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1 Introduction

O sol che sani ogni vista turbata,

tu mi contenti s̀ı quando tu solvi,

che, non men che saver, dubbiar m’aggrata.

Dante, Inferno XI, 91-93

Statistical mechanics addresses the problem of deducing macroscopic (ob-
servable) properties of matter from the atomic hypothesis. According to the
hypothesis, matter is thought of as consisting of a very large number N of
atoms (particles), subjected to the laws of classical mechanics [28]. It is the
big value of N ∼ 6.02 ∗ 1023 (Avogadro’s number) that renders us unable to
describe how the system (matter + interaction) behaves at the microscopic
level. Nonetheless, we can see (measure) some global properties of the system
like temperature, density and magnetization. This is exactly the point where
probability starts to play its role. The many degrees of freedom of the system
are treated as random variables distributed according to a probability measure,
and the global properties are thought of as an average over the microscopic re-
alizations (configurations) of the system. This concept is very well summarized
— in my opinion — by two sentences:

� “The microscopic complexity can be overcome by a statistical approach;
the macroscopic determinism then may be regarded as a consequence of
a suitable law of large numbers”.
(Georgii, [29])

� “What looks still to our crude eyes is a wild and dynamic dance”.
(Feynman, [26])

The starting point of statistical mechanics is then to consider any observation
of a physical system as a (joint) realization of many random variables associ-
ated to the system’s components. Due to the presence of an interaction between
the microscopic components, (as well as the interaction that components might
have with external forces), the associated random variables will be dependent
with respect to one another, allowing certain types of macroscopic orderings

O sun that heals all sight that is perplexed,/ when I ask you, your answer so contents /
that doubting pleases me as much as knowing.
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(patterns). In mathematical terms, the interaction is described by the Hamil-
tonian function, which assigns an energy to each realization of the system. The
equilibrium phases with respect to a given interaction are described as proba-
bility measures concentrated on the “most probable” realizations of the system.
These probability measure are called Gibbs measures.

The word “equilibrium” that we used above, refers to the forces acting on the
system. As a matter of fact, in the “real” world it is very rare to come across a
pure equilibrium phase. Any system subjected to forces requires “some” time,
usually (for human time-scale) long, to converge to an equilibrium phase. Over
this time span, however, external conditions change requiring a new equilibrium
to be sought. In [25], Feynman says: “When all fast things have happened and
all slow things have not, then the system is in equilibrium”. Nevertheless,
although within the limits of equilibrium statistical mechanics, some physical
phenomena can be described.

In this regard, the most famous and successful example is provided by the
Ising model. This model was invented in the 1920’s by Lenz and his stu-
dent Ising in order to describe ferromagnetism, more specifically, ferromagnetic
phase transitions. To briefly grasp an idea of what ferromagnetism is, let us
consider a piece of iron (widely-known example!), and let us associate to each
atom a magnetic moment. The interaction between the atoms favours the align-
ment of their magnetic moments (the iron is, indeed, a ferromagnet). However,
the tendency of atoms to align themselves is hindered by the thermal motion.
At high temperature the thermal motion is too strong and the ordering effect
is suppressed. If the temperature is low, below a certain threshold Tc (Curie
temperature), the interaction dominates the thermal chaos and a global order
of the magnetic moments arises, inducing a macroscopic magnetic field, a phe-
nomenon known as spontaneous magnetization (the term spontaneous refers to
the absence of an external field). The Ising model is a very simple model in
which each magnetic moment (spin) admits only two orientations, either up
or down. Although it is quite a simple model, it displays a rich anthology of
results, (see e.g. [29]). A natural generalization of the Ising model is provided
by the so-called Potts model. Whereas in the Ising model spins are allowed
to take only two values, in the Potts model each spin might take q ≥ 2 dif-
ferent values. As in the Ising case, the ferromagnetic Potts interaction among
the components of the system favours configurations where neighbouring spins
tend to align themselves.

In this thesis, we shall present a few results obtained for the Ising and Potts
model in particular settings: mean-field, Cayley trees and the lattice Z2.
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1.1 Gibbs Measure

In order to get a better understanding of what a Gibbs measure is, we need
to go to a more precise mathematical description of a physical system, while
still remaining at a heuristic level. The reader who is greedy for mathematical
technicalities should wait until Chapter 2.

First of all we must say, mathematically, how many particles we are dealing
with and what their positions are. This is done by introducing a set V (finite),
which labels the system’s components. Secondly, we have to introduce a set
Ω0 which describes the possible configurations of each component. From this
time on, we shall denote by σi the configuration of the component that has
been marked with the label i. For a ferromagnet, for example, V consists of
the sites of the crystal lattice formed by the positions of the atoms and Ω0 is
chosen to be the set of all possible orientations of the magnetic moment. This
choice relies on the understanding that ferromagnetism is due to alignments
of the spins of the atoms. In the Ising model, where only two orientations
are allowed, the set Ω0 is given by {−1,+1}. (We mentioned already in the
previous section that the alignment persists, in a certain range of temperature
(T < Tc), even when an external field is switched off). Once we have specified
the sets V and Ω0, we can now think of a particular configuration of the whole
system to be an element (σi)i∈V of the product space Ω = ΩV0 , which is called
configuration space. Due to the complexity of the microscopic structure, it
is not a single element of the configuration space that properly describes the
state of a system which one observes (indeed, our knowledge of the system
is affected by the fluctuations of any microscopic measurement), but rather a
family (σi)i∈V of Ω0-valued random variables, or better their joint distribution
µ, which is a probability measure on Ω.

As we have seen previously, the number of particles in a system is huge,
so V must be very large. It is mathematically reasonable to assume that the
properties of a very large system can be made manifest by limiting procedures.
In [5], this idea is formulated as an informal axiom: “A system composed of
a very large number of degrees of freedom can be well approximated by an
infinite system”. It is therefore common in statistical mechanics, to take the
limit |V | → ∞, which is known as thermodynamic limit, where |V | denotes
the number of elements in V . This assumption represents the key step towards
the mathematical comprehension of phase transition. Phase transitions may be
thought of as the possibility that from the same microscopic laws (interaction),
different macroscopic behaviours occur. Although the thermodynamic limit
opened the door of phase transitions to mathematics, it also presented the
mathematical bill of defining a Gibbs measure on an infinite space (like Ω =
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ΩZd
0 ). Remembering a quote from Thoreau: “You never gain something but

that you lose something”. The problem is that the Hamiltonian of a system
with infinitely many interacting components will be ill-defined. Think, as an
example, of the Hamiltonian defining the Ising ferromagnet, Ω0 = {−1,+1},
on a finite subset Λ of V = Zd

HΛ(σΛ) = −
∑
i,j∈Λ

||i−j||1=1

σiσj − h
∑
i∈Λ

σi , (1.1)

where ||i − j||1 denotes the lattice distance. The Hamiltonian is supposed
to measure the energy of a configuration, but in the infinite-volume limit the
previous formula makes no sense. What we can do is to interpret (1.1) as the
energy of an infinite-volume configuration restricted to a finite volume Λ. To

do that we need to slightly change (1.1), replacing
∑
i,j∈Λ

||i−j||1=1

with
∑

i or j∈Λ
||i−j||1=1

.

At first glance, this might look just as a little change in the notation, although
its consequences are very important. The new Hamiltonian contains the energy
corresponding to the interaction between spin inside Λ with those outside (how
many depending on the range of the interaction). We could now consider the
Hamiltonian as a function H : (Λ, σ) → HΛ(σ) from the pairs consisting of
finite subsets of Zd and configuration in Ω to real numbers. This allows us to
define for any fixed configuration of spin ω ∈ Ω, which we will be referring to
as boundary condition, and for any finite subset Λ ⊂ Zd, a probability measure

µωΛ(dσΛ) =
e−βHΛ((σΛωΛ{ ))

Zβ,Λ(ω)
αΛ(dσΛ) , (1.2)

where by σΛωΛ{ we denote the configuration that agrees with ω outside Λ and
with σ on Λ, and α is an a priori measure, which is supposed to describe the
non-interacting system. Equation (1.2), via the ω-dependence, defines a family
of measures on Λ. The idea, which dates back to the late 1960’s and is due to
Dobrushin, Lanford and Ruelle (DLR), is to consider this family of measures
as a family of conditional (on ω) probabilities of some measure(s) µ, defined
on the infinite volume. Starting from this observation, µ will be defined to
be an infinite-volume Gibbs measure for the Hamiltonian H if its conditional
distributions, given the configurations outside Λ, are given by (1.2). The family
(µωΛ)ω,Λ of all conditional distributions is known as specification for the measure
µ, (see e.g. [18, 29]). Gibbs measures are often called states and, henceforward,
we shall refer to them with either of these appellatives.
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At this point, two questions arise: “Does such a measure exist?” and then
“If it exists, is it unique?” The answer to the first question, as far as the
systems we are concerned with in this thesis, is “yes” and it follows by a com-
pactness argument. With regard to the second question, we will encounter
situations where the infinite-volume measure is not uniquely determined, i.e.,
several infinite-volume measure exist for the same Hamiltonian and for the
same inverse temperature β. This is exactly what statistical mechanics needs
to account for phase transitions. If we then go back to the Ising ferromagnet
example, in the absence of any external field, we know that if d ≥ 2 and the
temperature is low there has to be a measure describing a phase with positive
magnetization and another one with negative magnetization: the system can,
in fact, be in either of them. However, such a dichotomy ceases to exist when
the temperature is high, which leads to the uniqueness of the Gibbs measure
(at high temperature there is always a unique Gibbs measure).

Above we indicated how to infer that a measure µ, defined on the infinite
volume, is a Gibbs measure for a given Hamiltonian. However, it is possible
to determine whether an infinite-volume measure is Gibbs or not without any
reference to a specific Hamiltonian. This is due to Kozlov [48], who found nec-
essary and sufficient conditions on the family of conditional distributions for
the corresponding measure to be Gibbs. One of the basic ideas behind these
conditions which we shall focus the most on, is that the family of conditional
distributions needs to satisfy a sort of “continuity” property, termed quasilo-
cality. This represents the main tool to investigate the non-Gibbsian property
of an infinite-volume measure, and we shall discuss this matter in more detail
in Chapter 4.

1.2 Loss of Gibbsianness

In the previous section, we saw that the Gibbsianness of an infinite-volume
measure requires some conditions to hold. Then, at least logically, we know
about the possibility for an infinite-volume measure not to be Gibbs; we “sim-
ply” need to violate at least one of these conditions. It might be natural to ask
whether these violations are just at the level of mathematical finesse, or if they
admit a physical explanation. In [24], Fernández point of view is that the the-
ory which has been developed so far is still mostly at the level of mathematical
finesse. I find myself concurring with such a point of view.

The dilemma “to be or not to be Gibbs” first appeared within the framework
of renormalization-group transformations (RG) [32, 33]. A renormalization-
group transformation was initially defined as a map for generating a spin con-



6 Chapter 1

figuration σ′ (a.k.a. “block spins”) given a configuration σ (“original spins”).
This map is given by a probability kernel T (σ|σ′), and it can be easily extend
to a map from measures to measures, namely

µ′(σ′) = (µT )(σ′) ≡
∑
σ

µ(σ)T (σ|σ′) . (1.3)

We have seen how Hamiltonians are related to measures, it was done via the
concept of a specification (1.2). A question poses itself: how does the map T
act on the Hamiltonian? In other words, if µ is a Gibbs measure associated
with an Hamiltonian H, then one (often wrongly) assumes that µ′ is a Gibbs
measure associated to some Hamiltonian H ′. This induces a map R, from
Hamiltonians to Hamiltonians, as sketched below,

µ
T

−−−−−→ µ′≡ µT
↑ ↓

H
R

−−−−−→ H ′

A problem arises here: one peculiarity of the infinite-volume limit, is the pos-
sibility that corresponding to a Hamiltonian, there might be several Gibbs
measures. This phenomenon might cause the map R to be multivalued. It has
been shown that this pathology cannot occur on regular lattices. Yet, is the
image Hamiltonian H ′ well-defined? In other words, is the image measure µ′

Gibbs or not? If the Gibbsianness is preserved under the renormalization-group
transformations T , that’s to say µ′ is also Gibbs, then there is a unique Hamil-
tonian associated with it, which is H ′, if this is not the case, then H ′ is not well
defined [18]. As pointed out first by Israel [44], the loss of the Gibbsianness for
the renormalized measure µ′ is often related to the violation of the quasilocal-
ity property. Quasilocality, as we shall see in the sequel, is a mathematically
well-defined property which is based upon the physical concept of an “isolated
system”. A thoroughly isolated system is of course an idealization, but one
assumes the possibility to render a system as close to isolated as desired, by
moving it “away” from all other objects. This relies on a fundamental assump-
tion, which is often made in different parts of science, that is the “decay of
interactions”.
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The decay of interactions is often referred to as “locality”1. The violation of
quasilocality for the transformed measure µ′ was detected from the fact that
the “original spins” may undergo a phase transition for some fixed “block spin”
configuration σ′special. What happens is that information can be transmitted
from distant “block spins” to “block spins” in a particular region (origin) via
the “original spins” in the intermediate region, even when the “block spins” in
the intermediate region are fixed. This violates the quasilocality condition. It
is peculiar, however, that a single “block spin” configuration σ′special, which has
probability zero, can cause the non-Gibbianness of the renormalized measure.
What happens exactly is that the phenomenon of “far-away dependence” for
the “original spins” manifest itself for “block spins” which are close (in the
sense of product topology) to σ′special. The configuration σ′special is called a bad
configuration and we shall see in Chapter 4, that it represents a discontinuity
point for a particular class of functions termed conditional expectations. After
this discovery the importance of the quasilocality property for the renormalized
measure was in the public eye.

In [19] a related issue was first addressed, namely the loss and possible re-
covery of the Gibbsianness of an initial Gibbs measure under a stochastic time-
evolution. The authors studied the evolution, under high-temperature spin-flip
Glauber dynamics, of a low-temperature Gibbs measure of an Ising model.
They observed that, in case of an initial external field zero, after a certain
time the Gibbsian property was lost and the time-evolved measure stays non-
Gibbs forever. Moreover, at large times the Gibbs property was recovered, in
the presence of a non-zero external field in the initial system. In Chapter 4,
a very similar problem is addressed: we study homogeneous Gibbs measures
on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and
consider their (non-)Gibbsian properties. We show that, in contrast to what
happens on regular lattices such as Zd, the Gibbsian properties of evolved
Gibbs measures for models on trees turn out to depend on which of the dif-
ferent low-temperature phases (the Gibbs measures µ+, µ−, µ]) one considers.
We remark that the existence of these low-temperature phases corresponds to

1Newton, in a letter to Bentley from 1693, pronounce the following stark rejection of
action at a distance:

It is inconceivable that inanimate brute matter should, without the mediation of some-
thing else which is not material, operate upon and affect other matter without mutual con-
tact. . . That gravity should be innate, inherent, and essential to matter, so that one body
may act upon another at a distance through a vacuum, without the mediation of anything
else, by and through which their action and force may be conveyed from one to another, is to
me so great an absurdity that I believe no man who has in philosophical matters a competent
faculty of thinking can ever fall into it. (A. Janiak. Isaac Newton: Philosophical writings.
Cambridge University Press, 2004).
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the existence of three fixed points for a selfconsistency equation. Whilst µ± are
linked to the (two) stable fixed points, µ] is linked to the unstable fixed point,
(see [29], Chapter 12). We shall see how this, so far tree-peculiar behaviour, is
related to the different nature of the bad configurations. We mentioned above
that bad configurations represent discontinuity points of the conditional expec-
tations. These discontinuities may be of two sorts: µ-essential discontinuity
and strong discontinuity. While the latter is a discontinuity that all the condi-
tional expectations (they depend on the initial measure) will have, the former
might be a removable discontinuity for some measures, and a nonremovable
one for others. Another interesting aspect of non-Gibbsianness is the study of
the set of discontinuity points. In [38] the fuzzy Potts model on trees was con-
sidered. There, the possibility of having a positive-measure set of discontinuity
points was found. In Chapter 4, we show that after a certain time, the set of
discontinuity points will be empty if we start with µ±, whereas it will have full
measure if we start with µ].

1.3 Random Gibbs Measures and Metastates

The Gibbs measures serve to describe an equilibrium state of a system. How-
ever, from what has been said so far, it is glaring that there is no information
at all on how the system attained such a state of matter (equilibrium state),
nor on which the initial conditions were. The issue is sorted out by assuming
that, on the time-scales on which the system is observed, the dynamics re-
laxes to equilibrium and loses any information whatsoever about the the initial
conditions. Even if this assumption — and in general assumptions, rational
or not, do — makes life easier, it also creates a dichotomy between systems
which satisfy it and systems which do not. A typical example for which this
assumption would not hold are solid alloys. Think of a material made of a mix-
ture of iron and gold atoms, and imagine them to be allocated to some lattice
sites. If we heat the system up the atoms will change their positions, however
it is reasonable to assume that if we turn down the temperature the motion of
atoms will slow down, and that at a sufficiently low temperature, their motion
will be thoroughly suppressed. This could be rephrased by saying that, over
large time-scales, the microscopic realization of the two-type atoms’ mixture
will not change. One says that the positions of the atoms are frozen. Let us
now consider, for the very same system other degrees of freedom, namely the
magnetic moments of the iron atoms in the alloy. These magnetic moments
are not frozen and we might describe their behaviour via a Gibbs measure. It
comes to light that the Gibbsian description must take into account the posi-
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tions of these atoms, the interaction between them depends on their positions
indeed. Thus, if we denote by ηi the position of the iron atoms, we can write
H[η](σ) for the spin Hamiltonian associated to the system with iron atoms
positions frozen at η. We would then write the (formal) Gibbs measure as

µβ [η](σ) =
e−βH[η](σ)

Zβ [η]
, (1.4)

where the partition function Zβ [η] depends on the positions of the atoms as
well. We will refer to such a system as disordered. What is the meaning of
such a Gibbs measure? Well, the meaning is that of a measure describing the
magnetic properties of the system when the position of the iron atoms is fixed
to be η. Is it reasonable to do that? In other words, is such a description real-
istic? The answer to the latter is not easy. It would be certainly nice to have
such a description for all possible arrangements of the ηi but this represents,
from a complexity point of view, a similar problem to the one encountered in
a deterministic description of a large interacting system. We could once again
hope that the microscopic details (positions in this case) do not matter too
much, so that we could extract enough information from the macroscopic ob-
servables. We could then treat the possible arrangements of the ηi as random
variables and introduce some probability distribution Pη, on the possible real-
izations of the iron positions, to measure their likelihood. We will refer to this
randomness (η) as quenched, which is a term lent from metallurgy describing
the fast cooling of an alloy via immersion in water. While dealing with two
different types of randomness, namely the quenched disorder and the magnetic
moments, we must be aware of the fact that they do not equilibrate on the
same time-scale. This makes it inappropriate to talk about thermal equilib-
rium for the whole (positions and magnetic moments) system. What we might
hope for is that certain properties of the material do not depend too much on
the microscopic realizations, and are the same for almost all realizations of the
disorder variables.

The first thing one would like to understand, for these models, is what the
possible limiting measures (phases) are, and how they depend on the realization
of the disorder. Secondly, even if we suppose that the phases are identified, it is
not a priori clear what role they will play for the behaviour of a large but finite
system. It is very reasonable, and at the same time instructive, to ask why
this difficulty in determining the phases shows up in the presence of disorder
and we do not face it, at least in many situations, for non-disordered systems.
The reason lies in the fact that, in the absence of disorder, we usually know
how to choose finite-volume boundary conditions so that the infinite-volume
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limit is a pure phase, and we know the limiting mixture of pure phases for
other boundary conditions as well. For disordered models the relation between
boundary conditions and pure phases is unknown. This makes the meaning of
the infinite-volume limit rather unclear. Indeed, for systems with a quenched
disorder, in general, there will not be a single infinite-volume limit but many
different limits along different subsequences of volumes. In other words, the
only way to preselect a particular limiting measure is by looking at subse-
quences of volumes Λn[η], which may in general depend on the disorder. This
phenomenon is called chaotic size dependence. Despite the fact that we in-
troduced it emphasizing the “ineffective role” of the boundary conditions, the
phenomenon of chaotic size dependence manifests itself also in situations where
the notion of boundary condition makes no sense, that is in mean-field models.
To better understand the limitation of such an approach to the thermodynamic
limit, one has to remember that an infinite-volume Gibbs measure is supposed
to approximate a very large system under particular conditions. If this approx-
imation is only valid for some particular volumes, which ones depending on
the realization of the disorder, knowing the set of all infinite-volume measures
is not enough. Indeed, when there are several Gibbs measures, it might be
that a system find itself (approximately) in one of these states for one volume,
and (approximately) in another Gibbs state for another volume, which one
depending on the choice of the disorder.

To account for disordered systems where we face the problem of chaotic
size dependence Newman and Stein [61, 63] proposed, in order to capture the
asymptotic volume-dependence, to look at the empirical average

κN [η] :=
1

N

N∑
n=1

δµn[η] , (1.5)

where µn[η] denotes the finite-volume Gibbs measure in the volume Λn, and
δ is the Dirac measure. Note that κN is a random measure (through its η-
dependence) on the states (Gibbs measures) of the system. For large N it will
be supported by a subset of the infinite-volume Gibbs measures. Intuitively it
means to look at the frequency of occurrence of a state along a volume sequence.
The limit

κ[η] := lim
N↑∞

κN [η] , (1.6)

is called Newman-Stein metastate, if it exists for P-almost all realizations η.
(There are general existence results about the convergence for P-almost all
realizations η that follow from compactness arguments but these are only for
sparse enough sub-sequences of n’s and N ’s). Another way to tackle the chaotic
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size dependence was provided by Aizenman and Wehr [1]. They suggested to
look at the probability distribution of the pair of the finite-volume random
Gibbs measure and the disorder variable (µn[η], η). Suppose the limit exists
in the sense of weak convergence, then we denote the resulting limiting dis-
tribution K(dµ, dη). If we now take the conditional distribution, obtained by
conditioning on the disorder variable η, this provides us with a measure on the
first variable, which we denote by κAW [η](dµ). This object is called Aizenman-
Wehr metastate. Again, the existence of such a limit is guaranteed only for
subsequences of n’s. In [60] it was proved that for sufficiently sparse subse-
quences the two notions coincide. As a warning to the unaware reader, we
point out that the metastate notion should be distinguished from the more
standard decomposition of a Gibbs state into convex-combinations (mixture)
of extremal Gibbs states. Indeed, the metastates are measures on all possible
Gibbs states, including the non-extremal ones. A variety of situations might oc-
cur for the large N -behaviour of the metastate κN : it can be the Dirac measure
on a mixture of states, it can be a mixture of Dirac measures on pure states or
it can be a mixture of Dirac measures on mixtures. We mentioned above that
the metastate is a probability measure on the infinite-volume Gibbs measures
which gives the weights in the large-volume asymptotic to find the system close
to one of the possible candidates among the Gibbs measure. In Chapter 3, we
study very simplified disordered models, namely disordered mean-field mod-
els with finitely many values for both spin and disorder variables. We derive
an explicit construction for the metastate, where the weights of the possible
states are obtained by studying the distribution of the free energy fluctuations
w.r.t. the disorder variables. We provide also a geometric picture to identify
the invisible states, that is those Gibbs states whose corresponding weight is
zero.

1.4 Potts Model and Random-cluster Representation

As already pointed out, statistical mechanics aims for a description of the
macroscopic behaviour of a system in thermal equilibrium starting from the
microscopic interaction which takes place between the very many components
of the system. Depending on the type of interaction and on the temperature,
realizations of the system’s components display different geometric patterns.
In the ferromagnetic Ising model, for example, due to the nearest-neighbour
interaction, spins tend to align themselves in the same direction. However,
at high temperature the thermal excitation dominates this tendency to a spin
alignment, making the components to behave almost independently. On the
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other hand, the low-temperature behaviour can be described as a random per-
turbation of a ground state configuration (either all plus or all minus spins).
At low temperature, we expect a typical realization to be the ground state con-
figuration with finite clusters where the spins disagree with the ground state.
In 1936, Peierls had the idea to describe the phase transition in this model by
looking at geometric objects named contours, which correspond to boundaries
separating regions with plus spins from region with minus spins. The contour
description confirmed the above heuristics. At low temperature large contours
are improbable, due to the high energy cost, so a typical phase consists of an
infinite connected “sea” in which the spins take a particular ground state value
(plus or minus), with finite “islands” on which the spins take mostly different
values. More specifically, the plus phase (where most of the spins take the value
+1) is realized by an infinite “sea” of plus spin with finite “islands” of minus
spins, which, in turn, may contain lakes of plus and so forth. If the temper-
ature parameter is increased above the Curie temperature, we cannot expect
the existence of an infinite path connecting nearest neighbours with the same
spin value; the components will be in fact almost independent. In this respect,
percolation theory plays an important role in equilibrium statistical mechanics
and the study of phase transition.

A particular model of dependent percolation, invented by Fortuin and Kaste-
leyn in the late 1960’s, which has been shown to be very successful in analysing
the phase transition behaviour of Ising and Potts model is called the Random-
cluster model. Its strength lies in the discovery that spontaneous magnetization
in Ising and Potts models corresponds to percolation in their random-cluster
representations. For a systematic account of the theory we refer to [30, 34, 37].
In [55], the authors showed that the Potts model undergoes a first-order phase
transition in temperature, in any dimension d ≥ 2, if q (number of allowed spin
configurations) is large enough. They used the Pirogov-Sinai theory applied to
a random-cluster representation of the model2. Pirogov-Sinai theory is a pow-
erful extension of the above-mentioned Peierls contour argument. One might
wonder why such an extension of the Peierls contour argument was needed?
To answer this question, we have to go back to the original idea behind the
Peierls argument. The idea was, that at low temperature, a typical realization
of the system’s components is nothing but a perturbation of the ground state
configuration. In the Ising model, Peierls contour argument proved such a be-
haviour by proving that, at low temperature, the probability of a large contour
is very small. However, this example spoilt our understanding. In fact, due

2 The original proof of the first-order phase transition (in temperature) for the high-q
Potts model in any dimension d ≥ 2 is due to Kotecký and Shlosman, see [46], and uses
reflection positivity.
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to the symmetry in the Ising interaction, computing the probability of appear-
ance of a contour was rather easy. In more general situations, where there is no
symmetry between the different phases, computing the probability of appear-
ance of a contour is much more complicated, due to the lack of independence
amongst nested contours. Pirogov-Sinai theory provides a way to estimate the
probability of appearance of a contour.

In Chapter 5, we study an analogous problem: we show the existence of a
first-order phase transition for a variant of the Potts model, termed Potts model
with invisible colours. This model, which was introduced recently by Tanaka,
Tamura and Kawashima [70, 72], consists in a ferromagnetic Potts interac-
tion acting among q “visible” colours along with the presence of r “invisible”
colours, which do not interact with their neighbours. The proof of the existence
of a first-order phase transition for this model is based on an application of the
Pirogov-Sinai theory to a random-cluster representation of the model. The
random-cluster representation of the Potts model with r “invisible” colours,
differs from the standard random-cluster model, and we named it the r-biased
random-cluster model. The adjective biased refers to the fact that isolated ver-
tices and non-singleton connected components are weighted differently. Whilst
the latter have weights q, exactly as in the standard random-cluster model, the
former have weights q + r; see Chapter 5 for an in-depth examination.

The Potts model with invisible colours provides an example that symmetry
breaking and order of phase transition cannot be inferred one from another. In
fact, although the number of ground states and low-temperature states equals
q, and there is at low temperature spontaneous symmetry breaking of the q-
fold permutation symmetry, just as in the standard q-colour Potts model, the
transition for low q = 2, 3, 4 and high r is different from the second-order
transition of the ordinary two-dimensional q-colour Potts model. In fact a
first-order transition in the temperature-parameter appears.

1.5 Lattice Models, Tree Models and Mean-field Models:
Heuristics and Differences3

In this thesis we shall encounter three basic and widely known models in statis-
tical mechanics: lattice models, tree models and mean-field models. To be more
precise, we will simply deal with two examples out of the first two categories:
Z2 (Zd) as far as lattice models are concerned and CT(d) (Cayley tree) for the
tree-models’ class. To convey a complete survey about these classes of models

3Although a tree is but a special case of a lattice (if the latter is thought of as a graph),
with perhaps “too much” freedom we shall distinguish between them.
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would definitely require an effort comparable to writing up another thesis from
scratch and the author is not willing and yet not prepared for such a bold and
demanding task. Instead, we opt for a very concise introduction to the three
above-mentioned classes, intending to provide the rationale behind, as well as
some basic differences between them.

Lattice models are characterized by having a quite rich geometric structure.
We shall think of a lattice as a connected graph, with a “non-simple” connec-
tivity scheme, i.e., where loops are present. A further requirement for a lattice
consists in being an amenable graph, which means that the size of the volume
asymptotically dominates the size of the boundary. Lattice models represent
the foundation-stone of the DLR formalism, which defines a Gibbs measure to
be the distribution of a countably infinite family of random variables which
admits some prescribed conditional probabilities. A remarkable example of the
success of a lattice model is, beyond doubt, the ferromagnetic Ising model on
Z2, for which a phase transition was shown.

Mean-field models are based on the quite radical assumption that all spins
interact in the same way, regardless of their actual position, which corresponds
to the abandonment of any underlying geometric structure. The Hamiltonian
describing the interaction between Ising or Potts spins can thus be written as
a function of a macroscopic quantity which is termed empirical spin distribu-
tion. This enables us to compute the free energy quite easily. The existence
of several minima of the free energy, is usually a good alarm bell that a phase
transition might display itself for models with a more reasonable geometric
structure, either in high dimension or when the interaction is long-range. A
main difference between lattice and mean-field models is that the notion of
boundary conditions, which is crucial for the DLR formalism in lattice mod-
els, loses its meaning in mean-field models. In fact, in the latter models, the
notion of boundary itself becomes inappropriate. The infinite-volume mean-
field measure consists of the product measure of single-site marginals, which
are described by a “effective” (mean) field. In other words, each site feels a
field which embodies the information of the whole system. Such an “effective”
field is given by the solution of a fixed-point equation. For example, in the
mean-field Ising models (a.k.a. Curie-Weiss), the “effective” field corresponds
to the solution of the famous mean-field equation m = tanh(βm).

Tree models lie somehow in the middle between lattice models and mean-field
models. A tree is nothing but a connected graph with a stern connectivity re-
quirement: between any two vertices there is a unique path joining them. Simi-
larly to what happens in lattice models, a DLR formalism can be used to define
an infinite-volume Gibbs measure for models on trees. In fact, tree-structures



Overview of the Thesis 15

admit a notion of boundary. Furthermore, due to the peculiar geometry (more
precisely, the absence of loops), they also admit fixed-point equations whose
solution(s) play/s the role of an effective field acting on a single site, similarly to
mean-field models. However, there are some differences between lattice models
and tree models. First and foremost, while in the latter the boundary size of a
volume is asymptotically of the same order of magnitude of the inside volume
(non-amenability), in the former the size of the inside volume is “much bigger”
than the boundary size. Second, the tree structure is sufficiently simple to ad-
mit the notion of a Markov chain (in fact, it is impossible to define a Markov
chain on graphs containing loops, see [29], Chapter 12). Another peculiar be-
haviour for tree models is the existence of multiple transition points, whereas
the corresponding lattice model has a single transition point. A typical exam-
ple is the ferromagnetic Ising model. Whilst on a lattice this displays a single
transition point, on a tree a second transition temperature, strictly below the
ferromagnetic transition temperature, appears. In the interval of temperatures
hemmed-in by these two transition temperatures, the free boundary condition
Gibbs measure is extreme on a trees whereas it is not on a lattice, see [42].

1.6 Overview of the Thesis

After this very brief introduction, which aimed to give a flavour of the field
of statistical mechanics and, at the very same time, sketched the boundaries
inside which we shall be constrained henceforth, we are ready to outline the
core of this thesis.

In Chapter 2, we properly define many of the concepts we have encountered so
far. In the first part of this chapter, the notions of specification, Gibbs measure,
quasilocality and other related concepts typical of the Gibbsian formalism will
be analysed. The second part will be devoted to the notion of metastate.

In Chapter 3, we consider a general class of disordered mean-field models
where both the spin variables and disorder variables η take finitely many val-
ues. To investigate the size-dependence in the phase-transition regime (when
several Gibbs states are available) we construct the metastate describing the
probabilities to find a large system close to a particular convex combination
of the pure infinite-volume states. We show that, under a non-degeneracy as-
sumption, only pure states j are seen, with non-random probability weights
wj for which we derive explicit expressions in terms of interactions and distri-
butions of the disorder variables. As a consequence we show that, in the case
where precisely two pure states are available, these must necessarily occur with
the same weight, even if the model has no obvious symmetry relating the two;
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a phenomenon that we called random restoration of symmetry.

In Chapter 4, in the same spirit as [19], we study homogeneous Gibbs mea-
sures on a Cayley tree, subjected to an infinite-temperature Glauber evolution,
and consider their (non)-Gibbsian properties. We show that the intermediate
Gibbs state (which in zero field is the free-boundary-condition Gibbs state)
behaves different from the plus and the minus state. For example, at large
times, all configurations are bad for the intermediate state, whereas the plus
configuration is never bad for the plus state. Moreover, we show that for each
state there are two transitions. For the intermediate state there is a transition
from a Gibbsian regime to a non-Gibbsian regime where some, but not all con-
figurations are bad, and a second one to a regime where all configurations are
bad. For the plus and minus state, the two transitions are from a Gibbsian
regime to a non-Gibbsian one and then back to a Gibbsian regime again. We
present our results both in zero and non-zero external fields.

In Chapter 5, we study a variant of the ferromagnetic Potts model, intro-
duced by Tamura, Tanaka and Kawashima [70, 72], in which along with the
q ordinary “visible” colours (the ordinary Potts colours), r “invisible” colours
are possible. A ferromagnetic nearest-neighbour interaction acts exclusively
among the visible colours. The invisible colours, on the other hand, are neu-
tral, and have no interaction with their neighbours, regardless of the state of
the neighbours. We introduce a random-cluster representation for the model,
for which we prove the existence of a first-order transition for any q > 0, as
long as r is large enough. When q > 1, the low-temperature regime displays a
q-fold symmetry breaking. The proof involves a Pirogov-Sinai analysis applied
to this random-cluster representation of the model.



2 General Formalism and Probability
Structures

Our purpose in this chapter is to render many of the concepts we have encoun-
tered so far more rigorous and hopefully to make the reader more familiar with
the Gibbsian formalism. In the first part we collect notations and definitions;
we refer those who wish to delve further into the probabilistic formalism of sta-
tistical mechanics to [18, 29]. In the second part, the chaotic size-dependence
phenomenon will be briefly discussed and the Aizenman-Wehr metastate will
be defined, see [1, 5, 50] for an in-depth description.

2.1 Topological Preliminaries

This section is geared towards providing a bedrock for many probabilistic con-
cepts as well as definitions which we shall use extensively in this thesis. We
present them in considerable generality, without any particular assumption on
the model used nor on the geometric structure laying behind the scenes. Spo-
radically, we shall refer to particular models though.

Let Ω0 be the single-spin space. This is the space of possible realizations
of a random variable aimed to model the microscopic realizations of a single
particle. We shall assume Ω0 to be equipped with a σ-algebra which we denote
F0 of “measurable sets”, to obtain a measure space (Ω0,F0). In general Ω0

is taken to be a complete separable metric space equipped with the Borel σ-
algebra generated by the metric. In this thesis, we shall be concerned only
with discrete single-spin spaces: the Ising single-spin space that is given by
Ω0 = {−1,+1} and the Potts single-spin space given by Ω0 = {1, . . . , q}, with
q ∈ Z+. To complete a probabilistic description of a single-spin space we need
to introduce a probability measure α0 (a priori distribution), being a function
from F0 to [0, 1]. Then, by (Ω0,F0, α0) we denote the single-spin probability
space. Let V be a countably infinite vertex set of a graph and let S be the set
of all finite subsets of V . We do not specify the edge set of the graph, so as
to keep the framework as general as possible. In other words, for the moment,
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we do not give to V any particular geometric structure. We denote by Ω
the infinite-volume configuration space, which consists of the set of possible
configurations of the whole system. We define Ω to be the Cartesian product
(Ω0)V := {σ = (σi)i∈V |σi ∈ Ω0, for all i ∈ V }, and we equip this with the
product σ-algebra F = (F0)V and with the product topology. The product
topology basically means that a sequence of configurations σn converges to σ
as n tends to infinity if, and only if, σni → σi for all i ∈ V . This allows us
to introduce the notion of a neighbourhood of a configuration σ (which is a
cylinder set), which in mathematical terms reads:

NΛ,ε(σ) := {σ̃ : dist(σi, σ̃i) < ε for all i ∈ Λ} , (2.1)

where Λ ∈ S and ε > 0. Then, a typical neighbourhood in the product topology
is the set of all configurations that are “close” to σ on some finite set Λ, and are
arbitrary outside Λ. In case of a discrete single-spin space, due to the trivial
metric used, a typical neighbourhood will be the set of all configurations that
are equal to σ on some finite set Λ, and are arbitrary outside Λ. The notion
of a neighbourhood will turn to be very important for the non-Gibbsianness
analysis we shall discuss later in Chapter 4. For Λ ∈ S and σ ∈ Ω we denote by
σΛ the restriction (projection) of σ to Λ, while ΩΛ denotes the set of all such
restrictions. Furthermore FΛ ≡ FΛ

0 denotes the σ-algebra of local events. We
identify FΛ ⊂ F with the sub-σ-algebra of events depending only on the spins
σΛ. Similarly, setting Λ{ := V \ Λ, we denote by FΛ{ the σ-algebra of events
which do not depend on the spins in the finite region Λ.

