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Propertiesof the matrix A — XY’
Ton Steernema) Frederiele tenKleijT andAmy Wongf
October10,2002

SOM-themeA Primary processesvithin firms

Abstract

The main topic of this paperis the matrix V = A — XY’, where A is a nonsingulark x k
matrixand X andY arek x p matricesof full columnrank. Becauseropertiesof the matrix
V canbe derived from thoseof the matrix Q = I — XY’, we will considerin particularthe
casewhereA = I;. ForthecasethatY’X = I,, sothat Q is singular we will derive the
Moore-Penrosénverseof Q in two ways. First, we generalizethe resultof Trenkler (2000)
for p = 1 andcheckwhetherthis ‘guess’satisfieghe propertiesof the Moore-penrosénverse.
Second,we will adopta more elegantapproachwhich exploits a decompositiorof Q thatis
very similar to a singularvalue decomposition An examinationof the eigervaluesof Q leads
to a decompositiorthatresemblesn eigervaluedecomposition Herewe do notimmediately

imposethatY’'X = I,. Finally, we will focuson the eigervaluesandeigervectorsof the matrix
D — xy’, with D diagonal.

Theauthorswould lik e to thankMichel vande Veldenfor providing thereferenceTrenkler(2000).
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1 Intr oduction

In various(statistical)applicationsye usea matrix of thetype V. = A — ab’, whereA
is somenonsingulak x k matrixanda, b € R*. Themostwell-knovn exampleis the
centeringoperatowith thematrix H = I, — k~4¢}, wherey, is ak x 1 vectorof ones.
This operatomapsavector(xy, ..., x;)" to (x1 — x, ..., xx — x)’, wherex denoteghe
meanof the x;. The matrix H is idempotentandit is the orthogonalprojectoron the
hyperplaneorthogonalto the vector:,. Anotherwell-knovn exampleis R = P — pp/,
wherep = (p1, ..., pr) With p; > 0,4 p = 1,andP = diag(p). NotethatnR is
the covariancematrix of the multinomial distribution with parametera and p. A third
exampleis V = diag(e) + at;, wheree, a € R¥ have positive elements.This matrix
wasoriginally studiedby Vermeulen1967),becausef a physicalinvestigationon the
electronicpropertiesof particle-countingliamonds.

Thematrix vV, with A symmetricwasstudiedn its generaform by Trenkler(2000).
He generalizedresults previously obtainedby Vermeulen(1967), Klamkin (1970),
Tanabeand Sagag(1992), Neudeclkr (1995), and Watson(1996). We will continue
this line of researchy, for example,droppingthe assumptiorof symmetryof A and
by replacingthe vectorsa andb by k x p matrices,andalsoby consideringhe more
specialcaseV = D — ab’, whereD = diag(d).

In our notation,Vermeulen(1967) shaved thatthe eigevaluesof D — a¢; where
D = diagd) andas,...,a; < 0, arereal and positve. Klamkin (1970) gives a
more elementaryderivation. Moreover, he gives simple boundsfor the eigewalues.
He derivesthe characteristipolynomial

k k

L — (D —aly)| = 1+Zkffd_ [T¢—ap. (1.1)
S i=1

j=1

Fromthis result,he obseresthatif 0 < d; < d» < ... < d;, thenthe eigevalues
A1, ..., A, areobtainedby solving

1+y = (1.2)
1

andif someof the d; coincide, thentherewill be eigewaluesequalto the d; that
coincide. Trenkler (2000) generalizeghisto D — ab’. In section8, we will return
to theseresultsof Trenkler(2000)andgive alternatve proofsthat exploit the original



ideasof Vermeulen(1967) and Klamkin (1970). Moreover, we will also derive the
eigervectorsusingsomeideasof Watson(1996).

DeBoerandHarkema(1984)wereinterestedn themaximumlik elihoodestimation
of sumconstrainedinearmodels:Y ~ Ny (u, ), Y = ¢, sothatQy = 0, wherea
certainstructurewill beimposedon . Suchmodelsareof interestin modellingdemand
systemsprandchoice,andsoon. In caseof relatively smallsamplesthe modelhasto
be parsimonious gspeciallywith regardto the parameterizatiorof 2. De Boer and
Harkema(1984)suggestethe specification

1
Q=D—-—dd, (1.3)
4d

whereD = diag(d) andd € R*. Becausef theconstraintthey deletedonecomponent
of Y andthe (k — 1) x (k — 1) covariancematrix obtainedbecamenonsingular
Wansheek(1985) shaved that estimationis possiblewithout deletion of redundant

obserations. He assumed/; < ... < d; andobtainedthe following results. One
eigewvalueof Q is equalto zero,theothereigemwaluessatisfy
k
d;
=0. 14
S (L.4)

i=1

This follows from the characteristi@quatiorhe derivedin the following way:

1
0= Ay —Q| = | — D] (1 + ,—dd’(Mk — D)ld)
lk

1
= =M - D|(L;(uk — DYOIy — D) Yd +d' Oy — D)’ld)
k

A _
= M — d|{,—t;€()»1k — D) 1d}.

4d
WansbeeK1985)obseresfrom (1.4)thatif d; andd; ., areof thesamesign,thenthere
liesaneigevaluebetweerthem.We will usethesamemethodin section8 to obtainthe
characteristipolynomialof D — ab’. WansbeeK1985)alsogivesthe Moore-Penrose
inverseof Q, namelyQ*™ = HD~'H. Sincethe matrix Q is symmetricandshouldbe
positive semi-definite he concludeghat0 < d> < ... < d; is anecessargondition.
Incased; < 0 < dy < ... < d, heusesthe Moore-Penrosiverseto establisithatit
is necessaryhath.‘:1 d; < 0. This can,however, moreeasilybe shavn by observing
thatit is necessaryhatthe (1, 1) elementof £ shouldbe nonngative. Thisamountgo

d ! d?>>0
——a; > 0.
! t;\,d 1



Sinced; < 0, wemusthaved;/i,d > 1, hencey;d < 0. In thepresentontet it is, of
coursemorenaturalto requirethatall thed; arepositive.

A matrix thatis very similar to Q2 is the matrix R we alreadydiscussedsincethe
covariancematrix of the multinomial distribution is basedupon R = diag(p) — pp/,
wherepy,...,pr > Oandyp < 1. If therearek + 1 possiblecatgories,then
onemay wish to countonly the numberof outcomesn thefirst k cateyories,because
the numberof outcomesdn cateyory k 4+ 1 uniquelyfollows from the total numberof
outcomesn the remainingcateories. In this caser, p < 1. The matrix R hasbeen
studiedunderthe condition, p < 1 by Tanabeand Sagae(1992). They obtained,
amongotherthings,the square-roofree Cholesly decompositionthe Moore-Penrose
inversein casey p = 1, namelyR* = H P 1H, andthe inversein caseyp < 1,
thatis, R~ = P~1 + (1 — ¢/ p) 14, Neudeckr (1995)offered more elegantproofs
andpresentssomenew results. Watson(1996) assumes, p = 1 andshaowvs how the
eigewvaluesandeigervectorscanbe obtained.He shavs thataneigewvaluenotequalto

ary of the p; shouldsatisfy
k

2
) (1.5)
i

This equationis very similarto (1.2) and(1.4). Oneeigervalueis equalto zeroandthe
othereigemwaluesi, ... A;_; satisfy

PL=AM=p2=<A2=<p3=<...<M_1= Dk

with strict inequalitiesif the p/s are all distinct. Similar obserations are due to
Klamkin (1970)and WansbeeK1985). Watsonfurthermorederiveshow to obtainthe
eigervectors.The productof the nonzerceigewaluesof R wasobtainedoy Tanabeand
Sagag1992)andNeudecker (1995).

