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ABSTRACT  

Lateralization of higher brain functions requires that a dominant hemisphere collects relevant 

information from both sides. The right dorsal premotor cortex (PMd), particularly implicated 

in visuomotor transformations, was hypothesized to be optimally located to converge 

visuospatial information from both hemispheres for goal-directed movement. This was 

assessed by probabilistic tractography and a novel analysis enabling group comparisons of 

whole-brain connectivity distributions of the left and right PMd in standard space (16 

subjects). The resulting dominance of contralateral PMd connections was characterized by 

right PMd connections with left visual and parietal areas, indeed supporting a dominant role 

in visuomotor transformations, while the left PMd showed dominant contralateral connections 

with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior 

parietal regions, relative to the left PMd connections, while ipsilateral connections of the left 

PMd were stronger with particularly the anterior cingulate, the ventral premotor and anterior 

parietal cortex. The pattern of dominant right PMd connections thus points at a specific role in 

guiding perceptual information into the motor system, while the left PMd connections are 

consistent with action dominance based on a lead in motor intention and fine precision skills.  
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INTRODUCTION 

The relation between movements and sensation of a given body-side and functions of the 

contralateral hemisphere reflects an essential characteristic of cerebral lateralization. Beyond 

this symmetrical division, each of the two hemispheres shows specialization with a lateralized 

dominance, particularly in the human brain. Where the left hemisphere is generally dominant 

in manual skill and language, a dominant right-hemisphere function concerns the integration 

of more global spatial sensory information in motor action. Information concerning 

extrapersonal space is particularly obtained by visual senses, while somatosensory stimuli 

provide information about personal space (Bottini et al., 2009). Particularly for visuomotor 

integration right hemisphere dominance has been well described (Callaert et al., 2011; 

Corballis, 2003). Symptoms resulting from lesions of the right hemisphere, particularly when 

the parietal cortex is involved, indeed include visuospatial disorientation and visuomotor 

deficit, but also contralateral neglect (Bogen and Gazzangia, 1965; Corbetta and Shulman, 

2011; Franco and Sperry, 1977; Halligan et al., 2003; Perenin and Vighetto, 1988; Rossetti et 

al., 2003; Vallar and Perani, 1986). In this respect, the intact right hemisphere has been 

proposed to be more visually 'intelligent' than the left, equivalent to the superior capacities of 

the left hemisphere in other cognitive domains (Corballis, 2003). How such segregated 

hemisphere specializations are integrated in whole-brain neuronal networks, empowering 

one's sense of unity in perception and action (Bogen and Gazzangia, 1965; Franco and Sperry, 

1977; Gazzaniga, 2005), remains an issue to be solved. In the present study, we are able to 

demonstrate differences between the left and right dorsal premotor cortex (PMd) regarding 

their patterns of connections in ipsilateral and contralateral hemispheres. These characteristic 

distributions represent a possible flow of information from two hemispheres to each of the 

two PMd's, consistent with the distinction of perceptual dominance of the right and a more 
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internally anchored action dominance of the left hemisphere concerning goal-directed 

movements.  

 

Dorsal parietal-premotor circuitry plays a specific role in processing spatial aspects of 

visuomotor transformations (Binkofski et al., 1999; de Jong et al., 1999; Galletti et al., 2001; 

Johnson et al., 1996; Shipp et al., 1998; Wise et al., 1997). While in humans the right 

hemisphere is dominant in such transformations, goal-directed actions within extrapersonal 

space implies perception of, as well as movements made into both visual hemifields. This 

means that the right hemisphere uses information about the outside world derived from both 

hemispheres. The right PMd is thus logically positioned to support visuomotor integration and 

guide the resulting movement instructions also to the opposite PMd (Boussaoud et al., 2005). 