A real-valued function f defined on (Ω,F) is said to be measurable (with
respect to F) if, for any Borel set A ⊂ B(R) the preimage of A under f is
contained in F . In statistical mechanics one usually refers to such functions as
observables. A real-valued function on Ω is said to be local if it is measurable
w.r.t. FΛ for some Λ ∈ S, i.e. if it depends only on the value of the spins in
some finite set Λ. A quasilocal function is defined to be the uniform limit of
some sequence of local functions. Equivalently, a function f is quasilocal if

lim
Λ↑V

sup
σ,σ̃∈Ω
σΛ=σ̃Λ

|f(σ)− f(σ̃)| = 0 . (2.2)

If the single-spin space Ω0 is finite then quasilocality and continuity are equiv-
alent.

Let P(Ω) be the set of all probability measures on Ω. In order to properly
account for what happens to measures along the thermodynamic limit, we need
to define what it means for a sequence of measures µn to converge to a limiting
measure µ. What is needed is to equip the space P(Ω) with a topology. The
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topology we will use is the bounded quasilocal topology. This means that we
shall say that µn → µ if µn(f)→ µ(f) for all bounded and quasilocal functions
f . Here µn(f) denotes the expectation of f with respect to µn. In case Ω0 is
finite, then the bounded quasilocal topology coincides with the weak topology
(on continuous functions).

2.2 From Interactions to Hamiltonians: Specifications
and Gibbs Measures

We now introduce one of the primal concepts of statistical mechanics, which we
have not stressed yet, and which is referred to as interaction. Its importance lies
in the possibility to classify the Hamiltonian functions into classes: one-body
terms, two-body terms and so forth.

Definition 2.2.1. An interaction (a.k.a. potential) is a family Φ = (ΦA)A∈S
of functions ΦA : Ω → R such that for each A ∈ S, the function ΦA is FA-
measurable (i.e. a family of local functions)

An interaction is called regular (or absolutely summable), if for all i ∈ V ,
there exists a constant c such that∑

A3i
‖ΦA‖∞ ≤ c <∞ . (2.3)

By means of an interaction Φ we define the corresponding finite-volume Hamil-
tonian HΦ

Λ , for any finite volume Λ, as follows:

HΦ
Λ (σ) =

∑
A∈S
A∩Λ6=∅

ΦA(σ) . (2.4)

The condition (2.3) assures that the latter sum converges to a finite limit for
all σ ∈ Ω. The absolutely summability might be characterized by saying that
the interaction between one spin and the rest of the universe is finite. Note
that this is a stronger requirement than the “decay of interactions”.

In the introduction we mentioned the important role of boundary conditions.
The idea was to define, for any finite volume Λ ∈ S and any fixed configuration
ωΛ{ outside Λ, a probability measure on Λ itself.
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The mathematical object which can very well express such an idea is called
probability kernel 1. We can now introduce the concept of a specification which
is meant to formalize the idea of conditioning on the exterior of any finite
volume Λ.

Definition 2.2.2. A specification is a family Π = {πΛ}Λ∈S of probability
kernels from (Ω,F) to itself, satisfying the following conditions:

i) For all A ∈ F and for all Λ ∈ S, πΛ(·,A) is a FΛ{-measurable function.

ii) For any Λ, πΛ is FΛ{-proper, i.e. for any B ∈ FΛ{ , πΛ(σ,B) = χB(σ).

iii) For any two volumes, Λ and Λ′, with Λ ⊂ Λ′, πΛ′πΛ = πΛ′
2.

The third condition is a compatibility condition for pairs of volumes Λ ⊂
Λ′: (it states that if a volume Λ′ is in equilibrium with its exterior, then all
subvolumes are in equilibrium with their exteriors). (A similar condition holds
for regular conditional probabilities, although in that case it is not required to
be satisfied for all conditioning but only almost surely w.r.t. the measure3).

Hereafter, we stress two main properties of a specification, which will turn
out to play a fundamental role for the characterization of a particular type of
specifications, namely the Gibbsian specifications corresponding to a regular
interaction Φ.

Definition 2.2.3. A specification Π = {πΛ}Λ∈S is said to be quasilocal if for
each Λ ∈ S and for any quasilocal function f on Ω,
(πΛf)(ω) ≡

∫
πΛ(ω, dω′)f(ω′) is quasilocal as a function of ω.

Definition 2.2.4. A specification Π = {πΛ}Λ∈S is said to be uniformly nonnull
(with respect to α) if for each Λ ∈ S there exist constants 0 < uΛ ≤ vΛ < ∞
such that

uΛα(A) ≤ πΛ(ω,A) ≤ vΛα(A) , (2.5)

for all ω ∈ Ω and A ∈ FΛ with α =
∏
i∈V αi being an a priori (product)

measure.

1A probability kernel πΛ from (Ω
Λ{ ,FΛ{ ) to (ΩΛ,FΛ) is a map πΛ : Ω

Λ{ × FΛ → [0, 1]
satisfying:

a) For each fixed ω
Λ{ ∈ Ω

Λ{ , πΛ(ω
Λ{ , ·) is a probability measure on (ΩΛ,FΛ).

b) For each fixed A ∈ FΛ, πΛ(·,A) is an F
Λ{ -measurable function on Ω

Λ{ .

2πΛ′πΛ(ω,A) ≡
∫
πΛ′ (ω, dω

′)πΛ(ω′,A).
3 For regular conditional probabilities, the “infinite-volume” measure is known in advance,

so that the notion of almost surely makes sense. However, for specifications the consistent
measure is not given and it has to be sought, impoverishing the meaning of almost surely,
see ([69]).
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Let Φ be an absolutely summable interaction, and let HΦ
Λ be the correspond-

ing Hamiltonian. We pointed out already several times, that it is convenient to
think of the configuration outside Λ as fixed. Therefore, for any fixed bound-
ary condition ω ∈ Ω and for every Λ ∈ S, we define the Hamiltonian HΦ

Λ,ω as
follows:

HΦ
Λ,ω(σ) = HΦ

Λ (σΛωΛ{) , (2.6)

where we recall that the notation σΛωΛ{ stands for the configuration that agrees
with σ in Λ and with ω outside Λ. Let α =

∏
i∈V αi be an a priori probability

measure, then we define the conditional partition function

ZΦ
β,Λ(ω) =

∫
e−βH

Φ
Λ (σΛωΛ{ )

∏
i∈Λ

αi(dσi) , (2.7)

where β is the inverse temperature. Note that Φ being absolutely summable
implies ZΦ

Λ (ω) < ∞ for all Λ ∈ S and for all ω ∈ Ω (HΦ
Λ is everywhere finite

and bounded below). Then the probability measure

µωβ,Λ(dσΛ) :=
e−βH

Φ
Λ (σΛωΛ{ )

ZΦ
β,Λ(ω)

∏
i∈Λ

αi(dσi) (2.8)

is called the Gibbs distribution in the volume Λ with boundary conditions ωΛ{ .

The family MΦ = {µ(·)
β,Λ}Λ∈S is a specification and it is called the Gibbsian

specification for Φ. The Gibbsian specifications for absolutely summable inter-
actions are completely characterized by two properties: a) quasilocality, and b)
uniformly nonnullness, see Theorem 2.12 in [18] (Kozlov’s theorem).

We are now ready to give the definition of an infinite-volume Gibbs measure.

Definition 2.2.5. Let MΦ = {µ(·)
β,Λ}Λ∈S be a Gibbs specification (for the reg-

ular interaction Φ and a priori measure α). A measure µβ on Ω is a Gibbs
measure for MΦ if and only if, for all Λ ∈ S,

µβµ
(·)
β,Λ = µβ . (2.9)

The latter equations are called the Dobrushin-Lanford-Ruelle (DLR) equa-
tions. Equivalently, we say that a measure µβ on Ω is a Gibbs measure for MΦ

if and only if is compatible with MΦ, that is, for all Λ ∈ S and all f bounded
measurable functions

µβ(f |FΛ{)(·) = µ
(·)
β,Λ(f), µβ-a.s. (2.10)
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We denote by G(MΦ) the set of Gibbs measures for the specification MΦ. If
|G(MΦ)| > 1, where |·| denotes the cardinality of the set, then the system, which
is locally described by MΦ, is said to have a phase transition, while it is said to
be in the uniqueness regime whenever |G(MΦ)| = 1. The set G(·) embodies the
possibility that physical system exhibit one or more “phases”, depending on
the values of some parameters which we have control over (e.g. temperature,
external field). Implicitly, we are assuming that associated to any system there
exists a specification M (·) whose corresponding space G(M (·)) describes all the
possible “phases” of the systems which are possible for a given choice of the
parameters.

It is worthwhile to mention that if V were to be finite, then there would be
a unique measure consistent with any specification Π, that is πV (ω, ·), which
must be independent of ω. This underlines the impossibility to describe math-
ematically (or to better say, statistical-mechanically) phase transitions in finite
systems, (see [18]).

2.3 Non-Gibbsianness: Absence of Quasilocality

Kozlov’s theorem (Theorem 2.12 in [18]) implies two main causes of non-
Gibbsianness: lack of non-nullness and lack of quasilocality. As the title of
the current section suggests, we will be focusing on the latter cause.

The main concept is the following: a measure µ is not quasilocal, if it is
not consistent (in the sense of (2.10)) with any quasilocal specification. We
saw, in the previous section, what it takes for a specification Π = {πΛ}Λ∈S to
be quasilocal, namely that for any quasilocal function f and for any Λ ∈ S,
πΛf is quasilocal. We emphasize that (πΛf)(ω) represents the mean value of
f with respect to the measure πΛ(ω, ·), which is a probability distribution on
Λ obtained by fixing the configuration outside Λ to be ωΛ{ . The quasilocality
condition (2.2) for πΛf reads

lim
Λ′↑V

sup
ω1,ω2∈Ω
ω1

Λ′=ω
2
Λ′

∣∣(πΛf)(ω1)− (πΛf)(ω2)
∣∣ = 0 . (2.11)

The latter says that the mean values of quasilocal functions depend “weakly”
on the spins far from Λ, when the spins in the intermediate region Λ′ \ Λ are
fixed. Henceforth, we shall be referring to the intermediate region above as
“annulus”.

Let us denote by
µΛ(f |ω) = Eµ(f |FΛ{)(ω) , (2.12)
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a realization for the conditional expectation of µ, for bounded f , Λ ∈ S and
ω ∈ Ω. The reader must be aware of the fact that conditional expectations
admit an infinite number of versions, all differing on measure-zero sets. So the
function in (2.12) has to be thought of as a family of L1(µ) objects. To infer that
the measure µ is not quasilocal, it is enough to find a single, non-removable,
point of discontinuity for a single µΛ and for a single quasilocal f . From a
mathematical point of view, a dichotomy for non-removable discontinuities is
still possible, and we are driven to consider the two definitions below.

Definition 2.3.1. µΛ(f |·) is µ-essentially discontinuous at ω̄, iff there exists
an ε > 0 such that for every Λ′ ⊂ S there exists Λ′′ ⊃ Λ′ and configurations
ξ1, ξ2, such that∣∣∣µΛ(f |ω̄Λ′\Λξ

1
Λ′′\Λ′ω)− µΛ(f |ω̄Λ′\Λξ

2
Λ′′\Λ′ω)

∣∣∣ > ε ,

for all ω ∈ A, where A ∈ F(Λ′′){ is of positive µ-measure.

Definition 2.3.2. µΛ(f |·) is strongly discontinuous at ω̄, iff there exists an
ε > 0 such that for every Λ′ ⊂ S there exists Λ′′ ⊃ Λ′ and configurations ξ1, ξ2,
such that ∣∣∣µΛ(f |ω̄Λ′\Λξ

1
Λ′′\Λ′ω)− µΛ(f |ω̄Λ′\Λξ

2
Λ′′\Λ′ω)

∣∣∣ > ε ,

for all ω ∈ A, where A ∈ F(Λ′′){ is open.

The point ω̄ is also called a bad configuration. Above we saw that the “bad-
ness” of such a point might in principle be of two types: µ-essential or strong
(see Fernández [24]). The reason why we are bothered with such a detailed
matter will be discussed in Chapter 4. There we will study the quasilocal-
ity property of homogeneous low-temperature Ising Gibbs measures on Cayley
trees, subjected to an infinite-temperature Glauber evolution. We will show
that at finite large times there can be transitions between regimes where the
evolved measure is quasilocal and regimes where the evolved measure is not
quasilocal. This will be done by finding a non-removable point of discontinu-
ity for the evolved measure. However, in contrast to what happens on regular
lattices such as Zd, the discontinuities we detect for the evolved measure on
trees are of a µ-essential type. This implies that such a discontinuity might, in
principle, be non-removable for a measure and removable for another measure
(due to the fact that the measures are not absolutely continuous with respect
to each other).
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2.4 Disorder and Metastates

Let us consider a disordered spin system with quenched randomness η. We
denote the probability space of the random variables η by (E′,B,P), and E′

will always be assumed to be a Polish space. By E we shall denote the expecta-
tion w.r.t. P. A disordered spin model is defined by prescribing a Hamiltonian
H[η](σ), for each realization of η. Similarly to what was done in the absence
of disorder, fixing a boundary condition ω, we can define the finite-volume
Gibbs distribution µωΛ[η] in the finite volume Λ. The family of these distribu-
tions, for all volumes Λ and all boundary conditions ω, is called random Gibbs
specification.

The problem we face now is as follows: if there exist many pure states, given
a sequence of volumes Λn, µωΛn [η] will not have, in general, a single limit as
n ↑ ∞, but rather many different limits along different subsequences of n (by a
compactness argument). We remark that such a situation might already occur
in non-disordered systems, for particular choices of the boundary conditions
(van Enter et. al. [20] refer to those as “incoherent boundary conditions”).
Think, for example, of the Ising model on Zd and take the boundary condi-
tions + on even-size cubes Λ2n and the boundary conditions − on the odd-size
cubes Λ2n+1. Although the sequence µΛn oscillates between µ+ and µ−, the
subsequence µΛ2n

converges to the Gibbs measure µ+ and the subsequence
µΛ2n+1

converges to µ−. Such an unclear — from a physical point of view
— phenomenon of size-dependence can be circumvented by choosing boundary
conditions whose effect on the systems does not depend on the (absorbing) se-
quence of volumes, for example the all + and all − boundary conditions. The
phenomenon of size-dependence, however, is hard to avoid in disordered sys-
tems. In fact, even if the disorder is fixed (quenched), the effect of the boundary
conditions changes randomly when we look at increasing sequences of volumes,
due to the presence of the disorder. From what we have discussed in the in-
troduction, as well as in the few lines above, the reader should retain that for
a given realization η of the disorder variables, in order to obtain convergence
of µωΛn [η] to a particular limit point as n ↑ ∞, we have to take a subsequence
of volumes Λn[η] which, in general, will depend on the realization of the dis-
order (in case it is possible to find a deterministic sequence along which the
local specification converges, then the chaotic size dependence will not display
itself!). We are then led to study the situation where the boundary conditions
ω for the measure µωΛn [η] do not preselect a particular infinite-volume Gibbs
measure. In case when several Gibbs measures are available, similarly to the
non-disordered example given above with the states being µ+ and µ−, it might
be that the system can be approximated by one of these states (measures) for
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one volume and by another state for another volume, which one depending on
the choice of the disorder. The problem of size-dependence is to characterize
the behaviour of µωΛn [η] along the sequence (Λn)n. To study disordered sys-
tems, a new approach to the thermodynamic limit has been developed, which
takes into account the phenomenon of chaotic size dependence. This is done
by means of the metastate κ[η], being a probability measure on the possible
limiting states for the given η. The main point behind the introduction of
metastate, is the abandonment of the idea that a disordered system, in the
thermodynamic limit, must be described by a single state, namely by a func-
tion from disorder configurations to single infinite-volume Gibbs state. While
we have come to understand that for a given realization of the disorder variables
there might be several infinite-volume states, the metastate aims to determine
the probabilities (or frequencies) with which any of the possible limits states
will appear along the infinite-volume limit.

In pragmatic terms, we imagine that, for large n, the system will be “close”
to a mixture of random infinite-volume extremal Gibbs states µm∞[η]:

µΛn [η] ≈
∑
m

Pmn [η]µm∞[η] . (2.13)

In the decomposition (2.13) the important role is played by the coefficients
Pmn . They contain the information about the degeneracy between the phases
in the finite-volume; a degeneracy which is random due to the chaotic size
dependence. Relying on the former decomposition, the metastate will give us
the relative weights of any of these η-dependent degeneracies.

As we already mentioned in the introduction, there are two ways to con-
struct the metastate: one is based on the randomness of η, and the other is
based on the chaotic size dependence for a fixed η. The approach based on
the randomness of η is due to Aizenman and Wehr. They suggested to look at
the probability distribution Kω

Λ on the space P(Ω)× E′, of the pairs of finite-
volume Gibbs measures and the disorder variables (µωΛn [η], η), defined in such
a way that the marginal distribution of η is P, while the conditional distribu-
tion given η is δµωΛn [η], the Dirac-measure concentrated on the corresponding

local specification. It is remarkable that δµωΛn [η] is a random object living on

P(P(Ω)). It can be seen as a kernel from E′ to P(Ω). For the measure Kω
Λn

we borrow the notation Kω
Λn
≡ P× δµωΛn [η] from Bovier [5].
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Then we have the following definition:

Definition 2.4.1. Assume that, for every bounded continuous functions Ξ :
P(Ω)× E′ → R the limit

lim
n↑∞

∫
Ξ(µωΛn [η], η)P(dη) =

∫
Ξ(µ, η)Kω(dµ, dη) , (2.14)

exists. Then the conditional distribution κω[η](dµ) := Kω(dµ|η) is called the
AW-metastate.

We remark that, if the limit exists, it defines a probability measure Kω ∈
P(P(Ω)×E′) whose regular conditional probability given η, is the AW-metastate
κω[η](dµ). So the metastate is the measurable map κω : E′ → P(P(Ω)) such
that

∫
Ξ(µ, η)Kω(dµ, dη) = E[Ξ(µ, η)κω[η](dµ)]. Although convergence has not

been proved for any sequence, Aizenman and Wehr [1] showed that every sub-
sequential limit Kω has a conditional distribution κω[η], given η, that for P-a.s.
η is supported on the infinite-volume Gibbs measure for that η.

The second approach is due to Newman and Stein [62]. They considered η
to be fixed, and they suggested to capture the asymptotic volume dependence
by looking at the empirical distribution of µωΛn [η] as n varies, namely

κωN [η] :=
1

N

N∑
n=1

δµωΛn [η] , (2.15)

where µωΛn [η] denotes the finite-volume Gibbs distribution in the volume Λn,
with boundary condition ω. In general (2.15) does not converge for almost every
fixed η, unless one takes sparse enough subsequences. However, a weaker type
of convergence, e.g. convergence in law, might still be possible. An example
of a such behaviour, to be found in [50], was observed for the Curie-Weiss
random-field Ising model. Its finite-volume Gibbs distributions µn[η] in the
finite volume {1, · · · , n}, at inverse temperature β are given by

µn[η](σ1, · · · , σn) =
1

Zn[η]
exp

{
β

2n

∑
1≤i,j≤n

σiσj + β
∑

1≤i≤n

ηiσi

}
, (2.16)

where σi = ±1 are Ising spins, ηi are i.i.d Bernoulli random variables taking the
values ε,−ε with probability 1

2 , and Zn[η] is the disorder-dependent partition
function. It is known that for β large and ε small the models behaves like a
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ferromagnet with two “pure” phases, µ+
∞[η] and µ−∞[η] 4. It was shown that if

one considers the sequence of volumes {1, · · · , n}, obtained by adding one site
at a time, the empirical metastate does not converge for a.e. realization of the
disorder. However, it does converge in distribution. That is to say that for all
bounded continuous functions F : P(Ω)→ R

lim
N↑∞

1

N

N∑
n=1

F (µn[η])
d
= n∞F (µ+

∞[η]) + (1− n∞)F (µ−∞[η]) , (2.17)

where n∞ is a random variable, independent of η, distributed according to
P(n∞ < x) = 2

π arcsin
√
x. On the other hand, if a sufficiently sparse se-

quence of volumes is chosen, we have convergence of the l.h.s to 1
2F (µ+

∞[η]) +
1
2F (µ−∞[η]), for P-a.e η.

Roughly speaking, having convergence means that the fraction of Λn’s in
which a given thermodynamic state µ∞ appears along a sequence of volumes,
converges.

4 The random-field Ising model on the lattice Zd is a very instructive model. In fact, for
the symmetric version of this model, it was shown in [1] that there is a unique Gibbs measure
in 2-dimensions at any temperature, for almost all realizations of the disorder variables. This
displays a difference with the related non-disordered model, which it is well known to exhibit a
phase transition. The moral of such a different behaviour is that an arbitrarily small random
perturbation of the model can destroy the phase transition. In [8], Bricmont and Kupiainen
showed that in 3 or higher dimensions, the random field Ising model at small temperature and
for small disorder undergoes a phase transition. In other words, the ferromagnetic ordering
survives the disorder.





3 Metastates in Finite-type Mean-field Models*

3.1 Introduction

Dealing with phase transitions in the theory of Gibbs measures of disordered
systems is usually not an easy task. Indeed, in a regime where there are com-
peting extremal phases (say a plus and a minus phase in a random field model)
it may depend on the realization of the disorder variables which of the convex
combinations the system in equilibrium will be close to. Some of the possible
infinite-volume equilibrium states might not even show up in a typical large
volume. To make sense of these questions, the concept of a metastate has been
invented by Aizenman and Wehr [1], Newman and Stein [60, 61, 63], being a
probability measure which gives the weights in the large-volume asymptotic to
find a system close to one of the possible candidates among the Gibbs measures.

Explicit constructions for lattice models are difficult (see, however, van Enter
et. al. [20] where the influence of random boundary conditions on an Ising
model was analysed), but possible in mean-field models. Previously treated
examples are given in very specific models, namely the symmetric random field
Ising model and Hopfield model with a finite or a growing number of patterns
[6, 7, 49, 50, 51].

In this chapter, we aim for completeness in a particular direction, namely
disordered mean-field models with finitely many values for both spin and disor-
der variables. Such models include in particular the random-field Curie-Weiss
Ising model and Potts-type Curie-Weiss random-field models, with or without
symmetries in Hamiltonians or random field distributions. What we aim for is
the abstract construction of the phase diagram, embellished with probability
weights giving us the appearance of the candidate states. That is, we first say
which states are available. This, for disordered mean-field models comes from
an investigation of the corresponding free energy (resp. rate functions) and
is a standard thing. Next and new in this chapter is the additional informa-
tion on the weights with which they occur, and the proof of the validity of
a corresponding approximate extreme decomposition, asymptotically for large

*This chapter is based on [41].
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volumes. This is then cast in the metastate formulation. The weights are ob-
tained by studying the distribution of the free energy fluctuations w.r.t. the
disorder variables entering. Will the same type of results be true for corre-
sponding lattice models at low temperatures at phase coexistence? We believe
yes, but a proof will have to be built around sophisticated expansion techniques
and be technically rather challenging. One would need to first show the coexis-
tence of states (as was done for the random field Ising model in Bricmont and
Kupiainen [8]), and then the dominance of one of the available states over the
others for typical realizations of the disorder. The mean-field results should
provide guidance for that, and moreover we believe that they are a rather nice
complete example of a limit theorem in statistical mechanics.

3.1.1 The Models: Mean-Field Models with Local Disorder

These are the models we consider. At each site i = 1, . . . , n there is a spin
variable σ(i) taking values in a finite set E and a disorder variable η(i) taking
values in the finite (possibly different) set E′. We write P(E) for the set of
probability measures on E, and use similar notation for other spaces. We write
Ln = 1

n

∑n
i=1 δσ(i) ∈ P(E) for the (total) empirical measure of the spins and

consider a twice continuously differentiable function F on P(E). The influence
of the disorder variables on the Gibbs measures for the spins is through the
local a priori measures α[b] ∈ P(E), for any possible type of the disorder
b ∈ E′. Hence, the present analysis excludes models with disorder entering
the interaction such as e.g. the Hopfield model treated in Bovier and Gayrard
[6], Külske [50].

Definition 3.1.1. The mean-field model with Hamiltonian nF (ν) and a priori
measures α[b] ∈ P(E), for all b ∈ E′, is given by the disorder-dependent finite-
volume Gibbs distribution

µF,n[η(1), . . . , η(n)](σ(1) = ω(1), . . . , σ(n) = ω(n))

=
1

ZF,n[η(1), . . . , η(n)]
exp (−nF (Lωn))

n∏
i=1

α[ηi](ωi) ,
(3.1)

together with the prescription of a probability distribution π ∈ P(E′) for the
disorder variables, according to which they are chosen independently over the
sites. We assume π(b) > 0 for all b ∈ E′.

To summarize, our model depends on the triple of parameters (F, α, π):
mean-field interaction F , a priori measures α = (α[b])b∈E′ and disorder dis-
tribution π.
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We need to introduce more notations. Given η, we write

Λn(b) = {i ∈ {1, 2, . . . , n}; η(i) = b} ,

for all b ∈ E′, for the b-like sites. Furthermore, we denote by

π̂n(b) =
|Λn(b)|
n

,

the frequency of the b-like sites (empirical distribution of random field types)
and by

L̂n(b) =
1

|Λn(b)|
∑

i∈Λn(b)

δσ(i) ,

the empirical spin-distribution on the b-like sites. We shall also write L̂n =
(L̂n(b))b∈E′ for the vector of empirical distributions. The total empirical dis-
tribution is then the scalar product of π̂n with the vector of empirical spin
distributions

Ln =
∑
b∈E′

π̂n(b)L̂n(b) . (3.2)

3.1.2 The Metastate on the Level of the States

Let us jump into the following definition of a metastate, obtained by a condi-
tioning procedure, which was given first by [1]. There are different constructions
of a metastate, but the present one will be the only one considered here. This
construction, which is due to Aizenman and Wehr, is related to a different
and more intuitive construction as empirical averages of Gibbs measures along
volume-(sub-)sequences by Newman and Stein. We refer to the monographs
Bovier [5], Newman [60].

Definition 3.1.2. Assume that, for every bounded continuous Ξ : P(E∞) ×
(E′)∞ → R the limit

lim
n↑∞

∫
P(dη)Ξ(µn[η], η) =

∫
J(dµ, dη)Ξ(µ, η) , (3.3)

exists. Then the conditional distribution κ[η](dµ) := J(dµ|η) is called the AW-
metastate on the level of the states.

As is common, continuity is meant in the following sense: A function on an
infinite product of a finite space is continuous (w.r.t. local topology) if it is a
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uniform limit of local functions. For probability measures on P(E∞) we use
the weak topology (according to which a sequence of measures converges iff it
converges on continuous test-functions), and for P(E∞) × (E′)∞, we use the
product topology.

3.1.3 Main Theorem

How do we get the possible equilibrium states of the system? They are obtained
as solutions to the following minimization problem.

Definition 3.1.3. Consider the free energy minimization problem

ν̂ 7→ Φ[π](ν̂) , (3.4)

on P(E)E
′
, with the free energy functional

Φ : P(E′)× P(E)E
′
7→ R ,

Φ[π̂](ν̂) = F

(∑
b∈E′

π̂(b)ν̂(b)

)
+
∑
b

π̂(b)S(ν̂(b)|α[b]) ,
(3.5)

where S(p1|p2) =
∑
a∈E p1(a) log p1(a)

p2(a) is the relative entropy. We say that the

random mean-field system obeys the non-degeneracy condition 1) if ν̂ 7→ Φ[π](ν̂)
has a finite set of minimizers M∗ = M∗(F, α, π) where all the eigenvalues of
the Hessian are strictly positive.

It is very hard for a system not to satisfy this condition and we will assume
in the following that it is satisfied. If it is true the vector of the empirical spin
distributions of the system, L̂n, will concentrate around the set M∗. More
than that, it may even concentrate on a smaller set. The following theorem
about the metastate will tell us how this concentration will take place and get
the weights wj .

Let ν̂j be a fixed element in M∗. Let us consider the linearization of the free
energy functional at the fixed minimizers as a function of π, which reads

Φ[π̃](ν̂j)− Φ[π](ν̂j) = −Bj [π̃ − π] + o(‖π̃ − π‖) , (3.6)

where

Bj [π̃ − π] =

−

(
dFπ·ν̂j

(∑
b

(π̃(b)− π(b))ν̂j(b)

)
+
∑
b

[π̃(b)− π(b)]S(ν̂j(b)|α[b])

)
.

(3.7)
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This defines an affine function on the tangent space of field type measures
TP(E′) (i.e. vectors which sum up to zero), for any j.

Definition 3.1.4. We call Bj the stability vector of ν̂j. We call

Rj := {x ∈ TP(E′), 〈x,Bj〉 > max
k 6=j
〈x,Bk〉} , (3.8)

the stability region of ν̂j.

Now comes our second condition.

Definition 3.1.5. We say the vector B = (B1, . . . , Bk) satisfies the non-
degeneracy condition 2) if no different minimizers j, j′ have the same Bj = Bj′ .

In other words the randomness lifts all symmetries. The Hopfield model
for instance (which was excluded already before because of the structure of the
randomness) would also be excluded at this state since it has spin-flip symmetry
for all realizations, and so minimizers in the free energy would come in pairs.

Note that the condition in the definition implies that
(⋃

j=1,...,k Rj

){
has zero

Lebesgue measure in TP(E′). Indeed, if the map j 7→ 〈x,Bj〉 has no unique
maximizer for fixed x, then, for some pair j 6= k we have that 〈x,Bj−Bk〉 = 0.
For fixed j, k this set of x’s is a hyperplane (hence a measure zero set) since, by
assumption, Bj 6= Bk. We note the following simple but important geometric
lemma.

Lemma 3.1.6. Rj 6= ∅ ⇔ Bj ∈ ex(Hconv{B1, . . . , Bk}).

Here, for a subset A ⊂ Rd, Hconv(A) denotes the convex hull of A, that is the
smallest convex set which contains A. ex(C), for a convex set C, denotes the
extremal points of C, that is those points which can not be written as a non-
trivial convex combination with points from C. In our case Hconv{B1, . . . , Bk}
is a convex polyhedron and ex(Hconv{B1, . . . , Bk}) is the smallest set of points
which generates it.

Proof. We prove the implication ”⇒ ” by contradiction. Suppose thatBj is not
an extremal point. Then it can be written as a non-trivial convex combination
Bj =

∑
i αiBi with

∑k
i=1 αi = 1, where αi ≥ 0 and non-zero only for Bi ∈

ex(Hconv{B1, . . . , Bk}). Any vector x ∈ Rj satisfies 〈x,Bj〉 > 〈x,Bi〉 for all

i 6= j and hence 〈x,Bj〉 =
∑
i αi〈x,Bj〉 >

∑k
i=1 αi〈x,Bi〉 = 〈x,Bj〉. This is a

contradiction and hence Rj = ∅.
To prove the opposite implication ” ⇐ ” let us consider an extremal point

Bj and note the following: If Bj 6∈ Hconv{B1, . . . , Bj−1, Bj+1, . . . , Bk} then,
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after a suitable translation and rotation, we can find coordinates such that the
vectors take the form Bj = (0, . . . , 0, Bj,d) and Bi = (B′i, Bi,d) with Bj,d > 0
and Bi,d ≤ 0 for i 6= j. (The latter statement follows from the fact that
there is a separating hyperplane between Hconv{B1, . . . , Bj−1, Bj+1, . . . , Bk}
and the point Bj . This finite-dimensional version of the Hahn-Banach theorem
is a classical result in geometry, see Theorem 1.2.4 in Matoušek [59]. Having
this separating hyperplane we choose the origin as the orthogonal projection
of Bj to this plane, the first coordinates as orthogonal coordinates inside the
plane, and the last coordinate axis pointing in the direction of Bj .) The proof
relies on the last two inequalities. Indeed we have, with the general notation
x = (x′, xd) ∈ Rd−1 × R that

Rj = {x ∈ Rd : ∀i 6= j holds 〈x,Bj −Bi〉 > 0}
= {x ∈ Rd : ∀i 6= j holds 〈x′, B′j −B′i〉+ xd(Bj,d −Bi,d) > 0}

=

{
x ∈ Rd : xd > max

i:i6=j

〈x′, B′i −B′j〉
Bj,d −Bi,d

}
6= ∅ .

(3.9)

Before we state our theorem let us introduce the kernels

γ[b](a|ν) =
e−dFν(a)α[b](a)∑
ā∈E e

−dFν(ā)α[b](ā)
, (3.10)

with ν ∈ P(E). These are the limiting local distributions of a spin at a site
with a disorder variable in the state b if the empirical spin-average of the rest
of the system is given by the measure ν. The products over all sites of these
quantities, for ν = πν̂j , will play the role of pure measures. We are now in the
position to give our main result.

Theorem 3.1.7. Assume that the model satisfies the non-degeneracy assump-
tions 1) and 2). Define the weights

wj := Pπ(G ∈ Rj) , (3.11)

where G ∈ TP(E′) is a centred Gaussian variable with the same covariance as√
n(π̂n − π) which is given by the expression Cπ(b, b′) = π(b)1b=b′ − π(b)π(b′).

Then
∑k
j=1 wj = 1 and the metastate on the level of the states equals

κ[η](dµ) =

k∑
j=1

wjδµj [η](dµ) , (3.12)
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where µj [η] :=
∏∞
i=1 γ[η(i)]( · |πν̂j).

Comment. We like to reformulate our result on the visibility or invisibility
of the phases in the following way. Let us denote by M∗∗ = {ν̂ ∈M∗ : wν̂ > 0}
the subset of visible pure phases among the pure phases M∗. Let us use the
symbol B· for the injective map (under our hypothesis)

B· : M∗ → TP(E′) ,

ν̂ 7→ Bν̂ .

Then we can write in short

M∗∗ = (B·)
−1
(

ex(Hconv(B·(M
∗))
)
.

Let us derive the following immediate consequence which provides a symme-
try, due to the randomness (the symmetry of the Gaussian, obtained via the
CLT).

Corollary 3.1.8. Suppose that the system admits precisely two pure phases,
i.e. |M∗| = 2. Then the metastate is the symmetric mixture between the two,
i.e.

κ[η](dµ) =
1

2
δµ1[η](dµ) +

1

2
δµ2[η](dµ) . (3.13)

The corollary is clear from the theorem since in that case R1 = −R2 and
this implies by the non-degeneracy assumption 2) that w1 = w2.

Corollary 3.1.9. Suppose that the random-field is two-valued, i.e. |E′| = 2,
and the number of pure phases |M∗| ≥ 2 arbitrary. Then the set of visible
states has two elements and w(ν̂) = 1

2 for both elements ν̂ ∈M∗∗.

The corollary is clear from the theorem since any convex polyhedron in one
dimension has only two extremal points.

Exploiting the Mean-field Equation

Using variational calculus and assuming differentiability of F , one sees that
the minimizers of the variational problem (3.4) must satisfy the consistency
(mean-field) equations

ν̂[b](a) = γ[b](a|π · ν̂) , (3.14)
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which are coupled over b ∈ E′. Summing over these indices one gets the mean-
field equation for the total empirical mean ν = π · ν̂ of the form

ν(a) =
∑
b∈E′

π(b)γ[b](a|ν) . (3.15)

We note the following Lemma.

