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ABSTRACT

We construct non-spherical dynamical models of four dwarf

spheroidal galaxies, using a solution of the axisymmetric

Jeans equations. We show how instead of the usual fitting

of binned data, discrete dynamical modeling based on likelihood fits to

individual stars yields significant improvements on the model parameters,

in particular for the velocity anisotropy. Moreover, we show how discrete

modeling allows for pruning of possible non-members froma sample of stars,

and secondly, splitting different dynamical tracers by theirmetallicitywithout

adding hard cuts.
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5.1 Introduction

It is important to constrain the amount of mass in and shape of dark matter halos,

for a number of reasons. Measuring dark matter can test our knowledge of galaxy

formation and evolution (Strigari et al., 2008).

A longstanding debate is whether dark matter halos have cusps or cores. Early

numerical simulations of dark matter, without the inclusion of baryons, pointed

at universal dark matter profiles with a strong central cusp (Navarro et al., 1996),

confirmed by recent very high resolution N-body simulations (Navarro et al., 2010).

Measurements of the dark matter density are also important for the identifica-

tion of possible candidates for dark matter paritcles from annihilation signals (e.g.

Abramowski et al. (2012)). As the latter process is proportional to the squareddensity

of dark matter, it needs to be known with high accuracy.

In this paper, we model four classical Local Group dwarf spheroidals with ax-

isymmetric models. Most authors have modeled Local Group dSphs with spherical

models (but see Jardel & Gebhardt (2012)). However, dSphs are not spherical.

Measurements of the ellipticities of the four dSphs in this paper point at ellipticities

of � ≈ 0.3 (Irwin & Hatzidimitriou, 1995). Moreover, it is predicted from numerical

simulations that the density generating the potential – at least on large scales – is

not spherical (Frenk et al., 1988; Bett et al., 2007). With the advent of high-quality

publically available spectroscopic data (Walker et al., 2008), it is worth to try to

loosen the constraint of spherical symmetry.

Another issue is that for some of the dSphs, there are a few hundred observations

of radial velocities of stars which are probably members. In the past, people have

binned these data to obtain velocity dispersion profiles. This way, one looses

information in two ways: one looses information on individual velocities with

errorbars, which are averaged together into a single dispersionwith an errorbar, and

one looses spatial information. Another consideration is that by binning the data,

one always has the risk of including outliers or excluding proper members. In this

paper we therefore try to develop a novel way to analyze kinematic data, based on

likelihoods for individual stars.

The structure of this paper is as follows: The kinematic and photometric data

and the method to solve the axisymmetric Jeans equation are described in section

5.2. Section 5.3 applies this modeling to Local Group dSphs, followed by section 5.4,

which shows the improvement with discrete modeling. After that, we provide two

applications: identification of non-members, and splitting of metallicity. We end

with a short discussion and conclusions.
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5.2 Data andmodelingmethod

5.2.1 Photometric data

For our analysis, we need to have the luminosity profile of the galaxy written as

a sum of Gaussians. We use the photometry of Irwin & Hatzidimitriou (1995).

These authors count the number of stars as a function of radius, after which they

fit a one-component King model to the data. The data are normalized to LV /pc
2

by integrating the King model magnitude with the observed magnitude. There is

however considerable uncertainty in this quantity. We fit a MGE expansion to the

logarithmically sampled King profile. We assume that the ellipticity of each gaussian

is fixed to the global ellipticity of the galaxy. The profiles of the dwarfs, together with

the star counts and background-corrected star counts from Irwin & Hatzidimitriou

(1995) are shown in Fig. 5.1.

5.2.2 Line-of-sight velocity data

For the analysis in this paper, we use the data fromWalker et al. (2009), which were

obtained as part of a survey (Walker et al., 2007) of Local Group galaxies. These

data were taken with the Michigan/MIKE Fiber System (MMFS) at the Magellan

6.5 m Clay Telescope at Las Campanas Observatory. Besides radial velocities

and errors, the data include measurements of two magnesium and several iron

indices in the 5140–5174 Å spectral range. Walker et al. (2009) analyzed these data

with the Expectation-Maximization algorithm to determine galaxy membership

probabilities for each individual star. The radial velocities as a function of semi-

major axis position are plotted in Fig 5.2. Walker et al. (2008) determine global

proper motions of the four dSphs. Assuming no internal streaming motions,

perspective rotation can give rise to velocities up to 3km/s in the outer parts of

Fornax, and also for the other dwarf spheroidals, this effect is not unimportant. We

correct for perspective rotation using equation 6 in van de Ven et al. (2006).

