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INTRODUCTION 

1.  MicroRNAs 

MicroRNAs (miRNAs) are single-stranded RNA molecules of ~22nt (Bartel, 2004) 

that belong to the larger family of non-coding RNAs. MiRNAs inhibit expression 

of genes by repressing their translation or stability (Filipowicz et al., 2008). The 

first miRNA, lin-4, was discovered in Caenorhabditis elegans (C. elegans) in 

1993 (Lee et al., 1993). However, only after the second miRNA, let-7, was 

discovered in 2000 (Reinhart et al., 2000), more attention was paid to miRNAs. 

Since then a substantial number of miRNAs has been identified with, at present, 

more than 25,000 miRNAs in the miRBase database, including over 2,000 

human miRNAs (miRbase Release 19, Kozomara and Griffiths-Jones, 2011). 

MiRNAs have been found in a total number of 193 species, including viruses, 

plants and animals. Approximately 55% of the C. elegans miRNAs have 

homologues in humans indicating that there is high degree of conservation 

during animal evolution (Ibanez-Ventoso et al., 2008). This high degree of 

conservation indicates the importance of miRNAs in cellular functioning.  

Biogenesis of miRNAs 

Genomic locations of miRNAs include introns and exons of protein-coding or 

noncoding genes as well as intergenic regions (Fig.1) (Kim and Nam, 2006). The 

majority of the miRNAs are located in introns of protein-coding genes. MiRNAs 

are transcribed together with their host gene as longer primary miRNA 

transcripts (pri-miRNA) (Cai et al., 2004). The canonical miRNA biogenesis 

pathway consists of two enzymatic steps (Fig. 2). Transcription of pri-miRNAs 

generally involves polymerase II and occasionally polymerase III (Borchert et 

al., 2006; Lee et al., 2004). The pri-miRNA transcripts contain one or more 

hairpin structures. Different miRNAs that are transcribed from one primary 

transcript with multiple hairpin structures are denoted as miRNA clusters (Lee et 

al., 2002). MiRNA clusters are not a rare finding. In fact, miRNA clusters 

constitute ~40% of all human miRNAs (Altuvia et al., 2005; Hertel et al., 2006). 
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FIGURE 1. Genomic localization of miRNAs. (A) MiRNAs can be localized in introns of 

protein-coding or noncoding genes (intronic miRNAs). As an example the miR-31 primary 
transcript with the stem-loop in the intron of the noncoding MIR31HG gene is shown. (B) 
MiRNAs localized in exons of noncoding genes (exonic miRNAs). The location of the miR-
155 stem-loop in exon 3 of the BIC noncoding gene. (C) MiRNAs that have their own 
promoter (intergenic miRNAs), as an example the miR-21 gene is shown. 
 
 

 Biogenesis of miRNAs is tightly regulated resulting in specific miRNA 

expression patterns in certain tissues or at specific developmental stages. 

Hairpin structures are processed by the Microprocessor complex that consists of 

DiGeorge syndrome critical region 8 (DGCR8) and the RNase III endonuclease 

Drosha (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et 

al., 2004; Lee et al., 2003). DGCR8 recognizes the hairpin structure by 

interacting with the ssRNA segments flanking the stem-loop structure and 

mediates cleavage of the hairpin structure by Drosha (Han et al., 2006; Zeng 

and Cullen, 2005). The resulting 60-70nt precursor miRNA (pre-miRNA) is 

exported to the cytoplasm by the Exportin 5 – RanGTP complex to be further 

processed by the RNase III endonuclease Dicer to a double stranded ~22nt 

miRNA/miRNA* duplex (Bohnsack et al., 2004; Grishok et al., 2001; Hutvagner 

et al., 2001; Lund et al., 2004; Yi et al., 2003). One strand, denoted as the 

miRNA, is incorporated into the RNA-induced silencing complex (RISC) while the 

other strand, denoted as the miRNA*, is often degraded (Eulalio et al., 2008; 

Filipowicz et al., 2008). Selection of the miRNA that will be retained in the RISC 

complex is thought to depend on the stability of the 5’ends of the 

miRNA/miRNA* duplex (Khvorova et al., 2003; Schwarz et al., 2003). Each of 
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the two strands of the duplex can be incorporated into the RISC complex. 

Therefore, miRNA-5p and -3p nomenclature is now more commonly used.

 

FIGURE 2. Canonical biogenesis of miRNAs. MicroRNAs are transcribed as long 
primary transcripts (pri-miRNA) that are processed by the Drosha-DGCR8 complex to 
precursor miRNA (pre-miRNA). These precursors are exported to the cytoplasm by 

Exportin-5 and further processed by Dicer to a miRNA/miRNA* duplex. The mature miRNA 
is incorporated into the RNA-induced silencing complex (RISC) and this complex binds to 
the 3’UTR of its target genes and inhibits the translation. 

Function of miRNAs 

RISC is a multiprotein complex that includes a miRNA and one of the four 

Argonaute proteins (Gregory et al., 2005; Hutvagner and Zamore, 2002; 

Mourelatos et al., 2002). The miRNA guides the RISC to its target transcripts 

based on partial complementarity between the mRNA and miRNA (Fig. 2). A high 

degree of complementarity of nucleotides 2-7 of the miRNA is the most 

important factor for effective targeting of the mRNA (Bartel, 2009). This region 
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is referred to as the “seed sequence”. The degree of homology for the remaining 

part of the miRNA may be lower and thus adds to the promiscuous nature of 

single miRNAs that target different mRNAs (Doench and Sharp, 2004). MiRNAs 

that share “seed sequences” belong to the same miRNA seed family and may, at 

least in part, target the same set of genes. MiRNAs usually bind to the 3’UTR of 

the target gene and less frequent to the coding sequence or 5’UTR (Chi et al., 

2009). MiRNA binding affects either mRNA translation or its stability (Pillai et al., 

2007). Both target gene prediction programs and biochemical approaches have 

been widely applied to identify miRNA target genes and they indicated that each 

miRNA can target multiple mRNAs and each mRNA can be targeted by multiple 

miRNAs. It is estimated that more than one third of the genes can be regulated 

by miRNAs (Lewis et al., 2005). This suggests that miRNAs play a role in a large 

variety of cellular processes. Functional studies have indeed indicated that 

miRNAs are involved in virtually all biological processes including programmed 

cell death, proliferation, cell differentiation and metabolic control. In addition, 

miRNAs have been causally linked to many pathological conditions including 

diabetes, cardiovascular disease, autoimmune disorders and, most thoroughly 

investigated, cancer. A substantial number of human miRNAs are located in the 

cancer-associated genomic locations (Calin et al., 2004) and there are numerous 

studies that show altered miRNA levels in various cancer types (Lu et al., 2005; 

Sassen et al., 2008). Alteration of miRNA levels in cancer can be caused by 

genetic aberrations, deregulation of transcription and epigenetic factors, 

alterations in miRNA processing and/or miRNA stability.  

2.  B-cell lymphoma 

The most common B-cell lymphoma subtypes include diffuse large B-cell 

lymphoma (DLBCL), Hodgkin lymphoma (HL), follicular lymphoma (FL), chronic 

lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), marginal zone 

lymphoma (MZL) and Burkitt lymphoma (BL) (Kuppers, 2005). All these 

malignancies display distinct clinical, histological and immunophenotypic 

features, and vary greatly in short-term and long-term response to treatment.  
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 A large proportion of the B-cell lymphomas are derived from B cells at the 

germinal center (GC) stage of maturation (Kuppers et al., 1999). GCs arise from 

foci of mature naïve B cells upon B-cell antigen receptor (BcR) stimulation in 

combination with co-stimulatory signals from T cells (MacLennan, 1994). GCs 

are characterized by proliferating B cells that have an active somatic 

hypermutation (SHM) machinery (Kuppers et al., 1993). During SHM, a high 

rate of mutations is introduced into the functionally rearranged immunoglobulin 

(Ig) genes, affecting their affinity. Fractions of these GC B cells undergo class-

switch recombination, which is mediated by double-strand DNA breaks (Liu et 

al., 1996). These cells may undergo second rounds of affinity maturation and 

selection, after which they may differentiate into memory or plasma cells. Both 

processes are essential for successful antigen-driven maturation of B cells, but 

they also represent important risk factors for malignant transformation. 

Accordingly, an established hallmark of many types of B-cell lymphomas are 

reciprocal translocations involving one of the Ig gene loci (heavy and light chain 

genes) and a proto-oncogene. The result is uncontrolled constitutive expression 

of the translocated gene. Examples of such GC-derived translocations are BCL6-

Ig in DLBCL, MYC-Ig in BL and DLBCL and BCL2-Ig in FL (Baron et al., 1993; 

Dalla-Favera et al., 1983; Ladanyi et al., 1991; Taub et al., 1982; Ye et al., 

1993). The involvement of non-Ig gene loci is partially caused by the somatic 

hypermutation machinery which can also target many non-Ig genes. 

3.  MicroRNAs in B-cell lymphoma 

Several miRNAs have been shown to have tumor suppressive or oncogenic 

activity in B-cell lymphoma. Tumor suppressive miRNAs may target oncogenes, 

and loss of such miRNAs leads to enhanced levels of oncogenic proteins. Tumor 

suppressive miR-15a and miR-16-1 are frequently deleted or downregulated in 

CLL (Calin et al., 2002; Calin et al., 2005). Mice with deletion of the genomic loci 

containing this miRNA locus developed CLL-like disease (Klein et al., 2010). The 

tumor suppressive role of miR-15a and miR-16-1 in CLL has been reported to 

involve inhibition of the anti-apoptotic oncogene Bcl-2 (Cimmino et al., 2005). 

Let-7a inhibits proliferation of BL cells through inhibition of the MYC oncogene 
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(Mayr et al., 2007; Sampson et al., 2007). Oncogenic miRNAs may target tumor 

suppressor genes, and enhanced expression of these oncogenic miRNAs may, as 

such, result in reduced levels of tumor suppressor proteins. For example, miR-

21 is upregulated in most cancer types (Buscaglia and Li, 2011). Conditional 

overexpression of miR-21 in mice resulted in formation of tumors with pre-B cell 

malignant lymphoid-like phenotype that regressed completely when miR-21 was 

inactivated (Medina et al., 2010). This indicates that miR-21 is a genuine 

oncogene that plays a key role in tumor growth. Other oncogenic miRNAs 

strongly associated with both B-cell functioning and B-cell lymphoma are miR-

155 and the miR-17~92 cluster (Hayashita et al., 2005; Kluiver et al., 2005; 

Kluiver et al., 2006).  

MiR-155  

MiR-155 is processed from the transcript of a noncoding gene called B-cell 

integration cluster (BIC) (Lagos-Quintana et al., 2002). Several studies have 

shown that BIC and miR-155 play a crucial role in the immune response 

(O'Connell et al., 2009; Rodriguez et al., 2007; Thai et al., 2007). BIC 

expression levels are highly induced in B cells upon stimulation via the B cell 

receptor (van den Berg et al., 2003). BIC and miR-155 are highly expressed in 

normal tonsillar GC B cells indicating a role in B-cell maturation (Kluiver et al., 

2007). This was indeed demonstrated in BIC/miR-155-deficient mice (Rodriguez 

et al., 2007; Thai et al., 2007). These mice showed reduced numbers of 

germinal center B cells and diminished high-affinity IgG1 antibody production. 

Also, in vitro activated miR-155-deficient T cells showed increased tendency to 

differentiate into Th2-type cells (Rodriguez et al., 2007).  

