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Chapter 7
Contonous Glass Patterns for Painterly

Rendering

Based on the content of the paper:
G. Papari and N. Petkov, ”Contonous Glass Patterns for Painterly Rendering”, IEEE Trans-
actions on Image Processing 18(3) : 652-664, 2009

Abstract

Glass patterns have been exhaustively studied both in the vision literature and from a
purely mathematical point of view. We extend the related formalism to the continuous
case and we show that continuous Glass patterns can be used for artistic imaging ap-
plications. The general idea is to replace natural texture present in an input image with
synthetic painterly texture that is generated by means of a continuous Glass pattern,
whose geometrical structure is controlled by the gradient orientation of the input image.
The behavior of the proposed algorithm is analytically interpreted in terms of the theory
of dynamical systems. Experimental results on a broad range of input images validate
the effectiveness of the proposed method in terms of lack of undesired artifacts, which are
present with other existing methods, and easy interpretability of the input parameters.

7.1 Introduction

Glass patterns (GP) [1–3] have drawn considerable attention in the vision literature.
Fig. 7.1 shows examples of such patterns, obtained by superposing a random point set

with a rotated version of it. If the rotation angle is sufficiently small, a circular structure is
clearly visible [1]. As the rotation angle increases, the circular structure becomes less salient
and finally disappears. Similar effects can be achieved if other geometric transformations are
considered instead of rotation (Fig. 7.2).

A large amount of research has been carried out in order to understand the perception
of geometrical structure in GP. Direct measurements of the neural activity in the areas V1
and V2 of the brain of primates indicate that, when GP are presented, neurons of the visual
cortex strongly respond to the local orientation of pairs of dots [4, 5]. The responses to such
dipole patterns are then processed by means of association fields, thus extracting long chains
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Figure 7.1: Glass patterns obtained by superposing a random point set on a rotated copy of it, with
rotation angles of 5, 10, 20, and 45 degrees.

Figure 7.2: Glass patterns obtained by several geometric transformations. From left to right: isotropic
scaling, expansion and compression in the horizontal and vertical directions, respectively, combination
of rotation and isotropic scaling, and translation. Note that translational GP are the least salient.

of collinear segments [6, 7]; these chains determine the geometrical structure perceived in
GP. Circular and spiral structures in GP are more salient and more robust to noise than
radial, hyperbolic and translational geometries [8–10]. This indicates that the contour inte-
gration process that is performed by the visual system is more sensitive to closed geometric
structures [11] and this might be the basis of the gestalt principles of closure and praeg-
nanz [11, 12]. Several computational models of the perception of GP, taking into account
both local and global mechanisms, have been proposed [11, 13–15].

GP have also been studied from a purely mathematical point of view in terms of their
macro and microstructure. The former concerns local dot density, which turns out to be lower
in the centre of the pattern. The related phenomenology has been exhaustively studied [16,
17] and it can be explained by the general theory of moiré effects on both periodic and non-
periodic patterns [18, 19]. On the other hand, microstructure concerns the orientation field
that is induced by the strong correlation between the two superposed point sets that compose
a GP. Microstructural properties of GP can be studied naturally in the framework of the
theory of dynamical systems [20, 21] and algorithms able to synthesize any microstructure
have been provided [21].

Despite their theoretical importance, and the large amount of research conducted on
them, GP have not been used in image processing yet. This is probably due to the fact
that continuous structures are more suitable for image processing tasks than point sets.
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In this chapter, we introduce a continuous version of GP and we show that it can be
used to produce a nice artistic effect in photographic images. The idea is to replace the
natural texture of the input image with a synthetic painterly texture generated by means of
a continuous Glass pattern. The rest of this chapter is organized as follows: In Section 7.2,
the mathematical formalism related to GP is reviewed and extended to continuous signals. In
Section 7.3, the proposed painterly rendering algorithm is described. Results and comparison
with other techniques are presented in Section 7.4 and conclusions are drawn in Section 7.5.

