7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Knowledge-Based Asynchronous Programming
Haan, Hendrik Wietze de; Hesselink, Wim H.; Renardel de Lavalette, Gerard R.

Published in:
Fundamenta Informaticae

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Haan, H. W. D., Hesselink, W. H., & Renardel de Lavalette, G. R. (2004). Knowledge-Based Asynchronous
Programming. Fundamenta Informaticae, 63(2-3), 259-281.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/42009856-59fd-47b8-bd0c-088649f40ea3

Fundamenta Informaticae 63 (2004) 259—-281 259
10S Press

Knowledge-Based Asynchronous Programming

Hendrik Wietze de Haan, Wim H. Hesselink and Gerard R. Renaral de Lavalette
Department of Mathematics and Computing Science

University of Groningen,

P.O. Box 800, 9700 AV Groningen, The Netherlands

{hwh,wim,grk@cs.rug.nl

1.

Abstract. A knowledge-based program is a high-level description ef ltlehaviour of agents in
terms of knowledge that an agent must have before (s)he ntégrpean action. The definition
of the semantics of knowledge-based programs is problensatice it involves a vicious circle; the
knowledge of an agent is defined in terms of the possible bets/of the program, while the possi-
ble behaviours are determined by the actions which depetkdonledge. We define the semantics
of knowledge-based programs via an iteration approachrgkriag the well-known fixpoint con-
struction. We propose a specific iteration as the semarfteckmowledge-based program, and justify
our choice by a number of examples, including the Unexpddtetying Paradox.

Keywords: knowledge-based programming, semantics of programmirggiages, concurrent pro-
gramming, asynchronicity, unexpected hanging paradox.

Introduction

A knowledge-based program (KBP) is a program with expliedts for knowledge. KBPs can be used
as high-level descriptions of the behaviour of agents in #iragent system. The general idea is that
agent; knows ¢ iff ¢ holds in all situations that considers possible. Thae factostandard frame-

work for KBPs in multi-agent systems is the theory of systeandl runs as described in the book
Reasoning About Knowleddpy Fagin, Halpern, Moses and Vardi ([8]). In this framewdhe meaning
(semantics) of a KBP is formulated in terms of the meanin@ioitjprotocols, which are composed from
individual (nondeterministic but sequential) protocols synchronous parallellism.

The purpose of this paper is twofold: we want to use asyncusrparallellism as the basis for

KBPs, and we intend to resolve the inherent circularity ia diefinition of the meaning of KBPs: on

*Address for correspondence: Department of Mathematic€Camdputing Science, University of Groningen, P.O. Box 800,

9700 AV Groningen, The Netherlands

260 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

the one hand, the meaning of a KBP depends on the meaning kifithdedge operators for the agents
involved, on the other hand, the meaning of the knowledgeadpes depends on the collection of possible
executions of the KBP, i.e. on the meaning of the KBP. In [Bis tircularity is resolved by giving an
implicit definition of the meaning of a KBP (see Section 3 B8loAs a consequence, several KBPs have
a unique meaning, some have no meaning at all, and othersri@esthan one meaning. Our approach
is to observe that the implicit definition of the meaning of B can be read as a fixed point of an
automorphism on the collection of possible meanings, artktme theuniguemeaning of the KBP in
guestion as either the greatest fixed point of the automsmplifiit exists, or a well-chosen iteration of
the automorphism.

In our investigation, we bring together three traditiomgttof knowledge-based programming, e.g.
[8], that of semantics of sequential programming languages [3, 14], and the semantics of concurrent
programming, e.g. [1, 2].

Our reasons for this investigation are the following. Brsh [11] we were inspired by a problem
from delay-insensitive circuits, which are inherently mdyronous. Asynchronous parallellism is, in
general, more realistic in the context of multi-agent systéhan synchronous parallellism. It is natural
to assume that agents have different processing speedscisyicity was therefore our primary design
goal. In combination with interleaving semantics, where #tomic actions are serialized in arbitrary
order, it is the usual framework for concurrent programmih@]. This has the technical advantage that
the designer need not consider joint actions. The stugierad [1] are introduced in our framework to
model that agents cannot know the computation speeds of agleats.

Secondly, we are interested in the semantics of KBPs and prles for KBPs. For program design
it is desirable to work with high-level programs as speciitss. It is then useful that these programs
have a unique meaning, so one can reason about the systemdasin, e.g. using proof rules based
on this unigue meaning. Since we aim at design by specifitatie do not want to define the meanings
of KBPs by means of standard protocols as in [8]. Thereformadapt the framework of Fagin et al. in
such a way that we can eliminate the intermediate protocols.

Our investigation results in a number of semantic dilemmas.therefore refrain from adding the
complications of temporal operators and fairness. Coreggtyl we can restrict to finite prefixes of
runs. So, instead of runs we use finite sequences of stales] taces. We prefer to investigate the
best-possible semantics thoroughly, before making sfioations that would enable model checking.

1.1. Overview

In Section 2 we discuss related work. The general approa€&lagih et al. is outlined in Section 3. We

adapt this general framework to suit our needs in Section d.d@fine a language of KBPs, assign an
interpretation to this language and propose how to assigaistics to all KBPs. Our choice of semantics
is justified in Section 5 via a number of examples. Some caimhs and directions for future research
are discussed in Section 6.

2. Several approaches to knowledge-based programming

The first papers on knowledge in distributed systems appgéaei’80s: Chandy and Misra [5] describe
how processes gain and lose knowledge, Katz and Taubeifgld¢fine various notions of knowledge,

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 261

depending on the state of information a process has. Howtkegprograms in these papers are not KBPs
in our sense, since they do not contain explicit tests fomkadge.

In an attempt to reason formally about KBPs and to gain maiglm in KB-programming, Sanders
[20] defines knowledge of a process using predicate tramgfa, and points out that safety and liveness
properties of KBPs need not be preserved when the initialibons are strengthened. Halpern and Zuck
[12] successfully use the knowledge-based approach twedarid prove the correctness of a family
of protocols for the sequence transmission problem. Theiivation for using a knowledge-based
approach is that correctness proofs should also offer aarstahding to the reader why a protocol is
correct. Stulp and Verbrugge [21] show that real-life peols can be analyzed using a knowledge-based
approach by presenting a KBP for the TCP-protocol.

Moses and Kislev [19] introduce the notion of knowledgeentéd programs, i.e. KBPs with high-
level actions that change the epistemic state of the agémtexample: the actiomotify(j, ¢) ensures
that agentj will eventually knowp. Formal semantics are not given, however. This kind of @ogy is
also investigated more formally from the perspective ofaigit epistemic logic, e.g. by Baltag [4] and
Van Ditmarsch [6]. The implementation of knowledge-orezhprograms is not considered.