 BIC/miR-155 was one of the first oncogenic miRNAs shown to be 

associated with B-cell lymphoma. Elevated miR-155 levels were observed in 

several B-cell lymphomas, such as HL, DLBCL and PMBL (Eis et al., 2005; 

Kluiver et al., 2005). Further evidence for an oncogenic role for miR-155 came 

from a study demonstrating that Eµ-miR-155 transgenic mice developed 

polyclonal pre-B-cell proliferations leading to B-cell malignancies at later stages 

(Costinean et al., 2006). Myeloproliferative disorders were induced by 
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overexpression of miR-155 in hematopoietic stem cells in a mouse model 

(O'Connell et al., 2008). Recently, Babar et al. showed that induction of miR-155 

caused disseminated lymphoma in mice, characterized by clonal and 

transplantable neoplastic pre-B cells (Babar et al., 2012). Tumor cells were 

shown to be addicted to miR-155, as miR-155 withdrawal lead to rapid tumor 

regression due to increased apoptosis of the malignant cells. These studies 

suggest that inhibition of miR-155 can be used as a therapeutic strategy for 

miR-155-expressing lymphomas.  

 In contrast, to other GC B-cell-derived lymphomas, miR-155 is expressed 

at very low levels in Burkitt lymphoma suggesting that miR-155 may also have a 

tumor suppressive function (Kluiver et al., 2006). Consistent with this putative 

tumor suppressor function, miR-155 has been shown to target activation-

induced cytidine deaminase (AID) (Dorsett et al., 2008). AID promotes 

immunoglobulin gene diversification in normal B cells, but thereby enhances the 

risk of chromosomal translocations involving the immunoglobulin loci (Dorsett et 

al., 2007; Liu et al., 2008; Ramiro et al., 2004). Translocations involving the 

MYC locus and one of the immunoglobulin gene loci are a hallmark of Burkitt 

lymphoma (Taub et al., 1982). Thus, these data indicate that downregulation of 

miR-155 may contribute to the initiation phase of Burkitt lymphoma by 

enhancing the formation of MYC translocations. 

The miR-17~92 cluster  

The miR-17~92 cluster consists of 6 miRNAs that are processed from a single 

primary transcript, C13ORF25 (Figure 3). This miRNA cluster has two paralogs, 

i.e. the miR-106a~363 and miR-106b~25 clusters that share multiple seed 

family members and also some identical miRNAs (Tanzer and Stadler, 2004). 

C13ORF25 is located in the 13q31 region, which is often amplified in B-cell 

lymphoma (Ota et al., 2004; Rinaldi et al., 2007). Mice deficient for miR-17~92 

have a block in pro-B to pre-B-cell development, indicating an important role of 

this miRNA cluster in B-cell development (Ventura et al., 2008). Overexpression  
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FIGURE 3. Schematic representation of the miR-17~92 cluster. Each dominant 

miRNA which is derived from the strand -3p or 5p is indicated in red. 

of miR-17~92 in the Eµ-MYC mouse B-cell lymphoma model resulted in 

accelerated B-cell lymphoma development (He et al., 2005). More recently, miR-

19a and miR-19b have been identified as the key oncogenic components 

necessary and sufficient for promoting MYC-induced lymphomagenesis by 

repressing apoptosis (Mu et al., 2009; Olive et al., 2009). Several individual 

members of this miRNA cluster play important roles in proliferation, tumor 

angiogenesis and suppression of apoptosis (Dews et al., 2006; Hayashita et al., 

2005; Li et al., 2012; Matsumura et al., 2003).  

SCOPE OF THE THESIS 

Altered miRNA levels are observed in almost all types of cancer including B-cell 

lymphoma. The aim of this thesis is to investigate possible causes of altered 

miRNA levels and the specific consequences of altered miRNA-155 levels in B-

cell lymphoma.  

 MiRNA levels are regulated at the level of transcription of the primary 

transcripts, miRNA processing and miRNA stability. In this thesis, we focus on 

the regulation of miRNA processing and the consequences of altered miR-155 

levels. In chapter 2, we present an overview of established mechanisms to 

regulate miRNA processing. This chapter serves as an introduction to the 

experimental work described in chapters 3 and 4. In chapter 3, we present our 

results on processing of exonic miRNAs. It is still unclear whether exonic miRNAs 

are processed from unspliced or spliced pri-miRNA transcripts. To study this, we 

assessed the levels and cellular localization of unspliced and spliced pri-miRNA 
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transcripts of miR-155, miR-146a and miR-22. In addition, we overexpressed 

miR-155 using constructs containing pre-miR-155 and either exonic or intronic 

5’ upstream flanking sequence to determine if these upstream sequences 

affected the processing efficiency to miR-155. In chapter 4, we describe our 

study on processing of the miR-17~92 cluster. We assessed levels of the 

primary miR-17~92 transcript and the six mature miRNAs in normal B cells, 117 

non-Hodgkin lymphoma (NHL) cases and in 21 NHL cell lines. We assessed the 

correlation between the levels of primary miR-17~92 transcripts with each of 

the six mature miRNAs in each NHL subtype. We also compared the levels of the 

individual miR-17~92 cluster members in NHL to the levels in their normal B-cell 

counterparts to identify which miRNAs are induced in NHL.  

 To determine the consequences of altered miRNA expression levels, it is 

crucial to effectively inhibit miRNAs. In chapter 5, we describe a straight-

forward method to inhibit miRNAs using miRNA sponges. We showed how to 

generate retroviral miRNA sponges with variable numbers of miRNA binding 

sites. We confirmed their effectiveness and showed applications for loss-of-

function studies. In chapter 6, we describe the consequence of altered miR-155 

expression in B-cell lymphoma. To this end, we overexpressed miR-155 in 

Burkitt lymphoma cells with very low endogenous levels and determined the 

effect of miR-155 induction on cell growth. We next identified genes that are 

targeted by miR-155 using Ago2-RIP-Chip. We validated six selected genes by 

luciferase reporter assay and assessed whether their inhibition by shRNAs could 

phenocopy the effect of miR-155 induction on the growth of Burkitt lymphoma 

cells. We used a miR-155 sponge to determine whether the six selected targets 

are also regulated by endogenous miR-155 in Hodgkin lymphoma cells with high 

endogenous miR-155 level. Finally, in chapter 7, we summarize and discuss 

results presented in this thesis and discuss possible future perspectives.  
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ABSTRACT 

MicroRNAs (miRNAs) are a set of small, non-protein-coding RNAs that regulate 

gene expression at the post-transcriptional level. Maturation of miRNAs 

comprises several regulated steps resulting in ~22-nucleotide single-stranded 

mature miRNAs. Regulation of miRNA expression can occur both at the 

transcriptional level and at the post-transcriptional level during miRNA 

processing. Recent studies have elucidated specific aspects of the well-regulated 

nature of miRNA processing involving various regulatory proteins, editing of 

miRNA transcripts, and cellular location. In addition, single nucleotide 

polymorphisms in miRNA genes can also affect the processing efficiency of 

primary miRNA transcripts. In this review we present an overview of the 

currently known regulatory pathways of miRNA processing and provide a basis 

to understand how aberrant miRNA processing may arise and may be involved in 

pathophysiological conditions such as cancer. 
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INTRODUCTION 

MicroRNAs (miRNAs) are small (22-nucleotide [nt]) noncoding RNA molecules 

that are single-stranded in the functional form (Bartel 2004). Unlike their small 

size, they play an important role in the regulation of gene expression at the 

post-transcriptional level. After their discovery in Caenorhabditis elegans (Lee et 

al. 1993; Wightman et al. 1993), there have been a large number of studies 

identifying miRNAs in animals, plants, and viruses. Their importance was 

confirmed in several cellular processes like development, cell fate determination, 

proliferation, and apoptosis. Moreover, altered miRNA expression profiles have 

been demonstrated in a large number of pathological conditions, such as cancer, 

suggesting that miRNAs are involved in disordered cellular function, such as 

malignant transformation.  

 MiRNAs are located within introns and exons of protein coding genes or in 

intergenic regions (Kim and Nam 2006). They are transcribed as long primary 

miRNA (pri-miRNA) transcripts containing one or more hairpin structures. Each 

hairpin structure consists of a double-stranded stem and a terminal loop. In the 

nucleus, the primary miRNA is cleaved by the Microprocessor complex, which 

consists of Drosha and DGCR8 (Lee et al. 2003; Denli et al. 2004; Gregory et al. 

2004; Han et al. 2004; Landthaler et al. 2004). This cleavage step results in an 

~65-nt precursor miRNA (pre-miRNA), which is exported from the nucleus to the 

cytoplasm in association with Exportin-5 and RanGTP (Yi et al. 2003; Bohnsack 

et al. 2004; Lund et al. 2004) and cleaved by Dicer to an ~22-nt miRNA duplex 

(Grishok et al. 2001; Hutvagner et al. 2001). One of the two strands is 

assembled into the RNA-induced silencing complex (RISC) together with one of 

the Argonaute (Ago) proteins. RISC can bind to the 3’-untranslated region (UTR) 

of the target mRNA based on a partial miRNA–mRNA complementarity. This 

binding causes a translational inhibition and/or degradation of the target mRNA 

(Eulalio et al. 2008; Filipowicz et al. 2008). However, not all miRNAs are 

processed by this so-called canonical biogenesis pathway. Alternatively, miRNAs 

can be generated from short intronic hairpins called mirtrons that are spliced 

and debranched to mimic pre-miRNA (Okamura et al. 2007; Ruby et al. 2007). 
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Mirtrons bypass cleavage by Drosha, but nuclear export and further processing 

are common with the canonical miRNA processing pathway (Okamura et al. 

2007; Ruby et al. 2007).  

 Biogenesis of miRNAs is tightly regulated resulting in characteristic miRNA 

expression patterns for different organisms, tissues, cell types, and 

developmental stages. It is known that transcription of miRNA genes can be 

regulated by epigenetic factors (Scott et al. 2006; Lehmann et al. 2007; 

Lujambio et al. 2007) or transcription factors (Xi et al. 2006; He et al. 2007; 

mature miRNA expression levels clearly indicate that the level of mature miRNAs 

can also be regulated at the level of miRNA processing. This review focuses on 

the mechanisms and factors that regulate miRNA processing, for example, 

regulatory proteins, cellular localization, and genetic variation. 

MECHANISMS FOR REGULATING MICRORNA PROCESSING 

Processing of miRNAs can be regulated at multiple steps and leads to either 

elevated or decreased miRNA levels. Altered miRNA levels may be caused by 

regulatory proteins that influence miRNA processing, acquired variations in the 

miRNA transcript, and by changes in the nuclear export efficiency. In addition to 

these regulatory mechanisms, single nucleotide polymorphisms (SNPs) can also 

have a pronounced effect on the efficiency of the miRNA processing machinery.  