7.2 Discrete and Continuous Glass Patterns

In this section we review the mathematical formalism related to the classical discrete GP
(Section 7.2.1) and we extend it to the continuous case (Section 7.2.2). We will use the
notation gσ(r), r = (x, y) for a 2D Gaussian function with standard deviation σ:

gσ(r) =
1

2πσ2
exp

(
− |r|

2

2σ2

)
(7.1)

7.2.1 Discrete Glass patterns

Let v(r) be a vector field defined on R2 and let us consider the following differential equa-
tion:

dr
dt

= v(r) (7.2)

We indicate the solution of (7.2), with the initial condition r(0) = r0, by r(t) = Φv(r0, t).
For a fixed value of t, Φv is a map from R2 to R2, which satisfies the condition Φv(r, 0) = r.

Let S = {r1, ..., rN} be a random point set and let be Φv(S, t) , {Φv(r, t)|r ∈ S}.
Using this notation, we define the Glass pattern Gv,t(S) associated with S, v, and t as
follows:

Gv,t(S) , S
⋃

Φv(S, t) (7.3)

Examples of GP generated by linear differential equations are shown in Figs. 7.1 and 7.2,
where the elements of Gv,t(S) are rendered as black dots on a white background1. In
Fig. 7.1, Glass patterns related to the vector field v(x, y) = (−y, x) are shown for dif-
ferent values of the parameter t (t = π

36 ,
π
18 ,

π
9 ,

π
4 ). More general vector fields give rise to

more sophisticated geometries (Fig. 7.3). In general, the geometrical structure exhibited by
the GP defined in (7.3) is related to the trajectories which solve (7.2) [21].

1Other renderings and superposition rules may result in different microstructures, as shown, for instance in
[19, 22].



150 7. Contonous Glass Patterns for Painterly Rendering

(a) (b)

(c) (d)

Figure 7.3: Glass pattern associated to a nonlinear vector field. (a) vector field v(x, y) = [y2 −
1 + 1

3
xy, 1

3
(y2 − 1) − xy]ᵀ, (b) the trajectories which solve the corresponding differential equation

ṙ = v(r), (c) the random point set S, and (d) the corresponding GP.

7.2.2 Continuous Glass patterns

In order to generalize this formalism to the continuous case, we define a binary field bS(r)
associated with a point set S as follows:

bS(r) ,

{
1, r ∈ S
0, r /∈ S

(7.4)
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It is straightforward to see that the binary field associated with the superposition of two point
sets S1 and S2 is equal to:

bS1
S

S2(r) = max[bS1(r), bS2(r)] (7.5)

Therefore, from (7.3) and (7.5), we see that the binary field associated with a GP is equal to:

bGv,t(S)(r) = max{bS(r), bS [Φv(r, t)]} (7.6)

The generalization of (7.6) to the continuous case is straightforward: first, a continuous
set of patterns bS [Φ(r, τ)], with τ ∈ [0, 1] is considered, instead of only two as in (7.6);
second, any real valued random image z(r) can be used instead of a Poisson process bS(r).
Specifically, a continuous Glass pattern (CGP) Gv(r) is defined as follows:

Gv(r) , max
τ∈[0,1]

{z[Φv(r, τ)]} (7.7)

Given a vector field v(r) and a random image z(r), CGP can be computed in a straightfor-
ward way by integrating (7.2) and by taking the maximum of z(r) over an arc of the solving
trajectory Φv(r, t), as indicated in (7.7). For reasons of simplicity, in our implementation
we integrated (7.2) numerically by means of the Euler algorithm [23] and we generated z(r)
by convolving a white Gaussian noise n(r) with a 2D Gaussian function gσz with standard
deviation σz:

z(r) = n(r) ? gσz
(r) (7.8)

Examples of CGP are shown in Fig. 7.4, in which the histograms of all images have been
equalized for visualization purposes. These patterns are related to the same vector fields v(r)
as for Figs. 7.1, 7.2, and 7.3 and, as we see, the CGP exhibit similar geometric structures to
the corresponding discrete GP. Unlike discrete GP, CGP do not loose their miscrostructure
when |v(r)| increases. On the other hand, both for the discrete and the continuous case, the
geometric structure disappears as |v(r)| → 0.

From a mathematical point of view, a CGP can be considered as the output of adaptive
morphological dilation of a random noise, where the position-dependent structuring element
is an arc of the curve Φv(r, t) that solves the differential equation (7.2) (see [24] for a
theoretical treatment and a survey on adaptive morphology). As we see in Fig. 7.4, dilating
noise as in (7.7) gives rise to a random pattern which resembles curved brush strokes oriented
along v(r), whose length is proportional to |v(r)|.

