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An analysis is made using population genetic models of the evolution of 
gamete motility differences as a consequence of a pheromonal gametic 
approach mechanism. A stable swimming speed dimorphism may arise via 
disruptive selection on swimming speed, resulting from selection favouring 
a high efficiency of finding another gamete as well as a high probability of 
being found by another gamete. It is shown that no more than two different 
swimming speeds can coexist in a stable polymorphism. A specific relation 
is deduced between gamete swimming speed and the surface area of the 
volume around the gamete bounded by the critical pheromone concentra- 
tion. It is concluded that an initial difference in swimming speed of at least 
twofold will lead to a stable dimorphism, and that evolution towards one 
of the gamete types becoming non-motile is very likely. 

1. Introduction 

In recent years a number of theoretical studies has been published of various 
aspects of the evolution of gamete dimorphism. Parker, Baker & Smith 
(1972) proposed a model for the evolution of anisogamy based on selection 
favouring the production of large numbers of gametes as well as a large 
zygote size. Their ideas were incorporated into a population genetic model 
permitting a more rigorous analysis by Charlesworth (1978), who confirmed 
their results. On the same subject, but using a different approach, are 
contributions by Bell (1978) and Maynard Smith (1978). Hoekstra (1980) 
has shown in an extension of Charlesworth's (1978) model, that there 
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cannot be stable anisogamy with more than two different gamete sizes. 
Models for the evolution of disassortative gamete fusion are studied by 
Parker (1978), who considers the evolution of disassortative fusion with 
respect to gamete size in an originally random mating anisogamous popula- 
tion, and by Charlesworth (1978), who shows that disassortative fusion can 
evolve by selection for close linkage between the loci determining mating 
types and gamete size. Particularly intriguing is the problem of the evolution 
of two mating types from an original situation in which all (iso-) gametes 
are alike functionally. This problem has been analyzed by Hoekstra (1982), 
who shows that it is difficult to explain. Evolution towards unipolarity in 
gamete recognition or adhesion (implying the existence of two mating types) 
requires a more than twofold disadvantage for bipolarity, However, the 
evolution of mating types is much more likely when a pheromonal attraction 
mechanism is already present, but such pheromonal systems seem to be 
rare among isogamous algae. 

In this and the following paper another (and hitherto neglected) aspect 
of gamete dimorphism will be studied: the evolution of motility differences 
in the presence of a pheromonal attraction system. This paper in particular 
analyses the relation between swimming speed of gametes and their abilities 
to find, and to be found by, other gametes. 

2. Basic Assumptions 

The following assumptions underlie the models of this and the following 
paper. 

(i) A large population of vegetative haploid individuals is living in water. 
Reproduction may be asexual, but under suitable conditions gametes are 
formed which fuse at random to form zygotes; these zygotes divide meioti- 
cally to form new vegetative individuals. (Many Algae have such a life cycle.) 

(ii) There is a pheromonal gamete attraction mechanism. In some of the 
models all gametes both produce pheromone and respond to it, while in 
other models there is already a dimorphism in this respect: part of the 
gamete population only produces pheromone, while the rest only responds 
(for a model of the evolution of this dimorphism, see section 4 of Hoekstra, 
1982). The pheromone diffuses into the water. There exists a critical 
pheromone concentration, which is the lowest concentration still perceptible 
by the gametes. The set of all points of this critical concentration forms a 
closed convex surface in three-dimensional space. The volume bounded by 
this attraction surface is called the attraction space. 

(iii) The swimming paths of the gametes are straight lines in random 
directions. When a gamete moves into the attraction space of another 
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gamete, it will change direction so as to achieve gamete contact. A gamete's 
probability of finding another gamete in a given time interval is proportional 
to its swimming speed. A gamete's probability of being found by another 
gamete in a given time interval is proportional to the area of its attraction 
surface. For a justification of the latter assumption, see Kendall & Moran 
(1963, chapter 3). 

(iv) All genetic variants to be considered in the models have the same 
fitness with respect to asexual reproduction. 