Lemma 3.1.10. Define the function Γ̂ : P(E) → P(E)E
′

by the r.h.s. of the
mean field equation, namely

Γ̂(ν) =
(
γ[b](·|ν)

)
b∈E′

. (3.16)

Define the function B̂ : P(E)→ TP(E′) by

B̂ν [b] = log

(∑
a∈E

e−dFν(a)α[b](a)

)
− C ,

C =
1

|E′|
∑
b∈E′

log
∑
a∈E

e−dFν(a)α[b](a) .

(3.17)

Then, for all ν̂ ∈M∗,

ν̂ = Γ̂(πν̂) ,

Bν̂ = B̂πν̂ .
(3.18)

For all ν ∈ πM∗ the free energy can be written as

Φ[π](Γ̂(ν)) = F (ν)− 〈dFν , ν〉 − 〈B̂ν , π〉+ C . (3.19)

The first statement is just a rephrasing of the mean-field equation. It serves
us to see that there is a bijection between πM∗ = {πν̂|ν̂ ∈ M∗} ⊂ P(E) (a
subset in a space of measures with dimension |E| − 1) and M∗ (a subset in
a space of measures with dimension (|E| − 1)|E

′|). The second part means
that the logarithm of the normalization factor (“little partition function”) of
the mean-field kernels in the total empirical distribution ν of type b, produces
the b’th component of the stability vector corresponding to the minimizer with
total empirical mean ν. The interesting feature is that the form of π does not
enter at all into this formula (it enters however through the question which
minimizer ν̂, and hence also ν, appears.)
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Proof. The first part is obvious. To prove the second part, for ν̂ ∈ M∗, we
write, with a constant C ′ to be determined

−Bν̂ [b] =
∑
a∈E

dFπ·ν̂(a)ν̂[b](a) + S(ν̂[b]|α[b])− C ′

≡ ν̂[b](dFπ·ν̂(·)) + S(ν̂[b]|α[b])− C ′

= − log
∑
a∈E

e−dFπν̂(a)α[b](a)− C ′ .

(3.20)

The last equality follows from the mean-field equation (3.14) and from (3.10).
This proves the second claim. The last claim follows from the first equality of
the last display multiplying with π(b) and summing over b ∈ E′.

3.1.4 Ising Random-field Examples

Let us take the Ising model with F (ν) = −β(ν(+)2+ν(−)2). Any possible local

single-site measure α can be described as an α[h](σi) = ehσi

2 coshh . Any ν = νm
can be described in terms of its mean value νm(+)− νm(−) = m. By means of
the above, we can write

B̂νm [h] ≡ B̂νm [α[h]] = log
eβ2 1+m

2 +h + eβ2 1−m
2 −h

2 coshh
− C

= β + log
cosh(βm+ h)

coshh
− C .

(3.21)

Let us now fix E′ = supp(π) = {αh : h ∈ {h1, h2, . . . , hL}} as the set of
allowed local measures. This gives us the normalized vector in the tangent
space TP(E′) with entries

B̂νm [hi] := log
cosh(βm+ hi)

coshhi
− 1

L

L∑
j=1

log
cosh(βm+ hj)

coshhj
. (3.22)

Writing a vector with L = |E′| components we have

B̂νm =

log cosh(βm+h1)
coshh1

. . .

log cosh(βm+hL)
coshhL

− 1

L

L∑
j=1

log
cosh(βm+ hj)

coshhj

 1
. . .
1

 .

Lemma 3.1.11. Let E′⊂R, 2 ≤ |E′| < ∞. Then the map m 7→ B̂νm is
injective.
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Proof. We have at least two elements, h1 < h2 (after possible change of indices)
in E′. Let νm, νm̃ be given with B̂νm = B̂νm̃ . By easy manipulations looking
at the first two components of B the latter implies that

cosh(βm+ h1)

cosh(βm+ h2)
=

cosh(βm̃+ h1)

cosh(βm̃+ h2)
. (3.23)

From this follows m = m̃ by injectivity of the function x 7→ cosh x
cosh(x+1) .

Let us extend the random-field Ising model to a non-quadratic Hamiltonian
F (ν) = G(ν(+) − ν(−)) and general local measures α = (α[h])h∈E′ with a
finite set E′ just as above in the quadratic case. Then the mean field equation
becomes

m =

L∑
i=1

π(hi) tanh(−G′(m) + hi) . (3.24)

The stability vector becomes

B̂νm [hi] := log
cosh(−G′(m) + hi)

coshhi
− 1

L

L∑
j=1

log
cosh(−G′(m) + hj)

coshhj
. (3.25)

Then the injectivity of the map m 7→ B̂νm holds under the assumption that
m 7→ G′(m) is injective, by the same proof, replacing m by −G′(m) in (3.23).
We have thus proven the following statement.

Proposition 3.1.12. For a random-field Ising model with Hamiltonian F (ν) =
G(ν(+)− ν(−)) and G′ injective the second non-degeneracy assumption is au-
tomatically satisfied, for any distribution of random fields with finite support.

It is easy to create a two-minima situation where there is no symmetry, by
looking at the equal-depth condition for the free energy

Φ[π](Γ̂(νm)) =

= F (νm)−
∑
a∈E

dFνm(a)νm(a)−
∑
b∈E′

π(b) log
∑
a∈E

e−dFνm (a)α[b](a)

= G(m)−mG′(m)−
L∑
i=1

π(hi) log
cosh(−G′(m) + hi)

coshhi
,



Introduction 39

where both minima would get the same weight in the metastate necessarily.
In fact, a situation with precisely two minimizers not related by symmetry

was proven to occur (even) for the (symmetric) model G(m) = −βm
2

2 , E =

E′ = {1,−1}, π(1) = 1+α
2 = 1 − π(−1), α[b](a) = eβεab

cosh βε , in a region of the

(β−1, ε)-plane, see [52].

3.1.5 Potts Random-field Examples

Let us take the Potts model with quadratic interaction

F (ν) = −β
2

(ν(1)2 + · · ·+ ν(q)2) ,

in the presence of the local single-site measures α[b](σi) (specified below) where
we write

E′ = supp(π) = {α[b] : b ∈ {b1, b2, . . . , bL}} .

Then we have for the stability vector

B̂ν =

log
∑q
a=1 e

βν(a)α[b1](a)
. . .

log
∑q
a=1 e

βν(a)α[bL](a)

− 1

L

L∑
j=1

log

q∑
a=1

eβν(a)α[bj ](a)

 1
. . .
1

 .

Remark 3.1.13. The map B̂· : P(E) → TP(E′) is a map between spaces of
dimension |E| − 1 and |E′| − 1. It has a chance to be injective as such (on the
whole space P(E)) only when |E′| ≥ |E|.

Let us take E ≡ E′ and π to be the equidistribution and switch to the specific

case α[b](a) = eB1b=a

eB+q−1
(random field with homogeneous intensity). The kernels

become

γ[b](a|ν) =
eβν(a)+B1a=b∑
ā∈E e

βν(ā)+B1ā=b
.

We will be looking at measures in νj,u ∈ P(E) of the form νj,u(j) = 1+u(q−1)
q ,

νj,u(i) = 1−u
q for i 6= j. The stability vector for ν1,u is given by

B̂ν1,u
=


q−1
q log eβu+B+q−1

eβu+eB+q−2

− 1
q log eβu+B+q−1

eβu+eB+q−2

. . .

− 1
q log eβu+B+q−1

eβu+eB+q−2

 ,
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the other ones are related by symmetry. We note that the first entry is strictly
positive while the other entries are negative (for B > 0 and u > 0). The
mean-field equation in the u variable takes the following form:

u =
eβu

eβu + eB + (q − 2)
− 1

eβu+B + (q − 1)
. (3.26)

We notice that u = 0 is always a solution, and for B = 0 we obtain exactly the
known mean-field equation for Potts without disorder. The latter model shows
a first-order transition as a function of temperature at critical temperature

βc = 2(q−1)
q−2 log(q − 1) (see Ellis and Wang [13]). The r.h.s. of (3.26) is always

positive, as a computation shows. This gives rise to a non-trivial solution u, in
a certain range of parameters. Note that this non-trivial solution is not always
the one to be chosen. It is to be chosen iff Φ[π](Γ̂(νj,u)) < Φ[π](Γ̂(νj,u=0)).
So, the first order transition point is given by equality of the last equation.
Forgetting a u-independent term we have, independently of the direction j,

Φ[π](Γ̂(νj,u)) =

log
eB + q − 1

eβu + eB + q − 2
+
β(q − 1)

2q
u2 +

β

q
u− 1

q
log

eβu+B + q − 1

eβu + eB + q − 2
,

(3.27)

with the property that Φ[π](Γ̂(νj,u=0) = 0. For illustrational purposes let us
focus on the case q = 3. We don’t provide a complete bifurcation analysis here,
but just outline the picture. The case B = 0 is perfectly understood and we
know that there is a first order transition at the critical inverse temperature
β = 4 log 2. The nature of the transition stays the same when B takes small
enough positive values and there is a line in the space of temperature and
coupling strength B of an equal-depth minimum at u = 0 and a positive value
of u = u∗(β, q). (See Fig. 1 for a numerical example.) Along this line the set
of Gibbs measures is strictly bigger than the set of states which are seen under
the metastate.
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The Plot shows the graph of u 7→ Φ[π](Γ̂(νj,u)) for B = 0.3, q = 3, β =
4 log 2 + 0.03203 at which there is the first order transition.
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The metastate becomes κ[η](dµ) = 1
3

∑3
j=1 δµj [η] with

µj [η] =
∏∞
i=1 γ[η(i)]( · |νj,u=u∗(β,q)). This follows from the form of the stability

vector using that B̂ν1,u=0
= 0 and hence lies in the convex hull of the three

others.

3.1.6 Strategy of the Proof, Non-degeneracy Assumption and
Concentration

The outline of the remainder of this chapter is as follows. We begin in Sec-
tion 3.2 with a discussion of another related result, namely the metastate on
the level of the empirical spin-distributions. The theorem is quite analogous,
the same weights wj appear, and the proof is slightly easier than that of the full
theorem. To arrive at the proof of this theorem we will discuss the concentra-
tion property of the vector of the empirical distributions for good realizations
of the disorder which will force the system to be in one definite state. In partic-
ular, it will show how the non-degeneracy assumptions 1) and 2) are naturally
used in that argument and this will explain how the CLT for empirical distri-
butions of disorder variables translates into the form of the weights wj . Then
in Section 3.3 we will turn to the proof of the metastate theorem on the level
of states and conclude.
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3.2 The Metastate on the Level of the Empirical
Spin-distribution

Two ways of looking at the spin-distributions of disordered mean-field systems
are natural. In the first one, described in the introduction, we focus on measures
on the spins themselves, and evaluate them on local observables. In the second
one, we focus on aggregate properties of the system, and look at functions of
the empirical spin-distribution of the whole system. From the second point of
view it is natural to make the following definition of a metastate on the level
of the empirical spin-distribution.

Denote by ρ[η](n) := µF,n[η](Ln) the image of the finite-volume Gibbs-
measure under the empirical distribution. This defines a disorder-dependent
element in P(P(E)). Under our assumptions these measures will concentrate
on the finite set πM∗ = {πν̂j , j = 1, . . . , k}. It is useful to introduce a metas-
tate which tells us more precisely how this concentration takes place. This is
the reason for the following definition.

Definition 3.2.1. Assume that, for every bounded continuous Ψ : P(P(E))×
(E′)∞ the limit

lim
n↑∞

∫
P(dη)Ψ(ρ[η](n), η) =

∫
K(dρ, dη)Ψ(ρ, η) , (3.28)

exists. Then the conditional distribution κ̄[η](dρ) := K(dρ|η) is called the
metastate on the level of the empirical spin-distribution.

Believing in the first theorem it is not surprising that this metastate takes
the following form.

Theorem 3.2.2. Under the non-degeneracy assumptions 1) and 2),

κ̄[η](dρ) =

k∑
j=1

wjδδπν̂j (dρ) , (3.29)

for Pπ-a.e. η.

As a difference with respect to the first theorem let us point out that in this
case the dependence on the disorder has vanished on the r.h.s.

Proof of Theorem 3.2.2. For n1 < n2 integers, let’s define

X[n1,n2][η] =
1√

n2 − n1 + 1

n2∑
i=n1

δηi −
√
n2 − n1 + 1 π . (3.30)
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Define n, l-dependent good-sets Hτn,l of the realization of the randomness as
follows

Hτi,n,l :=
{
η ∈ (E′)n−l : X[l+1,n][η] ∈ Rτi,n

}
,

Hτn,l :=

k⋃
i=1

Hτi,n,l ,
(3.31)

where Rτi,n := {x ∈ TP(E′) : 〈x,Bi〉 − maxk 6=i〈x,Bk〉 > n−
1
2 +τ , ‖x‖ ≤ n

τ
4 },

where 0 < τ < 1
2 . For the sake of clarity set δn = n−

1
2 +τ . The chosen range of

τ ensures that δn ↓ 0, but not too fast, namely in such a way that
√
n δn ↑ ∞.

Hτi,n,l is a region of the disorder random variables which allows us to deduce
that the measure on the empirical distribution will be with large probability
inside a ball around πν̂∗i .

Remark 3.2.3. We need δn ↓ 0 because we want to cover all of the correspond-
ing stability-region Ri, (3.8), in the large-n limit. The condition regarding the
velocity with which δn is going to 0 ensures the concentration of the measure
around a particular minimizer, in other words it will enable us to see the break-
ing of the degeneracy of the minimizers caused by the fluctuations of π̂n. The
relevance of the cut-off ‖x‖ ≤ n τ4 will be seen later.

Lemma 3.2.4. Let us assume that η ∈ Hτi,n,0. Then

µF,n[η(1), . . . , η(n)](d(Ln, πν̂
∗
i ) ≤ ε) ≥ 1− r̄(ε, n) , (3.32)

where limn↑∞ r̄(ε, n) = 0 for all ε > 0.

Proof of Lemma 3.2.4. Call Mn := {ν ∈ P(E) : ∃ω ∈ En such that Lωn =
ν}. To every element ν ∈ Mn correspond several possible values of the em-
pirical distribution vectors L̂n ∈ P(E)E

′
, given π̂n. We call this set M̂n :=

{ν̂ ∈ P(E)E
′

: ∃ω ∈ En such that ν̂ = L̂n}. Let’s define ρε[η](n) ∈ P(πM∗)
assigning probability weights to the ε-balls by

ρε[η](n)(πν̂∗i ) :=
µF,n[η(1), . . . , η(n)](Ln ∈ B(ε, πν̂∗i ))
k∑
j=1

µF,n[η(1), . . . , η(n)](Ln ∈ B(ε, πν̂∗j ))

.
(3.33)

At this stage the measures appearing in the former definition involve a sum
over ν ∈ Mn

⋂
B(ε, πν̂∗i ) and for the correspondence formerly mentioned we
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can write

ρε[η](n)(πν̂∗i ) =

∑
ν̂:π̂nν̂∈B(ε,πν̂∗i )

µF,n[η(1), . . . , η(n)](L̂n = ν̂)

∑k
j=1

∑
ν̂:π̂nν̂∈B(ε,πν̂∗j )

µF,n[η(1), . . . , η(n)](L̂n = ν̂)
(3.34)

=

∑
ν̂:π̂nν̂∈B(ε,πν̂∗i )

∑
σ∈En:L̂σn=ν̂

e−nF (π̂nν̂)
n∏
i=1

α[ηi](σi)

∑
ν̄∈M̂n

∑
σ∈En:L̂σn=ν̄

e−nF (π̂nν̄)
n∏
i=1

α[ηi](σ̄i)

k∑
j=1

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗
j

)

∑
σ∈En:L̂σn=ν̂

e−nF (π̂nν̂)
n∏
i=1

α[ηi](σi)

∑
ν̄∈M̂n

∑
σ∈En:L̂σn=ν̄

e−nF (π̂nν̄)
n∏
i=1

α[ηi](σ̄i)

. (3.35)

Decomposing the spin-sums into sums over possible values of the vector of
empirical distributions on the b-like sites we can rewrite the last expression as

∑
ν̂:π̂nν̂∈B(ε,πν̂∗i )

e−nF (π̂nν̂)

|E′|∏
b=1

α[b]|Λn(b)|(Ω|Λn(b)|(ν̂(b)))

k∑
j=1

∑
ν̂:π̂nν̂∈B(ε,πν̂∗j )

e−nF (π̂nν̂)

|E′|∏
b=1

α[b]|Λn(b)|(Ω|Λn(b)|(ν̂(b)))

, (3.36)

where Ω|Λn(b)|(ν̂(b)) = {σ ∈ E|Λn(b)| : L̂σn(b) = ν̂(b)}, and α[b]|Λn(b)|(·) is the
product measure on the b-like sites. For sake of clarity let us recall the finite-
volume finite-alphabet version of Sanov’s theorem which is stated as Lemma
2.1.8 in Dembo and Zeitouni [10], which we will make use of in the next step.

Lemma 3.2.5. Let ν be a probability measure on a finite state space E. For
fixed n define the set of microstates compatible with ν by

Ω(ν) := {ω ∈ En|Lωn = ν} . (3.37)
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Then, if nν(x) is integer-valued for all x ∈ E we have the upper and lower large
deviation bounds

(n+ 1)−|E|e−nS(ν|µ) ≤ µ(Ω(ν)) = µ({ω : Lωn = ν}) ≤ e−nS(ν|µ) . (3.38)

Using (3.38) we get a lower bound to (3.36) of the form

1

1 +

k∑
j 6=i

∑
ν̂:π̂nν̂∈B(ε,πν̂∗j )

e−nΦ[π̂n](ν̂)

∑
ν̂:π̂nν̂∈B(ε,πν̂∗i )

e−nΦ[π̂n](ν̂)
∏
b∈E′

(| Λn(b) | +1)−|E
′|

.

(3.39)

Let us notice that, in the last expression, the free energy (3.5) has appeared.
However it does not involve yet the minimizer ν̂∗i in an explicit way. What we
would like to do next, is to understand the π̂n-dependence of the minima in the
different balls. Differences in the depths of the minima would not be present
for π̂n = π but will be created by the fluctuations of π̂n.

In order to achieve this, we first need to compare the values that the π̂n-
dependent free energy takes on the ball with the one corresponding to the
centre. As we will see in Proposition 3.2.6 this can be done uniformly with
respect to the centres (π-minimizers). Secondly we will compare, for any fixed
minimizer, the difference between the π̂n-dependent free energy and the π-
dependent one; this will be done using the linearization procedure (3.6). Let us
emphasize the fact that the definition of the good-sets Hτi,n,l has been chosen
ad hoc to guarantee, in the limit n ↑ ∞, that the i-th stability vector will
“dominate” the others, and thus the concentration around ν̂∗i will take place.
We also need an upper bound on ‖π̂n− π‖ for that procedure to work which is
the reason for the cut-off in the definition of the good-sets. The next proposition
formalizes the first step.

Proposition 3.2.6. Under the non-degeneracy assumption 1) there exists an
ε0 > 0 and a positive constant K such that for all ε ≤ ε0 and for n sufficiently
large

−K‖π̂n − π‖2

2
≤ inf
ν̂∈M̂n

⋂
B(ε,πν̂∗j )

(Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j )) , (3.40)

for all minimizers ν̂∗j .
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Proof. We will show that there exists a positive K such that

−K||π̂n − π||2

2
≤ inf
ν̂∈B(ε,πν̂∗j )

(Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j )) (3.41)

holds, hence the proposition will follow using the simple inequality
inf

ν̂∈M̂n

⋂
B(ε,πν̂∗j )

≥ inf
ν̂∈B̂(ε,πν̂∗j )

. Let us take a Taylor expansion of Φ[π̂n](ν̂) around

ν̂∗j , namely

Φ[π̂n](ν̂) = Φ[π̂n](ν̂∗j ) + 〈∇Φ[π̂n](ν̂∗j ), ν̂ − ν̂∗j 〉

+
1

2
〈ν̂ − ν̂∗j , HΦ[π̂n](ν̂∗j )(ν̂ − ν̂∗j )〉+ ||ν̂ − ν̂∗j ||2R(ν̂, ν̂∗j ) ,

(3.42)

where R(ν̂, ν̂∗j ) is a continuous function at ν̂ = ν̂∗j with R(ν̂∗j , ν̂
∗
j ) = 0, and H

is the Hessian. So we obtain

Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j ) ≥ 〈∇Φ[π̂n](ν̂∗j ), ν̂ − ν̂∗j 〉

+
1

2
〈ν̂ − ν̂∗j , (HΦ[π̂n](ν̂∗j )− C1)(ν̂ − ν̂∗j )〉 ,

(3.43)

where C1 is a non-negative constant which can be chosen arbitrarily close to
zero when we restrict to balls with sufficiently small radii ε. The inf for the
previous r.h.s. is obtained at the point
ν̂∗ = −(HΦ[π̂n](ν̂∗j )− C1)−1∇Φ[π̂n](ν̂∗j ) + ν̂∗j , which leads to

inf
ν̂∈B(ε,πν̂∗j )

(Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j ))

≥ −1

2
〈∇Φ[π̂n](ν̂∗j ), (HΦ[π̂n](ν̂∗j )− C1)−1∇Φ[π̂n](ν̂∗j )〉 .

(3.44)

Non-degeneracy assumption 1) implies, together with the twice continuous dif-
ferentiability of F , that there exists a positive constant K̃ such that

〈x,HΦ[ξ](ν̂∗j )x〉 ≥ K̃||x||2 , (3.45)

for all ξ in a neighbourhood of π. Noticing that ||∇Φ[π̂n](ν̂∗j )|| ≤ c||π̂n−π|| we
have

−K||π̂n − π||
2

2
≤ inf
ν̂∈B(ε,πν̂∗j )

(Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j )) ≤ 0 , (3.46)

with K = c2

K̃−C1
, which is positive for ε0 sufficiently small.
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From the last right-hand side of (3.39) we have

1

1 +
k∑
j 6=i

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗j )

e−n(Φ[π̂n](ν̂)−Φ[π̂n](ν̂∗j ))e−nΦ[π̂n](ν̂∗j )

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗i )

e−n(Φ[π̂n](ν̂)−Φ[π̂n](ν̂∗i ))e−nΦ[π̂n](ν̂∗i )
∏
b∈E′

(| Λn(b) | +1)−|E
′|

≥ 1

1 +

k∑
j 6=i

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗j )

e

−n

 inf
ν̂∈M̂n∩B(ε,πν̂∗j )

(Φ[π̂n](ν̂)− Φ[π̂n](ν̂∗j ))


e−nΦ[π̂n](ν̂∗j )

e−n(Φ[π̂n](ν̃)−Φ[π̂n](ν̂∗i )))e−nΦ[π̂n](ν̂∗i )
∏
b∈E′(| Λn(b) | +1)−|E′|

≥ 1

1 +

k∑
j 6=i

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗j )

e
Kn‖π̂n−π‖2

2 e−nΦ[π̂n](ν̂∗j )

e−Ce−nΦ[π̂n](ν̂∗i )
∏
b∈E′(| Λn(b) | +1)−|E′|

.

(3.47)

In the first inequality we have chosen ν̃ as a best-approximation of ν̂∗i in M̂n

to get rid of the sum in the denominator of the denominator. In the second
inequality we have used Proposition 3.2.6, and moreover the bound on the cor-
responding discretization error of the order 1/n and the uniform boundedness
of the first derivative of Φ. The sums over measures in balls only give rise
to polynomial constants which are swallowed by the terms in the exponential
(as we will see, because the random terms lifting the degeneracy between the
minimizers will be of order squareroot.)

Now to the lowest order in π̂n − π, we have

Φ[π̂n](ν̂∗i ) = Φ[π](ν̂∗i ) + Φπ[π](ν̂∗i )(π̂n − π) + o(‖ π̂n − π ‖) . (3.48)
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So the last right-hand side of (3.47) becomes

≥ 1

1 +

k∑
j 6=i

e
Kn‖π̂n−π‖2

2 +Ce
−n〈Bν̂∗

i
−Bν̂∗

j
,π̂n−π〉

e−n·o(‖π̂n−π‖)
∏
b∈E′

(| Λn(b) | +1)2|E|

.

(3.49)

We are considering n sufficiently large such that there is at least one element
in {ν̂ : π̂nν̂ ∈ B(ε, πν̂∗i )}. For η ∈ Hτi,n,0 we have that

ρε[η](n)(πν̂∗i ) > 1− r(n) , (3.50)

with limn↑∞ r(n) = 0. Indeed, we defined the good-set Hτi,n,0 in such a way

that n‖π̂n − π‖2 ≤ n
τ
2 and n〈Bν̂∗i −Bν̂∗j , π̂n − π〉 ≥ n

τ . Here we see the reason
for the choice of the cutoff.
In order to prove Lemma 3.2.4, let us write

µF,n[η(1), . . . , η(n)](Ln ∈ B(ε, πν̂∗i ))

=ρε[η](n)(πν̂∗i )(1− µF,n[η(1), . . . , η(n)](d(Ln, πM
∗) ≥ ε)) .

(3.51)

Now we can use the concentration property for the empirical distribution saying
that ∀ε > 0 and for all η ∈ Hτi,n,0 we have

µF,n[η(1), . . . , η(n)](d(Ln, πM
∗) ≥ ε) ≤ r̂(n, ε) , (3.52)

with limn↑∞ r̂(n, ε) = 0 for all positive ε. This concentration property is a
consequence of the bound

µF,n[η(1), . . . , η(n)](d(Ln, πM
∗) ≥ ε)

≤
∏
b∈E′

(nπ̂n(b) + 1)2|E| exp

−n inf
ν̂∈M̂n

d(π̂nν̂,πM
∗)≥ε

Φ[π̂n](ν̂) + n inf
ν̂′∈M̂n

Φ[π̂n](ν̂′)


≤
∏
b∈E′

(nπ̂n(b) + 1)2|E|eK2n‖π̂n−π‖+C2 ×

× exp

−n inf
ν̂∈P(E)|E

′|

d(πν̂,πM∗)≥ε

Φ[π](ν̂) + n inf
ν̂′∈P(E)|E′|

Φ[π](ν̂′)

 ,

(3.53)
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where in the second inequality we have used the Lipschitz property of Φ w.r.t.
π and the control of the discretization error. On the good-sets we have n‖π̂n−
π‖ ≤ n

1
2 + τ

4 , while the quadratic nature of the minima gives us a term of ex-
ponential decay in n from the rightmost exponential, for any fixed ε > 0. This
proves the concentration property. So the Lemma 3.2.4 follows from (3.50), (3.51)
and (3.52).

Having proven, for a particular choice of the disorder variables, the concen-
tration of the empirical distribution around a given minimizer, the following
lemma represents the natural extension to averages.

Lemma 3.2.7. For any real-valued continuous function g on P(E) the follow-
ing holds:

|ρ[η](n)(g)− g(πν̂∗j )| ≤ r̃(n), ∀η ∈ Hτj,n,0 , (3.54)

where limn↑∞ r̃(n) = 0.

Proof. Let B(ε, πν̂∗j ) be an ε-ball around the measure πν̂∗j . Then for any ε > 0
and integer n,

|ρ[η](n)(g)− g(πν̂∗j )|

=

∣∣∣∣ρ[η](n)
(

1B(ε,πν̂∗j )(g − g(πν̂∗j ))
)

+ ρ[η](n)
(

1B{(ε,πν̂∗j )(g − g(πν̂∗j ))
)∣∣∣∣

≤ sup
ν∈B(ε,πν̂∗j )

|g(ν)− g(πν̂∗j )|+ 2‖g‖∞ ρ[η](n)
(
B{(ε, πν̂∗j )

)
holds. Choosing first ε sufficiently small and then n sufficiently large proves
the lemma.

Now comes the study of how the probability of the good-sets Hτj,n,l behaves
in the limit n ↑ ∞. Out of this analysis the weights (3.11) will arise. The
fundamental step is that the limit will not depend on any finite number l of co-
ordinates η, while the corresponding tail will provide, using CLT, the longed-for
weights. This together with the Stone-Weierstrass theorem and Lemma 3.2.7
are the overriding tools for proving Theorem 3.2.2.
Let us start the analysis looking at the n, l-dependent good-sets Hτi,n,l in a
slightly different way. For any l < n, we have

Hτi,n,0 =

{
η ∈ (E′)n :

√
nl

n
X[1,l][η] +

√
n(n− l)
n

X[l+1,n][η] ∈ Rτi,n

}
. (3.55)



50 Chapter 3

Saying that X[1,n][η] ∈ Rτi,n means

an〈X[1,l][η], Bi〉+ bn〈X[l+1,n][η], Bi〉
−max

k 6=i

(
an〈X[1,l][η], Bk〉+ bn〈X[l+1,n][η], Bk〉

)
> δn ,

(3.56)

and ‖X[1,n][η]‖ ≤ n τ4 , where an =
√
nl
n and bn =

√
n(n−l)
n Let us further define

a subregion of Hτi,n,0, namely Hτi,n,0(l) as follows

Hτi,n,0(l) :=

{
η ∈ (E′)n : an〈X[1,l][η], Bi〉+ bn〈X[l+1,n][η], Bi〉

−max
k 6=i

(
an〈X[1,l][η], Bk〉

)
−max

k 6=i

(
bn〈X[l+1,n][η], Bk〉

)
> δn,

and ‖X[1,n][η]‖ ≤ n τ4
}
.

(3.57)

Remark 3.2.8. While Hτi,n,0 does not depend on l , Hτi,n,0(l) does, indeed the
partitioning might change the max-value.

It is worthwhile mentioning the following results.

Lemma 3.2.9. For any integer l, P(Hτi,n,0 \Hτi,n,0(l)) goes to zero in the limit
n ↑ ∞.

Proof. Note that

Hτi,n,0 \ Hτi,n,0(l) ⊆
{
η ∈ (E′)n :

max
k 6=i
〈anX[1,l][η], Bk〉+ max

k 6=i
〈bnX[l+1,n][η], Bk〉+ δn

≥ 〈anX[1,l][η] + bnX[l+1,n][η], Bi〉

> max
k 6=i
〈anX[1,l][η] + bnX[l+1,n][η], Bk〉+ δn

}
,

(3.58)

and furthermore,

Hτi,n,0 \ Hτi,n,0(l) ⊆
{
η :

C(l)√
n

+ max
k 6=i
〈bnX[l+1,n][η], Bk〉+ δn

≥ 〈anX[1,l][η] + bnX[l+1,n][η], Bi〉

> −C(l)√
n

+ max
k 6=i
〈bnX[l+1,n][η], Bk〉+ δn

}
,

(3.59)
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where C(l) =
√
lmaxη maxk | 〈X[1,l][η], Bk〉 |≤

√
lmaxk ‖Bk‖∞.

The set on the right-hand side of (3.59) can be written as{
η :

C(l)√
n

+ max
k 6=i
〈bnX[l+1,n][η], Bk〉+ δn ≥ an〈X[1,l][η], Bi〉+ bn〈X[l+1,n][η], Bi〉

}
∩{

η : −C(l)√
n

+ max
k 6=i
〈bnX[l+1,n][η], Bk〉+ δn < an〈X[1,l][η], Bi〉+ bn〈X[l+1,n][η], Bi〉

}
={

η : (
C(l)√
n
− an〈X[1,l][η], Bi〉+ δn)b−1

n ≥ 〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉

}
∩
{
η : (−C(l)√

n
− an〈X[1,l][η], Bi〉+ δn)b−1

n

< 〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉

}
⊂
{
η : (

2C(l)√
n

+ δn)b−1
n ≥ 〈X[l+1,n][η], Bi〉 −max

k 6=i
〈X[l+1,n][η], Bk〉

}
∩
{
η : (−2C(l)√

n
+ δn)b−1

n < 〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉

}
.

(3.60)

If we define

ϕi(X[l+1,n][η]) := 〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉 , (3.61)

then

P(Hτi,n,0 \ Hτi,n,0(l))

≤ P
({

η : ϕi(X[l+1,n][η]) ∈ b−1
n

(
δn −

2C(l)√
n
, δn +

2C(l)√
n

)})
.

(3.62)

To take care of the n-dependence of the interval it’s enough to notice that,
∀ε > 0 ∃ n̄(ε) such that, for all n > n̄(ε) the following holds

b−1
n

(
δn −

2C(l)√
n
, δn +

2C(l)√
n

)
⊂ (−ε, ε) . (3.63)
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So

lim
n↑∞

P
({

η : ϕi(X[l+1,n][η]) ∈ b−1
n

(
δn −

2C(l)√
n
, δn +

2C(l)√
n

)})
≤ lim
n↑∞

P
({

η : ϕi(X[l+1,n][η]) ∈ (−ε, ε)
})

.

(3.64)

By the multidimensional CLT we have

lim
n↑∞

P
({

η : ϕi(X[l+1,n][η]) ∈ (−ε, ε)
})

= Pπ
(
ϕi(G) ∈ (−ε, ε)

)
, (3.65)

where G is a centred Gaussian variable. Taking the limit ε ↓ 0 and using the
non-degeneracy assumption 2), the lemma is proven.

We have just seen that, for any fixed integer l, there is a subregion of the
good-set which will not play any role in the limit n ↑ ∞. We focus now on
the probability of the main part of the good-set, especially on how its limit
does not depend on any finite number of η-coordinates. Let us formalize the
previous heuristics.
The condition (3.57) defining Hτi,n,0(l) can also be written as

〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉

>
an
bn

(
max
k 6=i
〈X[1,l][η], Bk〉 − 〈X[1,l][η], Bi〉

)
+ b−1

n δn ,

and ‖X[1,n][η]‖ ≤ n τ4 .

(3.66)

Define the following sets

Aτi,n(l) :=

{
η : 〈X[l+1,n][η], Bi〉 −max

k 6=i
〈X[l+1,n][η], Bk〉

> −an
bn
C2(l) + b−1

n δn, ‖X[l+1,n][η]‖ ≤ b−1
n n

τ
4

}
,

Bτi,n(l) :=

{
η : 〈X[l+1,n][η], Bi〉 −max

k 6=i
〈X[l+1,n][η], Bk〉

>
an
bn
C2(l) + b−1

n δn, ‖X[l+1,n][η]‖ ≤ b−1
n (n

τ
4 − C̃2(l))

}
,

(3.67)

where C2(l) = maxη | maxk 6=i〈X[1,l][η], Bk〉 − 〈X[1,l][η], Bi〉 |≤ 2 maxk ‖Bk‖∞,

and C̃2(l) = maxη ‖X[1,l][η]‖. These maxima give us the intended independence
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of the set from η ∈ (E′)l and we have

Bτi,n(l) = (E′)l ×H1,τ
i,n,l ,

Aτi,n(l) = (E′)l ×H2,τ
i,n,l ,

(3.68)

where

H1,τ
i,n,l =

{
η ∈ (E′)n−l : ϕi(X[l+1,n][η]) > b−1

n (δn + anC2(l)) ,

and ‖X[l+1,n][η]‖ ≤ b−1
n (n

τ
4 − C̃2(l))

}
,

H2,τ
i,n,l =

{
η ∈ (E′)n−l : ϕi(X[l+1,n][η]) > b−1

n (δn − anC2(l)) ,

and ‖X[l+1,n][η]‖ ≤ b−1
n n

τ
4

}
.

(3.69)

The following holds

Aτi,n(l) ⊇ Hτi,n,1(l) ⊇ Bτi,n(l) ,

H1,τ
i,n,l ⊆ H

2,τ
i,n,l .

(3.70)

Lemma 3.2.10. For any integer l, P(H2,τ
i,n,l \ H

1,τ
i,n,l) goes to zero in the limit

n ↑ ∞.

Proof.

H2,τ
i,n,l \ H

1,τ
i,n,l ⊆

{
η :

an
bn
C2(l) + b−1

n δn ≥ 〈X[l+1,n][η], Bi〉 −max
k 6=i
〈X[l+1,n][η], Bk〉

> −an
bn
C2(l) + b−1

n δn

}
=

{
η : b−1

n (δn + anC2(l)) ≥ ϕi(X[l+1,n][η]) > b−1
n (δn − anC2(l))

}
.

(3.71)

By the same argument we have used in Lemma 3.2.9, we have
P(H2,τ

i,n,l \ H
1,τ
i,n,l) −→ 0 in the limit n ↑ ∞.