Similarly, the stronger involvement of the right PMd in complex bilateral movements, relative 

to the left PMd, suggests more efficient access to bilateral hemisphere information (de Jong et 

al., 2002; Sadato et al., 1997; van den Berg et al., 2010; Wenderoth et al., 2004). We therefore 

hypothesized that, in addition to ipsilateral parietal input, the right PMd receives more sensory 

information from the left hemisphere compared to the contralateral input received by the left 

PMd. Although the left PMd contributes to specific left-hemisphere functions, such as 

language and dexterous skill (Mechelli et al., 2005; Saur et al., 2008), the ventral premotor 

cortex is more involved in these functions and has stronger connections within the ipsilateral 

hemisphere (Tomassini et al., 2007).  

 

In order to compare the ipsi- and contralateral hemisphere connections with each of the two 

PMd's, we employed probabilistic diffusion tensor imaging (DTI) and a novel analysis. In this 

study, a whole brain connectivity distribution was generated with the PMd as seed region. 

Next, normalized whole-brain connectivity distributions were implemented in the 
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construction of group maps. The latter were used for voxel-based statistical testing of a 

lateralized dominance of connections with either the right or left PMd. 

 

METHODS 

Subjects 

Sixteen healthy right-handed subjects, mean age 26.8 years (SD ± 9.8), 9 females, participated 

in the study. None of the subjects had neurological or psychiatric disorders. All subjects were 

right-handed as indicated by the Edinburgh handedness inventory (Oldfield, 1971). The 

experiment was approved by the local Medical Ethical Committee. All subjects gave written 

informed consent according to the declaration of Helsinki.  

 

Data acquisition 

Data acquisition was performed using a 3 Tesla Philips MR system (Philips Medical Systems, 

Best, the Netherlands) with a 32-channel head coil. Anatomical images were based on a T1-

weighted 3D ultrafast gradient echo sequence with repetition time 9 ms, echo time 3.5 ms, flip 

angle 8°, field of view 232 x 256 x 170 mm, 170 slices without slice gap and a voxelsize of 

0.9 x 1 x 1 mm. Images for DTI were acquired with a diffusion weighted spin echo sequence. 

The protocol comprised 60 independent diffusion gradient directions with b values of 1000 

s/mm2 followed by a b0 image. Further scanning parameters were repetition time 8830 ms, 

echo time 61 ms, flip angle 90°, field of view 240 x 240 x 138, 55 slices without slice gap and 

a voxelsize of 2.5 x 2.5 x 2.5 mm. To assess quality of the diffusion data, signal-to-noise 

ratios (SNR) were calculated by SNR = S/σ where S is the signal in a 2D region of interest of 

10 x 10 = 100 voxels with maximal uniform brain signal and σ is the standard deviation of 

those 100 voxels (Lagana et al., 2010). The same 2D region was used to calculate the SNR for 

each diffusion direction as SNR might vary among directions (Lagana et al., 2010). The 
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resultant total mean SNR was 7.7 (± 1.3) with 5.1 as minimal value 10.0 as maximal value for 

one direction. 

 

Image processing 

Diffusion images were processed using tools from the FMRIB Software Library (FSL) 

version 4.1.9 (www.fmrib.ox.ac.uk/fsl). Diffusion images were realigned to the b0-image to 

compensate for eddy currents and motion (Jenkinson and Smith, 2001). The brain images 

were automatically extracted from the entire head images (Smith, 2002) and manually 

corrected. We calculated probabilistic distributions on multiple fiber directions at each voxel 

in the diffusion data using a multiple-fiber extraction (Behrens et al., 2003; Behrens et al., 

2007) with gradients corrected for slice angulations. A Bayesian estimation of diffusion 

parameters obtained using sampling technique (BEDPOST) was conducted, which includes 

modeling of crossing fibers in each voxel (Woolrich et al., 2009). For each subject, T1 images 

were co-registered with diffusion images by a nonlinear transformation preceded by a linear 

transformation. We used the default functions FNIRT and FLIRT respectively, provided by 

FSL (Jenkinson and Smith, 2001). The same procedure was done to co-register T1 images to 

MNI. Both steps resulted in a transformation matrix, which was used to convert diffusion 

images to MNI or back through the T1 transformation matrices.  

