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Estimation of transient process for singularly perturbed synchronization
system with distributed parameters

Vera Smirnova1, Anton V. Proskurnikov2 and Natalia V. Utina3

Abstract— Many systems, arising in electrical and electronic
engineering are based on controlled phase synchronizationof
several periodic processes (“phase synchronization” systems,
or PSS). Typically such systems are featured by thegradient-
like behavior, i.e. the system has infinite sequence of equilibria
points, and any solution converges to one of them. This property
however says nothing about the transient behavior of the
system, whose important qualitative index is the maximal phase
error. The synchronous regime of gradient-like system may be
preceded by cycle slipping, i.e. the increase of the absolute phase
error. Since the cycle slipping is considered to be undesired
behavior of PSSs, it is important to find efficient estimates for
the number of slipped cycles. In the present paper, we address
the problem of cycle-slipping for phase synchronization systems
described by integro-differential Volterra equations with a small
parameter at the higher derivative. New effective estimates for
a number of slipped cycles are obtained by means of Popov’s
method of “a priori integral indices”. The estimates are uniform
with respect to the small parameter.

Index Terms— singularly perturbed systems, Asymptotic
properties, Popov-type stability of feedback systems, frequency-
response methods.

I. INTRODUCTION

A vast range of physical and mechanical systems are
described by ordinary differential and integro-differential
equations with a small parameter at the higher derivative.
Such equations are usually called singularly perturbed, since
the order of unperturbed equation is lower than the order of
the perturbed one. So in the absence of special simplifying
assumptions, the electron generator is described by a third
order differential equation with a small parameter [2], Van
der Pol equation being the special case when the small
parameter is equal to zero.

The asymptotic properties of singularly perturbed equa-
tions may differ from these of unperturbed ones. So the
problems of stability and oscillations for various singularly
perturbed integro-differential equations became the subject
for special research [4]. The armamentarium of singularly
perturbed systems is a backbone of the mathematical of
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theory of systems with different time scales, arising in
different areas of engineering and natural sciences, from
mechanics to mathematical biology [5].

In this paper we examine asymptotic behavior of singu-
larly perturbedphase synchronization systems(PSS). The
PSSs are based on the principle ofphase synchronization
[7]. These systems, sometimes referred to as synchronous or
pendulum-like control systems, involve periodic nonlineari-
ties and typically have infinite sequence of equilibria points.
An important class of PSS is constituted byphase-locked
systems, which are based on the seminal idea of phase-
locked loop (PLL) and widely used in telecommunications
and electronics [9], [8].

Recent decades a vast literature examining asymptotic be-
havior and other dynamical properties of PSSs has been pub-
lished, motivated by numerous applications of these systems
in mechanical, electric, electronic and telecommunication
engineering. Most of these papers address the problem of
gradient-like behavior, aiming at obtaining conditions which
guarantee convergence of the solutions to equilibria, which
means that the generators of the system are synchronized for
any initial state. For details and bibliography see e.g. [7], [12]
and references therein.

But as a rule the synchronous regime of gradient-like
system is preceded by cycle slipping, i.e. the increase of
the absolute phase error. Its amplitude depends on the initial
state of PSS and is an important characteristic of the transient
process of the system.

The phenomenon of cycle slipping was set forth in the
book [16], for mathematical pendulum with viscous friction
proportional to the square of angular velocity. For mathemat-
ical pendulum the number of full rotations around the point
of suspension was called the number of slipped cycles.

The extension of this notion to PSSs is as follows. Suppose
that a gradient-like phase synchronization system has a∆ -
periodic input and letσ(t) be its phase error. They say that
the output functionσ(t) has slippedk ∈ N

⋃
{0} cycles if

there exists such a momentt̂ ≥ 0 that

|σ(t̂)− σ(0)| = k∆, (1)

however for allt ≥ 0 one has

|σ(t) − σ(0)| < (k + 1)∆. (2)