Regulatory proteins 

Recently, a number of proteins that regulate miRNA processing have been 

described as key elements in defining the unique expression patterns of miRNAs 

in different cell types, tissues, or in pathological conditions. These proteins can 

be subdivided into three groups, i.e., Drosha binding/associated proteins, Dicer 

binding proteins, and proteins that bind to the terminal loop of the pri- and/or 

pre-miRNAs.  
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Drosha binding/associated proteins  

The Microprocessor complex consisting of Drosha and DGCR8 is sufficient to 

process pri-miRNA to pre-miRNA (Fig. 1A). However, Drosha was shown to be a 

component of a larger complex containing DEAD-box RNA helicases p68 (DDX5), 

p72 (DDX17), nuclear factor (NF) 90, and NF45 (Gregory et al. 2004). The 

p68/p72 and NF90/NF45 complexes have been shown to alter the miRNA 

processing efficiency for specific miRNAs (Fukuda et al. 2007; Davis et al. 2008; 

Sakamoto et al. 2009; Suzuki et al. 2009; Yamagata et al. 2009). Specifically, it 

has been shown that endogenous p68/p72 facilitate Drosha processing of a 

subset of pri-miRNAs based on reduced mature miRNA levels in both p72- and 

p68-helicase-deficient mouse embryos (Fukuda et al. 2007). Several studies 

showed that interaction of p68/p72 with other proteins also alters processing of 

specific primary miRNAs. Interaction of p68 with SMAD facilitates the processing 

of pri-miR-21 (Fig. 1B; Davis et al. 2008). The interaction of p68 with SMAD was 

induced by transforming growth factor β (TGF-β) and bone morphogenetic 

proteins (BMPs). Similarly, wild-type p53 has been shown to associate with p68 

and enhance processing of several primary miRNAs by Drosha, including pri-

miRNA of miR-16-1, miR-143, and miR-145, in response to DNA damage (Fig. 

1C; Suzuki et al. 2009). Moreover, wild-type p53 positively regulates Drosha-

mediated processing by promoting recruitment of Drosha complex to the target 

pri-miRNAs, whereas mutant p53 hinders assembly of the Drosha complex 

(Suzuki et al. 2009). Drosha-mediated processing can be inhibited by p68/p72-

dependent mechanisms upon stimulation of estrogen receptor alpha (ERα) (Fig. 

1D; Yamagata et al. 2009). This mechanism caused obstructed processing of a 

set of pri-miRNAs including miR-16, miR-125a, miR-143, miR-145, and miR-195 

(Yamagata et al. 2009). Together these studies show that the p68/p72 complex 

is an important mediator of miRNA processing regulation and can direct Drosha 

toward either reduced or enhanced processing of specific miRNAs. The result of 

the interaction between Drosha, p68, and the target pri-miRNA depends on 

proteins interacting with p68 like SMAD, p53, or ERα. This indicates that the 

p68/p72-dependent mechanism is sensitive to cellular context.  
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FIGURE 1. MicroRNA processing regulation by Drosha binding or Drosha-
associated proteins. (A) Primary miRNA transcript (Pri-miRNA) is processed by 
Drosha/DGCR8 complex to precursor miRNA (Pre-miRNA). (B) SMAD associates with pri-
miR-21, p68, and Drosha/DGCR8 complex to enhance pri-miR-21 processing. (C) 
Association of p53 with pri-miR-16-1 and pri-miR-143, p68, and Drosha/DGCR8 enhances 
pri-miR-16-1 and pri-miR-143 processing. (D) p68/p72 complex mediates inhibition of pri-
miR-16, pri-miR-125a, pri-miR-143, pri-miR-145, and pri-miR-195 upon stimulation of 
estrogen receptor α (ERα) by estradiol (E2). (E) Nuclear factor (NF) 90/45 complex inhibits 
Drosha/DGCR8 processing by binding to stem/loop fragment of pri-miR-21, pri-miR-
15~16-1, and pri-let-7a-1. 

 Two other members of the large Drosha-containing complex identified by 

Gregory et al. (2004), i.e., NF90 and NF45, were also shown to be involved in 

the regulation of miRNA processing (Fig. 1E). However, the interaction between 

Drosha and NF90/NF45 has not been confirmed for the endogenous Drosha–

DGCR8 complex (Sakamoto et al. 2009). Nevertheless, overexpression of 

NF90/NF45 in 293T cells caused accumulation of pri-let-7a-1, pri-miR-21, and 

pri-miR-15a~16-1, without affecting the mature miRNA levels (Sakamoto et al. 

2009). This suggests that the decreased processing efficiency induced by 

NF90/NF45 was compensated by other factors. Depletion of NF90 resulted in 

decreased pri-let-7a-1 levels and increased mature let-7a levels (Sakamoto et 

al. 2009). The higher binding affinity of NF90/NF45 to pri-let-7a-1, as compared 

to DGCR8 in vitro, suggested that the reduced miRNA processing efficiency was 

caused by reducing the accessibility for Drosha–DGCR8 (Sakamoto et al. 2009).  

 Current literature shows that regulatory proteins are a dominant factor in 

the regulation of Drosha-mediated pri-miRNA processing. Moreover, various 

signaling pathways enhance or reduce the efficiency of this step. It is likely that 

more Drosha-associated proteins regulate miRNA processing, and, as such, the 
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balance between positive and negative regulators may determine the efficiency 

of miRNA processing. 

Dicer binding proteins 

Dicer interacts with Tar RNA binding protein (TRBP) and protein activator of PKR 

(PACT) and one of the Ago (1–4) proteins, mainly Ago2 (Chendrimada et al. 

2005; Haase et al. 2005; Lee et al. 2006). TRBP and PACT facilitate RISC 

assembly, and they are not essential for miRNA processing (Haase et al. 2005; 

Lee et al. 2006). However, phosphorylated TRBP stabilized the Dicer-containing 

complex (Paroo et al. 2009). Expression of phospho-mimic TRBP resulted in 

increased levels of growth-promoting miRNAs like miR-17, miR-20a, and miR-92 

and decreased the level of the growth-inhibitory miRNA let-7a (Paroo et al. 

2009). However, let-7a level is affected indirectly via a mechanism that may 

involve other proteins like Lin28 (Paroo et al. 2009). TRBP phosphorylation was 

mediated by the mitogen-activated protein kinase (MAPK) signaling pathway. 

Therefore, alteration of miRNA processing by ERK may result in a pro-growth 

phenotype. 

 Ago proteins are important for proper miRNA function. However, they can 

also influence miRNA expression. Ectopically expressed Ago proteins (Ago1–4) 

enhanced expression of some miRNAs including miR-215, miR-17-5p, miR-23b, 

and miR-92 (Diederichs and Haber 2007). Additionally, Ago2, which has intrinsic 

endonuclease activity in mammals (Song et al. 2004), induced cleavage of pre-

miRNAs leading to an alternative processing intermediate with cleaved arms of 

the hairpin (Diederichs and Haber 2007). This intermediate did not change 

processing to mature miRNA, but may facilitate miRNA duplex dissociation and 

formation of RISC complex. Dicer-associated proteins, especially TRBP, clearly 

play a role in the regulation of miRNA processing. However, the mechanisms and 

specificity of this regulation remain unknown. 

Terminal loop binding proteins 

Processing of primary and precursor miRNAs (Fig. 2A) can be regulated by 

terminal loop binding proteins resulting in either reduced or enhanced 
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processing efficiency. Members of the let-7 family were shown to be post-

transcriptionally regulated during differentiation of human embryonic stem cells 

(Suh et al. 2004), development of mice (Thomson et al. 2006), and neural 

differentiation of embryocarcinoma cells (Wulczyn et al. 2007). In all cases, 

Lin28, the developmentally regulated RNA binding protein, was shown to inhibit 

pri-let-7 processing (Fig. 2B; Newman et al. 2008; Piskounova et al. 2008; 

Rybak et al. 2008; Viswanathan et al. 2008). Lin28 interacted with the terminal 

loop region via a conserved sequence, inhibiting processing of pri- and pre-

miRNA (Newman et al. 2008; Piskounova et al. 2008; Rybak et al. 2008; 

Viswanathan et al. 2008). Suppression of let-7 in neural stem cells led to 

upregulation of Lin28 and failure of pre-let-7 processing (Rybak et al. 2008). 

These results suggest a feedback loop between let-7 and Lin28. Lin28 causes 

terminal uridylation of pre-let-7 in the cytoplasm (Heo et al. 2008) leading to 

inhibition of Dicer processing and inducing guidance of pre-let-7 to a 

degradation pathway (Fig. 2B). A terminal uridylyl transferase 4 (TUTase 4, 

TUT4) has been shown to be responsible for the pre-let-7 uridylation (Hagan et 

al. 2009; Heo et al. 2009; Lehrbach et al. 2009). Binding of TUT4 to pre-let-7 is 

dependent on the presence of Lin28, confirming that Lin28 is necessary for 

recruiting TUT4.  

 The RNA binding protein heterogeneous nuclear ribonucleoprotein A1 

(hnRNP A1) has been reported to facilitate processing of miR-18a, a member of 

the miR17~92 cluster (Fig. 2C; Guil and Caceres 2007). Knockdown of hnRNP 

A1 resulted in inhibition of pri- to pre-miR-18a processing, but did not affect 

other members of this cluster. This might in part explain variations in levels of 

the individual mature miRNA members of this cluster (Yu et al. 2006; Lu et al. 

2007; Mendell 2008). hnRNP A1 binds to both the terminal loop and a region in 

the stem of pri-miR-18a (Michlewski et al. 2008), causing relaxation of the stem 

and facilitating Drosha/DGCR8 processing. The possible effect of hnRNP A1 

binding on the Dicer processing step has not been investigated for miR-18a. 

hnRNP A1 also binds to the terminal loops of pri-let-7a-1 and pri-miR-101-1, 

indicating that this protein might also regulate processing of other pri-miRNAs. 
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This is consistent with the more general RNA binding properties of hnRNP A1 

(Mayeda and Krainer 1992; Martinez-Contreras et al. 2006).  

 Another RNA binding protein proven to be involved in miRNA processing is 

the KH-type splicing regulatory protein (KSRP). KSRP is known as a key 

mediator of AU-rich element (ARE)-directed mRNA decay that facilitates 

recruitment of the degradation machinery to ARE-containing mRNAs (Gherzi et 

al. 2004; Garcıa-Mayoral et al. 2007). KSRP was shown to be a component of 

both Drosha and Dicer complexes and promoted biogenesis of a cohort of 

miRNAs including let-7a, miR-21, and miR-16 (Fig. 2D; Trabucchi et al. 2009). 

KSRP binds to the terminal loop of its target primary and/or precursor miRNAs 

and induces processing by Drosha and Dicer complexes through protein–protein 

interactions (Trabucchi et al. 2009). Moreover, KSRP mediates induction of miR-  

 

 

FIGURE 2. MicroRNA processing regulation by terminal loop binding proteins. (A) 
Primary miRNA transcript (pri-miRNA) is processed by Drosha/DGCR8 complex to 
precursor miRNA (pre-miRNA) and by Dicer to mature miRNA. Stem and terminal loop (TL) 
regions are assigned within pri-miRNA. (B) Lin28 protein binds to the terminal loop of pri- 
and pre-miRNAs from the let-7 family and impairs processing by reducing Drosha and 
Dicer cleavage and causing uridylation of pre-miR by terminal uridylyl transferase 4 
(TUT4) leading to degradation of pre-miR by an unidentified nuclease. (C) Heterogeneous 
nuclear ribonucleoprotein (hnRNP) A1 binds to the terminal loop and stem of pri-miR-18a 
and facilitates its processing by Drosha. (D) KH-type splicing regulatory protein (KSRP) 
binds to the terminal loop of a set of pri- and pre-miRNAs including let-7a, miR-20, miR-
26b, miR-106a, miR-21, miR-16, and enhances both Drosha/DGCR8 and Dicer processing. 
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155 processing in murine macrophages upon LPS stimulation that is also 

achieved by binding to the terminal loop (Ruggiero et al. 2009).  