3. Preliminary Population Genetic Analysis 

Consider a population in which all gametes produce pheromone and are 
also able to respond to it. There is a locus A affecting gamete swimming 
speed with alleles A1, A2 . . . . .  Ak. It is assumed that Ai gametes have 
swimming speed vi and attraction surface area si. We shall denote the zygote 
resulting from an Ai gamete finding an A t gamete as A~Aj. Let xl be the 
frequency of A~ individuals in a given generation. Among the gametes 
produced, A~ will also have frequency x~. From the assumptions mentioned 
in section 2 (iii) it follows that among the zygotes formed, the frequency of 
AiA/ is: 

k k 

visjx~x~ Z Z visjxixj. (1) 
i=1  1=1 

The frequency of A~ among the individuals of the next generation is thus: 

x~ = xi ~ ( v'sj + vjs,, /._. ( vis/ + v~s,'~ 
-~ JX, I L  2 ,]gig,. (2) 

If we write 

vis/ + v/si (3) 
wq 2 

and 

equations (2) become: 

if" = Y~ wqxixj (4) 
ij 

f f ' x l  = xi Y~ wijxj. (5) 
J 

Therefore our model is equivalent to a model of a random mating diploid 
population with genotype A~Aj having fitness wq. The properties of the 
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latter model are off course well-known; if there are just two alleles, Ax 
and A2, a stable polymorphism will be maintained if 

W12~--" W21 > Wll ,  W22, (6) 

and the equilibrium frequencies are given by: 
A 
Xl W 1 2 -  W22 
"z- = • (7) 
X 2 W12-- Wll 

Writing V = vt/v2 and S = sl/s2, and assuming that A1 specifies the faster 
gametes so that V >  1, we obtain the following conditions for a stable 
polymorphism with respect to gamete swimming speed from conditions (6): 

V + S >  2VS (8a) 

V + S > 2 .  (8b) 

Expressed in V and S the equilibrium frequencies (7) become: 
A 
x_.2= V +  S - 2  
x2 V + S - 2 V S "  (9) 

Figure 1 shows a graphical representation of conditions (8). A necessary 
(but not sufficient) condition for polymorphism is that the slower gamete 
must have a larger attraction surface area. Furthermore it can be seen from 

1.0 
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FIG. 1. Graphical representation of conditions (8a) (upper curve) and (Sb) (lower curve). 
There is a stable gamete motility dimorphism for ( V, S) values between the two curves. 
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Fig. 1 that the conditions for gamete motility dimorphism are very restricted 
when the difference in swimming speed is small ( V ~- 1), but that they are 
easier to satisfy for larger values of V. Clearly, we need to know more 
about the actual relation between swimming speed and attraction surface 
area, in order to be able to judge the likelihood of such a swimming speed 
polymorphism. However, before investigating this relation in section 5 of 
this paper, we ask under what conditions a third swimming speed can be 
established in a population dimorphic for gamete swimming speed. This 
question is similar to the question whether there can be more than two 
gamete sizes, analysed by Hoekstra (1980). 

4. Introduction of a Third Swimming Speed 

Consider a large population polymorphic for A1 and A2. The inequalities 
(8) are supposed to be satisfied. A third allele A 3, specifying an intermediate 
gamete swimming speed, is introduced into this population. We therefore 
have /)1 >/)3 >/)2 and sl < sa < s2. 

We now examine under what conditions A 3 will be protected (increase 
in frequency when rare) by linearizing equation (5) in the neighbourhood 
of xa = 0. This results in: 

A A 
W13X 1 + W23X 2 

x~ - x3 -2 ^ - A2 (10) 
WllX 1 q-2W12XlX2"t" w 2 2 x  2 

where xl and x2 are given by equation (7). 
Therefore, A3 is protected if 

A ~, A2 ~ ^ ^ -  ^ 2  
Wl3X 1 "~ W23X2 ~ W l l X  1 q- •Wl2XlX2-t-W22X 2. (11) 