The bookReasoning about Knowledd®], by Fagin et al., contains an overview of the work done
on KB-programming by the authors and others. A general fremnle for KBPs is given, and the se-
mantics of a KBP is defined via a standard (i.e. knowledge}fgrogram that implements the KBP.
This knowledge-free program can be decomposed into a miotoiceach agent that maps local states
to actions. We briefly review this general framework in th&treection. In [8, 9], sufficient conditions
for the existence of a well-defined implementation of a KB® given; these conditions only apply to
synchronous systems, however. In [9] the complexity of rieitging whether a KBP has a well-defined
implementation in a given finite state context is charaegeti In [22], Vardi investigates the complexity
of checking whether a protocol implements a KBP in a giveridiatate context.

Van der Meyden describes in [18] an axiomatization of a laifiknowledge and time for a class
of synchronous and asynchronous systems and studies thel ateetking problem for this setting.
However, the gap between writing down a KBP and determirisighodel remains. Engelhardt, van der
Meyden and Moses develop in [7] a refinement calculus for KBRgir framework assumes that agents
and environment act synchronously.

3. The general framework of Fagin, Halpern, Moses and Vardi

In this section we give a concise presentation of the retewaterial from chapters 4, 5 and 7 of the
book Reasoning about Knowledd@], by Fagin et al.

3.1. Global states, local states, runs and interpreted sysns

A multi-agent system consists of an number of agefits= {1,...,n} in an environment. At each
moment in time the system is in a certgiobal statec G:

G=L,x Ly x---x Ly

where fori € A, L; is the set ofocal statesof agenti, andL. is the set of local states of the environment.
If s € G and: € A thens; is thei + 1-th component o, the local state of agent

262 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

A run captures how the global state changes over time. So, aiga function fromIN to G (time
is taken to range over the natural numbers)pdint (r,m) is a runr together with a timen, and the
corresponding global statei$m). A systemR is a nonempty set of runs.

An interpreted systerd is a systemR together with annterpretation functionr : G — (¢ —
{true, false}), that assigns a valuation to a Seof primitive propositions in each global state. The set
® may be partitioned into sets of local primitive proposigpne.® = U;c 4 ®;. An interpretationr is
compatibleif 7 is generated from local interpretations: L; — ®; — {true, false}. So, for compatible
7, we have that

(s)(p) = mi(si)(p) if p € ;. @

Definition. Given a set® of primitive propositions, the languagé(®) of epistemic formulass

defined in BNF-notation as
pu=Llpl=pl(@Ap)| Kip)

wherep € ®, i € A. The connective¥, —, <>, and the constant are defined as usual in terms of
1, —andA. K; is the knowledge operator for agentThe possibility operatoi; is the dual ofK;:
Mip = - Ki—p.

An interpreted systel = (R, n) induces aKripke structureM; = (S, 7w, ~1,...,~y) in the
following way. S is the set of all points occurring in the runs®f Theindistinguishability relation~;
for agent; is defined on points as

(rym) ~q (r',m') & (r(m)); = (r'(m));

That is, agent cannot distinguish between two global statesnds’ if she has the same local state in
boths ands’.

Themodeling relation= for an interpreted systethis now taken to be the modeling relation of the
associated Kripke modél/z. More formally, ifZ is a interpreted system ard m) is a point ofZ, then

(Iu Tum) }: Y= (MI,r(m)) |: 2

for ¢ in £(®). That is

(Z,r,m) Ep < w(r(m))(p) = true, forp € ¢
(Z,r,m) EKip < VYr'eRVYm (r'(m')~;r(m)= (Z,7,m) k)

For the temporal operators (always) and)) (next), we have

(Z,r,m)=EO¢p <& Vm'>m((Z,r,m')Ep)
Z,r,m)EQy < (Z,r,m+1)E=¢p

but we shall not usel and() in the rest of this paper.

If ¢ is an atemporal, epistemic formula (i.e. contains no temlpaperators) thefiZ, r, m) = ¢ only
depends o and the global state = r(m), and we may writdZ, s) = ¢ in that case. Moreover, ip
is a propositional formula (i.e. contains neither epistermar temporal operators) th€f, s) = ¢ only
depends on the interpretatianinstead of the entire interpreted syst&mand we may writér, s) = ¢
in that case. Finally, ifp is a propositional formula oveb; andx is a compatible interpretation, then
(m,s) = ¢ only depends on ageiis local state and so we may write, s;) |= ¢ in that case.

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 263

3.2. Protocols and standard programs

For each agent, a setACT; of actionsavailable for that agent is given; the environment can execu
actions from the seACT.. It is assumed that each set of actions contains a nullrgctiowhich has no
effect. Ajoint actionis tuple (a., a1, ...,a,) of actions of the environment and the age®€T is the
set of joint actions. There istaansition functionr : ACT — G — G that indicates how joint actions
may change the global state.

A protocolis a function from local states to nonempty sets of actiaes.a protocol for agentis a
function P, : L; — (P(ACT;) — {0}). A joint protocolis a tuple(P, ..., P,) of protocols for each of
the agents.

A contexty is a tuple(F., 7, Gy, V), consisting of the protocaP, of the environment, the transition
function7, a set of initial global state§y C G, and an admissibility restrictio C (IN — G) on runs.

A run r is consistenwith joint protocol P = (P, ..., P,) in contexty = (P, 7, Go, V) if

e 7(0) € Go,
o Vm € N3G € P(r(m)) 3a, € Pulre(m)) (r(m + 1) = 7(ae, @)(r(m))),
e rec Vv,

whereﬁ(s) is the result of applying the joint protocol to a global state

—

P(se,81,...,8n) = Pr(s1) X -+« X Py(sy).

Observe that the second formula in the definition of consistémplies that the joint protocol is executed
not once, but infinitely often.
Therepresenting systeR'P (P, ~y) of joint protocol P in contexty is defined by

R'*P(P,v) = {r € N — G |ris consistent with” in v}
Protocols are represented by programst#@ndard progranPg; for agent: has the following form

case of
if t1 doa;

if t,, doa,,
end case

where thet; are propositional formulas over; and theu; are inACT;.
Given a progranPg; and a compatible interpretatian the associated protocoPd in local state
l € L; is defined as

Pi(l) = { {aj | (m,1) |: tj} if {j | (m,1) |: tj} £ ()

{A} otherwise

The compatibility ofr (see (1)) ensures that the outcome of tesis programpPg; underr only depends
on the local state of ageitso we may writgn, 1) |= t; for (Z,r,m) |= t;. So the associated protocol

264 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

chooses nondeterministically one of the actiangor which the test; holds; if there is no such; then
the empty action\ is chosen.

A joint programis a tuplePg = (Pg,, ..., Pg,). Given an interpretatiom, compatible with every
program of the joint program, the joint protod8l® denoted byPgis defined straightforwardly.

An interpreted contexis a contexty with an interpretationr, that is a tuplg-y, 7). The interpreted
system of all runs that are consistent within interpreted contexty, =) is denoted by

I*P(P,y, m) = (R™P(P,v),).

