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1. Introduction 

Strong final state interaction (FSI) effects are 
very important in the phenomenology of K meson 
decays. In the non-leptonic two-body K + m 
decay the dominant FSI contribution is given by 
the elastic (soft) rescattering of the two pions in 
the final state. 

At centre-of-mass energies around the kaon 
mass, the strong S-wave K-X scattering generates 
a large phase shift difference (@ - 6:) (m$) = 
45” & 6” between the I = 0 and I = 2 partial 
waves [3]. This effect is taken into account by 
factoring out those phases in the usual decompo- 
sition of K --+ m amplitudes with definite isospin 
I = 0 and I = 2: 

AI = A[K+(mr)r] = Are i6: 
. (1) 

The presence of such a large phase shift differ- 
ence also signals a large dispersive FSI effect in 
the moduli of the isospin amplitudes, since their 
imaginary and real parts are related by analytic- 
ity and unitarity. Intuitively, the behaviour of the 
I = 0 and I = 2 S-wave phase shifts as a function 
of the total energy of the two pions as reported 
in figure (1) suggests a large enhancement of the 
I = 0 amplitude and a tiny suppression of the 
I = 2 amplitude. The numerical estimate of this 
dispersive FSI effect is a difficult task, since it is 
dominated by long-distance (soft) contributions 
and reduces to a non-perturbative problem. 
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I discuss the Cle of strong final state interactions (FSI) in K --+ 2~ decays. In this case strong FSI effects can 

be resummed [1,2] by solving the Omnb problem for K + 2n amplitudes. Implications for the CP conserving 

AI = l/2 ratio and the direct CP violation parameter E//E are also discussed. 
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Figure 1. Phase shifts @*(s) with I = 0 and 
2, according to a fit [4] of experimental data 
and used in the numerical analyses [1,2]. Solid 
lines enclose the range covered by the experimen- 
tal data, while dashed lines show the unitarized 
lowest-order ChPT prediction. 

The size of the FSI effect can be roughly es- 
timated at one loop in Chiral Perturbation The- 
ory (ChPT), where the rescattering of the two 
pions in the final state produces an enhancement 
of about 40% in the A0 amplitude [5-71. However, 
the fact that the one loop calculation still under- 
estimates the observed 6: phase shift indicates 
that a further enhancement should be produced 
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by higher orders. It is then necessary to resum 
FSI effects. 

Lattice determinations of K -+ IM amplitudes 
could in principle take into account automatically 
strong FSI effects. However, the direct measure- 
ment of K 4 xx amplitudes on the lattice is still 
afflicted by a series of problems. More recently, 
a possible solution to those problems which over- 
comes the Maiani-Testa theorem [8] has been pro- 
posed [9]. In the meanwhile, most of the attempts 
up to date are based on the so called indirect 
method, i.e. a two-steps procedure where first 
the simpler K 4 T matrix element is measured 
on the lattice and second, the physical K + 2~ 
matrix elements are obtained by using a lowest- 
order ChPT relation between K + 0, K 4 n and 
K --+ 27r [lo]. Neither the first nor the second 
step include FSI effects. Recently, the inclusion 
of one-loop ChPT contributions has been inves- 
tigated in this context [ll]. 

the K meson mass the elastic (soft) rescat- 
tering of the two pions is the dominant 
strong FSI effect. Hence, strong FSI ef- 
fects in K 4 AK amplitudes can be treated 
in a fully non-perturbative way. This im- 
plies that in the usual description of weak 
AS =’ 1 decays with Operator Product 
Expansion (OPE), strong FSI effects can 
be treated without introducing any depen- 
dence on the factorization scale which sepa- 
rates short-distance and long-distance con- 
tributions. 

Approaches based on effective low-energy mod- 
els [12] or the l/NC expansion [13] do include some 
one-loop corrections and find larger values for the 
A0 amplitude. However, the drawback in these 
caSes might be the possible model dependence of 
the matching procedure with short-distance. 

Here, I discuss an approach to FSI effects in 
K + TT decays that has been recently proposed 
[1,2]. It is based on the OmnBs solution [14] for 
K + TM amplitudes, which permits the resum- 
mation of strong FSI effects to all orders in ChPT. 
Intuitively, what the OmGs solution does is to 
correct a local weak K -+ KT transition with an 
infinite chain of pion-loop bubbles, incorporating 
the strong GT~ + TX rescattering to all orders in 
ChPT. 

The last point means that the strong FSI prob- 
lem in K + XT decays can be solved indepen- 
dently of the matching problem between short- 
distance Wilson coefficients and long-distance 
weak matrix elements. The situation can be dif- 
ferent for higher energy processes like rare B de- 
cays such as B -+ TUT, where, at the B meson 
mass, hard rescattering and soft inelastic rescat- 
tering contributions are expected to be the dom- 
inant strong FSI effects. 