 Conservation of terminal loop sequences across vertebrate species can be 

found in ~14% (74 out of 533) of the miRNAs indicating that the loops of these 

miRNAs are functionally important (Michlewski et al. 2008). To analyze the 

relevance of these conserved terminal loop sequences, Michlewski et al. (2008) 

showed that oligonucleotides complementary to the sequence of conserved 

terminal loops abolished the in vitro processing of pri-miR-18a, pri-miR-31, pri-

miR-101-1, pri-miR-379, and pri-let-7a-1. Pri-miRNAs without conserved loops 

(pri-miR-16-1, pri-miR-27a) were not affected by antisense loop oligo’s 

(Michlewski et al. 2008).  

 These studies clearly demonstrate that terminal loop binding proteins play 

an important role in the regulation of miRNA processing. Therefore, it is highly 

likely that other RNA binding proteins may also be involved in the regulation of 

processing of individual miRNAs. 

Cellular location 

Exportin-5 mediates the nuclear export of pre-miRNAs to the cytoplasm and 

protects pre-miRNAs from digestion (Bohnsack et al. 2004; Lund et al. 2004). 

The length of the double-stranded stem and presence of 3’ overhangs but not 

the sequence or the loop structure are important for proper recognition of pre-

miRNAs by Exportin-5 (Lund et al. 2004; Zeng and Cullen 2004).  

 A blockade in the transport of pre-miRNAs from nucleus to cytoplasm was 

suggested to explain the high levels of precursor and lack of mature miR-128a, 

miR-105, and miR-31 in some cancer cell lines. This was supported by the 

predominant nuclear localization of primary/precursors detected by in situ RT-

PCR (Lee et al. 2008). A debatable example for premature nuclear export is BIC 

(pri-miR-155) (van den Berg et al. 2003; Eis et al. 2005; Kluiver et al. 2005). 

RNA in situ hybridization (ISH) using a probe complementary to the 3’ part of 

exon 3 revealed a strong nuclear staining in various lymphoma subtypes and in 

normal B-cells. This exon contains the stem–loop region of miR-155, indicating 

an appropriate location. Eis at al. (2005) showed a cytoplasmic location of 
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spliced BIC transcripts and a nuclear location of the unspliced BIC transcript in 

two lymphoma cell lines by RT-PCR of RNA isolated from purified nuclear and 

cytoplasmic fractions. These data might indicate that the unspliced BIC 

transcript serves as a source for miR-155. However, this does not explain the 

specific nuclear localization for BIC using RNA-ISH. Since both cell lines tested 

by Eis at al. (2005) showed a high level of miR-155, it remains unclear if 

premature export of spliced BIC transcripts explains the low miR-155 levels 

observed in Burkitt lymphoma cell lines after induction of BIC (Kluiver et al. 

2007). Based on current literature, the importance of nuclear export in miRNA 

processing regulation remains uncertain.  

Sequence alterations in DNA/RNA  

Alteration of miRNA processing can be caused not only by changes in the 

processing machinery, but also due to sequence alterations in the miRNA genes 

or RNA transcripts. In 15% of patients with chronic lymphocytic leukemia (CLL), 

but not in healthy controls, mutations were found in five of 42 analyzed miRNA 

genes (Calin et al. 2005). Moreover, a germline mutation located in the miR-

15a~16-1 genomic DNA, 7 bp downstream from pre-miR-16-1, resulted in lower 

levels of the mature miRNAs (Calin et al. 2005). However, it remains to be 

established whether this effect is caused by aberrant transcription or processing.  

 Besides mutations, alterations at the miRNA transcript level caused by 

RNA editing can affect miRNA processing (Fig. 3). RNA editing is conducted by 

adenosine deaminases acting on RNA (ADARs) that convert adenosine (A) to 

inosine (I) in dsRNA structures (Bass 2002; Maas et al. 2003; Amariglio and 

Rechavi 2007). The primary transcript of miR-22 was the first miRNA shown to 

undergo A-to-I editing at positions that surround the Drosha cleavage site 

(Luciano et al. 2004). However, the physiological role of miR-22 editing has not 

been revealed yet. Another primary miRNA found to be edited by ADAR1 and 

ADAR2 isoforms in vitro is pri-miR-142 (Yang et al. 2006b). A-to-I editing of pri-

miR-142 resulted in reduced Drosha processing in HEK293 cells. However, no 

accumulation of edited pri-miR-142 was observed in the nucleus. Edited pri-miR-

142 was shown to be cleaved in vitro by Tudor-SN (Yang et al. 2006b), a 
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component of RISC, with ribonuclease activity specific to inosine-containing 

dsRNAs (Scadden 2005). However, the relevance of Tudor-SN for in vivo 

degradation of edited pri-miRNAs is still uncertain. ADAR editing of the pri-

miRNA can also inhibit Dicer cleavage (Kawahara et al. 2007a). Editing of pri-

miR-151 by ADAR1 did not affect pri-miRNA to pre-miRNA processing but caused 

inhibition of pre- to mature miR-151 processing as proven by accumulation of 

edited pre-miR-151. The inhibition at the Dicer cleavage step was investigated 

using synthetic pre-miR-151 in vitro. Although there was efficient binding of the 

Dicer–TRBP complex to pre-miR-151, the cleavage of pre- and release of mature 

form was blocked. Analysis of editing sites revealed that only a small proportion 

of the pri-miR-151 transcripts were edited at a specific site. Moreover, high 

frequency of pre-miR-151 editing has been shown in vitro. Therefore, A-to-I 

editing may occur also after processing of pri- to pre-miR-151 (Kawahara et al. 

2007a). Moreover, ADAR editing may interfere with miRNA function by changing 

the ‘‘seed’’ region, which is crucial for target gene binding. The edited isoform of  

 

 

FIGURE 3. Regulation of miRNA processing by ADAR editing. Adenosine deaminases 
acting on RNA (ADARs) can convert adenosine to inosine in pri-miRNA; conversion of pre-
miRNA is also possible, but has not been proven. ADAR editing can lead to blockade in 
Drosha cleavage of pri-miR-142 and degradation of edited pri-miR-142 by a ribonuclease 
Tudor-SN. ADAR editing can also block Dicer processing of pri-miR-151 causing 
accumulation of edited pre-miR-151. 
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miR-376 inhibited a different set of genes than the normal form supporting this 

concept (Kawahara et al. 2007b).  

 Since ADARs are predominantly nuclear enzymes, their targets are most 

likely pri-miRNAs and pre-miRNAs before nuclear export. However, some ADAR 

isoforms shuttle in and out of the nucleus (Desterro et al. 2003) and may edit 

pre-miRNA in the cytoplasm (Kawahara et al. 2007a). Although it is obvious that 

ADAR editing is a regulated event, there is not much known about the relevance 

of ADAR editing and the fate of edited miRNAs. 

Single nucleotide polymorphisms 

Polymorphisms in a miRNA gene may alter miRNA processing by changing the 

stem–loop structure. Although this is not an active processing regulation 

mechanism, it is evident that SNPs do alter the processing efficiency (Fig. 4). 

The first study that identified SNPs in miRNA precursors was performed by Iwai 

and Naraba (2005). However, no effect was observed for the processing 

efficiency of the two alleles of pre-miR-30c-2. The other nine SNPs that were 

identified in this study have not been tested (Iwai and Naraba 2005). Duan et al. 

(2007) systematically identified 323 SNPs that were associated with 227 human 

miRNA genes. Twelve of these SNPs were found in miRNA precursor sequences, 

and one SNP was located in the miR-125a seed sequence. Transfection of 293T 

cells with vectors expressing one of the two miR-125a precursor variants 

revealed that only one of the variants could be processed into mature miRNA. 

The blockade of the other allele occurred at the pri- to pre-miR-125a processing 

step (Duan et al. 2007). Difference in Drosha/DGCR8 processing was also 

proven for the two alleles of miR-146a (rs2910164), miR-502, miR-510, miR-

890, and miR-892b (Jazdzewski et al. 2008; Sun et al. 2009). Possibly, the SNP 

affects the binding efficiency of the Drosha/DGCR8 complex. The T/G SNP in 

miR-934 altered processing efficiency, strand preference, and the mature miRNA 

sequence (Sun et al. 2009). In human lung cancer tissue, similar pre-miR-196a 

levels were observed for both alleles of the C/T SNP (rs11614913), whereas a 

marked difference was observed for the mature miR-196a levels, indicating an 

alteration in the pre- to mature miRNA processing step (Hu et al. 2008). This 

C
H

A
P

TE
R

 2
 



MicroRNAs, macrocontrol: Regulation of miRNA processing 

 

40 

suggests interference with the nuclear export or the Dicer processing step of 

pre-miR-196a by the SNP. Together, these studies demonstrate that SNPs in 

miRNA genes can significantly affect miRNA processing and in some cases also 

miRNA function. 

 
 
FIGURE 4. Influence of SNPs on miRNA processing. SNP variants of miR-125a, miR-
146a, miR-510, miR-196a, and miR-934 are processed differently due to changes in a 
stem structure or processing sites. Major alleles are situated on the left side; minor alleles 
on the right.  
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CONCLUDING REMARKS 

Recent studies have shown that miRNA biogenesis involves a number of tightly 

regulated processing steps that provide an important regulatory mechanism to 

define cellular levels of specific miRNAs. Therefore, biogenesis of miRNAs should 

not be regarded as a linear, unified mechanism. Based on current studies, 

Drosha, Dicer, and terminal loop binding proteins are the main factors involved 

in miRNA processing regulation. Cellular localization and ADAR editing influence 

processing of certain miRNAs, but their overall impact seems to be limited. 

 It is evident that proteins known to regulate transcription (p53, SMADs) or 

mRNA stability (KSRP) can also influence miRNA processing efficiency and 

therefore have the ability to control cellular levels of miRNAs. In some cases, 

complex networks have been reported to regulate processing of specific miRNAs; 

i.e., processing of miR-16, miR-143, and miR-145 is facilitated by p53 and 

inhibited by ERα in a p68/p72-dependent mechanism, and let-7 processing is 

negatively regulated by Lin28 and positively by KSRP. The terminal loop was 

shown to be an important target structure for regulation of miRNA expression by 

binding to activators and/or inhibitors of the miRNA processing machinery. This 

form of regulation may facilitate a much faster response to cellular changes as 

compared to the transcriptional control of miRNA genes. Moreover, the change 

in expression of one miRNA leads to differential expression of many miRNA 

target genes and may provide not only a quick but also a broad response to 

various stimuli.  

 Although knowledge about regulatory proteins is expanding rapidly, future 

studies should focus on identifying additional regulatory proteins. Human 

homologs of proteins regulating miRNA processing in plants, i.e., SERRATE and 

cap binding proteins CBP80/CBP20 (Lobbes et al. 2006; Yang et al. 2006a; Kim 

et al. 2008; Laubinger et al. 2008) need to be studied to define possible parallel 

regulatory functions in the processing of miRNA. 

 It is evident that several mechanisms regulate efficiency of miRNA 

processing. Nevertheless, for some miRNAs, inconsistencies between primary, 

precursor, and mature miRNA have been observed in certain normal or cancer 
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cells. The mechanisms for these inconsistencies (Table 1) are still unknown. For 

instance, no specific mechanism has been related to the tissue-specific 

expression levels of mature, but not precursor, miR-138 or miR-128 (Table 1; 

Obernosterer et al. 2006; Lee et al. 2008). An overall decrease of miRNA 

expression has been observed in many types of cancer as compared to their 

normal counterparts, and the underlying mechanisms remain unknown (Lu et al. 