This is the interpreted system that represénis interpreted contexty,).

Observe that the infinite repetition of joint progrdPg, which is a consequence of the definition of
their interpretation in terms of consistent runs, is lefpiitit in the notation. The same holds for the
knowledge-based programs defined in [8]: see the next sedie shall make this repetition explicit in
our adapted definition of knowledge-based programs in &edti.

3.3. Knowledge-based programs
A knowledge-based progra(KBP) for agent is of the form

case of
if t4 A k1 doay

if t,, N\ k,, doa,,
end case

where thet; are propositional formulas ovdr;, thea; are inACT; and thek; € L(®) are epistemic
formulas as defined in (2). fpint KBPis a tuple of KBPs.

In contrast to the propositional formulag, the outcome of epistemic formulds does not only
depend on the interpretationand the local state of the agent, but on the entire intergregstem. So
the joint protocolPg? = (Pgf, ..., Pgl) hasT instead ofr as a parameter. As before, the interpretation
7 in Z should be compatible witPgw.r.t. the propositional formulas. There is no restriction on the
propositions in the epistemic formulas.

The modeling relation is extended to evaluate epistemimtidais for agent in a local statd € L;
for a compatible interpretation. If ¢ is a propositional formula, the(¥,!) = ¢ iff (7,l) = ¢. For
epistemic formulas,

.0 F Ky < VYrm((rnm) eI A(r(m))i=1= (Z,r,m)EFp)
A protocol Pgf is associated with KBPg, for [€ L; as
Pgiz(l):{ {aj [(@0 5 ARy {0 F b ARy} #0
{A} otherwise()

An interpreted systedi = (R, 7) represents a KBPgin context(v, 7) iff 7 is compatible withPg
andZ represents the associated protoegf. That is,Z represent®gin (vy, 7) iff

I:Irep(PQZ77a 71—) (3)

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 265

Observe that we have a circularity here: to determine whethénterpreted systefh represent$g
we must verify whether the runs @fare consistent witlPg”. So this is an implicit definition, and there
need not be a unique interpreted system that represents arkgiven context.

This ends our resumé of the theory of systems and runs as igiy8].

4. Asynchronous KBPs

For our treatment of asynchronous KBPs, we shall adapt #medwork of systems and runs given in the
previous section. The main changes are the following.

¢ We combine actions via interleaving with possible delayd(aat via joint actions).

¢ We work with a more general programming language, inspisedylmamic logic (see [13]) which
is interpreted directly (i.e. not via protocols) in a Kripkedel.

e The indistinguishability relationsz; in our Kripke model are relations on runs (not on states), so
we assume that the agents can recall their own history wheip&ong points in the model.

¢ In the definition of the interpretation of programs in our k& model, we introduce an explicit
parametef3 to restrict the collection of runs under consideration wimderpreting the knowledge
operatorsk;; via abstraction fron3, we obtain an automorphism on our Kripke model which is
the starting point for the definition of the (unique and pagtanfree) meaning of our programs.

Some minor changes are: we consider the environment as ahlégethe others, we shall shift from
infinite runs to finite traces (both approaches are equivakben restricted to atemporal formulas), and
we work with a slightly different notion of context.

4.1. Asynchronicity via stutterings

To model asynchronicity, we work with an interleaving setien the single actions of the individual
programs of the agents are performed consecutively in apegifsed order, possibly with delay. As
a consequence, an agent cannot distinguish two rurise (N — G) if 7/ is obtained fromr by
consecutive repetition of certain global states G.

We illustrate this with an example. Assume that agenan see the contents of numerical variable
z, and that agents andc can modifyz: b can increase it with 2; can decrease it with. In our setting,
02133333 ... is a possible run, where every step corresponds with eithacton ofb, an action ofc
or no action;013555555 is not possible, for the first step (going from 0 to 1) requembining the
actions ofb andc in one joint action, which is not allowed in interleaving samtics. Moreover, the runs
r = 021354333 ... andr’ = 0002133333555443333 ... cannot be distinguished by agentfor both
correspond with actions from ¢, b, b, ¢, ¢, respectively, and we abstract away from the delay between
some of the actions that occurredrin

Definition. A run r4 is astutteringof r, notationr; < ro, iff r, is obtained fromr, by consecutive,
finite repetition of certain elements of. In formula:

r1 =ry = 3df:IN — IN (f monotonic and surjective, and = r; o f) (4)

266 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

For exampley’ of the example above is a stutteringrofout 0211111. .. is not (infinite repetition
of 1), nor012354333. .. (the order of the elements is not preserved). The concepgtttésng comes
from [1], and the relationrk was introduced in [15]. We claim that is a partial order: reflexivity and
transitivity follow directly from the definition, antisymetry is a nice nontrivial exercise.

With this notion of stuttering, we can define the appropriatistinguishability relation for agents
in the context of asynchronous KBPs.

Definition. Agents: considers rurry indistinguishable from rumy (notation: ry =; r3) when both
runs can be stuttered to rurlsandr?, such that agentcannot distinguish individual states alorigand
4. SO we have

riRiry = 3 rh (rp Xy A e 2 A ~irh).)

In short: (=;) = (= o ~; o =), whereo denotes relational composition. Here we use the straight-
forward lifting of ~; to runs, defined by

ri~ire = V(ri(n) ~ire(n)) -

We show thaty; is an equivalence relation. It is easy to see thais reflexive and symmetrical,
since~; is reflexive and symmetrical and is reflexive. For transitivity, i.e(x~; o ;) C (=;), we use
the confluence oK and the fact that~; 0 <) C (=< o~;):

;O R

= {definition}
Ro~jozo=Xo~jox

- {confluence oK: (=0 =<) C (2ox)}
Ro~joR0oZo~o X

- {(~vio %) € (Ro~j)and(zon~;) C (~jox)}
RoXo~jo~OZox

= {transitivity of ~; and<}
Rom~jox

= {definition}

4.2. A Kripke model of traces

In this paper, we study only KBPs with purely epistemic tg#te extension to tests with temporal
operators is an interesting subject for further researdh)the last paragraph of Subsection 3.1, we
observed that in that case we may restrict ourselves, withssi of generality, to finite nonempty prefixes
of runs, i.etracesxs € G*. We shall do so from now on, and introduce some notation. i V(xs)

for the length of the trace, ands; for its jth element (wher® < j < /(xs)). The functionlast returns
the last element of a trace, ifast(xs) = xs,_; where/(xs) = n. Concatenation of traces is denoted
by . The definition of stuttering and indistinguishability fibaces is analogous to that of runs.

We intend to define the semantics of KBPs, given a context (G, w,1,Go). As before,gG is
the collection of global states; : G — (¢ — {true, false}) is a valuation of atomic propositions,
T : ACT — G — G is a transition function for the interpretation of atomidiaes andG, C G is a
collection of initial states.