7.3 Proposed Algorithm

In this section, we show how CGP can be used to add an artistic effect to a photographical
image. The proposed algorithm is depicted in Figs. 7.5 and 7.6. We first describe the algo-
rithm for a graylevel input image I(r) (Section 7.3.1) and then we extend the method to the
color case (Section 7.3.2).
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Figure 7.4: Random image z(r) and examples of CGP obtained from it, using the same vector fields
as in Figs. 7.1-7.3. Their geometrical structure is analogous to the discrete case, but it remains well
visible also when |v(r)| increases.

7.3.1 Graylevel images

Referring to Figs.7.5, the first step is edge preserving smoothing (EPS), which removes tex-
ture from the input image whil preserving object contours (Fig. 7.5b). Several algorithms for
this task have been proposed in the literature (see, for instance, [25–32]); we use a modifi-
cation of the operator presented in [33] (see AppendixA for details). Compared with other
approaches for EPS, the operator deployed here has the advantage of sharpening edges in-
stead of only preserving them. This is a desirable property because paintings usually have
sharper edges than photographic images [33]. We denote the output of EPS IEPS(r).

The second step is the generation of synthetic painterly texture (SPT) which simulates
oriented brush strokes (Fig. 7.5c). Let ∇σIEPS be the scale-dependent gradient of IEPS ,
defined as the convolution of IEPS with the gradient of a Gaussian function gσ:

∇σIEPS = IEPS ?∇gσ (7.9)

From it, we construct a vector field v(r) whose norm we set equal to a constant a and which
forms a constant angle θ0 with the direction θσ(r) of ∇σIEPS , where a and θ0 are input
parameters:

v(r) = a[cos (θσ(r) + θ0) , sin(θσ(r) + θ0)]ᵀ (7.10)
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Figure 7.5: Proposed approach for generation of artistic images.

The function θσ(r) is undefined on points r for which |∇σIEPS(r)| = 0. For such points,
we take by definition v(r) = 0.

In this notation, we define the SPT U(r) as a function η of the CGP Gv(r) associated
with the vector field defined in (7.10):

U(r) = η[Gv(r)] (7.11)

where η is histogram equalization which results in a flat histogram of U(r) in
[
− 1

2 ,
1
2

]
.

An example of such SPT is shown in Fig. 7.5c for θ0 = π/2 and a = 18, for an image of
size (320×480). We see that the geometric structure of SPT is similar to the elongated brush
strokes that artists use in paintings. For θ0 = π/2, such strokes are oriented orthogonally to
∇σIEPS(r). This mimics the fact that artists usually tend to draw brush strokes along object
contours. Moreover, it is easy to prove that for θ0 = π/2 the trajectories Φv(r, t) that solve
the differential equation (7.2) are closed curves (see Appendix B for a formal proof). Thus,
the brush strokes tend to form whirls which are typical of some impressionist paintings.

Finally, our artistic effect is achieved by adding SPT to IEPS(r), thus obtaining the final
output y(r) (Fig. 7.5d):

y(r) = IEPS(r) + λU(r) (7.12)

where the parameter λ controls the strength of the SPT. By comparing Figs. 7.5a and 7.5d,
we see that natural texture of the input image has been replaced by SPT. Such a texture
manipulation produces images which look like paintings.
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Figure 7.6: From left to right: crops of an input image I(r), the result IEPS(r) of edge preserving
smoothing, the associated synthetic painterly texture U(r), and the final output y(r) for the example
of Fig. 7.5.

7.3.2 Color images

For color images, the straightforward application of the above described algorithm to each
color component of the input image would produce undesired color artifacts, even if the same
random image z(r) is used for all color components. Therefore, we generate a monochro-
matic SPT that is added to each color component I(i)

EPS(r) of the color image IEPS(r):

y(i)(r) = I
(i)
EPS(r) + λU(r), i = 1, 2, 3. (7.13)

The CGP Gv(r) is still computed by means of the structuring vector field defined in (7.10),
where θσ(r) is now the orientation of a color gradient [34]. Specifically, θσ(r) is given by
the direction of the eigenvector associated with the maximum eigenvalue of the following
matrix:

Kσ(r) =
∑

i

[
∇σI

(i)
EPS(r)

] [
∇σI

(i)
EPS(r)

]ᵀ
(7.14)

The value of θσ(r) is undefined on points r for which the eigenvalues of Kσ(r) are equal.
Similarly to the graylevel case, for such points we take by definition v(r) = 0.