Dol (1991), and Dol, Steernemanand Wansbheek (1996) studied the
Horvitz-Thompsonestimator Considera finite population Yy, ..., Yy. A fixed
effective sampledesignof sizen canbeinterpretedasa probability distribution on the
setof all subset®f n elementdrom thelabels{1, ..., N}. Let S denotetherandomset
of n labelsthatoccurin thesample.TheindicatorsEs, ..., Ey aredefinedby E; = 1
if i e §,andE; = 0if i ¢ S. Thefirst orderinclusionprobabilityis 7; = P(S > i)
fori = 1,...,N. Itisassumedhats; = EE; is positve. The Horvitz-Thompson
estimatorY 7 for thepopulationmeany is



This a famousunbiasedestimator In order to give the variance,the secondorder
inclusionprobabilitiesareneeded:z;; = P(S > i, j) = EE,E;,fori,j =1,...,N.
Notethatrw;; = ;. Wedefiner = (mq, ..., y), I1 = diag(mr) andIl, = (7;5). It is
easyto seethatn’ty = n andIloy = nwr. Thewell-known expressiorfor thevariance
of the Horvitz-Thompsorestimatotis

VarYyr = N2y’ Y1, — nn/)y[17ty,

whereY = (Y1,...,Yy). The matrix I, — 7z’ looks similar to R, but it is
more complicated. In orderto obtainboundsfor this variance,Dol (1991),andDal,
SteernemaandWansbeeK1996)obtainedthefollowing Moore-Penrosiverse:

(I — n)* = HIL,'H.
Inspiredby Trenkler(2000),we will derive the (Moore-Penrosehverseof
V=A-XY, (1.6)

whereA is anonsingulak x k matrixandX andY arek x p matricesof full column
rank. Thus,wewill generalizelrenklers resultsin two ways. First,thematrix A is only

restrictedto be nonsingularsymmetryis not necessarySecondlythevectorsa andb

in thematrix A — ab’ examinedby Trenklercanbereplacedy matricesof full column
rank.Becaus@V| = |A| |1, — Y'A~1X|, aninterestingcaseis Y’A™*X = I, sothatV

is singular We call this the singularcaseandit will bediscussedh section5. Notethat
theassumptiorthatY’A~*X = I, impliesthatboth X andY areof full-column rank.
If 7, — Y’A=1X| # 0, thenV is invertible,andwe will referto this asthe nonsingular
case. It will be discussedn section4. We will not considerthe mixture casewhere
Y'A7IX #1,and|I, — Y'A7X| = 0.

It is worthwhile to first considera specialcaseof (1.6), namelyA = I, because
propertiesof the matrix V canbe derived from thoseof thematrix Q = I, — XY'. If
Y'X = I,, thenthematrix Q is idempotentsince Q2 = Q. However, in generalit is
notsymmetric.Someobsenationswith regardto therankof Q = I, — XY’, whichwill
prove their usefulnesgurtheron, arethe the following. For all vectorsc with Y'c = 0
wehavethatQc = ¢, sothatall vectorsorthogonato thecolumnsof Y areeigemwvectors
of Q with eigevaluel. Becauséhereexist (k — p) vectorsin R* thatareorthogonato
the p columnsof Y, andsincetherankof a squarematrix equalsghe numberof nonzero
eigervalues,we know thatrank(Q) > k — p. If, in addition,Y’X = I, we know that
all eigervaluesof Q areall equalto 0 or 1, sincein this caseQ is idempotentBecause
in thiscaseQ X = 0, theeigervectorscorrespondingo A = 0 arethe p columnsof the
matrix X. Therefore we know that Q hasatleastp eigewaluesequalto zero,sothat



rank Q) < k — p. It now immediatelyfollows thatin thespecialcasewhereY’X = I,
rank(Q) = k — p.

An alternatve way to determinethe rank of Q is to look at its characteristic
equation:

A — Q| = | =D+ XY'|
= (= DML+ XY
= (=DM, + 57X
= =D P|(x - DI, +Y'X], (1.7)

for . £ 1. From(1.7) we obsenre that QO hasat leastk — p eigewvaluesequalto 1, as
we alreadynoticedabove. In the specialcasethatY’X = I,, equation(1.7) simplifies
to

M — Q1 = (WP (b — D (1.8)

Therefore,if Y'X = I,, theeigewvalueA = 0 hasmultiplicity p andthe otherk — p
eigewvaluesareequalto 1. Thisoncemoreshawvsthatrank(Q) = k — p.

In particular if V. = A — XY’ with Y/A71X = I,, it is not difficult to seethat
therank of V alsoequalsk — p, sinceV = A — XY’ = A(I, — A~1XY’), where
Y'A7'X = 1,,rank V) = rank(l; — A"1XY’), becausei is nonsingularHowever, the
rankof (I, — A71XY’) equalsk — p aswe shaved above. BecauseV A~1X = 0, the
eigervectorscorrespondingo » = 0 arethe p columnsof thematrix A=1X.

In section2 we presentbasic notation on generalizednversesand in section3
somegeneralresultson idempotentmatrices. Subsequent/ywe will shortly address
the casewhereV is nonsingularin section4. Section5 dealswith the singularcase,
wherewe will first considerthe specificsituationwhereA = I,. Thegenerakasethen
easilyfollows. In section6 we obtaina kind of singularvaluedecompositiorfor Q if
Y'X = I,. An examinationof theeigewaluesof Q in section/ leadsto adecomposition
thatresemblesn eigervalue decompositionHerewe do notimmediatelyimposethat
Y'X = I,. Finally, section8 focuseson the eigevaluesandeigervectorsof the matrix
D — xy’, with D diagonal.



2 The Moore-Penroseinverse: somepreliminaries

Let A beak x p matrixandconsiderthe p x k matrix X which satisfiesoneoremore
of thefollowing properties:

(1) AXA = A,
(2) XAX =X,
(3) XA issymmetric,
(4) AX is symmetric.

If X satisfieq1), thenX is calleda generalizednverseof A, denotecby X = A~. If

X satisfiesboth (1) and(2), thenX is calledareflexive generalizednverseof A, which
is denotedby X = A, . If X satisfiesthe propertieq(1), (2) and(3), thenwe call X a
left pseudoimerseof A, denotedoy A, , whereaswve call X aright pseudoinerseof A,

denotedby Ay, if it satisfiesthe properties(1), (2) and(4). Finally, if X satisfiesall

four propertiesthen X is calledthe Moore-Penros@éwverseof A whichwe will denote
by A*. The Moore-Penrosénverseof a matrix is uniquely definedby (1)—(4). For
textbookson generalizednverseswe referto, for example,Bouillion andOdell (1971)
andRaoandMitra (1971).

Lemmal. Thematrix A AA% is theMoore-Renioseinverseof A.

Thislemmais easilyprovedby checkingthefour conditionsthe Moore-Penros@wverse
hasto satisfy(Bouillion andOdell,1971,chapterl).

3 Propertiesof idempotent matrices

As alreadymentionedn sectionl, thematrix Q = I, — XY’ isidempotentf Y'X = I,,.

A typical exampleis Y/ = X* = (X'X)"'X’. InthiscaseQ = I, — XXt =

I, — X (X'X)~1X’ is the very familiar symmetric,idempotentmatrix to be denotedoy

Px: the orthogonalprojectoron the orthogonakcomplemenbf the columnspaceof X.

