

 University of Groningen

Knowledge-Based Asynchronous Programming
Haan, Hendrik Wietze de; Hesselink, Wim H.; Renardel de Lavalette, Gerard R.

Published in:
Fundamenta Informaticae

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Haan, H. W. D., Hesselink, W. H., & Renardel de Lavalette, G. R. (2004). Knowledge-Based Asynchronous
Programming. Fundamenta Informaticae, 63(2-3), 259-281.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/42009856-59fd-47b8-bd0c-088649f40ea3

Fundamenta Informaticae 63 (2004) 259–281 259

IOS Press

Knowledge-Based Asynchronous Programming

Hendrik Wietze de Haan, Wim H. Hesselink and Gerard R. Renardel de Lavalette
�

Department of Mathematics and Computing Science

University of Groningen,

P.O. Box 800, 9700 AV Groningen, The Netherlands
�
hwh,wim,grl�@cs.rug.nl

Abstract. A knowledge-based program is a high-level description of the behaviour of agents in
terms of knowledge that an agent must have before (s)he may perform an action. The definition
of the semantics of knowledge-based programs is problematic, since it involves a vicious circle; the
knowledge of an agent is defined in terms of the possible behaviours of the program, while the possi-
ble behaviours are determined by the actions which depend onknowledge. We define the semantics
of knowledge-based programs via an iteration approach generalizing the well-known fixpoint con-
struction. We propose a specific iteration as the semantics of a knowledge-based program, and justify
our choice by a number of examples, including the UnexpectedHanging Paradox.

Keywords: knowledge-basedprogramming, semantics of programming languages, concurrent pro-
gramming, asynchronicity, unexpected hanging paradox.

1. Introduction

A knowledge-based program (KBP) is a program with explicit tests for knowledge. KBPs can be used
as high-level descriptions of the behaviour of agents in a multi-agent system. The general idea is that
agent� knows � iff � holds in all situations that� considers possible. Thede factostandard frame-
work for KBPs in multi-agent systems is the theory of systemsand runs as described in the book
Reasoning About Knowledgeby Fagin, Halpern, Moses and Vardi ([8]). In this framework,the meaning
(semantics) of a KBP is formulated in terms of the meaning of joint protocols, which are composed from
individual (nondeterministic but sequential) protocols via synchronous parallellism.

The purpose of this paper is twofold: we want to use asynchronous parallellism as the basis for
KBPs, and we intend to resolve the inherent circularity in the definition of the meaning of KBPs: on
�
Address for correspondence: Department of Mathematics andComputing Science, University of Groningen, P.O. Box 800,

9700 AV Groningen, The Netherlands

260 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

the one hand, the meaning of a KBP depends on the meaning of theknowledge operators for the agents
involved, on the other hand, the meaning of the knowledge operators depends on the collection of possible
executions of the KBP, i.e. on the meaning of the KBP. In [8], this circularity is resolved by giving an
implicit definition of the meaning of a KBP (see Section 3 below). As a consequence, several KBPs have
a unique meaning, some have no meaning at all, and others havemore than one meaning. Our approach
is to observe that the implicit definition of the meaning of a KBP can be read as a fixed point of an
automorphism on the collection of possible meanings, and todefine theuniquemeaning of the KBP in
question as either the greatest fixed point of the automorphism if it exists, or a well-chosen iteration of
the automorphism.

In our investigation, we bring together three traditions, that of knowledge-based programming, e.g.
[8], that of semantics of sequential programming languages, e.g. [3, 14], and the semantics of concurrent
programming, e.g. [1, 2].

Our reasons for this investigation are the following. Firstly, in [11] we were inspired by a problem
from delay-insensitive circuits, which are inherently asynchronous. Asynchronous parallellism is, in
general, more realistic in the context of multi-agent systems than synchronous parallellism. It is natural
to assume that agents have different processing speeds. Asynchronicity was therefore our primary design
goal. In combination with interleaving semantics, where the atomic actions are serialized in arbitrary
order, it is the usual framework for concurrent programming[1, 2]. This has the technical advantage that
the designer need not consider joint actions. The stutterings of [1] are introduced in our framework to
model that agents cannot know the computation speeds of other agents.

Secondly, we are interested in the semantics of KBPs and proof rules for KBPs. For program design
it is desirable to work with high-level programs as specifications. It is then useful that these programs
have a unique meaning, so one can reason about the system under design, e.g. using proof rules based
on this unique meaning. Since we aim at design by specification, we do not want to define the meanings
of KBPs by means of standard protocols as in [8]. Therefore, we adapt the framework of Fagin et al. in
such a way that we can eliminate the intermediate protocols.

Our investigation results in a number of semantic dilemmas.We therefore refrain from adding the
complications of temporal operators and fairness. Consequently, we can restrict to finite prefixes of
runs. So, instead of runs we use finite sequences of states, called traces. We prefer to investigate the
best-possible semantics thoroughly, before making simplifications that would enable model checking.

1.1. Overview

In Section 2 we discuss related work. The general approach ofFagin et al. is outlined in Section 3. We
adapt this general framework to suit our needs in Section 4. We define a language of KBPs, assign an
interpretation to this language and propose how to assign semantics to all KBPs. Our choice of semantics
is justified in Section 5 via a number of examples. Some conclusions and directions for future research
are discussed in Section 6.

2. Several approaches to knowledge-based programming

The first papers on knowledge in distributed systems appear in the ’80s: Chandy and Misra [5] describe
how processes gain and lose knowledge, Katz and Taubenfeld [17] define various notions of knowledge,

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 261

depending on the state of information a process has. However, the programs in these papers are not KBPs
in our sense, since they do not contain explicit tests for knowledge.

In an attempt to reason formally about KBPs and to gain more insight in KB-programming, Sanders
[20] defines knowledge of a process using predicate transformers, and points out that safety and liveness
properties of KBPs need not be preserved when the initial conditions are strengthened. Halpern and Zuck
[12] successfully use the knowledge-based approach to derive and prove the correctness of a family
of protocols for the sequence transmission problem. Their motivation for using a knowledge-based
approach is that correctness proofs should also offer an understanding to the reader why a protocol is
correct. Stulp and Verbrugge [21] show that real-life protocols can be analyzed using a knowledge-based
approach by presenting a KBP for the TCP-protocol.

Moses and Kislev [19] introduce the notion of knowledge-oriented programs, i.e. KBPs with high-
level actions that change the epistemic state of the agents.An example: the actionnotify ����� ensures
that agent

�
will eventually know�. Formal semantics are not given, however. This kind of programs is

also investigated more formally from the perspective of dynamic epistemic logic, e.g. by Baltag [4] and
Van Ditmarsch [6]. The implementation of knowledge-oriented programs is not considered.

