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7 H∞-control in the behavioral
framework

7.1 Introduction

In this chapter we will study the H∞ control problem in a behavioral frame-
work. Starting from a given to-be-controlled behavior, some components of
the system variable are assumed to be free, again in the sense that they are
not constrained by the model. These components are the disturbances acting
on the system. Other components of the system variable are variables that
we want to keep small. These are called the to-be-controlled variables. A
third group of components are the interconnection variables (some of them
are also free of course) as already explained before in this thesis. The control
problem that we consider in this chapter, is to design a controller behavior,
i.e. constraints on the interconnection variable, such that, roughly speaking,
the to-be-controlled variables are “small” whatever the disturbance that oc-
curs, provided of course the disturbance is bounded in magnitude. We want
to stress that this set-up generalizes the “classical” approach to H∞ control.
In that context, for the interconnection variable one would take the compos-
ite vector (u,y), with u the control inputs and y the measured outputs.

The H∞ control problem in the behavioral framework was studied before
in Trentelman & Willems [41] and in Meinsma [24]. In a more general per-
spective, it can be considered as a special case of the problem of dissipativity
synthesis (i.e. the problem of rendering a given plant dissipative by inter-
connection). This problem was studied extensively in Willems & Trentelman
[50], Trentelman & Willems [42] and Belur & Trentelman [3].

In the present chapter we extend the behavioral H∞ control problem
that was studied and resolved in Trentelman & Willems [41]. This extended
problem will be used in solving the robust stabilization problem in chapter
8. The material presented in this chapter is based on the papers Trentelman,
Fiaz & Takaba [[36], [37], [38]].

This chapter is structured as follows. In section 7.2 we formulate the
H∞-control problem in the behavioral framework. To solve this problem, we
use the theory of dissipative systems with respect to supply rates given by
quadratic differential forms (QDF’s). The concept of QDF and dissipative
systems are elaborated in section 7.3. Finally, in section 7.4 we give a solution
to our extended version of the behavioral H∞-control problem.
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7.2 Problem formulation

In this section, we will formulate the H∞-control problem in the behavioral
framework.

We start with a system behavior P ∈ Lw+c+v, with system variable
(w,c,v). The system variable has been partitioned into w, c and v. These
variables represent the to-be-controlled variable, the interconnection vari-
able, and an unknown disturbance, respectively. The interconnection vari-
able c is the system variable through which we are allowed to interconnect
P with a controller C ∈ Lc. Interconnection leads to the interconnection of
P and C through c:

P ∧c C = {(w,c,v) | (w,c,v) ∈ P and c ∈ C}. (7.1)

We recall (Proposition 3.2.2) that the interconnection in Equation (7.1) is
regular if and only if

p(P ∧c C) = p(P) + p(C).

Recall (see section 3.3.3) that in that case we call the controller C regular.
In our context, the variable v represents an unknown disturbance. This is
formalized by assuming v to be free in P. As v is interpreted as unknown
disturbance, it should remain free (see Definition 2.9.1) after interconnecting
the plant with a controller. In order to highlight this, we recall the following
definition of free-disturbance controller from chapter 5:

Definition 7.2.1. Let P ∈ Lw+c+v, with v free. A controller C ∈ Lc is called
free-disturbance if v is free in P ∧c C.

Following Trentelman & Willems [41], in the context of H∞ synthesis
a controller is called stabilizing if, whenever the disturbance v is zero, the
to-be-controlled variable w tends to zero as time runs off to infinity:

Definition 7.2.2. Let P ∈ Lw+c+v, with v free. A free-disturbance controller
C ∈ Lc is called stabilizing if [(w,0,c) ∈ P ∧c C] ⇒ [limt→∞w(t) = 0].

Remark 7.2.3. We note that the concept of stabilizing controller defined
above is different from the concept of stabilizing controller given in the con-
text of asymptotic tracking and regulation in chapter 5 (see Definition 5.2.2).
In contrast to the requirement that a stabilizing controller in the context of
asymptotic tracking and regulation drives the variables w and c to zero as
time tends to infinity, a stabilizing controller in the context of H∞ synthesis
is required to drive only the variable w to zero. Thus, every stabilizing con-
troller in the sense of Definition 5.2.2 is stabilizing in the sense of Definition
7.2.2, but the converse does not hold.



7.2 Problem formulation 115

The following result characterizes the property that a controller is free-
disturbance, stabilizing and regular in terms of the matrices appearing in
the kernel representations of the plant and the controller.

Proposition 7.2.4. Let P ∈ Lw+c+v and C ∈ Lc. Let R1( d
dt )w + R2( d

dt )c +
R3( d

dt )c = 0 and C( d
dt )c = 0 be a minimal rational kernel representation of

P and a minimal polynomial kernel representation of C, respectively. Assume
that in P c is observable from (w,v). Then the following are equivalent:

1. C is a free-disturbance, stabilizing, regular controller for P,

2.
[

R1 R2

0 C

]
is square, nonsingular and has no zeros in C̄+.

