corresponds to 

the percentile of the original ab estimate in the sample of 1,000 bootstrap 

estimates.   

8. Calculate 96.12 0 z
 

and identify the percentiles in the standard normal 

distribution associated with the resulting upper and lower limits’ values. The bias-

corrected upper limit of the 95% confidence interval is the bootstrap estimate of 

ab that corresponds to the percentile equivalent of 96.12 0 z . Similarly, the bias 

corrected lower confidence interval limit is the bootstrap estimate of ab that 

corresponds to the percentile equivalent of 96.12 0 z . 

This method, while both accurate and powerful, is computationally intensive and 

complicated to use for most researchers. 

As an alternative, the empirical M-test (MacKinnon, Fritz, Williams, & 

Lockwood, 2007a; Arojan, 1944) provides asymmetric confidence intervals for the ab 

estimates by providing standardized critical values based on an approximation to the ab 

product’s sampling distribution. This procedure performs similarly to bootstrap 

resampling methods, providing comparable statistical performance for single-level 
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designs (MacKinnon et al., 2004), multilevel designs (Pituch et al., 2005; Pituch et al., 

2006), and for non-normally distributed data (Pituch & Stapleton, 2008). To facilitate 

utilization of the empirical-M test, MacKinnon et al. (2007a) created the PRODCLIN 

program to compute asymmetric confidence intervals based on this approximation to the 

ab sampling distribution given a sample’s estimates of a and b and their respective 

standard error values. Although bootstrap resampling methods provide slightly better 

statistical power, PRODCLIN’s ease of use and overall accuracy render it preferable to 

all but bootstrap resampling procedures for linear models (Pituch et al., 2006). 

The )'( cc   estimate of the indirect effect may also be tested for statistical 

significance by dividing this estimate by one of many analytically derived standard errors 

(see MacKinnon et al., 2002, for specific standard error formulations), and comparing the 

resulting value to a t- or z-distribution. As previously mentioned, the )'( cc   method is 

identical to the ab method under OLS regression, but is slightly different from the ab 

estimate in multilevel analyses because of the discrepancy in the weighting matrices used 

to estimate the relevant fixed effects (Krull & MacKinnon, 2001). Although this 

difference is typically negligible, the ab estimator of the indirect effect is more efficient 

than the )'( cc   estimator in multilevel analyses. Additionally, the ab estimator provides 

information regarding specific indirect effects in multiple mediator models (Krull & 

Mackinnon, 1999), whereas the )'( cc   estimator provides only an estimate of the total 

mediated effect (Krull & MacKinnon, 1999). Furthermore, all but bootstrap resampling 

methods for significance testing of the indirect effect estimate assume linear relationships 
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between T, M, and Y. However, this assumption may be invalid. For example, the 

relationship between the exogenous variable, T, and the mediator, M, could be nonlinear. 

The mediator could be a discrete, dichotomous variable containing only values of zero or 

one, requiring a nonlinear specification to model the relationship between T and M. The 

particular function of interest in the current study refers to scenarios in which the 

relationship between T and M follows an ogive pattern (such as the functions depicted in 

Figure 3). This logistic ogive pattern can also occur when the interval-scaled mediator is 

a measure of a construct on which the scores exhibit a ceiling and/or floor effect. 

Although the current investigation is specifically focused on modeling a nonlinear 

relationship between T and M, mediational analysis for nonlinear relationships is 

historically rooted in the development of path analytic methods for dichotomous 

outcomes (see Winship & Mare, 1983). As such, the following section outlines the issues 

associated with nonlinear mediation for dichotomous outcomes, as these are special cases 

of a more generalized nonlinear trajectory. This is followed by a discussion of a 

generalized approach to nonlinear mediation for mediating variables that are not 

necessarily dichotomous but with scores that exhibit floor and ceiling effects. 

NONLINEAR MEDIATION FOR DICHOTOMOUS OUTCOMES 

Dichotomous outcomes require special consideration in the context of statistical 

modeling. In many investigations, the outcome of interest, Y, consists of a dichotomous 

variable used to indicate the presence or absence of a specific condition. For example, in 

mediational analyses in the field of medicine, Y may represent a binary variable 

indicating the presence or absence of a specific disease in a patient after undergoing some 
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intervention, T. In this situation, conventional linear analyses of the indirect effect are no 

longer appropriate for three primary reasons (MacKinnon, 2008). First, linear analyses 

produce predicted values outside of the range of possible values (of zero to one). For 

example, using standard multiple regression to predict a binary outcome can result in 

predicted values less than zero or greater than one for certain observed combinations of 

the independent variables. Second, the standard errors of the regression coefficients are 

inaccurate, complicating the interpretation of the ensuing inferential statistics. Finally, the 

residuals for models containing binary outcomes are not normally distributed, directly 

violating the assumption of normally distributed errors associated with linear regression 

model estimation techniques. Given these issues, standard linear models (and their 

multilevel extensions) are inappropriate in cases where the criterion of interest is binary.  

Logistic regression addresses problems associated when estimating models with 

binary outcomes and is the method most commonly used to analyze dichotomous 

dependent variables (Hosmer & Lemeshow, 2000). This class of procedures provides 

upper and lower asymptotes of zero and one, respectively, which correspond to the 

maximum and minimum values of the observed dichotomous outcomes. These models 

estimate the log-odds of success on the outcome variable according to the following 

specification: 

 nn
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where pi is the probability of success on the outcome variable for case i, 
ip1  is the 

probability of failure for case i, 








 i

i

p

p

1
 is the odds of success,



X1
 through 



Xn  are a set 

of n predictor variables, and 



0  to 



n  are the parameter estimates associated with their 

respective independent variables. Solving for the probability of success (e.g., Howell, 

2002): 

 
)]...(exp[1

1

110 nn

i
XX

p
 

 . (32)  

Previous research on nonlinear mediation analysis has focused primarily on 

scenarios with a dichotomous distal outcome variable, Y (Mackinnon, 2008). In these 

analyses, path a in Figure 2 can be estimated via conventional linear methods when it is 

assumed that the relationship between T and M is linear. However, paths b, c, and c’ 

require the use of logistic techniques when Y is dichotomous. In this situation, binary 

outcomes are commonly modeled as having continuous underlying counterparts whose 

latent values are deterministically or stochastically related to the observed dichotomous 

outcome (Winship & Mare, 1983). Although several latent variable conceptualizations 

exist to model the relationship between the unobserved latent variable, Y*, and the 

observed dichotomous outcome, Y, the threshold model as outlined by Winship and Mare 

is commonly used to specify this relationship in meditational analysis (e.g., MacKinnon, 

D. P., Lockwood, C. M., Brown, C. H., Wang, W., & Hoffman, J. M., 2007b; 

MacKinnon, 2008). This model specifies that the observed dichotomous outcome, Y, and 

the unobserved latent continuous variable, Y*, are related as follows: 
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where Y* is assumed to have a mean of zero and a variance of one, and L is the threshold 

across which Y changes from zero to one. This implies that Y and Y* are directly related 

through a nonlinear transformation such that all values of Y* greater than or equal to L 

have been transformed to 1, and all values of Y* below L have been transformed to zero 

(Winship & Mare, 1983). In turn, Y* may be related to a set of observed continuous 

predictors, nXX ,....,1 . This relationship may be modeled linearly as: 

 *...110

*

Ynn XXY    (34) 

Here, 0  through n  are parameters to be estimated, and *Y is an error term that is 

assumed to be uncorrelated with all nX .  If *Y
  is assumed to follow an extreme value 

distribution (i.e., is considered a value in excess of a predetermined threshold; Johnson & 

Kotz, 1970) then Equations 33 and 34 above define a logit, or logistic regression, model 

as presented in Equations 31 and 32 (McFadden, 1974; Winship & Mare, 1983). Given 

this framework, logistic regression methods are equivalent to structural equation models 

whereby a dichotomous variable serves as an indicator of an unobserved latent variable 

(i.e., the natural log of the odds of subject i possessing a score of one on the outcome 

variable). Alternatively, if *Y
  is assumed normally distributed, then Equations 33 and 34 

define a probit, or probit regression, model (Winship & Mare, 1983; Hanushek & 

Jackson, 1977). The choice of the *Y
  distribution is somewhat arbitrary, as the logit and 

probit models are essentially interchangeable given the similarity between the logistic 
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and cumulative normal distribution functions (Winship & Mare, 1983; Hanushek & 

Jackson, 1977). The current investigation will focus on the logistic regression 

conceptualization, with the understanding that probit regression provides an alternative 

and nearly equivalent mode of analysis. 