The bookReasoning about Knowledge[8], by Fagin et al., contains an overview of the work done
on KB-programming by the authors and others. A general framework for KBPs is given, and the se-
mantics of a KBP is defined via a standard (i.e. knowledge-free) program that implements the KBP.
This knowledge-free program can be decomposed into a protocol for each agent that maps local states
to actions. We briefly review this general framework in the next section. In [8, 9], sufficient conditions
for the existence of a well-defined implementation of a KBP are given; these conditions only apply to
synchronous systems, however. In [9] the complexity of determining whether a KBP has a well-defined
implementation in a given finite state context is characterized. In [22], Vardi investigates the complexity
of checking whether a protocol implements a KBP in a given finite state context.

Van der Meyden describes in [18] an axiomatization of a logicof knowledge and time for a class
of synchronous and asynchronous systems and studies the model checking problem for this setting.
However, the gap between writing down a KBP and determining its model remains. Engelhardt, van der
Meyden and Moses develop in [7] a refinement calculus for KBPs. Their framework assumes that agents
and environment act synchronously.

3. The general framework of Fagin, Halpern, Moses and Vardi

In this section we give a concise presentation of the relevant material from chapters 4, 5 and 7 of the
bookReasoning about Knowledge[8], by Fagin et al.

3.1. Global states, local states, runs and interpreted systems

A multi-agent system consists of an number of agents� � ��� � � � �	
 in an environment. At each
moment in time the system is in a certainglobal state� �:

� �
� �
� � � � � �
�
where for� � �,
� is the set oflocal statesof agent�, and
� is the set of local states of the environment.
If � � � and� � � then�� is the� � �-th component of�, the local state of agent�.

262 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

A run captures how the global state changes over time. So, a run� is a function from
��

to � (time
is taken to range over the natural numbers). Apoint ����� is a run� together with a time

�
, and the

corresponding global state is����. A system� is a nonempty set of runs.
An interpreted system� is a system� together with aninterpretation function� � � � �	 �

�true
�
false

�, that assigns a valuation to a set
	

of primitive propositions in each global state. The set	
may be partitioned into sets of local primitive propositions, i.e.

	 �
���	�. An interpretation� is
compatibleif � is generated from local interpretations�� �
� � 	� � �true

�
false

. So, for compatible

�, we have that
�����
� � �� �����
� if
 � 	� � (1)

Definition. Given a set
	

of primitive propositions, the language��	� of epistemic formulasis
defined in BNF-notation as

� ��� � �
 ��� � �� � �� ���� (2)

where
 � 	, � � �. The connectives���� �
, and the constant� are defined as usual in terms of

�, � and�. �� is the knowledge operator for agent�. The possibility operator�� is the dual of��:
��� � �����.

An interpreted system� � ����� induces aKripke structure�� � �������� � � � ���� in the
following way.

�
is the set of all points occurring in the runs of�. Theindistinguishability relation

��
for agent� is defined on points as

����� �� ��� ����� ������� � ��� ������
That is, agent� cannot distinguish between two global states� and�� if she has the same local state in
both� and��.

Themodeling relation�� for an interpreted system� is now taken to be the modeling relation of the
associated Kripke model�� . More formally, if� is a interpreted system and����� is a point of� , then

�� ����� �� �� ��� ������ �� �

for � in ��	�. That is

�� ����� ��
 � ��������
� � true
�

for
 � 	
�� ����� ����� � � �� �� � �� ��� ���� �� ���� �� ��� ���� �� ��

For the temporal operators! (always) and" (next), we have

�� ����� �� !� � � �� #� � �� ������ �� � �
�� ����� ��"� � �� ���� � �� �� �

but we shall not use!and" in the rest of this paper.
If � is an atemporal, epistemic formula (i.e. contains no temporal operators) then�� ����� �� � only

depends on� and the global state� � ����, and we may write�� � �� �� � in that case. Moreover, if�
is a propositional formula (i.e. contains neither epistemic nor temporal operators) then�� � �� �� � only
depends on the interpretation� instead of the entire interpreted system� , and we may write��� �� �� �
in that case. Finally, if� is a propositional formula over

	� and� is a compatible interpretation, then
��� �� �� � only depends on agent�’s local state and so we may write��� ��� �� � in that case.

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 263

3.2. Protocols and standard programs

For each agent�, a setACT� of actionsavailable for that agent is given; the environment can execute
actions from the setACT�. It is assumed that each set of actions contains a null-action, �, which has no
effect. A joint action is tuple ������� � � � ���� of actions of the environment and the agents.ACT is the
set of joint actions. There is atransition function� � ACT � � � � that indicates how joint actions
may change the global state.

A protocol is a function from local states to nonempty sets of actions, i.e. a protocol for agent� is a
function�� �
� � �� �ACT�� � ��
�. A joint protocol is a tuple���� � � � ���� of protocols for each of
the agents.

A context� is a tuple��� �� � �� �	�, consisting of the protocol�� of the environment, the transition
function �, a set of initial global states��
 �, and an admissibility restriction

	
 ��� � �� on runs.
A run � is consistentwith joint protocol� � ���� � � � ���� in context� � ����� � �� �	� if

� ���� � ��,� � � � ��
�� � �� ������
�� � ��������� ���� � �� � � ���� ����������,� � � 	
.

where
�� ��� is the result of applying the joint protocol to a global state:�� ���� ��� � � � � ��� � ������ � � � � ��������

Observe that the second formula in the definition of consistency implies that the joint protocol is executed
not once, but infinitely often.

Therepresenting system���� ����� of joint protocol� in context� is defined by

���� ����� � �� � �� � � �� is consistent with� in �

Protocols are represented by programs. Astandard programPg� for agent� has the following form

case of

if �� do ��
...

if �� do ��
end case

where the�� are propositional formulas over
	� and the�� are inACT�.

Given a programPg� and a compatible interpretation�, theassociated protocolPg�� in local state� �
� is defined as

Pg�� ��� �
� ��� � ��� �� �� ��
 if �� � ��� �� �� ��
 �� �

��
 otherwise

The compatibility of� (see (1)) ensures that the outcome of tests�� in programPg� under� only depends
on the local state of agent�, so we may write��� �� �� �� for �� ����� �� �� . So the associated protocol

264 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

chooses nondeterministically one of the actions�� for which the test�� holds; if there is no such�� then
the empty action� is chosen.

A joint program is a tuplePg � �Pg�� � � � �Pg��. Given an interpretation�, compatible with every
program of the joint program, the joint protocolPg� denoted byPg is defined straightforwardly.

An interpreted contextis a context� with an interpretation�, that is a tuple�� ���. The interpreted
system of all runs that are consistent with� in interpreted context�� ��� is denoted by

� ������� ��� � ����� ���������
This is the interpreted system that represents� in interpreted context�� ���.