5.2.3 Axisymmetric Jeans solution

The distribution function (DF) of a relaxed stellar system in a smooth potential

follows the Collisionless Boltzmann equation (Binney & Tremaine, 1987). In prin-

ciple, one would like to recover the potential of a system by measuring the DF of a

system. However, in practice this is almost never possible. Since velocity moments

are much easier to measure, one often uses solutions of the Jeans equations(Jeans,

1915), which are derived by taking velocity moments of the Boltzmann equation. In

the axisymmetric case, there are two Jeans equations, which relate the gravitational

potential and the tracer density to four second moments of the velocity. This

means that at least two additional assumptions have to be made to solve the Jeans

equations. We follow Cappellari (2008) in assuming that the velocity ellipsoid is

alignedwith the axisymmetric coordinate system, and that the ratio of the radial and
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Figure 5.1 — Multi-Gaussian Expansion of the radial surface brightness profile of dSph

galaxies. The solid dashed curve is the best-fit King profile from Irwin&Hatzidimitriou (1995),

fitted by a MGEmodel with individual Gaussians shown as dotted curves and the sum as the

solid curve. The crosses are the tabulated observations from Irwin & Hatzidimitriou (1995),

whereas the solid circles are the observations approximately corrected for crowding effects,

and in amplitude matched to the King profile based on the median of the red circles.
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Figure 5.2 — The observed line-of-sight velocities for stars in different dwarf galaxies as a

function of major axis position. All data were measured by Walker et al. (2008).

vertical second moments is constant. Furthermore, representing the potential and

tracer density by Gaussians reduces the solution for the oberved velocity moment

to a single integral (see Cappellari (2008)). It should be noted that the choice of

the velocity ellipsoid, although a good approximation for disky systems, may not be

a good approximation for spheroidal systems of which a lot of the mass is outside

the z=0 plane: with the alignment of the velocity ellipsoid to the axisymmetric

coordinate system, it actually never points to the center at positions outside the

equatorial plane.

5.2.4 Implementation

We have converted the IDL JAM-code (Cappellari, 2008) to C and coupled it with

a Markov-Chain Monte Carlo (MCMC) engine. In general we multiply the compo-

nents of the luminousMGEwith a ’M/L per gaussian’ to obtain themassMGEwhich

generates the potential. This way we have the freedom of creating any kind of M/L

profile we want. The velocity anisotropy can be altered for each luminous gaussian,

however, in this paper, we use a global value for the anisotropy. In general we will

keep the axis ratio of the mass MGE fixed to the axis ratio of the luminous MGE, but

wewill investigate the effect of a different flattening for the potential in section 5.3.2.

5.3 Binned data

5.3.1 Spatial Voronoi-bins

The data of W09 come with a pre-assigned membership probability. For each

galaxy, we selected all stars with membership probabily greater than Pm > 0.99.

We averaged the parameters of stars appearing twice in the list, and converted the
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coordinates of the stars to a system in which the semi-major and semi-minor axes

were aligned with the x and y-axes. The positions of the stars were ’pixelated’ by

putting them in bins with size of 1 arcmin2. In case of multiple stars per bin, the

velocity and error on the velocity were determined by a weighted mean, where

the weighting was done according to the velocity uncertainty of individual stars

multiplied with their relative membership probabilities. The collections of pixels

were binned with the voronoi binning code of Cappellari & Copin (2003), where the

signal-to-noise per pixel was defined as the number of stars divided by the square

root of that number. We aimed for bins with approximately 20 stars, so we defined

the target signal-to-noise as
�
20. Due to the low number of stars of Sextans, we

aimed there for 10 stars per bin. After assignment of stars to the voronoi bins, the

velocity and velocity dispersion per bin were calculated with the method given in

van de Ven et al. (2006). The bins, coloured per different velocities are shown in the

upper panels of Figs. 5.3–5.6.