2005; Chen and Stallings 2007; Ozen et al. 2008). Inconsistencies between pri- 

and mature miRNAs are most obvious for the so-called polycistronic or miRNA 

clusters and indicate a miRNA-specific regulation. Based on current knowledge, 

it seems likely that the currently known mechanisms that regulate miRNA 

processing are, at least partially, involved in the deregulated miRNA expression 

levels in cancer. However, detailed comparisons between the regulations of 

miRNA processing in cancer cells as compared to their normal counterparts have 

not been performed. Elucidation of putative differences between normal and 

cancer cells and manipulation of these regulatory processes might provide a 

novel approach to restore a normal miRNA profile in cancer cells.  

 

 Undoubtedly, many factors regulating the cellular miRNA levels are still 

unknown. Further unraveling of the mechanisms responsible for regulation of the 

miRNA processing machinery will be an important step in elucidating the 

pathophysiological significance of miRNAs in malignancies and open up new 

venues for treatment. 
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ABSTRACT  

Processing of miRNAs occurs simultaneous with the transcription and splicing of 

their primary transcripts. For the small subset of exonic miRNAs it is unclear if 

the unspliced and/or spliced transcripts are used for miRNA biogenesis. We 

assessed endogenous levels and cellular location of primary transcripts of three 

exonic miRNAs. The ratio between unspliced and spliced transcripts varied 

markedly, i.e. >1 for BIC, <1 for pri-miR-146a and variable for pri-miR-22. 

Endogenous unspliced transcripts were located almost exclusively in the nucleus 

and thus were available for miRNA processing for all three miRNAs. Endogenous 

spliced pri-miRNA transcripts were present both in the nucleus and in the 

cytoplasm and thus were only partly available for miRNA processing. 

Overexpression of constructs containing the 5’ upstream exonic or intronic 

sequence flanking pre-miR-155 resulted in strongly enhanced miR-155 levels, 

indicating that the flanking sequence does not affect processing efficiency. 

Exogenously overexpressed full-length spliced BIC transcripts were present both 

in the nucleus and in the cytoplasm and resulted in enhanced miR-155 levels. 

We conclude that both unspliced and spliced transcripts of exonic miRNAs can be 

used for pre-miRNA cleavage. Splicing and cytoplasmic transport of spliced 

transcripts may present a mechanism to regulate exonic microRNAs levels.  
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INTRODUCTION 

MicroRNAs (miRNAs) are small (~22nt) noncoding RNA molecules that 

negatively regulate gene expression by binding to the 3’untranslated region 

(3’UTR) of their target mRNAs (Bartel, 2004). MiRNAs play an important role in 

cellular processes like apoptosis, proliferation and differentiation. Altered miRNA 

expression profiles have been associated with various diseases including most, if 

not all, types of cancer (Calin et al., 2004). This suggests that regulation of 

miRNA levels is important for normal cellular functioning. Regulation of the 

miRNA levels may include any of the regulatory mechanisms involved in normal 

gene expression, such as transcriptional or epigenetic control of transcription. 

Additionally, miRNA biogenesis is also regulated at the post-transcriptional level 

(reviewed in Slezak-Prochazka et al., 2010). 

 The first step in miRNA processing, i.e. cleavage of the primary   

transcript (pri-miRNA) by the Drosha/DGCR8 complex, is restricted to the 

nucleus (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et 

al., 2004). The miRNA stem-loop structures can be located in introns of protein-

coding or noncoding RNA genes, in exons of noncoding genes or in intergenic 

regions (Kim and Nam, 2006). The vast majority of the human miRNAs are 

located in introns. Approximately 10% of the miRNAs, including miR-155, miR-

146a, miR-22, miR-137, miR-34c and let-7b, reside within exons of noncoding 

genes (Kim and Kim, 2007; Rodriguez et al., 2007; Saini et al., 2008). Current 

knowledge about processing of pri-miRNAs has been obtained mainly for intronic 

or intergenic miRNAs (Ballarino et al., 2009; Janas et al., 2011; Kataoka et al., 

2009; Kim and Kim, 2007; Morlando et al., 2008; Pawlicki and Steitz, 2008). 

Processing of intronic miRNAs occurs co-transcriptionally in cooperation with 

splicing of the primary transcript (Janas et al., 2011; Kataoka et al., 2009; Kim 

and Kim, 2007; Morlando et al., 2008; Pawlicki and Steitz, 2008). The 

Microprocessor complex and the spliceosome are associated in one complex, and 

co-produce precursor miRNAs (pre-miRNAs) and spliced transcripts from the 

unspliced pri-mRNA (Kataoka et al., 2009). Splicing is not required for pri-

miRNA processing (Kim and Kim, 2007), but spliceosome assembly may 

C
H

A
P

TE
R

 3
 



Cellular localization and processing of primary transcripts of exonic micoRNAs 

 

52 

promote release of the pre-miRNA from introns of pri-miRNA (Kataoka et al., 

2009). For exonic miRNAs, pre-miRNA release will disrupt the exon of the pri-

miRNA and affect formation of spliced transcripts. Therefore, it is more likely 

that unspliced pri-miRNA transcripts of exonic miRNAs produce either pre-

miRNAs or spliced transcripts. The processing of exonic miRNAs has not yet 

been studied in detail. 

 One well-known exonic miRNA, miR-155, is processed from the transcript 

of the B-cell integration cluster (BIC) gene, also known as the MIR155 host gene 

(MIR155HG) (Lagos-Quintana et al., 2002). The BIC gene consists of three 

exons separated by long (7.6 and 4kb) introns with the stem-loop pre-miR-155 

sequence located in the third exon (Tam, 2001). MiR-155 is crucial for B-cell 

development and regulation of the immune response (Rodriguez et al., 2007; 

Thai et al., 2007; Vigorito et al., 2007). High miR-155 levels are observed in 

many types of cancer, including B-cell malignancies like Hodgkin, primary 

mediastinal and diffuse large B-cell lymphomas (Kluiver et al., 2005; van den 

Berg et al., 2003). In contrast, very low levels of miR-155 were observed in B 

cell-derived Burkitt lymphoma (Kluiver et al., 2006). Eis et al. showed that 

unspliced BIC is located in the nucleus, whereas spliced BIC is located mainly in 

the cytoplasm in two B-cell lymphoma cell lines that both show high miR-155 

levels (Eis et al., 2005). RNA in situ hybridization in primary cases of Hodgkin 

lymphoma and non-Hodgkin lymphoma with high miR-155 levels revealed a 

strong nuclear staining of BIC and no staining in the cytoplasm (Kluiver et al., 

2006; van den Berg et al., 2003).  

 In this study, we investigated processing of exonic miRNAs, with a main 

focus on miR-155. We determined the levels of endogenous unspliced and 

spliced BIC, pri-miR-22 and pri-miR-146a transcripts. We assessed cellular 

localization of endogenous unspliced and spliced BIC, pri-miR-22 and pri-miR-

146a and showed that unspliced transcripts are located predominantly in the 

nucleus while spliced transcripts are partly transported to the cytoplasm. We 

also showed that the 5’ exonic or intronic flanking sequence of pre-miR-155 

does not alter processing efficiency of exogenous BIC transcripts and that upon 
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overexpression also spliced transcripts are efficiently processed to mature miR-

155. 

RESULTS 

The unspliced/spliced transcript ratio is miRNA-specific in B-cell 

lymphoma 

For exonic miRNAs, such as miR-155, miR-22 and miR-146a, both unspliced and 

spliced transcripts include the complete stem-loop pre-miRNA sequence and 

may serve as the primary miRNA template. To discriminate between unspliced 

and spliced transcripts we designed qRT-PCR primer sets specific for unspliced or 

spliced transcripts as indicated in Fig. 1A. We compared the levels of 

endogenous unspliced and spliced transcripts in twenty B-cell lymphoma cell 

lines with variable miRNA levels.  

 Endogenous miR-155 levels were highly variable in B-cell lymphoma cell 

lines. The difference between the cell line with the lowest (ST486) and the 

highest (OCI-Ly3) miR-155 level was ~500 fold (Fig. 1B). In general, cell lines 

with low miR-155 levels also showed low BIC transcript levels. The levels of 

endogenous unspliced BIC transcripts were 1,5 to 73 fold higher than the levels 

of spliced BIC transcripts in 17 out of 20 cell lines irrespective of the miR-155 

levels (Fig. 1B). In two cell lines, the levels of unspliced and spliced BIC 

transcripts were equal. In L540 cells, the spliced BIC transcript levels were 1,5 

fold higher than the levels of the unspliced BIC transcripts. In the two cells lines 

with the lowest miR-155 levels, i.e. ST486 and Ramos, only the unspliced BIC 

transcript was present. Both unspliced and spliced BIC transcript levels showed 

significant correlation with miR-155 levels resulting in R2 of 0.53. The difference 

observed in levels of unspliced and spliced BIC transcripts did not result in a 

significant difference in the slope of the regression lines.  

 MiR-22 levels were low in all analyzed B-cell lymphoma cell lines (Fig. 1C). 

Pri-miR-22 has four alternative splice variants. Transcript variant 3 was almost 

exclusively detected in our panel of B-cell lymphoma cell lines (data not shown). 

We therefore restricted our subsequent analysis to this splice variant. Spliced 
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pri-miR-22 transcript levels were higher than unspliced pri-miR-22 transcript 

levels in 9, similar in 9 and lower in 2 of the analyzed cell lines (Fig. 1C). The 

spliced/unspliced pri-miR-22 transcript ratio varied from 0.2 in UHO1 to 8 in 

L540 cells. In SU-DHL-4 cells, only spliced pri-miR-22 transcript was present. No 

significant correlation was observed for either spliced or unspliced pri-miR-22 

transcript levels with mature miR-22 levels. This might be caused by marked 

differences in the efficiency of the pri-miR-22 transcript to miR-22 processing, 

differences in the miR-22 stability, factors regulating the level of mature miR-22 

or limiting amounts of factors involved in the biogenesis of miRNAs.  
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FIGURE 1. The unspliced/spliced ratio of pri-miRNA transcripts is miRNA-specific 

in B-cell lymphoma cell lines. (A) Schematic overview of the unspliced and spliced BIC, 

pri-miR-22 and pri-miR-146a transcripts and location of the PCR amplicons specific for 
unspliced, spliced transcripts and total (only for BIC) transcripts. Constructs used for miR-
155 overexpression are also denoted. Short constructs, s-exBIC and s-intBIC, constitute of 
pre-miR-155, ~150nt 3’ flanking sequence from exon 3 and 5’ flanking sequence derived 
from exon 2 (s-exBIC) or intron 2 (s-intBIC) of BIC transcript, fl-exBIC covers full-length 
spliced BIC transcript. Figures are not drawn to scale. (B) The endogenous levels of miR-
155, unspliced and spliced BIC transcripts. In 17 out of 20 cell lines the level of unspliced 
BIC transcript was higher than the level of spliced BIC transcripts. Both spliced and 
unspliced BIC showed a similar significant correlation with miR-155 levels. (C) The 
endogenous levels of miR-22, unspliced and spliced pri-miR-22 transcripts. The 
unspliced/spliced transcript ratio is variable between cell lines and neither of the two 
transcripts shows a significant correlation with the miR-22 levels. (D) The endogenous 
levels of miR-146a, unspliced and spliced pri-miR-146a transcripts. In all tested cell lines, 
levels of spliced pri-miR-146a were much higher than unspliced pri-miR-146a transcripts. 
Both unspliced and spliced pri-miR-146a levels significantly correlate with the miR-146a 
levels. However, the slope of the regression line is significantly higher for spliced pri-miR-
146a. Levels of BIC, pri-miR-22 and pri-miR-146a were normalized to HPRT and levels of 
miR-155, miR-22 and miR-146a were normalized to RNU48. 