Observe that the infinite repetition of joint programPg, which is a consequence of the definition of
their interpretation in terms of consistent runs, is left implicit in the notation. The same holds for the
knowledge-based programs defined in [8]: see the next section. We shall make this repetition explicit in
our adapted definition of knowledge-based programs in Section 4.4.

3.3. Knowledge-based programs

A knowledge-based program(KBP) for agent� is of the form

case of

if �� � �� do ��
...

if �� � �� do ��
end case

where the�� are propositional formulas over
	�, the �� are inACT� and the�� � ��	� are epistemic

formulas as defined in (2). Ajoint KBP is a tuple of KBPs.
In contrast to the propositional formulas�� , the outcome of epistemic formulas�� does not only

depend on the interpretation� and the local state of the agent, but on the entire interpreted system. So
the joint protocolPg

� � �Pg
�� � � � � �Pg

��� has� instead of� as a parameter. As before, the interpretation
� in � should be compatible withPg w.r.t. the propositional formulas�� . There is no restriction on the
propositions in the epistemic formulas�� .

The modeling relation is extended to evaluate epistemic formulas for agent� in a local state
� �
�

for a compatible interpretation�. If � is a propositional formula, then�� � �� �� � iff ��� �� �� �. For
epistemic formulas,

�� � �� ����� � � ��� � ����� �� � ������� � � �� ����� �� � �
A protocolPg

�� is associated with KBPPg� for
� �
� as

Pg
�� ��� �

� ��� � �� � �� �� �� � ��
 if �� � �� � �� �� �� � ��
 �� �
��
 otherwise

�
An interpreted system� � ����� represents a KBPPg in context�� ��� iff � is compatible withPg

and� represents the associated protocolPg
�
. That is,� representsPg in �� ��� iff

� � � ����Pg
� �� ��� (3)

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 265

Observe that we have a circularity here: to determine whether an interpreted system� representsPg
we must verify whether the runs of� are consistent withPg

�
. So this is an implicit definition, and there

need not be a unique interpreted system that represents a KBPin a given context.

This ends our resumé of the theory of systems and runs as given in [8].

4. Asynchronous KBPs

For our treatment of asynchronous KBPs, we shall adapt the framework of systems and runs given in the
previous section. The main changes are the following.

� We combine actions via interleaving with possible delay (and not via joint actions).

� We work with a more general programming language, inspired by dynamic logic (see [13]) which
is interpreted directly (i.e. not via protocols) in a Kripkemodel.

� The indistinguishability relations�� in our Kripke model are relations on runs (not on states), so
we assume that the agents can recall their own history when comparing points in the model.

� In the definition of the interpretation of programs in our Kripke model, we introduce an explicit
parameter

�
to restrict the collection of runs under consideration wheninterpreting the knowledge

operators��; via abstraction from
�

, we obtain an automorphism on our Kripke model which is
the starting point for the definition of the (unique and parameter-free) meaning of our programs.

Some minor changes are: we consider the environment as an agent like the others, we shall shift from
infinite runs to finite traces (both approaches are equivalent when restricted to atemporal formulas), and
we work with a slightly different notion of context.

4.1. Asynchronicity via stutterings

To model asynchronicity, we work with an interleaving semantics: the single actions of the individual
programs of the agents are performed consecutively in an unspecified order, possibly with delay. As
a consequence, an agent cannot distinguish two runs���� � ��� � �� if �� is obtained from� by
consecutive repetition of certain global states� � �.

We illustrate this with an example. Assume that agent� can see the contents of numerical variable
�, and that agents� and� can modify�: � can increase it with 2,� can decrease it with�. In our setting,�������� � � � is a possible run, where every step corresponds with either an action of�, an action of�
or no action;

��������� � � � is not possible, for the first step (going from 0 to 1) requirescombining the
actions of� and� in one joint action, which is not allowed in interleaving semantics. Moreover, the runs
� � �����	��� � � � and�� � �������������		���� � � � cannot be distinguished by agent�, for both
correspond with actions from���� �� �����, respectively, and we abstract away from the delay between
some of the actions that occurred in��.

Definition. A run �
 is astutteringof ��, notation�� � �
, iff �
 is obtained from�� by consecutive,
finite repetition of certain elements of��. In formula:

�� � �
 �

 � �� � �� �
 monotonic and surjective, and�
 � �� �
 � (4)

266 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

For example,�� of the example above is a stuttering of�, but
������� � � � is not (infinite repetition

of 1), nor
�����	��� � � � (the order of the elements is not preserved). The concept of stuttering comes

from [1], and the relation�was introduced in [15]. We claim that� is a partial order: reflexivity and
transitivity follow directly from the definition, antisymmetry is a nice nontrivial exercise.

With this notion of stuttering, we can define the appropriateindistinguishability relation for agents
in the context of asynchronous KBPs.

Definition. Agent � considers run�� indistinguishable from run�
 (notation: ���� �
) when both
runs can be stuttered to runs��� and��
 such that agent� cannot distinguish individual states along��� and
��
. So we have

���� �
 �
������
 ��� � ��� � �
 � ��
 � ����� ��
 �� (5)

In short: ���� � �� � �� � ��, where� denotes relational composition. Here we use the straight-
forward lifting of

�� to runs, defined by

���� �
 � � 	����	��� �
 �	� � �

We show that�� is an equivalence relation. It is easy to see that�� is reflexive and symmetrical,
since

�� is reflexive and symmetrical and� is reflexive. For transitivity, i.e.��� � ���
 ����, we use
the confluence of�and the fact that��� � ��
 �� ����:

�� � ��
� �definition

� ��� � � � � ��� � �
 �confluence of�: �� � ��
 �� � ��

� ��� � � � � ��� � �
 ���� � ��
 �� ���� and �� ����
 ��� � ��

� � � ��� � �� � � � �

� �transitivity of
�� and�

� ��� � �
� �definition

��

4.2. A Kripke model of traces

In this paper, we study only KBPs with purely epistemic tests(the extension to tests with temporal
operators is an interesting subject for further research).In the last paragraph of Subsection 3.1, we
observed that in that case we may restrict ourselves, without loss of generality, to finite nonempty prefixes
of runs, i.e.tracesxs � ��. We shall do so from now on, and introduce some notation. We write ��xs�
for the length of the trace, andxs� for its

�
th element (where

� � � � ��xs�). The functionlast returns
the last element of a trace, i.e.last�xs� � xs��� where��xs� � 	

. Concatenation of traces is denoted
by �. The definition of stuttering and indistinguishability fortraces is analogous to that of runs.

We intend to define the semantics of KBPs, given a context� � ������ � ���. As before,� is
the collection of global states,� � � � �	 � �true

�
false

� is a valuation of atomic propositions,� � ��� � � � � is a transition function for the interpretation of atomic actions and��
 � is a
collection of initial states.