To give anotherexamplein which this typeof matrix appearsbut nov asanorthogonal
projectorwith respecto anotherinner product,considerthe standardinear regression
model

y=XB+e,

wheres ~ N (0, 02%), andX is known. Accordingto themethodof Generalized.east
SquareqGLS), we have to minimize (y — X8)' 2 1(y — XB). Here,the underlying
inner productis (a,b) = @’ 'b. The solutionis 8 = (X’ 1X) 1X's 1y, the
Aitkenestimatorsothe GLS approximatiorto y is X (X'~ ~1X)"1X’x~1y. Thisis the



orthogonaprojectionof y on {Xg|8 € R?} with respecto X 1. Thevectorof residuals
is
e= L — XX'o1x)tx'z Yy,

Thisleadsto

0 = L —XXxX=x)xxg?
= L, — XY/,

whereY = =X (X’s!X)"tandY’'X = I,. Conversely sucha matrix Q canbe
interpretedasan orthogonalprojector Given Q = I, — XY’ with Y'X = I,,, we take,
for example, ™! = YY’ + Px. This matrix is symmetricand positive definite. To
establishthis lastproperty notethatx’ = ~1x = 0is equialentto Y'x = 0 andx = X
forsomeB e R?. S0,0=Y'x=Y'XB=8=x=0.

Since we also use the propertiesof idempotentmatrices,we mentionthe most
importantfacts. A k x k matrix Q is idempotentif Q> = Q. In statisticsand
econometrics,Q will often also be symmetric,but this is not necessanaswe have
remarled. If Q is idempotentthen, — Q is alsoidempotentand Q(I; — Q) =
Ik —0)0=0.

An important idempotentmatrix in this paperis the matrix Py = I, —
UWU'U) WU = I, — UUT, whereU is ak x p matrix of full columnrank. Because
Py is alsosymmetric,it is a projectionmatrix. Py is in factthe orthogonalprojector
on the orthogonalcomplementof the column spaceof U, so that P,U = 0 and
(I, — Py)U = U. If V isanotherk x p matrixwith columnsorthogonato thecolumns
of U, thenPyV = V. Moreover, in this casethe correspondingprojectionmatricesof
U andV commutethatis, if U'V =0,

PUPV:PVPU:P(UV)- (31)

Becausghe matrix Q = I, — XY’ playsa key role, we will now discusssome
propertiesof this matrix thatwill facilitatederivationsfurtheron. We assumehatthe
k x p matricesX andY areof rank p andthatY’'X = I,. Let R(A) denotethelinear
subspacspannedy the columnsof the matrix A. We candistinguishthreecases:(i)
the columnsof X andY spandifferentspacesthatis, R(X) N R(Y) = {0}, sothat
rank X, Y) = 2p, (ii) rank X, Y) = p, whichmeanghatX andY spanthesamespace,
and(ii) p < rank(X,Y) < 2p, sothatthereis partial overlap betweenthe column
space®f X andY. Thefirst casewill bediscussedxtensiely in section6 and?.

If X andY spanthe samespace,case(ii), thenthereexists a nonsingulark x k
matrix B suchthatX = Y B. ThereforeY'X =Y'YB = I,, sothatB = (Y'Y)~t and



Q =1, —Y(Y'Y)"Y’' = Py. So,in this specificsituationQ = Py = Py is symmetric
andidempotentlt inmediatelyfollows that 0t = Py = Py.

If thereis overlap betweenthe columnspaceof X andY, we assuméahat X =
(X1, X2), Y = (Y1, Y2), whereX; andY; arek x g matrices,X, andY, arek x r
matriceswith ¢ + r = p, suchthatR(X;) = R(Y1) andR(X>) N R(Y,) = {0}. Note
thatwe canwrite Q asQ = I, — X,Y] — X,Y,. Fromtheidentity Y'X = I, we obtain
the properties

YiX: =1, YV3Xp=1, (3.2)
Y[X; =0, YjX;=0 (3.3)

BecauseX; and Y; spanthe samespace,the sameamgumentas abore applies, so
that we canwrite ¥; = X1(X;X1)~! and X; = Yi(Y;Y1)™'. BecauseY;X, =
(X’1X1)—1X’1X2 = 0, it follows that X} X, = 0, andwe seethat the columnsof X;
aremutually orthogonalto thoseof X,. Analogously it canbe shavn thatY;Y; = O.
Theseobserationsleadto the following lemma:

Lemma?2. LetQ = I, — XY’',whee X = (X1, X2),Y = (Y1, YV»2), X, andY; arek x g
matrices, X, andY, are k x r matriceswithg +r = p, suh that R(X,) = R(Y;) and
R(X2) N R(Y,) = {0}. DefineQ, = I, — X,Y,. ThenQ canbewritten asthe product
of two idempotenmatricesthat commute:

Q = Px, 02 = Q2Px,. (3.4)
Proof To establisn(3.4),obsenre that

Px,02 = Px,— Px,Xo¥;=Px, — Xo¥; =0
O02Px;, = Q2— 02X1Y] = Q2 — X1¥] + XoY, X1 Y] = Q.

4 The nonsingular case

It is well-known thatthe matrix

canbewritten as

s 0\ /A 0 I, A7lX
S_<Y’A1 Ip) <0 Ip—Y’AlX) (0 I, )’ “.1)



Thisrepresentatiois veryinstructive, sinceit immediatelyfollowsthatS is nonsingular
if andonly if 7, — Y’A~1X is nonsingular Moreover, equation(4.1) alsoshaws that
IS| = |A||I, — Y’A71X|. If S is nonsingularwe know from the standardresultson
inversesf partitionedmatriceshatS*, theupperleft-handblock of S, canbewritten
in two ways:

sHo= AT+ ATX U, - vATIX) Ty AT (4.2)
(A—XYH1 (4.3)

andwe have awell-known expressiorfor (A — XY’)~! (seee.g. RaoandMitra, 1971,
chapter2). If S is singular it is temptingto replacethe inversesby Moore-Penrose
inverses. Accordingto corollary 4.4 from Ouellette (1981), we have the following
result.

Theorem1. If Aisak x k matrix, X andY arek x p matriceswith k > p, andif
A /
rank(Y,) = rank(A, X) =rankA = rank(A — XY’)

and
rank(l, — Y'A*X) = p,

then
(A—XY) = AT+ ATX (U, - YA X))ty At (4.4)

Onaccountbf theoremd.6from Ouellette(1981),which originatesfrom Marsagliaand
Styan(1974),page439,we know thatwe needl, — Y’ A" X to benonsingulain order
to have resultssimilarto (4.2)and(4.4).

However, in the sequelwe will focusonthecasethatl, = Y'ATX. In particular
we alreadyassumedhat A is nonsingular Note thattheoreml also doesnot apply
to the mixture casewhereY’A™'X # I, and|I, — Y'A~*X| = 0, asmentionedin
sectionl.

5 The singular case

In this sectionwe will be interestedn obtainingthe Moore-Penrosénverseof vV =
A — XY’, wherethek x k matrix A is nonsingularandthe k x p matricesX andY
satisfythe conditionY’A™*X = I,. As we obsered, this impliesthat X andY are
of full columnrank p < k. Inspiredby Trenkler (2000)the following resultcanbe
guessedWe will shaw thatit is indeedcorrect.

10



Theorem2. LetV = A — XY’, whee A is a nonsingulark x k matrix,and X andY
arek x p matriceswith Y’A~1X = 1,. Then

V+ = PHA_lpK,
whee H = A~1X andK = (A~1)'Y, is theMoore-Renoseinverseof V.