Proof: From Proposition 2.4.2, c is observable from (w,v) in P if and only
if R2(λ) has full column rank for all λ ∈ C. From Corollary 6.4.4 we have

P ∧c C = ker
([

R1( d
dt ) R2( d

dt ) R3( d
dt )

0 C( d
dt ) 0

])
. (7.2)

Define N(w,c)(P ∧c C) := {(w,c) | (w,c,0) ∈ P ∧c C}. It is easy to see that

N(w,c)(P ∧c C) = ker
([

R1( d
dt ) R2( d

dt )
0 C( d

dt )

])
. (7.3)

From Equation (7.3), it is easy to see that c is observable from w in

N(w,c)(P ∧c C) (use the fact that
[

R2(λ)
C(λ)

]
has full column rank for all

λ ∈ C).
(1) ⇒ (2) Since

[
R1 R2 R3

]
and C have full row rank, the in-

terconnection P ∧c C is regular if and only if
[

R1 R2 R3

0 C 0

]
has full

row rank. Thus, by Proposition 6.2.1, v is free in P ∧c C if and only if[
R1 R2

0 C

]
has full row rank. We will now show that N(w,c)(P ∧c C) is

stable. Since C is free-disturbance and stabilizing, (w,c) ∈ N(w,c)(P ∧c C) im-
plies w(t) → 0 (t →∞). This implies that the projection (N(w,c)(P ∧c C))w

of N(w,c)(P ∧c C) onto the variable w is stable. It is easily seen that in
N(w,c)(P ∧c C), c(t) → 0 (t → ∞) (use the fact that c is observable from w
in N(w,c)(P ∧c C)). Hence N(w,c)(P ∧c C) is stable. Therefore from Equation

(7.3) and Lemma 6.2.3,
[

R1 R2

0 C

]
is square, nonsingular and has no zeros

in C̄+. The converse implication (2) ⇒ (1) is proven in a similar way. !
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Definition 7.2.5. Let B ∈ Lw1+w2 with system variable w partitioned as
w = (w1,w2). Let γ > 0. B is called γ-contractive if for all (w1,w2) ∈
B∩L2(R,Rw1+w2) we have ‖w1‖2 ≤ γ‖w2‖2. It is called strictly γ-contractive
if there exists ε > 0 such that B is (γ − ε)-contractive.

Remark 7.2.6. Of course, by a density argument, B is γ-contractive if and
only if the contractivity condition ‖w1‖2 ≤ γ‖w2‖2 holds for all (w1,w2) ∈
B ∩D(R,Rw1+w2), i.e. for all trajectories in B of compact support.

Next, we characterize the property of strict contractiveness of a behavior
in terms of the rational matrices appearing in a rational representation of
the behavior:

Proposition 7.2.7. Let B ∈ Lw1+w2 with system variable (w1,w2). Let γ >
0. Let a minimal rational kernel representation of B be given by R1( d

dt )w1 +
R2( d

dt )w2 = 0. Assume that R1 is square and nonsingular. Then B is strictly
γ-contractive if and only if R−1

1 R2 is proper, has no poles on the imaginary
axis, and ‖R−1

1 R2‖∞ < γ.

Proof: (Only if) Let
[

R1 R2
]

= P−1
[

Q1 Q2
]

be a left coprime fac-
torization over R[ξ]. Then Q1( d

dt )w1 +Q( d
dt )w2 = 0 is a minimal polynomial

kernel representation, and Q1 is square, nonsingular. Clearly,

G := R−1
1 R2

= Q−1
1 Q2.

Let

G = −ND−1 (7.4)

be a right coprime factorization over R[ξ]. We have

Q1N + Q2D = 0.

Therefore
[

w1

w2

]
=

[
N( d

dt )
D( d

dt )

]
( ∈ B ∩D(R,Rw1+w2) for all ( ∈ D(R,Rl). (7.5)

Thus, by assumption, there exists ε > 0 such that

‖N( d
dt )(‖2 ≤ (γ − ε)‖D( d

dt )(‖2 for all ( ∈ D(R,Rl).

Taking Fourier transforms it follows from Parseval’s theorem that
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N%(−iω)N(iω) ≤ (γ − ε)D%(−iω)D(iω) for all ω ∈ R.

Using that ND−1 is a right coprime factorization, this implies that D(iω) is
nonsingular for all ω ∈ R. Thus G has no poles on the imaginary axis and

G%(−iω)G(iω) ≤ (γ − ε)I for all ω.

This implies that G is proper and ‖G‖∞ < γ.
(If) Conversely, in B w1 is output and w2 is input, and the transfer matrix
from w2 to w1 is equal to G = R−1

1 R2. Since G is proper and has no poles
on the imaginary axis, the system B induces a bounded operator that maps
w2 ∈ L2(R,Rw2) to w1 ∈ L2(R,Rw1). The norm of this operator is equal to
‖G‖∞ < γ, and therefore there exists ε > 0 such that

‖w1‖2 ≤ (γ − ε)‖w2‖2 for all (w1,w2) ∈ B ∩ L2(R,Rw1+w2).

!