  MiR-146a levels varied over a 1000-fold range between B-cell lymphoma 

cell lines with the lowest levels being observed in L540 and the highest levels in 

KARPAS-1106P (Fig. 1D). The levels of spliced pri-miR-146a transcripts were 

higher than unspliced pri-miR-146a transcripts for all cell lines. The 

spliced/unspliced pri-miR-146a transcript ratio varied from 14 to 72 fold. In 

L540 cells only the spliced pri-miR-146a transcript was present. Both unspliced 

and spliced pri-miR-146a transcript levels significantly correlated with miR-146a, 

showing R2 of 0.67 and 0.7, respectively. However, the slopes of the curves 

differ significantly (p<0.0001), due to lower unspliced pri-miR-146a transcript 

levels. 

 Thus, for all three exonic miRNAs, both unspliced and spliced primary 

transcripts are present albeit at a variable ratio. For BIC, the unspliced primary 

transcript is predominant, for pri-miR-146a the spliced primary transcripts is 

predominant, whereas for pri-miR-22 the unspliced/spliced transcript ratio varies 

between cell lines. Levels of the mature miRNAs correlated with the levels of 

both unspliced and spliced pri-miRNA transcripts for miR-155 and miR-146a, but 

not for miR-22.  
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Spliced pri-miRNA transcripts are partly transported to the cytoplasm  

To further examine whether unspliced or spliced pri-miRNA transcripts are 

available for miRNA processing, we determined the subcellular localization of 

unspliced and spliced transcripts of BIC, pri-miR-22 and pri-miR-146a by qRT-

PCR of nuclear and cytoplasmic fractions relative to the total fraction (Fig. 2). 

The pri-miRNA transcript levels in the cytoplasm were normalized to tRNA-Lys, 

which showed similar levels in total and cytoplasmic fraction. The pri-miRNA 

transcript levels in the nucleus were normalized to U3, which showed similar 

levels in total and nuclear fraction. To asses subcellular localization of unspliced 

and spliced BIC transcripts, we selected cell lines with low (L428), intermediate 

(Jiyoye) or high (L540) miR-155 levels (Fig. 1A). The same cell lines were used 

for subcellular localization of pri-miR-22 and pri-miR-146a to allow comparison 

between subcellular distributions of pri-miRNA transcripts.  

 Endogenous unspliced BIC transcripts were located exclusively in the 

nuclear fraction (more than 99%) in all three cell lines (Fig. 2). The fraction of 

spliced BIC transcripts located in the nucleus varied from 74% in L428 to 17% in 

Jiyoye cells and 47% in L540. The levels of the spliced and unspliced transcripts 

in cytoplasm and nucleus relative to their levels in the total fraction are shown in 

Supplementary Fig. 1. The highly abundant unspliced BIC transcripts most likely 

serve as the main endogenous primary miR-155 transcript. The spliced BIC 

transcripts that are located in the cytoplasm are not available for processing to 

miR-155 and the functional role of these cytoplasmic spliced BIC transcripts 

remains unclear. 

 Localization of unspliced pri-miR-22 transcripts was predominantly, but 

not exclusively, nuclear in all three cell lines (Fig. 2 and Supplementary Fig. 1). 

88% in L428, 91% in Jiyoye and 97% in L540 of unspliced pri-miR-22 

transcripts were present in the nucleus. The fraction of spliced pri-miR-22 

transcripts that was present in the nucleus was 81% for L428, 53% for Jiyoye, 

and 50% for L540 cells.  
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FIGURE 2. Cellular localization of unspliced and spliced pri-miRNA transcripts. 
The percentages of spliced and unspliced transcripts of BIC, pri-miR-22 and pri-miR-146a 
were shown in cytoplasmic and nuclear fractions of L428, Jiyoye and L540 cells. For all cell 
lines unspliced transcripts were located almost completely in the nucleus, whereas spliced 
transcripts were also detected in the cytoplasm. Pri-miR-146a was not detectable in L540. 
Transcript levels in the cytoplasm and in the nucleus were calculated relative to the total 
fractions. Average of three independent experiments was presented. P values were 
determined by a Student’s t-test (* p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001, ns 
- not significant). 

  Localization of unspliced pri-miR-146a transcripts was exclusively nuclear 

(above 99%) for both L428 and Jiyoye cells (Fig. 2 and Supplementary Fig. 1). 

In L540 cells, both mature and primary miR-146a transcripts were hardly 

detected, therefore it was not possible to determine the subcellular localization. 

91% of spliced pri-miR-146a transcripts were present in the nucleus in L428 and 

68% in Jiyoye cells. 
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 Thus, part of the spliced BIC, pri-miR-22 and, to a lesser degree, pri-miR-

146a transcripts are transported to the cytoplasm and as such unavailable for 

processing. Unspliced transcripts show an almost exclusive nuclear localization 

for BIC, pri-miR-22 and pri-miR-146a. Since the levels of spliced pri-miR-22 in 

L540 and Jiyoye cells and pri-miR-146a in Jiyoye and L428 were higher than the 

unspliced transcript levels in these cell lines (Fig. 1C and 1D), spliced pri-miR-22 

and pri-miR-146a may still be the predominant miRNA substrate. 

Exogenous spliced BIC can be processed to miR-155.  

For further analysis we focused on miR-155, because previous studies have 

shown conflicting data concerning BIC to miR-155 processing (Kluiver et al., 

2007; Zhang et al., 2008). The upstream pre-miR-155 flanking sequence is 

different in spliced and unspliced BIC transcripts. To determine if this upstream 

sequence affects the processing efficiency, we assessed the levels of miR-155 

induction upon overexpression of BIC from two short fragments of BIC 

containing the stem-loop region, ~150nt 3’ flanking sequence from exon 3 and 

~150nt 5’ flanking sequence derived either from intron 2 (s-intBIC) or from 

exon 2 (s-exBIC) of the BIC transcript (Fig 1A). In addition, we also 

overexpressed the full-length spliced BIC (fl-exBIC) transcript (Fig. 1A). We 

transduced these three BIC constructs into ST486, Ramos and U-HO1, i.e. cells 

that all have low endogenous miR-155 levels. A high expression of BIC was 

induced using either of the constructs (Fig. 3A), albeit at variable levels. 

Transduction with the short exon spanning BIC construct resulted in the highest 

increase and the full-length spliced BIC construct resulted in the lowest increase 

in total BIC transcript levels (Fig. 3A). Interestingly, the level of miR-155 

induction was similar for all three constructs (Fig. 3B), despite the marked 

differences in total BIC levels. These data indicate that the upstream pre-miR-

155 flanking sequence does not modify processing efficiency and suggest that at 

a certain level of primary miRNA transcript, other factors become limiting or 

regulate the level of mature miR-155.  

 Next, we determined the subcellular localization of BIC transcripts in 

Ramos cells transduced with fl-exBIC. In empty vector control cells, endogenous 
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unspliced BIC transcripts showed a predominantly nuclear localization, whereas 

the endogenous spliced BIC transcripts were not detectable (Fig. 3C). Thus, total 

BIC levels can be completely attributed to the unspliced BIC transcript levels. 

Localization of the overexpressed fl-exBIC was both cytoplasmic and nuclear 

(32% versus 68%). Localization of endogenous unspliced BIC transcripts 

remained predominantly nuclear, i.e. similar to the empty vector control. 

Localization of total BIC resembled the pattern of spliced BIC, since the 

exogenous spliced BIC levels were ~100 fold higher than the endogenous 

unspliced BIC levels. Overexpression of fl-exBIC was followed by a strong 

induction of miR-155 (Fig. 3B), indicating that upon overexpression nuclear 

spliced BIC transcripts can also serve as the primary miR-155 transcript.  

 

FIGURE 3. Processing and cellular localization of exogenous BIC transcripts. 
Levels of total BIC (A) and miR-155 (B) upon overexpression of the three constructs and 
empty vector (EV) in ST486, Ramos and U-HO1 cells. For the three BIC overexpression 
constructs, the increase in total BIC was variable and the highest levels were observed for 
short BIC transcript containing exon 2 derived 5’ pre-miR-155 flanking sequence (s-
exBIC). However, miR-155 induction was similar for all BIC overexpression constructs. (C) 
The percentages of spliced, unspliced and total BIC transcripts in nuclear and cytoplasmic 
fractions of Ramos EV and Ramos full-length spliced BIC (fl-exBIC). For both Ramos EV 
and fl-exBIC, unspliced BIC was located predominantly in the nucleus. Spliced BIC was not 
detectable (ND) in Ramos EV. Upon overexpression of the fl-exBIC construct, spliced BIC 
transcripts were partly exported to the cytoplasm. Localization of total BIC was similar to 
the dominant transcript forms, i.e. unspliced BIC for Ramos EV and spliced BIC for Ramos 
fl-exBIC. Transcript levels in the cytoplasm and the nucleus were calculated relative to the 
total fraction. Average of three independent experiments was presented. P value was 
determined by 1-way ANOVA and by a Student’s t-test for cytoplasmic versus nuclear 
localization. For both tests, * p<0.05, ** p<0.01, *** p<0.001, ns - not significant.  
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The unspliced/spliced ratio of BIC transcripts changes upon cellular 

activation  

To investigate whether the ratio between unspliced and spliced BIC transcripts is 

altered upon induction of BIC, we activated three B-cell lymphoma cell lines 

using PMA/Ionomycin. Activation of DG-75, L428 and KM-H2 cells resulted in 3- 

to 13-fold increase in miR-155 levels (Fig. 4A). Induction of unspliced BIC 

transcript levels showed a 1.6 to 5.5 fold increase, whereas spliced BIC 

transcript levels showed a 5.4 to 31 fold increase compared to untreated cells 

(Fig. 4B). Although the unspliced BIC transcript remained the predominant 

transcript, the unspliced/spliced BIC transcript ratio significantly changed in 

favour of the spliced BIC transcript (Fig. 4C). Thus, both processing of unspliced 

BIC transcript to miR-155 and to spliced BIC transcripts are enhanced upon 

activation-induced expression of BIC.  

 

FIGURE 4. Induction of unspliced and spliced BIC transcripts upon cellular 
activation. Fold induction in miR-155 (A), unspliced BIC and spliced BIC transcript (B) 
levels upon PMA/Ionomycin (P/I) treatment. Levels of miR-155 and BIC transcripts in 
untreated cells were averaged and fold induction upon P/I treatment was calculated. In all 
three cell lines, induction of spliced BIC was higher that of unspliced BIC transcripts. (C) 
Unspliced BIC transcripts were predominant in both untreated and P/I-treated cells, 
however unspliced/spliced BIC ratio significantly decreased upon P/I treatment. Sum of 
spliced and unspliced BIC transcript levels was set as 100%. Average of three (DG-75 and 
L428) or four (KM-H2) experiments was presented. P values were determined by a 
Student’s t-test (* p<0.05, ** p<0.01, ns - not significant). 
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DISCUSSION 

Exonic miRNAs constitute a small group of the known human miRNAs. The vast 

majority of exonic miRNAs are located in noncoding RNA genes of which the only 

known function is being a miRNA host gene. In contrast to intronic miRNAs, 

processing of the pri-miRNA transcripts of exonic miRNAs to pre-miRNAs 

interferes with the normal splicing process of the transcript. Exonic miRNAs 

regulate important physiological pathways, i.e. miR-155 and miR-146a are 

crucial regulatory components of the immune response, hematopoiesis and 

carcinogenesis (reviewed in Rusca and Monticelli, 2011; Tili et al., 2009) and 

miR-22 plays a role in carcinogenesis (Alvarez-Diaz et al., 2012; Xu et al., 

2011).  

