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Abstract

In this paper, we study a production-inventory systems withfinite production capacity and fixed setup
costs. The demand process is modeled as a mixture of a compound Poisson process and a constant
demand rate. For the backlog model we establish conditions on the holding and backlogging costs such
that the average-cost optimal policy is of(s, S)-type. The method of proof is based on the reduction
of the production-inventory problem to an appropriate optimal stopping problem and the analysis of the
associated free-boundary problem. We show that our approach can also be applied to lost-sales models
and that inventory models with unconstrained order capacity can be obtained as a limiting case of our
model. This allows us to analyze a large class of single-iteminventory models, including many of the
classical cases, and compute in a numerical efficient way optimal policies for these models, whether
these optimal policies are of(s, S)-type or not.

1 Introduction
Production-inventory systems with a finite, constant production rate are used to produce a wide variety of
products in the food-processing industry, such as sugar (Grunow et al., 2007), coffee liquids (Pool et al.,
2011), sorbitol, and modified starches (Rajaram and Karmarkar, 2004). Other examples of (process)
industries are glass manufacturing, the electronic computer industry, and the pharmaceutical industry
(Shi et al., 2012). Due to the finite production capacity, inventory levels in these production facilities
can only increase gradually over time. Hence, these facilities require a sufficient amount of on-hand
inventory to achieve a certain service level. Clearly, in practice, the production rate of these facilities
is higher than the average demand. As a consequence, the production facility has to be switched off
once in a while to prevent inventory from growing without bound. Typically, there are significant costs
associated with switching the facility on, so that, from a financial point of view, it is critical to establish
a good production-inventory policy to decide when to setup the machine to produce, and when to shut it
down.

In the special case of constant demand, the production-inventory system reduces to the classical
Economic Production Quantity (EPQ) model of Taft (1918), inwhich holding and shortage costs are
balanced against setup costs to minimize the long-run average cost. When holding and backlogging
costs are linear, it is intuitive that a long-run average-cost optimal policy to control production is of a so-
called(s, S)-type. Such policies decide to start production when the inventory levelIt is at or below a
level s and switch off production whenIt ≥ S, whereS > s. Explicit formulas to compute the optimal
policy parameterss and S can be derived algebraically, in fact, without using derivatives, see, e.g.,
Cárdenas-Barrón (2001). One important generalization of the constant demand process is the Brownian
motion demand process, as considered by Vickson (1986). Under the assumption of linear holding and
backlogging cost, Vickson (1986) shows that an(s, S)-policy is average-cost optimal. Recently, Wu and
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Chao (2013) extend this result to a production-inventory model in which the cumulative production as
well as the cumulative demand process are modeled by a two-dimensional Brownian motion process.

In contrast with these purely continuous (stochastic) demand processes, many inventory theory mod-
els assume that customer orders arrive in batches at random epochs. One batch-wise demand process
that has been extensively studied is the compound Poisson process. In this scenario, demands arrive in
accordance with a Poisson process, and the demand sizes forma set of independently and identically
distributed (i.i.d.) random variables. This case has been studied in a very recent paper by Van Foreest
and Wijngaard (2013).

The next step in the generalization of the EPQ model is to consider a demand process that is a mixture
of continuous constant demand and compound Poisson demand.This demand model is of practical inter-
est, as in many applications of production-inventory systems, demand is generated from a deterministic
source as well as a stochastic source. Sobel and Zhang (2001)discuss an example of a manufacturer who
sells products through two channels. Large customers with long-term supply contracts generate a more
or less constant demand, while smaller customers generate stochastic (unscheduled) demand. Thus, for
these situations, it is necessary to model the demand as a mixture of deterministic demand, for the first
channel, and a stochastic (compound Poisson) demand, for the second channel. There has also been theo-
retical interest in this demand model. Hordijk and Van der Duyn Schouten (1986) and Presman and Sethi
(2006) prove for inventory systems withinfinite ordering capacity that(s, S)-policies are average-cost
optimal for this demand model. The work on this model, which we henceforth call thestochastic EOQ
model, clearly merges the EOQ formula and the classical results onoptimal (s, S)-policies for infinite
capacity stochastic inventory models, c.f. Beyer et al. (2010).

In this paper, we consider thestochastic EPQ model, which is the stochastic generalization of the
EPQ model: a continuous review production-inventory modelwith finite, constant production rate and a
demand process that is a mixture of continuous and constant demand and a compound Poisson process.
Our paper makes the following contributions to the prior work on optimal control of infinite horizon
continuous review single-item production-inventory models:

(i) We establish for the first time conditions on the inventory costs and the demand distribution such
that average-cost optimal policies exist for production-inventory systems with backlogging. We
also consider conditions that guarantee that the optimal policy is of (s, S)-type.

(ii) We demonstrate the generality of the approach by applying it to a production-inventory model with
lost sales and by proving that the stochastic EOQ model can beobtained as a limiting case of the
stochastic EPQ model.

(iii) We discuss how the approach can be used to actually compute optimal policies in a numerically
efficient way.

Let us elaborate on each of these points.
Pertaining to (i), it is of importance to remark that the incorporation of the constant term in the

demand process might appear to be innocuous, but, in fact, itcomplicates the analysis considerably. The
point is that, when demand contains a constant demand term, the production-inventory process becomes
a genuine continuous-time continuous state space process.As a result, the process can no longer be
modeled as semi-Markov decision process. Hence, all the methods developed previously, such as the
method of Van Foreest and Wijngaard (2013), are inadequate.More specifically, the most difficult part
in the proof of Van Foreest and Wijngaard (2013) deals with anoptimal stopping problem associated
with the problem when to switch on production. To establish the existence of a solution to this optimal
stopping problem, Van Foreest and Wijngaard (2013) use functional analytic methods. Adapting this line
of proof to the present model requires, however, considerably more advanced concepts such as Sobolev
spaces. Instead of continuing this functional analytic approach, we prefer to use free-boundary theory,
as developed by Peskir and Shiryaev (2006), to establish theexistence of a solution to the associated
optimal stopping problem. Not only has this approach a more probabilistic flavor, we conjecture that
it offers a possibility to incorporate also Brownian motionin the demand process, thereby potentially
merging all the demand models discussed in the literature upto now.

It might be tempting to think that the(s, S)-structure of the optimal policy for our model can be
obtained from the results for the stochastic EOQ model by incorporating constraints on the order size in
the models of Hordijk and Van der Duyn Schouten (1986) and Presman and Sethi (2006). Recall, that
the main difference with the stochastic EPQ model is that thestochastic EOQ model assumes unlimited
ordering capacity rather than finite production capacity. This, however, is not true as follows from a
counterexample by Wijngaard (1972).
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Regarding (ii), the free-boundary formulation turns out tobe very versatile as it allows us to analyze
many other inventory models. To substantiate this, we address two cases in this paper. The first case
considers a production-inventory model with lost sales. The second case shows that, similar to the fact
that the EOQ model can be obtained as a limiting case of the EPQmodel by taking the production
rater → ∞, the stochastic EOQ can be obtained from the stochastic EPQ model. In fact, the quasi-
variational inequalities (QVIs) derived by Presman and Sethi (2006) turn out to be particularly useful as
they can be obtained as a limiting case of the QVIs of our model. Hence, our approach can be applied
to find the optimal policy in a wide class of single-item inventory problems. For instance, the classical
result of Scarf (1959) becomes a corollary of our work.

Related to (iii), and as an immediately consequence of point(ii), we can compute optimal policies for
models with infinite ordering capacity such as the stochastic EOQ model. As these computational aspects
were not addressed by Hordijk and Van der Duyn Schouten (1986) and Presman and Sethi (2006), we
complement their work. Moreover, since the stochastic EOQ model is a clear extension of many of the
classical inventory models with infinite ordering capacity, our numerical method is more generic than
many of the presently known methods, for instance such as those discussed by Zheng and Federgruen
(1991); Federgruen and Zheng (1993); Feng and Xiao (2000), and Chen and Feng (2006). Finally, the
present work can also be applied, see Germs and Van Foreest (2013b), to compute optimal policies for
production-clearing models, c.f., Perry et al. (2005) and Berman et al. (2005),

The paper has the following structure. In Section 2 we present the details of the model and state the
optimal control problem under consideration. Section 3 proves the existence of an optimal stationary
control policy. In Section 4 we derive structural properties of the optimal policy and provide conditions
such that the optimal policy has an(s, S)-structure. In Section 5 we show how to apply our approach to
the inventory problem of (1) lost sales, and (2), the stochastic EOQ model. In Section 6 we discuss the
numerical issues involved in finding optimal policies for more complicated cases. With these numerical
examples we address the issue how changing stochastic demand into more regular demand affects the
long-run average cost. Finally, Section 7 concludes the paper and discusses a set of related inventory
problems that may be tackled also by the techniques developed here.