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 267

We now present the Kripke modé&l = (G1, «, (=;)ica) for the interpretation of knowledge for-
mulas and knowledge-based programs. The set of worlds isolfectionG ™ of all traces ovef. « is
a valuation given by the context, af&;);c 4 is the collection of equivalence relations on traces defined
above.

The interpretation of epistemic formulasi is defined as follows. We use a paramderdenoting
the collection of tracesinder considerationto resolve the mutual dependency between the definition
of the semantics of the knowledge operator and the defindfahe collection of possible traces. For
B C g, the interpretatiorfp] 5 C G is defined inductively by

[L]s = 0,

Ipl B = {xse Gt |n(last(xs))(p) = true},

[er Apals = leils N lpals,

[~¢ls = G"\ [¢]s.

[Ki¢]s = {xseg"|Vyse B(xsx;ys = ys€ [¢]s)}

So a tracexs satisfies propositiop iff p holds in the last state ofs under valuationr, and agent knows
thaty holds in tracexs iff ¢ holds in all traceys under consideration thatcannot distinguish fromxs.

Observe that the role played Wy differs from the more global role R in the definition of the
interpretation of formulas in interpreted systé€m= (R,) used in [8] (see Section 3). Here, we work
in the Kripke model ofall possible traces, an® is only used as a restriction in the definition of the
interpretation ofi;; as a consequence, we do not hjiwés C B in general. This is a deliberate choice
to be justified later by means of the example programs in @eéti

4.3. Epistemic programs

Definition. Given a seACT of atomic actions:, the language oépistemic programs defined as
az=Alale?|(a)[(aUa)la” (6)

wherea € ACT, ¢ an epistemic formula. So a program is either a null acfigmn atomic actiom, a
test ony, the composition of two programs, the nondeterministiciabdetween two programs, or the
repetition (zero or more times) of a program.

The interpretation of an epistemic program is a binary i@tabn traces. As for formulas, we have a
parameteB C G that represents the traces under consideration. Now thetaefiof [a] 5 C G xG™
reads

[A]s = {(xs, xsxlast(xs)) | xs € G*}

[a] B = {(xs,xsxz|xse Gt A z = 7(a)(last(xs))}
[#7]5 = {(xs,xs) [xs € [¢] 5},

[a15 ao]s = [eals o [ee]s,

[aon Uasg]p = [eu]p U [ag]s,

[o*]s = Unzo([[a]]B)n

We give some explanation (doing the empty action) corresponds with a stuttering:stieg last
(i.e. current) state is repeated once. Observe Ahat different fromT? (not acting), sincdT?]p =

268 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

{(xs,xs)| xs € G*}. The interpretation of atomic actions is lifted to traceso tracesxs andys are
related via action iff ys is equal toxs appended with an outcome oefapplied to the last element in
Xxs. The interpretation of the program constructs (compasijtahoice and repetition) follows the usual
treatment in dynamic logic.

4.4. Knowledge-based programs

Recall the definition of knowledge-based progr&g of agent: € A = {1,...,n}, given in Section
3.3. In our formalism, it can be rendered as the repetiticarmdndeterministic choice of guarded atomic
actions:
Pg = (| (¢;%a))"

JeJi
whereJ; is some finite index set far < n. The implicit repetition of the KBPs of Section 3.3 is made
explicit here by Kleene’s star. In interleaving semantibs, parallel compositiofPgof Pg,, ..., Pg, is
a nondeterministic repetition of all the alternatives’; a; that occur in the different programs, with the
alternativeA added to model possible delay. So

Pg= (AUl (¢7;a)) (7)
jed

whereJ = J; U--- U J,. In the rest of this paper, we restrict ourselves to prograftisis form, which
we callasynchronou&BPs. The interpretatiofiPg] 5 can be rewritten as

[Pdls = {(XSxxzg, XSkzo*x1%- - x2,) | XSE G* A >0 A
Vi <n(og=zpe1 V 3J(XSkmo*ar - *xp € [@;]B A g1 = 7(aj) ()} (8)

That is, [Pg]s consists of pairs of tracelyss, zs) where zs is an extension ofs, such that the new
subsequent states are either the result of stutteringdpiag the empty actior), or of some atomic
actiona; in Pgwith a guardp; that holds in the trace up to that state.

Now theset of traces generated I83g, given a contexty = (G, 7, 7, Go) and a se3 of traces under
consideration, is defined as the set of all traces that arergesd byPgwhen starting in an initial state
y€GyCy:

GolPdls = {xs|3y (y € Go A (y,xs) € [Pd]s)} 9)

We would like to define the semantics of a progregito be some set of tracds such thatPg generates
the setB when B is the set of traces under consideration, Beshould satisfyGo[Pg]s = B. This
is a fixpoint characterization of the semantics of prog/ag It is our analogue to equation (3) from
Section 3.3.

4.5. Choosing a semantics for KBPs

In this section we set out to find a unique, parameter-freeastins for asynchronous KBPs of the form
given in (7). For that purpose, we define an automorphisnP(G*) — P(G*), based on the definition
of the trace set oPggiven in (9):

F(B) = Go[Pdl» (10)

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 269

If F is monotonic (in the sense thaY(B) C F(B') wheneverB C B’), then the theorem of Knaster-
Tarski tells us tha#' has a unique least fixpoint and a unique greatest fixpointhdhdase, we prefer
to define the semantics éfg as thegreatestfixpoint, since that would be the most liberal interpretatio
of Pg. In general, howevelf' is not monotonic and may have no fixpoints at all, or it may hdigénct
fixpoints without having a least or greatest one. We will slilois in the examples of Section 5.

Fixpoint equations are common in the study of the semanficsequential programs with loops
or recursive procedures (see e.g. [3, 14]), and the fixpsinsually approximated by iterations of the
fixpoint operator. We generalize that idea in a more geneting here, viz. when there may be no
fixpoint to approximate.

Definition. The iterationg B)) are defined by transfinite induction over the ordinals:

By = gt
Byy1 = F(B,), for any ordinal),
B, = Nu<r Uu<p<r By, forany limit ordinal A.

whereF' is as defined in (10).

The first iterationB, consists of all nonempty finite sequences of states. For atigad), the itera-
tion B, consists of traces generated by the program whgis used to evaluate epistemic formulas.
When is a limit ordinal, the iteratior3,, is the intersection of unions of iterations that are suffitie
close to the limit. We motivate the definition &f, for a limit ordinal A as follows. If the iteration
sequence forms a descending chain, then for the limit arsedtdon is needed. On the other hand, if the
sequence forms an ascending chain, then for the limit a usioeeded. However, iterations may also
grow and shrink, and therefore a union of intersections angarsection of unions is indicated. Both
result in an intersection for a descending sequence, andnioa for an ascending sequence. We choose
the intersection of unions, as it is more liberal than a umbintersections: it includes more traces, more
traces implies less knowledge and we want the agents to kacis 6nly when there are good reasons
for them.