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 267

We now present the Kripke model� � ��� ��� �������� for the interpretation of knowledge for-
mulas and knowledge-based programs. The set of worlds is thecollection�� of all traces over�. � is
a valuation given by the context, and������� is the collection of equivalence relations on traces defined
above.

The interpretation of epistemic formulas in� is defined as follows. We use a parameter
�

, denoting
the collection of tracesunder consideration, to resolve the mutual dependency between the definition
of the semantics of the knowledge operator and the definitionof the collection of possible traces. For�
 ��, the interpretation������
 �� is defined inductively by

������ � ��
��
��� � �xs � �� ���last�xs���
� � true

�
���� � �

��� � ������� � ���
��� �
������� � �� � ������ �
�������� � �xs � �� �� ys � � �xs�� ys ys � �������
�

So a tracexs satisfies proposition
 iff
 holds in the last state ofxs under valuation�, and agent� knows
that� holds in tracexs iff � holds in all tracesys under consideration that� cannot distinguish fromxs.

Observe that the role played by
�

differs from the more global role of� in the definition of the
interpretation of formulas in interpreted system� � ����� used in [8] (see Section 3). Here, we work
in the Kripke model ofall possible traces, and

�
is only used as a restriction in the definition of the

interpretation of��; as a consequence, we do not have������
 �
in general. This is a deliberate choice

to be justified later by means of the example programs in Section 5.

4.3. Epistemic programs

Definition. Given a setACT of atomic actions�, the language ofepistemic programsis defined as

� ��� � �� ��� � ����� � ��
 �� ��� (6)

where� � ACT, � an epistemic formula. So a program is either a null action�, an atomic action�, a
test on�, the composition of two programs, the nondeterministic choice between two programs, or the
repetition (zero or more times) of a program.

The interpretation of an epistemic program is a binary relation on traces. As for formulas, we have a
parameter

�
 �� that represents the traces under consideration. Now the definition of ������
 �����
reads

������ � ��xs
�
xs�last�xs�� �xs � ��

������ � ��xs
�
xs�� �xs � �� � � � � ����last�xs��

������� � ��xs
�
xs� �xs � ������
�

���� � �
��� � ������� � ���
��� �
����
 �
��� � �������
 ���
��� �
������� � 	�
����������

We give some explanation.� (doing the empty action) corresponds with a stuttering step: the last
(i.e. current) state is repeated once. Observe that� is different from�� (not acting), since������� �

268 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

��xs
�
xs� �xs � ��
. The interpretation of atomic actions is lifted to traces: two tracesxs andys are

related via action� iff ys is equal toxs appended with an outcome of� applied to the last element in
xs. The interpretation of the program constructs (composition, choice and repetition) follows the usual
treatment in dynamic logic.

4.4. Knowledge-based programs

Recall the definition of knowledge-based programPg� of agent� � � � ��� � � � �	
, given in Section
3.3. In our formalism, it can be rendered as the repetition ofa nondeterministic choice of guarded atomic
actions:

Pg� � ��������� ���� ��
�

where�� is some finite index set for� � 	
. The implicit repetition of the KBPs of Section 3.3 is made

explicit here by Kleene’s star. In interleaving semantics,the parallel compositionPg of Pg�� � � � �Pg� is
a nondeterministic repetition of all the alternatives�� ���� that occur in the different programs, with the
alternative� added to model possible delay. So

Pg � ��
 ���� ��� � � �� � �� (7)

where� � ��
 � � �
 ��. In the rest of this paper, we restrict ourselves to programsof this form, which
we callasynchronousKBPs. The interpretation��Pg

���
can be rewritten as

��Pg
��� � ��xs��� � xs�������� � ����� � xs � �� � 	 # � �
� � � 	 ��� � ��

�� �

� �xs�������� � ���� � ���� ��� � ��

�� � � ��� �������
 (8)

That is, ��Pg
���

consists of pairs of traces�ys
�
zs� wherezs is an extension ofys, such that the new

subsequent states are either the result of stuttering (i.e.doing the empty action�), or of some atomic
action�� in Pg with a guard�� that holds in the trace up to that state.

Now theset of traces generated byPg, given a context� � ������ � ��� and a set
�

of traces under
consideration, is defined as the set of all traces that are generated byPg when starting in an initial state� � ��
 �:

�� ��Pg
��� � �xs �
� �� � �� � �� �xs� � ��Pg

����
 (9)

We would like to define the semantics of a programPg to be some set of traces
�

such thatPggenerates
the set

�
when

�
is the set of traces under consideration, i.e.

�
should satisfy�� ��Pg

��� � �
. This

is a fixpoint characterization of the semantics of programPg. It is our analogue to equation (3) from
Section 3.3.

4.5. Choosing a semantics for KBPs

In this section we set out to find a unique, parameter-free semantics for asynchronous KBPs of the form
given in (7). For that purpose, we define an automorphism� � � ����� � ����, based on the definition
of the trace set ofPg given in (9):

� ��� � �� ��Pg
���

(10)

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 269

If � is monotonic (in the sense that� ���
 � ���� whenever
�
 ��), then the theorem of Knaster-

Tarski tells us that� has a unique least fixpoint and a unique greatest fixpoint. In that case, we prefer
to define the semantics ofPg as thegreatestfixpoint, since that would be the most liberal interpretation
of Pg. In general, however,� is not monotonic and may have no fixpoints at all, or it may havedistinct
fixpoints without having a least or greatest one. We will showthis in the examples of Section 5.

Fixpoint equations are common in the study of the semantics of sequential programs with loops
or recursive procedures (see e.g. [3, 14]), and the fixpoint is usually approximated by iterations of the
fixpoint operator. We generalize that idea in a more general setting here, viz. when there may be no
fixpoint to approximate.

Definition. The iterations���� are defined by transfinite induction over the ordinals:

�� � ���
��
�� � � ����� for any ordinal

��
�� � ����
����� �� � for any limit ordinal

��

where� is as defined in (10).
The first iteration

�� consists of all nonempty finite sequences of states. For any ordinal
�
, the itera-

tion
��
�� consists of traces generated by the program when

��
is used to evaluate epistemic formulas.

When
�

is a limit ordinal, the iteration
��

is the intersection of unions of iterations that are sufficiently
close to the limit. We motivate the definition of

��
for a limit ordinal

�
as follows. If the iteration

sequence forms a descending chain, then for the limit an intersection is needed. On the other hand, if the
sequence forms an ascending chain, then for the limit a unionis needed. However, iterations may also
grow and shrink, and therefore a union of intersections or anintersection of unions is indicated. Both
result in an intersection for a descending sequence, and in aunion for an ascending sequence. We choose
the intersection of unions, as it is more liberal than a unionof intersections: it includes more traces, more
traces implies less knowledge and we want the agents to know facts only when there are good reasons
for them.