2 Model and problem
We consider a one-product, single-machine production-inventory model in which the cumulative demand
process(Xt)t≥0 is a mixture of a constant demand rate and a compound Poisson process,

Xt = qt +
X

i≤Nt

Yi,

whereq ≥ 0 is the rate of constant demand,Nt counts the number of arrivals up to timet, andYi is
the demand size of theith customer. By assumption,Nt is Poisson distributed with parameterλt, and
the random variablesYi are i.i.d. as the generic random variableY with distributionF (y) and mean
µ = E[Y ] > 0. For later use we define the survivor functionG(·) = 1 − F (·).

The manufacturer can control the production facility by switching it on and off. Switching occurs
instantaneously. When production is off, the inventory level decreases due to the demand; when produc-
tion is on, inventory is replenished at a fixed rater. To ensure that the demand can always be covered by
producing for a sufficiently large amount of time, we requirethat

r > q + λµ. (1)

Let (Pt, It)t≥0 be the joint production-inventory process. When at timet, Pt = 1, production is on,
and whenPt = 0, production is off. The inventory level at timet is given byIt. We visualize the state
space as two lines, an on-line at whichPt = 1 and an off-line at whichPt = 0, see Figure 1. We assume
that all unfilled demand is backlogged. Thus, the inventory levelIt can take on any real value on both
lines, where a negative value indicates the level of backlog.

The cost structure consists of two parts. The switching costis such that each time the production
switches on (i.e. the state of the system switches fromPt− = 0 to Pt = 1), a fixed costK > 0 is
incurred; any switch-off cost is absorbed inK. Inventory (backlogging) costs accrue at rateh(x) when
the inventory level isx ≥ 0 (x < 0). The assumptions onh(·) are the following:

(i) h(0) = 0;

(ii) h(x) = O(|xn|) for somen > 0 asx → −∞;
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Figure 1: Representation of the state-space of the joint production-inventory process(Pt, It)t≥0 starting
in state(0, x).

(iii) h(x) → ∞ if x → ∞;

(iv) The demandY andh(·) to be such thatEh(x − Y ) < ∞ for all x.

Note that the functionh(·) is allowed to be quasi-convex.
We are concerned with the problem how to control the production-inventory process. To characterize

the evolution of(Pt, It)t≥0 under a policyπ, it suffices to specify points in time0 = π0 < π1 < . . . <
πi < . . . at which the policyπ decides to switchPt. SupposeP0 = 0, then theπ-controlled production
process

P π
t =

(

0, if t ∈ [π2i, π2i+1),

1, if t ∈ [π2i+1, π2(i+1)),

for i = 0, 1, . . .. If 1{·} is the indicator function, theπ-controlled inventory level at timet can be then
written as

Iπ
t = I0 − Xt + r

Z t

0

1{P π
s = 1}ds.

When no ambiguity results, we will suppress in the notation the dependency onπ.
In the sequel we restrict our attention to the space of stationary policiesU , i.e., policies whose actions

at timet deterministically depend on the state of the production-inventory process at timet. A stationary
production policyπ can be conveniently characterized by subsets of the off-line and on-line at which pro-
duction switches state. For instance, a stationary(s, S)-policy is characterized by the subsets(−∞, S)
and [S,∞) on the on-line such that forIt ∈ (−∞, S) production remains on, while forIt ∈ [S,∞)
production switches off. On the off-line, the(s, S)-policy is characterized by the subsets(−∞, s] and
(s,∞) such that forIt ∈ (s,∞) production remains off, while forIt ∈ (−∞, s] production switches
on.

For a policyπ ∈ U , we define the expected cost up to timeT by

Lπ(T ) = E

Z T

0

h(Iπ
s )ds + K

∞
X

i=0

1{π2i+1 ≤ T}, (2)

whereP0 = 0, I0 < S. Thelong-run average costis defined by

Lπ = lim sup
T→∞

1

T
Lπ(T ).

We are concerned with two goals. The first is to identify general conditions such that a minimizing
policy π∗ exists, i.e., that there is a policyπ∗ such that the infimum

Lπ∗

= inf
π∈U

Lπ (3)

is attained. The second goal is to identify a set of conditions when such a minimizing policyπ∗ has an
(s, S)-structure. Since any(s, S)-policy with finites, S, s < S, results in a finite long-run average cost,
a policyπ with infinite cost cannot be optimal. Without loss of generality we can therefore restrictU to
the set of stationary policies with finite long-run average cost.
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3 Existence of optimal policies
In this section we prove that a stationary policy exists suchthat the optimal control problem (3) has a
solution under the conditions of Section 2. We proceed in a number of steps. In Section 3.1 we show
that the optimal policy must be a ‘produce-up-to’ policy, i.e., a policy such that, if production on, it
is optimal to keep on producing until some inventory levelS is hit. Clearly this fixes the structure on
the on-line, so that it remains to characterize the structure of the optimal policy on the off-line. As
shown in Section 3.2, using the concept ofg-revised costs, this problem turns out to be equivalent to
solving an optimal stopping problem. In Section 3.3 we derive conditions to ensure that the optimal
stopping problem on the off-line has a solution. Since we attack the existence proof by using tools
of free-boundary theory, we rewrite in Section 3.4 the functional equation for the value function as a
Lagrange functional. This form proves theoretically and practically highly useful. Then, in Section 3.5
we solve the associated free-boundary problem, and show by verification, that its solution is the value
function, i.e., the solution for the optimal stopping problem on the off-line. The overall existence proof
of an optimal policy follows then immediately.

3.1 Produce-up-to policies are optimal
We start the proof by showing that we can restrict the search for an optimal policy to the setH ⊂ U
of ‘produce-up-to’ policies, i.e., policies that, when production is on, switch production off whenever
the inventory is above some level, and remain on when the inventory is below this level. To this end,
let HS contain all policiesπ that split the on-line into two sets(−∞, S) and[S,∞) so that production
remains on until the inventory level hits the set[S,∞) and switches off immediately when the inventory
hits [S,∞). LetH = ∪SHS

The following theorem of Van Foreest and Wijngaard (2013, Theorem 4) shows that no general
stationary policy can improve the best policy inH. We include a proof for the case that the demand
distribution has infinite support for convenience.

Theorem 3.1. The optimal produce-up-to policy, i.e., the optimal policyin H, is also optimal in the class
of stationary policiesU .

Proof. Consider an arbitrary stationary policyπ ∈ U . Asπ, by assumption, is a finite cost policy it must
specify that that production switches off at some point,S say. If theπ-controlled inventory process ever
becomes lower thanS (which it must by the finiteness of the cost underπ and the infinite support of
the demand), the skip-freeness-to-the-right implies thatthe inventory process cannot exceeda afterward.
Hence, the set(S,∞) must be transient.

It is clear that the drift condition (1) implies thatS is always hit when production is on and the
inventory is smaller thanS, provided there is not another pointsS̃ < S at whichπ also decides to switch
off production.

Whenπ specifies more than one such point, i.e.S1, S2, . . . simply takeS = min{Si, i = 1, 2, . . .}.
Of course,S must be a finite number, for otherwise the inventory would drift to −∞, resulting in infinite
cost.

Then, underπ, production always switches off atS, it never switches off in(−∞, S), and(S,∞) is
a transient set.

Theorem 3.1 has three important consequences. The first is that an optimal policy is a ‘produce-up-
to’ policy, that is, an optimal policy can be found in the classH. Second, for a fixed produce-up-to level
S, independent of the starting state, the production-inventory process will eventually hit the state such
thatPt = 0 andIt = S, and from then on performregenerative cyclesthat start and stop at this state.
Therefore, it suffices to limit the search for a long-run average optimal policy inHS to a search for a
policy that minimizes the expected cost of justonesuch regenerative cycle. Third, and most importantly,
as the structure of any optimal policy is trivial on the on-line, i.e., ‘produce-up-to some levelS’, the
problem that remains is to characterize the structure of theoptimal policy on the off-line.
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3.2 Deciding when to switch on is an optimal stopping problem
To study the structure of optimal policies on the off-line, it is convenient to split the off-line into two
disjoint subsets. The setsCπ and its complementDπ = R \ Cπ are such that

P π
t =

(

0 = whenIπ
t ∈ Cπ ,

1 = whenIπ
t ∈ Dπ ,

(4)

i.e., onCπ production is off and onDπ it switches on right away. In view of the optimal stopping problem
formulation below, we refer toCπ as thecontinuation setandDπ as thestopping set. Obviously, a policy
π uniquely characterizes its stopping setDπ , but vice versa, a setD can be used as a stopping set and
hence characterize uniquely a policy. Thus, rather than letting the setDπ depend on the policyπ, we will
in the sequel identify a policyπD ∈ H by means of its stopping setD on the off-line. As a notational
consequence, we will often write

D ⊂ S := (−∞, S],

to denote a policyπD ∈ HS .
Now consider one such regenerative cycle that starts and stops at(P0, I0) = (0, S), and let us

associate to the stopping setD ⊂ S the following two stopping times

σD = inf{t ≥ 0; Pt = 0, It ∈ D},

τD = inf{t ≥ σD; Pt = 1, It = S}.