The theorem can be establishedby verifying the four conditions for the
Moore-Penrosénverse. However, we think thatit is nicer to obtainthe resultin the
specialcasethatA = I; first, andthento derive themoregenerakesultin aconstructie
way.

Wefirstfocuson Q = I, — XY’ whereX andY arek x p matriceswith Y'X = I,,.
Someusefulpropertiesare:

0X =0, Y'0=0 (5.1)
OPx =0, PxQ = Px (5.2)
PyQ =0, QPy = Py (5.3)

QY = —P,XY'Y X'0 =—X'XY'Py (5.4)

Q0 =20 (5.5)

From (5.5) we seethat Q is idempotentbut not necessarilysymmetric. Later on, we
will give a decompositiorof Q thatis very similar to a singularvalue decomposition.
From this result 0 canbe derived in a constructie way, seesection6. Checking
the four conditions,however, is easier Obviously, we have from (5.2), (5.3) and(5.5)
that QPxPyQ = QQ = Q, sothat Px Py is a generalizednverseof Q. Next, we
obsere that P, QPy = Q. HencePxPyQPxPy = PxQPy = PxPy. Moreover,
Px PyQ = PxQ = Px andQ Px Py = Py aresymmetricmatrices.Theseobsenrations
prove thefollowing theorem.

Theorem 3. LetQ = [ — XY', whee X andY are k x p matriceswith Y'X = I,.
Then
Q" = PyPy.

The proof of theorem2 can now easily be obtainedfrom theorem3 by applying
lemmal.

Proof of theoem2. Wewill derivethe Moore-Penroséverseby usingaleft andright
pseudoimerseof V, cf. lemmal. Notethat

A—XY = A, —AXY)
= (I — XY'A™HA.

11



This suggestso considern(l, — A~*XY")* A~ andA~1(I, — XY'A~Y)™, to bedenoted
by vV,  andV, respectiely. Obviously, V, isindeedaleft pseudoimerseof V andV,

is aright pseudoimerseof V. Lemmal stateghatthe Moore-Penrosef V cannow be
computecasV+ = V, VV, . Fromtheorem3 we know that(Z; — A" 1XY")* = P, Py

and(I; — XY'A~H* = Py Px. Onaccountof (5.2),it follows that

VY = PyPyA A — XY)AT Py Pk
= Py(li—HY)A 1Py
= Py(A™'— XK' Pk
= PyA lPg.

O

TakingX = a andY = —b, we have theresultderivedin Trenkler(2000). If we
compareheexpressiorof Trenklerfor theMoore-Penros@verseof A + ab’ with V™,
thenwe seethatour resultis a straightforvard generalizationWe thereforecould have
guessedhis solutionandverify the four conditionsthe Moore-Penrosénversehasto
satisfy justaswedid in theproofof theoren3. Anyway, thebasicpropertieq5.1)—(5.5)
of idempotentmatriceslike Q areneeded.We think, however, thatthe proof asgiven
above is nicer Straightforvard multiplicationshaws that

vvt = L —KK* (5.6)
VtV. = L, -HH™, (5.7)

wherewe usedthe factthat K+ = (K’K) 1K', becauseX is of full-column rank.
Thus,VV* andV*V aresymmetric. From (5.6) and (5.7) it now easilyfollows that
VVtV =V andVtV VT = V*, sothatindeedall four conditionshold.

In section3, we distinguishedhreecaseswith respecto the spacespannedy the
columnsof X andY. Althoughthe Moore-Penrosénverseof Q is givenby Py Py,
regardlessof therelationbetweenR (X) and R(Y), it canalsobe found by exploiting
the specificstructureof Q in thesethreecases.Case(i), whereR(X) N R(Y) = {0},
sothatrank(X, Y) = 2p, will bediscussedxtensiely in section6. If R(X) = R(Y),
casq(ii), weobseredthatQ = Py = Py, sothatQ* = Px = Py. Forcasg(iii), where
p <rankX,Y) < 2p, weknow from lemma2 that 0 = Px, 0> = Q2Px,. A natural
guesdor the Moore-Penros@verseof Q is now:

0" = Px,0; = Q3 Px;,. (5.8)

From (3.1) andsection3 we know that Py, = Py, andthat Px, and Px, respectiely
Py, and Py, commute Fromtheorem3 we know that

Q+ = PX1PX2PY1PY2 = PX1PX2PX1PY2 = PX1PX2PY2 = PXlQ;‘
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Ontheotherhand,we have

Px,07F = Px, Px,Py, = Px,Py,Px, = QF Px,.

6 A blockwisesingular value decomposition

In this sectionwe will presentadecompositiorof Q = I, — XY’ whichis quitesimilar

to a singularvalue decomposition.lt is assumedhat X andY arek x p matricesof

rank p andY’'X = I,. We will only considerthe casethatthe columnsof X andY

spandifferentspacesthatis, R(X) N R(Y) = {0}, sothatrank X, Y) = 2p. Analogous
to a singularvalue decompositionwe are looking for orthogonalmatricesS and T

andamatrix A suchthatQ = SAT’. As opposedo the singularvaluedecomposition,
however, wedonotrestrictA to bestrictly diagonal althoughaneasystructurds indeed
corvenient. We will take A to be block-diagonal.This decompositiorprovidesus an

alternatve methodto find the Moore-Penrosénverseof Q, becauseat canbe easily
checledthatin thiscaseQ* = T A*S’ alsoholds.

BecauseQX = 0and Q'Y = 0, we know thatthe columnsof X andY areright
andleft singularvectorsof Q with singularvalue0. Moreover, if thek x 1 vectora
is orthogonalto the columnsof X andY, then Qa = a and Q’'a = a. Soa is both
a left and a right singularvector of Q with singularvalue 1. Sincethe columnsof
X andY constitutean independensystemof 2p vectorsin R¥, we canfind vectors
wy, ..., W2, thataremutually orthogonal have unit lengthandareorthogonato the
columnsof X andY. If W = (w4, ..., wi_2,),thenQW = W andQ'W = W.

We arelookingfor adecomposition) = SAT’ whereS andT areorthogonak x k
matrices. We would like that S is composedmainly of left singularvectorsand 7T of
right singularvectors.Let S = (81, Sz, S3), T = (T3, T», T3) and

A1 0 O
A = O A2 O )
0 0 As

then obviously we cantake S3 = 73 = W and Az = [;_,. We obsere that S;
shouldthen be build up from columnsof ¥, T; shouldaccordinglybe constructed
from X, andwe take A; = 0,. This leadsto the choiceS; = Y (YY)~ =Y and

=X(X'X)"z=X, because¢henS|S; = 7|71 = I, $;53 = 0and7;73 = 0. The
columnsof S, shouldbe orthogonalto S; and S; and have to be constructedrom X,
becauséhe columnsof X, Y andW provide a basisin R*. This leadsto the choiceof
Py X andtheorthonormalersionis

-~ ~ - ~ _1
Sy = PyX(X'PyX)"2 = PyX Hyp,
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with Hyy = X’ Py X. Analogouslywe use
~ ~ ~ ~ _1
T, = —PxY(V'Py¥) 2 = —PxVH, 2,
with Hyyx = Y'PxY. It turnedout thatwe needa minussignfor 7». In orderto obtain
Ay wesolve QT, = S, A, using(5.4):
~ _1
O, = —QPxYH,;
~ _1
= ~OVH
_1
PyX(Y'Y)2H,{
S2A 2,
where
" 1 ;1
Ay = HZ (X'X)2(Y'Y)ZH,?
1 .. _1
= HZ(Y'X)'H, 2 (6.1)
Theorem4. LetX, Y bek x p matricesof rankp, sudthatY’'X = 1,, R(X)NR(Y) =

{0}. DefineX = X(X'X)"3,¥ = Y(Y'Y) 3, Hyy = XPyX andHyx = ¥ PxY¥. Then
Q = I, — XY’ canbedecomposeds Q = SAT’, whee

1 . . _1
A = diag0,, H2,(Y'X) *H, 2, I, 2,)
~ ~ 1
S = (Y,PyXH.2, W)
~ ~ _1
T = (X,—PxYH,Z, W),

sudthat S andT are orthogonalmatrices.Thek x (k — 2p) matrix W hastheproperty
that W'W = I;_, andY'W = X'W = 0.