Using the above notion of γ-contractiveness we define the following.

Definition 7.2.8. Let P ∈ Lw+c+v. Let γ > 0. A controller C ∈ Lc is called
strictly γ-contracting if (P ∧c C)(w,v) is strictly γ-contractive.

Before we introduce the main problem studied in this chapter, we re-
view the notion of orthogonal complement of a behavior (see Willems &
Trentelman [49]). Let B ∈ Lw be a controllable behavior. Then we define its
orthogonal complement B⊥ by

B⊥ := {w ∈ C∞(R,Rw) |
∫ ∞

−∞
w%w′dt = 0 for all w′ ∈ B ∩D(R,Rw)}.

B⊥ is again controllable. If R( d
dt )w = 0 is a minimal polynomial kernel

representation of B, then w̃ = R%(− d
dt )( is an observable polynomial image

representation of B⊥ (see Willems & Trentelman [49], Section 10).
Now we formulate the main problem studied in this chapter.

Problem: Let P ∈ Lw+c+v, with system variable (w,c,v). Assume that v is
free in P. Let γ > 0. Find necessary and sufficient conditions for the existence
of a free-disturbance, stabilizing, regular and strictly γ-contracting controller
C ∈ Lc for P.

This problem was studied before in Trentelman & Willems [41] without
the requirement of regular interconnection. The assumptions on the plant
behavior that were made in Trentelman & Willems [41] are however too
restrictive for our purposes, for example to solve the robust stabilization
problem in chapter 8. We will therefore in this chapter extend the results
from Trentelman & Willems [41] in order to make these applicable in chapter
8.
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7.3 Two-variable polynomial matrices, QDF’s and dissipa-
tive systems

A major role in our study of the H∞ control problem in this chapter and our
forthcoming study of the robust stabilization problem in chapter 8 will be
played by the notions of dissipativeness, strict dissipativeness and storage
function in a behavioral context. These notions have been studied before
in Willems [44], Willems and Trentelman [[49], [50]] and Trentelman and
Willems [42]. In this section we review these notions. An important role is
played by two-variable polynomial matrices and quadratic differential forms.
An extensive treatment can be found in Willems and Trentelman [49]. We
will give a brief review here.

An l1 × l2 two-variable polynomial matrix in the indeterminates ζ and
η is an expression of the form

Φ(ζ,η) =
N∑

h,k=0

Φh,kζ
hηk (7.6)

where Φh,k are real l1×l2 matrices, and where N ≥ 0 is an integer. With any
such two-variable polynomial matrix we can associate a bilinear functional

LΦ : C∞(R,Rl1)× C∞(R,Rl2)→ C∞(R,R) (7.7)

by defining

LΦ((1,(2) :=
N∑

h,k=0

(
dh(1

dth
)T Φh,k

dk(2

dtk
. (7.8)

The two-variable polynomial matrix Φ(ζ,η) is called symmetric if Φh,k = ΦT
k,h

for all h,k. In that case we also associate with Φ(ζ,η) the quadratic differential
form (QDF)

QΦ(() := LΦ((,(). (7.9)

The properties of the two-variable polynomial matrix Φ(ζ,η) are completely
determined by the real constant (N +1)l× (N +1) l matrix Φ̃ whose (h,k)th
block is equal to Φh,k. This matrix will be called the coefficient matrix asso-
ciated with Φ(ζ,η). Factorizations of the coefficient matrix immediately give
rise to corresponding factorizations of the associated two-variable polynomial
matrix and quadratic differential form.

The QDF QΦ is called non-negative if

QΦ(() ≥ 0,

in the sense that QΦ(()(t) ≥ 0 for all t ∈ R. It is easily seen that QΦ is
non-negative if and only if the coefficient matrix Φ̃ satisfies Φ̃ ≥ 0.
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7.3.1 Dissipativity

Consider, in general, a controllable linear differential system B ∈ Lw, repre-
sented by the observable polynomial image representation

w = W ( d
dt )( (7.10)

with W ∈ Rw×l[ξ]. In addition, let QΦ be the QDF associated with the
symmetric two-variable polynomial matrix Φ ∈ Rw×w[ζ,η]. QΦ will be called
the supply rate. The system B will be called dissipative with respect to the
supply rate QΦ if for all w ∈ B ∩D(R,Rw) we have

∫ ∞

−∞
QΦ(w)dt ≥ 0. (7.11)

B is called strictly dissipative with respect to the supply rate QΦ if there
exists ε > 0 such that for all w ∈ B ∩D(R,Rw)

∫ ∞

−∞
QΦ(w)dt ≥ ε2

∫ ∞

−∞
‖w(t)‖2dt. (7.12)

Given a polynomial image representation as in Equation (7.10) together
with a two-variable polynomial matrix Φ(ζ,η) we can define a new two-
variable polynomial matrix Φ′ ∈ Rl×l[ζ,η] by

Φ′(ζ,η) := W%(ζ)Φ(ζ,η)W (η). (7.13)

It is easily verified that, if w and ( are related by Equation (7.10), then
QΦ(w) = QΦ′((). Therefore, the system is dissipative if and only if for all
( ∈ D(R,Rl) we have

∫ ∞

−∞
QΦ′(()dt ≥ 0,

and strictly dissipative if and only if there exists ε > 0 such that, for all
( ∈ D(R,Rl) we have

∫ ∞

−∞
QΦ′(()dt ≥ ε2

∫ ∞

−∞
‖W ( d

dt )(‖
2dt.