In Section 2 the general OmnBs problem is for- 
mulated, while in Section 3 I review the OmnBs 
solution for the K -+ AT amplitudes [2], mainly 
in the CP conserving sector. A few results for the 
CP violating amplitudes, relevant for the predic- 
tion of E’/E are also discussed. A new Standard 
Model prediction of E’/E with the inclusion of FSI 
effects is discussed in [15]. 

2. The Omn&s problem 

A few properties of strong FSI effects can be 
useful in order to understand how they enter the 
prediction of K -+ rrr decays: 

l the production of the two pions and their 
subsequent rescattering are two indepen- 
dent processes. The rescattering process 
only depends on the quantum numbers (to- 
tal isospin I and total angular momentum 
J) of the two pions in the final state and on 
their total energy. 

Let us consider a generic amplitude (or form 
factor) A’,(s), with two pions in the final state 
which have total angular momentum and isospin 
given by J and I, respectively, and invariant mass 
s-q2= (PI + ~2)~. The amplitude is analytic 
everywhere except for a cut on the real positive s 
axis L = [4mz,co). 

Below the first inelastic threshold, only the 27r 
intermediate state contributes to the absorptive 
part of the amplitude and Watson’s theorem [16] 
implies that the phase of the amplitude is equal 
to the phase of the TX partial-wave scattering 
amplitude, so that 

l At centre-of-mass energies of the order of Im A: = (ImA5)zr = eez65 sin S$ A$ = 



ezs: sin65 A? = sin65 IA’JI = tan&: ReA: .(2) 

Cauchy’s theorem implies instead that A:(s) can 
be written as a dispersive integral along the phys- 
ical cut: 

As(s) = 1 
J Z- L 

dz ~~~~~‘, + subtractions. (3) 

Inserting eq. (2) in the dispersion relation (3): 
one obtains an integral equation for A:(s) of the 
Omnes type, which has the well-known Omnes 
solution [14] (for n subtractions with subtraction 
point se outside the physical cut): 

A:(s) = Q:,,(s, SO) w { &(.T SO)} : (4) 

where 

$(s, so) = 

(s - SrJ)n J O” ., brnZ, (z ““so,n G(4 
rr Z-s--_iE (5) 

and 

log {Q:,,(s, so)} = 

nc (s - so)k dk 

k=O 
k! p ln {A:(s)) ISCS” : (6) 

for (n 2 1) and with Q:,o(s,sc) z 1. The dis- 

persive integral 15,n (s, SO) is uniquely determined 
up to a polynomial ambiguity (that does not pro- 
duce any imaginary part of the amplitude), which 
depends on the number of subtractions and the 
subtraction point. The simple iterative relation 
for the real part of I:,n(s, SO) 

Re$,(s,so) = Re$,_l(s,.so) 

-(s - ~a)*-~ lim 
ReI~,,_l(s, so) 

s-so (s - se)+i ’ (7) 

shows that only a polynomial part of I:,n(s, se) 
does depend on the subtraction point se and 
the number of subtractions n, while the non- 
polynomial part of I$,, (s, SO), the one containing 
the infrared chiral logarithms, is universal (i.e. 
SO and n independent). Thus, the Omnes solu- 
tion predicts the chiral logarithmic corrections in 
a universal way and provides their exponentia- 
tion to all orders in the chiral expansion. The 

polynomial ambiguity of I:,n(s, se) and the sub- 

traction function Q$,,(s, SO) can be fixed, at a 
given order in the chiral expansion, by matching 
the Omnes formula (4) with the ChPT prediction 
of As(s). It remains a polynomial ambiguity at 
higher orders. Notice that in the presence of a 
zero of the amplitude the Omnes solution can be 

found for the factorized amplitude q(s). such 

that A:(s) = (s - C)Pq(s), where C is a zero of 
order p. 

3. I( -+ 7r7r matrix elements 

The usual OPE description of K + mr decays 
is realized by a a three-flavour short-distance ef- 
fective Lagrangian with AS = 1 [17.18], 

where GF is the Fermi coupling and Vi2 are the 
appropriate CKM matrix elements. The sum 
is over the product of local four-fermion oper- 
ators Qi and the short-distance Wilson coeffi- 
cients C~(V). The renormalization (or factor- 
ization) scale v separates the short- and long- 
distance contributions contained in C%(u) and Qi 
respectively. The long-distance realization of ma- 
trix elements among light pseudoscalar mesons 
such as K + mr can be realized with ChPT, as 
an expansion in powers of momenta of the ex- 
ternal particles and light quark masses. At low- 
est order in the chiral expansion, the most gen- 
eral effective bosonic Lagrangian, with the same 
Sum @ sum transformation properties as 
the short-distance Lagrangian (8)) contains three 
terms [2]: 