So to give the adequate description for behavior of PSSs
one must establish possibly close estimates for the number
of slipped cycles. And since large number of slipped cycles
is undesirable for PSSs the problem of its estimation is
important.
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In the paper [3] the problem of cycle slipping was consid-
ered for multidimensional PSSs. By periodic Lyapunov-like
functions and the Kalman-Yakubovich-Popov (KYP) lemma
some frequency-algebraic estimates were obtained. The re-
sults of [3] were formulated in terms of LMI-solvability
in [17]. The estimates of [3] were extended to discrete-
time and distributed parameter PSSs in the paper [15] and
the monograph [6] respectively. Distributed parameter PSSs
were investigated by the method of a priori integral indices
with the help of Popov-like functionals of special type. In
paper [11] the generalized Popov-like functionals from [13]
are exploited for estimation of cycle-slipping for distributed
parameter PSSs.

In this paper we make frequency-algebraic estimates from
[11] more exact and extend them for singularly perturbed
distributed parameter PSSs.

II. PROBLEM SETUP

Consider a distributed parameter synchronization system
which is described by the integro-differential Volterra equa-
tion with a small parameter at the higher derivative:

µσ̈µ(t) + σ̇µ(t) = α(t) + ρϕ(σµ(t− h))−

−
t∫
0

γ(t− τ)ϕ((σµ(τ)) dτ (t ≥ 0).
(3)

Here µ > 0, h ≥ 0, ρ ∈ R, γ, α : [0,+∞) → R;
ϕ : R → R. The map ϕ is assumedC1-smooth and
∆-periodic with two simple isolated roots on[0,∆). The
kernel functionγ(·) is piece-wise continuous, the function
α(·) is continuous. For eachµ the solution of (3) is defined
by specifying initial condition

σµ(t)|t∈[−h,0] = σ0(t), (4)

whereσ0(·) is continuous andσ(0 + 0) = σ0(0).
We assume for definiteness that

∆∫

0

ϕ(σ) dσ ≤ 0. (5)

We assume also that the linear part of (3) is stable:

|α(t)| + |γ(t)| ≤ Me−rt (M, r > 0). (6)

Let
α1 = inf

σ∈[0,∆)

dϕ

dσ
, α2 = sup

σ∈[0,∆)

dϕ

dσ
.

Then
α1 ≤ dϕ

dσ
≤ α2, ∀σ ∈ R.

Notice thatα1 < 0 < α2.
In paper [10] some sufficient frequency-algebraic condi-

tions for gradient-like behavior of equation (3) were ob-
tained, uniform with respect to the parameterµ. They are
formulated in terms of the transform function of the linear
part of the unperturbed Volterra equation(µ = 0)

σ̇(t) = α(t) + ρϕ(σ(t − h))−
t∫
0

γ(t− τ)ϕ((σ(τ)) dτ.

(7)

The transfer function for (7) is defined as follows

K(p) = −ρe−hp +

t∫

0

γ(t)e−pt dt (p ∈ C). (8)

Our goal is to estimate maximal deviations
sup
t≥0

|σµ(t)− σµ(0)| for a gradient-like system. Precisely,

we are going to obtain estimates for the number of slipped
cycles.

III. F REQUENCY-ALGEBRAIC ESTIMATES IN CASE OF THE

NUMBER OF CYCLES SLIPPED FOR UNPERTURBED

EQUATION

Consider a distributed parameter system with a periodic
nonlinearity, described by the integro-differential equation
(7). This equation is the unperturbed equation for the equa-
tion (3). Its transfer function from the inputϕ to the output
(−σ̇) is defined by (8). The initial condition for (7) has the
form

σ(t)|t∈[−h,0] = σ0(t). (9)

Let us obtain certain estimates for the number of slipped
cycles for the unperturbed equation. We start with the
following technical lemma which is a cornerstone point in
estimating the number of slipped cycles.

Lemma 1.Suppose there exist such positiveϑ, ε, δ, τ that
for all ω ≥ 0 the frequency-domain inequality holds:

Re{ϑK(iω)− τ(K(iω) + α−1
1 iω)∗(K(iω) + α−1

2 iω)}
−ε|K(iω)|2 − δ ≥ 0 (i2 = −1).