These conditions are equivalent to

Φ′(−iω,iω) ≥ 0 for all ω ∈ R (7.14)
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and

Φ′(−iω,iω) ≥ ε2W%(−iω)W (iω) for all ω ∈ R (7.15)

respectively (see Willems & Trentelman [49]). It is well known (see Callier
[4], Coppel [5], Ran & Rodman [28], and Kwakernaak & Sebek [22]) that, if
Equation (7.14) holds then we can factorize

∂Φ′(ξ) := Φ′(−ξ,ξ) = F%(−ξ)F (ξ),

with F ∈ Rl×l[ξ]. If Equation (7.15) holds, then F can be chosen Hurwitz,
and also anti-Hurwitz. Introduce now the two-variable polynomial ∆, defined
by

∆(ζ,η) := Φ′(ζ,η)− F%(ζ)F (η). (7.16)

Since ∆(−ξ,ξ) = 0, the two-variable polynomial ∆ must contain a factor
ζ + η (see Willems & Trentelman [49], Theorem 3.1), and therefore we can
define the new two-variable polynomial Ψ by

Ψ(ζ,η) := (ζ + η)−1∆(ζ,η). (7.17)

Consider now the QDF’s QΨ and Q∆ associated with Ψ and ∆, respectively.
We have

Q∆(() = QΦ′(()− ‖F ( d
dt )()‖

2. (7.18)

Furthermore, Equation (7.17) is equivalent to:

dQΨ(()
dt

= Q∆(() for all ( ∈ C∞(R,Rl). (7.19)

Thus we obtain
dQΨ(()

dt
(t) ≤ QΦ′(()(t), (7.20)

for all ( ∈ C∞(R,Rl), for all t ∈ R.
If we interpret QΨ(()(t) as the amount of supply (e.g., energy) stored

inside the system at time t, then Equation (7.20) expresses the fact that
the rate at which the internal storage increases does not exceed the rate
at which supply flows into the system. The inequality in Equation (7.20) is
called the dissipation inequality. Any quadratic differential form QΨ(() that
satisfies this inequality is called a storage function for B. It can be shown
that B is dissipative if and only if there exists a symmetric two-variable
polynomial matrix Ψ(ζ,η) such that the corresponding QDF QΨ satisfies
Equation (7.20). In general, storage functions are not unique. In fact, we
quote Willems & Trentelman [49], Theorem 5.7:
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Proposition 7.3.1. Let B be represented by the observable image represen-
tation (7.10). Assume B is dissipative with respect to QΦ. Then there exist
storage functions QΨ− and QΨ+ such that any other storage function QΨ

satisfies

QΨ− ≤ QΨ ≤ QΨ+ .

If B is strictly dissipative then Ψ− and Ψ+ may be constructed as follows.
Let H and A be respectively Hurwitz and anti-Hurwitz factorizations of ∂Φ′.
Then

Ψ+(ζ,η) =
Φ′(ζ,η)−A%(ζ)A(η)

ζ + η

and

Ψ−(ζ,η) =
Φ′(ζ,η)−H%(ζ)H(η)

ζ + η
.

In this thesis the supply rate will always be given by a constant real
symmetric matrix, say Σ. In that case we have QΣ(w) = w%Σw. We say
that the system B is (strictly) Σ-dissipative if it is (strictly) dissipative
with respect to the supply rate QΣ(w).

The following proposition obtained in Willems & Trentelman [49] (also
see Trentelman and Willems [34]) gives the relation between storage func-
tions and states.

Proposition 7.3.2. Let B be represented by the observable image repre-
sentation (7.10). Assume B is Σ-dissipative, where Σ =Σ % ∈ Rw×w, and
let QΨ(() be a storage function. Let X ∈ Rn×l[ξ] define a minimal state
map of B. Then there exists a real symmetric matrix K ∈ Rn×n such that
Ψ(ζ,η) = X%(ζ)KX(η), equivalently, QΨ(() = (X( d

dt )()
%KX( d

dt )( for all
( ∈ C∞(R,Rl).

Finally, we define positive and negative definiteness of storage functions of
behaviors.

Definition 7.3.3. A storage function QΨ for B is called positive (negative)
definite if there exists a minimal state map X for B and a real symmetric
matrix K > 0 (K < 0) such that QΨ(() = (X( d

dt )()
%KX( d

dt )( for all ( ∈
C∞(R,Rl).
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7.4 A solution to the H∞ control problem

The H∞ control problem in the behavioral frame work was originally formu-
lated and solved in Trentelman & Willems [41]. In Trentelman & Willems
[41], only the full-information case was considered, i.e. the special case in
which the entire system variable is determined uniquely by knowledge of the
interconnection variable, equivalently, (w,v) is observable from c in P. In
this chapter we generalize this to the case where (w,v) is only detectable
from c in P. In contrast to Trentelman & Willems [41], we also require that
the interconnection of the plant and controller is regular, which plays an
important role in stabilization.