A cardinality argument implies that the transfinite seqeeat contains multiple elements: since
all setsB, are subsets of T and there exist more ordinals thgt has subsets, the sefs cannot
all be different. This implies the existence of ordinalsnd ;; with « < p andB, = B,,. By well-
foundedness, there is a least suchNow let x be minimal with the property thaB, = B, for some
u > k. If F(Bg) = By, i.e. B, is a fixpoint, then we choosB, as the semantics for the program.
Otherwise, we take the smallest> « such thatF'(B,) € B, as the semantics for the program (such a
A always exist wherB,; is not a fixpoint). This latter choice is justified by the argamhthat it allows as
much well-justified knowledge as possible without introdgccontradictory knowledge.

Definition. We define
sen(Pg) = B (11)
where
A= 1nf{)\ | K<SAA (B/\ =B)y;11V By1 ¢ B/\)}
k=inf{sk|Ip.(k <p N B, =B,)}
Since the iteration sequence has multiple elements, itteashitape of a 6, see figure 1. All iterations
betweenB,; and B, are subsets of previous iterations, agglis the last one for which this holds.

270 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

By

B,

where0 <k <A< pandk < p

Figure 1. The iteration sequengeis the least ordinal such thal: > «.(B, = B,)

When determining the traces in an iteration, it is sometinmgsful to restrict attention to traces
generated by the (knowledge-frdigt programobtained fromPg by omitting all guards:

Pg, = (Au] a)

JjeJ

We putB, = [Pg,]; observe thafPg |5 = [Pg,]» for all B, B’ C G*, so we may drop the parameter
B here.

5. Examples

In this section we investigate the consequences of our i@may means of a number of examples.

The first three examples serve to show that functibean be monotonic or not monotonic, and may
have incomparable fixpoints or no fixpoints at all. The fomtample shows that the iteration sequence
may become infinite. The fifth example demonstrates how rgespassing can be modelled. The

final example is a formulation of the Unexpected Hanging axaas an asynchronous KBP. For every
example the iteration sequence is also given as a figure.

5.1. Failure of monotonicity

Suppose there are two agents 1 and 2 and two boolean varighjesitially true. We represent truth
values as the integers 0 and 1, so the state spage=is{0,1} x {0,1} with initial state(1,1). The
first component of the state is the value of varighl¢he second one is the value g@f This induces a
valuation on states.

Variablep is private to agent 1, anglis private to agent 2. That is, agent 1 can only see and wyite
agent 2 can only see and wrijeWe take the indistinguishability relations on states taéfined by

(P,)~ ¢) & p=p", ,9)~0,d)=q=4.

Here and henceforth we ugep’, ¢, ¢’ to denote the values of the program variablesdgq in the states
considered.

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 271

The agents execute KBPs. Agent 1 can falgiflyy settingp to zero when she knows thatholds.
Agent 2 can falsifyy when she knows thatholds. We take assignments to variables as primitive action
symbols, with corresponding interpretation. The resgliBP is thus

Pg= (A U Kiq?7;p:=0 U Kop?; q:=0)*.

By definition By = G*. For the next iteration, the traces i, are used to evaluate epistemic
tests. Wherg ™ is considered, agents have only knowledge of the valueseaf twvn private variables.
Thatis, if B = G* then[K1q]p = 0 and[Ksp]p = (. Both agents are unable to act. Therefore,
By = F(By) = (1,1)*. So, traces irB; are repetitions of the initial state.

All traces in B; satisfy bothp andq. Therefore, ifB = B; then[K1q]s = [Kop]s = G*. This
implies that the agents can independently set their privat@ble to zero. Thereford3, = F(B))
consists of traces generated by the knowledge-free program

(AUp:=0U qg:=0)"
Alternatively, we can say thds, consists of traces that match the regular expression
(LD | (L,D)70,1)7(0,00% | (1,1)%(1,0)7(0,0)".

When the agents can independently set their private vari@bkero, they have no knowledge on
the value of the other agent’s variable. That isBif= B, then[K1q]p = [K2p]s = (. Therefore
Bs = F(By) = (1,1)", and soB; = B; and the iteration sequence starts to repeat itself. It seems
reasonable to tak&; as the correct meaning of the program. Siiteis strictly larger thanBy, this is
in accordance with the definition of the semantics given i).(1

The above iterations also show tltais not monotonic. For examplél; is a subset oB3y, however,
F(Bs) is not a subset of'(Bs). Furthermore, in this exampl& has the following two unordered
fixpoints:

To show thatB’ is a fixpoint of F, observe that all traces i’ satisfyq, so[K1¢]p = G*. There-
fore, agent 1 can setto zero at any time. Traces matchiig 1)* or (1,1)7(0,1)" are both indistin-
guishable for agent 2 from traces of the fofin 1)+(0, 1)+, and therefore do not satisfy,p underB’.
Agent 2 cannot sef to zero in the initial state nor after agdnias resep, soF (B’') = B’. Analogously,
F(BII) — B”.

The iteration sequence and the fixpoiBtsandB” are sketched in figure 2. The dashed line indicates
the subset relation: the lower set is a subset of the uppeAseatws give the direction of iteration, i.e.
application ofF.

5.2. A case with fixpoint semantics

This example has the same setting as the previous exampdee @re two agents 1 and 2, with private
boolean variablep respectivelyq. The state space is as before, but now the initial stafe,i$). An

272 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

Figure 2. Example 5.1: iteration sequence and the fixpd@hesnd B”

:

O
Figure 3. Example 5.2: iteration sequence that ends in aifikpo

agent may set her private variable to 1 if she considers Riplesthat the other agent’s private variable
has already been set. This corresponds to the followingranog

Pg= (A U Miq?;p:=1U Mop?; q:=1)".

Again we determine a sequence of iterations. Witgn= G is considered, agents have only
knowledge of their private variables. If agent 1 does notkmdetherg holds then she considers bath
and—q possible. So, ifB = G* then[Miq¢]p = [Msp]s = G*. The agents can independently set their
private variables, s®; = F'(By) consists of the traces generated by

(AUp:=1Ugqg:=1)~

In By, agents always consider it possible that the other has s@ahable. Therefore, i3 = B; then
[Miq]p = [Map]s = G, soBy = F(By) = By, and we have reached a fixpoint; as such, it is the
semantics of the program according to the definition of tmessgics given in (11). (Note th&o, 0)+ is
another fixpoint off’.) The iteration is sketched in figure 3.