(10)
Then the following quadratic functionals

IT =

T∫

0

{
ϑσ̇(t)ϕ(σ(t)) + εσ̇2(t) + δϕ2(σ(t))+

+τ(α−1
1 ϕ̇(σ(t)) − σ̇(t))(α−1

2 ϕ̇(σ(t)) − σ̇(t))
}
dt

are uniformly bounded along the solution of (7):

IT ≤ Q, (11)

whereQ does not depend onT . Proof: Let σ(t) be
the solution of (7), (9) andη(t) = ϕ(σ(t)). Let T be an
arbitrary positive number. Ifη(0) 6= 0 we determine

v(t) =





0 for t < 0,
t for t ∈ [0, 1],
1 for t > 1



 ,

in caseη(0) = 0 we putv(t) = 1.
We introduce auxiliary functions

σ0(t) := α(t) + (1− v(t− h))ρη(t− h)−

−
t∫

0

(1− v(τ))γ(t − τ)η(τ)dτ,

ζT (t) :=

{
η(t) t ≤ T,

η(T )eλ(T−t) t > T (λ > 0)

}
,

ηT (t) := v(t)ζT (t),



σT (t) := ρηT (t− h)−
t∫

0

γ(t− τ)ηT (τ)dτ.

For t ∈ [0, T ] we have

σ̇(t) = σ0(t) + σT (t). (12)

For anyT > 0, consider a functional

ρT :=

+∞∫

0

{
ϑσT (t)ηT (t) + δη2T (t) + εσ2

T (t)+

+τ(σT (t)− α−1
1 η̇T (t))(σT (t)− α−1

2 η̇T (t))
}
dt.

It is demonstrated in [6] by means of the Popov method
of “a priori integral indices” [14] that the frequency-domain
inequality (10) implies

ρT ≤ 0 ∀T > 0. (13)

It can be easily shown that

ρT = IT + I1T + I2T + I4T , (14)

where the addendsI1T , I2T , I4T are defined by

I1T := −
ℓ∫

0

{
ϑ(1 − v(t))σ̇(t)η(t) + δ(1− µ2)η2(t)+

+α−1
1 α−1

2 τ η̇2(t)−
(

˙̂
v(t)η(t)

)2

α−1
1 α−1

2 τ+

+τ
(
α−1
1 + α−1

2

)
σ̇(t)

(
η̇(t)− ˙̂

v(t)η(t)

)}
dt,

with ℓ = T , if T < 1, andℓ = 1, if T ≥ 1;

I2T :=

T∫

0

{−ϑσ0(t)η(t)v(t) − 2(ε+ τ)σ̇(t)σ0(t)+

+ (τ + ε)σ̇2
0(t) + τ

(
α−1
1 + α−1

2

)
σ0(t)η̇(t)

}
dt;

I4T :=

∞∫

T

{
ϑσT (t)ηT (t) + δη2T (t) + (ε+ τ)σ2

T (t)−

−
(
α−1
1 + α−1

2

)
τσT (t)η̇T (t) + τα−1

1 α−1
2 η̇2T (t)

}
dt.

From (13) and (14) it is immediate that

IT ≤ −I1T − I2T − I4T . (15)

As can be seen from (6), the functionalsI1T andI2T are
uniformly bounded:

|I1T | ≤ q1(δ, ϑ, τ, α1, α2), (16)

|I2T | ≤ q2(ϑ, ε, τ, α1, α2), (17)

whereq1 andq2 do not depend onT . By definition ofηT (t),

I4T =

∞∫

T

{
ϑσT (t)η(T )e

λ(T−t) + δη2(T )e2λ(T−t)+

+(ε+ τ)σ2
T (t) + λ

(
α−1
1 + α−1

2

)
τσT (t)η(T )e

λ(T−t)+

+λ2τα−1
1 α−1

2 η2(T )e2λ(T−t)
}
dt.