Thus,σD is the time to switch on, andτD is the time to switch off, given that the production-inventory
process starts in(0, S). As we restrict the search for optimal policies to the space of policies with finite
long-run expected cost, it follows for any reasonable policy D that

0 < ESσD ≤ ESτD < ∞,

whereES is the expectation of functionals of the production-inventory process starting at(0, S).
Using the definition ofτD, it follows from (2) that when starting in(0, S), the expected cycle cost

is ES [L(τD)] and the expected cycle time isES [τD]. From the theory of regenerative processes, the
long-run average costgD of the policyD then satisfies

gD =
ES[LD(τD)]

ES [τD]
. (5)

Consequently, the minimal long-run average cost inHS is

g∗
S = inf

D⊂S
gD. (6)

Thus, the problem of finding the optimalD is anoptimal stopping problem. Then, combining this with
Theorem 3.1, we find that the minimal long-run average costg∗ for the policies inH = ∪SHS must
equal

g∗ = inf
S

g∗
S = inf

π∈U
Lπ = Lπ∗

(7)

whereLπ∗

is defined in (3). In words,g∗ is the minimal cost that can be achieved by any stationary
policy.

In summary, to solve the optimization problem (3) we first solve the optimal stopping problem (6)
and then solve in (7) for the minimizing policy inH .

3.3 Conditions for the existence of an optimal stopping policy
In this section, we use the concept ofg-revised cost as developed by Wijngaard and Stidham Jr. (1986)
to reformulate the optimal stopping problem (5) into an equivalent optimal stopping problem that turns
out to be much easier to analyze.

Define theg-revisedinventory cost rate ash(·)−g, g > 0, so thatg has the interpretation as a reward
rate per unit time to compensate for the inventory and switching cost incurred during one cycle. Define
further theg-revised expected costV D(S; g) for a cycle that starts and stops at(0, S) as

V D(S; g) := K + ES

Z τD

0

(h(It) − g)dt. (8)
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The revision rategD such thatV D(S; gD) = 0, assuming that suchgD exists, is of particular importance.
Using (2),

0 = V D(S; gD) = ES

„

K +

Z τD

0

h(It)dt −

Z τD

0

gDdt

«

= ES [L(τD) − gDτD]. (9)

Therefore
ES [L(τD)] = gD ES [τD]

so that, by (5),gD is equal to the long-run average cost of theD-controlled production-inventory cycle.
With these preliminary observations we state the main theorem of this section.

Theorem 3.2. Suppose that the following holds.

(i) For all S andg there exists a stopping setD ⊂ S that solves the optimal stopping problem

V (S; g) := inf
D⊂S

V D(S; g) = K + inf
D⊂S

ES

Z τD

0

(h(It) − g)dt. (10)

In other words, we assume that the minimalg-revised costV (S; g) of cycles that start and stop at
levelS is well-defined.

(ii) For all g ≥ 0 there exist anSg that realizes the overall minimalg-revised cost to complete one
production cycle, that is,Sg solves

V (g) := V (Sg; g) = min
S

V (S; g). (11)

In other words, for fixedg,
Sg = argmin

x

{V (x; g)}. (12)

(iii) The functiong 7→ V (g) is continuous.

Then there exists a minimal overall long-run average costg∗, i.e., ag∗ that solves(7), an optimal switch-
off levelSg∗ , and an optimal stopping setD∗ ⊂ SSg∗

such that

0 = V (g∗) = V (Sg∗ ; g∗) = V D∗

(Sg∗ ; g∗). (13)

Proof. Assumption (i) ensures that ag-minimizing policy exists for allg andS. Assumption (ii) implies
that for allg there is an optimal pointSg to switch off. Finally, from Assumption (iii) it follows right
away that (13) has a solution if there existg− < g∗ < g+ such thatV (g−) ≥ 0 ≥ V (g+). Assuming
this is the case, ifg∗ is such thatV (g∗) = 0, then using (9), (10), (11), and (13), it follows that

0 = V D∗

(Sg∗ ; g∗) = min
S

inf
D⊂S

ES [LD(τD) − g∗τD].

Since this infimum overD andS is 0, it must be the case thatES [L(τD) − g∗τD] ≥ 0 for any other
S and any other policyD. Using (5), we can replace in this inequalityES [L(τD)] by ES [gDτD] from
which follows thatES [(gD − g∗)τD] ≥ 0. Since0 ≤ ESτD < ∞, it must be that

gD ≥ g∗.

Thus,g∗ is the minimal long-run average cost. Since the smallest cost is achieved atSg∗ , it must be
optimal to switch off atSg∗ . Finally, g∗ being the minimal cost, its associated policyD∗ ⊂ (−∞, Sg∗ ]
must be the optimal policy.

Thus it remains to establish boundsg− ≤ g∗ ≤ g+ such thatV (g−) ≥ 0 ≥ V (g+). Takeg− =
g = 0 in (10) and note thath(·) ≥ 0. Then Eq. (10) implies thatV (S; 0) ≥ K for all S. Thus,
it is optimal to switch on immediately everywhere, henceV (S; 0) ≡ K in (10). As a consequence,
V (g−) = V (0) = K ≥ 0. To find an upper bound ong∗, consider an arbitrary policỹD ⊂ S̃. Let

the associated cost be given byg̃, so that by (9),V D̃(S̃; g̃) = 0. By Assumption (i), for̃g there exist an
inventory level and policy such thatV (g̃) = minS V (S; g̃) = minS infD V D(S; g̃). But this implies
that

V (g̃) ≤ V (S̃; g̃) ≤ V D̃(S̃; g̃).

Since by constructionV D̃(S̃; g̃) = 0, it follows thatV (g̃) ≤ 0. Thus, takingg+ = g̃, we see that there
existsg+ = g̃ > 0 = g− such thatV (g+) ≤ 0 ≤ V (g−).
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Thus, to prove the existence of an optimal revision costg∗ and an optimal stopping policyD∗, it
suffices to show that the three assumptions of Theorem 3.2 canbe satisfied. Proving Assumption (i), i.e.,
that a solution exists for the optimal stopping problem (10)on the off-line, requires the most work, and
is established by Theorem 3.6 below. Assumptions (ii) and (iii) follow then from Lemma 3.7 below.

Remark 3.3. Besides providing conditions to prove the existence of an optimal stopping policy for (7),
Theorem 3.2 also provides a (numerically efficient) method to actually find the optimal policy and the
minimal long-run average costg∗. In Section 3.4 we show thatV (S, g) can be cast into a nice form that
is easy to solve (numerically) for anyg. To identify the ’right‘g, i.e. the revision cost that solves (13),
we can use bisection as described in the proof of Theorem 3.2.

3.4 A useful functional equation
To solve the optimal stopping problem in (10), we need to find the stopping setD ⊂ S at which the
Lagrange functionalES

R τD

0
(h(It) − g)dt attains its infimum. In other words, we have to evaluate the

g-revised cost of the inventory process when production is off (i.e. for t ∈ [0, σD)) and when production
is on (i.e. fort ∈ [σD, τD)). In this section, we derive an expressionγg(·) for the (negative) derivative
of expectedg-revised cost when production is on. We then use this expression to reformulate (10) into
an equivalent optimal stopping problem that only requires the evaluation of a Lagrange functional of the
inventory process when production is off. This new optimal stopping problem turns out to be easier to
analyze than (10).

First we introduce some relevant notation. Let

I0
t := It, for 0 ≤ t < σD,

I1
t := It, for σD ≤ t < τD,

so thatI0
t is the inventory level as long as production is off, andI1

t is the inventory level when production
is on. With these definitions, we defineV1(x; g) as theg-revised expected cost to move from levelx on
the on-line until levelS is reached, that is,

V1(x; g) = E

Z τ

0

(h(I1
t ) − g)dt,

whereI1
0 = x ≤ S and

τ = inf{t ≥ 0; Pt = 1, It = S}.