Anthropomorphically speaking, we see that either ageritores with the possibility that the other
agent has set her variable, even though she can argue tra@h#reagent should not be able to do so as
the first one. This is an unexpected side effect of the aspnghr

5.3. Absence of fixpoints

Again there are two agents 1 and 2 with private boolean asabandq. Initially p is false andy is
true. Now, agent 1 can sgtwhen she knows thatholds, and agent 2 can regetvhen she considers it
possible thap has been set. The program is given as

Pg= (A U Kiq?7;p:=1U Myp?; q:=0)*

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 273

By

N
By Bs

\\ B2//
Figure 4. Example 5.3: a concrete six-shaped diagram as giiggure 1

As seen in the previous two examplespBif= G* then[K1q¢]p = 0 and[Myp]p = GT. Only agent
2 can act, sd3; = F(By) consists of traces of program

(AU qg:=0)~

That is, B, contains traces that mat¢f, 1)(0, 0)*.

For B = By, the interpretatiorf K, ¢] 5 contains traces that cannot be generated by the program. For
example, a traces matching(1, 0)+ satisfiesK;q under By, since no trace irB; is indistinguishable
for agent 1 fromxs. Therefore, we determine the g8 of all traces that can possibly be generated by
programPg. The program only allows to change from 0 to 1, anglfrom 1 to 0. SoB, is the set of alll
traces of the program in which the guards have been remadvatdstthe program

(AUp:=1Uq:=0)"

No trace inB, satisfiesK;q underBj. In other words, ifB = B, thenB, N[K1¢]s = 0. No trace
in B, satisfiey. Therefore, ifB = B; then[M,p] s = (0. Both agents can never act,Bg = F(B;) =
(0,1)",

All traces in By satisfy —p andg, so for B = By we have|Ki¢]p = G* and[Msp]p = 0. Only
agent 1 can act. ThereforB; = F(Bs) consists of traces generated by program

(AU p:=1)*

Sincegq is not reset, all traces B3 satisfyq, so if B = B; then[K1q]s = G*. Observe that there
are traces that satisfy/o;p underBs, but that are not iB3,. However, if B = B3 thenB, C [Map] 5.
Therefore, agent 2 can sgto zero undeBs, soB, = F(Bs) = B,.

If B = Bythen[K,q|p = (0 andB, N [Mzp]p = B,. Only agent 2 can act, therefof = F(B)
is equal taB;. At this point the iteration sequence repeats. The sequsrtawn in figure 4.

In this example the semantics as defined in (11) yidddsas the semantics of the program, since
B, D By 2 Bs. Therefore, the semantics is that the system remains iniiislistate.

5.4. Aninfinite iteration sequence

In this example we show that the iteration sequence may bedofimite. There are again two agents
1 and 2. Agent 1 has private integer variabpesndm, and agent 2 has private integer variabjeand
n. Initially p = ¢ = 0 andm = n = 1. Agent 1 may always increment. If agent 1 knows thag is

274 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

0, she can sep to 1. If agent 1 considers it possible thais betweenl andm, she can advanceto
m + 1. Agent 2 can do similar actions. If we allow equalities anegualities to appear in the epistemic
formulas, then the KBP is

A

(
U m:=m+1
U n=n+1l
U Ki(¢g=0)7;p:=1
U Ky(p=0)7;q:=1
U Mi(1<qg<m)?;p:=m+1
U M(1<p<n)?;q:=n+1
)

Again By = G*. Wheng is considered, agent 1 can get= m + 1. Since agent 1 cannot inspect

g, she can always consider a tracegin possible such that < ¢ < m. Agent 1 cannot set to 1,

because foB = G we have[K;(¢ = 0)] s = 0. Agent 1 can always increment. Similar arguments
for agent 2 show that she cannot geb 1. Therefore,B; = F'(By) consists of the traces of program

(AUm:==m+1Un=n+1Up:=m+1Ugqg:=n+1)"

All traces inBy satisfyp # 1 # ¢. So inB; agent 1 only considers < ¢ < m possible ifrn > 2.
Again agent 1 never knows that= 0. Similar arguments hold for agent 2. Therefof®, = F(B)
consists of the traces of program

(AUm=m+1Un=n+1U m>22)7;p=m+1U (n>2)7;qg:=n+1)"

All traces inB; satisfyp ¢ {1,2} andq ¢ {1,2}. In By agent 1 only considers < ¢ < m possible
if m > 3, but she never knows that= (0. Continuing the same reasoning as above, we observe that for
all integersk > 1, all traces inBy1 = F(By) satisfyp ¢ {1,...,k} andq € {1, ..., k}. Furthermore,
itis not hard to observe thdt; ., C By. Therefore, the transfinite iterationfi, = Nk, Ug<i<w Bl =
Nk<wBk- In B, values ofp andq are never increased, thatlis, consists of traces of progrém

(AUm:==m+1Un:=n+1)~

All traces in B,, satisfyp = 0 = ¢, so inB,, agent 1 knows thaj = 0 and can thus set to 1.
However,p cannot be incremented further as there are no tracéy, ifor which1 < ¢ < m holds for
anym. Similarly, g can only be set tdé. So B, consists of traces of program

(AUm:=m+1Un=n+1Up:=1Uqg:=1)"

In B,+1, agent 1 never knows that= 0. However, she may consider it possible that agent 2 has
incremented; such thatl < ¢ < m, so she can settom + 1. Therefore B, 12 = F(B,+1) is equal to
By, so the iteration sequence repeats itself. The sequencavs éh figure 5.

In this example, the semantics defined in (11) yieRisas the semantics of the program, since the
sequencdsy, B, ..., B, is the longest decreasing sequence starting Witk= B, . In this program
agents cannot make any assumption on the values of privasbhes of the other agent. The valuegof
andgq should remain unchanged, while andn may increase.

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 275

Figure 5. Example 5.4: an infinite sequence of iterations

5.5. Message passing

Message passing can be modelled by means of a variable thaeoaritten by one agent and read by
another. In this example, the agents 1 and 2 communicatbeiateger variable. Agent 1 has a private
integer variabley and agent 2 has a private integer variable

All variables are initially 0. The state space consists ipfes (p, ¢,), and we have

(0, q,r)~1 (0, d ") e p=p Ng=4¢,
(0, q,r)~2 (0, ¢, 7") S q=¢ Nr=r1.

Agent 1 may increment when she considers it possible tpa ». She may incrementwhen she
knows thaty < p. Agent 2 may increment when she knows that< p. The program is

Pg= (A
UMy (p<7)?;p:=p+1
U (¢<p)?5q:=q+1
UKy(r<p?;r:=r+1

)T
Because agent 1 can read bptandg, the tesy; < p is equivalent tak; (¢ < p).

Intuitively, one could expect the following behavioursrrahis program. Agent 1 may incrememt
followed byq. Then agent 2 may increment Since agent 1 knows this, she may incremeafter the
incrementation of;; she need not wait for the incrementationrofwhich is hidden to her anyhow. In
appendix A.1 the iteration sequence, sketched in figurevBpiked out. As seen in figure 6, a fixpoint
occurs. It turns out that this fixpoint corresponds with afuition.

5.6. The Unexpected Hanging Paradox

The last example is inspired on a well-known paradox, firsttoeed in [16] as the case of the “Class
A blackout”. Presently, it is commonly known as “The SurpriExamination”, or “The Unexpected
Hanging”.