The model specified within the threshold framework described by Equations 33 

and 34 is underidentified because the scale of the unobserved latent variable Y* is not 

directly observed (Winship & Mare, 1983). To address this, a scaling assumption is 

required regarding either the variance of Y* or of *Y
 .  Commonly, the standard logistic 

regression error, 



 2

3
 , is substituted for *Y

  to identify the model. Winship and Mare 

provide a discussion of this issue.With the threshold model for a dichotomous outcome 

thus defined, both linear and logistic regression models are used to estimate the a, b, c, 

and c’ parameters in a meditational analysis. First, the total effect is estimated from the 

logistic regression of the outcome, Y, on the treatment, T: 
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where ip is the probability of subject i containing a 1 on the outcome variable, 
).(0 * TY

  

represents the intercept for the logistic equation, and all other variables are defined as 

before.  Next, the a parameter is estimated linearly as in Equation 2. Finally, the b and c’ 

parameters are estimated from the logistic regression of Y on T and M: 
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where 
).(0 * MTY

  is the intercept for the logistic regression, and all other parameters are 

defined as before. As mentioned above, the residual error in Equations 35 and 36 is fixed 

at 



 2

3
 . 

Once the scale of the residual variance in logistic regression is fixed at



 2

3
 , the 

scale for the latent continuous outcome variable Y* can vary across models (MacKinnon 

& Dwyer, 1993; Jasti, Dudley, & Goldwater, 2008). Put differently, the variance of the 

dependent variable in logistic regression is fixed at 



 2

3
 regardless of the number of 

variables included as predictors. Consequently, because the model for the mediator 

(Equation 36) includes fewer predictors than the model for the total effect (Equation 35), 

estimates for the b, c, and c’ parameters depend heavily on the other variables in the 

model, and the )'( cc   method of calculating the indirect effect is no longer equivalent 

or nearly equivalent to the ab method (MacKinnon & Dwyer, 1993). Under these 

conditions, simulation studies suggest that the ab estimate of the indirect effect is less 

biased and more robust to assumption violations than is the )'( cc   estimate 

(MacKinnon, 2008; MacKinnon & Dwyer, 1993).  

Additionally, MacKinnon and Dwyer (1993) suggest standardizing estimates of 

the b parameter and its standard error. In logistic regression, this is accomplished by 

dividing each parameter in the logistic model by the standard error for the logistic 

regression model (i.e., the square root of the residual error variance for the logistic 

regression model). As described by Winship and Mare (1983) and MacKinnon et. al. 
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(2007b), the residual error variance, *Y
 , for a logistic regression mediation model is 

calculated as follows: 
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where c’ and b represent the parameter estimates from the logistic regression, 



T
2
 

represents the variance of the treatment variable, 



M

2
 represents the variance of the 

mediator, 2

TM  represents the covariance between the treatment and the mediator, and 



 2

3  
is the fixed residual variance from the logistic regression. Once standardized, model 

coefficients now represent the effect of a unit change in a respective independent variable 

in standard deviations of the latent variable Y* (Winship & Mare, 1983). For example, 

the estimate of the b parameter standardized by dividing by Equation 37 provides an 

estimate of the change (in standard deviation units) on the continuous latent variable Y* 

that results from of a one unit change in the mediator, M, controlling for the treatment 

variable.  

Once b and its standard error are appropriately standardized, three methods exist 

for quantifying the indirect effect.  First, the product of a with standardized b may be 

used as an estimate of the mediated effect (MacKinnon & Dwyer, 1993), and the standard 

error of a and the standardized standard error of b can be used to test the statistical 

significance of the ab product. This is directly analogous to the use of the ab product as 

an estimate of the indirect effect assuming a linear relationship between all variables. 

However, when the outcome, Y, is dichotomous, the ab method of estimating the indirect 



 29 

effect systematically overestimates the true mediated effect (Li, Schneider, and Bennett, 

2007). This is because the true value of the indirect effect in a logistic regression analysis 

is defined by the instantaneous indirect effect in Equation 4. As such, the second method 

for quantifying the indirect effect utilizes the mathematical definition of the instantaneous 

indirect effect (Equation 4). In this instance, where logistic regression is used to analyze a 

binary outcome Y and the relationship between M and T is modeled linearly as in 

Equation 2, Winship & Mare (1983) and Li et. al. derive the true indirect effect as the 

instantaneous indirect effect,  .  First, the partial derivative of M is taken with respect to 

T: 

 a
T

M





. (38)  

Next, the partial derivative of Y is taken with respect to M: 
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Finally, Equations 38 and 39 are multiplied to obtain the instantaneous indirect effect: 
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Here, the true indirect effect varies as a function of both M and T. This provides a form of 

moderated mediation, whereby the true indirect effect depends on both the value of the 

mediator and the dosage of treatment received. Hayes and Preacher (2010) recommend 

examining the true indirect effect at the mean of T as well as at one standard deviation 
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above and below the mean of T to investigate the instantaneous indirect effect at low, 

average, and high values of treatment dosage. Confidence intervals for the instantaneous 

indirect effect at each value of the treatment dosage can be estimated via the bias-

corrected parametric percentile bootstrap resampling method described above. 

Additionally, although meditational analyses often include dummy coded treatment 

indicators, Equation 40 assumes that the treatment is measured continuously. As such, the 

current investigation is concerned only with continuous, dosage-like treatment variables, 

acknowledging that additional derivations are necessary for use with binary treatment 

indicators. See Li et al. (2007) for a discussion. 

From the formulation of the instantaneous indirect effect in Equation 40, it is 

evident that the instantaneous indirect effect for continuous T is simply the product of the 

a and b coefficients adjusted by a factor that depends on the value of the mediator and the 

dosage of treatment received.  Because this adjustment factor will always be less than 

one, the ab estimate of the indirect effect will always overstate the magnitude of the 

mediated effect (Li et al., 2007). The third method for calculating the indirect effect 

utilizes the )'( cc  approach outlined above.  However, in cases where the outcome, Y, is 

dichotomous, this method is generally more biased than the already biased ab method 

(MacKinnon et al., 2007b).  

Mediating relationships involving binary mediators also require the use of 

nonlinear models to appropriately handle estimation of indirect effects (Li et al., 2007; 

Winship & Mare, 1983; Jasti et al., 2008). This form of analysis is particularly useful 

when the mediator indicates the presence or absence of a specific mediating condition. As 
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in the case with dichotomous outcomes, an observed dichotomous mediator, M, is 

specified as a threshold model whereby M is modeled as an observed indicator of an 

unobserved latent variable, M*. M and M* are then related through a nonlinear 

transformation defined by: 
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where M* is assumed to have a mean of zero and a variance of one, and L is the threshold 

across which M changes from zero to one. This model specification directly parallels the 

threshold model specification for dichotomous Y (see Equation 33). As before, M* may 

be related to a set of observed continuous predictors, nXX ,....,1 . This relationship may be 

modeled linearly as: 

 *...110

*

Mnn XXM    (42) 

Here, 0  through n  are parameters to be estimated, and *M
  is an error term that is 

assumed to be uncorrelated with all nX . If *M
  is assumed to follow an extreme value 

distribution (Johnson & Kotz, 1970) then Equations 41 and 42 define a logit, or logistic 

regression, model (McFadden, 1974; Winship & Mare, 1983), though probit models 

provide viable alternatives. As previously mentioned, the current investigation will focus 

on the logistic regression conceptualization. 

In mediation analysis with a binary mediator, only the a parameter is estimated 

using logistic regression: 
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where ip is the probability of subject i having a score of one on the mediator, and all 

other variables are defined as above. The c parameter is modeled linearly and estimated 

according to Equation 1. Similarly the b and c’ prime parameters are modeled according 

to Equation 3. These estimates are then used in calculating the indirect effect as 

previously defined. 