A cardinality argument implies that the transfinite sequence of contains multiple elements: since
all sets

��
are subsets of�� and there exist more ordinals than�� has subsets, the sets

��
cannot

all be different. This implies the existence of ordinals� and� with � � � and
�� � ��. By well-

foundedness, there is a least such�. Now let � be minimal with the property that
�� � �� for some

� 	 �. If � ���� � ��
, i.e.

��
is a fixpoint, then we choose

��
as the semantics for the program.

Otherwise, we take the smallest
� # � such that� ���� �
 ��

as the semantics for the program (such a�
always exist when

��
is not a fixpoint). This latter choice is justified by the argument that it allows as

much well-justified knowledge as possible without introducing contradictory knowledge.

Definition. We define
sem�Pg� � ��

(11)

where � �
���� �� � � � ��� � ��
�� �

��
��

�
 ���

� �
���� �
���� � � � �� � ���

Since the iteration sequence has multiple elements, it has the shape of a 6, see figure 1. All iterations
between

��
and

��
are subsets of previous iterations, and

��
is the last one for which this holds.

270 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

��

����

��
where������	and�
	

Figure 1. The iteration sequence.� is the least ordinal such that�
 � ����� � ���

When determining the traces in an iteration, it is sometimesuseful to restrict attention to traces
generated by the (knowledge-free)flat programobtained fromPg by omitting all guards:

Pg� � ��
 ���� �� ��

We put
�� � ��Pg���; observe that��Pg���� � ��Pg����� for all

� ���
 ��, so we may drop the parameter�
here.

5. Examples

In this section we investigate the consequences of our formalism by means of a number of examples.
The first three examples serve to show that function� can be monotonic or not monotonic, and may
have incomparable fixpoints or no fixpoints at all. The fourthexample shows that the iteration sequence
may become infinite. The fifth example demonstrates how message passing can be modelled. The
final example is a formulation of the Unexpected Hanging Paradox as an asynchronous KBP. For every
example the iteration sequence is also given as a figure.

5.1. Failure of monotonicity

Suppose there are two agents 1 and 2 and two boolean variables
, �, initially true. We represent truth
values as the integers 0 and 1, so the state space is� � ��� �
 � ��� �
 with initial state ��� ��. The
first component of the state is the value of variable
, the second one is the value of�. This induces a
valuation on states.

Variable
 is private to agent 1, and� is private to agent 2. That is, agent 1 can only see and write
,
agent 2 can only see and write�. We take the indistinguishability relations on states to bedefined by

�
 ������
� �����
 �
� � �
 ����
�
� ����� � � �� �

Here and henceforth we use
 �
� ����� to denote the values of the program variables
 and� in the states
considered.

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 271

The agents execute KBPs. Agent 1 can falsify
 by setting
 to zero when she knows that� holds.
Agent 2 can falsify� when she knows that
 holds. We take assignments to variables as primitive action
symbols, with corresponding interpretation. The resulting KBP is thus

Pg � ��
 ��� � �
 �� �
 �

 � � � �� � �� �
By definition

�� � ��. For the next iteration, the traces in
�� are used to evaluate epistemic

tests. When�� is considered, agents have only knowledge of the values of their own private variables.
That is, if

� � �� then �������� � �
and ���

��� � �

. Both agents are unable to act. Therefore,�� � � ���� � ��� ��+. So, traces in
�� are repetitions of the initial state.

All traces in
�� satisfy both
 and�. Therefore, if

� � �� then �������� � ���

��� � ��. This
implies that the agents can independently set their privatevariable to zero. Therefore,

�
 � � ����
consists of traces generated by the knowledge-free program

� �

 �� �
 � �� � �� �

Alternatively, we can say that
�
 consists of traces that match the regular expression

��� ��+ � ��� ��+��� ��+�����* � ��� ��+�����+�����* �
When the agents can independently set their private variable to zero, they have no knowledge on

the value of the other agent’s variable. That is, if
� � �
 then �������� � ���

��� � �

. Therefore�� � � ��
� � ��� ��+, and so
�� � �� and the iteration sequence starts to repeat itself. It seems

reasonable to take
�� as the correct meaning of the program. Since

�
 is strictly larger than
��, this is

in accordance with the definition of the semantics given in (11).
The above iterations also show that� is not monotonic. For example,

�� is a subset of
�
, however,

� ���� is not a subset of� ��
�. Furthermore, in this example� has the following two unordered
fixpoints:

�� � ��� ��+��� ��* �
��� � ��� ��+�����* �

To show that
�� is a fixpoint of� , observe that all traces in

�� satisfy�, so ��������� � ��. There-
fore, agent 1 can set
 to zero at any time. Traces matching��� ��+ or ��� ��+��� ��+ are both indistin-
guishable for agent 2 from traces of the form��� ��+��� ��+, and therefore do not satisfy�

 under

��.
Agent 2 cannot set� to zero in the initial state nor after agent�has reset
, so� ���� � ��. Analogously,
� ����� � ���.

The iteration sequence and the fixpoints
�� and

��� are sketched in figure 2. The dashed line indicates
the subset relation: the lower set is a subset of the upper set. Arrows give the direction of iteration, i.e.
application of� .

5.2. A case with fixpoint semantics

This example has the same setting as the previous example. There are two agents 1 and 2, with private
boolean variables
 respectively�. The state space is as before, but now the initial state is�����. An

272 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

��

��

�

�� ���

Figure 2. Example 5.1: iteration sequence and the fixpoints
��

and
���

��
��

Figure 3. Example 5.2: iteration sequence that ends in a fixpoint

agent may set her private variable to 1 if she considers it possible that the other agent’s private variable
has already been set. This corresponds to the following program

Pg � ��
 ��� � �
 �� �
 �

 � � � �� ��� �

Again we determine a sequence of iterations. When
�� � �� is considered, agents have only

knowledge of their private variables. If agent 1 does not know whether� holds then she considers both�
and�� possible. So, if

� � �� then �������� � ���

��� � ��. The agents can independently set their
private variables, so

�� � � ���� consists of the traces generated by

� �

 �� �
 � �� � �� �

In
��, agents always consider it possible that the other has set her variable. Therefore, if

� � �� then
�������� � ���

��� � ��, so

�
 � � ���� � ��, and we have reached a fixpoint; as such, it is the
semantics of the program according to the definition of the semantics given in (11). (Note that�����+ is
another fixpoint of� .) The iteration is sketched in figure 3.

Anthropomorphically speaking, we see that either agent reckons with the possibility that the other
agent has set her variable, even though she can argue that theother agent should not be able to do so as
the first one. This is an unexpected side effect of the asynchrony.