Thefollowing propertiesareeasilyderivedandwill beusefulin furtherderiations.

X'X=1I, Y'Y =1, (6.2)
X'V = (X'X)2(Y'Y) "2 VX = (YY) 2(X'X) 2 (6.3)

Px =1 — XX' Py=IL—-YY (6.4)
Hyy =1, — X'YY'X Hyx =1, —Y'XX'Y (6.5)
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If p = 1,theequationg6.3)and(6.5) have thefollowing interpretation:

XY = Y'X=cosd
Hxy = Hyx=Sirf0,
wheref denotegheanglebetweenx andY. From(6.2)-(6.5)it follows that
Y'XHyy = HyyY'X,
sothat o o
Y'XH: = H;iY'X. (6.6)
Now we cancomputethe Moore-Penros@wverseof Q asQ* = TAYS = ToA, 'S, +
WW’, where . .
-1 5 Ol rr 2
A" =HZY'XH,},
and WW' = Py — PyYH,zY'Px, becausel' T’ = TiT| + T.Ty + WW' = I.
Using(6.2)-(6.6),we obtain

Q0" = —PxY(Y'X)Hy:X'Py + Px — PxYH, LY Py
= Px[l— PHV Py — PHV'XX Py ]

= Py|L— VHIV(Py + XX/PY)]

= Pl - 7H U - 5(5(’171?’)]

= Py|l, — iHy—;HYX?’]
== PXpy.

If p = 1, thedecomposition) = SAT’ is a singularvalue decompositiorof Q. In
this casewe know that 9 hasonesingularvaluewhich equals0, k — 2 singularvalues
which equall, andasingularvaluewhichimmediatelyfollows from (6.1):

Az = [lx[l Iyl

Sincex’y = 1, obviously, ||x]|| |ly]l = 1 andtheequalitysignholdsif andonly if Q is
symmetric(so Q = Py). To summarizeye have thefollowing result.
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Corollary 1. Letx, y bek x 1 vectos, sudthat y'x = 1 andrank(x, y) = 2. If we
definer,, = (x'y)/(lx|l lyl) = llx|I Yyl %, thena singular value decompositiorof
Qis SAT', whee

A = diagQ@, [Ix[[ Iyl 1, ..., D)

_ _ _1 _
S o= (yl el @—=r2) 20 = Iyl 72y), wa, .. wi—2)
-1 -1 23 -2
I = (xlI™"x =yl Q=rg) 20 = Ixl77x), wa, ..., we—2),
sudhthat S andT are orthogonalmatrices.Thevectos wy, ..., wi_, haveunitlength,

are mutuallyorthogonalandare alsoorthogonalto x and y.

Obsenre Gram-Schmidbrthogonalizationn this corollary:in L, , = {ax + Byla, B €
R} find the vectororthogonato y, resp.x.

7 A semi-eigenalue decomposition

In this section,we will derive a decompositiorfor the matrix Q which is somavhat
similarto aneigervaluedecompositionAs opposedo theprevioussection theequality
Y'X = I, we assumeadhroughoutneednot hold. It turnsout that, underparticular
conditionswe canwrite

Q=UDU™!, (7.1)

where D is a block-diagonalmatrix. Equation(7.1) shawvs that Q is similar to a
block-diagonamatrix. Althoughthe matrix D hasa simplestructure,it doesnot give
usthe eigewvaluesof Q, like the spectraldecompositiordoes. Moreover, the matrix
U neednot be orthogonal. We will shav, howvever, thatin somespecificsituations
equation(7.1) givesan eigervalue decompositiorof 0. We will only discussthe case
whereX andY spandifferentspacesSection7.1dealswith the generalcase whereas
section7.2focuseonthecasep = 1.

7.1 X andY spandifferent spaces

Considerthematrix Q = I, — XY’, whereX andY arek x p matricesof full column
rank, R(X) N R(Y) = {0}. Noteoncemorethatwe do not restrictourselhesto thecase
thatY’X = I,. Theaimis to find adecompositiorQU = U D, whereU is nonsingular
and D hasasimplestructure.BecausepX = X (I, — Y'X), thematrix X is anatural
candidateto be part of U. We preferto normalizethe columnsof U, which, in the
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notationof section6, leadsto

0X = XU, - (X'X)Y'X)
= XU, - (X'X)}(Y'Y):Y'X). (7.2)

Ontheotherhand,Qa = a for alla € R* with Y’a = 0, andwe seethatall vectors
orthogonato thecolumnsof Y areeigewectorsof Q with eigewvaluel.

Now we can constructthe decompositionQU = UD asfollows. Let U =
(U1, U, U3) and D = diag(D1, D, D3), then (7.2) suggestdo take U; = X and
Dy =1, — (X'X)2(Y'Y)2¥'X. If we considerthe spacespannedy the columnsof X
andY, we arenow looking for vectorsorthogonalo the columnsof Y, which leadsus

~ ~ ~ ~ 1

to thechoicelU, = PyX(X’PyX)*% = PyXH,/, becaus¢hen
~ _1 ~ 1

QUp = QPyXHy? = PyXHy} = Us, (7.3)
andU,U, = I,. The columnsof U, are eigevectorsof Q with eigevalue 1, so
that D, = I,. It is notimmediatelyapparenthat the columnsof U; and U, span
differentspacesthatis rank(U,, U,) = 2p, whichis anecessargonditionfor U to be
nonsingularBecausagank(U,, U,) = rank(U, U,)' (U1, U,), we canalsoconsiderthe
matrix

1
1 H2
(U1, Up) (U1, Up) = < Ié XY)- (7.4)
HXY IP
From(7.4)we seethat
(U, U2) (U1, Up)| = |1, — Hxy| = |X'YY'X]|

— (X' X) 2 XY (YY) Y X (X' X) 2,

so that [(Uy, Uy)' (U1, Up)| = 0 if andonly if [ X'Y| # 0, which meansthat X'Y
mustbe nonsingular Thus, if XY is nonsingular (Uy, U,) (U, U,) is of full rank,
and therefore,so is (U, U,). We seethat in this casethe columnsof U; and U,
constitutean independensystemof 2p vectorsin R*. Now we can find vectors
c1, ..., ck—2p thataremutually orthogonal have unit length, andare perpendiculato
the columnsof X andY andthereforealso orthogonalto the columnsof U, and Us.
If we defineC = (c1, ..., c2,), thenQC = C, which meanghatthe columnsof C
areeigevectorsof Q with eigervaluel. With Uz = C and D3 = [;_5,, our matrix
decompositionQU = U D is completed Notethatthe matrix V consistf vectorsof
unit lengthwhich aremutually orthogonal exceptfor the vectorsin U; andU,.
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To determinel/ 1, notefrom (7.1) that
QU™ =wWHD,

so thatfinding a similarity representatioffior Q' leadsto interchanginghe role of X

andY. Thisleadsto theguess

WYy = (?A, Py YT, c),

whereA andI™ arep x p matricesNow V1V = I, implies

AY’

~ ~ ~ 1
"Y' Px <X PyXHy}? C)=Ik-

C/

The off-diagonalblocks are indeedequalto zero,whereasA andI' mustsatisfy the

eguations

and

~ ~ 1
I'Y'PyPyXHy} =

ANY'X =1, (7.5)

~ ~ 1
= -T'Y'XH}. (7.6)
From(7.5),respectiely (7.6),we seethat
A = X'V?
-~ ~ _1
r = —(X'V)*'H?.
Therefore,
- o~ o~ ~ o~ ~ 1 1
U = (Y(X/Y)l, —PxY(X'Y) 2H,2, c). (7.7)

We summarizeheresultsin the following theorem.