Lemma 3.2.11. For any integer l, limn↑∞ P(H1,τ
i,n,l) = Pπ(G ∈ Ri) where

G ∼ N (0,Σ).
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Proof. From the previous lemma we know that

lim
n↑∞

P(Hτi,n,1(l)) = lim
n↑∞

P(Bτi,n(l)) and

lim
n↑∞

P(H2,τ
i,n,l) = lim

n↑∞
P(H1,τ

i,n,l) .
(3.72)

Now ∀ε > 0 ∃ n0(ε) such that for all n > n0(ε) the following holds

γn−ε ⊃ H
1,τ
i,n,l ⊃ γ

n
ε , (3.73)

where γnε = {η : ϕi(X[l+1,n][η]) > ε}. Therefore

lim
n↑∞

P(γn−ε) ≥ lim
n↑∞

P(H1,τ
i,n,l) ≥ lim

n↑∞
P(γnε ) . (3.74)

Applying the CLT to both the right and the left-hand side and taking the limit
for ε ↓ 0 we have

lim
n↑∞

P(H1,τ
i,n,l) = Pπ(G ∈ Ri) . (3.75)

where G ∼ N (0,Σ).

Let us now summarize what we have done above for the decompositions of
the various regions of the η-configuration space.

1Hτi,n,0 = 1Hτi,n,0(l) + 1Hτi,n,0\Hτi,n,0(l) ,

1Bτi,n(l) = 1(E′)l1H1,τ
i,n,l

,

1Aτi,n(l) = 1(E′)l1H2,τ
i,n,l

.

(3.76)

To state our next result let us fix one more notation. We let Ψ be a continuous
real-valued function on P(P(E))× (E′)m, for some positive integer m.

Lemma 3.2.12. Suppose Ψ is as above. Then under the non-degeneracy as-
sumptions 1) and 2) the following holds:

lim
n↑∞

∫
Hτi,n,0

Pπ(dη)Ψ(ρ[η](n), η) = wi

∫
(E′)m

π⊗m(dη)Ψ(δπν̂i , η), (3.77)

where π⊗m(dη) =
∏m
k=1 π(dηk), wi = P(G ∈ Ri) with G ∼ N (0,Σ)
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Proof. Set l = m,∫
Hτi,n,0

Pπ(dη)Ψ(ρ[η](n), η) =

∫
Hτi,n,0

Pπ(dη)(Ψ(ρ[η](n), η)−Ψ(δπν̂i , η))

+

∫
Hτi,n,0

Pπ(dη)Ψ(δπν̂i , η) .

(3.78)

We can assume that Ψ is of the form Ψ(ρ, η) = Ψ̃(ρ(g1), . . . , ρ(gl), η[1,m]) for a

finite l with continuous and bounded gi’s, and continuous Ψ̃. So, together with
the Lemma 3.2.7 we have that the first term in the left-hand side is going to 0
in the limit n ↑ ∞. Now from the first equality of (3.76)∫

Hτi,n,0
Pπ(dη)Ψ(δπν̂i , η) =

∫
Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η)

+

∫
Hτi,n,0\Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) .

Under the non-degeneracy assumption 2) the second term on the right-hand
side of the above equation plays no role in the limit, indeed∫

Hτi,n,0\Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) ≤‖ Ψ ‖∞ P(Hτi,n,0 \ Hτi,n,0(l)) , (3.79)

and from the Lemma 3.2.9 P(Hτi,n,0 \Hτi,n,0(l)) goes to zero in the limit n ↑ ∞.

Observe from the first inclusion relation of (3.70) that∫
Bτi,n(l)

Pπ(dη)Ψ(δπν̂i , η) ≤
∫
Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) ≤
∫
Aτi,n(l)

Pπ(dη)Ψ(δπν̂i , η)

(3.80)

Next, observe from (3.68) that∫
(E′)l

π⊗l(dη)Ψ(δπν̂i , η)

∫
H1,τ
i,n,l

π⊗n−l(dη) ≤
∫
Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) ,∫
Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) ≤
∫

(E′)l
π⊗l(dη)Ψ(δπν̂i , η)

∫
H2,τ
i,n,l

π⊗n−l(dη) .

(3.81)

Taking the limit n ↑ ∞ we obtain

lim
n↑∞

∫
Hτi,n,0(l)

Pπ(dη)Ψ(δπν̂i , η) =

∫
(E′)l

π⊗l(dη)Ψ(δπν̂i , η) lim
n↑∞

∫
H2,τ
i,n,l

π⊗n−l(dη) ,

(3.82)
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and using Lemma 3.2.11 we are done.

Now we have provided all the ingredients, and so the proof of the Theo-
rem 3.2.2 is straightforward.∫

Pπ(dη)Ψ(ρ[η](n), η)

=

k∑
i=1

∫
Pπ(dη)Ψ(ρ[η](n), η)1Hτi,n,0(η) +

∫
Pπ(dη)Ψ(ρ[η](n), η)1(Hτn,0){(η) .

(3.83)

Clearly for bounded Ψ one has∣∣∣∫ Pπ(dη)Ψ(ρ[η](n), η)1(Hτn,0){(η)
∣∣∣ ≤ ‖Ψ‖∞Pπ((Hτn,0){(η)) , (3.84)

and the non-degeneracy assumption 2) tells us that this term will not play any
role in the limit n ↑ ∞. For every summand of the first term, by Lemma 3.2.12
we have

lim
n↑∞

∫
Hτi,n,0

Pπ(dη)Ψ(ρ[η](n), η) = wi

∫
(E′)m

π⊗m(dη)Ψ(δπν̂i , η), (3.85)

where wi = P(G ∈ Ri) with G ∼ N (0,Σ).
Therefore

lim
n↑∞

∫
Pπ(dη)Ψ(ρ[η](n), η) =

k∑
i=1

∫
Pπ(dη)Ψ(ρ, η)wiδδπν̂i (dρ) . (3.86)

Looking now at the definition of the AW-metastate, we can identify the joint
distribution K we are interested in as

K(dρ, dη) =

k∑
i=1

Pπ(dη)wiδδπν̂i (dρ)

=⇒ K(dρ|η) =

k∑
i=1

wiδδπν̂i (dρ) .

(3.87)

2
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3.3 The Metastate on the Level of States

Let us go from the global perspective (talking about the empirical mean) to
the local view (talking about finitely many variables σ1, . . . , σk). In different
words, we are fixing a sub-population of finite size, and we are asking how it will
behave when we couple it to a large system whose size n will be sent to infinity.
Let us introduce a metric on the space of probability measures µ, µ′ ∈ P(E∞)
by

d(µ, µ′) =

∞∑
i=1

2−i||µ− µ′||i , (3.88)

where

||µ− µ′||i :=
1

2

∑
ω1,...,ωi

|µ(ω1, . . . , ωi)− µ′(ω1, . . . , ωi)| , (3.89)

is the total variation norm of the restriction of the measure to the first i coor-
dinates.
The statement about the metastate promised in the main theorem implies in
particular that, for all ε > 0

lim
n↑∞

P(d(µF,n[η], ext(G[η])) > ε) = 0 , (3.90)

where
G[η] = {

∑
ν̂∈M∗

pν̂µν̂ [η], pν̂ ∈ P(πM∗)} , (3.91)

and µν̂ [η](·) =

∞∏
i=1

γ[η(i)](·|πν̂). Throughout this chapter we identify µF,n[η]

with the infinite-volume measure which is obtained by tensorization with the
equidistribution for sites outside of {1, . . . , n}.

We will in fact prove that

lim
n↑∞

sup
η∈Hτi,n,0

d(µF,n[η], µν̂∗i [η]) = 0 , (3.92)

where Hτi,n,0 are the disorder sets ensuring the dominance of the i-th mini-
mizer. Let us remark that it can not be expected in general that the limit
limn↑∞ d(µF,n[η], ext(G[η]) = 0 for P-a.e. η, as already the example of the ran-
dom field Ising model discussed in [50] shows, due to the empirical distribution
π̂n passing regions of “ties” outside of the good sets infinitely often.

We are about to prove that the possible limiting distributions will be product
measures of a particular sort. These limiting measures will depend on which
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region of the disorder variables we are restricting ourselves to. Let us look at
the k-marginal

µF,n[η](σ1, . . . , σk) =
∑

ωk+1,...,ωn

µF,n[η](σ1, . . . , σk, ωk+1, . . . , ωn)

=
∑

ωk+1,...,ωn

e−nF (L
σ[1,k],ω[k+1,n]
n )

∏k
i=1 α[ηi](σi)

∏n
j=k+1 α[ηj ](ωj)∑

σ̄∈En e
−nF (Lσ̄n)

∏n
i=1 α[ηi](σ̄i)

.

(3.93)

Let us now introduce the suitable decomposition of the empirical distribution,
obtained by dividing the volume {1, . . . , n} in two subvolumes {1, . . . , k} and
{k + 1, . . . , n}, where k is the size of the marginal we are considering; then we
focus on the respective b-like sites for both of the subvolumes.

L
σ[1,k],ω[k+1,n]
n =

k

n

1

k

k∑
i=1

δσi +
n− k
n

1

n− k

n∑
i=k+1

δωi

=
k

n

∑
b∈E′

π̂[1,k](b)L̂[1,k](b) +
n− k
n

∑
b∈E′

π̂[k+1,n](b)L̂[k+1,n](b)

(3.94)

In the process to carry out (3.94), we have also made use of the following
definitions:

Λ[1,k](b) = {i ∈ {1, . . . , k} : η(i) = b} ,
Λ[k+1,n](b) = {i ∈ {k + 1, . . . , n} : η(i) = b} ,

π̂[1,k](b) =
|Λ[1,k](b)|

k
, π̂[k+1,n](b) =

|Λ[k+1,n](b)|
n− k

.

(3.95)

Proof of Theorem 3.1.7. Let us start providing the key result, namely
the weak convergence of the measure µF,n[η] to µj [η] =

∏∞
i=1 γ[η(i)](·|πν̂j)

conditional on the suitable region of the disorder.
The following Lemma is the short view (local topology) version of Lemma 3.2.7.

Lemma 3.3.1. For any event A which depends only on the first k coordinates
the following holds

| µF,n[η](A)− µj [η](A) |≤ r̃(n) ∀ η ∈ Hτj,n,k , (3.96)

where limn↑∞ r̃(n) = 0.
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Proof. It suffices to consider the event A which fixes the first k coordinates and
write

µF,n[η](σ1, . . . , σk) =

=
∑

ωk+1,...,ωn

e

−nF

 k
n

∑
b∈E′

π̂[1,k](b)L̂
σ
[1,k](b) +

n− k
n

∑
b∈E′

π̂[k+1,n](b)L̂
ω
[k+1,n](b)


∑
σ̄∈En

e−nF (Lσ̄n)
n∏
i=1

α[ηi](σ̄i)

×

×
k∏
i=1

α[ηi](σi)

n∏
j=k+1

α[ηj ](ωj)

=

∑
ν̂∈M̂[k+1,n]

∑
ωk+1,...,ωn:

L̂ω̃
[k+1,n]

(·)=ν̂(·)

e−nF( kn 〈π̂[1,k],L̂
σ
[1,k]〉+n−k

n 〈π̂[k+1,n],ν̂〉)

∑
ν̄∈M̂n

∑
σ̄∈En:

L̂σ̄n=ν̄

e−nF (Lσ̄n)
n∏
i=1

α[ηi](σ̄i)

×

×
k∏
i=1

α[ηi](σi)

n∏
j=k+1

α[ηj ](ωj) ,

(3.97)

where we have introduced the following space

M̂[k+1,n] :={
ν̂ ∈ P(E)E

′
: ∃ ω̃ = (ω̃k+1, . . . , ω̃n) : L̂ω̃[k+1,n](b) = ν̂(b),∀ b ∈ E′

}
.

(3.98)

Using the partition induced by the disorder variables η on the sub-volume
{k + 1, . . . , n}, we have

∑
ωk+1,...,ωn:

L̂ω
[k+1,n]

(·)=ν̂(·)

n∏
j=k+1

α[ηj ](ωj) =
∏
b∈E′

α[b]|Λ[k+1,n](b)|
(

Ω|Λ[k+1,n](b)|(ν̂(b))
)
.

(3.99)

To avoid heavy notation, with shall “improperly” refer to the above by α(Ω).
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Then we have

µF,n[η](σ1, . . . , σk) =

k∏
i=1

α[ηi](σi)
∑

ν̂∈M̂[k+1,n]

e−nF( kn 〈π̂[1,k],L̂
σ
[1,k]〉+n−k

n 〈π̂[k+1,n],ν̂〉) · α(Ω)

∑
ν′∈M̂[1,k]

∑
ν̂∈M̂[k+1,n]

∑
σ̄∈Ek:

L̂σ̄
[1,k]

=ν′

e−nF( kn 〈π̂[1,k],L̂
σ̄
[1,k]〉+n−k

n 〈π̂[k+1,n],ν̂〉)
k∏
i=1

α[ηi](σ̄i) · α(Ω)

.

(3.100)

Now multiplying and dividing, both numerator and denominator, by e−nF (〈π̂[k+1,n],ν̂〉)
we arrive at:

µF,n[η](σ1, . . . , σk) =

k∏
i=1

α[ηi](σi)
∑

ν̂∈M̂[k+1,n]

e
−n

[
F

(
k
n

〈
π̂[1,k],L̂

σ
[1,k]

〉
+n−k

n

〈
π̂[k+1,n],ν̂

〉)
−F (

〈
π̂[k+1,n],ν̂

〉
)

]
ρ
F
n,k[η](ν̂)

∑
ν′∈
M̂[1,k]

∑
ν̂∈

M̂[k+1,n]

∑
σ̄∈Ek:

L̂σ̄
[1,k]

=ν′

e
−n

[
F

(
k
n

〈
π̂[1,k],L̂

σ̄
[1,k]

〉
+n−k

n

〈
π̂[k+1,n],ν̂

〉)
−F (

〈
π̂[k+1,n],ν̂

〉
)

]
k∏
i=1

α[ηi](σ̄i)ρ
F
n,k[η](ν̂)

(3.101)

where ρFn,k[η] ∈ P(M̂[k+1,n]) is defined as

ρFn,k[η](ν̂) :=
e−nF (〈π̂[k+1,n],ν̂〉)∏

b∈E′ α[b]|Λ[k+1,n](b)|
(

Ω|Λ[k+1,n](b)|(ν̂(b))
)

∑
ν̃∈M̂[k+1,n]

e−nF (〈π̂[k+1,n],ν̂〉) ∏
b∈E′

α[b]|Λ[k+1,n](b)|
(

Ω|Λ[k+1,n](b)|(ν̃(b))
) .

(3.102)

Note that the measure ρFn,k[η] depends on the disorder variables just in the
subvolume {k + 1, . . . , n}.

Recall that a function F : P(E) → R is differentiable if, for all α ∈ P(E)
there is a linear map dFα : T (P(E))→ R on the tangent space such that

F (α′) = F (α) + dFα(α′ − α) + ||α′ − α||r(α′, α) , (3.103)

where α′ → r(α′, α) is continuous at α′ = α with r(α, α) = 0. Then, uniformly
in α, α′,

sup
α,α′
|F (α+ p(α′ − α))− F (α)− pdFα(α′ − α)| ≤ Cpr(p) , (3.104)
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where r(p) ↓ 0 as p tends to 0. The uniformity in α, α′ follows by the compact-
ness of P(E). In our set up, we have

|F
(
k

n
L[1,k](σ) +

n− k
n

ν

)
−F (ν)−dFν

k

n
(L[1,k](σ)−ν)| ≤ C k

n
r(
k

n
) , (3.105)

where we have set ν =
〈
π̂[k+1,n], ν̂

〉
. This gives, recognizing that

〈
π̂[1,k], L̂

σ
[1,k]

〉
and ν are both elements in P(E), the upper bound

µF,n[η](σ1, . . . , σk)

≤

e2Ckr( kn )

k∏
i=1

α[ηi](σi)
∑

ν̂∈M̂[k+1,n]

k∏
i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi−〈π̂[k+1,n],ν̂〉)

ρFn,k[η](ν̂)

∑
ν̂∈M̂[k+1,n]

ρFn,k[η](ν̂)

k∏
i=1

∑
σ̄i∈E

α[ηi](σ̄i)e
−dF〈π̂[k+1,n],ν̂〉(δσ̄i−〈π̂[k+1,n],ν̂〉)

,

(3.106)

and the corresponding lower bound which is obtained from the last r.h.s. by
replacing C > 0 with −C. The measure ρFn,k[η] can be written in the form

ρFn,k[η](ν̂) =
ρFn−k[η](ν̂)e−kF (〈π̂[k+1,n],ν̂〉)∑

ν̄∈M̂[k+1,n]

ρFn−k[η](ν̄)e−kF (〈π̂[k+1,n],ν̄〉)
, (3.107)

where we have recovered the proper random mean-field measure on the empir-
ical distribution of size n− k.

Note once again that
〈
π̂[k+1,n], ν̂

〉
∈ P(E), and when ν̂ moves in M̂[k+1,n],

the corresponding measure
〈
π̂[k+1,n], ν̂

〉
is moving among the possible empirical

measures of size n− k.

Let us write C(A, ε) := {ν ∈ P(E)E
′

: d(ν,A) ≤ ε}, for the ε-ball of a set
A. By definition, ρFn [η] is said to concentrate on the set A iff ρFn [η](C(A, ε){) ↓
0, ∀ ε > 0. So whenever ρFn [η] concentrates on a finite set, so does ρFn,k[η], by
the boundedness of F .
We remark that ρFn−k[η](ν̂) = µF,n−k[η](L[k+1,n] =

〈
π̂[k+1,n], ν̂

〉
) has the prop-

erty of concentrating around the minimizers, as we know from the analysis in
the previous chapter.
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To study the bound (3.106) and the corresponding lower bound, let’s intro-
duce the quantities

ξN =
∑

ν̂∈M̂[k+1,n]

ρFn,k[η](ν̂)

k∏
i=1

α[ηi](σi)

k∏
i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi−〈π̂[k+1,n],ν̂〉)

,

ξD =
∑

ν̂∈M̂[k+1,n]

ρFn,k[η](ν̂)

k∏
i=1

∑
σ̃i∈E

α[ηi](σ̃i)

k∏
i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσ̃i−〈π̂[k+1,n],ν̂〉)

.

(3.108)

Let us decompose the
∑
ν̂∈M̂[k+1,n]

over C(M∗, ε) and its complement and com-

pare the terms with their values at the midpoints:

ξN =
∑

ν̂∗∈M∗

∑
ν̂∈

B(ε,ν̂∗)∩M̂[k+1,n]

ρFn,k[η](ν̂)

k∏
i=1

α[ηi](σi)

k∏
i=1

e−dFπν̂∗ (δσi−πν̂
∗)

+
∑

ν̂∗∈M∗

∑
ν̂∈

B(ε,ν̂∗)∩M̂k+1,n

ρFn,k[η](ν̂)

k∏
i=1

α[ηi](σi) ×

×

[
k∏
i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi−〈π̂[k+1,n],ν̂〉)

−
k∏
i=1

e−dFπν̂∗ (δσi−πν̂
∗)

]

+
∑
ν̂∈

C(M∗,ε){∩M̂[k+1,n]

ρFn,k[η](ν̂)

k∏
i=1

α[ηi](σi)

k∏
i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi−〈π̂[k+1,n],ν̂〉)

.

(3.109)

The sum in the last line is bounded by a function rcp(ε, n), where limn↑∞ rcp(ε, n) =
0 when η is in the union of the good-sets. This holds by the concentration prop-
erty of the empirical distribution given in (3.52) applied to the measure for sites
≥ k, using the boundedness of the first derivative of F .

The second line is bounded in modulus by a function γ(ε) where limε↓0 γ(ε) =
0 by the twice continuous differentiability of F .

This implies the bounds∣∣∣ξN − ∑
ν̂∗∈M∗

ρFn,k[η](B̃(ε, ν̂∗))

k∏
i=1

α[ηi](σi)e
−dFπν̂∗ (δσi−πν̂

∗)
∣∣∣

≤ γ(ε) + rcp(ε, n) ,

(3.110)
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under the assumption that η is in the union of the good-sets.

Summing over the finitely many values of σ1, . . . , σk we obtain the same type
of bounds (with possibly worse functions γ(ε), rcp(ε, n)) for ξD.

Recall the definition of the kernels (3.10) and choose the disorder variable
η ∈ Hτi,n,k in the part of the good-set which ensures the dominance of the i-th
minimizer. This gives that

| µF,n[η](σ1, . . . , σk)−
k∏
j=1

γ[ηj ](σj |πν̂∗i ) |≤ ζ(ε) + χ(ε, n) , (3.111)

where limn↑∞ χ(ε, n) = 0 and limε↓0 ζ(ε) = 0. This proves the lemma, as well
as the statement (3.92).

Lemma 3.3.2. Let Ξ be a continuous real-valued function on P(E∞)× (E′)∞.
Then under the non-degeneracy assumptions 1) and 2) the following holds:

lim
n↑∞

∫
Hδni,n

Pπ(dη)Ξ(µF,n[η], η) = wi

∫
Pπ(dη)(dη)Ξ(µi[η], η) , (3.112)

where wi = Pπ(G ∈ Ri).

The proof of this lemma, thanks to the continuity of Ξ which allows finite
dimensional approximation and to the Lemma 3.3.1, follows the trail drawn by
the proof of the Lemma 3.2.12.

Using all the tools we have provided, we find

lim
n↑∞

∫
Pπ(η)Ξ(µF,n[η], η) =

k∑
j=1

∫
Pπ(η)Ξ(µ, η)wjδµj [η](dµ) , (3.113)

where we can identify

J(dµ, dη) =

k∑
j=1

Pπ(dη)wjδµj [η](dµ)

=⇒ J(dµ|η) =

k∑
j=1

wjδµj [η](dµ) .

(3.114)

This finishes the proof of the Main Theorem 3.1.7 and concludes the chapter.
2





4 Gibbs-non-Gibbs Properties for Evolving
Ising Models on Trees*

4.1 Introduction

In this chapter, we consider the Gibbsian properties of homogeneous low-
temperature Ising Gibbs measures on trees, subjected to an infinite-temperature
Glauber evolution. This problem has been considered before on regular lattices
see e.g. [11, 16, 17, 19, 22, 53, 54, 57, 64, 66], for Ising spins, n-vector and
unbounded spins, and for various finite- or infinite-temperature dynamics, of
Glauber, Kawasaki, or diffusion type, and even for non-Markovian evolutions.

At high initial temperatures, or for sufficiently short times, standard methods
can be used to prove Gibbsianness, also in our situation. Thus the interesting
case is to find out what happens for low initial temperatures. As usual (but see
the mean-field analysis of [23]), low-temperature dynamics are beyond reach so
far. For simplicity, we will consider infinite-temperature dynamics, but high-
temperature evolutions are expected to behave qualitatively similarly.

In contrast to what happens on regular lattices such as Zd, the Gibbsian
properties of evolved Gibbs measures for models on trees turn out to depend
on which of the different Gibbs measures (plus or minus, versus intermediate)
one considers. In all cases there are two transition times: for the intermediate
measure, after the first transition time it becomes non-Gibbsian in the famil-
iar sense that some, but not all, configurations are “ bad” (that is, they are
points of discontinuity), while it turns out that after a certain later time the
evolved intermediate Gibbs measure becomes “totally bad”; thereafter it has
the surprising property that all spin configurations are discontinuity points.

This last property is something which will not happen for the other two
extremal invariant Gibbs measures. For those measures, although after a first
transition time they also become non-Gibbsian, after the second transition time
they become Gibbsian again.

*This chapter is based on [21].
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We will provide proofs for these results on the Cayley tree, and don’t aim
for the greatest generality here, but we will indicate why these results should
be expected to hold more generally. We present our results both in zero and
non-zero external fields.

Our analysis illustrates (again) how different models on trees are as compared
to models on regular (amenable) lattices.

Non-Gibbsian properties of some other measures of statistical mechanical
origin on trees have been considered before, [36, 38, 56]. For FK measures as
well as fuzzy Potts models on trees, the possibility of having a positive-measure
set of “bad” discontinuity points was found.

4.2 Background Facts and Notation

4.2.1 The Ising Model on a Cayley Tree

Let CT(d) be a Cayley tree for some d ≥ 1, that is the unique connected tree

with |∂i| = d + 1 for all i ∈ CT(d). Let Ω = {−1,+1}CT(d)
, endowed with the

product topology. Elements in Ω are denoted by σ. A configuration σ assigns
to each vertex x ∈ CT(d) a spin value σ(x) = ±1. Denote by S the set of all
finite subtrees of CT(d). For Λ ∈ S and σ ∈ Ω we denote by σΛ the restriction
of σ to Λ, while ΩΛ denotes the set of all such restrictions. Let Λ ∈ CT(d) be
any set, finite or infinite. We denote by EΛ its set of edges and by VΛ its set
of vertices.

Let now Λ ∈ S, hence finite. We will consider the nearest-neighbour Ising
model on the tree. The finite-volume Gibbs distribution on any finite subtree Λ
for an Ising model in an inhomogeneous external field, given by fields hi at sites
i, boundary condition ω, at inverse temperature β, is defined by the following
Boltzmann-Gibbs distribution

µωΛ(σΛ) =

1

ZωΛ(β, {hi}i∈VΛ
)

exp

β
∑

{i,j}∈EΛ

σiσj +
∑
i∈VΛ

hiσi +
∑
{i,j}

i∈VΛ,j∈VΛ{

σiωi

 .
(4.1)

Infinite-volume Gibbs measures are defined by having their conditional proba-
bilities of finite-volume configurations, conditioned on the configurations out-
side the volume, of this Gibbsian form, see e.g. [29] and [18]. In equation form
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we require that for all volumes Λ and configurations σΛ µ satisfies

µ(σΛ) =

∫
µωΛ(σΛ)µ(dω) . (4.2)

The infinite-volume Gibbs measures are parametrized by the external magnetic
fields (in most of what follows we will consider a homogeneous field h0), and
by the inverse temperature β ≥ 0. This will lead us to consider finite-volume
Gibbs distributions with this same homogeneous field plus a possibly different
boundary field. We put β(1) =∞ and, for d > 1,

β(d) = arccoth d =
1

2
ln
d+ 1

d− 1
,

h(β, d) =

[
d arctanh

(
dw − 1

dw̄ − 1

) 1
2

− arctanh

(
d− w̄
d− w

) 1
2

]
Iβ>β(d) ,

(4.3)

where w = tanhβ = w̄−1.

It is known (see [29]), that if β > β(d) and |h0| ≤ h(β, d), then the sys-
tem exhibits a phase transition. Throughout this chapter we will assume
|h0| < h(β, d), β > β(d), and d > 1, whenever the opposite is not indicated.
This condition ensures the existence of three homogeneous phases which, in
accordance with Georgii, we denote µ−, µ], µ+. The plus and minus measures
µ− and µ+ are obtainable via the standard procedure of taking plus and minus
boundary conditions and then taking the thermodynamic limit, but there exists
also an intermediate measure µ] (which in the case of zero external field can
be obtained by imposing free boundary conditions). These phases are extremal
in the set of invariant infinite-volume Gibbs measures; µ+ and µ− are also
extremal in the set of all infinite-volume Gibbs measures, whereas µ] becomes
non-extremal in this set below a certain temperature strictly smaller than the
phase transition temperature [3, 43]; however, this second transition will not
concern us here.

Let Γn be the Cayley tree with n generations and Γn−1 = Γn\∂Γn the (sub-)
Cayley tree with n−1 generations, where ∂Γn stands for the inner boundary of
Γn. It is a known result for the Ising model on trees that the marginal on Γn−1

of the finite-volume Gibbs measure on Γn is a finite-volume Gibbs measure
on Γn−1, with a possibly different external magnetic field at the boundary.
See Appendix A for how this works out in marginalizing infinite-volume Gibbs
measures by using boundary laws.

Marginalizing on Γn−1, that is to a tree of one generation less, leaves us with
a finite-volume Gibbs measure on Γn−1, parametrized by the following external
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fields

i ∈ ∂Γn−1, hi = h0 + dϕ(hn) ,

i ∈ Γn−2, hi = h0 ,
(4.4)

where ϕ(x) = arctanh(tanhβ tanhx).

Thus, summarising, taking the marginal of an Ising model Gibbs measure
on a tree with n generations with homogeneous boundary field hn results in an
Ising model on an (n− 1)-generation tree with a homogeneous boundary field
hn−1. The map from hn to hn−1, (4.4), has three fixed points h+, h] and h−.
(Equivalently, one could consider the map from the magnetisation at generation
n to the magnetisation at generation n− 1, which again has the corresponding
three fixed points m+,m] and m−.) Whereas h+ and h− are stable, h] is an
unstable fixed point which implies that weak positive boundary conditions will
result in a plus state, once one is far enough from the boundary. In other words,
the phase transition is robust [65].

These three fixed points determine the three homogeneous extremal invariant
infinite-tree Gibbs measures mentioned above.

4.2.2 Dynamics, non-Gibbsian Measures, Main Questions

Let P(Ω,F) be the set of all probability measures on Ω and G(β, h0) be the
set of all Gibbs measures of the Ising model with an inverse temperature β and
external field h0. Let PI(B)(Ω,F) denote the set of all µ ∈ P(Ω,F) which are in-
variant under all the graph automorphisms (translations, rotations, reflections
etc). Let µ ∈ GI(B)(β, h0), where GI(B)(β, h0) = G(β, h0)

⋂
PI(B)(Ω,F).

We aim to study here the time-dependence of the Gibbsian property of the
three Gibbs measures µ?, for ? ∈ {+,−, ]}, under an infinite-temperature
Glauber dynamics. This is the stochastic evolution S(t) which is obtained
by having independent spin flips at each vertex at a certain given rate. In
other words, we want to investigate whether or not µ?S(t) =: µ̂ is a Gibbs
measure at a given time t > 0.

By assumption the initial measure µ is a Gibbs measure. This immediately
guarantees the non-nullness of the measure µ?S(t) for all t (including t = 0).
It will thus suffice to study whether the transformed measure is quasi-local or
not.

Define µ̂Λ(f |ω) = Eµ̂(f |FΛ{)(ω) to be a realization of the corresponding
conditional expectation for bounded f , finite Λ ⊂ S, ω ∈ Ω. We also use
the notation µ̂Λ(f |ωW ) = Eµ̂(f |FW )(ω) when we condition only on configu-

rations on a finite subset of sites W ⊂ Λ{. With this notation we have, e.g.,
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µ̂Λ(f |ωΛ′\Λ) =
∫
µ̂Λ(f |ω)µ̂(dω(Λ′){), for volumes Λ′ ⊃ Λ where µ̂(dω(Λ′){) de-

notes integration over the variables outside Λ′.

The measure µ̂ is not quasilocal, if it is not consistent with any quasilocal
specification. To prove this, it is enough to find a single, nonremovable, point of
discontinuity (in the product topology) for a single µ̂Λ for a single (quasi)local
function f [18, 24]. The definition of the non-quasilocality for the transformed
measure can be refined, see in particular [24]. The relevant definitions read as
follows:

Definition 4.2.1. The measure µ̂ is not quasilocal at η̄ ∈ Ω if there exists
Λ0 ∈ S and f local such that no realization of µ̂Λ0

(f |·) is quasilocal at η̄.

In other words, any realization of µ̂Λ0(f |·) must exhibit an essential discon-
tinuity at η̄; one that survives zero-measure modifications. (Remember that
conditional probabilities are only defined up to measure-zero sets.)

Definition 4.2.2. For a local function f as above, µ̂Λ0
(f |·) is µ̂-essentially

discontinuous at η̄, if there exists an ε > 0 such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ
|Λ′|<∞

|µ̂Λ0
(f |η̄Λ\Λ0

ξ1
Λ′\Λ)− µ̂Λ0

(f |η̄Λ\Λ0
ξ2
Λ′\Λ)| > ε . (4.5)

If µ̂Λ0
(f |·) is µ̂-essentially discontinuous at η̄, informally it means that there

exists an ε > 0 such that for every Λ ∈ S there exists Λ′ ⊃ Λ and configurations
ξ1, ξ2, such that∣∣∣µ̂Λ0(f |η̄Λ\Λ0

ξ1
Λ′\Λη)− µ̂Λ0

(f |η̄Λ\Λ0
ξ2
Λ′\Λη)

∣∣∣ > ε , (4.6)

for η ∈ A, where A ∈ F(Λ′){ is of positive µ̂-measure.

Definition 4.2.3. µ̂Λ0
(f |·) is strongly discontinuous at η̄, iff there exists an

ε > 0 such that

lim sup
Λ↑∞

sup
ξ1,ξ2

Λ′⊃Λ
|Λ′|<∞

inf
η1,η2

Λ′′⊃Λ′
|Λ′′|<∞

|µ̂Λ0(f |η̄Λ\Λ0
ξ1
Λ′\Λη

1
Λ′′\Λ′)−µ̂Λ0(f |η̄Λ\Λ0

ξ2
Λ′\Λη

2
Λ′′\Λ′)| > ε .

(4.7)

Remark 4.2.4. Intuitively the difference is that whereas for µ̂-essential dis-
continuity one needs to estimate a difference on two measurable sets of positive
measure, for a strong discontinuity one needs an estimate of a difference on
open sets; however, because of the impossibility of conditioning on individual
configurations, we get the somewhat unwieldy definitions above.
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A useful tool to study the question whether µ̂ stays Gibbs is to consider the
joint two-time distribution ν on (σ, η), where the initial spins σ are distributed
according to µ, and the evolved spins η according to µ̂. This joint distribu-
tion will be denoted by either ν or νt. It can be viewed as a Gibbs measure
on {−1,+1}L with L = CT(d) ∪ CT(d) consisting of two “layers” of CT(d).
Formally, the Hamiltonian of νt is

Ht(σ, η) = Hµ(σ)− ln pt(σ, η) , (4.8)

where pt(σ, η) is the transition kernel of the dynamics. We consider independent
spin-flip dynamics, so

ln pt(σ, η) =
∑

x∈CT(d)

1

2
ln

1 + e−t

1− e−t
σ(x)η(x) (4.9)

Let us denote

ht =
1

2
ln

1 + e−t

1− e−t
. (4.10)

This approach to study the evolved measure as the marginal of a two-layer
Gibbs measure was introduced in [19], and has been applied repeatedly since.

Remark 4.2.5. Here we will find for µ]S(t), by making the choices ξ1 =
+1, ξ2 = −1, that in any open neighbourhood of η̄ two positive-measure sets
exist, on which the limits differ, however, in contrast to amenable graphs, these
sets are not open (which allows different behaviour between different evolved
Gibbs measures µ] and µ+ with regards to their Gibbsianness, something which
is excluded on amenable graphs such as Zd). In other words we will show a
µ̂-essential, although non-strong, discontinuity.

As explained in the Appendix A we have the representation of the conditional
probabilities of the time-evolved measure µt of the form

µ̂t(η0|ηΛ\0) =

∫
µ[ηΛ\0](dσ0)Pt(σ0, η0) , (4.11)

with the perturbed η-dependent measure on spin configurations
µ[ηΛ\0](dσ) ≡ µ[ηΛ\0, η0 = 0](dσ), whose finite-volume marginals look like

µ[ηΛ′ ](σΛ′) = C exp

β ∑
(i,j)∈Λ′

σiσj +
∑

i∈Λ′\∂Λ′

hiσi +
∑
i∈∂Λ′

h̃iσi

 , (4.12)
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where

hi = h0 + ηih
t ,

h̃i = h0 + ηih
t + h? ,

(4.13)

where the external fields at the boundaries are given in terms of h?. This
value represents the fixed point of the recursion relation with homogeneous
field h0, (4.4), and is bijectively related with the starting measure µ?. More
generally, such a representation is always valid if the initial measure is a Markov
chain on the tree. Markov chains can be described by boundary laws, and
conditional probabilities of infinite-temperature time evolutions, are, for finite-
volume conditionings, described by boundary laws obeying recursions which
are local perturbations of those of the initial measure, see the Appendix A and
[29].

In what follows we choose ξ1 = (+) and ξ2 = (−). With this notation, for
non-Gibbsianness it is enough to prove that, at η̄, there exists an ε > 0 such
that, for all Λ, there exists Λ′ ⊃ Λ such that∣∣∣µ[η̄Λ\0, ξ

1
Λ′\Λ](σ0)− µ[η̄Λ\0, ξ

2
Λ′\Λ](σ0)

∣∣∣ > ε . (4.14)

4.3 Absence of the Initial Field, (h0 = 0)

4.3.1 Marginals and η-dependent Fields

To prove the non-Gibbsianness of µ̂, we will have to consider the phase tran-
sition behaviour of the Gibbs measures on the first layer in various external
fields. These external fields are determined by the various conditionings, as
well as by the choice of the initial Gibbs measure.

Let k,m be integers with k < m, let us denote Λ′ = Γm and Λ = Γk. We
shall consider first the case h0 = 0. Marginalizing on Γm leaves us with a
finite-volume Gibbs measure on Γm denoted by νh

?