Let P ∈ Lw+c+v be controllable. Let γ > 0. It is well known that strict
contractiveness and strict dissipativeness are equivalent, in the sense that
a controller C ∈ Lc is strictly 1

γ -contracting if and only if (P ∧c C)(w,v) is
strictly Σγ-dissipative, where

Σγ :=
[
−Iw 0
0 1

γ2 Iv

]
. (7.21)

Note that

−Σ−1
γ =

[
Iw 0
0 −γ2Iv

]
. (7.22)

In Trentelman & Willems [41], necessary and sufficient conditions for the ex-
istence of a free-disturbance, stabilizing and strictly 1

γ -contracting controller
(however, without regularity condition) for P were established in terms of
−Σ−1

γ -dissipativeness of an orthogonal behavior associated with P. We sum-
marize the relevant results here as propositions. Recall from section 6.2 that
(P)(w,v) denotes the projection of P onto the variable (w,v), while (P)⊥(w,v)
denotes its orthogonal complement. Our first proposition is a restatement of
Lemma 9.2 from Trentelman & Willems [41]:

Proposition 7.4.1. Let P ∈ Lw+c+v
cont . Assume v is free in P. Let γ > 0.

If there exists a free-disturbance, stabilizing, strictly 1
γ -contracting controller

for P then (P)⊥(w,v) is strictly −Σ−1
γ -dissipative and has a negative definite

storage function.

The next proposition can be found as Theorem 9.1 in Trentelman & Willems
[41]. It states that if our synthesis problem is a full information problem (i.e.
(w,v) observable from c), then the conditions in Proposition 7.4.1 are also
sufficient:
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Proposition 7.4.2. Let P ∈ Lw+c+v
cont . Assume v is free P, and

1. (w,v) is observable from c in P,

2. c is observable from (w,v) in P.

Let γ > 0. Then there exists a free-disturbance, stabilizing, strictly 1
γ -

contracting controller for P if and only if (P)⊥(w,v) is −Σ−1
γ -dissipative and

has a negative definite storage function.

In this chapter we extend the above proposition in two directions. In the first
place, we relax condition 1) of the proposition to the condition that (w,v) is
only detectable from c in P. Secondly, we establish conditions under which
the controller in the statement of the proposition, in addition, can be taken
regular. The following theorem is the main result of this chapter. It states
that the necessary and sufficient conditions of Proposition 7.4.2 remain valid:

Theorem 7.4.3. Let P ∈ Lw+c+v
cont . Assume v is free P, and

1. (w,v) is detectable from c in P,

2. c is observable from (w,v) in P.

Let γ > 0. Then there exists a free-disturbance, stabilizing, regular, and
strictly 1

γ -contracting controller for P if and only if (P)⊥(w,v) is −Σ−1
γ -

dissipative and has a negative definite storage function.

In the remainder of this section we will give a proof of Theorem 7.4.3. The
idea is, starting from P, to construct a new full plant behavior P ′ that
satisfies the conditions of Proposition 7.4.2. We then apply this proposition
to P ′, and finally translate back to P to obtain a proof of Theorem 7.4.3.

In order to proceed we need the following lemma:

Lemma 7.4.4. Let B ∈ Lw1+w2
cont with system variable (w1,w2) be given by

the image representation

B =
{[

w1

w2

] ∣∣∣∣ ∃( ∈ C∞(R,Rl) such that
[

w1

w2

]
=

[
A( d

dt )
B( d

dt )

]
(

}
,

(7.23)

where
[

A(λ)
B(λ)

]
has full column rank for all λ ∈ C, i.e. the image represen-

tation is observable (see Proposition 2.5.2). Then



124 7 H∞-control in the behavioral framework

1. w1 is observable from w2 in B if and only if B(λ) has full column rank
for all λ ∈ C (equivalently, the behavior ker(B( d

dt )) = {0}).

2. w1 is detectable from w2 in B if and only if B(λ) has full column rank
for all λ ∈ C̄+ (equivalently, the behavior ker(B( d

dt )) is stable).

Proof: 1. If w1 is observable from w2, from Definition 2.4.1 for all (w1,0) ∈
B we have w1 = 0. From Equation (7.23) this implies that for all ( ∈
ker(B( d

dt )) we have ( ∈ ker(A( d
dt )). In other words ker(B( d

dt )) ⊆ ker(A( d
dt )).

Consequently, we have

ker(B( d
dt )) = ker(A( d

dt )) ∩ ker(B( d
dt ))

= ker
([

A( d
dt )

B( d
dt )

])

= {0},

by observability. The converse implication is easy to prove, we skip the de-
tails.