 In this study, we showed that unspliced pri-miRNA transcripts of exonic 

miRNAs, i.e. miR-155, miR-22 and miR-146a, are located predominantly in the 

nucleus. The spliced transcripts are present both in the nucleus and the 

cytoplasm. Since the first processing step of pri-miRNAs takes place in the 

nucleus (Lee et al., 2002; Yeom et al., 2006), both nuclear unspliced and spliced 

transcripts can serve as pri-miRNA templates. Overexpression constructs 

containing either the exonic 5’ flanking sequence or the intronic 5’ flanking 

sequence of pre-miR-155 both resulted in a marked miR-155 induction. 

Consistent with these findings we also observed a marked induction of miR-155 

upon exogenously overexpressed full-length spliced BIC transcripts. These data 

indicate that the Microprocessor complex can use spliced and unspliced BIC 

transcripts for processing to pre-miR-155.  Since the unspliced BIC transcripts 

are much more abundant and are almost exclusively located in the nucleus, we 

conclude that unspliced nuclear BIC transcripts are the primary template for 

miR-155 processing in B-cell lymphoma. In contrast to pri-miR-155, the spliced 

transcripts are the most abundant form of pri-miR-146a and, for part of the cell 

lines of pri-miR-22. Unspliced pri-miR-146a showed very low levels in all cell 

lines. This might indicate that the unspliced pri-miR-146 is directly used for 

processing to pre-miR-146a or for splicing. The level of spliced pri-miR-146a 

might thus represent the level of pri-miRNA that was not used for miRNA 
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processing. Alternatively, despite the partial cytoplasmic location, the spliced 

transcripts can still be the most important source for the biogenesis of mature 

miR-146a. Overexpression of miRNAs from constructs that do not contain 

introns show very effective processing to mature miRNAs, similar to our results 

using the BIC constructs. This indicates that although splicing enhances 

processing (Kataoka et al., 2009; Morlando et al., 2008), it is not required to 

allow processing to mature miRNAs. Pawlicki et al. showed that overexpressed 

pri-miRNAs that are artificially prematurely released from the transcription site 

accumulate in the nucleoplasm and are not efficiently processed to pre-miRNA 

(Pawlicki and Steitz, 2008; Pawlicki and Steitz, 2009). These studies implicate 

that spliced pri-miRNA transcripts may be less efficient templates for the miRNA 

processing machinery when released from the transcription site. In vitro 

processing of radiolabeled pri-miRNAs using whole-cell extract or 

immunoprecipitated Microprocessor (Han et al., 2004) indicates that presence at 

the transcriptional start site is not required for release of the pre-miRNA. 

Although we do not know if spliced exonic pri-miRNA transcripts are released 

from the transcription start site before miRNA processing, our data show that 

spliced transcripts can be used for miRNA processing.  

 We observed that induction of BIC using three different constructs was 

variable. However, the induction of mature miR-155 was strikingly similar in the 

three cell lines. Thus, induction of higher BIC transcripts levels did not result in 

higher miR-155 levels. This suggests that the miR-155 levels are regulated in 

these cell lines that are characterized by very low endogenous miR-155 levels. 

Notably, the level of miR-155 obtained with these three constructs was still ~10 

fold lower than the highest observed endogenous miR-155 levels (OCI-Ly3 cell 

line). An alternative explanation could be that factors required for miRNA 

biogenesis become limiting and preclude induction of higher levels.  

 For BIC, we demonstrated that part of the spliced transcripts are exported 

to the cytoplasm and are thus not available for processing. Similarly, spliced pri-

miR-22 and to a lesser degree spliced pri-miR-146a are exported to the 

cytoplasm. Alteration of the efficiency of splicing and nuclear export of spliced 

pri-miRNA transcripts may rapidly change the amount of pri-miRNA available for 
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miRNA processing and therefore serve as a mechanism to regulate mature 

miRNA levels. Consistent with this hypothesis, we observed differences in the 

ratio of unspliced to spliced BIC transcript levels upon PMA/Ionomycin 

treatment. Cellular conditions and external stimuli may thus affect exonic miRNA 

levels by inducing changes to the amount of unspliced pri-miRNA used for 

miRNA processing at the expense of the amount of unspliced transcript available 

for splicing.  

 Both unspliced and spliced exonic miRNA transcripts can be used as 

template for miRNA processing. The level and ratio of spliced and unspliced 

transcripts, their cellular location and the processing efficiency together 

determine which form is the most likely endogenous pri-miRNA. For exonic 

miRNA processing studies it is important to assess total transcript levels and not 

only examine either spliced or unspliced transcripts. Conflicting data as 

presented in the current literature concerning the processing efficiency of BIC 

may, at least partially, be explained by differences in the analyzed transcripts 

(Kluiver et al., 2007; Zhang et al., 2008).  

 Many proteins were reported to inhibit or promote miRNA processing by 

binding to stem-loop of pri-miRNA and/or pre-miRNA (reviewed in Slezak-

Prochazka et al., 2010). These proteins have been identified to regulate both 

intronic and exonic miRNA processing. KH-type splicing regulatory protein 

(KSRP) was shown to enhance miR-155 processing in mouse activated 

macrophages by binding to the terminal loop of both BIC transcript and pre-miR-

155 (Ruggiero et al., 2009). Moreover, monocyte chemoattractant protein 

[MCP]-1-induced protein 1 (MCPIP1) was shown to suppress miRNA processing 

of a panel of miRNAs, including miR-155 and miR-146a, by induction of pre-

miRNA terminal loops cleavage (Suzuki et al., 2011). Some of these proteins, 

like KSRP or hnRNP A1, regulate both miRNA and mRNA processing (Gherzi et 

al., 2010; Michlewski et al., 2008; Trabucchi et al., 2009). These, and possibly 

other, regulatory proteins may thus regulate exonic miRNA levels by promoting 

either pre-miRNA cleavage or splicing of exonic pri-miRNA transcripts. 
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 It is unclear whether cytoplasmic spliced transcripts have additional 

functions in the cytoplasm. To date, the only known function of the three 

noncoding genes studied in this paper is being the host gene for the miRNAs. 

Splicing of the transcripts and the subsequent transport to the cytoplasm might 

serve as a mechanism to prevent processing to pre-miRNA (Fig. 5). This is 

supported by the finding that upon inhibition of DGCR8 with shRNA in L1236 

cells we saw a marked induction of the spliced BIC transcript, which resulted in a 

change of the unspliced/spliced BIC transcript ratio from 2.5 to 0.3 (data not 

shown). This indicates that when pre-miRNA processing is inhibited, splicing of 

the unspliced BIC transcript is enhanced. Another possible role of the 

cytoplasmic spliced transcripts is that they may function as competing 

endogenous RNA (ceRNA) transcripts for the mature miRNAs. MiR-155 and miR-

155* sequences are highly complementary and the BIC transcript (MIR155HG) 

is a predicted miR-155 target by the miRanda-mirSVR and PITA algorithms 

(http://www.microrna.org, Betel et al., 2010; 

http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html, Kertesz et al., 

2007). Up to date, various transcripts were shown to function as ceRNA, e.g. 

protein-coding transcripts, pseudogenes, and long noncoding RNAs (Cesana et 

al., 2011; Poliseno et al., 2010; Tay et al., 2011). Spliced pri-miRNA transcripts 

of exonic miRNAs could prevent binding of the mature miRNA to their 

endogenous protein-coding target genes and thereby prevent efficient 

knockdown of the target proteins. This would be a novel mechanism, by which 

cytoplasmic pri-miRNA transcripts function in a negative feedback loop to 

regulate miRNA function.  

 In conclusion, we showed that unspliced BIC, pri-miR-146a and pri-miR-

22 transcripts were predominantly localized in the nucleus, although they were 

not always more abundant than the spliced BIC transcripts. We also showed that 

spliced BIC, pri-miR-146a and pri-miR-22 transcripts are partly localized in the 

cytoplasm and thus not fully available for processing to the mature miRNAs. Pre-

miRNAs and spliced transcripts appear to be two mutually exclusive products of 

unspliced pri-miRNA transcripts of exonic miRNA. Splicing and transport to the 
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cytoplasm may represent a novel mechanism to regulate cellular exonic miRNA 

levels and function. 

 
 
FIGURE 5. Model of processing and function of exonic miRNA primary transcripts. 
The classical miRNA processing and functioning pathway (indicated in dark colors) shows 
that the main pri-miRNA, the unspliced nuclear transcript, is processed to pre-miRNA. Pre-
miRNA is transported to the cytoplasm and further processed to mature miRNA. Mature 
miRNA guides the RNA-induced silencing complex (RISC) to protein-coding miRNA targets 
and inhibits their expression. Unspliced transcripts can also be spliced instead of being 
processed to pre-miRNA. The pre-miRNA stem-loop structure might also be processed 
from the spliced transcripts. Spliced transcript can be transported to the cytoplasm. This 
may represent a mechanism to prevent processing to pre-miRNA.  

MATERIALS AND METHODS 

Cell lines and treatment. Burkitt lymphoma cell lines (Ramos, DG-75, 

NAMALWA, Raji, Jiyoye) were purchased from ATCC (ST486) and DSMZ (other 

cell lines). Diffuse large B-cell lymphoma cell lines (OCI-Ly3, SU-DHL-4, SU-

DHL-6, VER) (Epstein et al., 1978; Tweeddale et al., 1987) were a kind gift of A. 

Epstein (UCLA, CA) (SU-DHL-4 and SU-DHL-6) or were established in our 

laboratory (VER).  Hodgkin lymphoma cell lines (L540, L591, L1236, DEV, KM-

H2, HDLM-2, L428, U-HO1) (Diehl et al., 1982; Diehl et al., 1985; Drexler et al., 

1986; Kanzler et al., 1996; Mader et al., 2007; Schaadt et al., 1980) were 

purchased from DSMZ (L540, KM-H2), were a kind gift of V. Diehl (University of 
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Cologne, Germany) (L591, L1236, HDLM-2, L428) and P. Möller (University of 

Ulm, Germany) (U-HO1) or were established in our laboratory (DEV). Primary 

mediastinal B-cell lymphoma cell lines (KARPAS-1106P, MEDB-1) (Copie-

Bergman et al., 2003) were a kind gift of M. Dyer (University of Leicester, UK). 

Cell lines were cultured at 37°C under an atmosphere containing 5% CO2 in 

Iscove's Modified Dulbecco's Medium (OCI-Ly3) or RPMI-1640 (other cell lines) 

medium (Cambrex Biosciences, Walkersville, USA) supplemented with 

ultraglutamine (2 mM), penicillin (100 U/ml), streptomycin (0.1 mg/ml; 

Cambrex Biosciences), and 5% (L428), 20% (DEV, ST486, OCI-Ly3) or 10% 

(other cell lines) fetal calf serum (Cambrex Biosciences). DG-75, L428 and KM-

H2 cells were treated for 24h with Phorbol 12-myristate 13-acetate 

(PMA)/Ionomycin (both Sigma-Aldrich, Saint Louis, MO) as previously described 

(Kluiver et al., 2007). The PMA/Ionomycin treatment was performed in triplicate 

(DG-75 and L428) or quadruplicate (KM-H2).  