Theg-revised expected cost to move from levelx on the off-line to levelS on the on-line becomes then

V D
0 (x; g) := Ex

Z σD

0

(h(I0
t ) − g)dt + K + ExV1(I

1
σD

; g). (14)

Clearly, theg-revised costV D(S; g), as defined in (8), of cycles that start and stop atS satisfies
V D(S; g) = V D

0 (S; g). More generally, lettingV D(x; g) be the cost to stop and start at levelx, the
above implies that for allx ≤ S,

V D(x; g) = V D
0 (x; g) − V1(x; g). (15)

We now arrive at the main result of this section.

Theorem 3.4. Provided ESσD < ∞, the optimization problemV (S; g) = infD⊂S V D(S; g) in
Eq.(10) is equivalent to the continuous-time optimal stopping problem

V (S; g) = K + inf
σ≥0

ES

Z σ

0

r γg(I
0
t )dt, (16)

where

γg(x) = −
dV1(x; g)

dx
,

and the infimum is taken over all stopping timesσ of (I0
t )t≥0 satisfyingES σ < ∞.

Proof. See Appendix A.
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3.5 Analysis of the associated free-boundary problem
We split the analysis in a number of smaller steps.

1. In Peskir and Shiryaev (2006) it is shown that the optimal stopping problem (16) is equivalent to the
problem of finding the largest subharmonic functionV̂ that is dominated byK on the state space. If such
V̂ is found, it follows thatV ≡ V̂ and

σD = inf{t ≥ 0; I0
t ∈ D} (17)

is the optimal stopping time, whereD = {x | V̂ (x; g) = K} is the optimal stopping set, andC =
{x | V̂ (x; g) < K} is the continuation set. As a consequence, see Peskir and Shiryaev (2006, Section 8)
for further background,̂V andC should solve thefree-boundary problem:

LI0 V̂ (x; g) ≥ −rγg (V̂ maximal), (18a)

V̂ < K onC, (18b)

V̂ = K onD. (18c)

HereLI0 is the infinitesimal operator ofI0
t which, as can be shown from the standard theory of continuous-

time Markov processes, operates on functionsf in the setC1 of continuously differentiable functions
as

LI0f(x) = lim
t↓0

E(I0

0
=x)f(I0

t ) − f(x)

t

= −qf ′(x) + λ[ Ef(x − Y ) − f(x)],

wheref ′(x) = df(x)/dx. Thus, to solve the optimization problem, bothV̂ andC (henceD) should be
determined. For this purpose it is essential to studyγg in more detail.

2. Let us collect here some useful properties ofγg.

Lemma 3.5. The functionx 7→ γg(x) has the following properties:

(i) γg is the unique solution of the integral equation

γg(x) =
h(x) − g

r − q
+

λ

r − q

Z ∞

0

γg(x − y)G(y)dy. (19)

(ii) If h is convex thenγg is also convex for allg.

(iii) limx→±∞ γg(x) = ∞.

(iv) For an arbitrary ĝ ∈ R, γg can be written as

γg(x) = γĝ(x) − β(g − ĝ), (20)

whereβ = (r − λµ − q)−1.

Proof. See Appendix B.

To illustrate these properties, we plot in Figure 2 the functionsh, γg for two revision cost (g = 3 and
g = 4), andγ3 − γ4 for a system with production rater = 1, inventory cost

h(x) = −4min{0, x} + max{0, x},

constant demand rateq = 0.3, arrival rate of stochastic demandλ = 0.5, and uniformly distributed
demand on[0, 2] such thatµ = 1.

The figure shows thatγ3 andγ4 preserve the convexity of the inventory cost functionh. The plot of
γ3−γ4 confirms that the difference betweenγ3 andγ4 is constant and equal toβ(g− ĝ) = 5(4−3) = 5.
From (20), it is clear that wheng is sufficiently large,γg < 0 at some interval. This will turn out to be
necessary to ensure that an interesting stopping problem remains, as we will show next.
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Figure 2: Graph ofh, γ3, γ4, andγ3 − γ4 as a function of the inventory levelx.

3. The above properties ofγg allow us to make some simple observations about the form of the optimal
stopping setD. Suppose first thatγg(x) ≥ 0 for all x. Then it is evident from (16) that it is optimal
to stop right away, i.e., whenσ = 0. Thus, assume henceforth thatg is such thatγg < 0 on at least
one interval, and letsg denote its left-most root. Next, note that(I0

t )t≥0 is a (Markov) process with
continuous driftq and jumps to the left (see Figure 1). This implies thatγg(I

0
t ) > 0 whenI0

0 = x ≤ sg.
Hence, it must be that(−∞, sg] ⊂ D. In general the continuation setC can be a collection of disjoint
open sets, so thatC = ∪n

i=1(s
i
g, ti

g). Observe, once again, that the boundary points{s1
g , t1g, . . . , tn

g } are
to be determined.

The above considerations leads us to reformulate (18) into the following free-boundary problem

LI0 V̂ = −r γg onC, (21a)

V̂ < K onC, (21b)

V̂ = K onD, (21c)

V̂ (si
g+; g) = V̂ (ti

g−; g) = K, for i = 1, . . . , n (continuous fit) (21d)

qV̂ ′(si
g+; g) = 0, for i = 1, . . . , n (smooth fit) (21e)

Let us comment on these equations. Eq. (21a) follows from thegeneral requirement that̂V has to
satisfy the Lagrange problem (16). Conditions (21b) and (21c) are evident from (18). Conditions (21d)
and (21e) are not part of the general theory. As made plausible by Peskir and Shiryaev (2006, Section
9), the solutionV̂ should be continuous, hence satisfy the continuous fit condition (21d). Whenq > 0,
the process(I0

t )t≥0 enters the interior ofD immediately if it starts atsi
g. This results in the smooth fit

condition atsi
g. Whenq = 0, this condition is void.

4. The free-boundary problem (21) has a unique solution which can be constructed from left to right.
Observe that this construction not only yieldsV̂ , but also the continuation setC and the stopping setD.
(We assume thatq > 0, and remark that the caseq = 0 follows the same line of reasoning.)

On the set(−∞, sg] ⊂ D, V̂ is well-defined and equalsK. Lets1
g = sg. Conditions (21d) and (21e)

together with the continuity ofγg and the fact that the integrationEV̂ (x − Y ; g) only requiresV̂ to the
left of x, ensure that the integro-differential equation (21a)

qV̂ ′(x; g) − λ[ EV̂ (x − Y ; g) − V̂ (x; g)] = rγg(x) (22)

can be uniquely integrated froms1
g onwards. The integration can be continued up to the point that

V̂ (x; g), x > s1
g, hits K again. This point is uniquely determined. Denote it byt1g. From this point

onwards, takêV = K as long as thêV that solves (22) is greater or equal toK, i.e. rγ(x)/λ+ EV̂ (x−
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Y ; g) ≥ K. Take, if it exists,s2
g as the smallest root ofrγ(x)/λ + EV̂ (x − Y ; g) = K such that

s2
g > t1g andrγ(x)/λ + EV̂ (x − Y ; g) < K for x ∈ (s2

g, s2
g + ǫ) for sufficientlyǫ > 0. Then, ats2

g,
we invoke Conditions (21d) and (21e) again as boundary conditions and integrate (22) from the left to
the right untilV̂ hits K again. This point determinest2g uniquely. Continuing like this, we obtain the
solution on the remaining parts ofC andD. Finally, sincelimx→∞ γg(x) = ∞, while V̂ (x; g) ≤ K
for all x, the possibility thattn

g = ∞ is ruled out. Thus, there is ann ≥ 1 such[tn
g ,∞) ⊂ D. Note

that from this derivation, it follows thatx 7→ V̂ (x; g) is C1 on R \ {t1g , . . . , tn
g } but only continuous on

{t1g, . . . , tn
g }.

Combining the above construction with (33) shows that

V̂ (x; g) =

(

K + Ex

R σD

0
rγg(I

0
t )dt if x ∈ C,

K if x ∈ D,
(23)

whereσD, defined by (17), is the unique solution of the free-boundaryproblem (21).

5. It remains to prove that the value functionV of the optimal stopping problem (16) may be identified
with V̂ , thereby proving Assumption (i) of Theorem 3.2.

Theorem 3.6. The functionV̂ defined by(23) solves also(16), henceV̂ is equal to the value function of
the stopping problem, and the stopping timeσD = inf{t > 0; I0

t ∈ D} of (17) is optimal in(16).