Theorem 5. Let X, Y bek x meatricesof ralnkNp, sud that{i’(X) NR(Y) = {0},
and X'Y is nonsingular DefineX = X(X'X) 2,Y = Y(X'Y) 2, Hyy = XPyX and
Hyx = YPxY.ThenQ = I, — XY’ canbewrittenasQ = UDU %, whee

D = diagl, — (X'X)3(Y'Y)?V'X, I, [i_s)

~ ~ 1
U = (X,PyXH,/;,OC)

~ o~ o~ ~ o~ o~ _1
uly = (Y(X’Y)‘l, Py V(X'V)IH 2, C) ,
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sud thatthe k x (k — 2p) matrix C hasthe propertythat C'C = I;_,, andY'C =
X'C=0.

If Y'X = I,, theoremb givesusaneigewaluedecompositiorof Q:

Corollary 2. LetX,Y bek x p matricesofrank p, suhthatY’X = I1,, R(X)NR(Y) =
{0). DefineX = X(X'X)~2,Y = Y(Y'Y)"2, Hyy = XPyX and Hyx = ¥ Px¥. Then
QU = UD is aneigervaluedecompositionf Q = I, — XY’, whee

D = diag(Op, Ik—p)
~ ~ 1
Uu = (X, PyXHX;, C)

-ty

_1
(Y(X/X)%, —PyY(X'X)?HE, C) ,

sud thatthe k x (k — 2p) matrix C hasthe propertythat C'C = I, ,, andY'C =
X'C=0.

Corollary 2 shaws, in correspondencwith (1.8), that Q hasp eigewvaluesequal
to 0, andk — p eigewvaluesequalto 1. Moreover, corollary 2 also gives us the
correspondingigervectors.

7.2 Thecasep =1

Considethematrix Q = I, — xy’, wherex andy arek x 1 vectors.Someinteresting
obsenrationsare:

@) Ox =1 —yx)x;

(b) Qa = a, for all a with y'a = 0;

(¢) Qa = 0for somea # Qif andonlyif x'y = 1;

(d) rank(Q) = kforx'y # landrank(Q) =k — 1if x'y =1,

(e) Q is symmetricif andonly if y = Ax for somex £ 0 (andhencex’y # 0);
() 0% = I + (x'y — 2)xy’, henceQ is idempotenif andonly if x'y = 1.

Proof of (c) and(e).

(c) Qa = O for somea # O if and only if Q is singular Because
|Q| = |I; — xy'| = 1— y'x, thisholdsif andonlyif x'y = 1.

(e) If y = Xx, thenobviouslyQ is symmetric. Corversely if Q is symmetricthen
Ox = Q'x sothat (y'x)x = (x'x)y whee y'x # 0,andy = (y'x)(x'x) 1x.

With regardto the eigemwvaluesof Q we now have to distinguishtwo cases:
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(i) x’y # 0: From (a) it is obvious that Q hasan eigervector x with eigemvalue
1— x'y # 1 with multiplicity 1. From (b) we see Q hasan eigemwvalue 1
with multiplicity k — 1. The eigenspaceaorrespondingo this eigemwalue is
L)% = {a € Rfla’y = 0}. Becausex is not perpendiculato y, therearek
independengigervectors.So, Q is similar to a diagonalmatrix.

(i) x'y = 0: From (1.7) we know that QO hasone eigevalue equalto 1 with
multiplicity k. We know from (b) thatall vectorsc with ¢’y = 0 areeigervectors
of Q with eigevaluel. Supposéhatay + Bc is aneigevectorwith ¢’y = 0 and
a, B € R. Thenay + Bc = Q(ay + Bc) = ay + fc — ayy'x sothate = 0.
Thereforeall eigewvectorsof Q areorthogonalto y andthe eigenspacef Q is
Ly andhasdimensiork — 1. In this case,Q is notsimilarto adiagonalmatrix.

Justlikethecasep = 1in section6 gave usthesingularvaluesof Q, thecasep = 1
now givesustheeigemvalues.

Corollary 3. Letx, y bek x 1 vectos, sud thatx'y # 0 andrank(x,y) = 2. If
we definer,, = ('y)/(lx[l Iyl) = lxI *yl~* thenQ = UDU*, whee D is a
diagonalmatrix with the eigervaluesof Q alongits diagonal

D = diagl—x'y,1,1,...,1)

v

_ _ _1 y
U = (™ 7 @ = r2) 720 = == ) ens s o),
: Yy
_ _ _ _ 1 _ x'y
ol = (rxﬁnyn Yy, -t —r2) 2l - x>,c1,...,ck_z).
whee c¢i,...,c; > are mutually orthogonal, have unit length and they are

perpendicularto x andy.

Thesecondsectorof U is chosersuchthatit isin thespacel, , = {ax+Byla, B €
R} andperpendiculato y. Herewe usedGram-SchmidbrthogonalizationNote once
morethatthematrix U consistf vectorsof unit lengthwhich aremutually orthogonal
exceptfor the first and the secondvector If thesevectorswere also orthogonal,we
would have Ut = U’ andhenceQ = Q’, which is not the case. However, if Q is
symmetric,thenthe vectorsx andy spanthe samespacesothatU is orthogonaland
corollary 3 givesthe spectradecompositiorof Q.
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8 Eigervaluesand eigervectorsof D — xy’

In this section,we will studythe eigewvaluesandeigewectorsof the matrix D — xy’,

where D = diagd) is a nonsingulardiagonal matrix and x and y are k x 1

vectors. Similar problemshave beenstudiedby Vermeulen(1967), Klamkin (1970),
Wansbeek1985), Watson(1996) and Trenkler (2000). Trenkler notesthat we need
not restrictoursehesto diagonalD. If we look at the eigervaluesof A — xy’, where
A is a nonsingularsymmetricmatrix, thenthereexists an orthogonalmatrix H, such
that A = HAH', where A is a nonsingulardiagonalmatrix with the eigewvaluesof

A alongits diagonal.SinceA — xy’ and A — H'xy’ H have the sameeigemwalues,we

might aswell studythe matrix A — xy’. The conditionof symmetrycanbe replaced
by the requirementhat A is similar to a diagonalmatrix A, thatis, A = UAU ! for

somek x k matrix U. In this case the eigevaluesof A — xy’ coincidewith thoseof

A—UxyU.

8.1 Eigenvalues

Considerthematrix D — xy’, whereD = diag(d) is anonsingulaidiagonalmatrix and
d, x andy arek x 1 vectors.We areinterestedn theeigemwaluesof this matrix. Inspired
by Vermeulen1967),we now presenthefollowing theorem.