As in the case of dichotomous Y, the variance for the mediator model must be 

fixed in order for the model to be identified.  Again, the residual variance is 

conventionally fixed at 



 2

3
. Now, with a binary mediator instead of a binary outcome, 

the a path and its standard error must be standardized by dividing both by the standard 

error for the logistic regression model with dichotomous outcome M (Jasti et al., 2008): 
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Equation 44 contains fewer terms than the standard error for dichotomous Y in Equation 

37 because the logistic regression model of the mediator (Equation 43) contains only one 

predictor, the treatment, T.  In contrast, the model for a dichotomous Y contains two 

predictors, the treatment, T, and the mediator, M. This explains the simplicity of the 

equation for the standard error of a dichotomous mediator (Equation 44) compared to the 

standard error for a dichotomous outcome (Equation 37).  
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Assuming a linear relationship between M and Y and between T and Y, the b and 

c paths can be estimated using the traditional linear model, and the product of b and 

standardized a provide a measure of the indirect effect. However, as is the case with 

binary Y, the ab product is an overestimate of the true mediated effect (Li et al., 2007). 

Additionally, in the presence of a binary M, the )'( cc   method is sensitive to the skew 

of the distribution of the treatment dosage, and as such should be used cautiously (Li et 

al., 2007).  The true indirect effect is again defined as the instantaneous indirect effect 

described in Equation 4.  With logistic regression used to analyze the relationship 

between a binary mediator and the treatment variable, and all other relationships modeled 

linearly, Winship & Mare (1983) and Li et. al. derive the true indirect effect as the 

instantaneous indirect effect,  . First, the derivative of M is taken with respect to T: 
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Next, the derivative of Y is taken with respect to M: 
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Finally, Equations 45 and 46 are multiplied to obtain the instantaneous indirect effect: 
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Here, the true indirect effect varies as a function of  T. This again provides a form of 

moderated mediation, whereby the true indirect effect depends on the level of treatment 

received. Equation 47 assumes that the treatment is measured continuously. As before, 
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the instantaneous indirect effect for continuous T is simply the product of the a and b 

coefficients adjusted by a factor that depends on the dosage of treatment received.  Since 

this adjustment factor will always be less than one, the ab estimate of the indirect effect 

will always overestimate the magnitude of the mediated effect (Li et al., 2007). As is the 

case for binary Y, the instantaneous indirect effect may be evaluated at the mean of T and 

at one standard deviation above and below the mean of T to investigate the value of the 

instantaneous indirect effect at low, average, and high values of the treatment dosage 

(Hayes & Preacher, 2010). Additionally, as previously mentioned, the bias-corrected 

parametric percentile bootstrap resampling method may be used to provide confidence 

intervals around the instantaneous indirect effect at each dosage of the treatment.  

In summary, binary outcomes in mediational analyses require special 

considerations in estimating and in testing the statistical significance of the indirect 

effect. When properly formulated, this indirect effect depends on the dosage of treatment 

received, providing a form of moderated mediation. As an additional consideration, many 

constructs in the social and behavioral sciences contain properties similar to binary 

outcomes, particularly with regard to survey scores used as measures of underlying 

mediators. These surveys frequently contain minimum and maximum possible scores 

(termed floor and ceiling effects, respectively) resulting in data with nonlinear 

relationships mimicking the pattern observed with binary outcomes. These constructs 

also require special treatment to properly model their lower and upper asymptotes and the 

resulting nonlinear relationships found between the score on the mediator and other 

variables included in the model. The following section addresses these concerns 
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associated with measures of mediation frequently used in the social and behavioral 

sciences.  

NONLINEAR MEDIATION FOR CONTINUOUS MEDIATORS WITH FLOOR AND CEILING 

EFFECTS 

Hypothesized models in the social and behavioral sciences often posit nonlinear 

relationships amongst variables. For example, as cited in Singer and Willett (2003), 

Robertson (1909) theorized that the rate at which learning occurs is proportional to the 

amount of learning that has previously occurred times the amount of learning that will 

occur in the future. Mathematically, this can be expressed as a differential equation of the 

form: 

 )( YkY
dt

dY
  , (48) 

where 
dt

dY
 is the rate of learning, Y is the amount learned by time t,   is an upper limit 

to the amount that can be learned, and k is a proportionality constant. This first-order 

differential equation has a solution of the form: 
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which relates learning and time through an exponential (nonlinear) function for subject i. 

These functions are similar to the logistic function used in the analysis of dichotomous 

outcomes (see Equation 32). However, the function in Equation 49 differs from the 

logistic function in two important ways.  First, Equation 49 allows for an upper 

asymptote value other than one, indicated by the i in the numerator. Second, the i0
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coefficient allows for specification of a model whereby the function crosses the Y-axis at 

a non-zero value. Despite these differences between the logistic function and the function 

described in Equation 49, both stem from the same family of nonlinear distributions. 

These nonlinear relationships abound in the social and behavioral sciences (for 

examples, see Debreu, 1959; Yerkes & Dodson, 1908; Kahneman & Tversky, 1979; 

Knobloch, 2007). Thus, it is conceivable that mediation analyses might involve a 

nonlinear relationship between T and M stemming from use of a mediation measure, for 

example, that contains floor and ceiling effects. This is often the case when measures of 

psychological constructs are used as indicators of a mediating variable. For example, 

scores on criterion-referenced tests commonly include both floor and ceiling effects that 

should be accounted for when modeling the mediating effect. If the effect of T on M is 

modeled linearly, the resulting a parameter (Figure 2) can reflect the effect of the 

treatment (T) on unobtainable mediator values. This is analogous to modeling a binary 

outcome variable using a linear model specification. To address this, a nonlinear function 

with lower and upper asymptotes should be applied to the treatment’s effect on the 

mediator. This requires a generalization of the nonlinear model used to analyze 

dichotomous mediating variables. 

Mediators with floor and ceiling effects require a link function that contains lower 

and upper asymptotes corresponding to the mediating variables’ minimum and maximum 

values. A generalized logistic trajectory can be used to model the effect of T on the 

mediator, M, as follows: 
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where  represents the value on the mediator for subject i, and  respectively 

represent lower and upper mediator asymptotes, 0  is a pseudo-intercept parameter that 

influences the point at which the function crosses the ordinate axis, 
1  is a pseudo-slope 

parameter that is related to the rate of change of the nonlinear function between its 

asymptotes, and  represents the residual for subject i. In contrast to instances involving 

dichotomous mediators, mediating variables containing upper and lower asymptotes are 

both continuous and observed. As such, the residual, , is included in the model 

specification and its variance is directly estimable from the observed data. This precludes 

the need to utilize the threshold latent variable model discussed above. Figure 4 provides 

a path analysis diagram of the proposed nonlinear relationship between the treatment and 

the mediator.  

Borrowing an exposition from Singer and Willett (2003), Figure 3 depicts graphs 

of Equation 50 for various values of 



 0  and



1 with and  set at zero and 100, 

respectively. Although the 



 0  and 



1 parameters do not have the same interpretations as 

in the linear model (see Equations 1 through 3), M-axis intercept values are clearly 

related to 



 0 , and the rate at which the function reaches its upper asymptote is clearly 

related to



1. Thus, in keeping with the terminology introduced in Singer and Willett, 



 0  

and 



1 will be referred to as the pseudo-intercept and pseudo-slope parameters, 

respectively. As can be seen in the graphs in Figure 3, the larger the value of 1, the 

iM
1 2

ir

ir

1 2
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steeper the acceleration of the curve. The larger the value of 0, the larger the value of the 

M-axis intercept. This function simplifies to the standard logistic regression equation for 

binary outcomes given 01  , 12  , and 10  . 

The parameterization of the nonlinear model in Equation 50 is designed for use 

with single-level datasets. However, this parameterization is easily extended to multilevel 

mediation analyses. For example, in 1→1→1 mediation, the treatment’s effect on the 

mediator may vary across level-two units. At level-one, this could be parameterized as 

follows: 
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and at level-two: 
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resulting in the following combined equation: 
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1 (00  u0 j ) exp[(10  u1 j )Tij]
 rij . (53) 

Here,  and , respectively, represent the multilevel extensions of the parameters 

defined in Equation 50, and and  represent their respective random effects. In this 

design, the model for the outcome could be modeled linearly as in Equations 22 and 23. 

