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CHAPTER ]
INTRODUCTION

LI Sum mary

[n this thesis we derive Abelion end Tauberan
theorems by Lsing Probub;’iu‘fr theory tiethods.
Let Fbe a fion-degenerate distribution function
with characteristic lunchion . Lt is said that F
or @ be‘onﬁs to the “domcin ot attraction o}u
chcroder(sh’c jumﬂon \!/ with normnﬁ sgctmuw

A, >o and cQMerng sequence B, 5

\ . LV _iuB .
) njli‘; () =gy, - duco
[t is known that ofi stable distributions | and
OH|7 Hlese,}mve flof - fE’ﬁ't'lgjl{\ doriuins o}f ‘Jlff/:’(_ix.,?."OH.
We'want to {ind conditions lor F and @ thiat are
lece ssary or Sujft’cienf i Srder Hlut Goecnterit
sequence’ B exists | sucli that (11 holds with
rescribed norming seguence A and stable
characteristic uh‘iﬂon?
To solve this problern we muke use ob 1hc uJ
that CH) furns out to be equs‘\/u‘@nbi uniess
Fﬂxzdf‘—(x‘)/\oo and defﬂ(,x)ﬁl:ob) to the ussertion
hat %7 belongs To the domuir of attracthion ot
with ‘norm(nﬁ Seq/uerlce AH und a;emlrer(mﬂ{ /
sequerice B, e |
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We prejer (12) To (11} since 2npln




is the characteristic J(umn‘ion o)fan iﬁffﬁl"(‘@/
divisible distribution and in Cot1sequence stier
Jro Hand(e Ey Lefvfs or Khimtc!'line)s re’oresenfaﬂon.
So now we C)mnje our problerm in 4rying to find
Necessary and Suj(fr'c(enf Conc‘iﬂons for\?l.,l) WH/’;
rescribed An and g
lff will be shown in lemma 3.3 that t’f V s non-
dejenemfe, relation (1.2) imf)/fes the exi.sfence_
?QSMCH increasing continuous {unction A
ejmed‘ ot (o,oo} and L Varyin at oo ) W/'lere
%15 the QXFonenlt of , such fhat A~ A

3 /,
oF M- . F;Jr X =2 We musf "IOVQ X"&A(x)—ac)
C>o, J(or X=% 0O .

Now thet we krow this we starf again. Lot the
junc’((om A defined on (o0, 0) be Comtmuous)
5#{97‘}7 increasing and o« '_varying af oo, € (0,2]
while ior x=2 Folds x*A(y=E>0 for x— co.
et ¥ be a stable characteristic {uhiction with
ex})onemf x. We want o firzc( Conciv‘{ons{{or F
and @ that are necessary or sufficient in
order” that o sequence B exists such that //2)
liolds with A ~"An) , n> w0, and prescribed y.
These conditions are cferived or'F in %erms
Oj( the behaviour of the fails OJ( Fin cfm/:ferlvj
Section H.Z.The conditions {or Fhe chardcter-
istic tunction @ O)i F are detived in terms oJl the.
behaviour o af the oric!:‘n in cha {erHJSecﬁon Y3
In section Y.y o chapter IV we olDerr've hecessar
and su{ficient Zonditions for the Laplace
transform f o F, il this does exisi ,in order
that'a sequence B, exists | such that (/.2) holds
with A .~"A(n) ns «, and }Drescr{bec] .




These conditions are 3:'ven in ferms ofq‘/ve,
behgviour of Jf af the origin. o now we have con-
ditions in ferms o Hﬂe?ai/s Of Fand in terms of
the behaviour oJf ¢ or ]f at the origin, which are
e ur’va/enf Corn inin ste e u;‘va/em‘ conditions
we obtain a conne?,i(on [:efween Jr/m 7Lar'/—
be haviour oﬂéf-—ancf the behaviour of G orJ(mL
H]e origin. This Is reS})echve’ G Four(er or
Laplace Abelicn and Tauberian theorem:
In'section 5.1 and 5.2 o{ chapter ¥ we derive
F;Jun‘er Abe/{an and ‘Bu erich Hﬂeorems or {WO-
sided and one- sided measures, resFeche /y
These theorems are new. A number of Laplace
Abelion and Tauberian theorems are “clerived in
section 53.0{ chapter Y. These theorems are
hew in the Case of infeqer-valued exponents.
Tn cha{mler,V/; we derive Fourier Abelian and
aubercun theorems connecled with cdtraction
1Lo a cfﬁenermt{; cistribution.

1.2 Notations and conveniions.

With 93 we denote the class oj' Porelsels o
(- ®,0). A distribution Fis a f:robabih’fy
measure on J3. The distribufion {unction (FJJC)
of a drstribution Fis indicated with the same
S\/mbof and defined l)g F(x)= F{(—oojx) )

~o00 d x £ 00. e Ca” r(q/ﬂt one—Sl'c/ecf 1

F§ (- oo)o); —o. The cﬁarﬁcferishc {unction
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