Γm
and parametrized by the

following external fields

i ∈ ∂Γm, hi = ηih
t + dϕ(h?) ,

i ∈ Γm−1, hi = ηih
t .

(4.15)

In order to apply the (marginalisation) procedure to the η-dependent finite-
volume Gibbs measure νh

?

Γm
on Γm, we need to identify the role played by η.

It can be shown that taking the marginal on Γm−1 of the finite-volume Gibbs
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measure on Γm (summing out the spin σ ∈ ∂Γm) gives us a finite-volume Gibbs
measure on Γm−1 with an external field at the boundary equal to

hi = ηih
t +
∑
l∼i

ϕ(ηlh
t) . (4.16)

Here the sum is over the nearest neighbours l ∈ ∂Γm.

The equation (4.16) tells us how the configurations η∂Γm will affect the field
acting on i ∈ ∂Γm−1 after having taken a one-generation marginal.

The configuration ηΓm\Γk will govern the value of the fields at ∂Γk, when the
marginal on Γk is taken. Let us see how:

� ηΓm\Γk = +

i ∈ ∂Γm, h
(0)
i = ht + dϕ(h?) ,

after summing out the m-th generation we have

i ∈ ∂Γm−1, h
(1)
i = ht + dϕ(h

(0)
i ) ,

i ∈ ∂Γj , k < j < m− 1, h
(j)
i = ht + dϕ(h

(j−1)
i ) .

(4.17)

� ηΓm\Γk = −

i ∈ ∂Γm, h
(0)
i = −ht + dϕ(h?) ,

after summing out the m-th generation we have

i ∈ ∂Γm−1, h
(1)
i = −ht + dϕ(h

(0)
i ) ,

i ∈ ∂Γj , k < j < m− 1, h
(j)
i = −ht + dϕ(h

(j−1)
i ) .

(4.18)

Note that the above-chosen η-conditioning on the annulus makes the recursion
homogeneous. Choosing m big enough guarantees that the recursions (4.17),
(4.18) approach their time-dependent fixed points; we denote them respectively

by H±t , H]
t and h±t , h]t, (see Figure 4.1).

Assume that we start at time t = 0 with the measure µ], then h? = h] = 0. It
ensures that the recursions (4.17), (4.18) will approach, respectively, H+

t > 0
and h−t = −H+

t < 0. H+
t represents the biggest stable fixed point for the

(η = +) recursion (4.17), and h−t the smallest stable fixed point for the (η = −)
recursion (4.18). The fact that both recursions have as a starting point the
unstable fixed point h] = 0 guarantees that the plus conditioning will drag the
field towards H+

t and the minus one towards h−t . This will not be the case for
µ+ and µ− as we will see later.
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Figure 4.1: Fixed points1

The (ηΓm\Γk = ±)-dependent marginals on Γk, of the measure on Γm, are
finite-volume Gibbs measures parametrized by the following fields: for the case
(ηΓm\Γk = +)

i ∈ ∂Γk, h
+,(0)
i = ηih

t + dϕ(H+
t ) ,

i ∈ Γk−1, h
(0)
i = ηih

t ,
(4.19)

and in the case (ηΓm\Γk = −)

i ∈ ∂Γk, h
−,(0)
i = ηih

t + dϕ(h−t ) ,

i ∈ Γk−1, h
(0)
i = ηih

t .
(4.20)

Remark 4.3.1. Notice that only the fields at ∂Γk depend on ηΓm\Γk and not
the ones acting on the interior. We emphasize that the broadcasting is absorbed
by the boundary and has no direct influence on the interior.

Now we investigate how the recursion relation h
(j)
i = ηih

t +
∑
l∼i ϕ(h

(j−1)
l ),

obtaining by summing out generations in Γk, will depend on the fixed config-
urations ηΓm\Γk = ±, namely on the fields H+

t , h
−
t acting on the generation

1“Longum est iter per praecepta, breve et efficax per exempla”, Seneca.
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∂Γk+1. We emphasize that the annulus configurations determine the starting
point of the recursion. We will also show how the aforementioned recursion
relation can be bounded from below if we are coming from ηΓm\Γk = +, and
from above for ηΓm\Γk = −. Furthermore these bounds will turn out to be
uniform with respect to ηΓk and with respect to j (number of iterations).

Lemma 4.3.2. Given the recursion relation h
(j)
i = ηih

t +
∑
l∼i ϕ(h

(j−1)
l ) we

have : h
(j)
i ≥ h+

t > 0, for all i and j, if h
(0)
i = H+

t ; and h
(j)
i ≤ H−t = −h+

t ,

for all i and j, if h
(0)
i = h−t .

Here h+
t is the fixed point for the homogeneous recursion

h(j) = −ht + dϕ(h(j−1)) with h(0) = H+
t .

Proof. Fixed points of the discussed recursion relation are given in the Fig-

ure 4.1. The proof follows by induction. Take first the case h
(0)
i = H+

t . Natu-

rally H+
t > h+

t , so h
(0)
i > h+

t for all i. If we now assume h
(j)
i > h+

t for all i, then

h
(j+1)
i = ηih

t+
∑
l∼i ϕ(h

(j)
l ) > −ht+dϕ(h+

t ) = h+
t . The case h

(0)
i = h−t follows

by symmetry; the corresponding recursion relation will be bounded from above
by H−t .

4.3.2 Results: Total Badness of the Evolved µ]; Difference Between
Different Phases

Let t2 be defined by
ht2 = h(β, d) . (4.21)

We remark that the monotonicity of the continuous function ht, (4.10), together
with the fact that h(β, d) > 0, assures the existence of t2.

Theorem 4.3.3. If σ is distributed according to µ], then after time t2 all
configurations η are bad configurations (points of essential discontinuity) for
the transformed measure µ]S(t).

Remark 4.3.4. The main idea is as follows: If the plus configuration is bad
(and by symmetry the same is true for the minus configuration), then all con-
figurations η̄ will be bad. This is because if minus boundary conditions give a
minus magnetisation for the conditioned σ-spin at the origin, and plus bound-
ary conditions a positive one, the same holds for all η̄ (due to FKG e.g.). So
take η̄ to be plus. Choosing ξ to be plus in a large enough annulus Λ′ \ Λ and
integrating the outside with µ] will lead to an effective plus boundary condition
at Λ. The reason is that the positive magnetisation m+is an attractive fixed
point for the recursive relation, and any positively magnetised field in Λ′ will
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lead into its domain of attraction. The same is true for the negative magneti-
sation. As there are different magnetisations with plus and minus boundary
conditions, even in the presence of a weak plus field (the field is plus due the η̄
being plus), the choice of plus or minus in the annulus influences the expected
magnetisation at the origin, however big Λ is.

Proof. The definition of t2, (4.21), will assure that we are in the phase-transition
regime for the transformed system (for t ≥ t2). Making use of Lemma 4.3.2, the
value of ε we are after, in order to prove the essential discontinuity, is given by
ε = 2 tanh(h+

t ). This value corresponds to taking, for the measure coming from
ηΓm\Γk = +, the smallest positive field along all the k − 1 iterations, namely

h+
t . The field at the origin is given by h(k) = η0h

t+ (d+ 1)ϕ(h(k−1)) and could
be roughly bounded from below

h(k) = η0h
t + (d+ 1)ϕ(h(k−1)) ≥ −ht + dϕ(h+

t ) = h+
t .

Thus the corresponding single-site measure is given by ν+(σ0) = eh
+
t σ0

eh
+
t +e−h

+
t

,

and
µ[η̄Γk(+)Γm\Γk ](σ0) ≥ tanh(h+

t ) .

Analogously for the measure coming from ηΓm\Γk = −, we take the biggest

negative value along all the k − 1 iterations, that is H−t = −h+
t , therefore

ν−(σ0) = e−h
+
t σ0

eh
+
t +e−h

+
t

and

µ[η̄Γk(−)Γm\Γk ](σ0) ≤ tanh(−h+
t ) .

For ε = 2 tanh(h+
t ) the inequality (4.14) holds. Let us notice that ε is chosen

independently of η, thanks to the uniform bounds appearing in Lemma 4.3.2.
This ensures the µ̂-essential discontinuity at any point.

As we mentioned before, the previous argument does not hold for µ+ and µ−.
We treat here only the µ+ case, the µ− case is completely symmetrical. So, in
case we start with the plus measure, even conditioning on a minus configuration
in the annulus, due to the plus influence from the boundary will lead to a
measure on Γk that looks like the plus measure in a negative field.

Lemma 4.3.5. Given the starting measure µ+, the fields acting on ∂Γm for

the marginal measure on Γm, which are given by h
(0)
i = ηih

t+dϕ(h+), i ∈ ∂Γm,
satisfy the following inequality

ηih
t + dϕβ(h+) > h]t(d, β) , (4.22)

for all d > 1, β > β(d) and for all t ∈ [t2,∞).
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Proof. Let t2 be as in (4.21). It suffices to show that dϕβ(h+(d, β)) > h]t(d, β)+
ht in the aforementioned region of parameters. First of all we note that the
expression on the right-hand side is zero in the limit t ↑ ∞, and it is a decreasing
function of t. So in order to prove the lemma it is enough to show

dϕβ(h+(d, β)) > h]t2(d, β) + ht2 . (4.23)

Using that h]t2(d, β) is a fixed point for the (−) recursion at t = t2, we arrive
at

dϕβ(h+(d, β)) > dϕβ(h]t2(d, β)) , (4.24)

Note that h]t2(d, β) = hc(d, β) > 0, where hc(d, β) is a tangent point to dϕ(x)
such that dϕ′(hc(d, β)) = 1. We show that h+ > hc(d, β). In fact we know
that dϕ(h+) − h+ = 0. Using the mean-value theorem together with the fact
that dϕ(0) = 0, we write dϕ′(ξ)h+ − h+ = 0. It implies that ξ is such that
dϕ′(ξ) = 1. Using then that dϕ′ is a decreasing function it follows that the
domain of ξ, namely (0, h+) has to contain hc(d, β); so h+ > hc(d, β). Using
then the monotonicity of the functions ϕβ the claim is proved.

Theorem 4.3.6. If σ is distributed according to µ+, then after time t2 all
configurations η are good configurations for the transformed measure µ+S(t).

Proof. Based on Lemma 4.3.5, choosing Γm big enough we make sure that the
recursion relation coming from the fixed “+”-annulus Γm \Γk will approach its
fixed value H+

t , so do we for the fixed “−”-annulus to approach its fixed value
h+
t . Then the magnetic fields for the finite-volume Gibbs measure on Γk are

respectively given by

i ∈ ∂Γk, h
+,(0)
i = ηih

t + dϕ(H+
t ) ,

i ∈ Γk−1, h
(0)
i = ηih

t ,
(4.25)

and

i ∈ ∂Γk, h
−,(0)
i = ηih

t + dϕ(h+
t ) ,

i ∈ Γk−1, h
(0)
i = ηih

t .
(4.26)

Define ∆j = maxi(h
+,(j)
i − h−,(j)i ). This maximum is always positive, as an

inductive argument shows. We are about to prove that ∃δ ∈ (0, 1) such that
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(1− δ)∆j ≥ ∆j+1; this implies that limj↑∞∆j = 0.

∆j+1 = max
i

(h
+,(j+1)
i − h−,(j+1)

i ) = max
i

[
1

d

∑
l∼i

(
dϕ(h

+,(j)
l )− dϕ(h

−,(j)
l )

)]

= max
i

[∑
l∼i

dϕ′(cl)

d

(
h

+,(j)
l − h−,(j)l

)]
≤ (1− δ) max

i

[
1

d

∑
l∼i

(
h

+,(j)
l − h−,(j)l

)]

= (1− δ) max
i

max
l∼i

(
(h

+,(j)
l − h−,(j)l )

∑
l∼i

1

d

)
= (1− δ) max

i
max
l∼i

(
h

+,(j)
l − h−,(j)l

)
= (1− δ)∆j .

(4.27)

We used the mean-value theorem together with the fact that dϕ′(x) < 1 for
x > hc(d, β).

For σ distributed according to µ], we will show the existence of an inter-
mediate time interval, where some, but not all, configurations are bad for µ̂.
Theorem 4.3.11 will express this. We will show that the all plus and all minus
configurations are good for µ]S(t) at all times in (0, t2). Moreover we will im-
pose a condition on the field ht (therefore on t itself), such that it guarantees
the existence of at least one bad configuration for µ]S(t).

We will find a t1, which is larger than the minimal value of time for which
this condition is satisfied. This value t1 will turn out to be strictly less than t2.
This will guarantee that t1 is small enough so that the transformed measure,
conditioned on an all plus or all minus η will not exhibit a phase transition.

Remark 4.3.7. Note that this implies that at the same time t2 the interme-
diate state has a transition to a totally non-Gibbsian regime, where all spin
configurations are discontinuity points, whereas the plus and minus state have
a transition to a Gibbsian regime, without discontinuity points.

Lemma 4.3.8. If σ is distributed according to µ] then for all t ∈ (0, t2) the
η = + and η = − configurations are good configurations for the transformed
measure µ]S(t).

Proof. As was shown before, the recursions (4.17), (4.18) (related to the annuli)
give us respectively H+

t and h−t . Let first η be the plus configuration. In this

case h
+,(j)
i = H+

t for all i and j. In other words the field will stick to the fixed
point value along the iterations. Using an inductive argument we show that
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h
−,(j)
i = h−,(j); that’s to say that it does not depend on i. Based on that,

it is straightforward to get a monotonicity property for h−,(j), namely that
h−,(j+1) > h−,(j) for all j. Indeed h−,(j+1) = ht+dϕ(h−,(j)) > h−,(j). The last
inequality follows from the fact that dϕ(x) > x− ht for all x ∈ [h−t , H

+
t ), due

to the chosen range of t. Recalling that for t ∈ (0, t2) the recursion relation
h−,(j+1) = ht + dϕ(h−,(j)) has only one fixed point, namely H+

t , the lemma is
proven for η = +. The η = − case follows by symmetry.

Remark 4.3.9. The chosen range of times enables the existence of a unique
fixed point for each of the recursions (4.17), (4.18), independently of h?. This
means that the fields we obtain at ∂Γk depend on the annuli, but they do not de-
pend on the exterior Γ{

m. For this reason Lemma 4.3.8 applies to σ’s distributed
according to µ+ and µ− too.

For the sake of clarity, let us recall that h+ indicates the positive stable fixed
point for the recursion (4.4) with h0 = 0.

Lemma 4.3.10. Let t1 be given by

ht1 = h+ , (4.28)

then t1 ∈ (0, t2)

Proof. Recalling equation (4.10), the fact that t1 lies in the interval (0, t2) is
guaranteed by the truth of the inequality h(d, β) < dϕ(h+), for β > β(d) and
d > 1. Indeed

h(d, β) < d arctanh

(
w

(
d− w̄
d− w

) 1
2

)
= d arctanh (w tanh(hc)) = dϕ(hc) .

(4.29)

Knowing that hc < h+, the monotonicity of the function ϕ concludes the
proof.

Define the “alternating” configuration ηA to be ηAi = (−1)n for i ∈ ∂Γn and
n ∈ N, i.e. all vertices at each generation have the same sign different from the
sign of the previous and the next generations. Naturally the configuration for

which −ηAi = (−1)n is also an “alternating” one. Let us call h
±,(j)
i the field at

the vertex i ∈ ∂Γk−j after (j + 1) applications of the recursion formula (4.16),
starting respectively at H+

t or h−t . The particular structure of the “alternating”

configuration makes the fields homogeneous at each generation; i.e., h
±,(j)
i =

h±,(j), for all i ∈ ∂Γk−j .
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Theorem 4.3.11. If σ is distributed according to µ], and t1 is given by (4.28),
then for all t ∈ [t1, t2) some, but not all, configurations η are bad for the
transformed measure µ]S(t).

Proof. Making use of Lemma 4.3.8, Lemma 4.3.10, to prove the theorem it is
enough to find a particular configuration η that will be bad for all t ∈ [t1, t2).
The “alternating” configurations will be shown to be bad for all t ≥ t1, in other
words they transmit the influence of the annulus to the origin, no matter how

“distant” the annulus and the origin are. As remarked before, h
±,(j)
i associated

to the ηA configurations depend only on j, and we call the corresponding values
h±,(j). Without loss of generality let us assume ηAi = +, for i ∈ ∂Γk. By an
inductive argument, based on the hypothesis t ∈ [t1, t2) (which in terms of fields
means ht ≤ h+), and on the particular structure of the configuration ηA, we
show that h+,(j) ≥ h+ and h−,(j) ≤ 0, for all j even, namely for those j which
relate to generations at which ηA is set to be +, and that h−,(j) ≤ −h+ and
h+,(j) ≥ 0 for j odd. This will imply h+,(j) − h−,(j) ≥ h+ for all j. Consider
the case j even.
For j = 0 we have:

h+,(0) = H+
t ≥ h+, h−,(0) = ht + dϕ(h−t ) ≤ 0.

Both inequalities hold, because H+
t is a decreasing function of t whose lower

bound is given by h+.

Assuming the statement is true for j, let us see that it holds for j + 2. We
focus first on h+,(j+2).

h+,(j+2) = ht + dϕ(h+,(j+1)) = ht + dϕ(−ht + dϕ(h+,(j))) , (4.30)

where the second equality is justified by the particular structure of the alter-
nating configuration. Using the assumption h+,(j) ≥ h+ and the monotonicity
of ϕ we arrive at

h+,(j+2) ≥ ht + dϕ(−ht + dϕ(h+)) . (4.31)

The fact that 0 ≤ −ht+h+ ≤ h+ ensures that dϕ(−ht+h+) ≥ −ht+h+. This
concludes the proof for h+,(j).
For h−,(j+2) we have:

h−,(j+2) = ht + dϕ(h−,(j+1)) = ht + dϕ(−ht + dϕ(h−,(j))) . (4.32)

Using always the assumption h−,(j) ≤ 0, the monotonicity of ϕ, and the as-
sumption ht ≤ h+, which guarantees ht ≤ dϕ(ht), we obtain

h−,(j+2) ≤ ht + dϕ(−ht) ≤ 0 . (4.33)

The case j odd is analogous.
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Remark 4.3.12. The above result also applies to the evolved plus and minus
measures. Indeed the alternating configuration displays a strong discontinuity
here, whereas the above analysis shows that for large times all configurations
display a µ]S(t)-essential but nonstrong discontinuity. Whether the t1 used
above is optimal in any sense is not known. We conjecture that it may be for
the intermediate state, but not for the plus or minus states.

4.4 Non-zero Initial Field, (h0 6= 0)

Recall that |h0| < h(d, β), β > β(d) and d > 1; these conditions guarantee
the existence of three homogeneous phases for the original measure; we denote
them, even if not fully consistent with the notation we have been using so
far, µ+

h0
, µ−h0

, and µ]h0
, just to emphasize their dependence on h0. We show

that the previous results, found for the case h0 = 0, will also apply to the
case h0 6= 0 but for different time values. Let t+(h0), t−(h0) be given by the
following equations:

h0 + ht+ = h(d, β) ,

h0 − ht− = −h(d, β) .
(4.34)

Call

t2(h0) = min {t+(h0), t−(h0)} ,
t3(h0) = max {t+(h0), t−(h0)} .

(4.35)

Depending on the sign of the initial field, t+(h0) might be either bigger or
smaller than t−(h0), as follows from (4.10). Nevertheless the definitions of
t2(h0), and t3(h0) will always assure t2(h0) < t3(h0) (e.g., for h0 < 0 the order
is t2(h0) = t+ < t− = t3(h0)).

The time t2(h0) indicates the time value for which the dynamic field ht, taken
in the opposite direction to h0, will first reach a value which guarantees the
existence of a phase transition for the conditioned transformed measure. The
time t3(h0) refers to the analogous value, but for ht taken with the same sign
as h0.

Suppose, w.l.o.g., that h0 < 0. Note that for h0 negative the magnetization
corresponding to µ]h0

is positive, see [29], Chapter 12. For t > t3(h0) there exist

three fixed points for the (−)-recursion h(k+1) = h0−ht+dϕ(h(k)), namely two

stable ones h−t (h0), h+
t (h0), and an unstable h]t(h0). The existence of several

fixed points makes the convergence to them be dependent on the starting point.
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In particular the recursion will take us to h+
t (h0) iff the starting point, h(k=0),

lies to the right of the unstable one, that is when h(k=0) > h]t(h0); it will take

us to h−t (h0) iff h(k=0) < h]t(h0), and will stick to h]t(h0) iff h(k=0) = h]t(h0).

Given that t3(h0) > t2(h0), the assumption t > t3(h0) ensures the existence
of three fixed points also for the (+)-recursion h(k+1) = h0 +ht+dϕ(h(k)); they

are denoted by H±t (h0), and H]
t (h0).

Assume that we start at time t = 0 with the measure µ]h0
, then the starting

point for the (±)-recursions is h? = h](h0) > 0. However, for the chosen range
of time, t > t3(h0), it can be shown that h](h0) will always lie to the right of

H]
t (h0) and always to the left of h]t(h0). So the next theorem reads:

Theorem 4.4.1. If σ is distributed according to µ]h0
, then after time t3(h0) all

configurations η are bad configurations for the transformed measure µ]h0
S(t).

2
Analogously to the analysis for h0 = 0, the former result will not hold for σ

distributed according to µ±h0
.

Two other results, obtained in the previous section, have equivalents for
non-zero external field.

Lemma 4.4.2. If σ is distributed according to µ]h0
, then for all t ∈ (0, t2(h0))

the η = + and η = − configurations are good configurations for the transformed
measure µ]h0

S(t).

2

Theorem 4.4.3. If σ is distributed according to µ±h0
, then after time t3(h0) all

configurations η are good configurations for the transformed measure µ±h0
S(t).

2

Remark 4.4.4. It is worth remarking that the strict inequality t2(h0) < t3(h0),
always holding for h0 6= 0, implies the non-emptiness of the interval of times
[t2(h0), t3(h0)). A similar result to the one given in Theorem 4.3.11 holds in the
case h0 6= 0, namely that for t ∈ [t2(h0), t3(h0)) some, but not all, configurations
are bad. In fact, it can be shown, for example in case h0 < 0, that the time
t2(h0) corresponds to the time for which the plus configuration becomes bad,
while for all times t < t3(h0) the minus configuration will remain good. In case
h0 > 0, as symmetry may suggest, the time t2(h0) will be the threshold for the
minus configuration to become bad, while the plus configuration will be good till
the time t = t3(h0).
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Encouraged by the many analogies between the h0 = 0 case and the h0 6= 0
case, one might ask what one can say about the (h0 6= 0)-equivalent of the time
t1, (4.28). Pursuing the former, let us define the values of times t̂+, t̂− by the
following equalities

ht̂+ = h0 + dϕ(h+(h0))− h](h0) ,

−ht̂− = h0 + dϕ(h−(h0))− h](h0) ,
(4.36)

and define further
t1(h0) = max

{
t̂+, t̂−

}
. (4.37)
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Figure 4.2: “Some” times: t1, t2, t3.

The Figure 4.2 helps to understand the role played by the different times so
far defined.

It can be shown that t1(h0) < t3(h0) for |h0| < h(d, β). Nonetheless the rela-
tion between time t1(h0) and t2(h0) is not so trivial as we will show. The next
lemma formalizes that for all time t ≥ t1(h0) the “alternating” configurations

are bad for σ distributed according to µ]h0
.

Lemma 4.4.5. If σ is distributed according to µ]h0
, and t1(h0) is given by (4.37),

then for all t > t1(h0) “alternating” configurations are bad for the transformed

measure µ]h0
S(t).
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Proof. The proof follows the same route taken in the proof of Theorem 4.3.11
with some modifications on the bounds. Nonetheless, we reckon it is instructive
to sketch the main points at least for h0 < 0. For t > t1(h0) an inductive
argument leads to the following bounds:

for even j, h+,(j) ≥ h+(h0) and h−,(j) ≤ h](h0) ,

for odd j, h+,(j) ≥ −h](h0) and h−,(j) ≤ −h+(h0) ,

therefore h+,(j) − h−,(j) ≥ h+(h0)− h](h0) for all j.

The previous lemma together with Remark 4.4.4 shows that if σ is distributed
according to µ]h0

, then for all t ∈ [t1(h0), t3(h0)) some, but not all, configura-
tions are bad. There are then two different time intervals where some, but not
all, configurations are bad. We will not leave the reader wondering how these
two intervals relate. We will show the existence of a critical value hc0 such that
for |h0| > hc0 we have [t1(h0), t3(h0)) ⊂ [t2(h0), t3(h0)), for |h0| < hc0 the inclu-
sion is reversed, namely [t1(h0), t3(h0)) ⊃ [t2(h0), t3(h0)), and for |h0| = hc0 the
two intervals coincide.

Remark 4.4.6. In the small-field regime |h0| < hc0 we have that the “alternat-
ing” configuration becomes bad before the all plus and the all minus configura-
tions. In that case, the dominant effect is that the alternating character of the
conditioning provides some cancellations, just as in the zero-field case.

In the other regimes we can just say what follows from t1(h0) < t3(h0),
i.e. that the “alternating” configurations become bad before the homogeneous
configuration with all η’s aligned with h0, that is η = sign(h0). The impossibility
to state something more in the other regimes is due to the fact that t1(h0)
is not a “sharp” threshold for the “alternating” configurations to become bad.
However, in this case having a “bad” configuration, one may need to counteract
the effect of the field, thus in a positive external field, the minus configuration
becomes bad at an earlier time than the alternating one.

To explore the latter inclusions we need to compare the values t1(h0) and
t2(h0), or equivalently ht1(h0) and ht2(h0). Consider the difference between the
fields

f(h0) := ht1(h0) − ht2(h0) . (4.38)

Based on the definitions of the times, (4.37), (4.35) it turns out that the function
f is even. So we might focus on its behaviour only for negative values of the
initial field h0. For such values of the field the function has the following form

f(h0) = h+(h0)− h](h0) + h0 − h(d, β) . (4.39)
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First of all the limit values of f in the interval (−h(d, β), 0) are given by

lim
h0↓−h(d,β)

f(h0) = −2h(d, β) ,

lim
h0↑0

f(h0) = h+ − h(d, β) .

Note that the second limit value is positive, as has been explained in the proof
of Lemma 4.3.5, while the first one is negative by the definition of h(d, β), and
by (4.3). Taking now the derivative of f with respect to h0 we obtain

f ′(h0) = (h+(h0))′ − (h](h0))′ + 1 . (4.40)

Using the only thing we know about h+(h0), h](h0), namely that they are fixed
points for the recursion hk+1 = h0 + dϕ(hk), the following equalities turn out
to hold

(h+(h0))′ =
1

1− dϕ′(h+(h0))
,

(h](h0))′ =
1

1− dϕ′(h](h0))
.

Because h](h0) < hc(d, β) and h+(h0) > hc(d, β), the monotonicity of dϕ′ as-
sures that f ′(h0) > 0 for all h0 ∈ (−h(d, β), 0). Therefore the existence and
uniqueness of hc0 is guaranteed by an application of the intermediate-value the-
orem. We point out that the function f is not differentiable in h0 = 0. Indeed,
being f an even function and limh0↑0 f

′(h0) > 0 clarify the discontinuity.

We would like to remark that the case h0 = 0 might be obtained from
the previous analysis by taking the limit h0 ↑ 0. Indeed limh0↑0 t1(h0) = t1,
limh0↑0 t2(h0) = limh0↑0 t3(h0) = t2.

4.5 Conclusion and Final Remarks

We have shown that the Gibbs-non-Gibbs transition on trees has a number of
different aspects, as compared to that on regular lattices. In particular, we
have shown that different evolved Gibbs measures can have different Gibbsian
properties. For the evolved intermediate state there are two transitions, one
from being Gibbsian to being “standard non-Gibbsian” (having some, but not
all configurations bad) and a second transition to a “totally non-Gibbsian”
regime where all configurations are bad. Both these properties do not occur in
the more familiar lattice and mean-field situations.
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For the plus and minus measure there are also two transitions, namely one
after which the evolved measure becomes non-Gibbsian, and some, but not all,
configurations become discontinuity points and a second one after which the
measure becomes Gibbsian again; this is the behaviour which on the lattice
occurs for an initial Gibbs measure in an external field.

Although we have worked out the case of Cayley trees, we expect our results
to hold for a wider class of trees. The instability of the fixed point h] for example
corresponds with the phase transition being robust, which is true in general for
Ising models on trees [65]. Also, the property of plus boundary conditions in
a not too strong minus field inducing a positively magnetised state, which was
used in the proof that the plus configuration was good for the plus state holds
quite generally. The choice of bad configuration in the intermediate regime may
be somewhat tree-dependent. Moreover, it seems problematical to identify a
unique measure µ] in a field (on random Galton-Watson trees for example).





5 Potts Model with Invisible Colours:
Random-cluster Representation and
Pirogov-Sinai analysis*

5.1 Introduction

Recently, in a series of papers [70, 71, 72], Tamura, Tanaka and Kawashima
introduced a variant of the ferromagnetic Potts model to study the relation
between symmetry breaking and the order of the phase transition. The model
consists of a ferromagnetic Potts interaction taking place between q “visible”
colours along with the presence of r “invisible” colours without any interaction.
They observed, through numerical simulations, that in two dimensions with
q = 2, 3, 4 and r large, the model undergoes a first-order phase transition with q-
fold symmetry breaking. This is in contrast with the ordinary two-dimensional
q-colour Potts model with q = 2, 3, 4, in which the transition accompanied by
the q-fold symmetry breaking is known to be of second order [2]. This provides
a simple example that a q-fold symmetry breaking in two dimensions does not
universally identify the order of the transition.

The transition in this model (as well as in the standard q-colour Potts model)
occurs from an ordered state (which has a favoured direction among q possi-
bilities) to a disordered state (which has no favoured direction) when the tem-
perature is increased. In the standard q-colour Potts model with q small, this
transition is of second order (no latent heat at the transition point) whereas in
the Tamura-Tanaka-Kawashima version of the Potts model, for the same values
of q but r chosen sufficiently large, the transition is of first order (the system
absorbs heat during the transition, without changing its temperature).

For the standard q-colour Potts model, when q is large enough, there is a
variety of different rigorous proofs that the transition is of first order [9, 46,
55, 58] (see also [34, 47]). In this chapter, we prove, by minor adaptations of
the proofs in [47, 55], that when q + r is large enough, the Potts model with q
visible colours and r invisible colours undergoes a first-order phase transition.

*This chapter is based on [14] and [15].
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The proof is based on an application of the Pirogov-Sinai method to a random-
cluster representation of the model.

The phase transition could be better understood if one thinks of a state of the
system as a possible resolution of the conflict between order and disorder. The
conflict should be resolved locally and in every region. In an ordered region,
the neighbouring sites tend to take the same colour so as to minimize the
energy, while in a disordered region, the neighbouring sites take their colours
independently to maximize the entropy. To establish the resolution of the
order-disorder conflict, one needs to take into account the disturbance present
at the interface between ordered and disordered regions (the contours).

For the standard q-colour Potts model, the order-disorder conflict is niftily
depicted in the Fortuin-Kasteleyn (a.k.a. random-cluster) representation of the
model [27, 30, 34, 37]. In this representation, order is associated with the
presence of bonds between neighbouring sites and disorder with the absence
of bonds. In the same spirit, we introduce a variant of the Fortuin-Kasteleyn
representation for the Potts model with invisible colours. The advantage of
this new formulation is that it admits a neat definition of the interface between
ordered and disordered regions. Now, having two reference configurations de-
scribing complete order and complete disorder — the one with every bond
present, and the one with every bond absent — as in [55], we can apply the
Pirogov-Sinai method [4, 47, 68, 73].

In Section 5.2, we describe the model and recall the formulation of first-
order phase transition in the Gibbsian setup. Section 5.3 is dedicated to the
introduction of a variant of the random-cluster model and its connection with
the Potts model with invisible colours. In Section 5.4.1, formal definitions for
contours are provided, and it is shown how to rewrite the partition functions of
the model in terms of contours. These contour representations are then reduced,
in Section 5.4.2, to two abstract contour models, on which standard techniques
can be applied. In Section 5.5, starting from the two contour models, we
obtain two approximations for the free energy of the Potts model with invisible
colours. If q+ r is large, each of these approximations turns out to be accurate
in an interval of temperatures, one whenever order prevails and the other when
disorder is dominant. The two intervals exhaust all the temperatures and have
a unique common point, which is the transition point of the system. Finally,
the above two approximations are used in Section 5.6 to prove a first-order
transition at the transition point. The occurrence of the symmetry breaking
at the same transition point then follows, using standard properties of the
random-cluster representation, which are reviewed in Appendix C.
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5.2 Potts Model with Invisible Colours

5.2.1 The Model

Let L denote the two-dimensional square lattice, which we think of as a graph
(S,B), where S denotes the set of sites (identified by Z2) and B the set of nearest
neighbour bonds. In the (q, r)-Potts model, each site i ∈ S is in one of (q + r)
colours 1, 2, . . . , q, q + 1, . . . , q + r. Therefore, a configuration of the model is
an assignment of values from the set {1, 2, . . . , q, q+ 1, . . . , q+ r} to the sites in
S. The (q, r)-Potts model [70, 71, 72] is expressed by the formal Hamiltonian

H(σ) = −
∑
{i,j}∈B

δ(σi = σj ≤ q) , (5.1)

where δ(σi = σj ≤ q) is 1 if σi = σj ≤ q and 0 otherwise. Each pair of
neighbouring sites that have the same colour α ≤ q contributes with energy
−1, while sites with colours α > q do not contribute to the energy. The first q
colours are hence called the visible colours, and the rest the invisible colours. If
there are no invisible colours (i.e, if r = 0), the model reduces to the ordinary
Potts model with q colours. As in the ordinary q-colour Potts model, the (q, r)-
Potts model has precisely q periodic ground-state configurations, in which every
site has the same visible colour.

Following the usual approach, we describe the system in thermal equilibrium
via probability distributions on the space of all possible configurations of the
model. The Boltzmann distribution on a finite volume Λ ⊆ L with boundary
condition ω at inverse temperature β is defined by

µωβ,Λ(σΛ) =
1

Zωβ (Λ)
e−βHΛ(σΛωΛ{ ) , (5.2)

where HΛ(σΛωΛ{) consists of a finite number of terms in the formal Hamil-
tonian (5.1) corresponding to the energy of σΛ and its interaction with the
boundary condition ω. Namely,

HΛ(σ) = −
∑
{i,j}∈B

i ∈ S(Λ) or j ∈ S(Λ)

δ(σi = σj ≤ q) , (5.3)

which can be decomposed as a sum

HΛ(σΛωΛ{) = H int
Λ (σΛ) +Hbound

Λ (σΛωΛ{) , (5.4)
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where H int
Λ (σΛ) involves the interaction terms within Λ, and Hbound

Λ (σΛωΛ{)
represents the terms corresponding to the interaction of Λ with its boundary.
The factor Zωβ (Λ) is a normalizing constant — the partition function — making
µωβ,Λ a probability distribution. More specifically, the partition function of
volume Λ with boundary condition ω is given by

Zωβ (Λ) =
∑
σΛ

e−βH
int
Λ (σΛ)−βHbound

Λ (σΛωΛ{ ) . (5.5)

If we ignore the boundary term, then we obtain the free-boundary partition
function of volume Λ:

Zfree
β (Λ) =

∑
σΛ

e−βH
int
Λ (σΛ) . (5.6)

This is the normalizing factor for the free-boundary Boltzmann distribution on
Λ. A Gibbs measure on the space of all configurations of the infinite lattice
system, at inverse temperature β, is a probability measure µ whose conditional
probabilities for every finite volume Λ, given the configuration ω outside Λ, are
given by the Boltzmann distribution µωβ,Λ. More specifically,

µ (A and B) =

∫
B

µωβ,Λ(A)µ(dω) , (5.7)

for every event A not depending on the colours of the sites outside Λ and
every event B not depending on the colours of the sites in Λ (see e.g. [29]).
It follows from a compactness argument that such measures exist at every
temperature. However, when the temperature is sufficiently low, it is possible
to have several distinct Gibbs measures. The multiplicity of Gibbs measures is
then interpreted as the possibility of co-existence of distinguishable phases of
the physical system (in this case, the possibility of spontaneous magnetization
in q different directions). We refer to [29] for details.