Introducing the constant

λ :=

√
δ|α1|α2

τ
, (18)

it can be shown that

I4T ≥ −
∞∫

T

W 2

4(ε+ τ)
· η2(T )e2λ(T−t)dt,

whereW = ϑ+
√
τδ|α1|α2

(
α−1
1 + α−1

2

)
, and hence

I4T ≥ −q3(δ, ϑ, τ, α1, α2) =

√
τ W 2 maxϕ2(σ)

8(ε+ τ)
√

δ|α1|α2

. (19)

The inequalities (15), (16), (17), and (19) yield that

IT ≤ q1 + q2 + q3 ≡ Q(ϑ, δ, ε, τ, α1, α2), (20)

which finishes the proof of Lemma 1.
The value ofQ from (11) may be found explicitly.
Lemma 2. Let |α1| = α2 andϕ(σ(0)) = ϕ(σ(T )) = 0.

Then if the conditions of Lemma 1 are fulfilled the following
estimate holds

IT ≤ q :=
1

r
(ϑMm+2(ε+ τ)Mm(

M

r
+ρ)+ (ε+ τ)

M2

2
),

(21)
where

m = supϕ(σ).

Proof: Let us exploit Lemma 1 forϕ(σ(0)) = 0 and
ϕ(σ(T )) = 0. In this caseI1T = 0 and I4T ≥ 0. So it
follows from (15) that

IT ≤ −I2T . (22)

Since|α1| = α2

IT ≤
∞∫

0

|ϑα(t)ϕ(σ(t)) + (τ + ε)α2(t) + 2(τ + ε)α(t)·

·(ρϕ(σ(t − τ)) − 2(τ + ε)

t∫

0

γ(t− τ)ϕ(σ(τ))dτ)|dt

(23)
Hence it follows that the estimate (21) is true.

The next two theorems give estimates for the number of
slipped cycles. To start with, we introduce auxiliary functions

Φ(σ) =

√
(1− α−1

1 ϕ′(σ))(1 − α−1
2 ϕ′(σ)),

P (ε, τ, σ) =
√
ε+ τΦ2(σ),

r1j(k, ϑ, ε, τ, x) =

∆∫
0

ϕ(σ)dσ + (−1)j x
ϑk

∆∫
0

|ϕ(σ)|P (ε, τ, σ)dσ

(j = 1, 2)

Yj(σ) = ϕ(σ) − r1j |ϕ(σ)|P (ε, τ, σ) (j = 1, 2).



Theorem 1. Suppose there exist such positiveϑ, ε, δ, τ
and naturalk that the following conditions are fulfilled:

1) for all ω ≥ 0 the frequency-domain inequality (10)
holds;

2)

4δ > ϑ2(r1j(k, ϑ, ε, τ,Q))2 (j = 1, 2), (24)

whereQ is given by (11). Then any solution of (7) slips less
than k cycles, that is, the inequalities hold

|σ(0)− σ(t)| < k∆ ∀t ≥ 0. (25)

The proof of Theorem 1 is presented in [11].
To proceed with the next result, we introduce the following

functions forj = 1, 2

rj(k, ϑ, x) :=

∆∫
0

ϕ(σ)dσ + (−1)j x
ϑk

∆∫
0

|ϕ(σ)|dσ
,

r0j(k, ϑ, x) :=

∆∫
0

ϕ(σ)dσ + (−1)j x
ϑk

∆∫
0

Φ(σ)|ϕ(σ)|dσ
,

Fj(σ) = ϕ(σ) − rj |ϕ(σ)|,

Ψj(σ) = ϕ(σ) − r0j |ϕ(σ)|Φ(σ)

and matricesTj(k, ϑ, x) :=

:=

∥∥∥∥∥∥∥∥∥∥

ε
aϑrj(k, ϑ, x)

2
0

aϑrj(k, ϑ, x)

2
δ

a0ϑr0j(k, ϑ, x)

2

0
a0ϑr0j(k, ϑ, x)

2
τ

∥∥∥∥∥∥∥∥∥∥

,

wherea ∈ [0, 1] anda0 := 1− a.
Theorem 2. Suppose there exist positiveϑ, ε, δ, τ , a ∈

[0, 1] and naturalk satisfying the conditions as follows:
1) for all ω ≥ 0 the frequency-domain inequality (10)

holds;
2) the matricesTj(k, ϑ,Q) (j = 1, 2) where the value of

Q is defined by (11), are positive definite.
Then for the solution of (7) the inequality (25) holds.