~A.53 
2 

= 

fg27 f 4 &23’$i + +(;3 

+e2f6gEkr (N?QU) + hc.. (9) 
1 

The flavour-matrix operator L, = -iU+D,iJ 
represents the octet of V - A currents at lowest 
order in derivatives, where U = exp (ifi4/ f ) is 
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the exponential representation of the light pseu- 
doscalar meson field with 4 the flavour octet ma- 
trix. GJ = diag( 3, - 4, - 4) is the quark charge 
matrix, X z (X6 - iX7)/2 projects onto the s -+ d 
transition [Xij = b&jz] and (A) denotes the 
flavour trace of A. 

At generic values of the squared centre-of-mass 
energy s = (pXi + p=~)~, the I = 0,2 amplitudes 
generated by the lowest-order lagrangian in eq. 
(9) are given by 

Az(s) = +u& if (5927 (s - M,) 

-3.f 2e2g.mf} (W 

where the usual isospin decomposition 

A(K” --+ nor01 - d,,-Adz, (11) 

A[K+ 4 r+r”] E ;d,, 

has been used. In the absence of e2gEM correc- 
tions, the amplitudes in eq. (10) have a zero at 
s = Mi, because the on-shell amplitudes should 
vanish in the W(3) limit [19]. This is not the 
case for the amplitudes mediated by the elec- 
troweak penguin operator Qs, since its lowest- 
order ChPT realization is given by the term pro- 
portional to e2gEM. The lowest order chiral con- 
tribution to those amplitudes is a constant of or- 
der e2po (which anyway counts as 0(p2) in the 
usual chiral power counting). 

However, one difference between the Omnes solu- 
tion for K + m amplitudes and the scalar pion 
form factor, is that we need to consider an off- 
shell kaon of mass squared s = (pKi +p,~?)~ in the 
first case, instead of a physical momentum trans- 
fer s. This generates a local ambiguity at higher 
orders in the ChPT expansion (see also [2] for the 
explicit expressions at the next-to-leading order 
in ChPT), which however has nothing to do with 
the Omnes procedure of resumming FSI effects. 

The CP conserving K + mr isospin amplitudes 
admit a general decomposition in ChPT [2]: 

Al(s) = &r(s) (s - M,)+G(s) (M; - M,“) 412) 

where &r(s) parameterizes tiny corrections due 
to the explicit breaking of chiral symmetry via the 
quark mass matrix and it is zero at lowest order2. 
Since there is a single strong phase, for a given 
isospin, the unitarity relation (2) is valid for &r(s) 
and &I(S) individually and the Omnes problem 
can be solved separately for the two pieces. Com- 
bining them, one can write the result for the phys- 
ical on-shell amplitude in the simpler form: 

The derivation of the Omnes solution for K -+ 
KK decays has been discussed in detail in ref. [2]. 
Here, I focus on some relevant aspects of the prob- 
lem. Our aim is to resum the strong FSI effects 
due to soft rescattering of the two pions in the 
final state. The study of the scalar pion form fac- 
tor and its comparison with K --) m amplitudes 
in ref. [2] has clarified various facts: 

AI z dr(M;) = (M; - M;4) ar(M;) 

= (M; - M:) %(Mk so) w(so) (13) 

= (M$ - Mz) XI(M~, SO) am eia~(M~), 

where al(s) E 61(s) + &r(s). The Omnes factor 
n~(Mi, SO) can be interpreted as a sort of evo- 
lution operator from the subtraction point so to 
M&. Its explicit expression for a given number of 

l soft FSI in the I = 0 channel generate large 2To make the decomposition (12) unique, we require the 
infrared logarithms dependent on the pion function G,(s) to depend on s only logarithmically. 

mass which need to be resummed to all or- 
ders in ChPT. 

Those infrared logarithms are universal, i.e. 
only depend on the quantum numbers of the 
~ZTX system in the final state. 

The Cm&s solution provides an evolution 
of the given amplitude from low energy val- 
ues, where the ChPT momentum expan- 
sion can be trusted, to higher energy values, 
through the exponentiation of the infrared 
effects due to FSI. 



subtractions can be directly derived from eq. (4) 
and can be split into the dispersive contribution 
!BI(M~, se) and the phase shift exponential. No- 
tice also that the once-subtracted Omnes factor 
fly)(hf$, ss) is universal because it only depends 
on the phase shifts S,‘(s), while for two subtrac- 
tions the Omnes factor depends on f’(se)/f(so) 
for a given amplitude f(s). However, given the 
smallness of the sub-leading &ir contribution, it 
remains a good numerical approximation to take 
a global Omnes factor for a~ (s) also with two sub- 
tractions. 