One way to obtain Gibbs measures consists of taking the thermodynamic
limit of the Boltzmann distribution with or without a fixed boundary condi-
tion. For a visible colour k, let ωk denote the configuration of the lattice in
which every site has colour k. Let µkβ denote a Gibbs measure obtained by
taking a weak limit of finite-volume Boltzmann distributions with boundary
condition ωk at inverse temperature β, when the finite-volume grows to the
whole lattice. Similarly, we obtain a Gibbs measure µfree

β by taking a weak
limit of free-boundary Boltzmann distributions.

For every n > 0, let Λn denote the (2n + 1) × (2n + 1) central square in
the lattice, which we see as the subgraph of the lattice induced by the sites in
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[−n, n]2. The pressure of the model is defined by

f(β) = lim
n→∞

1

|S(Λn)|
logZωβ (Λn) , (5.8)

in which S(Λn) denotes the set of sites in Λn. The function − 1
β f(β) is the free

energy per site. The limit exists and is independent of the boundary condition
ω (see e.g. [45, 67]). We would also get the same limit as in (5.8) if we used
the free boundary partition function. The particular choice of volumes used
above is not crucial, and can be replaced by any sequence satisfying the van
Hove property (see [45]).

5.2.2 First-Order Phase Transition

A first-order phase transition in temperature is characterized by the presence
of latent heat at the transition point [12]. This means that at the transition
point, the system absorbs or gives out heat without a change in temperature.
The presence of latent heat, therefore, corresponds to a jump in the internal
energy.

In the Gibbsian setup, the state of a system in thermal equilibrium is rep-
resented by a Gibbs measure (see [29]). If the Gibbs measure is translation-
invariant, the internal energy density of the system is described by the ex-
pected value of energy per site. The presence of latent heat at a temperature
means that the limits of the internal energy from above and below the tran-
sition temperature are different. This implies, by continuity, the existence of
two translation-invariant Gibbs measures at that temperature having different
internal energy.

If the pressure function f(β) is differentiable at a point β, its derivative at
β coincides with the internal energy with respect to every translation-invariant
Gibbs measure at β (see [45, 67]). (This, however, does not rule out the possi-
bility of the existence of several translation-invariant Gibbs measures at β.) If,
on the other hand, the pressure function f(β) is non-differentiable at a point
β, its left and right derivatives at β (which exist due to convexity) are different
and coincide with the internal energy with respect to two different translation-
invariant Gibbs measures at β. The difference between these two derivatives
corresponds to a latent heat at β, implying that the system undergoes a first-
order phase transition at β.

We show the existence of a first-order phase transition in the (q, r)-Potts
model by proving that the pressure function f(β) has a unique non-differentiable
point βc. Above βc, the system admits q “ordered” translation-invariant Gibbs
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measures. Each ordered measure can be thought of as a perturbation of one
of the q ground-state configurations, in the sense that with probability 1, the
configuration of the model consists of a unique infinite sea of one of the vis-
ible colours with finite islands of disturbance. Below βc, the system has a
“disordered” translation-invariant Gibbs measure, which can be seen as a per-
turbation of the uniform Bernoulli measure: there is a unique infinite sea of
independent colours with finite islands of disturbance. At βc, the q ordered
measures co-exist with the disordered one.

5.3 Biased Random-Cluster Representation

In analogy with the standard Potts model [27, 30, 34], it is possible to rewrite
the partition function for the (q, r)-Potts model in terms of the partition func-
tion for a variant of the random-cluster model. While the former is a model
defined on sites, the latter will be a model defined on bonds. The random-
cluster representation of the Potts model allows for an elegant formulation of
the intuitive concepts of “order” and “disorder”: the presence of a bond in the
random-cluster representation is interpreted as “order”, while the absence of a
bond as “disorder” [55].

Although for the purpose of our problem, it suffices to present the connec-
tion for squares Λn in the lattice, we elucidate the connection for an arbitrary
finite graph, where there is no boundary condition. Later, we explain how the
boundary conditions affect this connection.

Let G = (S,B) be a finite graph. The r-biased random-cluster model on G
is given by a probability distribution on the sets X ⊆ B. The distribution has
three parameters 0 ≤ p ≤ 1, q > 0 and r ≥ 0, and is defined by

ϕp,q,r(X) =
1

ZRC
p,q,r(G)

[∏
b∈B

pδ(b∈X)(1− p)δ(b/∈X)

]
(q + r)κ0(S,X)qκ1(S,X) ,

(5.9)

in which κ0(S,X) denotes the number of isolated sites of the graph (S,X)
and κ1(S,X) the number of non-singleton connected components of (S,X) and
ZRC
p,q,r(G) the partition function. Notice that for r = 0, the model reduces to

the standard random-cluster model, in which both singleton and non-singleton
connected components have weight q. For r > 0, the above model induces
a bias towards singleton connected components. Namely, the singleton con-
nected components have weight (q + r) whereas the non-singleton connected
components have weight q.
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Let us now see how the (q, r)-Potts model is related to the r-biased random-
cluster model. This is a mere generalization of the standard relation between
the Potts and random-cluster models [30, 34]. Let Ω be the set of (q, r)-Potts
configurations on G. The partition function of this model can be rewritten as

Zβ(G) =
∑
σ∈Ω

eβ
∑
{i,j}∈B δ(σi=σj≤q)

=
∑
σ∈Ω

∏
{i,j}∈B

eβδ(σi=σj≤q)

=
∑
σ∈Ω

∏
{i,j}∈B

[
1 + δ(σi = σj ≤ q)(eβ − 1)

]
=
∑
σ∈Ω

∑
X⊆B

(eβ − 1)|X|
∏

{i,j}∈X

δ(σi = σj ≤ q)

=
∑
σ∈Ω

∑
X⊆B

π(σ,X) , (5.10)

where

π(σ,X) =

eβ|B|
∏

{i,j}∈B

[
δ({i, j} ∈ X)δ(σi = σj ≤ q)(1− e−β) + δ({i, j} /∈ X)e−β

]
.

(5.11)

The latter expression can be seen as a coupling of the (q, r)-Potts distribution
on Ω and a probability distribution on the space {0, 1}B . The marginal of this
coupling on {0, 1}B is simply the r-biased random-cluster distribution ϕpβ ,q,r
with pβ = 1− e−β . In particular, the weight π(σ,X) can also be expressed as

π(σ,X) = eβ|B| · 1Fr (σ,X) ·
∏

{i,j}∈B

[pβ δ({i, j} ∈ X) + (1− pβ) δ({i, j} /∈ X)] ,

(5.12)

where

Fr , {(σ,X) : σi = σj ≤ q for all {i, j} ∈ X} . (5.13)

The effect of the bias in the r-biased random-cluster model reduces to an in-
crease in the number of compatible configurations with a given X, which is
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driven by a larger number of choices for the colour of those sites constituting
the singleton connected components. In short, for each X ⊆ B, we have∑

σ∈Ω

1Fr (σ,X) = qκ1(S,X)(q + r)κ0(S,X) . (5.14)

The above coupling could be interpreted in either of the following ways [30,
34]:

I. We first sample σ according to the (q, r)-Potts distribution. Then, we
choose the elements ofX fromB, randomly and independently, as follows:
for each bond {i, j} ∈ B with σi = σj , we put {i, j} in X with probability
pβ ; for each bond {i, j} ∈ B with σi 6= σj , we do not put {i, j} in X.

II. We first sample X according to the r-biased random-cluster distribution
ϕpβ ,q,r. Then, for each non-singleton connected component of (S,X), we
pick a random colour uniformly among the visible colours, and colour
every site in the component with that colour. Last, for every isolated site
in (S,X), we choose a random colour uniformly among all the possible
colours. (The choices of colours ought to be independent of each other.)

We can now use (5.10) to obtain

Zβ(G) = eβ|B|ZRC
pβ ,q,r

(G) (5.15)

with pβ = 1− e−β .

For finite subgraphs of the infinite lattice, we will be using only two types of
partition functions for the (q, r)-Potts model, namely the one with free bound-
ary and the ones with homogeneous boundary conditions. In the following,
we see how the above two types of boundary conditions translate into the
so-called disordered and ordered boundary conditions for the r-biased random-
cluster model. Although, setting G = Λn, equation (5.15) already provides a
relation between the free-boundary partition functions of the two models, we
will work with a slightly different relation, connecting the free-boundary parti-
tion function of the (q, r)-Potts model to a partition function for the r-biased
random-cluster model that involves a boundary condition. This new relation
will turn out to be more convenient in the sequel.

The free-boundary partition function for the (q, r)-Potts model can be writ-
ten as

Zβ(Λn) = (q + r)−|S(Λn+1)\S(Λn))| · eβ|B(Λn+1)| · ZRC.disord
pβ ,q,r

(Λn+1) , (5.16)
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where ZRC.disord
pβ ,q,r

(Λn+1) is the partition function with disordered boundary con-
dition for the r-biased random-cluster model. The latter is defined by

ZRC.disord
pβ ,q,r

(Λn+1) =
∑

X∈Xdisord
Λn+1

p
|X|
β (1− pβ)|B(Λn+1)\X|(q + r)κ0(S(Λn+1),X)qκ1(S(Λn+1),X) ,

(5.17)

where

X disord
Λn+1

= {X ⊆ B(Λn+1) : X ∩ (B(Λn+1) \B(Λn)) = ∅} . (5.18)

Similarly, for the boundary condition ωk we get

Zω
k

β (Λn) = q−1 · (eβ − 1)−|B(Λn+1\Λn)| · eβ|B(Λn+1)| · ZRC.ord
pβ ,q,r

(Λn+1) , (5.19)

where ZRC.ord
pβ ,q,r

(Λn+1) is the partition function with ordered boundary condition
for the r-biased random-cluster model, which is defined by

ZRC.ord
pβ ,q,r

(Λn+1) =
∑

X∈X ord
Λn+1

p
|X|
β (1− pβ)|B(Λn+1)\X|(q + r)κ0(S(Λn+1),X)qκ1(S(Λn+1),X) ,

(5.20)

where

X ord
Λn+1

= {X ⊆ B(Λn+1) : X ⊇ B(Λn+1 \ Λn)} . (5.21)

By Λn+1 \ Λn we mean the graph obtained from Λn+1 by removing all the
sites in Λn and the bonds attached to them. Let us remark that although
mathematically X disord

Λn+1
is simply the collection of all subsets X ⊆ B(Λn), we

wrote it as above to emphasize that the elements of X disord
Λn+1

are configurations

of B(Λn+1). See Figure 5.1 for typical examples of elements in X disord
Λn+1

and

X ord
Λn+1

.

In the following section, we will extend the definition of ZRC.disord
pβ ,q,r

and ZRC.ord
pβ ,q,r

to arbitrary subgraphs of the lattice.

Using the above relationships, we obtain that the pressure of the (q, r)-Potts
model can be written as

f(β) = 2

(
β + lim

n→∞

logZRC.disord
pβ ,q,r

(Λn)

|B(Λn)|

)
= 2

(
β + lim

n→∞

logZRC.ord
pβ ,q,r

(Λn)

|B(Λn)|

)
.

(5.22)
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Λn+1 Λn+1

(a) (b)

Figure 5.1: (a) A configuration in Xdisord
Λn+1

. (b) A configuration in X ord
Λn+1

.

We call the limit

fRC(β) = lim
n→∞

logZRC.disord
pβ ,q,r

(Λn)

|B(Λn)|
= lim
n→∞

logZRC.ord
pβ ,q,r

(Λn)

|B(Λn)|
(5.23)

the pressure (per bond) of the r-biased random-cluster representation. Note
that the singularities of the (q, r)-Potts pressure function f(β) can be detected
by studying the pressure function fRC(β). One advantage of this random-
cluster representation is that it has a more transparent expression in terms of
“contours”, which helps us study the function fRC(β).

5.4 Reduction to Contour Model

5.4.1 Contour Representation

Any configuration of the r-biased random-cluster model in a volume is a subset
X of bonds in the volume. We interpret each bond in X as “ordered” and
each bond outside X as “disordered”. Any configuration X can then be seen
as clusters of ordered and disordered bonds. Whether an equilibrium state is
ordered or disordered can be seen as the result of a competition between or-
dered and disordered regions. The selection criterion for this competition is
“energy”. The term “energy” refers to an abstract notion of energy for the
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r-biased random-cluster model, which in analogy with the Boltzmann distribu-
tion, corresponds to minus logarithm of probability.

Let us define the “energy” of an ordered bond as the “energy” per bond of
the fully ordered configuration; that is,

e(B) , lim
n→∞

− log
[
q(1− e−β)|B(Λn)|]
|B(Λn)|

= − log(1− e−β) . (5.24)

Similarly, define the “energy” of a disordered bond as the “energy” per bond
of the fully disordered configuration:

e(∅) , lim
n→∞

− log
[
e−β|B(Λn)|(q + r)|S(Λn)|]

|B(Λn)|
= − log

[
e−β
√
q + r

]
. (5.25)

The “energy” of the ordered and the disordered regions can now be expressed
as |Ro|·e(B) and

∣∣Rd
∣∣·e(∅), respectively, where |Ro| and

∣∣Rd
∣∣ denote the size of

the ordered and disordered regions. The “energy” of X, in turn, can be written
in terms of the “energy” of ordered and disordered regions plus a correction
term due to the effect of the boundaries separating them. If the effect of these
boundaries is negligible (which will turn out to be the case whenever q + r is
large), the selection criterion for the competition between order and disorder
boils down to determining which of e(B) and e(∅) is minimal. This is the
starting point of the Pirogov-Sinai approach to study phase transitions (see
e.g. [47]).

The presence of the correction term at the boundaries can be explained as
follows: In the probability weight of a configuration X, each isolated site con-
tributes with a factor (q+r). To express the “energy” of the disordered regions
purely in terms of bonds, we evenly distribute the contribution of the isolated
sites among the 4 incident bonds. Doing so, every disorder bond acquires zero,
one or two “energy”-shares, depending on the number of isolated sites it is
incident to. Since in the fully disordered configuration ∅ there is no ordered
region, every bond is incident to precisely two isolated sites and receives two
“energy”-shares, leading to the factor (q + r)

2
4 in the expression of e(∅). In

an arbitrary configuration, however, the disordered bonds on the borderline
between the ordered and disordered regions, receive one or no “energy”-share,
hence the need for a correction term.

It is possible to define a suitable notion of boundary between ordered and
disordered regions, so that each configuration X is uniquely identified by its
boundary (see below). We could then rewrite the partition functions as sums
running over “admissible” boundaries, that is, those corresponding to config-
urations of bonds. Each admissible boundary is split into “primary” objects
termed contours whose “energy” add up to the corresponding boundary effect.
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In the following, we specify rigorously the above heuristic notions of “bound-
ary” and “contours”. We define the boundary of a configuration X ⊆ B as the
set

∂X , {(i, b) ∈ S× B : i ∼ b and i ∈ S(X) and b /∈ X} , (5.26)

where i ∼ b means site i and bond b are incident, and S(X) is the set of sites
incident to bonds in X. The set ∂X uniquely determines X. We say that two
bonds b and b′ in the lattice are co-adjacent if they belong to the same unit
square. More intuitively, co-adjacency is equivalent to adjacency in the dual
lattice. A set of bonds X is co-connected if for every two bonds b, b′ ∈ X, there
is a sequence b = b1, b2, . . . , bn = b′ of bonds in X such that bi and bi+1 are
co-adjacent. A contour is a set γ ⊆ S× B such that

i) the set of bonds appearing in γ, denoted by B(γ), is co-connected, and

ii) there exists a configuration X such that (S(X), X) is connected and γ =
∂X.

We shall denote by Γ the set of all finite contours in L. If γ is a contour, then
removing the bonds B(γ) breaks the lattice L into connected subgraphs. If γ is
finite, the graph L\B(γ) has a unique infinite connected component, which we
call the exterior of γ and denote by ext γ. The subgraph L\B(γ)\ext γ (which
could be empty or disconnected) is called the interior of γ and is denoted by
int γ. By V (γ) we will mean the union of int γ and the subgraph induced by
B(γ).1 Let γ be a finite contour. The configuration X such that (S(X), X) is
connected and γ = ∂X (which exists by definition) is either finite or co-finite.
If X is finite, we call γ a disorder contour, and if X is co-finite, we call γ an
order contour. Note that, if γ is a disorder contour, all the sites appearing in γ
are in the interior of γ, whereas if γ is an order contour, all the sites appearing
in γ are in the exterior of γ. As a result, we can safely represent a finite contour
γ by the pair (B(γ), x) where x is a label specifying the type of the contour
(disorder or order). This also means that the set of all finite contours Γ can
be partitioned into two subsets: the set of disorder contours, which we denote
by Γd, and the set of order contours, which we denote by Γo.

Two contours are said to be mutually compatible if they are disjoint (as
subsets of S×B). Let us emphasize that two mutually compatible contours are
allowed to share either sites or bonds, but not pairs.

If X ⊆ B is an arbitrary configuration, there could be several ways to parti-
tion its boundary ∂X into mutually compatible contours. One way to construct
such decomposition in an unambiguous way is as follows: first, we partition

1By the subgraph induced by a set of bonds we mean the graph obtained by those bonds
and their endpoints.



Reduction to Contour Model 99

???

???

??? ?
?
?

?
?
?

?????? ?
?
? ??? ?

?
?

?
?
?

???

???

????
?
????

?
?
?

????
?
?

?
?
?

?
?
?

?
?
?

???

?
?
? ????

?
???????

???

???

?
?
?

?
?
?

?
?
?

???

?
?
?

?
?
? ???

???

???

?
?
?

??? ?
?
? ???

?
?
?

?
?
?

?
?
?

?
?
?

?
?
?

(a) (b)

(a’) (b’)

Figure 5.2: (a) A disorder contour and its defining configuration.
(b) An order contour and its defining configuration.
(a’) and (b’) geometric illustrations of (a) and (b).
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(S(X), X) into its maximal connected components (S(Ci), Ci). Then ∂Ci form
a partitioning of ∂X. Now, the maximal co-connected components of every Ci
are contours that we identify as the contours of X.

The above decomposition allows us to think of ∂X as a family of mutually
compatible contours, which we call the contour family of X. Let us recall
that the contour family of a configuration X uniquely determines X. However,
note that not every family of mutually compatible contours corresponds to a
configuration. In particular, in a contour family of a configuration X, between
every two nested finite contours of the same type, there necessarily lies a contour
of the other type. This requirement induces a long-range constraint among
contours, which raises some difficulties in dealing with the contours. We will
see later how to get rid of such a constraint. Let us call a family ∂ of contours
admissible if it is the contour family of a configuration X ⊆ B. We shall denote
by ∆ the set of all admissible contour families. A contour γ in a mutually
compatible family ∂ of contours is said to be external if it is not in the interior
of any other contour in ∂. Note that if ∂ is an admissible contour family with
no infinite contours, all the external contours in ∂ are necessarily of the same
type.

Having formalized the notions of boundary and contours, we can now express
the weight of a configuration of the r-biased random-cluster model in terms of
the “energy” of its ordered and disordered regions and the correction term due
to the contours separating them. The one-to-one correspondence between the
configurations and the admissible families of contours allows us to write the
partition functions as a sum over contour families. The ordered/disordered
boundary conditions on the configurations translate into the constraints for
the corresponding contour family that the outermost contours in the volume
be of the order/disorder type.

Let Λ be a volume in the lattice, by which, from now on, we shall mean a finite
subgraph of L without “holes”. More precisely, we assume that if we remove
the subgraph Λ from L, the remaining subgraph is connected. Let us denote by
∆disord

Λ the set of all admissible contour families whose contours are in Λ (i.e.,
their bonds are chosen from the bonds of Λ) and whose external contours are
all of the disorder type. Similarly, let ∆ord

Λ denote the set of admissible contour
families in Λ whose external contours are all of the order type. The partition
function for the r-biased random-cluster model in a volume Λ with disordered
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(resp., ordered) boundary conditions can be defined as

ZRC.disord
pβ ,q,r

(Λ) = (q + r)
|∂B(Λ)|

4

∑
∂∈∆disord

Λ

e−|R
o
Λ(∂)|·e(B)−|Rd

Λ(∂)|·e(∅)
∏
γ∈∂

ρ(γ) ,

(5.27)

ZRC.ord
pβ ,q,r

(Λ) = q
∑

∂∈∆ord
Λ

e−|R
o
Λ(∂)|·e(B)−|Rd

Λ(∂)|·e(∅)
∏
γ∈∂

ρ(γ) , (5.28)

where ρ(γ) is the weight of a contour γ and is given by

ρ(γ) ,

{
(q + r)−

1
4 |γ| , if γ order,

q (q + r)−
1
4 |γ| , if γ disorder,

(5.29)

and Ro
Λ(∂) and Rd

Λ(∂) denote, respectively, the sets of ordered and disordered
bonds in Λ of the configuration corresponding to ∂.

The above definitions are consistent with the definitions given in (5.17)
and (5.20) when Λ = Λn+1 is a square. Namely, for Λ = Λn+1, if X is the
corresponding configuration of a family ∂ ∈ ∆disord

Λn+1
, the restriction of X to

B(Λn+1) is an element of X disord
Λn+1

. Conversely, every element of X disord
Λn+1

has
a unique infinite-volume extension whose corresponding contour family is in
∆disord

Λn+1
. A similar correspondence holds between X ord

Λn+1
and ∆ord

Λn+1
. For the

proof of the equivalence of the two definitions see Appendix B.

We emphasize that the factors (q + r)
|∂B(Λ)|

4 and q in front of the partition
functions (5.27) and (5.28) do not contribute to the pressure function fRC(β):
in the thermodynamic limit, they are swallowed by the size of the volume.
Hence, to avoid heavy notation — with all due apologies to the reader — we
re-define the partition functions of the r-biased random-cluster model with
disordered/ordered boundary conditions as

ZRC.disord(Λ) =
∑

∂∈∆disord
Λ

e−|R
o
Λ(∂)|·e(B)−|Rd

Λ(∂)|·e(∅)
∏
γ∈∂

ρ(γ) , (5.30)

ZRC.ord(Λ) =
∑

∂∈∆ord
Λ

e−|R
o
Λ(∂)|·e(B)−|Rd

Λ(∂)|·e(∅)
∏
γ∈∂

ρ(γ) . (5.31)

From now on, every time we talk about the partition function of the r-biased
random-cluster model, we will be referring to the latter definitions.

As was mentioned in the introduction, we would like to express the two
partition functions in terms of two (standard) contour models. The purpose
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of this is to make use of the machinery available for contour models; namely,
a result providing an estimate on the convergence of the corresponding free
energy functions (Proposition 1), and the Peierls estimate for the probability
of the appearance of a contour. The main features of the contour models that
are required in the above tools are (see [47])

i) independence, and

ii) damping.

Unfortunately, the contours of the contour representation of the r-biased random-
cluster partition functions are not independent (due to the long-range con-
straint). In the following section, we will see how to achieve the independence
among contours, by rewriting the partition functions in terms of abstract con-
tour models. As in the standard random-cluster model (see [55]), we need two
different such contour models, one for each of the two boundary conditions.

5.4.2 Contour Models

In this section, we want to resolve the issue of long-range constraints between
contours. Recall that the admissibility condition requires the contours of a
family to be alternating between disorder and order contours, and this imposes
a long-range constraint between contours. For example, two nested contours
of the disorder type (no matter how far from each other) are “aware” of the
presence of an order contour separating them. As a result, if we remove a
contour from an admissible family, the admissibility could be lost.

In order to get rid of this constraint, we use two abstract contour models in
which the contours are all of the same type and the admissibility condition is
replaced by mere mutual compatibility. The weights of the contours in each of
the abstract models will be chosen in such a way to guarantee that the ensuing
partition functions are equal (up to a factor) to each of the partition functions
for the r-biased random-cluster model.

A contour model is specified by a function χ : Γ → R, assigning a weight
χ(γ) to each contour γ ∈ Γ. The configurations of the model are families of
mutually compatible (i.e., disjoint) contours in L. Let us denote the set of all
such families by M, and the set of all elements of M whose contours are in a
volume Λ by MΛ. The partition function of the model in Λ is given by

Z (Λ |χ) =
∑
∂∈MΛ

∏
γ∈∂

χ(γ) . (5.32)

In the following lemma, we will see how to represent the partition functions
of the r-biased random-cluster model with disordered and ordered boundary
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conditions, each in terms of the partition function of a contour model, with a
particular choice of the weight function. In fact, the contour model associated
to the disordered boundary condition will not involve order contours. This is
reflected by the fact that in this model each order contour has weight zero.
Similarly, the contour model for the ordered boundary condition involves only
order contours.

To set the stage for the lemma, we rewrite the partition functions ZRC.disord(Λ)
and ZRC.ord(Λ) in a form resembling more the contour model partition function
Z (Λ |χ). That is,

ZRC.disord(Λ) = e−|B(Λ)|·e(∅)
∑

∂∈∆disord
Λ

∏
γ∈∂

ρ̃(γ) , (5.33)

ZRC.ord(Λ) = e−|B(Λ)|·e(B)
∑

∂∈∆ord
Λ

∏
γ∈∂

ρ̃(γ) , (5.34)

where

ρ̃(γ) =

{
ρ(γ) · e−|B(int γ)|·(e(B)−e(∅)) , if γ is disorder,

ρ(γ) · e−|B(V (γ))|·(e(∅)−e(B)) , if γ is order.
(5.35)

Let us recall that the set ∆disord
Λ (resp., ∆ord

Λ ) does not contain only families of
disorder (resp., order) contours, but all families compatible with the disordered
(resp., ordered) boundary condition. To make the proof more transparent, let
us define

Y d(Λ) =
∑

∂∈∆disord
Λ

∏
γ∈∂

ρ̃(γ) , (5.36)

Y o(Λ) =
∑

∂∈∆ord
Λ

∏
γ∈∂

ρ̃(γ) , (5.37)

so that

ZRC.disord(Λ) = e−|B(Λ)|e(∅) · Y d(Λ) , (5.38)

ZRC.ord(Λ) = e−|B(Λ)|e(B) · Y o(Λ) . (5.39)

Notice that the above contour representation for the partition functions
ZRC.disord(Λ) and ZRC.ord(Λ) lacks the condition of independence between
compatible contours.

The following lemma is similar to Lemma 1 of [47].
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Lemma 1. The partition functions for the r-biased random-cluster model on
volume Λ with the disordered and ordered boundary conditions can be written
as

ZRC.disord(Λ) = e−|B(Λ)|e(∅)Z (Λ | ξd) , (5.40)

ZRC.ord(Λ) = e−|B(Λ)|e(B)Z (Λ | ξo) , (5.41)

where the weights ξd and ξo are defined by

ξd(γ) =

ρ(γ)
ZRC.ord(int γ)

ZRC.disord(int γ)
, if γ disorder,

0 , otherwise,

(5.42)

and

ξo(γ) =

ρ(γ)e|B(γ)|e(B)Z
RC.disord(V (γ))

ZRC.ord(int γ)
, if γ is order,

0 , otherwise.

(5.43)

Proof. The key step to prove the lemma is to write a recursion for the above
partition functions by factoring the contribution of the interior of each external
contour. Let us denote by Edisord

Λ the set of mutually compatible families of
disorder contours whose elements are all external. (We include the empty family
in Edisord

Λ .) Note that the elements of Edisord
Λ are all admissible and in ∆disord

Λ .
Moreover, for each admissible family ∂ ∈ ∆disord

Λ , the sub-family of ∂ consisting
of its external contours is in Edisord

Λ . Similarly, we denote by Eord
Λ the set of

mutually compatible families of order contours whose elements are all external.
The partition functions Y d and Y o satisfy the following recursions:

Y d(Λ) =
∑

θ∈Edisord
Λ

∏
γ∈θ

ρ̃(γ) · Y o(int γ) , (5.44)

Y o(Λ) =
∑
θ∈Eord

Λ

∏
γ∈θ

ρ̃(γ) · Y d(V (γ)) . (5.45)

Similar recursions hold for the contour model partition functions Z (· | ξd) and
Z (· | ξo):

Z (Λ | ξd) =
∑

θ∈Edisord
Λ

∏
γ∈θ

ξd(γ) ·Z (int γ | ξd) , (5.46)

Z (Λ | ξo) =
∑
θ∈Eord

Λ

∏
γ∈θ

ξo(γ) ·Z (int γ | ξo) . (5.47)



Reduction to Contour Model 105

Note that, since every order contour is weighted 0 by ξd, we can ignore in
Z (· | ξd) the families containing order contours, and similarly the disorder con-
tours can be ignored in Z (· | ξo).

We use induction on volume Λ to prove that Y d(Λ) = Z (Λ | ξd). Suppose
that for every sub-volume Λ′ ( Λ we have Y d(Λ′) = Z (Λ′ | ξd). Let θ ∈
Edisord

Λ . We want to show that the terms corresponding to θ in the recursion
formulas (5.44) and (5.46) for Y d(Λ) and Z (Λ | ξd) are equal. If θ is empty,
the equality is trivial (we consider the product over an empty set to be 1).
Otherwise, for every γ ∈ θ, we have int γ ( Λ, which implies Z (int γ | ξd) =
Y d(int γ). Using the definitions of ρ̃ and ξd we obtain that∏

γ∈θ

ρ̃(γ) · Y o(int γ) =
∏
γ∈θ

ξd(γ) · Y d(int γ) . (5.48)

Therefore, Y d(Λ) = Z (Λ | ξd). The starting point of the induction is when the
only element of Edisord

Λ is the empty family.

The argument for Y o(Λ) = Z (Λ | ξo) is similar.

Note that there is no complete correspondence between the configurations of
the r-biased random-cluster model and the contour families of the correspond-
ing abstract contour model. Nevertheless, the probability of appearance of a
contour as an external contour is the same in both models. Let ϕord

Λ denote the
probability distribution associated to ZRC.ord(Λ). We consider ϕord

Λ as a mea-
sure on the infinite-volume bond configurations X ⊆ B, which is concentrated
on the set {X : ∂X ∈ ∆ord

Λ }. Likewise, ϕdisord
Λ will denote the measure corre-

sponding to ZRC.disord(Λ), which is concentrated on the set {X : ∂X ∈ ∆disord
Λ }.

Corollary 1.1. Let Λ be a finite volume and θ ∈ Eord
Λ a family of external

mutually compatible order contours. Then,

ϕord
Λ {X : ∂extX = θ} =

∏
γ∈θ ξ

o(γ)Z (int γ | ξo)

Z (Λ | ξo)
, (5.49)

where ∂extX is the family of external contours of X. A similar statement holds
for the probability of families of external mutually compatible disorder contours
under ϕdisord

Λ .

Proof.

ϕord
Λ {X : ∂extX = θ} =

∏
γ∈θ ρ̃(γ)Y d(V (γ))

Y o(Λ)
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=

∏
γ∈θ

[
ρ(γ) · e−|B(V (γ))|·(e(∅−e(B))) Y

d(V (γ))
Y o(int γ)

]
Y o(int γ)

Y o(Λ)

=

∏
γ∈θ ξ

o(γ)Z (int γ | ξo)

Z (Λ | ξo)
(5.50)

The next corollary provides an estimate for the probability that a finite region
of the lattice is surrounded by a contour (see e.g. [34]). For a finite set of sites
A in the lattice, let ΓA denote the set of all finite contours that have A in their
interiors.

Corollary 1.2. For every finite volume Λ and every finite set A ⊆ S(Λ)

ϕord
Λ {X : ∂X ∩ ΓA 6= ∅} ≤

∑
γ∈ΓA

ξo(γ) =
∑
γ∈ΓA
γ order

ξo(γ) . (5.51)

A similar bound holds in the disordered case.

Proof. Taking into account the ordered boundary condition, we have that if
A is surrounded by a contour in Λ, it is also surrounded by an external order
contour in Λ, that is,

{X : ∂X ∩ ΓA 6= ∅} = {X : ∂extX ∩ ΓA 6= ∅} . (5.52)

By the previous corollary, we can bound the probability of a contour γ appear-
ing as an external contour by

ϕord
Λ {X : ∂extX 3 γ} =

∑
θ∈Eord

Λ
θ3γ

∏
γ̂∈θ ξ

o(γ̂)Z (int γ̂ | ξo)

Z (Λ | ξo)

=

ξo(γ)Z (int γ | ξo)
∑
θ∈Eord

Λ
θ3γ

∏
γ̂∈θ
γ̂ 6=γ

ξo(γ̂)Z (int γ̂ | ξo)

Z (Λ | ξo)

≤ ξo(γ)Z (int γ | ξo)Z (Λ \ int γ | ξo)

Z (Λ | ξo)

≤ ξo(γ) . (5.53)

The last step follows from the fact that all the terms in the partition function
Z (Λ | ξo) are non-negative, hence

Z (Λ | ξo) ≥ Z (int γ | ξo)Z (Λ \ int γ | ξo) . (5.54)
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We obtain that

ϕord
Λ {X : ∂X ∩ ΓA 6= ∅} = ϕord

Λ {X : ∂extX ∩ ΓA 6= ∅}

=
∑
γ∈ΓA

ϕord
Λ {X : ∂extX 3 γ}

≤
∑
γ∈ΓA

ξo(γ) . (5.55)

A standard argument using the positive correlation property of ϕord
Λ (resp.,

ϕdisord
Λ ) can be used to show that the thermodynamic limit of ϕord

Λ (resp.,
ϕdisord

Λ ) exists and is unique (see Appendix C). The limit measure ϕord (resp.,
ϕdisord) satisfies the same bound as in the above corollary. If the weights
ξo (resp., ξd) decay sufficiently fast, the latter bound implies that under ϕord

(resp., ϕdisord), the configuration of the model almost surely consists of a unique
infinite sea of order (resp., disorder) with finite islands of disorder (resp., order).
By a “sea” of order (resp., disorder) in a random-cluster configuration we mean
a connected component of present (resp., absent) bonds.

Corollary 1.3. For every finite set A ⊆ S,

ϕord{X : ∂X ∩ ΓA 6= ∅} ≤
∑
γ∈ΓA

ξo(γ) =
∑
γ∈ΓA
γ order

ξo(γ) . (5.56)

Furthermore, if the sum
∑
γ∈ΓA

ξo(γ) converges,

ϕord

(
∃ unique infinite sea of order
with finite islands of disorder

)
= 1 , (5.57)

A similar statement holds in the disordered case.

Proof. As before, let Λn denote the (2n + 1) × (2n + 1) central square in the
lattice. For every n let us define ΓA,Λn as the set of all contours in Λn having A
in their interiors. From the previous corollary, we know that for every m > n,
the following bound holds:

ϕord
Λm{X : ∂X ∩ ΓA,Λn 6= ∅} ≤

∑
γ∈ΓA

ξo(γ) . (5.58)
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Since the event {X : ∂X ∩ ΓA,Λn 6= ∅} is local, we obtain

ϕord{X : ∂X ∩ ΓA,Λn 6= ∅} ≤
∑
γ∈ΓA

ξo(γ) . (5.59)

due to weak convergence of ϕord
Λm

to ϕord. Letting n→∞ the first claim follows.

If
∑
γ∈ΓA

ξo(γ) converges, using a Borel-Cantelli argument, with probabil-
ity 1, no infinite cascade of contours appears on the lattice. In particular, if we
define

So ,

{
X :

X has a unique infinite sea of order
with finite islands of disorder

}
, (5.60)

Sd ,

{
X :

X has a unique infinite sea of disorder
with finite islands of order

}
, (5.61)

the latter implies that ϕord(So ∪Sd) = 1. We show that, in fact, ϕord(Sd) = 0.

Let A be a finite set of sites in the lattice. For every X ∈ Sd one can find a
volume Λ containing A such that ∂ (X ∩B(Λ)) ∈ ∆disord

Λ (i.e., the restriction of
X to Λ is compatible with the disordered boundary condition). In particular,
if we define

CA,Λn ,{
X : ∃ a finite volume Λ ⊆ Λn with S(Λ) ⊇ A and ∂ (X ∩B(Λ)) ∈ ∆disord

Λ

}
,

(5.62)

we have CA,Λ1 ⊆ CA,Λ2 ⊆ · · · and Sd ⊆
⋃
n CA,Λn .

If m,n are integers with m > n, every configuration X that is compatible
with the ordered boundary condition on Λm (i.e., ∂X ∈ ∆ord

Λm
) and is in CA,Λn

necessarily has an order contour surrounding A. Therefore, by the previous
corollary, we have

ϕord
Λm (CA,Λn) ≤ ϕord

Λm

{
X : ∂X ∩ ΓA 6= ∅

}
≤
∑
γ∈ΓA

ξo(γ) . (5.63)

Since CA,Λn is a local event, by weak convergence of ϕord
Λm

to ϕord we have

ϕord (CA,Λn) ≤
∑
γ∈ΓA

ξo(γ) . (5.64)

Letting n→∞, we obtain

ϕord(Sd) ≤ lim
n→∞

ϕord(CA,Λn) ≤
∑
γ∈ΓA

ξo(γ) . (5.65)
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The latter holds for every finite set A ⊆ S, which by the convergence of the
series, implies that ϕord(Sd) = 0.