7.4 Results and Comparison

In this section some experimental results are presented and commented in order to illustrate
the ability of the proposed algorithm to add artistic effects to photographic images, and to
study the influence of the input parameters. Our algorithm is compared with two of the most
popular existing artistic operators, namely the impressionist rendering (IR) proposed in [35]
and the non-photorealistic rendering technique called artistic vision (AV) presented in [36].
IR consists in rendering overlapping rectangular brush strokes of a given size and orien-
tation; intersection between strokes and object contours is avoided by means of a stroke
clipping procedure based on the Sobel edge detector [37]. In AV, curved brush strokes
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Table 7.1: Values of the parameters used for the studied approaches, with each color component of the
input image ranging between 0 and 1.

Algorithm Parameter values
Proposed approach a = 18, σ = 6, λ = 0.3, σz = 0.7, θ0 = π/2
IR [35] l = 5, w = 1, ∆r = ∆g = ∆b = 0.06, ∆I = 0.15
AV [36] Segm. levs. = 48, Enh. levs. = 96,

Brush. Art. lev. = 40, α = 50%

of different sizes are rendered by means of a more sophisticated segmentation approach.
We show some results in Figs. 7.7-7.12; a larger set of examples is available at the URL
http://www.cs.rug.nl/˜imaging/glassart. Unless differently specified, we use the parameter
values according to Table 7.1.

The output of the proposed operator, for the input images of Figs. (7.7-7.9)a, is shown in
Figs. (7.7-7.9)b. As we see, our operator effectively mimics curved brush strokes oriented
along object contours, such as the contour of the bird in Fig. 7.8b. The whirls that are present
in contourless areas resemble some impressionist paintings. In Figs (7.7-7.9)c, the outputs
of AV are shown for the same input images; though simulation of curved brush strokes is
attempted, several artifacts are clearly visible, especially on flat areas. IR (Figs. (7.7-7.9)d)
does not produce artifacts, but it tends to render blurry contours, such as the contour of the
zebras’ heads in Fig. 7.10d, and small object details are lost, such as the legs of the sheep
in Fig. 7.7 or the small branches under the bird in Fig. 7.8. Moreover, IR is less effective in
rendering impressionist whirls.

We now illustrate the influence of the input parameters on the output of the proposed
operator. The parameters σz and a, defined in (7.8) and (7.10) respectively, determine the
spatial correlation of the SPT along and orthogonally, respectively, to the local brush stroke
direction. As shown in Fig. 7.11, larger values of a correspond to longer brush strokes,
whereas larger values of σz give rise to wider brush strokes. As to the parameter σ de-
fined in (7.9), it controls the degree of smoothness of v(r) and, consequently, the degree of
smoothness of the lines that are traced out by the brush strokes (Fig. 7.12). Larger values
of σ also imply larger impressionist whirls. Concerning the parameter θ0, it controls the
angle between the brush strokes and the nearest object contours. In Fig. 7.13 it is shown
how different artistic effects can be achieved by varying the value of θ0. As we can see,
for θ = π/2, the strokes follow the object contours and form whirls in flat areas, while for
θ = 0 the strokes are orthogonal to the contours and build star-like formations in flat regions.
Finally, the parameter λ defined in (7.12) controls the strength of SPT.
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(a) (b) (c) (d)

Figure 7.7: (a) An input image and outputs of (b) the proposed algorithm, (c) AV [36], and (d) IR [35].

(a) (b)

(c) (d)

Figure 7.8: (a) An input image and outputs of (b) the proposed algorithm, (c) AV [36], and (d) IR [35].

7.5 Discussion and Conclusions

The classic approach to produce painting-like images with the aid of a computer consists in
generating a set of possibly overlapping brush strokes, which are rendered in a certain order



7.5. Discussion and Conclusions 157

(a) (b)

(c) (d)

Figure 7.9: (a) An input image and outputs of (b) the proposed algorithm, (c) AV [36], and (d) IR [35].

on a white or canvas-textured background. Early works [38] proposed supervised methods
in which the user had to specify position, shape and orientation of each brush stroke. Since
this requires a considerable effort from the user, much research has been carried out in order
to develop algorithms with higher degree of automatization [35, 39–47]. Particular attention
has been paid to the generation of curved brush strokes, brush strokes of variable size, and
textured brush strokes. As for the latter point, several algorithms for brush strokes rendering
have been proposed, based on physical models of the phenomenology related to the diffusion
of pigments on paper [48]. Other development concern the possibility to render strokes on



158 7. Contonous Glass Patterns for Painterly Rendering

(a) (b)

(c) (d)

Figure 7.10: (a) An input image and outputs of (b) the proposed algorithm, (c) AV [36], and (d)
IR [35].