We fit the kinematic bins with our axisymmetric Jeans models with only a small

number of free parameters. We leave the inclination i free to vary between 40 and 90

degrees (90 degrees being edge-on). Lower values for the inclination are usually not

allowed by the observed ellipticity. The constant anisotropy, βz is allowed to vary

between -1.0 and 0.5. Instead of a constant mass to light ratio, we allow the M/L to

vary, using a similar parametrisation as the Osipkov-Merritt profile:

Υ(r )= (Υ∞−Υ0)
r 2

r 2+ r 2
b

+Υ0 (5.1)

where the free parameters are Υ0 and Υ∞, the M/L ratios in the center and at

infinity. For rb , the break radius, we choose the geometric mean of the lowest and

highest value of the sigma in our MGE expansion. This is of course a very contrived

parametrisation, but it is sufficient for our current purposes.

5.3.2 Binned results

The results of fitting the binned data are shown in Figs. 5.3–5.6. Themiddle panel of

these plots shows the best fitting model and the comparison of this model with the

data. In the lower panel, we show the M/L ratio as a function of radius. It becomes

now apparent that the parametrization was not so important. Except for Fornax,

we confirm what spherical studies already found: the mass to light ratios appear

to be too high to be explained by stellar matter only, therefore, by just looking at

these plots one could conclude that there is a significant amount of dark matter

present in these galaxies. The lower right panel shows the enclosed projected and

deprojected mass. The value for the enclosed mass within the effective radius for

Fornax is consistent with what was found by Jardel & Gebhardt (2012) (taking into

account that we have assumed a slightly closer distance towards Fornax and have a

applied a different cut in membership probability).

Wehave left the inclination as a free parameter, however, we are not able to constrain
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Figure 5.3 — Data and model of Carina. The upper two panels show the kinematic bins

with velocity dispersion and respective errors. The left panel in the middle shows the best

fit kinematic model. The right panel compares the predicted second moments with the

observed second moments, sorted by ellitical radius. The lower-left panel shows the M/L

profile and beta as a function of radius, whereas the lower-right panel shows the enclosed

mass un-projected (thin line) and projected (thick line)



5.3: Binned data 173

Figure 5.4— Same as Fig 5.3 for Fornax
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Figure 5.5— Same as Fig 5.3 for Sculptor
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Figure 5.6— Same as Fig 5.3 for Sextans
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Figure 5.7—The effect of varying the axis ratio of the potential. We show the projected output

of our MCMC simulation for Fornax in the orbital anisotropy–axis ratio plane. The contours

denote the region containing more than 66% of the probability. There is a clear degeneracy

between the axis ratio of the potential and the anisotropy.

it. The solutions for all four dwarf galaxies tends to go to an inclination of 90 degrees.

Most likely one will need proper motions to determine the inclination, as was done

for globular clusters.

The anisotropies differ between dwarf galaxies. Fornax seems to be more or

less isotropic, whereas the other galaxies have negative anisotropies, in particular

Sculptor. Interpreting this is however very difficult. As an example, we have done a

similar fit as above for Fornax, but now also leaving the axis ratio of themass density

free. From Fig 5.7 we see that the anisotropy can change substantially by chancing

the shape of the potential.

5.4 Discrete data

The Jeans modeling as described above is perfectly suited for observations in which

one directly measures the line-of-sight second moment as a function of position in

the galaxy. However, for a number of systems, such asMilkyWay globular clusters or

Local Group galaxies, velocity measurements of individual stars are available. In the

past, several authors have converted these measurements to line-of-sight velocity

dispersions, by binning the data, radially (e.g. Battaglia et al. (2008)). It is needless
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to say that one loses information by replacing the velocities of several (spatially

dispersed) stars with a single velocity dispersion at a single spatial location. Besides

that, the choice of the bins is often arbitrary, in the sense that it is more motivated

by the signal-to-noise of the observations than by underlying physics. If we assume

that our target galaxies are not rotating, Jeansmodeling predicts a spread in velocity

for each location in the galaxy. Assuming that the velocity distribution at a certain

point is normally distributed, the probability to observe a certain velocity vobs is:

P (vobs ∈ [vo,vo+dvo])=
dvo

�
2π〈v2

los
〉
exp

�

−
v2o

2〈v2
los

〉

�

Here, 〈v2
los

〉 is a prediction of the Jeans model for the second moment at a given

location. What we are after is however not the probability that the data fits the

model, but the likelihood of the model given the data. In addition to that, vobs is

affected bymeasurements errorsσv . Treating these errors as gaussians, we find that

for a single star this is just a convolution of two Gaussians, and hence:

L (〈v2
los

〉 |vobs,σv )=
1

�

2π
�
〈v2
los

+σ2v 〉
� exp



−
v2
obs

2
�
〈v2
los

〉+σ2v

�





5.4.1 Results

To see to what kind of improvement this will lead to for our data, we fit again the

same sets of stars (all stars with membership probability higher than 0.99), with

the same prior assumptions, but now with discrete modeling. A comparison of

the results is shown in Fig. 5.8. This figure shows the posterior probability density

functions for both methods (similarly arbitrarily normalized for both methods) for

each free variable. It is obvious that the unbinned method pushes much harder

towards a certain solution than the binnedmethod. There is even an indication that

Fornax has a declination different from 90 degrees. The anisotropies have changed

from (strongly) tangential towardmore isotropic (or in the case of Fornax, somewhat

radial)

5.5 Application: pruning possible non-members

Of course it is very nice if one has better knowledge on the uncertainties of fitted

variables using discrete fitting. However, there is still more information available

with discrete fitting. Here, we give two examples.

In order to accurately test a dynamical model of a dwarf galaxy, one would in

principal want all stars used in the analysis to be member of the system one is

studying. Adding stars to the system will give a false perspective of the amount of
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Figure 5.8 — Comparison of the posterior probability distribution functions (pdf) obtained

with binned fitting and with discrete fitting. Shown are the pdfs for each of the 4 free

parameters, for the binned fit (dashed line) and discrete fit (solid line). There is an obvious

decrease in the width of (most) of the discretely fitted variables. Although some of the

values may look inconsistent, this is mainly because certain denegeracies in the discrete

modeling now seem to be broken, as is for example the case between the “inner” and “outer”

M/L values. Another aspect is that most of the posterior mass is not necessarily where the

likelihood is highest.

mass present, since it alters the observed second moments. However, in practice,

membership has often been determined by clipping on velocities, often in combi-

nation with information about position. No need to say that this procedure is very

tricky: onemay remove actualmember stars that are in thewings of the line-of-sight

velocity distribution and interlopers that have the “right” velocities may contribute

to give too low secondmoments. On the other hand, a fewmissed outliersmay yield

a too high M/L ratio.

Wojtak & Łokas (2007) employ an algorithm inwhich they iteratively calculate which

objects are outliers from their current dynamical model and subsequently update

their dynamical model with a new set of members. Walker et al. (2009) employ the

Expectation-Maximization algorithm to separate out the distribution of Milky Way

foreground stars from the stars in the dSphs. Here we try another method. Under
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the assumption of a model for the Milky Way (with model we mean a distribution

function of the spatial, kinematical and chemical distribution of stars) and a similar

model for a dSph, we can determine the likelihood of different kinematicmodels for

each dSph. As is, we do not have an accurate model for the Milky Way. However,

given a dSph model, we can assume a set of plausible Milky Way models, and

marginalize over those. To make this more formal, the total likelihood is:

L = p({vi }
N
i=1|{bi }

N
i=1,dSphmodel, MWmodel) (5.2)

=
N�

i=1

p(vi |dSphmodel)
bi ·p(vi |MWmodel)1−bi (5.3)

(5.4)

where bi = 1 if the star is a member and bi = 0 is the star is not a member. Here,

p(vi |dSphmodel)=
1

�
2π(σ2+dv2)

exp

�

−
vi

2(σ2+dv2)

�

is the likelihood of the data given the dSph model, as determined from the Jeans

model. Furthermore, we can write out the prior on the {bi }:

p({bi }
N
i=1|Pmi

)=
N�

i=1

P
bi
mi

· (1−Pmi
)1−bi (5.5)

(5.6)

which simplifies amazingly if all membership probabilities Pmi
would be same.