Writing V*=  va/v2 and S*=  s3/s2 and using' equation (3), the inequality 
(11) can be written in the following form: 

(VS*+SV*)~I+(V*+S*)x"2>2(V~+£2)(S~I+~). (12) 

From equation (9) one obtains 

V + S - 2  V + S - 2 V S  
~ = 2 ( V + S - 1 - V S )  and ~ 2 = 2 ( V + S _ I _ V S ) ,  

substituting these expressions for xl and x2 into inequality (12) we obtain 
after rearranging and simplifying 

V - 1  1 - S  
V,_----i-< 1_  S. ,  (13) 
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o r  

v3 - v2  > s :  - s3 (14) 
U1--  U2 $ 2 - - S 1 "  

Condition (14) is depicted in Fig. 2. It is not difficult to prove that for 
condition (14) to be satisfied, the point a3 must be above the line a~a2, 
and that condition (14) cannot be satisfied (and therefore A3 is not protec- 
ted) if c~3 lies beneath the line a~a2. Thus protection of A3 depends on the 
relation between gamete swimming speed v and attraction surface area s. 
If this relation takes the form of an (upward) concave curve on the relevant 
interval in the s, v plane (the dotted line in Fig. 2), then A3 will not be 
protected; and if the relation between s and v is represented by an (upward) 
convex curve (broken line in Fig. 2), A3 will invade an A~, As population. 

$2 

s~ 

$3 

,51 

a3 

Cl 1 

t/ 

FIG. 2. Graphical representation of condition (14), A (third) intermediate gamete swimming 
speed will increase in frequency when rare if the relationship between s and v takes the form 
of an upward convex curve ( - - - ) ,  but will be selected against in case of an upward concave 
relation ( . . . . . .  ). 

5. Relation Between Gamete Swimming Speed and 
Attraction Surface Area 

Roberts (1923) has studied the density distribution of smoke in a smoke- 
cloud produced continuously and uniformly at a fixed point in a uniform 
wind. The diffusion of smoke in the atmosphere from a fixed source in a 
uniform wind can be considered to be analogous to the diffusion of 
pheromone in water from a source, moving with constant speed along a 
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straight line in still water. For this reason we can use a result of Roberts 
(1923) as a starting point for our analysis. Roberts '  approach has also been 
used by Bossert & Wilson (1963) in their analysis of pheromonal communi- 
cation by insects. 

Let ;t' be the concentration of pheromone in g/cm3; q the rate of 
pheromone production in g/sec; K the diffusion coetficient in cmZ/sec; r 
the distance from the source of pheromone production in cm; v the gamete 
swimming velocity in cm/sec. Then the phermone concentration is (Roberts, 
1923): 

C - ( v r /2K) ( l - cosS )  x = - e  , (15) 
r 

where c = q/4wK. 
Note that equation (15) is given in polar coordinates (see Fig. 3). Our 

objective is to determine the area of the surface of revolution obtained by 
rotating the upper half of the curve given by equation (15) around the 
horizontal axis. That area is identical to the attraction surface area defined 
in section 2 if X is equal to the critical pheromone concentration. We then 
want to calculate the relation between this area and the swimming 
velocity v. 

(Trr 2) 
, 

(8,r) 

(0, q) 

FIG. 3. The curve consists of points of equal pheromone concentration in a plane through 
a pheromone producing gamete, represented by the origin of the coordinates. The gamete is 
moving with a constant speed in the negative direction along the horizontal axis. 

In general, the area of a surface of revolution obtained by rotating around 
the x-axis the graph of a function f(x), is equal to 

f: 2~- f(x)x/1 + {f'(x)} = dx (16) 



64 R. F. HOEKSTRA E T  A L .  

This formula gives the area of the curved surface between the planes x = a 
and x = b. Therefore, we need to know the interval over which the graph 
given by equation (15) has to be integrated, and also the first derivative of 
this function. 