Proof. See Appendix C.

6. Now that we know that the optimal stopping problem (16) has a solution, we can also prove that
Assumptions (ii) and (iii) of Theorem 3.2 can be satisfied, which thereby implies the existence of an
optimal production-inventory policy.

Lemma 3.7. Letx 7→ V (x; g) solve the optimal stopping problem(16). Then

(i) For all g ≥ 0 the functionx 7→ V (x; g) is continuous for allg ≥ 0, hence attains its minimum at
Sg, i.e.,V (g) = V (Sg, g).

(ii) The functiong 7→ V (g) continuous.

Proof. See Appendix D.

4 Structure of optimal policies
In the previous section we established the existence of an optimal policy. In this section we focus on
the structural properties of the optimal policy. We first derive bounds on the switching sets as defined
in (4), i.e., on the stopping setDg, i.e., the set at which it is optimal to switch on for a giveng, and the
continuation setCg = R \ Dg , i.e., the set at which it is optimal to remain off. Once we have these
bounds we derive conditions that guarantee thatDg, and consequentlyCg, is a half-bounded interval so
that necessarily the optimal policy has an(s, S)-structure.

4.1 Bounds on the switching sets
It is easy to boundCg from below. As explained above (21) it is optimal to switch onat the set(−∞, sg],
wheresg is the left-most root ofγg, hence(−∞, sg] ⊂ Dg . However, it may be the case thatDg is
larger than(−∞, sg], c.f. Section 3.5.3. Therefore it is only possible to guarantee thatsg is a lower
bound forCg.

A natural upper bound onDg is given bySg as defined by (12), since, by Theorem 3.1, after a
possibly transient phase the inventory level will never increase beyondSg. Hence it can be assumed
without loss of generality that[Sg,∞) ∩ Dg = ∅.

With the lemma below we provide an upper bound ofSg in terms of the right-most root,tg say, ofγg.
This not only has important structural consequences, c.f. Section 4.2, but it also limits the search region
for Sg : for the numerical procedure it suffices to integrate (22) from sg to tg. It is then guaranteed that
the functionx → V (x; g) has attained its minimum somewhere in[sg, tg]. Furthermore, this implies
thatSg is finite whenever all roots ofγg are finite.
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Lemma 4.1. For any fixedg > 0, the left-most minimizerSg of V (S; g), as defined in(12), is bounded
from above by the right most roottg of γg, that isSg ≤ tg.

Proof. The assumption thatSg > tg leads to a contradiction, as follows. SinceSg is a minimizer it must
be thatV (Sg; g) < K, henceSg ∈ Cg. From (22) we see that for allx ∈ Cg, and in particular forSg,

V (Sg; g) =
r

λ
γg(Sg) −

q

λ
V ′(Sg; g) + EV (Sg − Y ; g).

Suppose first thatV ′(Sg; g) ≤ 0. Since, by assumptionSg > tg, it must be thatγg(Sg) > 0. The
above equality then implies thatV (Sg; g) > EV (Sg − Y ; g). On the other hand, for anyx it must be
that EV (x − Y ; g) ≥ infy≤x{V (y; g)}. These two inequalities together then imply thatV (Sg; g) >
EV (Sg − Y ; g) ≥ infy≤Sg{V (y; g)} = V (Sg; g), where the last equality follows sinceV (·; g) attains
its minimum atSg. Contradiction. Now assume, on the other hand, thatV ′(Sg; g) > 0. This implies
thatV is increasing atSg; henceV (·; g) cannot attain its minimum atSg.

4.2 Optimality of (s, S)-policies
The above bounds allow us to prove the mainstructural result of our paper.

Theorem 4.2. Let g∗ be the minimal long-run average cost rate so that it is the solution of (13). Let
sg∗ be the left root ofγg∗(·) andSg∗ = argminx{V (x; g∗)} as in Eq.(12). If, and only if, the solution
V (x; g∗) of (22), is such that

V (x; g∗) = K, for x ≤ sg∗ ,

V (x; g∗) < K, for x ∈ (sg∗ , Sg∗ ],
(24)

then the optimal policy associated withg∗ has an(s, S)-structure withs = sg∗ andS = Sg∗ .

Proof. As V (x; g∗) = K for x ≤ sg∗ , the stopping setDg∗ = (−∞, sg∗ ]. Thus it is optimal to
switch on once the inventory hitsDg∗ . Next, asV (x; g∗) < K for x ∈ (sg∗ , Sg∗ ], the continuation set
Cg∗ = (sg∗ , Sg∗ ]. Thus, it is optimal to not switch on when the inventory is in(sg∗ , Sg∗ ]. Finally, as
V (Sg∗ ; g∗) = 0, it is optimal to produce up toSg∗ . Hence, the inventory will never exceedSg∗ once it
has reached a level belowSg∗ .

Corollary 4.3. Whenγg∗ has two roots, the optimal policy has an(s, S)-structure.

Proof. We prove that the condition onγg∗ implies that Conditions (24) are satisfied.
The first condition, i.e.,V (x; g∗) = K onx ≤ sg∗ , holds by construction. To prove the second part

of Condition (24) we show that(sg∗ , tg∗) ⊂ Cg∗ . We have from (22) thatqV ′(x; g∗) − λ[ EV (x −
Y ; g∗) − V (x; g∗)] = r γg∗(x). As γg∗(x) < 0 for all x ∈ (sg∗ , tg∗), it must be thatqV ′(x; g∗) −
λ[ EV (x − Y ; g∗) − V (x; g∗)] < 0 on (sg∗ , tg∗). Therefore, on(sg∗ , tg∗),

V (x; g∗) < EV (x − Y ; g∗) −
q

λ
V ′(x; g∗)

≤ K −
q

λ
V ′(x; g∗),

where the second inequality follows from the domination ofV ≤ K. Suppose now thatx is such that
V ′(x; g∗) ≥ 0, then the above inequality implies thatV (x; g∗) < K. On the other hand, ifV ′(x; g∗) <
0, V is decreasing atx, so that necessarilyV (x; g∗) < K. Thus, in either caseV (x; g∗) < K when
x ∈ (sg∗ , tg∗). Finally, using Lemma 4.1 it follows thatSg∗ ≤ tg∗ . Since, clearly,Sg∗ > sg∗ , we
conclude that(sg∗ , Sg∗) ∈ Cg∗ .

Corollary 4.4. If h(·) is such thatγg∗(·) has two roots then the optimal policy has an(s, S)-structure.
This holds in particular whenh(·) is convex.

Proof. The first claim follows immediately from Corollary 4.3. The second part follows from Lemma 3.5.ii:
The convexity ofh(·) implies the convexity ofγg(·). As any suitableg, and in particularg∗, is such that
γg has a left root, convexity (and the implied continuity) implies thatγg must have one right root.

Thus, the convexity condition onh is just an easy sufficiency condition to prove the existence of an
optimal(s, S)-policy, but is by no means necessary. In general, whenever the conditions of Theorem 3.2
are shown to hold (numerically perhaps), the numerical integration of (22) will yield an optimal pol-
icy, whether this policy has an(s, S)-structure or not. Moreover, Theorem 4.2 provides if-and-only-if
conditions for the optimality of(s, S)-policy; convexity ofh is a much stronger condition.
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5 Analytical examples
The analytical tools developed for the existence proof in Section 3 allow us to handle a number of related
inventory problems. We illustrate this by applying our approach to two related models.

5.1 The lost-sales model
Let us show how to find optimal policies for models with lost sales. In particular, we consider a loss
model with apartial acceptanceissuing policy, c.f. Germs and Van Foreest (2013a). Under the partial
acceptance policy, if the demandy is larger than the on-hand stockx, the order is partially satisfied and
y−x is lost at the expense of a costl(y−x), wherel is an increasing non-negative function withl(0) = 0.
We refer to Germs and Van Foreest (2013b) for a more detailed discussion on how our approach can be
applied to other issuing policies such ascomplete rejectionandcomplete acceptance.

We assume that the average cost rate of rejecting all orders altogether is higher than the average
holding and setup cost, for otherwise it is simply optimal toreject all orders and to never switch the
machine on. Because of this assumption, we can restrict the search for an optimal policy to the set of
policies inH such that0 ∈ Dg, that is, when the production is off it is at least optimal to switch on when
the inventory is empty.