The level-one and -two residuals for Equations 22, 23, and 53 are assumed to be 

distributed in the same manner as those described for the 1→1→1 mediation models in 

Equations 20 through 23. 

00 10

ju0 ju1
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Alternatively, Equation 50 could be extended for use with 2→1→1 mediation 

analyses according to the following specification at level-one: 
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and at level-two: 
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resulting in the following combined model: 
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Here,  is the pseudo-intercept, 11  is the pseudo-slope, and  and  respectively 

represent intercept and slope random effects. Level-one and -two residuals are distributed 

as those described for 2→1→1 mediation analyses in Equations 12 and 13. Though the 

asymptotes 
1  and 

2  may vary across level-two units, Equations 53 and 56 treat them 

as fixed effects. To obtain paths b and c in Figure 2, the model for the outcome could be 

modeled linearly as in Equations 14 and 15.  

This specification may be further extended to include 2→2→1 mediation designs. 

Here, the treatment and the mediator are measured at level-two, while the outcome is 

measured at the level of the individual subject (level-one). Since the treatment and the 

mediator are both measured at the highest level in the data hierarchy, there is no 

clustering to model for the effect of the treatment on the mediator. Hence, the model for 

the mediator is: 

00
ju0 ju1
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where 0 and 1 represent the pseudo-intercept and the pseudo-slope, respectively, and all 

other parameters are defined as above. The model for the outcome, Y, must address the 

nesting of individuals within level-two units by utilizing multilevel modeling techniques, 

and could be modeled linearly as in Equations 16 and 17. Again, level-one and -two 

residuals are distributed as those described for 2→2→1 mediation in Equations 16 and 

17. 

This series of multilevel logistic models can be used for calculating the indirect 

effect in one of three ways. First, the ab product may be used as an estimate of the 

indirect effect and tested for statistical significance. However, this conceptualization 

assumes that the treatment’s effect on the mediator is constant across all dosages of the 

treatment. Furthermore, this conceptualization does not correspond to the mathematical 

definition of the instantaneous indirect effect (Equation 4). As such, as with binary 

mediators and outcomes, the ab estimate of the indirect effect tends to overestimate the 

true magnitude of the mediated effect (Li et al., 2007). Second, the )'( cc   estimate of 

the indirect effect may be utilized, although this estimate is sensitive to the distribution of 

the treatment dosage. As such, the )'( cc  estimate should be used cautiously if at all (Li 

et al., 2007). Finally, combining the mathematical definition of the instantaneous indirect 

effect (Equation 4) with the generalized equation for an asymptotic M (Equation 50) 

yields a third method of estimating the indirect effect. In this case, the instantaneous 

indirect effect provides an estimate of the indirect effect that depends on the dosage of 
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the treatment variable. This conceptualization allows for a non-constant relationship 

between T and M corresponding to the nonlinear trajectory specified in Equation 50. 

Because the value of the instantaneous indirect effect depends on the level of the 

treatment, the instantaneous indirect effect is a form of moderated mediation. As such, it 

is recommended that the instantaneous indirect effect be calculated at the sample mean of 

T as well as at plus and minus one standard deviation from the mean of T to investigate 

the instantaneous indirect effect at low, moderate, and high dosages of the treatment 

variable (Hayes & Preacher, 2010). As previously mentioned, the current analysis focuses 

solely on models containing continuous treatment variables, with the understanding that 

formulations for binary treatment indicators must be derived separately (Li et al., 2007). 

Although the use of the instantaneous indirect effect applies to 1→1→1, 2→1→1, and 

2→2→1 mediation models, the following derivation for the instantaneous indirect effect 

focuses only on 1→1→1 designs. 

In a 1→1→1 nonlinear multilevel mediation model, as defined in Equations 53, 

22, and 23, the instantaneous indirect effect would be: 
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Using this conceptualization, Equation 58 shows that the indirect effect varies as a 

function of the value on the treatment variable, T. With nonlinear mediation as 

parameterized in Equation 53, the treatment eventually reaches a point of diminishing 

returns as the function representing the treatment’s effect on the mediator approaches its 

upper asymptote. This point, defined, here, as the level of treatment dosage optimization, 
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corresponds to the point of inflection on the logistic trajectory specified in Equation 53. 

The point of treatment dosage optimization holds important implications for optimizing 

the treatment effect through the mediator when the direct effect of the treatment on the 

outcome (c’) is close to zero. In these cases, the treatment’s effect on the outcome is 

largely a result of the treatment’s indirect effect on the outcome through the mediator. 

The point of treatment dosage optimization thus identifies a level of treatment beyond 

which the treatment’s effect on the mediator (and, consequently, its effect on the 

outcome) is subject to diminishing returns. Optimization of treatment dosage can be 

defined mathematically as the value of T at which the rate of change of  is zero, 

representing the point of inflection on the logistic trajectory. Mathematically, setting the 

derivative of  with respect to T equal to zero identifies the point of inflection on the 

logistic trajectory. First, the derivative of   is derived as follows: 
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Next, setting 
dT

d
 equal to zero and solving for T provides the point of treatment dosage 

optimization, OT : 
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The effect of the level of T on M is at a maximum at this point and starts decreasing for 

higher values on T.  




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In summary, specification of a nonlinear model for the relationship between a 

treatment and a proposed mediator has three primary advantages over conventional linear 

methods. First, mediating constructs often contain absolute maximum and minimum 

values that are ignored in linear parameterizations. Use of the nonlinear specification 

suggested here alleviates this concern. Second, utilization of the instantaneous indirect 

effect as defined by Stolzberg (1980; Equation 4) allows the assessment of the indirect 

effect as a function of the dosage of the treatment variable. Indirect effects that vary 

across the spectrum of treatment dosages allow investigators to specify the treatment’s 

relationship with the mediator at all dosages of the treatment. This form of analysis is 

unavailable via linear mediation methods as the instantaneous indirect effect is assumed 

constant across all levels of the treatment. As such, nonlinear methods (when appropriate) 

provide additional information through their interpretation as moderated mediating 

relationships. Furthermore, this form of moderated mediation avoids issues with ab and 

)'( cc   estimates of the indirect effect commonly encountered when specifying 

nonlinear relationships. Finally, in instances of partial or complete mediation, nonlinear 

specification allows for investigation of an optimal amount of treatment dosage. This is 

particularly relevant to behavioral interventions designed to be administered in 

organizational settings. This ensures that organizations maximize the effectiveness of 

their interventions, thus conserving the organization’s resources while ensuring that the 

intervention’s participants are not subject to unnecessary and unbeneficial amounts of the 

intervention. 
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Although the nonlinear multilevel mediation model described in Equations 53 and 

56 provides a mathematical model for a treatment-mediator relationship when the 

mediator has an upper- and lower-asymptote, the statistical properties and performance of 

the proposed model are yet to be empirically investigated. To examine use and estimation 

of the proposed nonlinear multilevel mediation model, a simulation study is proposed to 

assess the estimation of the nonlinear multilevel mediation model’s parameters. The 

purpose of this study is to examine both the estimation of a nonlinear treatment-mediator 

relationship and to investigate the bias of the resulting parameter and instantaneous 

indirect effect estimates. The proposed simulation investigates only the 111  design 

described in Equation 53, focusing on conditions common to the behavioral and social 

sciences as measures of mediating constructs with upper- and lower-asymptotes are 

commonly encountered in these contexts. 
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Chapter 3:  Methods 

GENERATING MODELS 

To examine the estimation of the proposed nonlinear multilevel mediation model, 

a simulation study will be conducted for the 1→1→1 multisite experimental design in 

which participants are randomly assigned to a treatment dosage and are nested within 

data collection sites. The SAS programming environment (version 9.2) will be used to 

create simulated datasets according to two generating models.  First, the following 

generating model will be used for the mediator at level-one: 
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and at level-two:  
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Here, 1 and 2 are explicitly fixed at zero and 100, respectively, thereby defining a 

mediator that takes on values between zero and 100 along with a nonlinear relationship 

with the treatment dosage variable, T. Values for the treatment variable will be randomly 

selected from a normal distribution with a mean of zero and a unit variance (as in Li et 

al., 2007). The value of the pseudo-intercept parameter (



00) will be fixed at 150 (to 

match the pattern depicted in the relevant 00 = 150 graph in Figure 3). Values for the 

pseudo-slope parameter ( 10 ) will be specified as either zero, 0.14, 0.39, or 0.59 for use 

in calculating the indirect effect to parallel the simulation conditions used in Li et al.’s 



 46 

analysis of dichotomous mediators. The random effects (



rij  and



u0 j ) will be sampled from 

a random normal distribution with a mean of zero and standard deviation equal to one. 