Note how this prior punishes complicated models: if all stars are assumed to be

members, p({bi }
N
i=1

|Pm = 1)= 1, whereas the assumption that half of the population

is non-member gives p({bi }
N
i=1

|Pm = 1
2 )=

�
1
2

�N
.

Since we are solving things in a Bayesian way, we are forced to assume a model for

the distribution of MW star velocities. We note that this is generally dependent on

the location of the dwarf galaxy on the sky, and moreover, on more complicated

factors - since the observer may have had conscious and unconscious biases in

selecting his stars for spectroscopic follow-up. Depending on the data, we will

therefore assume either a Gaussian, exponential, or uniform distribution, and

combinations of these, with plausible priors on the mean and width of these

distributions andmarginalize over these variables.

5.5.1 Example: Fornax

As an example, we analyse the membership of stars for Fornax. The data for Fornax

are quite clean, in the sense that there are probably very few interloper stars (cf.

Fig 5.2). As a first attempt, we assume for theMW a uniform distribution in velocity,
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Figure 5.9 — Left: The likelihood of the combined Fornax/Milky Way model for different

assumptions of the membership probabilities for individual stars. For the MWwe assumed a

uniform distribution with width of 700km/s. Right: Same plot, but now for Carina.

centred such that all observed velocities are possible:

p(vi |MWmodel)=
1

2vmax

with vmax = 350 km/s in this case, the likelihood for our dwarf model is:

p(dSphmodel, MWmodel|Pm , {vi }
N
i=1)=

�

all possible bi

p({vi }
N
i=1

|{bi }
N
i=1

,dSphmodel, MWmodel)

p({vi }
N
i=1

)
×

p({bi }
N
i=1|Pm)p(dSphmodel)

For now, we act like we do not know the membership probabilities of the Walker et

al. data, and ask ourselves if we can determine themembership purely by looking at

the kinematics. As a first guess, we take Pm the same for all stars: this gives an overall

membership probability for the sample. We can now evaluate the total likelihood for

different membership probabilities. An example of this is given in Fig. 5.9. We see

that indeed the Fornax sample is really quite clean and around 98% of the stars is

probably a member. As we show in a similar plot for Carina, the situation can be

quite different, however, a uniform model for the background may not be such a

good approximation here. Now that we have the best fitting global Pm value, we can

recalculate the probabilities that an individual star is a member of Fornax:

Pm,i =
PmP (vi |Fornax)

(1−Pm)P (vi |MW )
(5.7)



5.6: Application: splitting different kinematical tracers by metallicity 181

After this, one can update the models for the Milky Way foreground and for Fornax,

by using the newly determined membership probabilities. As our assumed MW

model in this example was a static uniform distribution, the procedure in this case

is more or less equivalent to sigma clipping.

5.6 Application: splitting different kinematical tracers

bymetallicity

As shown by Battaglia et al. (2008), there appear to exist two distinct kinematical

populations in Sculptor, one is metal poor, has a high velocity dispersion and is

spread out over the galaxy, the other one is metal rich centrally concentrated and

has a low velocity dispersion. Battaglia et al. (2008) analyse Sculptor by applying a

hard cut in metallicity to split the sample in two parts: [Fe/H] < −1.7 and [Fe/H] >

−1.5. After that, they bin the data radially and determine the line-of-sight velocity

dispersions for each bin.

It is however a waste to throw away the data in the regionwhere the two populations

might overlap, especially since good line-of-sight data for dSphs is scarce. In this

section, we model the metallicity distribution by two gaussians and calculate a best

fitting model according to this.