Theorem 6. If D = diag(d) is a nonsingulardiagonal k x k matrixandx andy are
k x 1vectoswithx;y; #0,i =1,...,k,then

|D - xy/| = (_l)s(x,y)|ny — v s
wheie

S, = diag(sgnhxy, ..., Sgnx;)

Sy = diag(sgnys, ..., Sgnyx)
D,, = DS,S,
1 1,
vo= ([xayl?, ..., [xeyel?)
s(x,y) = #i=1,...,k|x;y; <O0}.
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Proof Let D, = diag(x1|Z, ..., |x|2) andD, = diag(|y1|Z. ..., [y|2). Then

ID—xy'| = |D,||D;*DD;* — D *xy' D" |Dy|
= |DyD;'DD;'D, — D,D; xy'D;'D,|
= |D— S,vv'S,|

|Sc] 1S, DSy — vu'[[S,|
= (=1*"Y|D,, — |

O

If, for someindex j, we have x;y; = 0, thenwe canexpand|D — xy’| alongits j** row
or column:
|D —xy'| = d;IDj; — (xy) j;l,

whereD;; and(xy’);; denotethe matricesobtainedby deletingthe j** row andthe "
columnof D, respectiely xy’. We cancontinuethis processuntil noneof thex;y; = 0
andthenapplytheoremg to theremainingpartof thematrix D — xy’.

Fromtheorem6, we seethat|D — xy'| is thesameas|D,, — vv’|, exceptpossibly
for adifferencein sign. Likewise,

AL — (D — xy)| = (1" | (Al — D)S, S, + v (8.1)

with S,, S, andv asdefinedin theorem6. Equation(8.1) impliesthatif S,S, = I,

thatis if x;y; > Ofori = 1,...,k, thenthe roots of the characteristicequationof

D — xy’ andthoseof thesymmetricmatrix D — vv” arethesame If, onthe otherhand
S:Sy = —Ii, thatis if x;y; < Ofori = 1,...,k, thenthe rootsof the characteristic
equationD — xy’ andthoseof the symmetricmatrix D + vv’ arethe same.Because
therootsof a symmetricmatrix arealwaysreal,we have shawvn thatif all x; y; have the

samesign,thentheeigewaluesof D — xy’ arereal.

Theorem 7. If D = diag(d) is a nonsingulardiagonal k x k matrix and x, y are
k x 1vectossut thatx;y; < Ofori = 1,...,korx;y; > 0fori =1,...,k, then
Q = D — xy’ hasreal eigervalues.

Vermeulen1967)shavedthattherootsof the determinantaéquation
|11 + diag(e) + at | (8.2)

with a; ande; strictly positive, arerealby usinga similarargumentasusedn theoren®.
By constructinga differenceequationfor the determinantakquation,he also shaved
thattheserootsarenegative. Theseresultsmmediatelyfollow from theoremb, because

LI + diagle) + at,| = |A I, + diagle) + vv'],
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with v = ((/ay, ..., Jay)', sothatthe eigevaluesof diage) + ay; arethe sameas
the eigervaluesof the symmetricmatrix diag(e) + vv’. Theseeigewvaluesarepositive,

becausdiag(e)+vv’ is positive definite. Thisimpliesthattherootsof thedeterminantal
equation(8.2) arerealandnegative.

Trenkler(2000) remarksin his paperthatthe matrix T = A + ab’, with A being
symmetricand nonsingular hasalways real eigewvalues. However, accordingto the
conditionof theorem7 thatall a;b; shouldhave the samesignis vital moreor less,as
canbeseenfrom thefollowing example.

Example 1. Considerthe matrix D — xy’ with D = diag1,2),x = (-1,—-1) and
y = (1, =3). It is easily derived thatin this case|Alo — (d — xy')] = 22 — 1 + 1, so
thatbotheigervaluesarecomplex. O

Theeigemwaluesof D — xy’ canbedeterminedrom the characteristi@quation

0 = A —(D—xy)]
= |\ — D)Y(Iy + (A — D) *xy))|
Ay — DI(L+ y (Al — D) 'x)

k k
Xi Yi
= [E(/\—df)} {1+;)\—d,}

k k
= [Jo—dp+> xy[]o-—dp (8.3)
i=1

i=1 i

Thefollowing theoremimmediatelyfollows from (8.3). It coversthetheorem, 3, and
4 of Trenkler(2000).

Theorem 8. ConsiderD — xy’, where D = diag(d) is a nonsingulardiagonal matrix
andx andy are k x 1vectos.

(i) If all d; are differentandall x;y; # 0, thennoneof the d; is an eigervalue of
D — xy’. Inthiscase A is an eigervalueif andonly if

k
Xi Yi
1 =0. 8.4
+;A_di (8.4)

(i) If all g; aredifferent,but, for index j, wehavex;y; = 0, thend; is aneigervalue
of D — xy'.
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(i) If someofthed;’'s coincide d; is an eigervalueof D — xy’.

Note thatwe canfind all eigevaluesof D — xy’ by combiningthe differentcases
consideredn this theorem. In the mostgeneralcasewheresomeof the d; coincide,
someof thex; y; areequalto zerobut indicesi alsoexist suchthatd; hasmultiplicity 1
andx; y; # 0, theprocedurds asfollows. Partition D in blocksof ascendingize:

D = diag(d11y,, d2 1y, - - ., diy,) (8.5)
where}’,_; k; = k. Partition x andy accordingly:
X o= (kg Xy o X5,)'
y = (ykl’ Vs -« yk,)/- (86)

First, supposel; hasmultiplicity k; > 1. Thenwe know from theorem8 thatd; is
aneigewvalueof D — xy’. Equation(8.3)thengives

M —d—xy)| = []o—dp% +> 0y —dp) [ — aw)
j=1

j=1 h#j

[Jo-—aps=| | [ —dp+
j=1 j=1

+ > y) [ —dw (8.7)
j=1 h#j

From (8.7) we obsere thatin this caser = d; hasmultiplicity k; — 1. Moreover, the
remainingeigervaluescanbefoundby puttingthe secondactoron theright-handside
of (8.7) equalto zero. The equationto be solvedis thenexactly of thetype(8.3),sothat
the remainingeigervaluescanbe determinedrom (8.4). Notethati = d; canhave
multiplicity k; if andonly if x,’{jykj =0.

Second,considerthe setof indices J for which the x;y; equalzeroandd; has
multiplicity 1, thatis, J = {j : x;y; = 0, d; hasmultiplicity 1}. Thenwe canderve

M — (D = xy)| = [ [0 = dp)Irle — (D = 55, (8.8)

jeJ

whereD is thematrix obtainedrom D by deletingthe j row andcolumnfor all j € J,
% andy arethevectorsobtainedrom x, respectiely y, by deletingthe j* elementfor
all j € J, andk* = |J|, thenumberof elementsn J. Equation(8.8) shavs thatall d;

24



with j € J areuniqueeigemwvaluesof D — xy’. Moreover, to determinetheremaining
eigevaluesof D — xy’, we canapply part (i) of theorem8 to the matrix D — ¥ and
we arefinished.

If all d; coincide,thatis, if D = dI; ,thenequation(8.3) gives

k
A = (D = xy) = (= ) [(x —d)+ iny,-:| —0,

i=1

sothatA = d is an eigewalue with multiplicity » — 1 andthe remainingeigervalue
equalsd — xy'.

In the situationthatall 4; aredifferentandall x;y; # 0, case(i) of theorem, the
eigewvaluesof D — xy’ mustbedeterminedy solvingequation(8.4). Notethat,in this
case, = Ois asolutionof (8.4)if andonly if y D~%x = 1,thatis, D — xy’ is singular
Moreover, if y D~1x = 1, equation(8.3) simplifiesto

0 = A —(D—xy)|
= |Ax — D|(y/(\Ix — D)D" *(AIy — D) *x + y A\ Iy — D) 'x)
= |Ay— D|(y(AD™' = I)(ALy — D) 'x + y (A — D) 'x)
ML, — D|Ay'D7Y(0 I, — D) .