The covariance of the level-two residuals will be set equal to zero, and the level-one 

residual will not be allowed to covary with either level-two residual. The outcome 

variable (Y) will be generated according to the following linear multilevel model at level-

one: 

 ijijjijjjMTYij rTMY  21).(0  , (63) 

and at level-two: 
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where ijM comes from Equations 61 and 62. Here, 10 and 20  represent the b and c’ 

parameters, respectively. Estimation of this random-intercept model with fixed treatment 

and mediating effects (Equations 63 and 64) is used to facilitate comparisons with 

similarly parameterized models from previous research regarding multisite mediation 

models (Pituch et al., 2005; Krull & MacKinnon, 1999, 2001; MacKinnon, Warsi, & 

Dwyer, 1995).  

The b parameter for use in calculating the indirect effect (



10 in Equation 64) will 

be specified to be zero, 0.14, 0.39, or 0.59, representing differing degrees for the 

relationship between the mediator and outcome variable. The intercept parameter in 

Equation 64 (



00) will be specified to be equal to zero, and the direct effect of the 
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treatment on the outcome accounting for the mediator (c’; 



20 in Equation 64) will be 

held constant at 0.20. These parameter values stem directly from previous research on 

nonlinear treatment-mediator relationships (e.g., Li et al., 2007). The random effect (



u0 j ) 

will be sampled from a random normal distribution with a mean of zero and standard 

deviation equal to one.  

Next, the number of sites and the number of participants within sites will be 

varied in a manner similar to those used in Pituch et al. (2005). More specifically, data 

for 10, 20, and 30 sites will be generated and completely crossed with the number of 

participants in each site being either 15 or 30 for a total of six combinations of sample 

size conditions. These values are consistent with values observed in applied multisite 

investigations (e.g., Plewis & Hurry, 1998; Pituch & Miller, 1999).  

Finally, values for the residual ICCs will be set to either .05 or .15 in equations 

for both the mediator and the outcome. The covariance between level-two residuals will 

be set to zero. These values are consistent with those used by Krull and MacKinnon 

(2001) and are representative of observed values in educational research. 

ESTIMATING MODELS 

Once generated, two nonlinear multilevel models will be estimated to assess 

parameter bias for the estimated mediation model parameters and the instantaneous 

indirect effect at the mean treatment dosage as well as one standard deviation above and 

below the mean. These analyses are designed to examine both the estimation of a 

nonlinear treatment-mediator relationship and to investigate the bias of the resulting 
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parameter and instantaneous indirect effect estimates. The first nonlinear multilevel 

model estimated will be identical to the model used to generate values on M as a function 

of T (see Equations 61 and 62) representing a fully parameterized model with all level-

one parameters varying across level-two units. The proposed simulation will use SAS 

PROC NLMIXED to estimate this nonlinear relationship. The model for the outcome will 

also be identical to the generating model (Equations 63 and 64). In this model, the b 

parameter ( 10  in Equation 64) is modeled as fixed, resulting in a fixed instantaneous 

indirect effect and eliminating the need to simultaneously estimate all parameters in the 

model. 

The second nonlinear model estimated will include only a random pseudo-

intercept to address the clustering of participants within sites while assuming a constant 

treatment effect on the mediator across all level-two units. This random pseudo-intercept 

model results in the level-one specification described in Equation 61 and a level-two 

specification as follows: 
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Again, the estimated model for the b and c parameters will be identical to the generating 

model in Equations 63 and 64.  In this model, both the pseudo-slope ( 10
 Equation 65) 

and the b parameter will be modeled as fixed across level-two units, as indicated by the 

lack of a residual term in each level-two equation. This again results in a fixed 
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instantaneous indirect effect, eliminating the need to simultaneously estimate all 

parameters.  

ANALYSIS 

Considering all combinations of conditions, this study will entail a 4x4x3x2x2 

fully factorial design, resulting in 192 unique conditions. 1,000 replication datasets will 

be generated for each condition. The instantaneous indirect effect for each replication 

will be calculated according to Equation 58 at the mean of T and at one standard 

deviation above and below the mean of T. Confidence intervals for the instantaneous 

indirect effect will be established according to the bias-corrected parametric percentile 

bootstrapping procedure outlined by Pituch et al. (2006) for average treatment values as 

well as at treatment values one standard deviation above and below the average. 

Coverage rates for the proportion of replications containing the true value of the 

instantaneous indirect effect for each condition will be reported, as will the proportion of 

times the true instantaneous indirect effect lies to the left or to the right of the 95% bias-

corrected parametric percentile bootstrapped confidence interval.  

The relative parameter bias will be assessed for the pseudo-slope parameter (
10  

in Equations 62 and 65) and for the instantaneous indirect effect (Equation 58) at the 

mean value of T and at one standard deviation above and below the mean value of T. 

These bias estimates will be used to assess estimation of the nonlinear model for the 

mediator. The relative parameter bias for the b parameter ( 10 in Equation 64) will be 



 50 

compared to previous bias estimates (i.e, Pituch et al., 2006) to ensure proper model 

estimation. Relative parameter bias will be estimated according to the following equation: 
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where i̂  equals the represents the average parameter value across all replications for one 

study condition(Hoogland & Boomsma, 1998). Hoogland and Boomsma’s recommended 

cutoff for substantial parameter bias ( 05.0)ˆ( B ) will be used to assess the severity of 

the observed bias. 
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Chapter 4:  Discussion 

The proposed simulation study will assess the statistical performance of the 

aforementioned nonlinear multilevel mediation model. The ability of nonlinear 

parameterizations to provide both a point of treatment dosage optimization and an 

instantaneous indirect effect for each value of the treatment provides an additional 

advantage over the type of information available from conventional methods.   

Estimation issues will likely arise when using the nonlinear model. More 

specifically, default estimation procedures in SAS 9.2 will likely require modification in 

order to facilitate model estimation. Future research should explore the relationship 

between the optimization and integration techniques used to achieve model convergence 

and how well the ensuing parameter estimates recover the true parameters’ values. 

Although the current investigation provides nonlinear specifications for 1→1→1, 

2→1→1, and 2→2→1 designs, the proposed simulation study will only examine the 

statistical performance of the 1→1→1 specification. Future research should focus on the 

2→1→1 and 2→2→1 designs that are commonly encountered in cluster randomized 

trials.  In addition, the proposed study will only examine multilevel designs containing at 

most two-levels consisting of a nonlinear relationship between the treatment and the 

mediating variables.  Nonlinear parameterizations could easily be extended to 3-level 

designs (e.g., Pituch, Murphy, & Tate, 2010) or to designs specifying nonlinearity 

between the mediating and the outcome variables.  Future research should examine these 

possibilities. Nonlinear multilevel mediation may also exist in the context of repeated 
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measures or longitudinal data analysis.  In these instances, outcomes scores are measured 

within individuals over time.  Singer and Willett (2003) suggest that these kinds of 

designs may lend themselves to nonlinear model specifications.  Future research should 

examine these nonlinear longitudinal designs in the context of mediational analysis.   

In the absence of an analytical solution that provides the standard error for the 

instantaneous indirect effect, bootstrap resampling methods offer an empirical alternative. 

These methods have been used to test the instantaneous indirect effect for statistical 

significance at a specific value of the treatment variable (Hayes & Preacher, 2010). 

Although several methods exist, the current investigation utilized only the bias-corrected 

parametric percentile bootstrap procedure. Future research should investigate the utility 

of other bootstrapping procedures with nonlinear models, including consideration of 

nonparametric alternatives. 