 

Each subject´s T1-weighted image was automatically segmented using the FSL FAST 

function (Zhang et al., 2001). Gray and white matter were dilated with 1 x 1 x 1 mm and a 

threshold was set at 0.2. The overlap between these grey and white matter images was used to 

create a gray matter/white matter boundary mask. Standard anatomical MNI space regions of 

interest of the PMd were derived from an existing binary human motor area template (Mayka 

et al., 2006), which was transformed to T1 anatomical images of each subject using the 
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nonlinear transformation matrix. The T1 PMd regions were multiplied with the gray 

matter/white matter boundary mask to select this part within the PMd. Thereafter, the gray 

matter/white matter PMd regions were nonlinear transformed to diffusion space.  

 

Connections of the right and left PMd were analyzed with probabilistic tractography. We 

tracked from the grey matter/white matter boundary voxels within our PMd regions in native 

diffusion space to generate a connectivity distribution of those regions for each subject. 

Output generated a connectivity distribution summing the total number of generated tracts for 

all voxels within the seed region. A single voxel then displays the summed hits for all tracts 

(i.e. the number of tracts that have passed the voxel). As result, probabilistic tractography is 

influenced by the size of the seed region next to the number of samples done for each voxel 

within that seed region. For the latter, we used the default number of 5000 samples. Although 

the size of the left and right PMd template in MNI space was equal, transforming it to 

diffusion space resulted in some differences in size, which might induce a bias towards one 

side for the seed region size in diffusion space and thereby also for tractography results. The 

mean size of the right PMd in native diffusion space was 580 (± 103) voxels, while for the left 

it was 560 (± 101) voxels, which was not significantly different when compared with each 

other (t(15)=1.25, ptwo-tailed=0.231). Furthermore, the right PMd was larger than the left in 

eight subjects (67 ± 57 voxels), while the left PMd was larger than the right in the other eight 

subjects (27 ± 23 voxels). This virtually eliminated the possibility of a bias in our diffusion 

seed region toward one side, thus avoiding a possible confounding bias in the two 

connectivity distributions. To eliminate the possibility of faulty tracking to the contralateral 

hemisphere through 'kissing' fibers in the brain stem, we included an exclusion mask in the 

midsagittal plane from the third ventricle downward through the brain stem between the 

cerebral peduncles, with a boundary anterior and posterior by the surrounding cerebrospinal 
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fluid. It should be noted that in this way tractography did not reach the contralateral 

cerebellum, thus excluding its assessment.  

 

Comparison of left and right PMd connections 

To compare the connectivity distribution of the right and left PMd, we used a novel approach 

to test hemisphere differences of connections at group level. Maps of generated tracts for each 

hemisphere were superimposed at each other in MNI space and tested for group differences 

using permutation statistics. To that end, first, the two separate images of the cerebral 

connectivity distribution for the right and left PMd were transformed from diffusion to MNI 

space through T1 by two nonlinear transformations. The original PMd tracts (transformed in 

MNI space) were visualized by calculating the median over all subjects for each voxel for 

both the right and left PMd (Fig.1). Intrinsically linked to the methods of probabilistic 

tractography, these median group images are prone to a distance bias because areas at larger 

distance from a given seed region are less likely to demonstrate their tracts as nearby areas. In 

our analysis, however, this issue did not play a role because left-right comparisons were made 

between tracts that both originated from symmetrically equal right and left PMd seed regions 

and passed distant voxels that were positioned in a similar symmetrical way, thus equally far 

from their seed PMd. We therefore only draw conclusions from the images originating from 

the statistically tested differences between the two PMd’s. To test for such differences, we 

flipped the connectivity maps of the left PMd in MNI space. Furthermore, we separately 

subtracted for each subject (i) the right from the left mirrored and (ii) the left mirrored from 

the right connectivity maps. This resulted in two connectivity maps for each subject 

displaying the differences of the right and left mirrored PMd, now displayed in MNI space as 

ipsilateral and contralateral to the seed region. The two resulting connectivity distributions 

provided the input for the subsequently conducted voxel-based group testing of these 
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connectivity maps by using a one-sample non-parametric permutation test with 5000 

permutations for each voxel (Nichols and Holmes, 2002). This resulted in an uncorrected p-

values map of differences displaying which voxels showed more contribution to the right than 

left PMd in both the ipsi- and contralateral hemisphere and another uncorrected p-value map 

showing it the other way around, which voxels showed more contribution to the left than right 