276 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

\

\
\

[\

Figure 6. Example 5.5: nonmonotonic iteration that leadsfigpoint.

In the unexpected hanging paradox, a convicted prisonertie executed at noon within seven days
(numbered 0 to 6), but the judge tells him that he will not kribvr day of his execution, even on the
beginning of that day itself. The prisoner might then reaban he cannot be executed on day 6, because
when he would still be alive at the beginning of day 6, he wduldw that he would be executed that
day. By backward induction he might reason that he cannokéeuged without knowing that he will be
executed. Yet, on day 2 the prisoner is surprised to meetenaigoner.

Let us formulate this situation as a KBP. The state spaceisteraf three variables: an integday,
the day of executioexece {0,..,6} and a booleanlead Initially day = 0, dead= 0 and the precise
dayexecof execution is unknown to the agent. The agent only knowsetkedlies in the rang€o, .., 6}.

The convicted agent 1 can obsedey anddead but notexec The program is

(A

U (day= execA —K;(day=exeqd A —dead 7 ; dead:=1
U (day# execV dead ? ; day:= day+ 1
)

*

In our model the program has an execution wid#adbeing set wheexec< 6. If initially exec= 6,
the agent will know this atlay = 6. So at that time, the program is stuck at day six. This seems to
comply with intuition.

We illustrate the iteration®; and B, in a smaller version of this paradox, where the execution day
lies in the rangdo, .., 3}. The traces of the iteration3; and B, are given in figures 7 and 8. The arrows
corresponding ta are not shown. The dashed ellipses give the uncertaintyedadglent, and are induced
by ~;. The filled bullets are the states where the agent is alivé{t@open bullets are the states where
the agent has been executed.Bn= F(By), the agent has no knowledge on the execution day, so he
can be executed on all days. By = F(B)), the agent cannot be executed on day 3, but he can be
executed on the earlier days. The iteratiBsis a fixpoint of F', and is chosen as the semantics of the
program.

Technically, our formalism models deadlock by forced stirtigs, since the alternativecan always
be executed. Moreover, no fairness assumptions are gixgerhere is no guarantee that time progresses.
Therefore, the agent cannot use backward induction to d&cbxecution sequences that lead to dead-
lock. This resolves the paradox. This is in agreement wighpthilosophical analysis based on dynamic

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 277

0 . =0 = e

i

execution
day time —

Figure 7. Traces oB;, = F(B,) for exece {0,..,3}

! , 0 1 2 3 4
execution
day time —

Figure 8. Traces aB, = F(B,) for exece {0, ..,3}

epistemic logic given in [10].

6. Conclusions and directions for future research

We have presented an asynchronous version of knowledgeHpasgramming based on stutterings and
interleaving semantics, that can be compared with the frameof systems and runs of Fagin et al. in
[8]. The fixpoint equation that the semantics of asynchrer¥BP should satisfy, does not always have
a solution. Instead of restricting the semantics definitthe programs that lead to a fixpoint equation
with a unique solution, we proposed a method to assign sérsdotall KBPs in our framework, by
calculating a sequence of iterations. If this sequence enddixpoint, that fixpoint is taken to be the
semantics of the KBP. If not, we choose a specific iteratiothassemantics. To justify this choice, a
number of examples have been worked out.

We have not found a suitable subclass of KBPs for which themaotphismF' is monotonic. It
would be useful to study what conditions, if any, would gudea monotonicity of'.

The idea to approximate the semantics via s5tef traces under consideration came up while trying
to attach meanings to the example programs of Section 5. @uoarstics definition is a proposal: one
could advocate other choices within the same or similar esecgs of iterations, such as the re-entry
iteration (i.e. the first iteratio®,, with B, = B, for someX > 0) or the first local minimum (i.e.
the first iterationB,; for which B, 11 € B,). The re-entry semantics gives a different meaning than our
proposed semantics for the example of Section 5.4, and thargis of the first local minimum differs
from our proposed semantics in the example of Section 5.5.fiNdeour semantics more intuitively

278 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

appealing than the re-entry or first local minimum semanbosit is very well possible that our choice
can be improved. This may especially be the case when afteistrestricted to an interesting subclass
of asynchronous KBPs.

We have not looked at simplifications of our semantics thatld:mmake model checking feasible. In
general, we think that reasoning about a system during wl€bigusing proof rules) is to be preferred
above reasoning afterwards. As a consequence, our maiercoiscthe development of useful proof
rules. We must admit, however, to fear that the current sénsamioes not admit very useful proof rules,
and it remains to be seen whether alternative and more ussfuintics can be found. The relation with
the predicate transformer approach of [20] could be exgdlorenore detail.

In our current framework we do not consider temporal forraubdo fairness assumptions or progress
properties can be expressed. It would be interesting toextee framework to infinite traces (runs) and
progress properties.

Another direction of research would be to study refinemelattioms between KBPs in our frame-
work. A KBP can then gradually be refined to a knowledge-fregmm. This would eliminate the need
to explicitly calculate an iteration sequence.

It may be useful to express the automorphighuefined in (10) in terms of automata. The set of
traces under consideration can be defined as finite statenatto that recognizes traces from that set.
An automaton transformer is then associated with our fandil. This automaton transformer might be
studied in a different setting.

References

[1] M. Abadi and L. Lamport,The existence of refinement mappinglseoretical Computer Science 82, 1991,
pp. 253-284.

[2] K.R. Apt and E.-R. Olderogyerification of Sequential and Concurrent Prograr8gringer Verlag, 1991.
[3] J.W. de BakkerMathematical Theory of Program Correctne®sentice—Hall, 1980.

[4] A. Baltag, A logic for suspicious players: epistemic actions and leljgdates in game®ulletin of Eco-
nomic Research 54 (1), 2002, pp. 1-45.

[5] K.M. Chandy and J. Misra;low processes learistributed Computing 1 (1), 1986, pp. 40-52.

[6] H.P. van Ditmarschpescriptions of game actiondournal of Logic, Language and Information (JoLLlI),
volume 11, 2002, pp. 349-365.

[7] K. Engelhardt, R. van der Meyden and Y. MosAggefinement theory that supports reasoning about knowl-
edge and time for synchronous ager8th International Conference on Logic for Programmingtifisial
Intelligence and Reasoning (LPAR 2001), vol. 2250 of LNApriger-Verlag, Dec 2002, pp. 125-141.

[8] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. VarBeasoning about KnowledgdIT Press, 1995.

[9] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Var#inowledge-based programBistributed Computing 10
(4), 1997, pp. 199-225.

[10] J. GerbrandyBisimulations on Planet KripkdLLC Dissertation Series, Amsterdam, 1999.

[11] H.W. de Haan, W.H. Hesselink, G.R. Renardel de LavaJ&mhowledge-based programming inspired by an
asynchronous hardware leader election problem B. Dunin-Keplicz, R. Verbrugge (eds.): FAMAS'03,
ETAPS 2003, Warsaw, Poland. pp. 117-132.