Proof: Let σ(t) be the solution of (7), (9).
Let ε0 > 0 be so small that matricesTj(Q + ε0) are

positive definite. We consider the functionsFj(σ), Ψj(σ)
(j = 1, 2) with

rj = rj(k, ϑ,Q+ ε0),

r0j = r0j(k, ϑ,Q+ ε0)

and the functionalsIT from Lemma 1.

It is true that

IT = ϑa
σ(T )∫
σ(0)

Fj(σ)dσ + ϑa0

σ(T )∫
σ(0)

Ψj(σ)+

+
T∫
0

{
ϑσ̇(t)ϕ(σ(t)) + εσ̇2(t) + δϕ2(σ(t))−

−ϑaFj(σ(t))σ̇(t)− ϑa0Ψj(σ(t))σ̇(t)+

+τσ̇2(t)Φ(σ(t))
}
dt (j = 1, 2).

(26)

In virtue of condition 2) of the theorem, the third term in
the right hand part of (26) is the integral of positive definite
quadratic form. So

IT ≥ ϑ
(
a
∫ σ(T )

σ(0) Fj(σ)dσ + a0
∫ σ(T )

σ(0) Ψj(σ)dσ
)

(j = 1, 2).
(27)

Suppose that

σ(t1) = σ(0) + k∆.

Then
∫ σ(t1)

σ(0)

F1(σ)dσ = k

∫ ∆

0

F1(σ)dσ =
1

ϑ
(Q + ε0),

∫ σ(t1)

σ(0)

Ψ1(σ)dσ = k

∫ ∆

0

Ψ1(σ)dσ =
1

ϑ
(Q + ε0).

Then
It1 ≥ Q+ ε0 > Q. (28)

which contradicts with (20). So our hypothesis is wrong.
With the help ofF2(σ) andΨ2(σ) we prove that

σ(t) 6= σ(0)− k∆.

As a result for allt > 0

σ(0)− k∆ < σ(t) < σ(0) + k∆.

Theorem 2 is proved.
Theorem 3Let |α1| = α2 andσ(0) = σ0 whereϕ(σ0) =

0. Suppose there exist such positiveϑ, ε, δ, τ , a ∈ [0, 1] and
natural k that the following conditions are fulfilled:

1) for all ω ≥ 0 the frequency-domain inequality(10)
holds;

2) the matricesTj(k, ϑ, q) (j = 1, 2), with q defined by
(21), are positive definite.
Then for any solution of (7) the estimate (25) holds.

Proof: Let us repeat the proof of Theorem 2 with

rj = rj(k, ϑ, q + ε0),

r0j = r0j(k, ϑ, q + ε0).

Then
Itj > q (j = 1, 2). (29)

Since ϕ(σ(0)) = 0 we conclude thatϕ(σ(t1)) = 0 and
ϕ(σ(t2)) = 0. Then it follows from Lemma 2 that

Itj ≤ q (j = 1, 2),

which contradicts (29).



IV. EXAMPLE

Let us consider a phase-locked loop (PLL) with a propor-
tional integral lowpass filter, a sine-shaped characteristic of
phase frequency detector and a time-delay in the loop. Its
mathematical description is borrowed from [1]:

σ̈(t) +
1

T
σ̇(t) + ϕ(σ(t − h)) + sT ϕ̇(σ(t − h)) = 0, (30)

ϕ(σ) = sinσ − β, s ∈ (0, 1), β ∈ (0, 1], h > 0, T > 0.

The differential equation (30) can be reduced to integro-
differential equation (7) with

γ(t) =

{
0, t < h,

(1− s)e−
t−h
T , t ≥ h

}
,

α(t) = e−
t
T (b− (1 − s)J),

whereb = σ̇(0) + sTϕ(σ(−h)) and

J =





t−h∫

−h

e
λ+h
T ϕ(σ(λ))dλ, t ≤ h,

0∫

−h

e
λ+h
T ϕ(σ(λ))dλ, t > h





.