PMd. A voxel-level threshold of p<0.001 was used with a cluster extend threshold of 20 

voxels to reduce false-positive results using MRIcron 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/). In this way we could assess whether 

resulting patterns in the statistical difference map were indeed characterized by an elongated 

'fiber shape', reflecting the specific relation between adjacent voxels in a tract. Ignoring this 

physiological feature of a cluster and using e.g. a family-wise-error (FWE) correction for 

multiple comparisons might result in false negative findings. Furthermore, a mask was 

applied to exclude all voxels outside the brain. 

 

RESULTS  

The pattern of connections that originated from the right and left PMd seed regions showed 

major similarities (Fig.1). Eyeballing these original PMd tracts showed nevertheless subtle 

differences. For instance, right PMd tracts reached left parieto-occipital regions and the left 

postcentral gyrus, while the left PMd did not make these contralateral connections. The results 

of a formal assessment of such differences are presented in the following paragraphs. 

   

Right PMd connectivity dominance 

In general, the right PMd had more connections distributed within the left hemisphere 

compared to the contralateral hemisphere connections of the left PMd. These contralateral 

connections of the right PMd were particularly made with parietal and occipital cortex regions 
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(Fig.2; green clusters). The largest cluster comprised the posterior part of the fronto-occipital 

fasciculus ending along the calcarine sulcus, bordering the lingual, fusiform- and middle 

occipital gyri. This cluster also spread along the posterior segment of the intraparietal sulcus. 

Another dominant cluster in the contralateral hemisphere was seen around the central sulcus, 

both in the postcentral gyrus underlying the somato-sensory cortex, and in the precentral 

gyrus including the motor representation of the hand. Within the corpus callosum, the right 

PMd connections outnumbered those of the left PMd in the posterior midbody and splenium. 

In the ipsilateral hemisphere, a dominance of right PMd connections with occipito-parietal 

regions was also found, but this was less pronounced than for the connections with 

contralateral posterior brain regions (Fig.2).  

 

Left PMd connectivity dominance 

Although the right PMd was generally dominant with regard to the pattern of contralateral 

connections, a few contralateral connections of the left PMd with rostral parts of the 

prefrontal cortex were more intense compared to the right PMd equivalents (Fig.2; blue 

clusters). Such anterior dominance was also seen in the corpus callosum with left PMd 

connections outnumbering the right PMd connections in the genu of the corpus callosum. The 

left PMd, relative to the right PMd, showed more ipsilateral connections with medial 

premotor regions, comprising the anterior cingulate and pre-supplementary motor area (pre-

SMA). Such dominance of left ipsilateral PMd connections was also seen for connections 

with the ventral premotor and anterior parietal cortex as well as a few temporal cortex 

regions. In addition, we saw ipsilateral connections in the cerebellum when the left PMd was 

defined as seed region. With regard to cerebellar connectivity, it should be kept in mind that 

its basic pattern of crossed cerebral-cerebellar connections could not be assessed due to the 
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midsaggital mask through brainstem and diencephalon, which was used to exclude faulty 

PMd tracking along 'kissing' fibers in the brainstem (Fig.2; red line).  

 

DISCUSSION  

The present study demonstrated a hemisphere-specific difference between the left and right 

PMd regarding the descriptive distribution of its connections. Although functional inferences 

made from anatomical differences have a speculative character, the dominance of connections 

between the right PMd and particularly contralateral occipito-parietal regions, relative to the 

contralateral connections of the left PMd, provide support for the hypothesis that the right 

PMd is dominant in the integration of visual information to prepare purposeful movements. 