2. From Definition 2.4.3, if w1 is detectable from w2, for all (w1,0) ∈ B
we have limt→∞w1(t) = 0. From Equation (7.23), this implies that if ( ∈
ker(B( d

dt )) then limt→∞w1(t) = 0. Therefore w1 is a stable Bohl function.
Also we have

[
w1

0

]
=

[
A( d

dt )
B( d

dt )

]
(. (7.24)

As
[

A(λ)
B(λ)

]
has full column rank for all λ ∈ C, there exists a polynomial

matrix
[

F1 F2
]

such that
[

F1 F2
] [

A
B

]
= I. From Equation (7.24),

we have

( = F1( d
dt )w1. (7.25)

As w1 is stable Bohl, by Equation (7.25) ( is a stable Bohl. Therefore for
all ( ∈ ker(B( d

dt )), we have ( stable Bohl. Hence ker(B( d
dt )) is stable. The

converse implication is easy to prove, again we skip the details here. !

Going back to the proof of Theorem 7.4.3, as P is controllable it admits an
observable polynomial image representation (see Proposition 6.2.2):

P =









w
c
v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (




 .
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(7.26)

From Lemma 7.4.4, (w,v) is detectable from c in P if and only if the matrix
C(λ) has full column rank for all λ ∈ C̄+. Therefore we can factorize C
as C = C ′L, with L and C ′ polynomial matrices such that L is Hurwitz
and C ′(λ) has full column rank for all λ ∈ C. Define now a new behavior
P ′ ∈ Lw+c+v as follows:

P ′ :=









w
c′

v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (




 .

(7.27)

Clearly (P)(w,v) = (P ′)(w,v). Most important, from Lemma 7.4.4, in P ′, (w,v)
is observable from c′ (use the fact that C ′(λ) has full column rank for all
λ ∈ C). We now first prove the following lemma which states that, due to
the fact that in P ′ (w,v) is observable from c′, the full controlled behavior
corresponding to a given controller can also be implemented by a controller
of the form c′ = C ′( d

dt )(
′, K( d

dt )(
′ = 0:

Lemma 7.4.5. Let P ∈ Lw+c+v
cont be given by

P =









w
c
v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (




 .

Assume (w,v) is observable from c in P. Let C1 ∈ Lc. There exists a full
row rank polynomial matrix K such that

C2 := {c | ∃(′ ∈ C∞(R,Rl) such that c = C( d
dt )(

′, K( d
dt )(

′ = 0}

satisfies P ∧c C1 = P ∧c C2.

Proof: Let C1 be represented by, say, S( d
dt )c = 0. Let K be a full row rank

polynomial matrix such that

ker(SC( d
dt )) = ker(K( d

dt )).

We claim that, with such K, the statement of the lemma holds. Indeed, let
(w,c,v) ∈ P ∧c C1. Then there exists ( such that

w = W ( d
dt )(, v = V ( d

dt )(, c = C( d
dt )(, and S( d

dt )c = 0.
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Since S( d
dt )C( d

dt )( = 0, we get K( d
dt )( = 0. Thus c ∈ C2, so (w,c,v) ∈ P∧cC2.

Conversely, let (w,c,v) ∈ P ∧c C2. Then there exist ( and (′ such that

w = W ( d
dt )(, v = V ( d

dt )(, c = C( d
dt )(, c = C( d

dt )(
′ and K( d

dt )(
′ = 0.

Since C(λ) has full column rank for all λ, this implies that ( = (′. Thus,
S( d

dt )c = S( d
dt )C( d

dt )(
′ = 0 since K( d

dt )(
′ = 0. We conclude that (w,c,v) ∈

P ∧c C1. !

Next, we formulate and prove the following theorem:

Theorem 7.4.6. Let P, P ′ ∈ Lw+c+v be as given in Equations (7.26) and
(7.27), respectively. Let γ > 0. If there exists a free-disturbance stabilizing,
strictly 1

γ -contracting controller for P ′ then there exists a free-disturbance,
stabilizing, strictly 1

γ -contracting controller for P.

Proof: The proof of this theorem will make use of a series of lemmas, Lemmas
7.4.7 to 7.4.11, to be formulated and proved in the sequel.

First, using Lemma 7.4.5, let

C′ = {c′ | ∃(′ such that c′ = C ′( d
dt )(

′, K( d
dt )(

′ = 0} (7.28)

be a free-disturbance, stabilizing, strictly 1
γ -contracting controller for P ′.

Using observability of (w,v) from c′ in P ′ we can prove the following:

Lemma 7.4.7. Let P ′ and C′ be as given in Equations (7.27) and (7.28),
respectively. Then

P ′ ∧c′ C′ =









w
c′

v





∣∣∣∣∣∣
∃(′ s. t




w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (′, K( d
dt )(

′ = 0




 .

(7.29)

Proof: Let (w,c′,v) ∈ P ′ ∧c′ C′. Then (w,c′,v) ∈ P ′ and c′ ∈ C′. From
Equations (7.27) and (7.28), there exists (1 and (2 such that

w = W ( d
dt )(1, v = V ( d

dt )(1, c′ = C ′( d
dt )(1, c′ = C ′( d

dt )(2 and K( d
dt )(2 = 0.