Thus,apartfrom equation(8.4), the eigevaluesdifferentfrom zeroalsosatisfy

k
Z Xi Yi -0
di(A —d;)

i=1

From now on we assumewithout loss of generality that the d; are arrangedn
ascendingorder Justas Klamkin (1970), Wansbeel(1985) and Trenkler (2000), we
wantto pay attentionto thelocationof the eigemvaluesfor this specialcase.lf we want
to saysomethingaboutthe locationof the eigewvalues,we would like themto bereal,
andthereforewe restrictoursehesto the situationin which all x; y; have the samesign.
In line with Klamkin (1970),considerthe graphof

X1y1 X2Y2 XnYn

MN=1 :
J®) L Tt tisa

(8.9)

This graphis continuousexceptat the pointsi = di, ds, . . ., di, which correspondo
verticalasymptoteslt follows by continuitythattherearek realrootssuchthatbetween
every two successie d; liesaneigemwalue,thatis

d1<)»1<d2<)»2<...<)»k_1<dk<)»k. (810)
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Figurel. Exampleof the rootsof the characteristiequation|Aly — (D — xy")| =0
fork =3andx;y; > 0,i =1,2,3.

A typical graphfor k = 3is shavn in figure 1.
In caseof situation (ii) or (iii) of theorem8, wheresomeof the d; coincideor

x;y; = 0, we know thatd; is aneigewvalueof D — xy’. The othereigervaluesare
locatedasbefore,sothatin boththesesituations

di <A <dy <Xy <...< A1 < dp <A (8.11)

To showv that we cannotlocate the eigewalues amongthe d; as easily as in
equation(8.11)if we do not imposeary restrictionson the sign of the x; y;, consider
thefollowing example.

Example 2. We continuewith examplel, andconstructhegraphof (8.9),thatis, thegraph

of
foy=1--Lt 4 3
A—=1 A=2
We know that there are no real roots, so that the graph never intersectsthe x-axis. The
correspondingraphis shown in figure 2. O

26



FO) A

fn=1

>y

Figure2. Graphcorrespondingo example2.

8.2 Eigenvectors

Watson(1996)consideredheeigewvectorsof thematrix P — pp’, with P = diag(p) and
> p: = 1. Somavhatmoregeneralwe will considerin this sectionthe eigevectorsof
D —xy'.

We begin with the casewhereall d; are differentand all x;y; # 0, case(i)
of theorem8. The elementsof the eigewvector v; = (vyj,...,v;) of D — x)
correspondingo A ; mustsatisfy

diU,‘j—(y/l)j)x,‘=)\jUij, i=1,...,k,

sothat .
i = (y'v;)——. 8.12
vij (yvj)di_/\j (8.12)
Notethati; # d;. In orderto have atrue eigervector we musthave y'v; # 0. If we

choose
Xi

0, 8.13
revvis (8.13)

U['j =

then




becauser ; satisfies(8.4). This shavs that we canindeedfind the elementsof the
eigervectorv; by meansof equation(8.13). If we assumeadditionallythatthed; are
orderedandthat all x;y; have the samesign, then equality (8.10) holds, so that the
v1j, ..., vj; have the samesign which is oppositeto the sign of the v i1 j, ..., vy;.
Note that we do not needthe vectory to determinethe eigervectorsof D — xy’, this
vectoris only relevantfor determiningthe eigevaluesof D — xy’.

If all d; aredifferent,but oneor moreof thex;y; = 0, theseconctaseof theorens,
thend, is aneigewvalueof D — xy’. First, considerthe situationthaty; = 0 andx;
is arbitrary By usinga similar approachasabove, it is straightforvard to shav that
in this casee;, the j™ unit vector is an eigevector correspondingo d;. If, on the

otherhandx; = O andy; # 0, thenthe elementf theeigevectorv = (vy, ..., )
correspondingo d; mustsatisfy
dil),‘ —(y’v)x,- =djv,~, i =1,...,k. (814)
Fori # j thisleadsto
b — (y'v)x;
U4
sothat iy
Y =yvj+ (') Z 7 l_'a,j,
i#]
andv; follows:
!/
v =201 dlx’_y’d.).
i m G
Because’v is aconstanfactor this shavs thatwe canchoosev suchthat
Xi for i .
v, = = ori #j
1 X; Yi
v = —(1-) ).
i i di—d

Notethaty’v = 1 with this choiceof v.

For case(iii) of theorem8, where someof the d; coincide, partition D, x and
y asin (8.5) and (8.6). We know from theorem8 thatif k; > 1, thend; is an
eigervalueof D — xy’. We partitionan eigervectorv correspondingdo d; in asimilar
fashionasin (8.6). Assumethatx;;, y;; # 0. It is easyto shav thatin this case,

v = (Vg Vg, - - - » Ur,)” CONSIstsOf zeros,exceptfor the subvectorvy,. This subvector
mustsatisfyy,’(jvkj = 0. This impliesthatin this case,d; hask; — 1 eigevectors
©0,...,0,1%;,0...,0)/, wherethe v, are orthogonalto y;, and are also mutually
orthogonal.

28



References

Bouillion, T. L. andP. L. Odell (1971), Genealized Inverse Matrices JohnWiley &
Sons,Inc., New York.

De Boer, P. M. C. and R. Harkema (1984), “Maximum likelihood estimation of
sum-constrainetinear modelswhensamplesare small”, Kwantitatiere Methoden
16, 97-108.

Dol, W. (1991), Small Area Estimation; a SynthesisBetweenSampling Theory
and Econometrics PhD thesis, University of Groningen,Faculty of Economics,
Groningen.

Dol, W., T. SteernemargndT. WansbeeK1996),“Matrix algebraandsamplingtheory:
The caseof the Horvitz-Thompsorestimator”,Linear Algebra andits Applications
225-238.

Klamkin, M. S. (1970), “On the roots of a certain determinantalequation”,
MathematicalGazette54(387),57-58.

Marsaglia,G. andG. P. H. Styan(1974),“Rank conditionsfor generalizednversesof
partitionedmatrices”,Sankhw, SeriesA, 36, 347-442.

Neudeckr, H. (1995), “Mathematical propertiesof the varianceof the multinomial
distribution”, Journal of MathematicalAnalysisand Applications 189 757—-762.

Ouellette,D. V. (1981), “Schur complementsand statistics”, Linear Algebra and its
Applications 36, 187—295.

Rao,C. R.andS.J.Mitra (1971),GenealizedInverseof Matricesandits Applications
JohnWiley & Sons,Inc., New York.

Tanabe,K. and M. Sagae(1992), “An exact Cholesly Decompositionand the
generalized inverse of the variance-ceariance matrix of the multinomial
distribution, with applications”, Journal of the Royal Statistical SocietyB, 54,
211-219.

Trenkler G. (2000),0n a Genealisation of the CovarianceMatrix of the Multinomial
Distribution, Kluwer AcademicPublisherspPordrecht,chapter4, 69-73.

Vermeulen,L. A. (1967), “The solution of a certain polynomial equation”, The
MathematicalGazette51, 308—309.

Wansbeek,T. (1985), “Singuliere covariantiematricesen SUR-modellen: Enige
opmerkingenover de specificatie van de Boer en Harkemd, Kwantitatieve
Methoden18, 99-102.

29



Watson, G. S. (1996), “Spectral decompositionof the covariance matrix of a
multinomial”, Journal of the RoyalStatisticalSocietyB, 58, 289-291.

30