5.5 Damping of Contour Weights

One advantage of working with contour models is that when the contour weights
are sufficiently “damped” (i.e., decay exponentially in the length with a suffi-
ciently fast rate) the free energy exists and is bounded, and moreover, the error
in the finite-volume approximations of the free energy is of the order of the
size of the boundary of the finite volume. This is the message of the following
well-known proposition (see e.g. Section 2 of [73], or Proposition 2.3 of [68]).

Proposition 1. Let τ > 0 be sufficiently large, and suppose that the weight
function χ : Γ → R of a contour model satisfies 0 ≤ χ(γ) ≤ e−τ |γ| for every
contour γ. Then, the limit

g(χ) = lim
n→∞

1

|B(Λn)|
log Z (Λn |χ) (5.66)

exists and satisfies g(χ) ≤
∑
γ:S(γ)30 χ(γ) ≤ e−τ/2. In particular g(χ) → 0 as

τ tends to infinity.

Furthermore, there is a constant C = C(τ), such that C → 0 as τ goes to
infinity, and for each finite volume Λ ∈ Zd

eg(χ)|B(Λ)|−C(τ)|∂Λ| ≤ Z (Λ |χ) ≤ eg(χ)|B(Λ)|+C(τ)|∂Λ| , (5.67)

where ∂Λ denotes the boundary of the volume Λ and can be defined as the set
of bonds that are not in B(Λ) but are incident to Λ.

The main purpose of this section is to identify conditions on the parameters
(q + r) and β under which the weights ξd and ξo are damped (i.e., satisfy the
condition of the above proposition). We will see that when (q + r) is large, for
any value of β > 0 at least one of ξd and ξo is damped, and moreover there
exists a unique β at which both ξd and ξo are damped. Let us remark that
for sufficiently damped weights, the sum appearing in Corollary 1.3 converges,
implying that the corresponding phase is stable.

For τ > 0 large enough, let us introduce the truncated (i.e., artificially
damped) weights

ξ̄o(γ) =

{
ξo(γ) , if ξo(γ) ≤ e−τ |γ|,

0 , otherwise,
(5.68)
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and similarly for ξ̄d(γ) (see e.g. [47]). The term truncated refers to the suppres-
sion of all contours whose weights are not damped. If we replace the original
weight ξo by the artificially damped one ξ̄o, we obtain the following truncated
partition function, which can be thought of as an approximation of the par-
tition function of the r-biased random cluster model with ordered boundary
condition:

Z̄RC.ord(Λ) = e−|B(Λ)|·e(B)Z (Λ | ξ̄o) . (5.69)

Similarly, replacing ξd by ξ̄d leads to the truncated partition function for the
r-biased random cluster model with disordered boundary condition:

Z̄RC.disord(Λ) = e−|B(Λ)|·e(∅)Z (Λ | ξ̄d) . (5.70)

The advantage of introducing these truncated partition functions is that we
can apply Proposition 1. Note that if the original weights are “damped” (that
is, ξo(γ) ≤ e−τ |γ| or ξd(γ) ≤ e−τ |γ|), the corresponding truncated partition
functions coincide with the original ones.

From Proposition 1 we have the following bounds for the truncated partition
functions:

e(g(ξ̄o)−e(B))|B(Λ)|−C(τ)|∂Λ| ≤ Z̄RC.ord(Λ) ≤ e(g(ξ̄o)−e(B))|B(Λ)|+C(τ)|∂Λ| ,
(5.71)

e(g(ξ̄d)−e(∅))|B(Λ)|−C(τ)|∂Λ| ≤ Z̄RC.disord(Λ)≤ e(g(ξ̄d)−e(∅))|B(Λ)|+C(τ)|∂Λ| .
(5.72)

The pressure functions associated to the truncated partition functions are

fo(β) = lim
n→∞

1

|B(Λn)|
log Z̄RC.ord(Λn) = −e(B) + g(ξ̄o) , (5.73)

fd(β) = lim
n→∞

1

|B(Λn)|
log Z̄RC.disord(Λn) = −e(∅) + g(ξ̄d) . (5.74)

The functions fo(β) and fd(β) are lower approximations of the pressure
fRC(β) of the r-biased random-cluster representation. The next lemma states
that in fact when (q+ r) is large enough, the maximum of fo and fd coincides
with fRC. As we will see in the next section, for (q + r) large enough, the
functions g(ξ̄o) and g(ξ̄d) and their β-derivatives are small, and therefore, the
dominant terms of fo and fd are −e(B) and −e(∅). This means that fRC is
approximated by the maximum of the curves −e(B) and −e(∅), which intersect
at a unique value β, with significantly different slopes.
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By the diameter of a contour γ, denoted by diam γ, we shall mean the max-
imum lattice distance between two bonds in B(γ). The next lemma is parallel
to Lemma 2 of [47] or Theorem 3.1 of [4].

Lemma 2. Let (q + r) be sufficiently large. If fd ≤ fo, then

i) for every disorder contour γ with diam γ ≤ 1
fo−fd we have

ξd(γ) ≤ e−τ |γ| , (5.75)

ii) for every order contour γ we have

ξo(γ) ≤ e−τ |γ| . (5.76)

A similar statement holds if fo ≤ fd.

Proof. We prove the two claims simultaneously by induction on diam γ. Let
K > 0 and suppose that the claims hold for all (disorder/order) contours with
diameter less than K.

Let γ be a disorder contour with diameter K that satisfies diam γ ≤ 1
fo−fd .

Then,

ξd(γ) = ρ(γ)
ZRC.ord(int γ)

ZRC.disord(int γ)

= ρ(γ)
Z̄RC.ord(int γ)

Z̄RC.disord(int γ)

≤ ρ(γ)
ef

o·|B(int γ)|+C(τ)|∂ int γ|

efd·|B(int γ)|−C(τ)|∂ int γ|

= ρ(γ)e(fo−fd)|B(int γ)|+2C(τ)|∂ int γ| , (5.77)

where in the second equality we have used the induction hypothesis. Namely,
every contour in int γ has diameter less than K, allowing us to replace the
original partition functions with the truncated ones. Notice that

� ρ(γ) = q(q + r)−
1
4 |γ|,

� |B(int γ)| ≤ 1
2 |γ| · diam γ,

� (fo − fd) · diam γ ≤ 1, and

� |∂ int γ| ≤ |γ|.
Hence, we obtain that

ξd(γ) ≤ q e−( 1
4 log(q+r)−1−2C(τ))·|γ| . (5.78)
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For (q + r) large enough (uniformly in γ) the right-hand side is bounded by
e−τ |γ|, hence the claim.

Next, suppose that γ is an order contour with diameter K. We need to show

ξo(γ) = ρ(γ)e|B(γ)|e(B)Z
RC.disord(V (γ))

ZRC.ord(int γ)
≤ e−τ |γ| . (5.79)

By the induction hypothesis, the partition function ZRC.ord(int γ) is equal to
the corresponding truncated partition function, which can be bounded using
Proposition 1. As for ZRC.disord(V (γ)), if we suppress all the contours that are
“big”, we can get a similar bound using the induction hypothesis.

To render the argument more transparent, we work with the partition func-
tions Y d(Λ) and Y o(Λ) (see (5.36) and (5.37)) for which we have

ZRC.disord(Λ) = e−|B(Λ)|·e(∅)Y d(Λ) , (5.80)

ZRC.ord(Λ) = e−|B(Λ)|·e(B)Y o(Λ) . (5.81)

Let us call a disorder contour small if its diameter is less than or equal to
1

fo−fd . Otherwise, we call the contour big.

As before, let us denote by Edisord
Λ the set of all mutually compatible families

of disorder contours in Λ whose elements are external. Factoring the contribu-
tion of the interior of big external contours we have the recursion2

Y d(Λ) =
∑

θ∈Edisord
Λ

θ big

Y d
small(Λ \ int θ)

∏
γ′∈θ

ρ̃(γ′)Y o(int γ′) (5.82)

where int θ ,
⋃
γ′∈θ int γ′, and Y d

small(Λ) , Z (Λ | ξd
small), in which the weight

function ξd
small is obtained from ξd by replacing the weights of all big contours

with 0, that is,

ξd
small(γ

′) =

{
ξd(γ′) if γ′ small,

0 if γ′ big.
(5.83)

2Although Λ \ int θ does not match our requirement for being a volume (i.e., not having
holes), it does not cause any problem. In fact, since the contours in Y d

small are small, they
cannot surround the holes in Λ\int θ, hence they do not distinguish the holes from the outside
of Λ.
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The expression for the weight ξo(γ) then reads

ξo(γ) =

ρ(γ) · e|B(V (γ))|·(e(B)−e(∅))
∑

θ∈Edisord
V (γ)

θ big

Y d
small(V (γ) \ int θ) · Y o(int θ)

Y o(int γ)

∏
γ′∈θ

ρ̃(γ′) .

(5.84)

The induction hypothesis and Proposition 1 tell us:

� Y d
small(V (γ) \ int θ) ≤ eg(ξ

d
small)·|B(V (γ)\int θ)|+C(τ)·|∂(V (γ)\int θ)|,

� Y o(int θ) ≤ eg(ξ̄
o)·|B(int θ)|+C(τ)·|∂ int θ|,

� Y o(int γ) ≥ eg(ξ̄
o)·|B(int γ)|−C(τ)·|∂ int γ|, and

� g(ξ̄o) ≤ e−τ/2 ≤ 1.

Moreover

� |∂ (V (γ) \ int θ)| ≤ |∂V (γ)|+ |∂ int θ| ≤ 3 |γ|+
∑
γ′∈θ |γ′|, and

� |B(γ)| ≤ |γ|.
Hence we have

ξo(γ) ≤ ρ(γ) · e(1+4C(τ))·|γ|

×
∑

θ∈Edisord
V (γ)

θ big

e|B(V (γ)\int θ)|·[e(B)−e(∅)+g(ξd
small)−g(ξ̄

o)]
∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′|

= ρ(γ) · e(1+4C(τ))·|γ|

×
∑

θ∈Edisord
V (γ)

θ big

e|B(V (γ)\int θ)|·[(g(ξd
small)−g(ξ̄

d))−(fo−fd)]
∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′| .

(5.85)

As we shall see shortly, if (q + r) is large enough, the sum appearing in the
above expression can be bounded by e3C(τ)·|γ|, so that

ξo(γ) ≤ ρ(γ) · e(1+4C(τ))·|γ|e3C(τ)·|γ|

= e−( 1
4 log(q+r)−1−7C(τ))·|γ| (5.86)

For large (q + r), the right-hand side is bounded by e−τ |γ|, proving the claim.
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It remains to show that for (q + r) sufficiently large,∑
θ∈Edisord

V (γ)

θ big

e|B(V (γ)\int θ)|·[(g(ξd
small)−g(ξ̄

d))−(fo−fd)]
∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′| ≤ e3C(τ)·|γ| .

(5.87)

To show this, let us consider a contour model with weight function

ρ̂(γ′) =

{
ρ(γ′) · e3C(τ)·|γ′| , if γ′ big and disorder,

0 , otherwise.
(5.88)

Assuming that g(ρ̂) ≤ fo − fd + g(ξ̄d) − g(ξd
small), and (q + r) in such a way

that ρ̂(γ′) ≤ e−τ|γ
′|, we can use Proposition 1 to obtain∑

θ∈Edisord
V (γ)

θ big

e|B(V (γ)\int θ)|·[(g(ξd
small)−g(ξ̄

d))−(fo−fd)]
∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′|

≤
∑

θ∈Edisord
V (γ)

θ big

e−|B(V (γ)\int θ)|·g(ρ̂)
∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′| (5.89)

= e−|B(V (γ))|·g(ρ̂)
∑

θ∈Edisord
V (γ)

θ big

∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′| · e|B(int γ′)|·g(ρ̂)

≤ e−|B(V (γ))|·g(ρ̂)
∑

θ∈Edisord
V (γ)

θ big

∏
γ′∈θ

ρ(γ′) · e2C(τ)·|γ′| ·Z (int γ′ | ρ̂) · eC(τ)·|γ′|

= e−|B(V (γ))|·g(ρ̂) ·Z (V (γ) | ρ̂)

≤ e3C(τ)·|γ| .

Finally, to see that g(ρ̂) ≤ fo − fd + g(ξ̄d) − g(ξd
small), note that g(ξ̄d) −

g(ξd
small) ≥ 0 (due to the fact that ξd

small ≤ ξ̄d) and by Proposition 1

g(ρ̂) ≤
∑

γ′:S(γ′)30
γ′ big

ρ̂(γ′) ≤ e−τ/(f
o−fd) , (5.90)

using the fact that γ′ is big only if |γ′| ≥ 2
fo−fd . For τ not too small we have

e−τ/(f
o−fd) ≤ fo − fd.
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β

e−τ/2

e−τ/2

−e(B)

−e(∅)

fo

fd

fo

fd

fo

fd

(a) (b)

Figure 5.3: (a) The curves of fo(β) and fd(β) are within a narrow margin above
−e(B) and −e(∅). (b) The slopes of fo(β) and fd(β) are close to the

slopes of −e(B) and −e(∅).

From the above lemma, we know that the pressure fRC(β) of the r-biased
random-cluster representation coincides with the maximum of the functions
fo(β) and fd(β), that is,

fRC(β) = max
{
fo(β), fd(β)

}
. (5.91)

Recall that

fo(β) = −e(B) + g(ξ̄o) , (5.92)

fd(β) = −e(∅) + g(ξ̄d) . (5.93)

If τ is large, Proposition 1 says that g(ξ̄o) and g(ξ̄d) are small, so that fRC(β)
can be nearly expressed in terms of the “energy” per bond of the fully ordered
and fully disordered configurations. More precisely, if we define

F (β) , max {−e(B),−e(∅)} . (5.94)

we have

0 ≤ fRC(β)− F (β) ≤ e−τ/2 . (5.95)

The two curves −e(B) and −e(∅) (as functions of β) intersect at a single
point

β̄c = log
(
1 +
√
q + r

)
, (5.96)
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above which F (β) = −e(B) and below which F (β) = −e(∅). Furthermore,
these two curves have significantly different slopes, implying that F (β) is not
differentiable at β̄c. What we are after is to infer that fRC(β) has a similar
behaviour. In other words, we would like to show that there exists a unique
solution βc for the equation fo(β) = fd(β), at which fRC(β) is not differen-
tiable, above which fRC(β) = fo(β) and below which fRC(β) = fd(β). Note
that condition (5.95) guarantees that fRC(β) = fo(β) > fd(β) for β � β̄c

and fRC(β) = fd(β) > fo(β) for β � β̄c. In fact, it states that fRC(β) lives
in a margin of width e−τ/2 above F (β) (see Figure 5.3(a)). To infer such a
sharp transition we further need to give bounds for the derivatives of g(ξ̄o) and
g(ξ̄d) (see Figure 5.3(b)). This is addressed in the following lemma, which is
analogous to Theorem 3.3 of [4].

Lemma 3. We have

∂

∂β
g(ξ̄o) ≤ −2

∂e(B)

∂β

∑
γ:S(V (γ))30

ξ̄o(γ) ≤ 2

eβ − 1
e−τ/2 , (5.97)

∂

∂β
g(ξ̄d) ≤ −2

∂e(B)

∂β

∑
γ:S(int γ)30

ξ̄d(γ) ≤ 2

eβ − 1
e−τ/2 . (5.98)

Proof. For a finite volume Λ, if we denote by Γ(Λ) the set of all contours in Λ,
we have

∂

∂β
log Z (Λ | ξ̄o) =

1

Z (Λ | ξ̄o)

∑
∂∈MΛ

∂

∂β

∏
γ∈∂

ξ̄o(γ)

=
1

Z (Λ | ξ̄o)

∑
∂∈MΛ

∑
γ∈∂

∂ξ̄o(γ)

∂β

∏
γ̂∈∂
γ̂ 6=γ

ξ̄o(γ̂)

=
∑

γ∈Γ(Λ)

∂ξ̄o(γ)

∂β

Z (int γ | ξ̄o) ·Z (Λ ∩ ext γ | ξ̄o)

Z (Λ | ξ̄o)

≤
∑

γ∈Γ(Λ)

∂ξ̄o(γ)

∂β
. (5.99)

Recall that ξ̄o(γ) is equal to either 0 or ξo(γ), hence the derivative of ξ̄o(γ) is
bounded by the derivative of ξo(γ). Using the definition of ξo(γ) (Eq. (5.43))
we have

∂ξo(γ)

∂β
= |B(γ)| · ∂e(B)

∂β
· ξo(γ) + ρ(γ) · e|B(γ)|·e(B) · ∂

∂β

ZRC.disord(V (γ))

ZRC.ord(int γ)
.

(5.100)
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The derivative of the partition functions appearing on the right-hand side can
be bounded directly from the definitions (Eq. (5.30) and (5.31)) by

0 ≤ ∂

∂β
ZRC.disord(V (γ)) ≤ − |B(V (γ))| · ∂e(B)

∂β
· ZRC.disord(V (γ)) , (5.101)

0 ≤ ∂

∂β
ZRC.ord(int γ) ≤ − |B(int γ)| · ∂e(B)

∂β
· ZRC.ord(int γ) , (5.102)

leading to

∂

∂β

ZRC.disord(V (γ))

ZRC.ord(int γ)
≤ − |B(V (γ))| · ∂e(B)

∂β
· Z

RC.disord(V (γ))

ZRC.ord(int γ)
. (5.103)

Therefore,

∂ξ̄o(γ)

∂β
≤ − |B(V (γ))| · ∂e(B)

∂β
· ξ̄o(γ) . (5.104)

We can now write

∂

∂β

1

|S(Λ)|
log Z (Λ | ξ̄o) ≤ −∂e(B)

∂β
· 1

|S(Λ)|
∑

γ∈Γ(Λ)

|B(V (γ))| · ξ̄o(γ)

= −∂e(B)

∂β
· 1

|S(Λ)|
∑

γ∈Γ(Λ)

∑
b∈B(V (γ))

ξ̄o(γ)

= −∂e(B)

∂β
· 1

|S(Λ)|
∑

b∈B(Λ)

∑
γ∈Γ(Λ)

B(V (γ))3b

ξ̄o(γ)

≤ −∂e(B)

∂β
· 1

|S(Λ)|
∑

b∈B(Λ)

∑
γ∈Γ

B(V (γ))3b

ξ̄o(γ)

≤ −∂e(B)

∂β
· |B(Λ)|
|S(Λ)|

∑
γ∈Γ

S(V (γ))30

ξ̄o(γ)

≤ −2
∂e(B)

∂β

∑
γ∈Γ

S(V (γ))30

ξ̄o(γ) . (5.105)

Since τ is large, the above sum converges and leads to a uniform bound (with
respect to Λ) for ∂

∂β
1

|S(Λ)| log Z (Λ | ξ̄o). Using the dominated convergence the-

orem the first claim follows. The proof of the other claim is similar.
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5.6 The Main Result

Theorem. Let ε > 0 and (q + r) large enough. The two-dimensional (q, r)-
Potts model undergoes a first-order transition in temperature with breaking of
permutation symmetry:

i) Above the transition temperature, the model has a unique Gibbs state µfree,
which is “disordered”.

ii) Below the transition temperature, there exist at least q different “ordered”
Gibbs states µ1, µ2, . . . , µq.

iii) At the transition temperature, q “ordered” Gibbs states µ1, µ2, . . . , µq co-
exist with a “disordered” Gibbs state µfree.

The “ordered” and “disordered” states can be distinguished by

µk({σ : σi = k}) > 1− ε , for every visible k, (5.106)

µfree({σ : σi = k}) < ε , for every k, (5.107)

for every site i in the lattice.

Proof. In the previous sections we have introduced the main ingredients to
prove the occurrence of a first-order transition. Below, we first put these ingre-
dients together so as to obtain a recipe for the proof. Afterwards, we shall see
how these ingredients along with basic properties of the biased random-cluster
model (see Appendix C) can be used to prove the symmetry breaking at the
transition temperature.

The first step was to reduce the partition function of the (q, r)-Potts model
to the partition function of the r-biased random-cluster model. This was done
for the free and homogeneous visible boundary conditions, which led to the
disordered and ordered boundary conditions for the r-biased random-cluster
model (see Eq. (5.16) and (5.19)). By means of this we could rewrite the
pressure f(β) for the (q, r)-Potts model as

f(β) = 2β + 2fRC(β) , (5.108)

where

fRC(β) = lim
n→∞

logZRC.ord
pβ ,q,r

(Λn)

|B(Λn)|
= lim
n→∞

logZRC.disord
pβ ,q,r

(Λn)

|B(Λn)|
. (5.109)

The second step consisted in re-expressing the partition functions ZRC.ord and
ZRC.disord in terms of the partition functions of two abstract contour models
Z (· | ξo) and Z (· | ξd) (Lemma 1) so that we could write

fRC(β) = −e(B) + g(ξo) = −e(∅) + g(ξd) , (5.110)
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where g(ξo) and g(ξd) are the pressure functions for the two contour models
(Eq. (5.66)).

If the weight function χ of a contour model is sufficiently “damped” (i.e.,
χ(γ) ≤ e−τ |γ| for τ large enough), the corresponding pressure g(χ) can be
made arbitrarily small (Proposition 1). In order to exploit this result, in the
third step, we truncated the weight functions ξo and ξd so as to render them
artificially damped (Eq. (5.68)). We could then define two functions

fo(β) = −e(B) + g(ξ̄o) , (5.111)

fd(β) = −e(∅) + g(ξ̄d) , (5.112)

which approximate fRC(β) from below, and which can be thought of (for suffi-
ciently large τ) as perturbations of the functions −e(B) and −e(∅), respectively
(see Figure 5.3(a)).

In the fourth step, we proved that, for (q + r) large (relative to τ), the pres-
sure fRC(β) is the maximum of these two approximations. This was achieved by
proving that whenever fo ≥ fd, the weight function ξo is “naturally” damped
(i.e., ξo = ξ̄o) and vice versa (Lemma 2). Therefore, fRC(β) can be closely ap-
proximated by the maximum between −e(B) and −e(∅). Due to the continuity
of the pressure functions, the latter implies that the curves fo(β) and fd(β)
intersect.

In the last step, we showed that for τ sufficiently large, ∂
∂β f

o(β) > ∂
∂β f

d(β)

(Lemma 3). Therefore, the two functions meet at a unique point βc at which
fRC(β) is non-differentiable (Figure 5.3(b)). Hence, the (q, r)-Potts model un-
dergoes a first-order phase transition at βc.

We now prove the breaking of permutation symmetry at the transition tem-
perature. Note that if β ≥ βc, we have fo(β) ≥ fd(β) and therefore, in view of
Lemma 2, the weights ξo satisfy ξo(γ) ≤ e−τ |γ|. Since τ was chosen large, for
every finite set of sites A, the sum

∑
γ∈ΓA

ξo(γ) converges. Hence, it follows
from Corollary 1.3 that

ϕord
pβ

(
∃ unique infinite sea of order
with finite islands of disorder

)
= 1 . (5.113)

(The subscript pβ is added to emphasize the dependence on β.) Similarly, if
β ≤ βc, the sum

∑
γ∈ΓA

ξd(γ) converges and thus

ϕdisord
pβ

(
∃ unique infinite sea of disorder

with finite islands of order

)
= 1 . (5.114)
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For a visible colour k, let µkβ be, as introduced in Section 5.2, a weak limit of

Boltzmann distributions with homogeneous boundary conditions ωk. Likewise,
let µfree

β be a weak limit of free-boundary Boltzmann distributions.

Similar to the finite-volume couplings, there exists a coupling of µkβ and ϕord
pβ

with the property that with probability 1, every site incident to an infinite
connected component of present bonds has colour k (see Appendix C). If β ≥ βc,
we know that almost surely the bond configuration consists of a unique sea of
order with finite islands of disorder. In particular, the probability that a given
site i takes a colour other than k is bounded by the probability that site i is
surrounded by an order contour; that is,

µkβ({σ : σi 6= k}) ≤ ϕord
pβ
{X : ∂X ∩ Γi 6= ∅} . (5.115)

In this region of β, Corollary 1.3 and Lemma 2 ensure that ϕord
pβ
{X : ∂X ∩Γi 6=

∅} can be made arbitrarily small by tuning τ . Hence, for every ε > 0, choosing
q + r large enough, we have µkβ({σ : σi = k}) > 1− ε.

The measures µfree
β and ϕdisord

pβ
can also be coupled, in such a way that, given

a configuration of bonds, the colour of the isolated sites are chosen indepen-
dently and uniformly among the q + r possibilities. Using this coupling, and
conditioning on whether a given site i is isolated or not, we obtain

µfree
β ({σ : σi = k}) ≤ 1

q + r
+ ϕdisord

pβ
{X : i not isolated in (S, X)} . (5.116)

If β ≤ βc, the bond configuration almost surely consists of a unique sea of
disorder with finite islands of order. Hence, the probability that site i is not
isolated is bounded by the probability that site i is surrounded by a disorder
contour; that is,

ϕdisord
pβ

{X : i not isolated in (S, X)} ≤ ϕdisord
pβ

{X : ∂X ∩ Γi 6= ∅} . (5.117)

As in the previous case, Corollary 1.3 and Lemma 2 guarantee that for every
ε > 0, choosing q + r large enough, µfree

β ({σ : σi = k}) < ε.

It remains to show that for β < βc, the (q, r)-Potts Gibbs measure is unique.

As in the standard random-cluster model, there exists a critical value 0 <
pc < 1 such that

� for p < pc, almost surely with respect to ϕord
p and ϕdisord

p , there is no infi-
nite connected component of bonds (order does not “percolate”), whereas

� for p > pc, the event that a given site is in an infinite connected component
happens with positive probability under both ϕord

p and ϕdisord
p .



Conclusion 121

(See Appendix C). It follows that pc = pβc
. Namely, if pβ < pc, then order

does not percolate under ϕord
pβ

. Therefore, equation (5.113) does not hold,
implying that β < βc. Conversely, if pβ > pc, then order percolates with
positive probability under ϕdisord

pβ
, refuting (5.114). Hence, we must have β >

βc.

On the other hand, for every β at which

ϕord
pβ

(∃ an infinite connected component of bonds) = 0 , (5.118)

the measure µfree
β is the only Gibbs measure for the (q, r)-Potts model (see

Appendix C). The latter condition is guaranteed whenever pβ < pc, which
is equivalent to β < βc. Thus the uniqueness of Gibbs measure for β < βc

follows.

5.7 Conclusion

In this last chapter, we presented a proof that the two-dimensional Potts model
with q visible colours and r invisible colours undergoes a first-order phase tran-
sition in temperature accompanied by a q-fold symmetry breaking, provided
the number of invisible colours is large enough. On the other hand, for r = 0
(no invisible colours), the model reduces to the standard q-colour Potts model,
for which it is known that if q = 2, 3, 4, the transition in two dimensions is
second-order. Tamura, Tanaka and Kawashima [70, 71, 72] introduced the
Potts model with r invisible colours as a simple two-dimensional example with
short-range interactions in which, tuning the parameter r, the same symmetry
breaking could accompany phase transitions of different orders. The impos-
sibility to infer the order of the phase transition from the broken symmetry
was already noticed in other examples, such as the two-dimensional 3-colour
Kac-Potts model [31]. For this model, Gobron and Merola proved that a 3-
fold symmetry breaking might be accompanied with either a first-order or a
second-order phase transition, by changing the finite range of the interactions.

The first-order phase transition in the (q, r)-Potts model occurs as long as
q+r is large enough. In particular, even for small values of q (say, q = 1, 2, 3, 4),
the presence of many invisible colours assures a first-order transition. The
argument is very similar to the one for the standard q-Potts model, in which q
is required to be large [47, 55]. The transition point is asymptotically (in q+r)
given by βc ≈ 1

2 log(q + r). For q + r large, the latent heat is approximately

given by 2
(
−∂e(∅)

∂β + ∂e(B)
∂β

)
= 2 + 2√

q+r
, which tends to 2 as q + r →∞.
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The proof relies on a formulation of the Potts model with invisible colours
in terms of a variant of the random-cluster model, which we named the biased
random-cluster model. The difference between this new model and the original
random-cluster model is that it weights singleton connected components differ-
ently from non-singleton connected components. Such a disparity allows one to
increase the entropy by increasing the number of invisible colours, while keep-
ing the number of ground states (i.e., the number of visible colours) unchanged.
The random-cluster representation allows for a clear formulation of order and
disorder: order is associated with the presence of bonds while disorder with the
absence of bonds. This leads to a simple notion of contours describing the in-
terface between order and disorder. Hence, the random-cluster representation
lends itself to a Pirogov-Sinai analysis, which is used to prove the existence of
a first-order phase transition.

We remark that the above analysis extends to higher dimensions. In fact
in the performed analysis the dimension entered mainly in the counting argu-
ments, which however can be refined in higher dimensions. The 2 dimensional
case however, has the asset of simplifying many of those counting and further-
more it allows for a much easier geometric visualization of the contours.
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Appendix A

Boundary Laws, Beyond Homogeneity

It is the purpose of this appendix to explain the relation between the notion
of a boundary law as it is used in the book by Georgii [29] and the one-sided
simple recursions which are used in Chapter 3. The notion of a boundary law
is necessary to describe all the extremal phases (or more generally, all Markov
chains on trees).

To follow the notation used in Georgii, let us denote, for i ∼ j, byQij(σi, σj) =
eβσiσj+giσi+gjσj the transition matrix of the random field Ising model on the
tree with Hamiltonian −β

∑
{i,j}∈E σiσj −

∑
i hiσi, where gi = hi/(d + 1), so

the local field at each site has been symmetrically distributed among the edges
to its neighbours.

Every extremal Gibbs measure µ for the random field Ising model on the
Cayley tree is a Markov chain on the tree (Theorem 12.12 of Georgii). To
define what it means to be a Markov chain on the tree, consider an oriented
bond ij, draw this bond horizontally such that i lies to the left of j, and draw
the tree embedded into the plane in such a way that there is no intersection
between the tree and the axis crossing the oriented bond ij in a perpendicular
way. A measure µ is a Markov chain on the tree if conditioning on the semi-
infinite spin configurations extending from i to the left (the past) is the same
as conditioning on the spin configuration at the site i alone, and this holds
for all oriented bonds ij. Not all Markov chains are extremal Gibbs measures
however, as the example of the free boundary condition Gibbs measure of the
Ising model in zero field at sufficiently low temperatures shows. The meaning
and importance of a boundary law lies in the following fact. A Markov chain on
the tree always has a representation in terms of a boundary law lij(a), a = ±,
that is for the finite-volume marginals it holds

µ[h](σΛ∪∂+Λ) =
1

ZΛ(β, h)

∏
k∈∂+Λ

lkkΛ
(σk)

∏
{ij}∩Λ6=∅

Qij(σi, σj) (A.1)

where ∂+Λ denotes the outer boundary of Λ and kΛ is the unique nearest
neighbour of k in Λ. A boundary law is a function on oriented edges ij which
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depends on the possible spin values. From its appearance in the last formula
we see that, at any ij, it is defined only up to a multiplicative constant, not

depending on the spin configuration a. Define therefore qij = 1
2 log

lij(+)
lij(−) in

the Ising case. This quantity has the character of a local field at the site i and
contains the full information about the boundary law in the Ising case. More
precisely qkkΛ

has the meaning of a local field acting on the spin σk which has
to be added to the Hamiltonian with free boundary conditions in the volume
Λ ∪ ∂+Λ if the site k is attached at the site kΛ.

Assuming the validity of the last formula for the finite-volume marginals one
arrives at a Q-dependent consistency (or recursion) relation that a boundary
law has to satisfy. This recursion is formulated as (12.10) in Georgii; in the
case of the Ising model with site-dependent fields it translates equivalently into
the recursion

qij =
∑

k∈∂+i\j

1

2
log

e2qki+β+gk+gi + e−β−gk+gi

e2qki−β+gk−gi + eβ−gk−gi
(A.2)

Conversely, a function qij on all oriented bonds which is consistent in the sense
of (A.2) defines a Markov chain by formula (A.1) with the corresponding bound-
ary law lij .

Note that (A.2) is a one-sided recursion which has no beginning and no end.
It is interesting in the first step to look at homogeneous solutions, i.e. solutions
not depending on the bond ij, but there may be also many other solutions,
even in the case when the local magnetic field in the initial Hamiltonian is
site-independent. In that case there can be non-homogeneous solutions when
there are more than one fixed points for the homogeneous recursion. Indeed,
to construct a non-homogeneous solution one picks a site j and looks to all
oriented bonds ij pointing to it, and picks values of qij not at the fixed point.
Then one defines a boundary law by preimages for qb’s for the oriented bonds
b going up to ij. In order to make sure that there are such preimages under
all orders of iterations, the value has to be chosen such that it lies between a
stable and an unstable fixed point.

To see the meaning of the boundary law in a more intuitive or physical way
let us make explicit the difference to the field which is already present in the
original Hamiltonian. We look at the asymmetric quantity which is centred at
the local field for the first spin, namely fij = qij − gid and note that it satisfies
the equation

fij =
∑

k∈∂+i\j

ϕβ(fki + hk) (A.3)
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with ϕβ(t) = 1
2 log cosh(t+β)

cosh(t−β) . With this variable we have

µ[h](σΛ∪∂+Λ) =
e
∑
{ij}∩Λ 6=∅ βσiσj+

∑
i∈Λ∪∂+Λ hiσi+

∑
k∈∂+Λ fkkΛ

σk

ZΛ(β, h)
(A.4)

So the fij has the meaning of an additional boundary field at the site i acting
on top of the local fields which are present already in the Hamiltonian, when
one computes the finite-volume marginals in a volume with a boundary site i
when i is attached via the site j to the inside of the volume.

Now, let us enter in more detail the discussion on the dependence of boundary
laws on a variation of local fields entering in the Hamiltonian. Suppose that a
boundary law l[h], not necessarily homogeneous, is given for the (not necessarily
but possibly homogeneous) Hamiltonian with a field h. Recall that, as we just
explained, homogeneous fields h may have very well inhomogeneous boundary
laws. Let us consider the system now in the presence of a local perturbation of
the field h + ∆h, possibly site-dependent, but bounded, i.e. supk |∆hk| < ∞.
Any Gibbs measure µ[h] gives rise to a Gibbs measure µ[h + ∆h] which is
related by the formula involving the local perturbation of the Hamiltonian of
the form

µ[h+ ∆h](ϕ(σ̃)) =
µ[h](ϕ(σ̃)e

∑
i ∆hiσ̃i)

µ[h](e
∑
i ∆hiσ̃i)

(A.5)

where it is understood that integration is over σ̃. If the original Gibbs measure
is actually a Markov chain described by the boundary law lij ≡ lij [h], the per-
turbed measure is described by the boundary law lij [h+ ∆h] which is obtained
by putting lij [h+∆h] := lij [h] for oriented bonds ij in the outside of the region
of the perturbation of the fields which are pointing towards the perturbation
region. When passing with the recursion through the perturbation region of
the local fields the lij ’s obtain a dependence on the size of the perturbations.
Then the forward iteration is used to obtain an assignment of l’s to all oriented
bonds.

Summarizing we have the following lemma.

Lemma 1. Suppose that h is an arbitrary external-field configuration, ∆h is
an arbitrary finite-volume perturbation of the external fields, and µ[h + ∆h]
is the measure which results from a local perturbation of a Markov chain µ[h]
which is described by a boundary law l[h].

Then µ[h + ∆h] behaves in a quasilocal way (i.e. all expected values µ[h +
∆h](ϕ) on local spin functions ϕ are quasilocal functions of ∆h) if and only if
the boundary laws ∆h 7→ lij [h + ∆h], depending on field perturbations ∆hk’s
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for k in the past of the oriented bond ij, behave in a quasilocal way, and this
holds for all oriented bonds ij.

Here a vertex k is said to be in the past of ij if the path from k to j passes
through i. Quasilocality is meant in the same way as it has been introduced
in the context of finite-volume variations of spins, i.e. we say that l depends
quasilocally on a variation of fields iff

lim
Λ↑Zd

sup
Λ′:Λ′⊃Λ

sup
∆h|Λ=∆h′|Λ

|l[∆h|Λ′ ]− l[∆h′|Λ′ ]| = 0 (A.6)

where the supremum is taken over perturbations ∆h|Λ′ ,∆h′|Λ′ in the finite
volume Λ′ which look the same on Λ.