Figure 7.11: Illustration of the influence of the parameters σz and a, which control width and length
of the brush strokes. From left to right: output of the proposed operator for the input image of Fig. 7.8,
with (left) σz = 0.6, a = 8, (centre) σz = 0.6, a = 16, and (right) σz = 1.2, a = 8.

top of an image instead of a white background (underpainting) [36], the use of global saliency
maps to determine the order in which brush strokes must be rendered [45], or methods based
on some properties of the human visual system [41, 46]. In [44], it is shown that representing
a synthetic painterly image in terms of a list of brush strokes attributes results in a much
higher lossless compression ratio with respect to well established general purpose image
compressors. For a survey of these techniques we refer to [49].

The methods referred above can achieve interesting artistic effects. However, most of
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Figure 7.12: Illustration of the influence of the parameter σ. From left to right: Input image and
outputs of the proposed operator for σ = 4 and σ = 8. In the second case the lines traced out by the
brush strokes are smoother and the average size of the impressionist whirls is larger.

them strongly rely on heuristics and require a large number of intermediate computational
steps, such as edge detection or image segmentation, which are sensitive to parameter set-
tings. As admitted in [36], these algorithms may fail as soon as one of the intermediate
operations does not perform well for some particular input image. Moreover, some of the
input parameters do not have a clear interpretation in the context of painting simulation (such
as, for instance, the threshold of the Sobel edge detector deployed in [35]). In contrast, we
achieve artistic effects by replacing the natural texture of the input image by synthetic tex-
ture which simulates brush strokes, rather than generating a list of strokes and specifying the
attributes of each one of them (position, shape, orientation, color, texture). This results in a
much simpler approach, which comprises only two elementary steps - EPS and generation
of SPT - which are robust to variations of the input image. The input parameters are easily
interpreted in terms of size of the brush strokes, size of the impressionist whirls, and angle
between brush strokes and the nearest object contours (Figs. 7.11 - 7.13).

In the proposed method, a key role is played by the vector field v(r), which deter-
mines the geometric structure of the SPT and, consequently, the local orientation of the
brush strokes. We have chosen to relate v(r) to ∇σIEPS as defined in (7.10) for reasons
of conceptual simplicity and low computational demand. However, different vector fields
v(r) may be used as well. For instance, deploying anisotropic diffusion (AD) for the com-
putation of the gradient of IEPS , instead of Gaussian blurring, would bring improvement in
presence of sharp corners (Fig. 7.14). As we can see, with Gaussian blurring the lines traced
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(a) (b)

(c) (d)

Figure 7.13: Illustration of the influence of the parameter θ0. (a) Input image and outputs of the
proposed operator for (b) θ0 = π/2, (c) θ0 = π/4, and (d) θ0 = 0. For the last two images, EPS has
been performed with q = 0.

out by the brush strokes may be too rotund and, therefore, they may cross object contours
(Fig. 7.14, left), whereas AD overcomes this problem. On the other hand, with respect to
Gaussian blurring, AD is computationally more demanding, less robust to noise, and it may
give rise to spurious whirls, such as the one on the front side of the horse’s head shown in
Fig. 7.14b. In general, there is no universal algorithm for the computation of v(r) from an
input image and its choice is application dependent.

CGP share some similarities with the line integral convolution (LIC), which has been
proposed in [50] with the purpose of representing a vector field by means of oriented tex-
ture. However, CGP result in a better brush strokes simulation than LIC, especially for large
values of a and σz , thus they are more suitable for artistic imaging applications (compare
Figs. 7.15a-b). In particular, since the intensity profile of a CGP is more piece-wise constant
with respect to LIC, brush strokes are more visible and their edges are sharper. Moreover,
if a CGP with large brush strokes is linearly combined with a LIC associated with the same
vector field, for small values of a and σz (Fig. 7.15c), it is possible to simulate textured brush
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Figure 7.14: Possible improvement obtained by replacing Gaussian smoothing by anisotropic diffu-
sion. (a) Output of the proposed operator for the input image of Fig.7.6a; the arrows mark rotund brush
strokes that cross the contour of the horse. (b) Improvement brought by using anisotropic diffusion.