For each of the amplitudes af) , af7) (the octet 
and 27-plet I = 0 amplitudes) and u2 (with I = 
2): the s dependence can be written in a simple 
form: 

a(s) = o(0) { 1+9(s) + O(P4)} > (14) 

where the one-loop functions g = go , go (8) (27) and 

gs have been computed in ref. [2]. The main 
properties of the g(s) functions can be summa- 
rized as follows: 

l the contribution from &r(s) is always very 
small and exclusively due to non-analytic 
l?K and 77 loop contributions which are 
numerically suppressed at low values of s. 

l All isoscalar g functions contain exactly the 
same infrared 1nMz contribution and the 
same contribution from the finite one-loop 
rrrr rescattering function jrX(s) [2] which 
generates the absorptive part of the isospin 
amplitude below the inelastic threshold. 
This shows the universality of the infrared 
effects due to FSI. 

l The s dependence of the one-loop correc- 
tion at low values of s is dominated by the 
pure W(2) effect of elastic KK 4 7r7r scat- 
tering. These universal infrared effects en- 
hance the I = 0 amplitudes while suppress 
the I = 2 amplitude. 

The dynamics leading to the rr final state, also 
generates local contributions which are different 
in each case. For the scalar form factor these con- 
tributions are small [2]. For the weak K -+ mr 
amplitudes the knowledge of those contributions 

(generated by the ChPT counterterms) is still 
quite limited and has to be further investigated. 
In addition, being the kaon off-shell, local off-shell 
contributions are also allowed, starting at next- 
to-leading order in the chiral expansion. The 
usual factorization models [20] predict all the lo- 
cal contributions to the functions g(s) to be zero 
at the ChPT renormalization scale p = Mp. How- 
ever, a model-independent analysis still remains 
affected by the ambiguity due to the presence of 
local contributions, already for the on-shell am- 
plitude. The Omnes factor cannot fix that prob- 
lem. The role of the Omnes factor remains that 
of providing an efficient resummation of large in- 
frared effects due to FSI. The advantage of the 
Omnes exponentiation respect to the usual one- 
loop ChPT computation is to control the uncer- 
tainty coming from higher order (> two-loops) 
FSI effects. 

Taking a low subtraction point se = 0 where 
higher-order corrections are expected to be small, 
we can just multiply the tree-level formulae (10) 
with the experimentally determined Omnbs expo- 
nentials [2]. The two dispersive corrections fac- 
tors thus obtained [2] are !Re(Ms,O) = 1.55 * 
0.10 and %?z(Mi, 0) = 0.92 f 0.03, where the er- 
rors are supposed to take into account a) the un- 
certainties of the fits to the experimental phase 
shifts data used in the calculation of the Omnes 
factor and b) the additional inelastic contribu- 
tions above the first inelastic threshold. 

The corrections induced by FSI in the moduli of 
the decay amplitudes AI generate an additional 
enhancement of the AI = l/2 to AI = 312 ratio, 

%I@& o)/!Rz(M;, 0) = 1.68 f 0.12. (15) 

This factor multiplies the enhancement already 
found at short distances. 

The Omnes procedure can be directly extended 
to the CP-violating K --+ mr amplitudes rel- 
evant for the estimate of the direct CP viola- 
tion parameter E//E. In deriving the structure 
of the absorptive part of the amplitude in eq. 
(2) one makes use of Time-Reversal invariance, 
so that the Omnes procedure as formulated in 
eq. (4) can be applied only to CP-conserving 
amplitudes. However, working at the first or- 
der in the Fermi coupling, the CP-odd phase is 
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fully contained in the ratio of CKM matrix ele- 
ments r = Vtd Vt;/Vud VGS which multiplies the 
short-distance Wilson coefficients. Decomposing 

CP the isospin amplitude as AI = dFP + rdI , 
the Omnes solution can be derived for the two 

CP amplitudes dFP and A, which respect Time 
Reversal invariance. In ref. [l] it has been shown 
how the inclusion of FSI effects in K --) no ampli- 
tudes can easily enhance previous short-distance 
based Standard Model predictions of E’/E 121,221 
by roughly a factor of two. To obtain a com- 
plete Standard Model prediction for E//E. -.n ex- 
act matching procedure has been proposeu [23]. 
It is inspired by the large-NC expansion, but only 
at scales below the charm quark mass p 5 m, 
(where the logarithms that enter the Wilson co- 
efficients are small). FSI effects, which are next- 
to-leading in the l/NC expansion but numerically 
relevant, are taken into account through the mul- 
tiplicative factors n~(Mk, 0) while avoiding any 
double counting. The Standard Model prediction 
for E’/E has been discussed in [15] at this confer- 
ence. 
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