First, we observe 
becomes 

(see Fig. 3) that at the point (0, rl) equation (15) 

C 
= -- (17) X 

rl 

This means that the length rl of the "tail" of the attraction space is 
determined by the pheromone production and the critical pheromone con- 
centration. Note that the length of the tail does not depend on the swimming 
speed v. In fact rl is equal to the radius of the spherical attraction space of 
a non-motile gamete (see also Fig. 5). Assume that at a given rate of 
pheromone production, the critical (i.e. just perceptible) pheromone con- 
centration is equal to X*, and the length of the tail r I equal to r*. It is 
convenient to re-scale our description by expressing the distances involved 
as fractions of r*. Let the new variable be p = r/r*, (0 < p <- 1). Substituting 
pr* for r into equation (15), we obtain for the concentration at point ( ,r, rE): 

C 
X = . e -°"2r'/K (18) 

Equating equations (17) and (18) yields for X = X* 

,02 = e -°p2r*/K (19) 

It is not possible to obtain an explicit expression for P2, but using numerical 
methods p2 can be computed for varying values of vr*/K, and then the 
required integration interval is known. In order to apply formula (16) we 
have to express equation (15) in rectangular coordinates. Substitution of 
r = ~ y2 and cos 0 = x / ~ - +  y2 and rescaling as before by writing x = ~r* 
and y = ~r* results in 

C__. . _ ( o r . / 2 K ) ( 4 ~ - ~ _ ~ )  
X = r ,~ /~2+ r - (20) 

For the critical concentration X *= c/r*, equation (20) can be written in 
the following form 

.~. + {e-(Ur*/ K ) ( ~ - ~ ) _  ~2}1/2 (21) 

With the use of numerical methods the values of r /were computed. 
Finally, an expression for the first derivative dr//d~ can be derived; this 

rather lengthy and uninformative expression will not be reproduced here. 
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Now all the ingredients necessary for obtaining the integral (16) can be 
computed; the integral itself was approximated numerically using the 
method of Patterson. In this way the size of the attraction surface area has 
been computed for a large number of values of v/K ranging from 0 to 
25 000. For convenience r* has been set equal to 1. Realistic values of 
vr*/K are of the order of 103r *, since gamete swimming speed v in 
microorganisms is of the order of 10 -2 cm/sec (Nultsch, 1974), and the 
diffusion coefficient K in water is of the order of 10 -5 cm2/sec. 

The relation between the attraction surface area s and the swimming 
speed v appears to be (upward) concave over the whole interval for which 
the computations have been performed. Figure 4 shows this relation for the 

08 

O6 

0.4 

0'2 

l 

i O00 20'00 3000 
v/K 

FiG. 4. Relation between s and v/K obtained by computations described in the text. 

part of the interval containing the most realistic values of v/K. From this 
result, in conjunction with the analysis in section 4, we may conclude that 
a third (intermediate) swimming speed cannot invade a population polymor- 
phic for two swimming velocities. Moreover, if a mutant swimming speed 
is larger or smaller than the speed of the two established types, the then 
intermediate type will be unprotected. There is thus disruptive selection in 
this model for an increasing difference in swimming velocities, perhaps up 
to the point where one of the two types will abandon the habit of swimming. 
An analysis of the latter situation will be given in section 6. 

Figure 5 shows sections by a plane through the pheromone source (the 
gamete) of the attraction surface for various swimming velocities. 
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FIG. 5. Contoursof the attraction spacein asection through the gamete for various swimming 
velocities. The gamete is at the origin of the coordinates, and is moving with constant speed 
along the horizontal axis in negative direction. The outer contour is from a non-motile gamete 
(v /K =0) ;  inwards are contours for successively v/K = 1, 4, 16, 64, 256, and 1024. 

I0 

S 

08 

0 6  

0 4  

0 2  

0 I 

v 

FIG. 6. The computed relation between S and V; the curves representing this relationship 
for values of v/K in the interval (10, 104) all lie within the black region. A gamete motility 
dimorphism is possible for S values between the two curves. 
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In Fig. 6 the results of the computations are given in a form which permits 
a direct comparison with the conditions for stable polymorphism shown in 
Fig. 1. 