(a) (b) (c) (d) (e)

Figure 7.15: Comparison between CGP and LIC. (a) CGP and (b) LIC associated with the vector fields
v(x, y) = (−x,y)√

x2+y2
, with a = 24 and σz = 3. Compared to CGP, LIC results in a noticeably worse

brush strokes simulation. (c) LIC associated with the same vector field, with a = 6 and σz = 0.6.
(d) Linear combination of patterns (a) and (c), which simulates textures brush strokes. (e) Linear
combination of patterns (b) and (c), which fails in simulating textured brush strokes.

strokes (Fig. 7.15d). Such an interesting possibility cannot be achieved by only using LICs,
as shown in Fig. 7.15e. In Fig. 7.16, the result of such a technique is shown for a natural
image (1176× 990 pixel).

To summarize, we have shown that the mathematical formalism related to GP, which are
originally defined as dot patterns, can be easily extended to the continuous case, while main-
taining the same geometric structure as in the discrete case. CGP offer several advantages
over the discrete GP: first, their visibility does not decrease when |v(r)| increases and, sec-
ond, they are more suitable for image processing tasks. As an application, we show that CGP
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Figure 7.16: (Left) Input image (1176 × 990 pixel), and (Right) the result of our painterly rendering
with textured brush strokes (crop).

can be used to produce nice artistic effects. Experimental results on a broad range of input
images validate the effectiveness of the proposed method. Due to its simplicity, input param-
eters are easily interpretable, and undesired artifacts that affect some existing algorithms are
avoided. Moreover, the possibility to achieve considerably different artistic effects by simply
changing the values of certain input parameters (such as θ0, see Fig. 7.13) makes the method
versatile and promising.

Appendix A. Edge Preserving Smoothing

In this appendix we briefly describe the operator we deploy for EPS. Let I(r) be a graylevel
image and let m(r) and s(r) be the local average and the local standard deviation of I(r),
computed as the following two convolutions:

m = I ? gσ, s2 = (I2 ? gσ)−m2 (7.15)

The output Ψq(r) of the EPS deployed here is a weighted local average of the values of
m(r), with weights proportional to [s(r)]−q, computed as follows:

IEPS = Ψq =
(ms−q) ? gσ

s−q ? gσ
=

∫
m(ρ)[s(ρ)]−qgσ(r− ρ)dρ∫

[s(ρ)]−qgσ(r− ρ)dρ
(7.16)

where q ≥ 0 is an input parameter.
The behavior of this operator is illustrated in Fig. 7.17. If point ρ is sufficiently close to

an edge (Fig. 7.17a), the local standard deviation s(ρ) is high, thus the term m(ρ)[s(ρ)]−q
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Figure 7.17: Behavior of the deployed EPS, when point ρ is (a) close and (b) far from an edge

gives a negligible contribution to the numerator of (7.16). On the contrary, if ρ is far from
edges (Fig. 7.17b), s(ρ) is small and the contribution of m(ρ)[s(ρ)]−q is high. In this way,
smoothing across edges is avoided. In (7.16), the Gaussian term gσ(r − ρ) limits the local
averaging of m(ρ) to a neighborhood of r, giving more weight to points ρ that are closer to
r, and the denominator plays the role of a normalizing factor.

The parameter q controls the sharpness of the edges in the output image: for q = 0,
(7.16) reduces to the convolution of the input image I(r) with a Gaussian function with
standard deviation equal to σ

√
2; this corresponds to the minimum edge sharpness. On the

other hand, for q → ∞, we have Ψ∞(r) = m[ρmin(r)], where ρmin(r) is the value of ρ,
within a neighborhood of r of radius, say, 3σ for which s(r) is minimum. This corresponds
to the Gaussian-Kuwahara EPS [51, 52], which gives rise to the maximum edge sharpness.