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 279

[12] J.Y. Halpern and L.D. Zucka little knowledge goes a long way: knowledge-based dedmatand correct-
ness proofs for a family of protocgldournal of the ACM 39 (3), 1992, pp. 449-478.

[13] D. Harel, D. Kozen and J. Tiurymynamic Logi¢ MIT Press, 2000.

[14] W.H. Hesselink,Programs, Recursion and Unbounded Choice, Predicate Toamstion Semantics and
Transformation RulesCambridge University Press, 1992, (Cambridge Tracts ieofétical Computer Sci-
ence 27).

[15] W.H. HesselinkEternity variables to simulate specificatioms: E.A. Boiten, B. Mdller (eds.): Proceedings
Mathematics of Program Construction, Dagstuhl, 2002 (LNG86), pp. 117-130.

[16] D.J. O’'ConnorPragmatic paradoxesviind 57, 1948, pp. 358-359.

[17] S. Katz and G. TaubenfeldVhat processes know: definitions and proof meth&isceedings of the 5th
ACM Symposium on Principles of Distributed Computing, 1986. 249-262.

[18] R. van der MeydenCommon knowledge and update in finite environmdnfsrmation and Computation
140 (2), 1998, pp. 115-157.

[19] Y. Moses and O. Kislevknowledge-oriented programming (extended abstraetpceedings of the 10th
ACM Symposium on Principles of Distributed Computing, 1988. 261-270.

[20] B. SandersA predicate transformer approach to knowledge and knovdeulased protocol$roceedings of
the 10th ACM Symposium on Principles of Distributed Compgti1991, pp. 217-230.

[21] F. Stulp and R. Verbrugg#, knowledge-based algorithm for the Internet protocol TB&lletin of Economic
Research 54 (1), 2002, pp. 69-94.

[22] M.Y. Vardi, Implementing knowledge-based programsoceedings of the 6th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK), 1996, pp. 16-3

[23] G. Winskel, The Formal Semantics of Programming Languages: an IntrddncThe MIT Press, 1993.

A. Appendix

A.1l. Message Passing

In this section we work out the example from Section 5.5. Rdéeat there are two agents 1 and 2, and
three integer variablg, ¢ andr which are all initially 0. Variabley is sharedp is private to agent and
r is private to ager®. So the state space consists of triplesy,), and we have

(0, q,r)~1 (0, d ") e p=p Ng=4¢,
(0, q,r)~2 (0, d ") S q=4¢ Nr=r1.
The program is
Pg= (A
U M1 (p < 7“) =p + 1

280 H.W. de Haan et al./ Knowledge-Based Asynchronous Progiagim

Agent 2 can infer < p fromr < ¢, since she can reagand agent 1 preserves the invariart p.
Operationally speaking, agent 1 uses variapds a message to agent 2 thdtas been incremented.

In Bo = G*, agent 1 considers it possible thak r, but agent 2 has no knowledge whethet p.
Therefore the traces iB, = F(By) are the traces generated by the knowledge-free progtam

Pl= (A
Up<r)?;p:=p
75q:=q

For the next iterations it is useful to only consider trades tan possibly be generated by program
Pg. Therefore, while determining the set of traces that safi§f(r < p) given a setB, attention can be
be restricted to traces in the 98¢, which consist of traces generated by the flat, guardlesy@mo

(AUp=p+1Uqgi=q+1Ur:=r+1)~

For B = Bj, we have thafM; (p < r)]p consists of traces < 0, sincer remains) in B;. On the
other handB, N [K2(r < p)] s consists of traces @B, that end withr < ¢, sinceq < p is invariant in
B;. Therefore B, = F(B) consists of traces generated by

P2= (A
Up<0)?;p:=p+1
U(g<p)?;q:=q+1
Ulr<q)?;r:==r+1
)*

Note that the traces iB, satisfy the invarian® <r < ¢ <p <1.

For B = By, we have thafM; (p < r)]p consists of traces with < ¢ A p < 1, sincer < 1 holds
in B;. On the other hand3, N [K2(r < p)] s consists of the traces @, that end withr < ¢ vV 2 < q.
In fact, no tracexs with 2 < ¢ is indistinguishable for 2 from any trace i8,, since all traces B,
satisfyq < 1. It follows thatB; = F'(Bs) consists of traces generated by

P3= (A
Ulp<gAp<1)?;pi=p+1
U(g<p)?iqg=q+1
U(r<qV 2<q)?:;r:==r+1
)"
Note that traces i35 satisfy the invariantd < rand0 <¢<p<2andg<2=r<gq.

For B = B3, we have thajM;(p < r)]p consists of traces with < ¢ vV 2 < ¢, since inBj, r is
only bounded by, while ¢ < 2. On the other hand, N [K2(r < p)]s consists of traces a8, that end
withr < ¢V 3 < ¢. No trace satisfying < ¢ is indistinguishable for 2 from any trace I8, since
traces inB3 satisfyq < 2. It follows that By = F'(B3) consists of the traces generated by

P4 =

(
U
U(g<p)?;q=q+1
U
)

H.W. de Haan et al. / Knowledge-Based Asynchronous Progiagim 281

Observe that traces iR, satisfy the invariant§ < rand0 < ¢<pandg<3=r <gq.

For B = By, we have thajM;(p < r)]p consists of traces with < ¢ V 3 < ¢, since inBy, r is
only bounded by; while ¢ < 3. On the other hand3, N [K2(r < p)]s consists of those traces &,
that end withr < ¢ because of the invariagt < p in By. It follows that B; = F/(By) consists of the
traces generated by

P5= (A
U(p<qVv 3<q?;p=p+1
Ug<p)?;q:=q+1
Ulr<q)?;r:==r+1
)*

Traces inBj5 satisfy the invarian® < r < ¢ < p.

For B = Bs, we have thaf M, (p < r)] p consists of the traces with< ¢ sincer is only bounded by
g in B. On the other hand3, N [K2(r < p)] s consists of those traces B that end with- < ¢ because
all traces inBj satisfy the invariang < p. It follows that Bs = F'(B5) consists of traces generated by

P6= (A
Up<qg)?;p=p+1
U(g<p)?;q:=q+1
Ulr<q)?;r:==r+1

)"

Note that traces iBg satisfy the invariand < r < ¢ <p <q+1.

Similarly as before, fol3 = Bg, we have thafM; (p < r)] s consists of traces with < ¢ sincer is
only bounded by; in B. On the other hand3, N [K2(r < p)] s consists of those traces & that end
with < ¢ because of the invariagt< p in Bg. It follows, that#(Bs) = Bg, a fixpoint. Moreover, this
fixpoint corresponds with the intuition sketched in Sectdh and is chosen as the semantics defined in
(11). The iteration sequence is shown in figure 6.