Since C ′(λ) has full column rank for all λ, c′ = C ′( d
dt )(1 and c′ = C ′( d

dt )(2

implies that (1 = (2. Therefore



w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (′, K( d
dt )(

′ = 0.
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The converse inclusion is trivial. !

Define K1 := (P ∧c′ C′)(w,v). Then from Equation (7.29), we have

K1 :=
{[

w
v

] ∣∣∣∣ ∃(
′ such that

[
w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
(′, K( d

dt )(
′ = 0

}
.

(7.30)

Let L be the Hurwitz polynomial matrix obtained from the factorization
C = C ′L above. As L is Hurwitz, the matrix KL−1 is a stable rational
matrix. Factorize KL−1 as KL−1 = P1

−1Q1, where P1 is Hurwitz. Then we
have

P1K = Q1L. (7.31)

Define

C := {c | ∃( such that c = C( d
dt )(, P1( d

dt )K( d
dt )( = 0}. (7.32)

Lemma 7.4.8. Let P and C be given by Equations (7.26) and (7.32), re-
spectively. Then

P∧cC =









w
c
v





∣∣∣∣∣∣
∃( s. t.




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, P1( d
dt )K( d

dt )( = 0




 .

(7.33)

Proof: Let (w,c,v) ∈ P ∧c C. From the representations of P and C it is
evident that there exists an ( such that

w = W ( d
dt )(, v = V ( d

dt )(, and c = C ′( d
dt )L( d

dt )(,

and there exists an (̂ such that

c = C ′( d
dt )L( d

dt )(̂, P1( d
dt )K( d

dt )(̂ = 0.

As C ′(λ) has full column rank for all λ ∈ C we get

L( d
dt )( = L( d

dt )(̂. (7.34)

Using Equations (7.31) and (7.34) we have
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P1( d
dt )K( d

dt )( = Q1( d
dt )L( d

dt )(
= 0.

Therefore



w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, P1( d
dt )K( d

dt )( = 0.

The converse inclusion is trivial. !

Define K2 := (P ∧c C)(w,v). From the above we have

K2 :=
{[

w
v

] ∣∣∣∣ ∃( such that
[

w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
(, P1( d

dt )K( d
dt )( = 0

}
.

(7.35)

In order to proceed we need the following lemma.

Lemma 7.4.9. Let B ∈ Lw+c+v with system variable (w,c,v) be given by








w
c
v





∣∣∣∣∣∣
∃( s.t




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, K( d
dt )( = 0




 , (7.36)

where K has full row rank and
[

W (λ)
V (λ)

]
has full column rank for all λ ∈ C.

Define S := {w | ∃c such that (w,c,0) ∈ B}. Then

1. v is free in B if and only if
[

V
K

]
has full row rank.

2. S is stable if and only if
[

V (λ)
K(λ)

]
has full column rank for all λ ∈ C̄+.

Proof: 1. We have

(B)v = {v | ∃( s. t. v = V ( d
dt )(, K( d

dt )( = 0}. (7.37)

It is easy to check that

p((B)v) = rank
([

I V
0 K

])
− rank

([
V
K

])

= rowdim(V ) + rowdim(K)− rank
([

V
K

])
. (7.38)
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Recall that v is free in B if and only if (B)v = C∞(R,Rv), equivalently,
p((B)v) = 0. Therefore from Equation (7.38), v is free in B if and only if

rank
([

V
K

])
= rowdim(V )+rowdim(K), equivalently,

[
V
K

]
has full row

rank.
2. From Equation (7.36), we have

S =
{

w

∣∣∣∣ w = W ( d
dt )(,

[
V ( d

dt )
K( d

dt )

]
( = 0

}
. (7.39)

If
[

V (λ)
K(λ)

]
has full column rank for all λ ∈ C̄+,

[
V ( d

dt )
K( d

dt )

]
( = 0 implies

that ( is stable Bohl, which in turn implies that w = W ( d
dt )( is stable

Bohl. Hence S is stable. Conversely, if S is stable then for all ( such that[
V ( d

dt )
K( d

dt )

]
( = 0, we have

[
w
0

]
=

[
W ( d

dt )
V ( d

dt )

]
( (7.40)

is stable Bohl. As
[

W (λ)
V (λ)

]
has full column rank for all λ ∈ C there exists

[
F1 F2

)
such that

[
F1 F2

] [
W
V

]
= I. Therefore, from Equation

(7.40), we have

( = F1( d
dt )w. (7.41)

As w is stable Bohl, from the above ( is a stable Bohl. Hence
[

V (λ)
K(λ)

]
has

full column rank for all λ ∈ C̄+.
!

Lemma 7.4.10. Let the controllers C′ and C be given by Equations (7.28)
and (7.32), respectively. Then C is a free-disturbance, stabilizing controller
for P if and only if C′ is a free-disturbance, stabilizing controller for P ′.