Consistent with such dominance of connections with posterior brain regions, these right PMd 

connections outnumbered the left PMd connections in the posterior segments of the corpus 

callosum. Connections of the left PMd with the contralateral prefrontal regions were dominant 

to those of the right PMd with the prefrontal cortex, while transcallosal connections were 

stronger represented in the anterior callosal segments. Where previous tractography studies 

have indentified the location of strong reciprocal connections within the corpus callosum that 

predominantly run between homologous areas of both hemispheres (Hofer and Frahm, 2006; 

Huang et al., 2005), our study enabled identification of lateralization differences between 

transcallosal connections of the right and left PMd. With respect to the concept 'connection', it 

might be noticed that tractography does not provide information about the direction of 

information flow along an identified tract, while it  may not necessarily discriminate between 

monosynaptic connections and a connectional chain including synaptic intersections (Jbabdi 

and Johansen-Berg, 2011). The latter particularly concerns fibers entering the cortex. Synaptic 

intersection of a given white matter tract would imply passing gray matter, which is at odds 

with the methodological concept of DTI. We did indeed not see such crossing of gray matter 
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in our study. E.g., connections with the occipital lobe laterally passed the parieto-occipital 

sulcus.  

 

Although the visual system already contributes to visuomotor control by maintaining a 

functional segregation between parvo- (color) and magnocellular (motion) processing 

streams, the parietal cortex is further implicated in higher order visuospatial and visuomotor 

processing along a dorsal visual stream (Goodale and Westwood, 2004; Halligan et al., 2003; 

Rossetti et al., 2003; Shipp et al., 1998). Integration of lateralized visual characteristics in 

whole-field visual processing may already take place along highly focused transcallosal 

connections between the occipital lobes (Clarke and Miklossy, 1990; van Essen and Zeki, 

1978; Watson et al., 1993). A consequence of right-hemisphere dominance in human 

visuomotor integration is a more complex transcallosal innervation to enable efficient access 

to sensory information from both hemispheres as well as an effective transfer of movement 

parameters, not only to the adjacent right motor cortex but also to the left (pre)motor cortex. 

The latter is reflected by the right PMd connections with the precentral gyrus, of which the 

posterior surface contains the primary motor cortex, while the premotor cortex spans its 

anterior and lateral surfaces. The crucial role that we attributed to the right PMd concerning 

visuomotor transformations is thus supported by the identified pattern of dominant 

connections with particularly occipito-parietal regions relative to the left PMd connections.  

 

Dominance of the contralateral connections with the right PMd not only concerned vision-

related tracts. Additional PMd connections with parietal regions point at involvement of the 

right PMd in general sensorimotor processing, including the integration of somatosensory 

information. Right-sided dominance concerning the latter is consistent with right parietal-

premotor circuitry previously described to be involved in the integration of proprioceptive 
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information in motor control (de Jong et al., 2002; Naito et al., 2005), which may be 

particularly beneficial for coordinating bilateral movement. 

 

While sensorimotor transformations involved in motor preparation are often characterized by 

bottom-up processing, the same connections may facilitate a reciprocal information flow in a 

more top-down fashion. In attention, these two directions characterize the distinction between 

sensory driven and goal-directed attention respectively (Corbetta and Shulman, 2002). The 

dominance of contralateral connections of the right PMd with particularly posterior parts of 

the brain, relative to the left PMd connections, is indeed consistent with functional circuitry 

implicated in spatial attention (Gitelman et al., 1999; Raichle, 2011). In this way, hemisphere-

specific characteristics of right PMd connectivity contributes to understanding neuronal 

mechanisms that underlie a lateralized higher-order brain function such as spatial processing 

in both sensorimotor transformations and attention. 