For other values of q, the EPS deployed here is an intermediate case between Gaussian
smoothing and the Gaussian-Kuwahara EPS. In Fig. 7.18, the performance of the proposed
operator in terms of texture and noise rejection and edge degradation are plotted versus each
other for different values of q. Texture and noise rejection is measured in terms of PSNR
(dB), while edge degradation ξ is defined as follows:

ξ =
1
NE

∫
[I(r)− IEPS(r)]2 dr (7.17)

where I(r) is a synthetic image for which the number NE of edge pixels is known. As
we see in Fig. 7.18, when the optimum is reached (q = 4), we achieve almost the same
noise rejection as with Gaussian smoothing and almost the same edge preservation as with
Gaussian Kuwahara operator.

This EPS is an evolution of the operator presented in [33]. Though the outputs of the two
algorithms are similar, the approach proposed here has the following advantages: (i) lower
computational complexity, since here only four separable convolutions are required, whereas
in [33] a larger number of non-separable convolutions is involved. (ii) Higher texture and
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Figure 7.18: Performance of the proposed EPS operator, for different values of q, in terms of noise
rejection and edge degradation. When the optimum is reached, we achieve almost the same noise
rejection as a Gaussian smoothing and almost the same edge preservation as the Gaussian Kuwahara
operator.

noise rejection: Here, almost the same amount of texture is removed as by Gaussian filter
with standard deviation equal to σ

√
2 , while the operator proposed in [33], for the same

edge preservation, removes less texture than a Gaussian filter with standard deviation equal
to σ. (iii) Smaller number of input parameters, since in [33] an additional parameter N is
introduced.

Appendix B. Analysis of the algorithm

In this appendix we prove some analytical properties of the streamlines r(t) = Φv(r0, t)
of the vector field v(r) defined in (7.10), which solve the differential equation (7.2). The
concerned vector field can be written as:

v(r) =
(∇σIEPS) cos θ0 + (∇⊥σ IEPS) sin θ0

|∇σIEPS |
(7.18)

with ∇σ = gσ ? [∂/∂x, ∂/∂y]ᵀ, ∇⊥σ = gσ ? [−∂/∂y, ∂/∂x]ᵀ. Since the multiplication of
v(r) for any nonzero scalar function does not change the streamlines of v(r), but only the
local speed at which they are traced out, we can simplify our study by considering the vector
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field w(r) = |∇σIEPS(r)|v(r) instead of v(r):

w(r) = (∇σIEPS) cos θ0 + (∇⊥σ IEPS) sin θ0. (7.19)

We formally prove that, for θ0 = π/2, the following two facts hold: (T1) streamlines of
v(r) are closed curves. (T2) such curves are traced around points rk such that w(rk) = 0
and the determinant detH of the Hessian matrix of IEPS ? gσ is positive.

In order to prove (T1) we observe that, from basic algebra, the divergence of w(r) is
equal to:

∇·w(r) = ∇sigma
2IEPS cos θ0 (7.20)

Therefore, for θ0 = π/2, ∇·w(r) is zero everywhere in R2 and the vector field w(r) is
solenoidal. Thus, in force of a well-known theorem in topology, the streamlines of w(r)
must necessarily be closed curves2.

Concerning (T2), a Taylor expansion yields:

w(r) = H· (r− rk) +O(|r− rk|) (7.21)

As well known, a singular point rk is a centre of a closed curve iff the eigenvalues of H
have zero real part. Basic algebra shows that, for the vector field w(r) defined in (7.19), the
eigenvalues λ1,2 of H are equal to:

λ1,2 =
cosθ0trH ±

√
cos2θ0tr2H − 4 detH

2
(7.22)

where trH is the trace of H . By means of the inequality tr2H > 4 detH , which holds
for any symmetric matrix, it is straightforward to prove that λ1,2 are purely imaginary iff
θ0 = π/2. This completes the proof.

The consequences of these analytical facts to the behavior of the proposed artistic oper-
ator are illustrated in Fig.7.19. It is shown that the centers of the impressionist whirls are
located at the zeros of the gradient magnitude of IEPS , for which w(r) = 0. Since the
density of such points decreases quadratically with σ, the above discussion also provides an
analytical explanations of why the size of the impressionist whirls grows with σ. In contrast,
for θ0 6= π/2, the streamlines of w(r) and v(r) are no longer closed lines, thus the artistic
effect shown in Figs. 7.13c-d is achieved.
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