In the following, we discuss the parts of Section 3 that need to be modified to incorporate lost sales.
First of all, we include the rejection cost in theg-revised cost functions defined in Section 3.4. To do
so, observe that the rejection cost rateR(x) for a given inventory levelx under the partial acceptance
issuing policy is

R(x) = λ E[l(Y − x)1{Y > x}],

as the expected rejection cost per customer arrival isE[l(Y −x)1{Y > x}] and customer arrivals occur
at a rateλ. Theg-revised expected cost on the on-lineV1(x; g) becomes

V1(x; g) = E

Z τ

0

(h(I1
t ) + R(I1

t ) − g)dt.

Theg-revised expected costV D
0 (x; g) andV D(x; g) change in a similar way.

Second, the inventory process on the off-lineI0 and on-lineI1 is different in the lost-sales model
due to rejection. Therefore, the infinitesimal operatorsLI0 andLI1 change as follows

LI1f(x) = (r − q)f ′(x) + λ E[(f(x − Y ) − f(x))1{Y < x}] + λP(Y > x)(f(0) − f(x))

= rf ′(x) + LI0f(x).
(25)

Similar derivations as in Appendix A yield that for the lost-sales model

LI1V1(x; g) = −h(x) − R(x) + g. (26)

From (25) and (26) it then follows thatγg(x) = −V ′
1(x; g) is the solution of the equation

(r − q)γg(x) = h(x) + R(x) − g + λ E[(V1(x − Y ; g) − V1(x; g))1{Y < x}]

+ λP(Y > x)(V1(0; g) − V1(x; g)).

This can be rewritten to the integral equation

(r − q)γg(x) = h(x) + R(x) − g + λ

Z x

0

γg(x − y)G(y)dy.

The rest of the equations in Section 3 also hold for the lost-sales model. Now suppose thatl andh are
such thatγg is a convex function, then after some simple modifications ofthe relevant results of Section 4
we can show that the optimal policy for the lost-sales model is an(s, S)-policy.

5.2 Inventory models with infinite replenishment rates
In the classical(s, S)-inventory problem with compound Poisson demand, and more generally, the mix-
ture of deterministic and compound Poisson demand as considered by Hordijk and Van der Duyn Schouten
(1986) and Presman and Sethi (2006), it is assumed that the replenishment rate is infinite. As such we
expect that these models can obtained as the limiting case ofa sequence of production-inventory models
with ever larger production rates. Here we show how to apply the analysis of Sections 3 and 4 to prove
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this conjecture. We note in passing that this implies the existence of an optimal policy for these stochastic
inventory systems with infinite production rate. Moreover,with the numerical approach, to be developed
in Section 6, it is possible to efficiently compute an optimalpolicy.

The crux of the proof is to show that when the production rater → ∞, the free-boundary prob-
lem (21) reduces to the set of quasi-variational inequalities (QVIs) as considered by Presman and Sethi
(2006, Eqs. 38–40). In our notation, these QVIs can be statedas

0 = h(x) − g∗ + LI0V (x; g∗), for x > s, (27a)

0 ≤ h(x) − g∗ + LI0V (x; g∗), for x ∈ R, (27b)

V (x; g∗) = K + V (Sg∗ ; g∗), for x ≤ s. (27c)

V (x; g∗) ≤ K + V (x + u; g∗), for x ∈ R andu > 0. (27d)

Note that, as we consider average-cost optimality, the killing rate used by Presman and Sethi (2006) is
here0. We also do not take the purchasing costc into account, as these cost have no influence on the
average-cost optimal policy.

Except for the Lemma below, it is a basic exercise to check that (21) reduces to (27) ifr → ∞.
Specifically, sinceV (Sg∗ ; g∗) = 0, we see that (21c) is equivalent to (27c). SinceV (x + u; g∗) ≥ 0
for x ∈ R andu > 0, Eqs. (21b) and (21c) imply (27d). Finally, in Lemma 5.1 below we prove that
rγg(x) → h(x) − g asr → ∞, so that (21a) and (18a) reduce to (27a) and (27b), thereby completing
the proof.

Lemma 5.1. Providedh is an element of a suitable Banach space,rγg converges toh − g asr → ∞.

Proof. See Appendix E.

6 Numerical examples
In Section 6.1 we present an efficient numerical method that can be used to compute the optimal policy
parameters for the models considered in this paper. In Section 6.2 and 6.3 we apply this method to
analyze numerically the influence of the system parameters on the optimal policy.

6.1 Numerical procedure
In general it is not be possible to obtain closed form expressions for the solutions of the Equations (11)
and (13). In this section, we therefore describe an efficientmethod for solving these equations numeri-
cally.

From the free-boundary formulation (21), it follows that wehave to solve (numerically) the integro-
differential equation

qV ′(x) − λEV (x − Y ) + λV (x) = rγ(x), (28)

where we dropped, for ease of notation, the dependence ong. For this purpose, we approximate the
value functionV over the continuous domainR by a discrete set of function values at a discrete set
of points in the domain. That is, we discretize the state space by reducing the real numbers to the grid
{. . . , kδ, (k+1)δ, . . .} for k ∈ Z, whereδ > 0 denotes the grid size. WritingVk = V (kδ), γk = γ(kδ),
Fk = F (kδ), V ′

k(g) = δ−1(Vk−Vk−1) and EV (kδ−Y ) =
P

i
Vk−ifi, with fi = Fi−Fi−1, Eq. (28)

reduces to

(qδ−1 − λf0 + λ)Vk − (qδ−1 + λf1)Vk−1 − λ

∞
X

i=2

Vk−ifi = rγk.

Clearly, sinceVk is expressed in terms ofVi, i < k, this leads to a simple recursion forVk. The initial
values forVk that start the recursion can be obtained right away from the fact thatV (x) = K for x < sg.

To determineγ we reason similarly. From (19) it follows that

(r − q)γk = hk − g + λδ

∞
X

i=0

γk−iGi.

Taking the termγkG0 out of the summation and to the left, we obtain the recursion

(r − q − λδG0)γk = hk − g + λδ
∞

X

i=1

γk−iGi.
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To obtain a suitable set of initial conditions forγk we use some elements of the proof of Lemma 5.1.
There we prove thatγ = (r−q−A)−1h, where(Ah)(x) = λ

R ∞

0
h(x−y)G(y)dy. If we approximate

(Ah)(x) by λµh(x) for x ≤ z for some givenz ≪ 0, then we can setγk = hk/(r−q−λµ) for kδ ≤ z
as initial values forγ. Van Foreest and Wijngaard (2013) prove that the influence ofthe initial values of
γ reduces exponentially fast asz → −∞.

Finally, it remains to find a proper lower and upper bound forg that can act as starting values for the
bisection ing. As described in the proof of Theorem 3.2 this is trivial: as alower bound simply take0; as
an upper bound take the average cost rate of some arbitrary policy, for instance the average cost related
to the(s, S)-policy with s = 0 andS = 1. (Of course, the optimal policy should perform at least as well
as this simple policy.) In the actual implementation of our computer program we use a conceptually even
simpler method. Just start withg = 1, and keep on doublingg as long asV (g) > 0. Onceg is such that
V (g) < 0, it must be thatg∗ ∈ [g/2, g).

6.2 Analysis of the optimal values of the(s, S)-policy
In this section, we analyze howsg∗ , Sg∗ andg∗ are influenced by the production rater, the deterministic
demand rateq, switching costK, and arrival rateλ of the compound Poisson process. We assume that
demand arrives as single units. The inventory cost is fixed tobe

h(x) = −4min{0, x} + max{0, x}, (29)

In Figure 3 we vary the production rater and keep the other parameters fixed such that the arrival rate
λ = 1/2, the constant demand rateq = 3/10, and the setup costK = 5. As is apparent from the figure,
Sg∗ andg∗ first decrease and then increase as a function ofr, while sg∗ decreases monotonically. We
see that asr → ∞ the values converge to those of the model of Presman and Sethi(2006). As a further
consequence,rγ(x) → h(x) − g, c.f. Lemma 5.1, so that in the numerical computations we replace
rγ(x) by h(x) − g.
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Figure 3: The optimal values of switching levels and the revision cost as functions of the production rate
r. Heres̃g̃∗ , S̃g̃∗ , andg̃∗ refer to the optimal values for the model of Presman and Sethi(2006).

In the left graph of Figure 4, we consider the influence ofq andλ for the above system and fixr = 1.
We varyλ from 0 to 0.8, but keep the load constant by takingq = 0.8 − λµ. Observe that due to the
Poisson character of the demand process, the inventory may decrease to quite low levels whenλ > 0.
Hence, we expect thatSg∗ andsg∗ should increase as a function ofλ. Moreover, the fluctuations in the
inventory process should increase asλ increases, hence,g∗ should also increase. Finally, since the setup
costK remains equal,Sg∗ −sg∗ should remain roughly the same. Indeed, the graphs in Figure4 support
this reasoning. Of particular interest is the graph ofg∗. It increases, apparently linearly, quite quickly.
Thus it is, from a managerial point of view, interesting to negotiate (long-term) contracts with customers
to shift part of the stochastic demand to deterministic demand, if possible.