Finally, although the proposed nonlinear multilevel mediation parameterization 

has roots in latent variable analysis, the current investigation did not utilize structural 

equation modeling methods to investigate the instantaneous indirect effect. Previous 

research has examined structural equation modeling as a means of providing confidence 

intervals around the mediated effect (Cheung, 2007; Bollen & Stine, 1990), and as a 

means of providing alternate specifications for meditational models (Winship & Mare, 

1983). The threshold model described in the current study is one of many specifications 

that may be used to provide an estimate of the instantaneous indirect effect.  As an 

alternative, multiple mediating measures may be employed as observed indicators of an 

unobserved latent mediating variable. This latent mediator may also be nonlinearly 
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related to the treatment variable, resulting in a nonlinear mediation model similar to the 

model proposed in the current investigation. This would then necessitate estimation of a 

multilevel structural equation model to properly address the clustering of individuals 

within level-two units. Again, this is only one example of many possible alternative 

parameterizations.  Future research should investigate the performance of nonlinear 

multilevel latent variable models in the context of meditational analysis. 
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Chapter 5:  Evaluation Addendum 

This addendum extends meditational analyses for use in program evaluation by 

placing meditational analysis within the context of quantitative evaluation. First, 

evaluation frameworks are discussed as a means of providing an impetus for quantitative 

program evaluation. Next, evaluation outcomes are placed in a meditational context as 

portray the similarities between quantitative program evaluation and meditational 

analyses. Conventional meditational analyses are then suggested for a real-world 

evaluation. Advantages and disadvantages of meditational methods in program evaluation 

are then discussed, as are implications for the field of program evaluation. 

EVALUATION FRAMEWORKS 

Program evaluation often takes place within the context of a specific analytic 

framework. Borich and Jemelka (1981) outline four specific approaches to evaluation: the 

decision-oriented approach, the applied research approach, the value-oriented approach, 

and the systems-oriented approach. Though other approaches are utilized successfully 

and frequently, Borich and Jemelka identify these four frameworks as prominent 

approaches to program evaluation. 

The decision-oriented approach casts evaluators in the role of providing decision 

makers with information (Alkin, 1972). In this context, evaluation is the process of 

collecting and analyzing information and reporting summary information to decision-

makers for use in the process of selecting between alternatives. The CIPP evaluation 

model is representative of this paradigm, whereby evaluators focus on the context, inputs, 
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process and products of the intervention in question. In context evaluation, the 

evaluator’s objective is to specify the scope and intent of the program to be evaluated. 

This requires a clear statement of the program’s objectives. Input evaluation attempts to 

assess the capabilities and requirements of the intervention. Here, the evaluator must 

determine if the program is capable of accomplishing its stated objectives, and, if so, 

what substantive requirements are needed. Process evaluation aims to identify potential 

issues regarding program logistics; procedures and program implementation are assessed 

in an effort to streamline and optimize the intervention of interest. Finally, product 

evaluation relates the outcomes of interest to the context, inputs, and process of the 

invention in question. Here, the evaluator must determine if the program’s outcomes 

align with its stated objectives. In this model, outcomes and program elements must be 

both clearly stated and measureable to be used in any ensuing analysis. As such, 

quantitative modes of analysis, especially those stemming from classical statistical 

inference and experimental design, are particularly relevant within this framework. The 

utility of qualitative data in this framework is limited, as this framework relies heavily on 

the evaluator’s ability to quantify constructs of interest. 

The applied research orientation aims to establish a causal relationship between 

the intervention in question and the outcome of interest (Borich & Jemelka, 1981). This 

framework borrows heavily from classical experimental design methodology to establish 

the necessary preconditions for causal inference. This conventionally involves random 

assignment of participants to conditions and contrasting treatment and control groups. As 

in academic research, this framework utilizes well-established statistical methodology to 
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quantify intervention efficacy to aid in the decision making process. Though this 

approach gains its strength from its reliance on statistical and methodological rigor, as 

with the decision-oriented approach this framework precludes the use of qualitative data 

decision makers often desire to aid in the decision making process (Stufflebeam et al., 

1971).  

The value-added orientation, in contrast to the quantitative frameworks mentioned 

above, places evaluation in the context of subjective value judgments (Scriven, 1974). In 

this framework, the rigorous quantitative methods used in the decision-oriented and 

applied research approaches are considered to be only a portion of the data necessary to 

effectively evaluate an intervention. Equally important in this framework are the values 

held by the program’s primary stakeholders. Quantitative methodology may provide 

some information to the evaluator, but the program itself must ultimately be justified in 

terms of its subjective value to the program’s constituents. This places a high degree of 

importance on qualitative data and subjective determinations of overall program efficacy. 

Finally, the systems-oriented approach takes a systems theoretical perspective on 

program evaluation (Borich & Jemelka, 1981). In this framework, individual elements 

can only be understood in the context of the complex systems they inhabit. As such, 

thorough and effective program evaluation requires examining not only the specific units 

of interest, but also the higher-level structures that subsume the lower-level units. This 

holistic approach to evaluation typically utilizes qualitative data, as this framework is less 

concerned with experimental design than it is with holistic system functionality.   
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In practice, evaluators typically combine frameworks in developing an evaluation 

strategy. Combining the quantitative aspects of the decision-oriented and applied research 

approaches with the qualitative aspects of the systems-oriented and value added 

approaches allows evaluators to utilize the strengths of each framework in the process of 

determining a program’s efficacy. Though qualitative evaluation provides valuable 

information to both evaluators and decision makers, the current discussion focuses on 

quantitative program evaluation. As mentioned above, quantitative modes of evaluation 

are particularly relevant in the context of the decision-oriented and applied research 

frameworks. These approaches to evaluation borrow heavily from both statistical and 

experimental methodology, rendering them particularly useful as quantitative methods of 

program evaluation. Statistical mediation models fall squarely within the realm of 

framework-appropriate methods for the decision-oriented and applied research 

approaches, as both focus on evaluating objectively measured outcomes through well-

established statistical methods. Though statistical mediation models may be incorporated 

into the value-added and systems-oriented frameworks, these approaches focus primarily 

on subjective value and holistic evaluations (respectively) as obtained through primarily 

qualitative means. As such, meditational methods are likely more relevant to evaluators 

operating within a decision-oriented or applied research paradigm. 

For statistical mediation models to be utilized as described in the preceding 

document, evaluation outcomes must be clearly defined, measureable, causally related to 

the intervention, and chronologically related to each other. The following section 

describes the means by which program outcomes can be conceptualized as statistical 
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mediators, thereby establishing the framework within which statistical mediation models 

may be utilized in evaluation settings. 

PROGRAM OUTCOMES AS MEDIATORS 

Interventions are frequently designed to affect distal outcomes through changes in 

mediating constructs (MacKinnon & Dwyer, 1993). Because distal processes may be 

harder to detect than proximal effects, evaluators must be careful to both specify the 

proper mediation mechanism and to analyze it appropriately. In this context, meditational 

analysis provides a viable tool for analyzing intervention efficacy by decomposing a 

program’s effects into a series of mediating constructs. In this manner, program 

evaluators can quantitatively analyze the effect of a program on each outcome of interest 

by specifying the causal mechanisms by which a program is effective. This is particularly 

relevant to programs with higher order outcomes, as distal results may be difficult to 

detect with conventional analyses.  

Evaluation outcomes can be framed as mediators between the intervention and the 

most distal outcome. Within this framework, an intervention affects a distal outcome 

through a series of mediating constructs. In the simplest case with one mediator and one 

distal outcome, the path diagram for the analysis resembles Figure 2.  Here, T represents 

the intervention to be evaluated, M represents the mediator, and Y represents the distal 

outcome of interest. In many evaluation settings, the distal outcome is both 

chronologically and psychologically separated from the intervention of interest. As a 

result, a mediating construct is measured in close proximity to the intervention in an 

effort to measure the intervention’s effect on a proximal outcome of interest. This 
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proximal outcome (i.e., the mediator), is then hypothesized to affect some necessarily 

distal outcome that is measured sometime after the intervention is completed. Because of 

the lapse in time between intervention completion and distal outcome measurement, the 

intervention effect is likely muted and its direct effect on the distal outcome may be 

understated. Put differently, a behavioral intervention is most effective directly after its 

completion. As time passes, intervention efficacy may deteriorate due to lack of 

reinforcement. If the intervention is designed to affect some distal outcome that 

chronologically succeeds the intervention by some appreciable period of time, then the 

measured effectiveness of the intervention may be diluted simply because of the distal 

nature of the outcome. This can result in underestimated effect sizes. 