The relation between the ratio S of the attraction surface areas and the 
ratio V of the swimming velocities oF the two types present in a population 
appears to be nearly independent of the value of v/K for v/K > 10. The 
curves representing the relationship between S and V for all values of v/K 
in the interval [10, 104 ] are covered by the thick line in Fig. 6. Since most 
realistic values of v/K are of the order of 103, we may conclude from Fig. 6 
that there can be stable polymorphism for gamete swimming speed if the 
velocities of the two types differ by a factor of at least 2.5. 

6. The Special Case ot One of the Gamete Types being Non-motile 

In so called oogamous species the female gametes are much bigger than 
the male gametes and non-motile. In some isogamous species (e.g. the 
brown alga Ectocarpus) the female gametes attach themselves to the sub- 
strate and remain sessile. 

It is therefore of interest to consider the evolution of a non-motile type. 
In particular we ask under what conditions a non-motile mutant will be 
established in a population consisting of motile gametes. Substituting v2 = 0 
into equation (3) and using inequality (6) provides the following condition 
for a stable polymorphism of a motile and a non-motile type: 

s, < ½s2. (22) 

Since s2 is equal to the surface area 4rrr .2 of a sphere (with radius r*), 
and the ratio sl/s2 is independent of r*, we write condition (22) as 

sl < 2rr -~ 6"2832. (23) 

From the computed results described in the preceding section it follows 
that inequality (23) is satisfied if 

vr*/K > 1.33. (24) 

As mentioned before, reasonable values of v/K are of the order of 103, 
implying stable polymorphism if r*> 1-33 × 10 -3 cm. This condition seems 
very easily satisfied, since gamete sizes are also of the order of 1 0  -3  cm, 
and gametes show a characteristic ability to react to very small concentra- 
tions of pheromone. If the non-motile gamete is fixed to a substrate, the 
attraction space will more nearly be represented by a half sphere, the 
substrate acting as a reflecting plane. Doubling the amount of pheromone 
produced (i.e. doubling the value of c (see equation (15))), and assuming 
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the same critical concentration X*, we obtain from equation (17) that the 
radius of this half sphere is twice the original radius r*. Therefore, the 
attraction surface area in this case is equal to ½x4~-(2r*) 2= 8,rrr .2, which 
means that the attraction surface area of a gamete fixed to a substrate is 
twice as large as that of a free floating non-motile gamete. However, the 
accessability of the former will be reduced, so that after all the chances of 
being found are presumably not very different for the two types of non- 
motile gametes. 