Finally, the right graph of Figure 4 shows the influence of thesetup costK for the system with
r = 1. Clearlyg∗ is increasing inK as we see from the figure. Also the difference betweenSg∗ andsg∗

is increasing inK which is intuitive since the production cycle length shouldbe an increasing function
of K.

15



0

2

4

6

0 0.2 0.4 0.6 0.8

λ

g∗

Sg∗

sg∗

0

1

2

3

4

5

0 5 10 15 20 25 30

K

g∗

Sg∗

sg∗

Figure 4: The left figure shows the optimal values ofs, S andg as functions of the arrival rateλ. The right
figure shows the optimal values ofs, S andg as functions of the setup costK.

6.3 Analysis of the structure of the optimal policy
In Figure 5 we present four cases to show that the value function and the structure of the optimal pol-
icy depends non-trivially on the system parameters. The system of interest is nearly the same as in
Section 6.2, except that nowλ andq are as indicated in the title of each of the figures.

In the upper-left figure the graph of the value function has a small cusp atx ≈ 2. This indicates
that just below this cusp it is optimal to switch on, but whenx ≈ 2 (‘in this cusp’) it is not optimal to
switch on. This seems to show that the optimal policy is not(s, S). However,Sg∗ ≈ 1, so that once the
inventory level is belowSg∗ , it will never reach the cusp. We note that such cusps do not always occur.
Whenλ = 0.5 the cusp inV disappears, as is apparent from the upper right panel in Figure 5.

For the lower two panels we take a quasi-convex inventory cost of the form

h(x) = −4⌊x⌋ · 1{x ≤ 0} + ⌊x⌋1{x > 0}, (30)

where⌊x⌋ is the largest integer smaller than or equal tox. Now the situation is drastically different.
There is a cusp in the graph ofV aroundx = 3, but nowSg∗ ≈ 5. The presence of this cusp below
Sg∗ implies that the optimal policy is not(s, S). Interestingly, by slightly increasingq to 0.1, the cusp
disappears, and the optimal policy is again(s, S), even thoughh is quasi-convex. Thus, the convexity
assumption forh is not necessary to ensure that(s, S)-policies are optimal.

7 Conclusions and suggestions for further research
In this paper, we study a continuous-review production-inventory model with demand consisting of a
compound Poisson process and a constant demand rate. Demandis met from on-hand inventory or oth-
erwise backlogged. We establish conditions on the inventory costs under which an average-cost optimal
(s, S)-policy exists. Our approach starts with the problem to minimize theg-revised cost to complete one
production cycle. We reformulate this problem as an optimalstopping problem, and then reduce the opti-
mal stopping problem to a free-boundary problem. We identify a solution of the latter problem and prove
by verification that this solution is also a solution for the optimal stopping problem. By bisection on the
revised cost parameterg, we can prove the existence of an optimal policy for the production-inventory
system. An interesting byproduct of our approach is that it provides a fast and efficient numerical scheme
to compute the optimal policy, not only for our model, but fora wide class of inventory systems. In par-
ticular, we show that the scheme can also be applied to continuous-review systems with unrestricted
capacity and production-inventory systems with lost sales.

Our approach appears to be a powerful way to address other related inventory problems. For instance,
our model can be easily extended to state-dependent production rater(x) and demand ratesλ(x) and
q(x); it is straightforward to adapt the related integro-differential equations. This extension is of interest
to model inventory systems that are subject to deterioration: e.g., ifq(x) = αx, α > 0, for x > 0 and
q(x) = 0 for x ≤ 0 the rate of deterioration is proportional to the inventory level. Another interesting
problem would be to consider the (maximal) cost of using an(s, S)-policy for a system for which an
(s, S)-policy is non-optimal, the motivation being that when the best(s, S)-policy leads to minor extra
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Figure 5: Graphs of the value functions of the cases as indicated by the figure titles; ‘convex’ denotes that
h is given by (29), while ‘quasi’ corresponds toh given by (30).

costs compared to the optimal policy it may be, from a practical point of view, preferable to use the
(s, S)-policy, not withstanding its non-optimality. It would also be interesting to apply our approach to
production-inventory models with a demand process that is the sum of Brownian motion and a compound
Poisson process. For inventory system with infinite ordering/production capacity, Bensoussan et al.
(2005) prove that an(s, S)-policy is optimal in the special case when the jumps of the compound Poisson
process are exponentially distributed. The general case when the demand is the sum of a diffusion process
and a compound Poisson process is still open. Yet another interesting extension would be to develop a
method to find the optimal policy when service constraints have to be met, similar to the problems
addressed in De Kok et al. (1984). Also, as already mentionedin the Introduction, our approach can be
used to study optimal clearing policies for production-inventory systems, c.f., Germs and Van Foreest
(2013b).
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Verlag, Basel, 2006.

A. Pool, J. Wijngaard, and D.J. Van der Zee. Lean planning in the semi-process industry, a case study.
International Journal of Production Economics, 131(1):194–203, 2011.

E. Presman and S.P. Sethi. Inventory models with continuousand Poisson demands and discounted and
average costs.Production and Operations Management, 15(2):279–293, 2006.

K. Rajaram and U.S. Karmarkar. Campaign planning and scheduling for multiproduct batch operations
with applications to the food-processing industry.Manufacturing & Service Operations Management,
6:253–269, 2004.

H.E. Scarf. The optimality of(S, s) policies in the dynamic inventory problem. In K. Arrow, S. Karlin,
and H.E. Scarf, editors,Mathematical Methods in the Social Sciences, chapter 13, pages 196–202.
Stanford University Press, Stanford, 1959.

J. Shi, M.N. Kateharis, and B. Melamed. Optimal replenishment rate for production-inventory systems
with lost-sales. Technical report, Rutgers Business School, 2012. http://www.rci.rutgers.
edu/ ˜ mnk/papers/Production-Inventory-Dicsounted-Cost_201 2.pdf (sic).

M.J. Sobel and R.Q. Zhang. Inventory policies for systems with stochastic and deterministic demand.
Operations Research, 49(1):157–162, 2001.

E.W. Taft. The most economical production lot.The Iron Age, 101:1410–1412, 1918.

N.D. Van Foreest and J. Wijngaard. On optimal policies for production-inventory systems with com-
pound Poisson demand and setup costs.Mathematics of Operations Research, pages 1–16, 2013.

R.G. Vickson. A single product cycling problem under Brownian motion demand.Management Science,
32(10):1336–1345, 1986.

18



J. Wijngaard. An inventory problem with constrained order capacity. Technical report, Eindhoven Uni-
versity of Technology, 1972.

J. Wijngaard and S. Stidham Jr. Forward recursion for Markovdecision processes with skip-free-to-the-
right transitions, part I: Theory and algorithm.Mathematics of Operations Research, 11(2):295–308,
1986.

J. Wu and X. Chao. Optimal control of brownian production/inventory system with average cost criterion.
Mathematics of Operations Research, pages 1–28, 2013.

Y.S. Zheng and A. Federgruen. Finding optimal(s, S) policies is about as simple as evaluating a single
policy. Operations Research, 39(4):654–665, 1991.

A Proof of Theorem 3.4
Let LI0 andLI1 denote the infinitesimal operators ofI0

t andI1
t , respectively. Then, from the standard

theory of continuous-time Markov processes, it can be shownthat for functionsf in the setC1 of
continuously differentiable functions

LI1f(x) = lim
t↓0

E(I1

0
=x)f(I1

t ) − f(x)

t

= (r − q)f ′(x) + λ[ Ef(x − Y ) − f(x)]

= rf ′(x) + LI0f(x),

(31)

wheref ′(x) = df(x)/dx, and where the last equality follows from applying the definition of the in-
finitesimal operator of(I0

t )t≥0 to f .
Applying Dynkin’s formula,Exf(I0

σ) = f(x) + Ex

R σ

0
LI0f(I0

s )ds, to V D
0 (It; g) at the stopping

timeσD we obtain

V D
0 (x; g) = ExV D

0 (I0
σD

; g) − Ex

Z σD

0

LI0V
D
0 (I0

s ; g)ds.

Computing (14) at the pointI0
σD

, i.e., at the level at which production switches on, gives thatV D
0 (I0

σD
; g) =

K + V1(I
0
σD

; g). Therefore,

V D
0 (x; g) = K + ExV1(I

0
σD

; g) − Ex

Z σD

0

LI0V D
0 (I0

s ; g)ds.