 

For the left PMd, connections were stronger with prefrontal regions, relative to the prefrontal 

connections of the right PMd. This particularly concerned ipsilateral connections with 

cingulate motor areas and the pre-SMA, and contralateral connections with the lateral surface 

of the anterior prefrontal cortex. Although we did not start with a specific hypothesis 

concerning connections of the left PMd, stronger involvement in circuitry comprising these 

frontal regions fits left-hemisphere dominance underlying right-handedness. In this respect, 

medial premotor regions may contribute to right-hand dominance by accommodating a lead in 

the internal generation of action (Lau et al., 2004) as well as recruiting overlearned movement 

sequences (Boecker et al., 1998; Lewis et al., 2004). The dominance of left PMd connections 

with the ventral premotor and anterior parietal cortex in the ipsilateral hemisphere, relative to 

such connections of the right PMd in the opposite hemisphere, may further support a 
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contribution of specifically the left PMd to fine precision movements (Binkofski et al., 1999; 

Dafotakis et al., 2008; Raos et al., 2006; Sakata et al., 1997). A concerted function of the left 

PMd and medial premotor areas has also been associated with a left-hemisphere function such 

as speech (Hartwigsen et al., 2013; Vingerhoets et al., 2013). The presence of a dominant left 

hemisphere tract from the PMd to the temporal cortex may further support its involvement in 

'classical' left-hemisphere networks underlying language (Hickok et al., 2011; Knecht et al., 

2000).  

 

CONCLUSION 

To conclude, the patterns of particularly contralateral hemisphere connections of the right 

PMd indicated a lateralized dominance related to visuomotor control. This was based on the 

stronger connections of the right PMd with occipito-parietal regions of the opposite 

hemisphere. Relative to the connections of the right PMd, left PMd connections were stronger 

with prefrontal areas, ipsilateral ventral premotor and the anterior parietal cortex representing 

action dominance based on a lead in motor intention and fine precision skills. These two 

patterns of lateralized right and left PMd connections may thus reflect a hemisphere-specific 

dominance for perception and action, respectively. 
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SMA=pre-supplementary motor area. 

CONFLICT OF INTEREST: 

None. 

 

REFERENCES 

Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW  (2007) Probabilistic diffusion 

tractography with multiple fibre orientations: What can we gain? Neuroimage 34: 144-

155. 

Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. (2003) 

Characterization and propagation of uncertainty in diffusion-weighted MR imaging. 

Magn Reson Med 50: 1077-1088. 

Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal 

circuit for object manipulation in man: Evidence from an fMRI-study. Eur J Neurosci 11: 

3276-3286. 

Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, et al. 

(1998) Role of the human rostral supplementary motor area and the basal ganglia in 

motor sequence control: Investigations with H2 15O PET. J Neurophysiol 79: 1070-1080. 

Bogen JE, Gazzangia MS (1965) Cerebral commissurotomy in man. J Neurosurg 3: 394-399. 

Bottini G, Sedda A, Ferre ER, Invernizzi P, Gandola M, Paulesu E (2009) Productive 

symptoms in right brain damage. Curr Opin Neurol 22: 589-593. 

Boussaoud D, Tanne-Gariepy J, Wannier T, Rouiller EM (2005) Callosal connections of 

dorsal versus ventral premotor areas in the macaque monkey: A multiple retrograde 

tracing study. BMC Neurosci 6: 67. 



- 16 - 

 

Callaert DV, Vercauteren K, Peeters R, Tam F, Graham S, Swinnen SP, et al. (2011) 

Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor 

control. Hum Brain Mapp 32: 1311-1329. 

Clarke S, Miklossy J (1990) Occipital cortex in man: Organization of callosal connections, 

related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J 

Comp Neurol 298: 188-214. 

Corballis PM (2003) Visuospatial processing and the right-hemisphere interpreter. Brain 

Cogn 53: 171-176. 

Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 

34: 569-599. 

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the 

brain. Nat Rev Neurosci 3: 201-215. 

Dafotakis M, Sparing R, Eickhoff SB, Fink GR, Nowak DA (2008) On the role of the ventral 

premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip 

force. Brain Res 1228: 73-80. 

de Jong BM, Leenders KL, Paans AM (2002) Right parieto-premotor activation related to 

limb-independent antiphase movement. Cereb Cortex 12: 1213-1217. 

de Jong BM, Frackowiak RS, Willemsen AT, Paans AM (1999) The distribution of cerebral 

activity related to visuomotor coordination indicating perceptual and executional 

specialization. Brain Res Cogn Brain Res 8: 45-59. 