Proof: Using Equation (7.33) along with Definition 7.2.2 and Lemma 7.4.9,

C is free-disturbance and stabilizing controller for P if and only if
[

V
P1K

]

is square, nonsingular and Hurwitz. In the same way, using Equation (7.29),
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C′ is free-disturbance and stabilizing controller for P ′ if and only if
[

V
K

]

is square, nonsingular and Hurwitz. The proof is then completed by noting

that
[

V
P1K

]
is square, nonsingular and Hurwitz if and only if

[
V
K

]
is

square, nonsingular and Hurwitz (use the fact that P1 is Hurwitz). !

In the following, recall that D(R,R•) denotes the space of compact support
functions from R to R•.

Lemma 7.4.11. Let K1 and K2 be given by Equations (7.30) and (7.35),
respectively. Then K1∩D(R,Rw+v) = K2∩D(R,Rw+v). Consequently, for any
γ > 0, K1 is strictly 1

γ -contractive if and only if K2 is strictly 1
γ -contractive.

Proof: We first prove that D(R,Rl)∩ker(K( d
dt )) = D(R,Rl)∩ker(P1K( d

dt )).
The implication D(R,Rl)∩ker(K( d

dt )) ⊆ D(R,Rl)∩ker(P1K( d
dt )) is obvious.

To show the converse inclusion, assume that ( ∈ D(R,Rl) ∩ ker(P1K( d
dt )).

Define y := K( d
dt )(. Then y ∈ D(R,Ry) ∩ ker(P1( d

dt )). As ker(P1( d
dt )) ∩

D(R,Ry) = 0 (since P1 is nonsingular) we have y = 0. Hence ( ∈ D(R,Rl) ∩
ker(K( d

dt )).

Since
[

w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
( is an observable representation (due to the

assumption that c is observable from (w,v) in P), ( ∈ D(R,Rl) if and only if[
w
v

]
∈ D(R,Rw+v). Then, from the definitions of K1 and K2 we have the

equality K1 ∩ D(R,Rw+v) = K2 ∩ D(R,Rw+v). Therefore, immediately from
Definition 7.2.5, K1 is strictly 1

γ -contractive if and only if K2 is strictly 1
γ -

contractive. !

Applying the previous lemmas, we can now complete the proof of Theo-
rem 7.4.6: from Lemmas 7.4.8 to 7.4.11 we conclude that, starting with the
free-disturbance, stabilizing strictly 1

γ -contracting controller C′ for P ′, the
controller C is a free-disturbance, stabilizing strictly 1

γ -contracting controller
for P. !

We are now in a position to give a proof of Theorem 7.4.3:

Proof of Theorem 7.4.3: Starting with P, introduce the new behavior P ′
as above. We have (P)(w,v) = (P ′)(w,v). Thus, if (P)⊥(w,v) is strictly −Σ−1

γ -
dissipative and has a negative definite storage function, then the same holds
for (P ′)⊥(w,v). By Proposition 7.4.2 there exists a free-disturbance, stabilizing
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strictly 1
γ -contracting controller for P ′. Then there also exists such controller

for the original P. Finally, we should prove that also a regular controller for
P exists with these properties. Again, note that (P ∧c C)(w,v) = K2 (see
Lemma 7.4.8). Now, K2 is obviously implementable with respect to P. Since
P is assumed to be controllable, Proposition 3.3.10 then asserts that K2 is
also regularly implementable. Any regular controller that implements K2 is
then of course a free-disturbance, stabilizing strictly 1

γ -contracting controller
for P.

The converse implication follows immediately from Proposition 7.4.1. !

Remark 7.4.12. Without going into the details, in this remark we will
outline how to actually compute a free-disturbance, stabilizing, strictly 1

γ -
contracting, regular controller for P from the polynomial matrices W , V
and C appearing in its image representation (7.26) (see also Trentelman &
Willems [41]). In the following, let l denote the number of columns of W (i.e.
the dimension of the latent variable (). Let Σγ be given by (7.21). Denote
R∼(ξ) := R%(−ξ).

1. Factorize:
[

W
V

]∼
Σγ

[
W
V

]
=

[
F+

F−

]∼ [
Il−v 0

0 −Iv

] [
F+

F−

]

such that

(a)
[

F+

F−

]
is a Hurwitz polynomial matrix,

(b)
[

W
V

] [
F+

F−

]−1

is proper,

(c)
[

V
F+

]
is Hurwitz.

2. Factorize: C = C ′L with C ′ and L polynomial matrices such that C ′(λ)
has full column rank for all λ ∈ C, and L Hurwitz.

3. Factorize: F+L−1 = P−1
1 Q1 with P1,Q1 polynomial matrices, P1 Hur-

witz.

Define then a controller C for P by:

C := {c | ∃( ∈ C∞(R,Rl) such that c = C( d
dt )(, P1( d

dt )F+( d
dt )( = 0}, (7.42)
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The controller C is then free-disturbance, stabilizing and strictly 1
γ -

contracting. It can be shown that if c is free in P then the above controller C
is also regular. If c is not free in P then, starting with C given by the Equa-
tion (7.42), a regular, free-disturbance, stabilizing and strictly 1

γ -contracting
controller can be constructed using ideas from Belur [1].