The transfer function of the lowpass filter here has the
form:

K(p) = T
Tsp+ 1

Tp+ 1
e−ph

We suppose thatϕ(σ(0)) = 0 and apply Theorem 3.
Let α2 = −α1 = 1, ϑ = 1, a = 1. The assumption 1) of

Theorem 3 shapes into

Ω(ω) ≡ τT 2ω4 + ω2(T 3s cosωh− T 4s2(ε+ τ)+
+τ − δT 2)− T 2(1− s)ω sinωh+ T cosωh−
−(ε+ τ)T 2 − δ ≥ 0 ∀ω;

(31)

whereas condition 2) may be rewritten as

2
√
εδ >

2πβ + q2k
−1

4(β arcsinβ +
√
1− β2)

. (32)

Notice that for allω ∈ R one has

Ω(ω) ≥ Ω0(ω) ≡ (τT 2 − 1
2T

3sh2)ω4 + (T 3s−
−T 4s2(ε+ τ) + τ − δT 2 − 1

2Th
2 − (1− s)T 2h)ω2+

+(T − (ε+ τ)T 2 − δ), ∀ω
andΩ(ω) ≈ Ω0(ω) whenωh << 1.

We consider the caseT ≤ 0.9, h0 = h
T

≤ 1, since
for small T and smallh the PLL is gradient-like for all
β ∈ (0, 1] [1]. Let us chooseε = β0

T
, δ = α0T, τ =

γ0T
3. As Ω(0) = Ω0(0) it is necessary thatα0 + β0 +

γ0T
4 ≤ 1. Then the optimal values forα0 and β0 are

α0 = β0 = 1
2 (1 − γ0T

4), whence2
√
εδ = 1 − γ0T

4. For
γ0 = max { 1

2sh
2
0,

1
2 (h0 + 1− s)2} the polynomialΩ0(ω) is

nonnegative,∀ω. It follows from (32) that the numberk0 of
cycles slipped satisfies the inequality

k0 ≤ r0 := ⌊q2(8
√
εδ(β arcsinβ +

√
1− β2)− 2πβ)−1⌋,

where⌊x⌋ stands for the integer floor ofx.

Let us consider the PLL withb = K(0)β [3]. Then by
estimating the functionalIT we conclude that the value ofq
can be defined by the formula

q = T 2(A+Bh0 + Ch2
0), (33)

where
A = (72β

2 + 3),
B = 3(1− s)(1 + β)(3β + 1),
C = 3

2 (1− s)2(1 + β)2.
(34)

It follows from (33), (34) that the number of slipped cycles
increases together withT , with β or with h0. Let for example
h0 = 1, s = 0.4, T = 0.1. Thenr0 = 1 for β = 0.9, r0 = 2
for β = 0.92, andr0 = 5 for β = 0.95.

V. ESTIMATES FOR THE NUMBER OF CYCLES SLIPPED

FOR SINGULARLY PERTURBED EQUATION

Equation (3) can be reduced to integro-differential Volterra
equation

σ̇µ(t) = αµ(t)−
t∫

0

γµ(t− τ)ϕ(σµ(τ))dτ (t > 0),

(35)
where

αµ(t) = σ̇(0)e
−t
µ +

1

µ

t∫

0

e
λ−t
µ α(λ)dλ +

ρ

µ
J0, (36)

J0 =





t−h∫

−h

e
λ+h−t

µ ϕ(σ(λ))dλ, t ≤ h,

0∫

−h

e
λ+h−t

µ ϕ(σ(λ))dλ, t > h,





.

γµ(t) =
1

µ

t∫

0

e
λ−t
µ γ(λ)dλ − ρ

µ

{
e

h−t
µ , t ≥ h,

0, t < h

}
. (37)

The transfer function for equation (35) is as follows

Kµ(p) =
K(p)

1 + µp
. (38)

Let

q0 = q+ (ϑm+2(ε+ τ)m(
M

r
+ ρ))ρmh+ (ε+ τ)ρ2m2h,

whereq is defined by (21).
Theorem 4Let α2 = |α1| andσ(0) = σ0 whereϕ(σ0) =

0. Suppose there exist such positiveϑ, ε, δ, τ , a ∈ [0, 1] and
natural k that the following conditions are fulfilled:

1) for all ω ≥ 0 the frequency-domain inequality(10)
holds;

2) the matricesTj(k, ϑ, q0) (j = 1, 2) are positive definite.
Then there exists such valueµ0 that for all µ ∈ (0, µ0)
the following assertion is true: for any solution of (7) the
estimates

|σµ(0)− σµ(t)| < k∆ ∀t ≥ 0 (39)



hold. Proof: Let |α1| = α2 = κ. In our case the
inequality (10) takes the form

Π(ω) ≥ 0, (40)

where

Π(ω) := τκ−2ω2 + ϑRe{K(iω)} − (ε+ τ)|(K(iω)|2 − δ.