Franco L, Sperry RW (1977) Hemisphere lateralization for cognitive processing of geometry. 

Neuropsychologia 15: 107-114. 

Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical 

connections of area V6: An occipito-parietal network processing visual information. Eur J 

Neurosci 13: 1572-1588. 



- 17 - 

 

Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev 

Neurosci 6: 653-659. 

Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, et al. (1999) A large-

scale distributed network for covert spatial attention: Further anatomical delineation 

based on stringent behavioural and cognitive controls. Brain 122: 1093-1106. 

Goodale MA, Westwood DA (2004) An evolving view of duplex vision: Separate but 

interacting cortical pathways for perception and action. Curr Opin Neurobiol 14: 203-

211. 

Halligan PW, Fink GR, Marshall JC, Vallar G (2003) Spatial cognition: Evidence from visual 

neglect. Trends Cogn Sci 7: 125-133. 

Hartwigsen G, Saur D, Price CJ, Baumgaertner A, Ulmer S, Siebner HR (2013) Increased 

facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during 

pseudoword repetition. J Cogn Neurosci 25: 580-594. 

Hickok G, Houde J, Rong F (2011) Sensorimotor integration in speech processing: 

Computational basis and neural organization. Neuron 69: 407-422. 

Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited--comprehensive 

fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32: 

989-994. 

Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, et al. (2005) DTI tractography 

based parcellation of white matter: Application to the mid-sagittal morphology of corpus 

callosum. Neuroimage 26: 195-205. 

Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 

1: 169-183. 

Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of 

brain images. Med Image Anal 5: 143-156. 



- 18 - 

 

Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: 

Physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb 

Cortex 6: 102-119. 

Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, et al. (2000) Handedness and 

hemispheric language dominance in healthy humans. Brain 123: 2512-2518. 

Lagana M, Rovaris M, Ceccarelli A, Venturelli C, Marini S, Baselli G (2010) DTI parameter 

optimisation for acquisition at 1.5T: SNR analysis and clinical application. Comput Intell 

Neurosci 254032. 

Lau HC, Rogers RD, Haggard P, Passingham RE (2004). Attention to intention. Science 303: 

1208-1210. 

Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates 

differentially with increasing temporal complexity of rhythms during initialisation, 

synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42: 

1301-1312. 

Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations 

and boundaries of motor and premotor cortices as defined by functional brain imaging: A 

meta-analysis. Neuroimage 31: 1453-1474. 

Mechelli A, Crinion JT, Long S, Friston KJ, Lambon Ralph MA, Patterson K, et al. (2005) 

Dissociating reading processes on the basis of neuronal interactions. J Cogn Neurosci 17: 

1753-1765. 

Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, et al. (2005) Dominance of the 

right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93: 1020-1034. 

Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: 

A primer with examples. Hum Brain Mapp 15: 1-25. 



- 19 - 

 

Oldfield RC (1971) The assessment and analysis of handedness: The edinburgh inventory. 

Neuropsychologia 9: 97-113. 

Perenin MT, Vighetto A (1988) Optic ataxia: A specific disruption in visuomotor 

mechanisms. I. different aspects of the deficit in reaching for objects. Brain 111: 643-674. 

Raichle ME (2011) The restless brain. Brain Connect 1: 3-12. 

Raos V, Umilta MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of 

grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J 

Neurophysiol 95: 709-729. 

Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: Visually guided action versus 

immediate visuomotor control. Exp Brain Res 153: 171-179. 

Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor 

area and the right premotor cortex in the coordination of bimanual finger movements. J 

Neurosci 17: 9667-9674. 

Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. the parietal 

association cortex in depth perception and visual control of hand action. Trends Neurosci 

20: 350-357. 

Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, et al. (2008) Ventral and 

dorsal pathways for language. Proc Natl Acad Sci U S A 105: 18035-18040. 

Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal 

cortex in the macaque monkey: Cortical connections of areas V6 and V6A. Eur J 

Neurosci 10: 3171-3193. 

Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. 

Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C, Matthews PM, et al. (2007) 

Diffusion-weighted imaging tractography-based parcellation of the human lateral 



- 20 - 

 

premotor cortex identifies dorsal and ventral subregions with anatomical and functional 

specializations. J Neurosci 27: 10259-10269. 

Vallar G, Perani D (1986) The anatomy of unilateral neglect after right-hemisphere stroke 

lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24: 609-622. 

van den Berg FE, Swinnen SP, Wenderoth N (2010) Hemispheric asymmetries of the 

premotor cortex are task specific as revealed by disruptive TMS during bimanual versus 

unimanual movements. Cereb Cortex 20: 2842-2851. 

van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate 

cortex. J Physiol 277: 193-226. 

Vingerhoets G, Alderweireldt AS, Vandemaele P, Cai Q, Van der Haegen L, Brysbaert M, et 

al. (2013) Praxis and language are linked: Evidence from co-lateralization in individuals 

with atypical language dominance. Cortex 49: 172-183. 

Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, et al. (1993) Area 

V5 of the human brain: Evidence from a combined study using positron emission 

tomography and magnetic resonance imaging. Cereb Cortex 3: 79-94. 

Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen SP (2004) Parieto-premotor areas 

mediate directional interference during bimanual movements. Cereb Cortex 14: 1153-

1163. 

Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: 

Corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20: 25-

42. 

Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. (2009) 

Bayesian analysis of neuroimaging data in FSL. Neuroimage 45: S173-86. 



- 21 - 

 

Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden 

markov random field model and the expectation-maximization algorithm. IEEE Trans 

Med Imaging 20: 45-57. 

  



- 22 - 

 

Figure 1 - Tractography of the right and left premotor cortex  

 

Median tractography values over all subjects for each voxel are shown for the right (green) 

and left (blue) dorsal premotor cortex (PMd). The left PMd is mirrored to ease comparison of 

the right and left PMd. Results are displayed on a mean T1 MR image of all 16 subjects 

transformed into standard MNI space. Positive z coordinates refer to the distance of 

transversal sections (in mm) superior to the plane traversing the anterior and posterior 

commissures. The color scale indicates the total number a tract passed a voxel. Values above 

1000 are represented by the same color intensity. The contralateral cerebellum was not 

reached via the cerebral peduncles due to a midsagittal exclusion mask through the brain stem 

(red line). ipsi origin=ipsilateral to seed region; contra origin=contralateral to seed region; 

R=right side of the brain; L=left side of the brain. 
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Figure 2 - Differences in connectivity distributions of the left and right premotor cortex 

 

Differences between the left (L) and right (R) dorsal premotor cortex (PMd) are shown on 

transversal sections of a mean group anatomy (N=16) in standard MNI space, which implies 

that a horizontal reference plane traverses the anterior and posterior commissures. The x, y, z 

coordinates (in mm) refer to the distance of respectively coronal, sagittal and transversal 

sections to the middle of the anterior commissure. Positive z and y coordinates indicate the 

position of sections respectively superior and anterior to the anterior commissure, while 

positive x coordinates indicate the distance to the mid-sagittal plane of sections contralateral 

to the PMd from which tracts originate. Thresholds are set at p<0.001 with an extended voxel 

threshold of 20 voxels. The contralateral cerebellum was not reached via the cerebral 

peduncles due to a midsagittal exclusion mask through the brain stem (red line). 1=inferior 

temporal gyrus; 2=external capsule; 3=anterior cingulate gyrus; 4=superior and middle frontal 
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gyrus; 5=superior temporal gyrus; 6=ventral premotor cortex; 7=fronto-occipito fasciculus; 

8=precentral gyrus; 9=postcentral gyrus; 10=pre-supplementary motor area. 

 