In addressing this issue, properly parameterized meditational methods may 

provide more statistical power to detect distal effects than do conventional bivariate 

analyses (Shrout & Bolger, 2002). For example, in the scenario with only first and second 

order outcomes, the first order outcome can be operationalized as a mediator in a single 

mediator model as depicted in Figure 2 and analyzed accordingly. This type of analysis is 

described in the Traditional Mediation section of the main document. In the more 

complicated scenario, an intervention designed to affect first, second, third, and fourth 

order outcomes may not reveal significant effects for a fourth order outcome when 

analyzed via conventional bivariate methods. In this case, the first, second and third order 

outcomes may be conceptualized as mediators, and a multiple mediator analysis may be 

employed to estimate the indirect effect of the intervention on the fourth order outcome. 

(See Preacher & Hayes, 2008, for an exposition of multiple mediator models.) This 
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example highlights the flexibility of meditational analysis to accommodate designs 

including multiple outcomes of interest, as is commonly the case in evaluation settings. 

To summarize, outcomes of interest in evaluation settings can be conceptualized 

as either proximal mediators or distal outcomes in a statistical meditation model. This 

framework allows for a more powerful test of intervention efficacy, as the inclusion of a 

mediator ameliorates the deterioration of the treatment effect as often occurs with distal 

outcomes. This provides evaluators a viable quantitative tool for analyzing mediated 

interventions. To demonstrate this, the next section describes a real-world evaluation 

conducive to meditational analysis. Because the evaluation presented was terminated 

prior to completion, only a description of the intended analysis is provided; no data was 

actually analyzed in the following evaluation. Nonetheless, the conditions established in 

this example provide an exemplar evaluation setting in which statistical meditational 

analysis may be used. 

EVALUATION EXAMPLE 

Thomas Concept, LLC, provides healthcare organizations with consulting 

services and seminars designed to a) reduce conflict within the organization, b) increase 

employee productivity, and c) increase controllable retention rates. The program itself is 

based on the Power of Opposite Strengths (Thomas & Thomas, 2006), a psychological 

theory of individual differences that increases individuals’ self-awareness and provides 

instruction to help manage conflict-ridden professional relationships. As organizations 

expand, inter-employee conflicts inevitably surface. The Power of Opposite Strengths 

program is designed specifically to reduce these tensions by providing both awareness of 
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one’s pattern of personality strengths and an understanding of how those strengths lead to 

professional conflict. With this information, employees gain the ability to effectively 

manage inter-office conflict, thereby increasing both worker productivity and controllable 

retention rates. 

Mediational methods may be utilized in this context to evaluate the effectiveness 

of the Opposite Strengths program as it was implemented within the Baylor University 

Medical Gastroenterology leadership team in the fall of 2009. Though the actual 

evaluation was terminated prior to completion, this example provides a blueprint for 

implementing a meditational model to aid in program evaluation. The team of 

professionals evaluated in the Gastroenterology department at Baylor University Medical 

Center was plagued by widespread inefficiency stemming from, as the administration 

believed, ineffective communication and a lack of teamwork. The Opposite Strengths 

program was implemented in this context in two specific phases. First, Dr. Tommy 

Thomas, CEO of Thomas Concept, LLC, led three 3-hour (9 hours total) group 

educational sessions (referred to as “the Opposite Strengths seminar”) with all 10 

members of the Baylor University Medical Gastroenterology leadership team. Second, 

each team member also received 10 additional 1-hour individual sessions (10 hours total) 

to assist in applying material presented in the seminar. The entire program took place 

between October 1 and December 15, 2009. As stated above, the formal evaluation was 

terminated prior to the completion of the data collection process. 
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OUTCOMES EXAMINED 

The first order outcome of interest for the Opposite Strengths program consisted 

of participants’ overall satisfaction with the program. This was measured with a simple 

questionnaire at the completion of the final seminar.  

The second order outcome of interest pertained to participants’ retention of 

information presented throughout the program. At the termination of the intervention, the 

participants should have had a clear understanding of the theory of Opposite Strengths 

and how it applies to workplace conflict. This evaluation occurred as an observational 

report, with Dr. Tommy Thomas rating each participant’s ability to internalize the 

information presented to them. However, for the sake of the current exposition, a 

hypothetical score on a post-intervention knowledge assessment will be used as a 

measure of participants’ information retention. 

Third order outcomes of interest were primarily two-fold. First, as the program 

was designed to reduce conflict, time spent engaged in conflict resolution should have 

decreased substantially. Second, the time spent by the team leader resolving conflict 

between team members should have decreased. These third order constructs of conflict-

resolution were explicitly measured in a pre-test/post-test fashion via surveys completed 

by Deborah Upshaw, Director, BUMC GI. This third order evaluation is intended to 

determine the extent of behavior change as observed by the leader of the department.  

Finally, the fourth order outcome of interest consisted of patient satisfaction 

scores for participated in the intervention; it is believed that these individuals had a 

positive effect on the remaining GI team staff, resulting in an overall increase in patient 
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satisfaction. Figure 5 provides a schematic decomposition of the Opposite Strengths 

seminar. 

Given the quantitative nature of outcomes of interest, this evaluation combined 

elements of the decision-oriented and applied research as described below. 

Decision Oriented Approach 

The following objectives were used to evaluate the success of the program: 

 A documented decrease in the amount of executive time spent in managing the 

relationships within the BUMC Gastroenterology leadership team. 

 A documented increase in the productive interaction of the leadership team. 

 A documented increase in the satisfaction scores of the patients ultimately served 

by the BUMC Gastroenterology team. 

Applied Research Approach 

With four orders of outcomes to investigate, this evaluation was particularly 

susceptible to low-powered tests of intervention efficacy for the most distal (i.e., fourth-

order) outcome. This, combined with the quantitative nature of the data collected, 

suggested that meditational models were appropriate in assessing all effects of interest. 

MEDIATIONAL MODEL FOR PROGRAM EVALUATION 

The Appendix describes the questions of interest and the measures used to 

evaluate them. Though several orders of outcomes are relevant to current evaluation, this 

exposition will focus on evaluating only the fourth order outcome, as this outcome 

represents the most distal effect of interest. In this context, the fourth-order outcome 
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represents the effect of the Opposite Strengths program on overall patient satisfaction. As 

evident from Figure 5, knowledge of the Opposite Strengths principles chronologically 

precedes ensuing patient satisfaction.  As such, knowledge of Opposite Strengths 

principles may be conceptualized as a mediator between the Opposite Strengths 

intervention and overall patient satisfaction. In this framework, the Opposite Strengths 

seminar serves as the treatment (T), outcome knowledge serves as the mediator (M), and 

subsequent patient satisfaction serves as the outcome of interest (Y). Given the distal 

nature of patient satisfaction measures, this methodology provides a more powerful 

design for detecting the effect of the intervention on the outcome of interest. 

As an additional consideration, the evaluation design consists of patients nested 

within doctors who receive a specific amount of the intervention. Since not all doctors 

were able to attend every Opposite Strengths seminar, the treatment variable utilized in 

the mediation model can be conceptualized as an intervention dosage, with the number of 

seminars attended representing the amount of treatment received. This results in a 

2→2→1 design as described in the section on Multilevel Mediation. Furthermore, since 

the mediating variable represents the amount of material learned from the Opposite 

Strengths program, the treatment-mediator relationship could be modeled nonlinearly 

according to Robertson’s (1909) equation for the rate at which learning occurs (Equation 

49).  Combining these concepts results in the following specification for effects of the 

treatment on the mediator at level-one: 
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where iM  represents the score on the retention test for doctor i,   represents the highest 

possible score on the retention test, 0  and 1  represent the pseudo-intercept and 

pseudo-slope parameters (respectively) as described above, iT  represents the number of 

seminars attended for doctor i, and 
ijr  represents the level-one residual. Here, both the 

mediator and the outcomes are measured at the same level (level-two; the level of the 

doctors who participated in the evaluation), and as such a single-level model is 

appropriate. The outcome (patient satisfaction; Y), however, is nested within doctors, 

requiring a multilevel specification to account for the inherent clustering. As mentioned 

in the primary document, the outcome, Y, in a 2→2→1 design may be modeled linearly 

according to the following equation at level-one: 

 ijjMTYij rY  ).(0 , (68) 

and at level-two: 

  jjjjMTY uTcbM 000).(0 '   , (69) 

where 
ijY  represents the patient satisfaction score for patient i seeing doctor j, 00  

represents the overall intercept, 
jM  represents the score on the mediator for doctor j, 

jT  

represents the number of seminars attended by doctor j, b and c’ represent the paths 

depicted in Figure 2, and 
ijr  and 

ju0
 represent the level-one and level-two residuals, 

respectively. As exposited in the main document, the indirect effect stemming from a 

nonlinear treatment-mediator relationship must be estimated according to the formula 
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given by Stolzenburg (1980) for the instantaneous indirect effect. Given equations 67 

through 69, the indirect effect for the current evaluation model is calculated as: 
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where all parameters are estimated in equations 67 through 69. This model 

conceptualizes the effect of the Opposite Strengths program on patient satisfaction as 

operating indirectly through doctors’ ability to acquire the information. As such, indirect 

effect of the treatment on the outcome is a function of the number of seminars a doctor 

attends. This is intuitively appealing, as attending additional seminars should result in the 

acquisition of additional information, which, in turn, should result in increased patient 

satisfaction.  