5.3. Absence of fixpoints

Again there are two agents 1 and 2 with private boolean variables
 and�. Initially
 is false and� is
true. Now, agent 1 can set
 when she knows that� holds, and agent 2 can reset� when she considers it
possible that
 has been set. The program is given as

Pg � ��
 ��� � �
 �� �
 �

 � � � �� � �� �

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 273

��

��
�

��

��

Figure 4. Example 5.3: a concrete six-shaped diagram as given in figure 1

As seen in the previous two examples, if
� � �� then �������� � �

and ���

��� � ��. Only agent
2 can act, so

�� � � ���� consists of traces of program

� �
 � �� � �� �

That is,
�� contains traces that match��� ��+�����* .

For
� � ��, the interpretation�������� contains traces that cannot be generated by the program. For

example, a tracexs matching�����+ satisfies��� under
��, since no trace in

�� is indistinguishable
for agent 1 fromxs. Therefore, we determine the set

�� of all traces that can possibly be generated by
programPg. The program only allows
 to change from 0 to 1, and� from 1 to 0. So

�� is the set of all
traces of the program in which the guards have been removed, that is the program

� �

 �� �
 � �� � �� �
No trace in

�� satisfies��� under
��. In other words, if

� � �� then
�� � �������� � �

. No trace
in
�� satisfies
. Therefore, if

� � �� then ���

��� � �
. Both agents can never act, so

�
 � � ���� �
��� ��+.

All traces in
�
 satisfy�
 and�, so for

� � �
 we have�������� � �� and ���

��� � �
. Only

agent 1 can act. Therefore,
�� � � ��
� consists of traces generated by program

� �

 �� � �� �

Since� is not reset, all traces in
��

satisfy�, so if
� � ��

then �������� � ��. Observe that there
are traces that satisfy�

 under

��

, but that are not in
��. However, if

� � ��

then
��
 ���

���.

Therefore, agent 2 can set� to zero under
��

, so
�� � � ���� � ��.

If
� � �� then �������� � �

and
�� � ���

��� � ��. Only agent 2 can act, therefore

�� � � ����
is equal to

��. At this point the iteration sequence repeats. The sequenceis drawn in figure 4.
In this example the semantics as defined in (11) yields

�
 as the semantics of the program, since�� � �
 �� ��

. Therefore, the semantics is that the system remains in its initial state.

5.4. An infinite iteration sequence

In this example we show that the iteration sequence may become infinite. There are again two agents
1 and 2. Agent 1 has private integer variables
 and

�
, and agent 2 has private integer variables� and	

. Initially
 � � � �
and
� � 	 � �. Agent 1 may always increment

�
. If agent 1 knows that� is

274 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

�
, she can set
 to �. If agent 1 considers it possible that� is between� and

�
, she can advance
 to� � �. Agent 2 can do similar actions. If we allow equalities and inequalities to appear in the epistemic

formulas, then the KBP is
� �

 � ��� � �

 	 �� 	 � �

 ���� � �� � �
 �� �

 �
�
 � �� � � � �� �

 ���� � � ��� � �
 ��� � �

 �
�� �
 � 	� � � � �� 	 � �
���

Again
�� � ��. When�� is considered, agent 1 can set
 ��� � �. Since agent 1 cannot inspect

�, she can always consider a trace in�� possible such that� � � � �
. Agent 1 cannot set
 to �,

because for
� � �� we have������ � ����� � �

. Agent 1 can always increment
�

. Similar arguments
for agent 2 show that she cannot set� to �. Therefore,

�� � � ���� consists of the traces of program

� �
 � ��� � �
 	 �� 	 � �

 ��� � �
 � �� 	 � � ���
All traces in

�� satisfy
 �� � �� �. So in
�� agent 1 only considers� � � �� possible if

� # �
.

Again agent 1 never knows that� � �
. Similar arguments hold for agent 2. Therefore,

�
 � � ����
consists of the traces of program

� �
 � ��� � �
 	 �� 	 � �
 �� # �� � �
 ��� � �
 �	 # �� � � � �� 	 � � �� �
All traces in

�
 satisfy
 �� ����
 and� �� ����
. In
�
 agent 1 only considers� � � �� possible

if
� # �

, but she never knows that� � �
. Continuing the same reasoning as above, we observe that for

all integers� # �, all traces in
��
�� � � ���� satisfy
 �� ��� � � � ��
 and� �� ��� � � � ��
. Furthermore,

it is not hard to observe that
��
��
 ��. Therefore, the transfinite iteration is

�
� � ����
����� �� �������. In

�
� values of
 and� are never increased, that is

�
� consists of traces of program

� �
 � ��� � �
 	 �� 	 � � �� �
All traces in

�
� satisfy
 � � � �, so in

�
� agent 1 knows that� � �

and can thus set
 to �.
However,
 cannot be incremented further as there are no traces in

�
� for which � � � � � holds for

any
�

. Similarly, � can only be set to�. So
�

��� consists of traces of program

� �
 � ��� � �
 	 �� 	 � �

 �� �
 � �� � �� �
In

�
���, agent 1 never knows that� � �

. However, she may consider it possible that agent 2 has
incremented� such that� � � ��, so she can set
 to

�� �. Therefore,
�

��
 � � ������ is equal to��, so the iteration sequence repeats itself. The sequence is drawn in figure 5.
In this example, the semantics defined in (11) yields

�
� as the semantics of the program, since the

sequence
����
 � � � � ��� is the longest decreasing sequence starting with

�� � �
��
. In this program

agents cannot make any assumption on the values of private variables of the other agent. The values of

and� should remain unchanged, while

�
and

	
may increase.

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 275

��
��
�

�
�

�
���

...

Figure 5. Example 5.4: an infinite sequence of iterations

5.5. Message passing

Message passing can be modelled by means of a variable that can be written by one agent and read by
another. In this example, the agents 1 and 2 communicate via the integer variable�. Agent 1 has a private
integer variable
 and agent 2 has a private integer variable�.

All variables are initially 0. The state space consists of triples �
 �����, and we have

�
 ������� �
� ��� �����
 �
� � � � �� �
�
 ������
 �
� ��� ����� � � �� � � � �� �

Agent 1 may increment
 when she considers it possible that
 � �. She may increment� when she
knows that� �
. Agent 2 may increment� when she knows that� �
. The program is

Pg = � �

�� �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �
 �� �
� � � � �� � � �
�� .

Because agent 1 can read both
 and�, the test� �
 is equivalent to���� �
�.
Intuitively, one could expect the following behaviours from this program. Agent 1 may increment
,

followed by �. Then agent 2 may increment�. Since agent 1 knows this, she may increment
 after the
incrementation of�; she need not wait for the incrementation of�, which is hidden to her anyhow. In
appendix A.1 the iteration sequence, sketched in figure 6, isworked out. As seen in figure 6, a fixpoint
occurs. It turns out that this fixpoint corresponds with our intuition.

5.6. The Unexpected Hanging Paradox

The last example is inspired on a well-known paradox, first mentioned in [16] as the case of the “Class
A blackout”. Presently, it is commonly known as “The Surprise Examination”, or “The Unexpected
Hanging”.