(41)
Considerδ̄ < δ and Π̄(ω) = Π(ω) + δ − δ̄. We have

Π̄(ω) > 0 ∀ω. (42)

Let us substitute in matricesTj(k, ϑ, q0) the valueδ by δ̄

and denote the new matrices bȳTj(k, ϑ, q0) Let δ− δ̄ be so
small thatT̄j(k, ϑ, q0) are positive definite.

For integro-differential Volterra equation (35) one can
apply Theorem 3. For transfer function (38) the frequency-
domain inequality (10) withϑ, ε, δ̄, τ takes the form

Πµ(ω) := Re{ϑKµ(iω)} − (ε+ τ)|(Kµ(iω)|2+
+τκ−2ω2 − δ̄ ≥ 0.

(43)

or

Π(ω) + ϑµωIm{K(iω)}+ τµ2κ−2ω4 − δ̄µ2ω2 ≥ 0.
(44)

Introduce a constant

Ω := κ

√
δ̄

τ
. (45)

Let us fix a certainµ̃ > 0. Since the value of|K(iω)| is
bounded forω ∈ R we can assert that there exists such
numberΩ0 > Ω that the inequality (44) is true forω >

Ω0, µ ≤ µ̃. Let

δ1 = inf
ω∈[0,Ω0]

Π̄(ω),

L1 = 2 sup
ω∈[0,Ω0]

|ϑωIm{K(iω)}|. (46)

Then if

µ̄ < min

{
δ1

L1
,

√
2δ1τ

κ2δ̄
, µ̃

}
, (47)

the inequality (44) is true for anyµ < µ̄ and allω ≥ 0.
Consider now the functionalIT from Lemma 1 for the

solution σµ(t) of equation (35) and the nonlinear function
ϕ(σµ(t)).

The estimate (23) for nonlinear functionϕ(σµ(t)) and the
termαµ(t)) takes then the form

IT ≤
∞∫

0

∣∣ϑαµ(t)ϕ(σµ(t)) + (τ + ε)α2
µ(t)+

+2(τ + ε)

t∫

0

γµ(t− τ)ϕ(σµ(τ)dτ)
∣∣dt

Hence

IT ≤ qµ, (48)

where

qµ = (ϑm+ 2(ε+ τ)m(ρ+
M

r
))(µ|σ̇(0)|+ M

r
+ ρmh)+

+(ε+ τ)(
µ

2
σ̇2(0)) +

M2

2(1− rµ)2
(µ− 4µ

1− rµ
+

1

r
)+

+ρ2m2(h+ µe−
h
µ − µ)).

(49)
It is clear that

lim qµ = q0 (50)

asµ → 0.
Since matrices̄Tj(k, ϑ, q0) are positive definite there exists

a valueµ̂ small enough that forµ ≤ µ̂ matricesT̄j(k, ϑ, qµ)
are positive definite. Thus ifµ < µ0 := min{µ̄, µ̂} the
frequency inequality of Theorem 3 for the transfer function
Kµ(p) and the algebraic restrictions on the varying parame-
ters are fulfilled. So forσµ(t) the estimate (39) is true.

VI. CONCLUSION

The paper is devoted to the problem of cycle-slipping
for singularly perturbed distributed parameter phase synchro-
nization systems. The PSSs described by integro-differential
Volterra equations with a small parameter at the higher
derivative are addressed. The case of differentiable nonlinear-
ities is considered. The problem is investigated with the help
of the method of a priori integral indices. In the paper new
effective multiparametric frequency-algebraic estimates for
the number of slipped cycles of the output of the system are
established. The estimates obtained are uniform with respect
to a small parameter.
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