DISCUSSION 

The nonlinear multilevel mediation framework utilized in the current 

investigation allows for a more powerful evaluation of a distal outcome in the presence of 

an intervention of interest. As patient satisfaction scores would likely take some time to 

acquire, the use of a mediating variable will enable an evaluator to accurately measure 

the distal fourth-order outcome. In addition, the use of a nonlinear multilevel meditational 

framework suggests that the effect of the program on the distal outcome is a function of 

the amount of the program doctors completed. This dosage-model aspect of the current 

evaluation is directly relevant to both program constituents and decision makers, as it 

lends itself to a cost-benefit analysis based on the effect of each additional unit of 

treatment received. On the whole, this analysis fits within the general context of 
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statistical mediation modeling, providing a general framework within which evaluators 

may choose to operate. 

The current evaluation utilized nonlinear meditational methods in the context of a 

nested data. With patients nested within doctors, conventional methods may provide 

inaccurate results, which could result in premature program termination. The multilevel 

methods utilized in this investigation guard against this type of error. However, this 

particular set of models is not exhaustive of all methodologies available to an evaluator. 

Under certain conditions, latent variable models may provide equally viable modes of 

investigating program efficacy. The evaluator should be aware of these alternative 

methods, choosing the methodology that most closely aligns with the program’s 

objectives. 

Statistical mediation models depend on the availability of clearly defined 

objectives and psychometrically sound measures. Well-researched surveys with sound 

reliability and validity coefficients or measures scored with item response theory (IRT) 

models are best suited towards this end. In the absence of well-established measures, the 

methods exposited above may fail to provide accurate estimates of intervention efficacy. 

Evaluators should we weary of this particular limitation, utilizing well-understood 

surveys whenever possible. When well-established surveys are unavailable, latent 

variable models may provide a more viable mode of analysis. See Winship & Mare 

(1983) for a discussion of latent variable mediation models. 

Meditational methods are especially useful for evaluators operating within the 

decision-oriented or applied research frameworks. However, as mentioned above, these 
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frameworks are not exhaustive of all possible paradigms, and decision makers frequently 

solicit qualitative input in a formal program evaluation. This is especially true for 

evaluations taking place in the context of value-added or systems oriented approaches. 

While meditational methods may be utilized in tandem with qualitative approaches, 

meditational analysis provides no utility in evaluation settings relying solely on 

subjective data. As mediation methods require the implementation of a sound 

experimental design, evaluators should discuss explicitly the goals of the evaluation with 

the relevant stakeholders prior implementing the evaluation. This will maximize the 

validity of the inferences resulting from a meditational analysis. 

Overall, meditational methods provide a valuable tool for use in quantitative 

program evaluation. When combined with qualitative assessments, these methods provide 

evaluators, stakeholders, and decision makers with an abundance of data on which to 

base their ultimate decisions. Mediational models should not be considered in a vacuum, 

but rather as part of larger evaluation framework that solicits both qualitative and 

quantitative input. Utilized in this manner, meditational models can provide valuable 

information for any evaluation. 
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Figure 1:  Total effect, c, of treatment T on outcome Y. 
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Figure 2:  Single-level linear mediation model of treatment T’s effect on outcome Y 

through mediator M. 
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Figure 3:  Nonlinear parameters and their effects on the logistic change trajectory. 
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Figure 4:  A mediation model in which the relationship between the treatment and the 

mediator is modeled nonlinearly. 
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Figure 5:  Schematic decomposition of the Opposite Strengths Program. 

 



 74 

Appendix 

A. Are the participants satisfied with the Opposite Strengths seminar? 

a. Variable to be measured:  Participant satisfaction. 

b. Instrumentation:  Online survey/questionnaire developed by Thomas 

Concepts, LLC. 

c. Analysis procedures:  compute summary statistics for each individual, 

provide summary data in evaluation report indicating overall satisfaction 

scores, provide analyses of individual questions to determine which 

specific aspects of the program are exemplary or need substantial 

improvement.   

B. Are the participants retaining the information presented in the seminar? 

a. Variable to me measured:  knowledge of Opposite Strengths material. 

b. Instrumentation:  Observer report.  Dr. Tommy Thomas, leader of the 

Opposite Strengths seminars, will provide an observational write-up based 

on his interactions with the seminar’s participants. 

c. Analysis procedures:  this observational report will be included as part of 

the larger evaluation study. A formal assessment of knowledge may take 

place at a later date. 

C. After presentation of the Opposite Strengths material, does the GI team leader 

spend less time engaged in conflict management? 

a. Variable to measured:  time spent by the GI team leader (Deborah 

Upshaw) engaged in conflict management. 

b. Instrumentation:  Self-reported log of time spent per day engaged in 

conflict resolution, kept over the duration of the intervention. 

c. Analysis procedures:  Descriptive statistics, graph of log’s entries. 

D. After presentation of the Opposite Strengths material, do members of the GI team 

spend less time engaged in conflict management? 

a. Variable to be measured:  time spent in conflict management by members 

of the GI team. 

b. Instrumentation: Self-reported logs of time spent per day engaged in 

conflict resolution, kept over the duration of the intervention. 

c. Analysis procedures: Descriptive statistics, graph of log’s entries, 

dependent samples t-test of time spent in conflict management pre- and 

post-intervention. 

E. Are patient satisfaction scores higher as a result of the Opposite Strengths 

seminar? 

a. Variable to be measured:  patient satisfaction. 

b. Instrumentation:  Patient satisfaction survey administered by BUMC staff 

and analyzed by Press Ganey Associates, Inc. 

c. Analysis procedures:  The evaluation team will select specific questions 

from the patient satisfaction survey to represent constructs on which the 
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Opposite Strengths seminar will have a positive influence.  The evaluation 

staff will be given access to summary statistics on these questions.  The 

analysis itself will include these summary statistics, as well as visual 

displays of response trends both pre- and post-intervention.  If the nature 

of the summary statistics are conducive to further analysis, dependent 

samples t-test will be conducted on patient satisfaction scores pre- and 

post-intervention. 

F. Does the Opposite Strengths seminar increase the hospital’s ability to retain key 

personnel? 

a. Variable to be measured:  retention rate. 

b. Instrumentation:  Number of key personnel leaving BUMC within a 

specified timeframe, presumably provided by BUMC’s Human Resources 

department. 

c. Analysis procedures:  summary statistics both pre- and post- intervention, 

t-test for independent samples, visual display of retention rate pre- and 

post-intervention. 

G. How much money does BUMC save on new employee training as a result of the 

Opposite Strengths seminar? 

a. Variable to be measured:  Long-term savings. 

b. Instrumentation:  balance sheets regarding the cost of new employee 

training and the cost of the Opposite Strengths seminar, retention rates. 

c. Analysis procedures:  Money saved as a higher retention rates result in 

fewer resources spent on new employee training will be compared to the 

cost of the Opposite Strengths seminar. 

H. How effective is the Opposite Strengths seminar? 

a. Variable to be measured:  patient satisfaction. 

b. Instrumentation:  Overall patient satisfaction scores from the Press Ganey 

questionnaire. 

c. Analysis procedures:  nonlinear multilevel mediation model. 
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