276 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

��
��

�

��

��

��

��

Figure 6. Example 5.5: nonmonotonic iteration that leads toa fixpoint.

In the unexpected hanging paradox, a convicted prisoner is to be executed at noon within seven days
(numbered 0 to 6), but the judge tells him that he will not knowthe day of his execution, even on the
beginning of that day itself. The prisoner might then reasonthat he cannot be executed on day 6, because
when he would still be alive at the beginning of day 6, he wouldknow that he would be executed that
day. By backward induction he might reason that he cannot be executed without knowing that he will be
executed. Yet, on day 2 the prisoner is surprised to meet the executioner.

Let us formulate this situation as a KBP. The state space consists of three variables: an integerday,
the day of executionexec� ��� ����
 and a booleandead. Initially day � �

, dead� �
and the precise

dayexecof execution is unknown to the agent. The agent only knows that execlies in the range��� ����
.
The convicted agent 1 can observedayanddead, but notexec. The program is

� �

 �day� exec� ����day� exec� � �dead� � � dead �� �

 �day

�� exec� dead� � � day �� day� �
��

In our model the program has an execution withdeadbeing set whenexec
� �

. If initially exec� �
,

the agent will know this atday � �
. So at that time, the program is stuck at day six. This seems to

comply with intuition.
We illustrate the iterations

�� and
�
 in a smaller version of this paradox, where the execution day

lies in the range��� ����
. The traces of the iterations
�� and

�
 are given in figures 7 and 8. The arrows
corresponding to� are not shown. The dashed ellipses give the uncertainty of the agent, and are induced
by
��. The filled bullets are the states where the agent is alive, and the open bullets are the states where

the agent has been executed. In
�� � � ����, the agent has no knowledge on the execution day, so he

can be executed on all days. In
�
 � � ����, the agent cannot be executed on day 3, but he can be

executed on the earlier days. The iteration
�
 is a fixpoint of� , and is chosen as the semantics of the

program.
Technically, our formalism models deadlock by forced stutterings, since the alternative� can always

be executed. Moreover, no fairness assumptions are given, e.g. there is no guarantee that time progresses.
Therefore, the agent cannot use backward induction to exclude execution sequences that lead to dead-
lock. This resolves the paradox. This is in agreement with the philosophical analysis based on dynamic

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 277

0

1

2

3

time

210 3 4
execution

day

� � �
� � �

� � �
� � �

Figure 7. Traces of
�� � � ���� for exec� ��� ��� ��

time

210 3 4
execution

day

0

1

2

3

� � �
� � �

� � �

Figure 8. Traces of
�� � � ����

for exec� ��� ��� ��

epistemic logic given in [10].

6. Conclusions and directions for future research

We have presented an asynchronous version of knowledge-based programming based on stutterings and
interleaving semantics, that can be compared with the framework of systems and runs of Fagin et al. in
[8]. The fixpoint equation that the semantics of asynchronous KBP should satisfy, does not always have
a solution. Instead of restricting the semantics definitionto the programs that lead to a fixpoint equation
with a unique solution, we proposed a method to assign semantics to all KBPs in our framework, by
calculating a sequence of iterations. If this sequence endsin a fixpoint, that fixpoint is taken to be the
semantics of the KBP. If not, we choose a specific iteration asthe semantics. To justify this choice, a
number of examples have been worked out.

We have not found a suitable subclass of KBPs for which the automorphism� is monotonic. It
would be useful to study what conditions, if any, would guarantee monotonicity of� .

The idea to approximate the semantics via sets
��

of traces under consideration came up while trying
to attach meanings to the example programs of Section 5. Our semantics definition is a proposal: one
could advocate other choices within the same or similar sequences of iterations, such as the re-entry
iteration (i.e. the first iteration

��
with

�� � ��
�
�

for some
� 	 �

) or the first local minimum (i.e.
the first iteration

��
for which

��
��

�
 ��
). The re-entry semantics gives a different meaning than our

proposed semantics for the example of Section 5.4, and the semantics of the first local minimum differs
from our proposed semantics in the example of Section 5.5. Wefind our semantics more intuitively

278 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

appealing than the re-entry or first local minimum semantics, but it is very well possible that our choice
can be improved. This may especially be the case when attention is restricted to an interesting subclass
of asynchronous KBPs.

We have not looked at simplifications of our semantics that would make model checking feasible. In
general, we think that reasoning about a system during design (by using proof rules) is to be preferred
above reasoning afterwards. As a consequence, our main concern is the development of useful proof
rules. We must admit, however, to fear that the current semantics does not admit very useful proof rules,
and it remains to be seen whether alternative and more usefulsemantics can be found. The relation with
the predicate transformer approach of [20] could be explored in more detail.

In our current framework we do not consider temporal formulas. No fairness assumptions or progress
properties can be expressed. It would be interesting to extend the framework to infinite traces (runs) and
progress properties.

Another direction of research would be to study refinement relations between KBPs in our frame-
work. A KBP can then gradually be refined to a knowledge-free program. This would eliminate the need
to explicitly calculate an iteration sequence.

It may be useful to express the automorphism� defined in (10) in terms of automata. The set of
traces under consideration can be defined as finite state automaton that recognizes traces from that set.
An automaton transformer is then associated with our function� . This automaton transformer might be
studied in a different setting.

References

[1] M. Abadi and L. Lamport,The existence of refinement mappings, Theoretical Computer Science 82, 1991,
pp. 253–284.

[2] K.R. Apt and E.-R. Olderog,Verification of Sequential and Concurrent Programs, Springer Verlag, 1991.

[3] J.W. de Bakker,Mathematical Theory of Program Correctness, Prentice–Hall, 1980.

[4] A. Baltag, A logic for suspicious players: epistemic actions and belief updates in games, Bulletin of Eco-
nomic Research 54 (1), 2002, pp. 1–45.

[5] K.M. Chandy and J. Misra,How processes learn, Distributed Computing 1 (1), 1986, pp. 40–52.

[6] H.P. van Ditmarsch,Descriptions of game actions, Journal of Logic, Language and Information (JoLLI),
volume 11, 2002, pp. 349–365.

[7] K. Engelhardt, R. van der Meyden and Y. Moses,A refinement theory that supports reasoning about knowl-
edge and time for synchronous agents, 8th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2001), vol. 2250 of LNAI, Springer-Verlag, Dec 2002, pp. 125–141.

[8] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi,Reasoning about Knowledge, MIT Press, 1995.

[9] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi,Knowledge-based programs, Distributed Computing 10
(4), 1997, pp. 199–225.

[10] J. Gerbrandy,Bisimulations on Planet Kripke, ILLC Dissertation Series, Amsterdam, 1999.