Combining this with (14), we see that

Ex

Z σD

0

LI0V D
0 (I0

s ; g)ds = −Ex

Z σD

0

(h(I0
t ) − g)dt,

from which
LI0V D

0 (x; g) = −h(x) + g.

Similar derivations for(I1
t )t≥0 yields that

LI1V1(x; g) = −h(x) + g.

Finally, we apply the infinitesimal operatorLI0 to V D to writeV D, as defined in (15), in a particu-
larly useful form. From (15), (31) and (32), it follows that

LI0V D(x; g) = LI0V D
0 (x; g) − LI0V1(x; g)

= LI0V D
0 (x; g) − LI1V1(x; g) + r

d

dx
V1(x; g)

= rV ′
1(x; g).

Defining γg(x) = −V ′
1(x; g) and applying Dynkin’s formula toV D(x; g) at time I0(σD), we can

formulateV D(x; g) as the Lagrange functional

V D(x; g) = ExV D(I0
σD

; g) − Ex

Z σD

0

LI0V
D(I0

s ; g)ds

= K + Ex

Z σD

0

r γg(I
0
s )ds,

(33)

where we use thatExV D(I0
σD

; g) = K.
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B Proof of Lemma 3.5
(i) From (31) and (32) it follows thatγg(x) = −V ′

1(x; g) is the solution of the equation

γg(x) =
h(x) − g

r − q
+

λ

r − q
E[V1(x − Y ; g) − V1(x; g)].

This can be rewritten to the integral equation

γg(x) =
h(x) − g

r − q
+

λ

r − q
E

»

Z x

x−Y

γg(z) dz

–

=
h(x) − g

r − q
+

λ

r − q

Z ∞

0

Z x

x−y

γg(z) dz dF (y)

=
h(x) − g

r − q
+

λ

r − q

Z ∞

0

γg(x − y)G(y)dy.

The reversal of the integrals is allowed by the assumptions in Section 2. It is proven in Van Foreest and
Wijngaard (2013, Lemma 4.1) that this integral equation hasa unique solution.

(ii) The convexity ofγg follows from Van Foreest and Wijngaard (2013, Theorem 4.5).
(iii) Sinceh(x) → ∞ asx → ±∞ by assumption,limx→±∞ γg(x) = ∞.
(iv) By inserting the relationγg(x) = γĝ(x) + α into both sides of (19) and solving forα, it follows

that for an arbitrarŷg ∈ R, γg can be written as (20).

C Proof of Theorem 3.6
We prove the claim by means of verification for the caseq > 0. The proof forq = 0 follows the same
line of reasoning.

The properties of̂V derived in Step 4 of Section 3.5 show that Itô’s formula can be applied tôV (I0
t ; g)

in its standard form. This gives

V̂ (I0
t ; g) = V̂ (x; g) +

Z t

0

LI0 V̂ (I0
s ; g) ds, (34)

where, without loss of generality, we takeLI0 V̂ (x; g) = 0 on{t1g, . . . , tn
g }. Recalling that̂V (x; g) = K

andγg(x) ≥ 0 for x ∈ D, and using that̂V satisfies (21a) forx ∈ C, we see that

LI0 V̂ (x; g) ≥ −r γg(x)

everywhere onR but{t1g , . . . , tn
g }. Combining this with the above and the inequalityK ≥ V̂ results in

K ≥ V̂ (I0
t ; g) ≥ V̂ (x; g) −

Z t

0

rγg(I
0
s )ds.

As, clearly, in (16) it suffices to take the infimum only over stopping timesσ satisfying Exσ < ∞, we
may insert a stopping timeσ for t, take Ex on both sides, and conclude that

K + Ex

Z σ

0

rγg(I
0
s )ds ≥ V̂ (x; g) (35)

for all x ∈ R. Since this holds for allσ, we conclude from (16) thatV ≥ V̂ .
On the other hand, using (21a) and (21d) and the definition ofσD , we see from (34) that

K = V̂ (I0(σD); g) = V̂ (x; g) − r

Z σD

0

γg(I
0
s )ds. (36)

SinceExσD < ∞, we see by takingEx on both sides of (36) that equality in (35) is attained atσ = σD ,
and thusV = V̂ . Combining this with the conclusions on the existence and uniqueness of the optimal
stopping boundary{s1

g, t1g, . . . , sn
g , tn

g } derived in Step 4 of Section 3.5 completes the proof.
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D Proof of Lemma 3.7
(i) The continuity follows immediately from the construction of V̂ , which is identified withV in Theo-
rem 3.6. OnD we have thatV = K. OnC, V solves the differential equation (21a). The continuous-fit
conditions (21d) imply that the parts ofV onD andC are continuously connected. Sinces1

g andtn
g are

finite andV is continuous on the compact set[s1
g, tn

g ], V attains its minimum and maximum.
(ii) Assume that̂g > g. Observe from (20) thatγg(x) ≥ γĝ(x). From (23) it then follows for

arbitrary but fixedS that
V (S; g) ≥ V (S; ĝ). (37)

We next show thatV (S; g)− V (S; ĝ) → 0 whenĝ ↓ g. Let τD andτD̂ denote the optimal stopping
times associated with the value functionsV (S; g) andV (S; ĝ), respectively. Using (20) again, it follows
that

0 ≤ V (S; g) − V (S; ĝ)

= ES

»

Z τD

0

r γg(I
0
s )ds

–

− ES

»

Z τ
D̂

0

r γg(I
0
s )ds − β(ĝ − g)τD̂

–

≤ β(ĝ − g)ESτD̂,

(38)

where the last inequality follows because

ES

Z τD

0

r γg(I
0
s )ds = inf

τ≥0
ES

Z τ

0

r γg(I
0
s )ds ≤ ES

Z τ
D̂

0

r γg(I
0
s )ds.

Observe thatβ(ĝ − g)ESτD̂ → 0 asĝ ↓ g becauseESτD̂ < ∞.
We are now in the position to prove thatV (g) → V (ĝ) as ĝ ↓ g. First we need to establish that

V (g) ≥ V (ĝ) if g < ĝ. To see this, letSg = argminS V (S; g) andSĝ = argminS V (S; ĝ). Then,
by (37),

V (g) = V (Sg; g) = inf
S

V (S; g) ≥ inf
S

V (S; ĝ) = V (Sĝ; ĝ) = V (ĝ).

As a consequence of this,

0 ≤ V (g) − V (ĝ)

= V (Sg; g) − V (Sĝ; ĝ)

= [V (Sg; g) − V (Sĝ; g)] + [V (Sĝ; g) − V (Sĝ; ĝ)]

≤ V (Sĝ; g) − V (Sĝ; ĝ).

The last inequality follows from the fact thatV (Sĝ; g) ≥ infS V (S; g) = V (Sg; g) implying that the
first term between brackets is non-positive. Finally, by (38), the first term becomes small asĝ ↓ g. Hence,
V (ĝ) → V (g) whenĝ ↓ g.

By the same token,V (ĝ) → V (g) whenĝ ↑ g, thereby completing the proof thatV (g) is continuous.

E Proof of Lemma 5.1
From (19) follows that

(r − q)γr(x) = h(x) + λ

Z ∞

0

γr(x − y)G(y)dy,

where we setg = 0 without loss of generality, and replace the dependency ofγ on g by the dependency
onr.

For ease, define the linear operator(Af)(x) = λ
R ∞

0
f(x − y)G(y)dy, and write the above as

(r − q)γr = h + Aγr.
To turnA into a well-defined operator, we need some technical assumptions. Suppose thath ∈ B,

whereB is the Banach space of real-valued continuous functionsf such that the weighted supremum
norm ||f || = sup{f(x)eβx; x ≤ R} = M is finite for some suitableR andβ > 0. If the demand is
light-tailed distributed, there exist anN < ∞ such(Af)(x) ≤ MN for f ∈ B. This implies in particular
thatA is a bounded operator. Therefore, wheneverα > ||A||, the resolventR(α, A) = (α − A)−1 is
well-defined and bounded, hence

αR(α, A) =

„

1 −
A

α

«−1

=
∞

X

i=0

`

α−1A
´i
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also exists and is bounded. This in turn implies thatαR(α, A)f → f for all f ∈ B asα → ∞.
To finish the proof, observe that from(r−q)γr = h+Aγr it follows thatγr = ((r−q)−A)−1h =

R(r − q, A)h. From the above, we conclude that(r − q)γr = (r − q)R(r − q, A)h → h asr → ∞.
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