We generate mock data of the Sculptor dwarf spheroidal using the following

assumptions: we assume a constant mass to light ratio, which we fix to 25. Battaglia

et al. (2008) determine the photometry of the metal-poor and metal-rich stellar

populations of Sculptor by counting the number of blue and red horizontal branch

stars as a function of radius. Subsequently, they fit a Plummer model to the metal-

poor data and a Sérsic model to themetal rich data. Here, we assume the same light

profiles for the metal poor and the metal rich population. We predict line-of-sight

second moments for a metal poor ([Fe/H]=-1.7) and a metal rich sample ([Fe/H]=-

1.3) of stars, each sample consisting of 600 stars. Eachmetallicity bin is smoothed in

metallicity by convolving it with a Gaussian with σ = 0.2 The stars have a Gaussian

distribution around the center of the galaxy, with standard deviation σ= 20� for the

metal poor population andσ= 15� for themetal rich population. We assume slightly

different velocity anisotropies for the samples: we assign βz = 0.2 to the metal poor

sample and βz =−0.98 to the metal rich sample. This latter value for the anisotropy

is very close to the edge of the prior. With these parameters, the metal rich sample

has a very low velocity dispersion in the center. The metallicity distribution of the

two samples and the combined sample is shown in Fig. 5.10

We assume a very simple form for the M/L profile: we leave the first and fifth

Gaussian of the potential density free to vary between 0 and 50 times the luminous

density, and interpolate linearly in Υ−− log(σ)-space, where σ is the width of a

Gaussian in the MGE expansion.

At first, we fit the galaxy without looking at any of the metallicity information,

with a global βz and the M/L profile as above. Next we fit the galaxy taking into



182 Chapter 5: Discrete dynamical models of dwarf spheroidal galaxies

Figure 5.10 — Metallicity distribution for our simulated Sculptor. The metallicity

distributions are given by two Gaussians, each with σ= 0.2.

account full knowledge of the metallicities of the stars, i.e., each model likelihood

contains two values for βz . The results of this are shown in the left four panels of Fig.

5.11. The effect of fitting a too simplemodel to the datamanifests itself in a too high

central M/L and a too low M/L in the outer parts. This is of course something that

should worry people who try to constrain the slope of the potential in dSphs. The

anisotropy for the single population fit is somewhere in between that of the metal

rich and the metal poor tracers.

As a second experiment, we now fit again two models too the kinematic data,

however, we do not have completele knowledge anymore. We assign to each star the

probability of belonging to one of themetallicity samples according to themeasured

metallicity (we assume we know the intrinsic distribution of metallicities. This is

not a strange assumption, because in practice it can be measured). The results are

shown in the right four panels of Fig. 5.11, in which we compare it with the ’perfect

knowledge’ fit. We see that the combined fit to the data is able to recover the intrinsic

anisotropies, and that we can constrain the central and outer M/Ls almost as good

as in the ’perfect knowledge’ case.

5.7 Discussion and conclusions

In this paperwe have tried to progress the study of thematter content of Local Group

dwarf Spheroidals in two ways. First, we have left the assumption of spherical sym-

metry, and second, we have developed a framework to analyze discrete kinematic

data. We have shown that the dSphs are well fit by axisymmetric models, and that

the step to discrete fitting strongly decreases the errorbars on the fitted values.

We have given two application of this work for Local Group dwarf spheroidals.

By treating individual stars, it is possible to identify possible interloper stars. By

carefully modeling both the foreground and the galaxy under study, it is possible to
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Figure 5.11 — Left: comparison of the results of fitting with two different kinematic tracer

populations (of which membership of each population is exactly know – in all panels

indicated by a dashed line) versus fitting of one tracer population (solid line). The addition of

two distinct kinematic populations has the effect of enhancing the central M/L and lowering

the outer M/L. The right panel shows how this changes when one assigns a probability of

belonging to the metal rich or metal poor sample to each individual star (solid line).

improve themodel of the galaxy. A second application comes from chemical tagging

of stars inside a galaxy. If groups of stars form dynamically separate populations,

these can be used to constrain the potential to a greater degree, as was done in

Battaglia et al. (2008). It makes sense to treat this splitting in a statistical way.

Of course, Jeans modeling will not promise the existence of a physical solution

– for that more advanced modeling tools like Schwarzschild modeling will stay

necessary. However, due to its extremely high speed and high accuracy, modeling

galaxies with discrete Jeans is a perfect precursor before starting to model galaxies

with more computationally expensive other methods.
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