Proof. The proof follows from the representation of the finite-volume Gibbs
measures µ[h+ ∆h] in terms of the boundary laws lij [h+ ∆h].

We note again that there is a one-to-one correspondence between simple
directed field recursions with d neighbours, as used in Chapter 3, and bound-
ary laws. So we obtain the following corollary, which is used extensively in
Chapter 3.

Corollary 1.1. Suppose that h is a homogeneous external field, ∆h is an arbi-
trary finite-volume perturbation of external fields, and µ[h+∆h] is the measure
which results from a local perturbation of either one of the homogeneous mea-
sures µ[h], corresponding to the plus, the minus or the unstable fixed points.
Then the measures µ[h + ∆h] behave in a non-quasilocal way on the field per-
turbations ∆h if and only if, the corresponding solutions of the one-sided simple
recursions for the effective fields behave in a non-quasilocal way.

Some non-homogeneous Gibbs measures. The discussion just given
has consequences also for those Gibbs measures µ = µ(lb),Λ which are obtained

by pasting boundary laws lb for oriented bonds b of the form kkΛ for some fixed
subtree Λ, so that (A.1) is true for the particular volume Λ. Then extend the
boundary laws to have a prescription in the whole volume. Then the parameter
region for non-quasilocal behavior of the resulting measure will be the union of
the parameter regions of non-Gibbsianness of the original measures taken over
the b’s.

Connection to Gibbs vs. non-Gibbs under time evolution. Since
the Gibbs properties of time-evolved Ising measures in infinite-temperature
evolution can be expressed via quasilocality properties of ∆h 7→ µ[h+ ∆h], for
finite-volume ∆h, we are left with the investigation of the locality properties
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of the boundary law iteration. A local variation of the image spins amounts to
a local perturbation ∆h of the local fields. Indeed, denoting the time-evolved
measure by µ̂t(dη), starting from the measure µ(dσ), we have for finite Λ 3 0
the formula

µ̂t(η0|ηΛ\0) =

∫
µ(dσ)Pt(σ0, η0)eht

∑
i∈Λ\0 ηiσi∫

µ(dσ)eht
∑
i∈Λ\0 ηiσi

=:

∫
µ[ηΛ\0](dσ0)Pt(σ0, η0)

(A.7)

with a measure µ[ηΛ\0](dσ) of the form µ[h + ∆h] with a perturbation in the
finite volume Λ\0. Finite-volume marginals of this measure have a representa-
tion, according to Lemma 1, of the form (A.1) with an η-dependent transition
matrix

Qij [η](σi, σj) = e
htηi1i∈Λ\0

d+1 +
htηj1j∈Λ\0

d+1 Qij(σi, σj) ,

where Qij(σi, σj) is the transition matrix for the initial measure µ, and an ηΛ\0-
dependent boundary law lij [ηΛ\0] which obeys the locally modified iterations
for the boundary law described below (A.5). Hence, non-Gibbsianness of time-
evolved measures is detected by non-quasilocality of the perturbed boundary
laws lij [ηΛ\0].

A consequence of these remarks is that a time-evolved measure resulting
from an initial Gibbs measure which is constructed by pasting finitely many
boundary laws lb as described above, will be non-Gibbsian at a parameter
regime which is the union of the non-Gibbsian parameter regimes of the time-
evolved Markov chains corresponding to lb, over b.
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Derivation of the Biased Random-Cluster Representation

To derive the relation (5.16), we start from (5.15) and write

Zβ(Λn) = eβ|B(Λn)| · ZRC
pβ ,q,r

(Λn)

=
∑

X⊆B(Λn)

(eβ − 1)|X|(q + r)κ0(S(Λn),X)qκ1(S(Λn),X)

= (q + r)−|S(Λn+1\Λn)|
∑

Y⊆B(Λn+1)
Y ∩(B(Λn+1)\B(Λn))=∅

(eβ − 1)|Y |(q + r)κ0(S(Λn+1),Y )qκ1(S(Λn+1),Y )

= (q + r)−|S(Λn+1\Λn)| · eβ|B(Λn+1)| · ZRC.disord
pβ ,q,r

(Λn+1) . (B.1)

To obtain the relation (5.19), we need to take the homogeneous boundary
condition for the (q, r)-Potts model into account. Denoting the set of (q, r)-
Potts configurations on Λn by ΩΛn , we start from the definition (5.5) and write

Zω
k

β (Λn) =
∑

σ∈ΩΛn

exp

 β
∑

{i,j}∈B(Λn)

δ(σi = σj ≤ q) + β
∑

{i,j}∈B(Λn+1)
i∈S(Λn), j /∈S(Λn)

δ(σi = ωkj = k)


(B.2)

=
∑

σ∈ΩΛn

∏
{i,j}∈B(Λn)

(
1 + δ(σi = σj ≤ q)(eβ − 1)

)
×

∏
{i,j}∈B(Λn+1)

i∈S(Λn), j /∈S(Λn)

(
1 + δ(σi = k)(eβ − 1)

)
. (B.3)

Denoting

∂Λn , {{i, j} ∈ B(Λn+1) : i ∈ S(Λn) and j /∈ S(Λn)} , (B.4)
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we can expand the products to obtain

Zω
k

β (Λn) =
∑

σ∈ΩΛn

∑
X1⊆B(Λn)

∑
X2⊆∂Λn

(eβ − 1)|X1|+|X2| δ(σ ∈ Ξk(X1, X2)) ,

(B.5)

where

Ξk(X1, X2) , {σ ∈ ΩΛn : σi = σj ≤ q for all {i, j} ∈ X1 and

σi = k for all i ∈ S(Λn) ∩ S(X2)} . (B.6)

To impose the ordered boundary condition, we multiply and divide by
(eβ − 1)|B(Λn+1\Λn)| to emulate the presence of the bonds in B(Λn+1 \ Λn).
This gives

Zω
k

β (Λn)

= (eβ − 1)−|B(Λn+1\Λn)|
∑

σ̃∈ΩΛn+1

∑
X⊆B(Λn+1)

X⊇B(Λn+1\Λn)

(eβ − 1)|X| δ(σ̃ ∈ Θk(X)) ,

(B.7)

where σ̃ is the extension of σ to a configuration in ΩΛn+1 with σ̃i = k for
i ∈ S(Λn+1 \ Λn) and

Θk(X) , {σ̃ ∈ ΩΛn+1
: σ̃i = σ̃j ≤ q for all {i, j} ∈ X and

σ̃i = k for all i ∈ S(Λn+1 \ Λn)} . (B.8)

Changing the order of the sums gives

Zω
k

β (Λn) = (eβ − 1)−|B(Λn+1\Λn)|
∑

X⊆B(Λn+1)
X⊇B(Λn+1\Λn)

(eβ − 1)|X| |Θk(X)| . (B.9)

Note that for X satisfying B(Λn+1 \ Λn) ⊆ X ⊆ B(Λn), the size of Θk(X) is

q−1 · (q + r)κ0(S(Λn+1),X)qκ1(S(Λn+1),X) (B.10)

we obtain

Zω
k

β (Λn) = q−1(eβ − 1)−|B(Λn+1\Λn)|

×
∑

X⊆B(Λn+1)
X⊇B(Λn+1\Λn)

(eβ − 1)|X| · (q + r)κ0(S(Λn+1),X)qκ1(S(Λn+1),X)

= q−1 · (eβ − 1)−|B(Λn+1\Λn)| · eβ|B(Λn+1)| · ZRC.ord
pβ ,q,r

(Λn+1) .

(B.11)
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Derivation of the Contour Representation

We show that for Λ = Λn+1, the definitions (5.17) and (5.27) (resp., (5.20)
and (5.28)) agree.

The weight of a configuration X ⊆ B(Λn+1) is

p
|X|
β (1− pβ)|B(Λn+1)\X|(q + r)κ0(S(Λn+1),X)qκ1(S(Λn+1),X) . (B.12)

For a configuration X in X disord
Λn+1

or X ord
Λn+1

, let ∂X be the corresponding contour

family in ∆disord
Λn+1

or ∆ord
Λn+1

. More precisely, ∂X , ∂X if X disord
Λn+1

and ∂X ,

∂
(
X ∪B(Λn+1){

)
if X ord

Λn+1
.

Claim. For X ∈ X disord
Λn+1

we have the relation

2 |B(Λn+1) \X| = 4κ0(S(Λn+1), X) +
∑
γ∈∂X

|γ| −
∣∣∂B(Λn+1)

∣∣ , (B.13)

and for X ∈ X ord
Λn+1

we have

2 |B(Λn+1) \X| = 4κ0(S(Λn+1), X) +
∑
γ∈∂X

|γ| . (B.14)

Proof. We first decompose the set {(i, b) : b ∈ B(Λn+1) \X and i ∼ b} as

{(i, b) : b ∈ B(Λn+1) \X and i ∼ b and i ∈ S(X)} (B.15)

∪
{(i, b) : b ∈ B(Λn+1) \X and i ∼ b and i /∈ S(X)} , (B.16)

and furthermore note that the latter set can be expressed as

{(i, b) : i ∈ S(Λn+1) \ S(X) and i ∼ b} (B.17)

\
{(i, b) : i ∈ S(Λn+1) \ S(X) and i ∼ b and b /∈ B(Λn+1)} . (B.18)

We have

|{(i, b) : b ∈ B(Λn+1) \X and i ∼ b}| = 2 |B(Λn+1) \X| , (B.19)

|{(i, b) : b ∈ B(Λn+1) \X and i ∼ b and i ∈ S(X)}| =
∑
γ∈∂X

|γ| , (B.20)
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|{(i, b) : i ∈ S(Λn+1) \ S(X) and i ∼ b}| = 4κ0(S(Λn+1), X) , (B.21)

and the cardinality of {(i, b) : i ∈ S(Λn+1) \ S(X) and i ∼ b and b /∈ B(Λn+1)}
equals {∣∣∂B(Λn+1)

∣∣ , if X ∈ X disord
Λn+1

,

0 , if X ∈ X ord
Λn+1

.
(B.22)

Using the relations (B.13) and (B.14) the weight of X takes the form

(q + r)
1
4 |∂B(Λn+1)|e−e(B)·|X|e−e(∅)·|B(Λn+1)\X|(q + r)

− 1
4

∑
γ∈∂X

|γ|
qκ1(S(Λn+1),X)

(B.23)

if X ∈ X disord
Λn+1

and

e−e(B)·|X|e−e(∅)·|B(Λn+1)\X|(q + r)
− 1

4

∑
γ∈∂X

|γ|
qκ1(S(Λn+1),X) (B.24)

if X ∈ X ord
Λn+1

. If X ∈ X disord
Λn+1

, every non-singleton connected component in

(S(Λn+1), X) contains all the sites of a unique disorder contour in ∂X , so that
the number of disorder contours in ∂X is the same as κ1(S(Λn+1), X), and we
have

(q + r)
− 1

4

∑
γ∈∂X

|γ|
qκ1(S(Λn+1),X) =

∏
γ∈∂X

ρ(γ) . (B.25)

On the other hand, if X ∈ X ord
Λn+1

, the outermost non-singleton connected

component of (S(Λn+1), X) has no associated disorder contour in ∂X , thus

(q + r)
− 1

4

∑
γ∈∂X

|γ|
qκ1(S(Λn+1),X) = q

∏
γ∈∂X

ρ(γ) . (B.26)

In conclusion, summing over all configurations, we obtain

ZRC.disord(Λn+1) = (q + r)
|∂B(Λn+1)|

4

∑
X∈Xdisord

Λn+1

e−|X|·e(B)−|B(Λn+1)\X|·e(∅)
∏
γ∈∂

ρ(γ) ,

(B.27)

ZRC.ord(Λn+1) = q
∑

X∈X ord
Λn+1

e−|X|·e(B)−|B(Λn+1)\X|·e(∅)
∏
γ∈∂

ρ(γ) . (B.28)
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We remark that the definitions (5.17) and (5.20) may also be extended to
general finite volumes of the lattice in a compatible fashion. Namely, if for a
volume Λ, we define

X disord
Λ ,

{
X ⊆ B(Λ) : ∂X ∈ ∆disord

Λ

}
, (B.29)

X ord
Λ ,

{
X ⊆ B(Λ) : ∂

(
X ∪B(Λ){

)
∈ ∆ord

Λ

}
, (B.30)

the compatibility of the definitions can be verified similarly.
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A Few Properties of the Biased Random-Cluster Model

Much information about the standard Potts model can be detected by study-
ing the corresponding random-cluster model (see [30, 34, 35]). Many of the
properties of the standard random-cluster model can be extended to the biased
random-cluster model. These properties, in turn, can be used, in a similar
fashion, to obtain information about the Potts model with invisible colours. In
this appendix, we briefly sketch some of these properties that we exploit in the
proof of the main theorem. The proofs are straightforward modifications of the
standard case, which can be found in [30, 34, 35].

Let G = (S,B) be a finite graph. The configurations of the biased random-
cluster model on G can be ordered according to the inclusion ordering. A
configurationX ⊆ B is considered to be smaller than or equal to a configuration
Y ⊆ B, if and only if every bond present in X is also present in Y . An event
E ⊆ 2B is increasing if for every two configurations X and Y such that X ∈ E
and Y ⊇ X, we have Y ∈ E . We say that a probability distribution ν is
positively correlated, if ν(E1 ∩ E2) ≥ ν(E1)ν(E2). The inclusion ordering on
the configuration space 2B induces an ordering on the space of probability
distributions on 2B . If ν1 and ν2 are probability distributions on 2B , we write
ν1 � ν2 if ν1(E) ≤ ν2(E) for every increasing event E ⊆ 2B . In this case, we say
that ν1 is stochastically dominated by ν2.

For every 0 < p < 1, q ≥ 1 and r ≥ 0, the r-biased random-cluster dis-
tribution ϕp,q,r on G is positively correlated. This follows from the Fortuin-
Kasteleyn-Ginibre theorem (Theorem 4.11 of [30]; see Corollary 6.7). It follows
that, if E is an increasing (resp., decreasing) event with ϕp,q,r(E) > 0, then the
conditional distribution ϕp,q,r(· | E) stochastically dominates (resp., is domi-
nated by) ϕp,q,r. Furthermore, if 0 < p1 ≤ p2 < 1, it follows from Holley’s
theorem (Theorem 4.8 of [30]) that ϕp1,q,r � ϕp2,q,r (see Corollary 6.7 in [30]).

Let Λ be a finite volume in the lattice and ϕΛ the biased random-cluster
distribution on Λ (as a graph, without boundary condition). Let us denote by
ϕord

Λ and ϕdisord
Λ the biased random-cluster distributions on Λ with ordered and

disordered boundary conditions, respectively. By an application of the positive
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correlation property of ϕΛ we have

ϕdisord
Λ � ϕΛ � ϕord

Λ . (C.1)

Moreover, by a further application of the Fortuin-Kasteleyn-Ginibre theorem,
the distributions ϕdisord

Λ and ϕord
Λ are also positively correlated. This implies

that if Λ1 is a sub-volume of Λ2, we have

ϕdisord
Λ1

� ϕdisord
Λ2

and ϕord
Λ1
� ϕord

Λ2
. (C.2)

As in Lemma 6.8 of [30], this implies that the weak limits

ϕdisord , lim
Λ↑L

ϕdisord
Λ and ϕord , lim

Λ↑L
ϕord

Λ (C.3)

exist, where the limit Λ ↑ L can be taken along the net of all finite volumes in
L with the inclusion ordering.

To emphasize the dependence on the parameter p, let us write ϕord
Λ,p and

ϕdisord
Λ,p for the biased random-cluster distributions with parameter p. Then, by

an application of Holley’s theorem, if 0 < p1 ≤ p2 < 1, we have

ϕdisord
Λ,p1

� ϕdisord
Λ,p2

and ϕord
Λ,p1
� ϕord

Λ,p2
. (C.4)

Let i
o←→∞ denote the event that there exists an infinite path of bonds passing

through site i (“order” percolates from site i to infinity). The latter stochastic

inequalities imply that the probabilities ϕord
p (i

o←→∞) and ϕdisord
p (i

o←→∞) are
increasing in p. This monotonicity assures the existence of critical probabilities
0 ≤ pord

c , pdisord
c ≤ 1 such that for every p < pord

c we have ϕord
p (i

o←→ ∞) = 0

while for every p > pord
c we have ϕord

p (i
o←→ ∞) > 0, and similarly for pdisord

c .
The critical probabilities are given by

pord
c , sup

{
p : ϕord

p (i
o←→∞) = 0

}
, (C.5)

pdisord
c , sup

{
p : ϕdisord

p (i
o←→∞) = 0

}
. (C.6)

It turns out that the two critical probabilities are actually the same, hence
we define pc , pord

c = pdisord
c . This follows from the fact that the probability

measures ϕord
p and ϕdisord

p may differ for at most countably many values of p.
The latter can be proved in a very similar manner as done in Theorem 8.17
of [35] for the standard random-cluster measures.

By means of the coupling, many properties of the (q, r)-Potts measures can
be derived from the corresponding r-biased random-cluster measures. For in-
stance, one can show that the thermodynamic limits µk and µfree do not depend
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on the sequence {Λn}n of volumes along which the limits are taken. In fact,
the limits

µk = lim
Λ↑L

µkΛ and µfree = lim
Λ↑L

µfree
Λ (C.7)

can be taken along the net of all finite volumes in L. In particular, this implies
the translation-invariance of µk and µfree. The proofs are similar to those of
the standard case (Proposition 6.9 of [30]).

Uniqueness and multiplicity of the (q, r)-Potts measures are related to the
percolation of “order” in the r-biased random-cluster model. More specifically,
if ϕord(order percolate) = 0, then the (q, r)-Potts model admits a unique Gibbs
measure (as in Theorem 6.10 in [30]). On the other hand, if

ϕord

(
∃ unique infinite sea of order
with finite islands of disorder

)
= 1 , (C.8)

then the measures µ1, µ2, . . . , µq are distinct and satisfy

µk
(
∃ unique infinite uni-colour sea,

which has colour k

)
= 1 . (C.9)

(Recall that a “sea” of order in a random-cluster configuration is simply a
connected component of bonds. A “uni-colour sea” in a Potts configuration
refers to a maximal connected subgraph of the lattice induced by sites having
the same colour.)

The latter claim is a consequence of the existence of a coupling between ϕord

and µk (for visible k), which can be constructed as follows:

i) We first sample a bond configuration X according to ϕord.

ii) For every site i that i
o←→∞ in (S, X), we colour i with colour k.

iii) For every finite non-singleton connected component of (S, X), we choose
a random visible colour uniformly among the q possibilities and colour all
the sites in the component with this colour.

iv) For every isolated site i in (S, X), we choose a random colour uniformly
among the q + r possible colours.

The fact that the marginal of this construction on spin configurations is µk is
parallel to Theorem 4.91 in [34] and has a similar proof. An analogous coupling
exists between ϕdisord and µfree.





Post Scriptum

A cursory glance at Cayley’s formula

I would like to start this post scriptum apologizing to the brave and stubborn
readers who had the perseverance to go so far in reading this thesis. These
very few—I reckon, might be wondering why an apology. The reason has to do
with the fact that what follows is not very tight to the main core of this work.
However, I want to strike a blow to myself, and referring to the literal meaning
of the two words “post scriptum”, I need not owe any apology.

Here, we provide a short combinatorial proof of Cayley’s formula, which
states that the number of (different!) trees with n labelled vertices is nn−2.
The proof is obtained by means of a bijective map to an outcome space of
an urn-drawing problem. In addition, we introduce an algebraic structure on
the set of labelled trees, which provides a more standard approach to Cayley’s
formula. More precisely, we introduce an equivalence relation on the set of
labelled trees which decomposes the set into classes. Each class is uniquely
determined by the degrees of the labelled vertices. By means of our bijection,
it is straightforward to count the number of trees in each class which is similar
to the original approach of Cayley. Summing over classes turns out to be
“easy”. For those who were not satisfied with — I have to admit — the rather
weak semantic argument I gave above to justify the content of this section, and
find the presence of this post scriptum a bit contrived, perhaps they would be
pleased to know that Cayley’s formula plays a role also in statistical mechanics.
More precisely, it is used in cluster expansion, which is a technique to study
the convergence of the log of the partition function, which we exploited in
Chapter 5.

The Cayley formula is well-known in mathematics, especially in graph theory.
Many proofs have been provided since the formula first appeared in the year
1860 in a paper of Carl Wilhelm Borchardt. The formula became notorious
when in the year 1889, in a short note, Cayley proved the formula by taking
into account the degrees of the vertices. Among the different proofs, see [40]
for a good overview, a very famous one is due to Prüfer in the year 1918.
It establishes a bijective map between the number of labelled trees with n
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vertices and sequences of length n − 2. We provide here a different bijective
proof which—I think— offers a more intuitive combinatorial insight of Cayley’s
formula. Indeed, it is not trivial to count the number of labelled trees for a
given number n of vertices, though it is much more immediate to count the
number of ways to allocate n− 2 labelled balls to n labelled urns.

The first time I came across the Cayley’s formula I was astonished to realize
how easily it was possible, by means of this, to count the number of (labelled)3

trees for a given number of vertices. In fact, although trees (in the mathematical
sense!) are very easy to sketch, they are not really easy to imagine. I cannot
figure neatly in my mind a tree with more than four or five (labelled) vertices.
Cayley was able to count them though. My sudden reaction was: How? The
first proof of the Cayley’s formula I encountered, used an inductive argument. It
was very beautiful of course, but it did not really answer my question, or at least
it was not what I was after. Since high school, counting for me has always been
a one-to-one correspondence between entities and natural numbers. Often this
correspondence might not be so evident and it might well elude even a watchful
eye. This happens mostly in case we attack the problem brutally, that is we
look for a “direct” correspondence. It is well known that composition of one-
to-one correspondences is still one-to-one. This enables us to lift the problem of
counting the elements of a set, to the one of counting the elements of a different
set, under the condition that there exists a bijection between one set and the
other. Along the infinitely many sets of objects to which a particular set may
be bijectively related to, there are some for which the correspondence with the
natural numbers is more evident, i.e., it is easier to count their elements. If we
ask somebody, who is not aware of Cayley’s formula, yet possesses a certain
knowledge of combinatorics, to count the number of labelled trees for a given
number n of vertices, perhaps we will not get an instant reply, though he or
she might be able to count the number of ways to allocate n− 2 labelled balls
in n labelled urns.

Drawing balls and Cayley’s formula

Let n be an integer and A be an ordered set of n elements, where each element
has a label. Now the set A can be identified with the ordered set {1, . . . , n}.
By a (finite) tree we shall mean any finite, connected graph, without cycles. By
a vertex we shall mean an end point of a line segment occurring in the tree [40].
By stub we shall mean a line segment having a vertex at only one of its end

3To be honest, I did not know at that time what the appellative “labelled” was standing
for. Trees were for me simply these weird patterns one could easily sketch. However, I could
perceive the importance of the vertices’ name in order to identify the different patterns.
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points. One should think of a stub as a half-edge. By number of incidence of a
vertex we shall mean the number of stubs having that vertex in common. By
Tn we shall mean the set of unrooted labelled trees having {1, . . . , n} as a set
of vertices. We will provide a simple combinatorial argument, which seems to
be new, to prove the well-known Cayley formula for labelled trees, which states
|Tn| = nn−2, Chapter 11 [40]. Observe that in a tree τ ∈ Tn the numbers of
incidence dτ1 , . . . , d

τ
n, respectively at vertices 1, . . . , n, satisfy [39]

n∑
j=1

dτj = 2n− 2 (PS.1)

Moreover, every vertex has a number of incidence in {1, . . . , n− 1}.
The problem of counting the elements of Tn can be mapped to a simple

combinatorial problem, namely counting the number of ways to allocate n− 2
labelled balls into n labelled urns. This formulation is a result of the following
argument. Let n be the number of vertices. Associate to any vertex j, j =
1, . . . , n the urn Uj , and to any of the 2n− 2 stubs a ball. The number of balls
in the urn Uk will correspond to the number of incidence of the vertex k. We
must take into account the fact that the number of incidence of any vertex j
in a tree has to satisfy dj ≥ 1, therefore we put initially one ball into each urn
leaving us with n− 2 balls. This concludes the setup of the problem, that is to
distribute n− 2 balls into n urns.

By a drawing we shall mean the allocation of a ball in a urn. In order to
allocate all the n − 2 balls we need to perform n − 2 drawings. We can think
that the drawings are executed one at a time so that the sequence of their times
of execution introduces a natural order on the set of balls.

Remark. The first ball we put in each of the urns does not get labelled. We
remind the reader that these balls were allocated in order to satisfy the constraint
that the number of incidence at every vertex has to be bigger than one. This
represents a common property of any possible tree, that is why we do not take
it into account as a distinguishable feature. In other words, the trees cannot
yet be distinguished just knowing that every vertex has number of incidence at
least one.

Define an outcome of n − 2 balls’ drawings as a finite sequence of vectors,
each of them having n components; we denote it by (Oj)j=0,...,n−2, where

Oj = (Oj1, . . . , O
j
n). The k-th vector of the sequence will correspond to the

configuration of balls in the urns after the k-th ball has been drawn. The
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component i of the k-th vector, namely Oki , correspond to the number of balls
in the urn Ui after the k-th ball has been drawn. The vector Oj=0 is nothing
but the unit vector. Notice that, by the way an outcome has been defined, two
vectors Oj and Oj+1 will differ only in one component; this component will
correspond to the urn where the j-th ball has been allocated.

What we need to show is the existence of a bijective map from the space of
outcomes to Tn. The map is as follows: let (Oj)j=0,...,n−2 be an outcome then

1. Sketch the vertex i for which O1
i 6= O0

i (which is unique!) with two stubs
labelling them (0) and (1)

2. Suppose the k-th ball was drawn and it ended in the m-th urn, that is,
m is such that Okm 6= Ok−1

m , then

� if Ok−1
m = O0

m = 1, attach the vertex m to the stub carrying the
smallest label, then sketch an extra stub at the vertex m, and label
it (k)

� if Ok−1
m 6= O0

m = 1, then sketch an extra stub to the vertex m and
label it (k)

3. Once we have performed the n−2 drawings, the vector On−2 will contain
a certain amount of 1’s. Any i for which On−2

i = 1 corresponds to a not-
used urn. We attach then the vertices corresponding to not-used urns
(and therefore labelled by indexes of not-used urns) to the remaining
stubs, in such a way that the vertex with the smallest label is attached
to the stub with the smallest label.

We shall refer to this map as “way of drawing” map.

Note that the number of not-used urns corresponds to the number of leaves
in the tree. Another warning, to better understand the second step, is that the
stubs get labelled only after having been drawn.

It can be proved by contradiction that the above described map is injective
and also surjective. We have just proved the following

Lemma. The “way of drawing” map is a bijective map between ordered draw-
ings of n− 2 balls into n urns and labelled trees with n vertices.

An equivalence class on trees

By incidence function we shall mean a function from Tn to {1, . . . , n−1}n, which
we denote NI , defined as follows: NI : τ 7→ (dτ1 , . . . , d

τ
n). Let τ1, τ2 ∈ Tn and

let ρ be the equivalence relation on Tn defined by: τ1ρτ2 iff NI(τ1) = NI(τ2).
In other words we shall call τ1, τ2 ρ-equivalent iff they have the same number
of incidence at every vertex. This equivalence relation partitions the set Tn
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in classes of the form [τ1]ρ := {τ ∈ Tn|τρτ1}. We might see the relation ρ
as being a way to zoom out the set Tn and get the quotient set Tn/ρ. The
previous observation represents a nice trick to determine the cardinality of Tn.
The general idea is that in order to determine the number of elements in a
set one can, after having partitioned the set, sum the element in every part4.
The point is that, although we are not able to determine the cardinality of Tn
straight away, we can do it for every class and then sum over classes. Indeed
it turns out to be quite easy to compute the cardinality of any of the ρ-classes
and not a big deal either to sum them. Thanks to the bijectivity of the “way
of drawing ” map we can easily compute how many trees are in every ρ-class.
First of all notice that every ρ-class is uniquely determined by the last element
of an outcome. This is the vector On−2 = (On−2

1 , . . . , On−2
n ) which corresponds

to the distribution of the balls in the urns after the (n−2)-th drawing has been
performed. Then, by simple combinatorics the number of way to draw such

a configuration is given by (n−2)!∏n
j=1(On−2

j −1)!
. What is left then is to sum these

factors over all the possible ρ-classes. This sum can be written as

∑
O
n−2
1 ,...,O

n−2
n :1≤On−2

j
≤n−1

O
n−2
1 +···+On−2

n =2n−2

(n− 2)!∏n
j=1(On−2

j − 1)!
=

∑
s1,...,sn:0≤sj≤n−2

s1+···+sn=n−2

(n− 2)!∏n
j=1 sj !

where sj = On−2
j − 1. The usage of the multinomial formula gives the value

nn−2.

4“ Divide et Impera”
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[22] van Enter, A.C.D., C. Külske, A.A. Opoku, and W.M. Ruszel. Gibbs-
non-Gibbs properties for n-vector lattice and mean-field models. Brazilian
Journal of Probability and Statistics, 24:266–255, 2010.
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Summary

As the (sub)title of this thesis enunciates, the present work is but a very short
stroll through the realm of statistical mechanics. The common link between the
different works discussed here is the will to understand the cooperative effects
arising from a very large system, whose (microscopic) components interact
with each other. A turning point, in pursuing this understanding, is due to the
introduction of the concept of a Gibbs measure.

To deal with the microscopic complexity (which is due to the huge number
of components), the system is cast in a probabilistic framework by treating its
constituents as random variables. Furthermore, for any finite part (volume) of
the system, local laws are prescribed via the Boltzmann-Gibbs distributions,
which enclose the information of how the components inside the volume interact
with each other and with their exterior. These prescribed laws are conditional
probabilities on a finite part of the system, conditioned on what happens out-
side this volume. A Gibbs measure is defined to be a probability measure on
the whole (infinite) system, which is compatible with the prescribed local laws.
The climax of the Gibbsian description of an infinite system is the possibility
that several Gibbs measures exist for the same prescribed family of local laws.
This mathematical dichotomy accounts for the physical phenomenon of phase
transitions, which describes the possibility that a physical system with a cer-
tain interaction between constituents can admit different equilibria. Another
important feature of the Gibbsian description, which has a physical counter-
part as well, is the continuity of the conditional probabilities as a function of
the conditioning. This continuity requirement relates to the physical concept
of locality which can also be summarized as :“no action at distance”. In fact,
in the Gibbsian description, we describe what happens locally in terms of a dis-
tribution on a finite volume which, however, depends on what happens outside
this volume. The continuity requirement then says, that the dependence on
components which are far outside this volume ought to be small. In this thesis,
we have encountered two examples which are strictly related to the continuity
requirement and to the concept of phase transition.

As far as the continuity of the conditional probabilities is concerned, we have
provided in Chapter 4 an example of how such a continuity can be lost if the
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system is subjected to a dynamics. More precisely, we have shown that under an
infinite-temperature Glauber dynamics the homogeneous Ising Gibbs measures
on a Cayley tree lose the continuity if we let the system evolve for sufficiently
long time. Moreover, if the time is sufficiently large, a very peculiar behaviour
displays itself. For one of these evolved homogeneous Gibbs measures (three
in total) the non-Gibbsianness (non-continuity) will get worse as the time goes
by, in the sense that the number of discontinuity points increases. For the
other two evolved homogeneous Gibbs measures, instead, the big times “cure”
the non-continuity illness, i.e., the discontinuity points are cleared as the time
goes by. The above difference in behaviour arises from the fact that one of
the phases is unstable while the other two are stable phases. In our context,
instability for a phase means that this phase converges to one of the stable ones
when a boundary field is either increased or decreased.

In Chapter 5, we studied phase transition for the Potts model with invisible
colours on Z2. This model reduces to the standard Potts model when the
number of invisible colours is set to 0. However, the model with invisible
colours displays a remarkable phenomenon which is alien to the standard Potts
model. In fact, when the number of visible colours is fixed to q, depending
on the number of invisible colours, the model undergoes either a second-order
or a first-order phase transition in temperature, both accompanied by a q-
fold symmetry breaking. The proof that a first-order phase transition occurs
for the Potts model with invisible colours if the number of invisible colours is
large enough, is based on a random-cluster representation of the model, which
we baptised biased random-cluster. The biased random-cluster model differs
from the original Fortuin-Kasteleyn representation because it weights singleton
connected components differently than non-singleton connected components.

In Chapter 3 a simple example of disordered systems is analysed, i.e., disor-
dered mean-field models where both spin variables and disorder variables take
finitely many values. Disordered models are difficult in the sense that they show
the undesired and unfamiliar phenomenon that the Boltzmann-Gibbs distribu-
tions on an increasing sequence of volumes may fail to converge to a thermo-
dynamic limit. Many different limits might exists along different subsequences
of volumes which depend on the disorder (chaotic size-dependence). Weaker
types of convergence might be sought, such as convergence in distribution. For
these reasons the notion of metastate has been introduced, being a probability
measure on the set of Gibbs measures. In Chapter 3, we provide the construc-
tion of the metastate and we compute the probability weights which give us
the appearance of the candidate states. The weights are obtained by studying
the fluctuations of the free energy with respect to the disorder variables.



Samenvatting

Het verband tussen de verschillende onderwerpen die hier worden behandeld, is
de wil om de collectieve, emergente eigenschappen te begrijpen die in een bijzon-
der groot systeem optreden waarvan de microscopische componenten met elkaar
wisselwerken. Een doorbraak bij de pogingen om zo’n begrip te verkrijgen, is
de introductie van het concept van een Gibbs-maat. Om met de microsco-
pische complexiteit als gevolg van het enorme aantal componenten te kunnen
rekenen, is het systeem in een probabilistisch frame gegoten door de componen-
ten te behandelen als toevalsvariabelen. Bovendien hebben we voor elk eindig
deel (volume) van het systeem te maken met lokale voorschriften, namelijk de
Boltzmann-Gibbs-kansverdelingen. Een Gibbs-maat, die dient om een even-
wichtstoestand te beschrijven, is een kansmaat voor het gehele (oneindige) sys-
teem die compatibel is met de al genoemde voorwaardelijke Boltzmann-Gibbs-
kansverdelingen. Een van de voornaamste rechtvaardigingen van de Gibbsi-
aanse beschrijving van een oneindig systeem is de mogelijkheid dat er meerdere
Gibbs-maten bestaan met dezelfde voorwaardelijke Boltzmann-Gibbs-kansen.
Dit beschrijft het natuurkundige verschijnsel van een faseovergang. Een vol-
gend belangrijk kenmerk van de Gibbsiaanse beschrijving is de continüıteit van
de voorwaardelijke kansverdelingen als functie van de randvoorwaarden. Deze
continüıteit is gerelateerd aan het natuurkundig concept van lokaliteit. In dit
proefschrift zijn we twee voorbeelden tegengekomen die te maken hebben met
de noodzaak van continüıteit en met het concept faseovergang.

In hoofdstuk 4 geven we een voorbeeld van de wijze waarop de genoemde
continüıteit verloren kan gaan als het systeem wordt onderworpen aan een
bepaalde toevalsdynamica. Meer in het bijzonder laten we zien dat, als we
de homogene Ising-Gibbs-maten voor een Cayley-boom lang genoeg aan een
‘oneindige-temperatuur Glauber dynamica’ onderwerpen, deze hun continüıteit
kunnen verliezen, op een toestandsafhankelijke manier.

In hoofdstuk 5 bestuderen we de faseovergang voor het Potts-model met
onzichtbare kleuren op Z2. Dit model met de onzichtbare kleuren kont overeen
met het standaard Potts-model als we het aantal onzichtbare kleuren op 0
stellen. We bewijzen dat er bij dit model een eerste-orde-faseovergang optreedt,
als het aantal onzichtbare kleuren groot genoeg is. Het bewijs is gebaseerd op
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een random-cluster-representatie van dit model dat we ‘biased random-cluster
model’ noemen.

In hoofdstuk 3 analyseren we een eenvoudig voorbeeld van wanordelijke sys-
temen, namelijk wanordelijke mean-field-modellen waar zowel spinvariabelen
als ‘wanorde’-variabelen een groot maar een eindig aantal waarden kunnen
aannemen. We geven een constructie van de ‘metastate’ en we berekenen de
gewichten van de kansen waarmee de mogelijke limiettoestanden optreden. We
verkrijgen deze gewichten door de fluctuaties van de vrije energie te bestuderen
als functie van de ‘wanorde’-variabelen.
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