7. Discussion 

In this study an analysis has been made of the evolution of gamete motility 
differences as a consequence of a pheromonal gametic approach mechanism. 
In particular a specific relation has been deduced between swimming speed 
and attraction surface area, based on a number of assumptions, listed in 
section 2 of this paper. Two of these assumptions require some additional 
discussion. First, one might well ask how realistic the assumption of a closed 
convex attraction surface is in connection with currents and turbulence in 
the water. However, algal gametes swimming in water are characterized by 
a Reynolds number (the ratio of the inertial forces to the viscous forces) 
smaller than one, which implies that the viscous forces of the surrounding 
water dominate the inertial forces of the moving gamete (Purcell, 1977). 
Therefore, these gametes cannot "experience" any turbulence in the water. 
Hence we are justified in setting up the models as if the gametes were in 
stagnant water (provided the dimensions of the attraction space are small 
relative to the scale on which turbulence occurs). Second, the assumption 
that the swimming paths of the gametes are straight lines in random 
directions, although adequate for some species (like Ectocarpus, Miiller, 
1976), seems unrealistic for other species of micro-organisms. For example, 
the motility pattern of gametes of the aquatic fungus Allomyces is character- 
ized by short, smooth swimming paths more or less along a straight line, 
interrupted by so-called "jerks" changing the orientation of the gametes 
(Pommerville, 1978). This pattern is similar to bacterial motility, character- 
ized by "twiddling" and tumbling (Berg & Brown, 1972). The question is 
whether we are still justified in such cases to assume that for any gamete 
the probability of detection by another gamete is proportional to its attrac- 
tion surface area. This assumption was based on a theorem which states 
that the probability of a random line intersecting a three-dimensional convex 
region is proportional to the surface area of the region (Kendall & Moran, 
1962). It seems safe however to conjecture that the theorem also holds for 
the swimming patterns just discussed provided all directions are equally 
likely at any moment. 
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The results described in section 5 in conjunction with the population 
genetic analysis of sections 3 and 4 indicate that a mutation with sufficiently 
large effect on swimming speed will be selected, leading to a stable poly- 
morphism for gamete motility. Furthermore, since an intermediate swim- 
ming speed is unprotected, there will be disruptive selection resulting in an 
increasing difference in swimming speed of the two types. A number of 
predictions follow from the theory developed in this paper. Firstly, one 
would not expect to find cases of gamete motility dimorphism with only a 
small difference in swimming speed between the two types (less than 
two-fold, say). Secondly, in any population there will be no more than two 
different types of gametes with respect to swimming speed. Thirdly, species 
with a chemotactic gamete approach mechanism but without a gamete 
motility dimorphism would not be expected to exist. Fourth, from equation 
(9) and the results shown in Fig. 6 it follows that one would expect to find 
an excess of the faster swimming variants, £1 being considerately greater 
than £2 even in the case of a tenfold difference in swimming speed. Applica- 
tion of equation (7) in the case of one of the two gamete types being 
non-motile (section 6) gives £1/£2  = S2/(S2--2Sl), implying that one would 
expect more motile than non-motile gametes. 

To what extent are these predictions in accordance with the facts? With 
respect to the first prediction, those species where the slowest (female) 
gamete settles at a substrate or does not swim are in agreement with the 
theory; this applies to all oogamous species and to many anisogamous 
species. Unfortunately we have been able to find only a few reports on 
actual swimming speeds of gametes. In the fungus Allomyces marcrogynus 
the male gametes swim about 1"6 times faster than the female gametes 
(Pommerville, 1978), which is in conflict with the prediction. However the 
female gametes have a tendency to stop swimming after some time, so that 
after all the prediction does not seem to be violated. 

In the subsequent paper (Hoekstra, 1984) a more general population 
genetic model will be analysed, permitting under certain conditions a stable 
polymorphism with a smaller difference between the two motility variants. 

As far as we are aware, there is no observation contradicting the second 
prediction. There is however one report in conflict with the third prediction. 
Tsubo (1961) found that in the isogamous species Chlarnydomonas moewusii 
var. rotunda, the mating type ( - )  gametes produce a pheromone which 
attracts mating type ( + ) gametes. The only difference in behaviour between 
the two types of isogametes seems to be that the ( - )  mating type gametes 
become non-motile shortly after the initial stages of pair formation, which-- 
in the light of the theory presented in this paper--they were expected to 
do in an earlier stage. It would be very interesting to confirm Tsubo's results 
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and to investigate the system further, which is also advocated by Kochert 
(1978). 

As to the fourth prediction, we have not found relevant data to test it. 
However, the more elaborate models of the subsequent paper (Hoekstra, 
1984) predict a 1 : 1 "sex" ratio. For reasons to be explained in that paper, 
the latter prediction is based on more realistic assumptions. 

Finally, in the light of the theory presented in this paper, it is interesting 
that (with the exception of the above-mentioned Chlamydomonas species 
investigated by Tsubo (1961)) no isogamous species with sexual pheromones 
are known. It seems likely that once a chemotactic gamete attraction 
mechanism has been evolved, isogamous species will either develop a 
gamete motility dimorphism, thus becoming behaviourally anisogamous like 
Ectocarpus, or evolve towards morphological anisogamy. The latter possibil- 
ity is analysed in the subsequent paper (Hoekstra, 1984). 
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