[11] H.W. de Haan, W.H. Hesselink, G.R. Renardel de Lavalette,Knowledge-based programming inspired by an
asynchronous hardware leader election problemIn: B. Dunin-Kȩplicz, R. Verbrugge (eds.): FAMAS’03,
ETAPS 2003, Warsaw, Poland. pp. 117–132.

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 279

[12] J.Y. Halpern and L.D. Zuck,A little knowledge goes a long way: knowledge-based derivations and correct-
ness proofs for a family of protocols, Journal of the ACM 39 (3), 1992, pp. 449–478.

[13] D. Harel, D. Kozen and J. Tiuryn,Dynamic Logic, MIT Press, 2000.

[14] W.H. Hesselink,Programs, Recursion and Unbounded Choice, Predicate Transformation Semantics and
Transformation Rules, Cambridge University Press, 1992, (Cambridge Tracts in Theoretical Computer Sci-
ence 27).

[15] W.H. Hesselink,Eternity variables to simulate specifications, In: E.A. Boiten, B. Möller (eds.): Proceedings
Mathematics of Program Construction, Dagstuhl, 2002 (LNCS2386), pp. 117–130.

[16] D.J. O’Connor,Pragmatic paradoxes, Mind 57, 1948, pp. 358–359.

[17] S. Katz and G. Taubenfeld,What processes know: definitions and proof methods, Proceedings of the 5th
ACM Symposium on Principles of Distributed Computing, 1986, pp. 249–262.

[18] R. van der Meyden,Common knowledge and update in finite environments, Information and Computation
140 (2), 1998, pp. 115–157.

[19] Y. Moses and O. Kislev,Knowledge-oriented programming (extended abstract), Proceedings of the 10th
ACM Symposium on Principles of Distributed Computing, 1993, pp. 261–270.

[20] B. Sanders,A predicate transformer approach to knowledge and knowledge-based protocols, Proceedings of
the 10th ACM Symposium on Principles of Distributed Computing, 1991, pp. 217–230.

[21] F. Stulp and R. Verbrugge,A knowledge-based algorithm for the Internet protocol TCP, Bulletin of Economic
Research 54 (1), 2002, pp. 69–94.

[22] M.Y. Vardi, Implementing knowledge-based programs, Proceedings of the 6th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK), 1996, pp. 15–30.

[23] G. Winskel,The Formal Semantics of Programming Languages: an Introduction, The MIT Press, 1993.

A. Appendix

A.1. Message Passing

In this section we work out the example from Section 5.5. Recall that there are two agents 1 and 2, and
three integer variable
, � and� which are all initially 0. Variable� is shared,
 is private to agent� and
� is private to agent

�
. So the state space consists of triples�
 �����, and we have

�
 ������� �
� ��� �����
 �
� � � � �� �
�
 ������
 �
� ��� ����� � � �� � � � �� �

The program is

Pg = � �

�� �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �
 �� �
� � � � �� � � �
�� .

280 H.W. de Haan et al. / Knowledge-Based Asynchronous Programming

Agent 2 can infer� �
 from � � �, since she can read� and agent 1 preserves the invariant� �
.
Operationally speaking, agent 1 uses variable� as a message to agent 2 that
 has been incremented.

In
�� � ��, agent 1 considers it possible that
 � �, but agent 2 has no knowledge whether� �
.

Therefore the traces in
�� � � ���� are the traces generated by the knowledge-free program� �

P1 = � �

 �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �
�� .

For the next iterations it is useful to only consider traces that can possibly be generated by program
Pg. Therefore, while determining the set of traces that satisfy �
 �� �
� given a set

�
, attention can be

be restricted to traces in the set
��, which consist of traces generated by the flat, guardless program

� �

 ��
 � �
 � �� � � �
 � �� � � � �� �
For

� � ��, we have that�����
 � ����� consists of traces
 � �
, since� remains

�
in
��. On the

other hand,
�� � ���
 �� �
���� consists of traces of

�� that end with� � �, since� �
 is invariant in��. Therefore,
�
 � � ���� consists of traces generated by

P2 = � �

 �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �� � �� � � � �� � � �
�� .

Note that the traces in
�
 satisfy the invariant

� � � � � �
 � �.
For

� � �
, we have that�����
 � ����� consists of traces with
 � � �
 � �, since� � � holds
in
��. On the other hand,

�� � ���
 �� �
���� consists of the traces of
�� that end with� � � � � � �.

In fact, no tracexs with
� � � is indistinguishable for 2 from any trace in

�
, since all traces in
�

satisfy� � �. It follows that
�� � � ��
� consists of traces generated by

P3 = � �

 �
 � � �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �� � � � � � �� � � � �� � � �
�� .

Note that traces in
��

satisfy the invariants
� � � and

� � � �
 � �
and� � � � � �.

For
� � ��

, we have that�����
 � ����� consists of traces with
 � � � � � �, since in
��

, � is
only bounded by� while � � �

. On the other hand,
�� � ���
 �� �
���� consists of traces of

�� that end
with � � � � � � �. No trace satisfying

� � � is indistinguishable for 2 from any trace in
��

, since
traces in

��

satisfy� � �
. It follows that

�� � � ���� consists of the traces generated by

P4 = � �

 �
 � � � � � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �� � � � � � �� � � � �� � � �
�� .

H.W. de Haan et al. / Knowledge-Based Asynchronous Programming 281

Observe that traces in
�� satisfy the invariants

� � � and
� � � �
 and� � � � � �.

For
� � ��, we have that�����
 � ����� consists of traces with
 � � � � � �, since in

��, � is
only bounded by� while � � �

. On the other hand,
�� � ���
 �� �
���� consists of those traces of

��
that end with� � � because of the invariant� �
 in

��. It follows that
�� � � ���� consists of the

traces generated by

P5 = � �

 �
 � � � � � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �� � �� � � � �� � � �
�� .

Traces in
��

satisfy the invariant
� � � � � �
.

For
� � ��

, we have that�����
 � ����� consists of the traces with
 � � since� is only bounded by
� in

�
. On the other hand,

��� ���
 �� �
���� consists of those traces of
�� that end with� � � because

all traces in
��

satisfy the invariant� �
. It follows that
�� � � ���� consists of traces generated by

P6 = � �

 �
 � �� � �
 ��
 � �

 �� �
� � � � �� � � �

 �� � �� � � � �� � � �
�� .

Note that traces in
��

satisfy the invariant
� � � � � �
 � � � �.

Similarly as before, for
� � ��

, we have that�����
 � ����� consists of traces with
 � � since� is
only bounded by� in

�
. On the other hand,

�� � ���
 �� �
���� consists of those traces of
�� that end

with � � � because of the invariant� �
 in
��

. It follows, that� ���� � ��
, a fixpoint. Moreover, this

fixpoint corresponds with the intuition sketched in Section5.5 and is chosen as the semantics defined in
(11). The iteration sequence is shown in figure 6.