BIC/miR-155 constructs. The pcDNA3.1(+) plasmid containing full-length 

spliced BIC (fl-exBIC) was described previously (Kluiver et al., 2007). The MXW-

PGK-IRES-GFP vector was a kind gift from C-Z. Chen (Stanford University, CA). 

The full-length spliced fl-exBIC insert was subcloned from the pcDNA3.1(+) 

vector to the MXW-PGK-IRES-GFP vector using PmeI (pcDNA3.1(+) vector) and 

HpaI (MXW-PGK-IRES-GFP vector) restriction enzymes. The miR-155 stem-loop 

and ~150nt flanking sequences were amplified from genomic DNA (s-intBIC) or 

cDNA (s-exBIC) using Taq polymerase. Primer sequences used for PCR were as 

follows, 5’-TGTCACCTCCAGCTTTATAACC-3’ (forward, s-intBIC), 5’-

AACCTACCAGAGACCTTACC-3’ (forward, s-exBIC), 5'-

GGCTTTATCATTTTTCAATCT-3 (reverse, s-intBIC and s-exBIC). An XhoI 

restriction site was added to the forward and an EcoRI site to the reverse primer 

to allow efficient cloning. PCR products were cloned to the retroviral MXW-PGK-

IRES-GFP vector using standard laboratory procedures. The inserts were 

sequenced to confirm the correct sequences.  
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Retroviral transduction. To generate retroviral particles, Phoenix-Ampho 

packaging cells  (Swift et al., 2001) were CaPO4 transfected with 37,5μg of 

MXW-PGK-IRES-GFP constructs (empty vector or vector containing one of the 

BIC constructs) in T75 flasks. Viral particles were harvested after two days and 

concentrated with Retro-X concentrator (Clontech, Saint-Germain-en-Laye, 

France) according to the manufacturer’s protocol. Target cells were transduced 

with the virus by spinning at 2,000rpm for 2hrs. Cells transduced with retroviral 

vectors were sorted for GFP using MoFlo sorter (Dako cytomation). 

RNA isolation from total, nuclear and cytoplasmic fractions. Nuclear and 

cytoplasmic fractions were separated by adding 200µl of lysis buffer (140mM 

NaCl, 1.5mM MgCl2, 10mM Tris-HCl pH8.0, 1mM DTT, 0.5% Nonidet P-40) to 

pellets of ~4 million cells, followed by 5min incubation on ice and centrifugation 

for 3min at 4°C and 100xg. The supernatant was harvested as the cytoplasmic 

fraction. The pellet containing the nuclei was washed twice with lysis buffer. 1ml 

of Qiazol (Qiagen, Carlsbad, USA) was added to the ~200µl of cytoplasmic 

fraction, to the nuclear pellet and to the total cell pellet.  

Quantitative RT-PCR. Total RNA was isolated using Trizol (Invitrogen, 

Carlsbad, USA) according to the manufacturer’s protocol for the cell lines. RNA 

samples were treated with DNase (Ambion, Foster City, CA). For RNA isolation 

from cytoplamic/nuclear/total fractions, we used the miRNeasy kit (Qiagen) 

including a DNase treatment (Qiagen). The RNA concentration was measured 

with a NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific Inc., 

Waltham, USA) and RNA integrity was evaluated by 1% agarose electrophoresis. 

cDNA was synthesized using 500ng input RNA, SuperScript II and random 

primers according to the manufacturers protocol (Invitrogen). The qPCR reaction 

contained SYBRgreen mix (Applied Biosystems, Foster City, USA), 300nM 

primers, and 1ng of cDNA in a total volume of 10µl. Levels of spliced, unspliced 

and total BIC as well as spliced and unspliced pri-miR-22, pri-miR-146a were 

normalized to HPRT. Transcript levels in nuclear fraction were normalized to U3 

and in cytoplasmic fraction to tRNA-Lys. Normalized pri-miRNA transcript levels 
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in total fractions were set as 100% and percentage of pri-miRNA transcripts in 

the cytoplasm and in the nucleus were calculated relative to the total fraction. 

Percentages of each transcript in the cytoplasm and in the nucleus were added 

and recalculated to sum up to 100%. For qRT-PCR, we used  the following 

primer sequences: for unspliced BIC, 5’- AGCTTTATAACCGCATGTGCATAC-3’ 

(forward) and 5’- CAGATTTCCCCTTCCTGGTTT-3’ (reverse); for total BIC, 5’- 

AAATTCTTTATGCCTCATCCTCTGA-3’ (forward) and 5’-

AGGCAAAAACCCCTATCACGAT-3’ (reverse); for unspliced pri-miR-22, 5’-

CTGCTCAGATCTTTCCCATTTTC-3’ (forward) and 5’-CCAGGTGAGGGCGTGAGA-3’ 

(reversed); for spliced pri-miR-22, 5’-GGGCTGATCACTGAACTCACATT-3’ 

(forward) and 5’-TGAGGGCGTGAGAGGAACA-3’ (reversed), for unspliced pri-

miR-146a, 5’-ATTTACCAGGCTTTTCACTCTTGTATT-3’ (forward) and 

5’-GGCTTTTCAGAGATGGTGCAA-3’ (reverse); for spliced pri-miR-146a, 

5’-GACAGGAGACAGTAGCACAACGA-3’ (forward) and 

5’-CAGCCAGCGAGCTCCTAAAA-3’ (reverse); primers for spliced BIC, HPRT, 

tRNA-Lys and U3 were described previously (Specht et al., 2001;Taft et al., 

2010;van den Berg et al., 2003). Localization of unspliced or spliced transcript-

specific qRT-PCR products are indicated in Fig. 2A. qRT-PCR for miR-155, miR-

22, miR-146a and RNU48 was performed using miRNA qRT-PCR assays (Applied 

Biosystems, Foster City, USA) as described previously (Gibcus et al., 2009). 

Reverse transcription (RT) primers specific for a miRNA and RNU48 (control) 

were multiplexed in 15µl RT reactions containing 1µl of each RT primer. The 

miRNA levels were normalized to the RNU48 levels. Mean cycle threshold (Ct) 

values for all genes were quantified with the SDS software (version 2.1). 

Relative expression levels were calculated as 2-∆Ct. 
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SUPPLEMENTARY FIGURES 

 

SUPPLEMENTARY FIGURE 1. Levels of unspliced and spliced pri-miRNA 
transcripts in the cytoplasm and in the nucleus. (A) Unspliced BIC transcripts showed 
significantly higher levels in the nucleus than spliced BIC transcripts and lower levels in the 
cytoplasm. (B) Unspliced pri-miR-22 transcripts were more abundant in the nucleus than 
spliced pri-miR-22 and less abundant in the cytoplasm of Jiyoye and L540 cells. (C) 
Unspliced pri-miR-146a transcripts showed significantly higher levels than spliced pri-miR-
146a in the nucleus for Jiyoye cells. In the cytoplasm lower levels of unspliced pri-miR-
146a were observed compared to levels of spliced transcript for both L428 and Jiyoye 
cells. Levels of pri-miRNA transcripts in the nucleus or the cytoplasm were calculated 
relative to their levels in the total fraction and corrected for the amount of RNA per cell. 
Significance was calculated using 2-way ANOVA and Bonferroni posttest (* p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001, ns - not significant). 
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ABSTRACT 

The oncogenic miR-17~92 cluster contains six miRNAs (miR-17, miR-18a, miR-

19a, miR-20a, miR-19b and miR-92a) that are expressed at variable levels in 

different normal and malignant cell types. We determined the level of the 

primary miR-17~92 transcript, C13ORF25, and the expression pattern of the six 

mature miRNAs in three B-cell subsets, 117 non-Hodgkin lymphoma (NHL) cases 

and 21 NHL cell lines. Within the normal B-cell subsets, significantly higher 

C13ORF25 levels were observed for naïve B cells compared to germinal center B 

cells. In the NHL cases and cell lines, BL showed the highest C13ORF25 levels. 

Among mature miRNAs, miR-92a levels were most abundant in the B-cell 

subsets, in the MCL, BL and CLL cases and all NHL cell lines. In DLBCL cases the 

miR-19b levels were much higher than the miR-92a levels. Comparison of the 

levels of the six mature miR-17~92 miRNAs between the NHL cases and their 

normal B-cell counterparts indicated the highest induction of miR-19b in cases 

and cell lines of the four NHL subtypes. We conclude that in normal B cells, CLL, 

MCL and BL cases miR-92a is the most abundant miRNA of the C13ORF25 

transcript, whereas in DLBCL miR-19b showed the highest expression levels. The 

highest induction in NHL was observed for miR-19b consistent with its known 

oncogenic role.  
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INTRODUCTION 

MicroRNAs (miRNA) are a class of noncoding RNAs that are processed from 

longer endogenous primary transcripts (pri-miRNA). Each mature miRNA can 

target multiple protein-coding transcripts based on limited sequence homology, 

which can lead to a block in translation or to mRNA degradation. Targeting 

depends on the degree of sequence complementarity between the miRNA and 

target gene. Especially the seed region, i.e. nucleotide 2-7 at the 5’end of the 

miRNA, has been reported to be crucial for effective targeting. Several miRNAs 

are organized into so-called polycistrons that contain multiple miRNA stem loop 

structures in a single primary transcript. Individual miRNAs within such 

polycistronic transcripts contain the same or highly similar seed sequences in a 

proportion of miRNAs. Moreover, shared seed homology can also be observed 

between miRNAs of different or related polycistronic miRNAs (Lewis et al., 

2005). These miRNA seed family members are thought to target overlapping 

sets of genes. 

 Altered expression of miRNAs has been shown in many cancer types and 

miRNAs are located within genomic regions that show recurrent chromosomal 

aberrations in cancer (Klein et al., 2010). Moreover, several animal models 

support a crucial role for miRNAs in tumorigenesis (Li et al., 2012). A rapidly 

increasing number of miRNAs that are involved in many cancer related cellular 

processes, e.g. cell growth, cell death and angiogenesis, have been identified 

supporting a role for miRNAs in tumorigenesis (O'Donnell et al., 2005).  

 One well-known oncogenic polycistron is the miR-17~92 host gene, also 

known as C13ORF25 or Oncomir-1. C13ORF25 is located at 13q31-32 and 

contains six miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-

92a). Each of these miRNAs has one or more seed family member in the 

C13ORF25 gene or in one of the two other homologous miRNA clusters (Tanzer 

and Stadler, 2004), i.e. the miR-106a~363 cluster on chromosome X and the 

miR-106b~25 cluster on chromosome 7. Individual miRNAs from the miR-17~92 

cluster have been shown to play a role in various cellular processes such as 

proliferation (Hayashita et al., 2005) and angiogenesis (Dews et al., 2006) and 
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indicate a role in cancer development. Several members of the miR-17~92 

cluster are overexpressed in B-cell lymphoma (Humphreys et al., 2012; 

Tsuchida et al., 2011) and miR-17~92 has been shown to be the target of the 

13q31-32 amplification in diffuse large B-cell lymphoma (DLBCL) (Ota et al., 

2004) and mantle cell lymphoma (MCL) (Salaverria et al., 2007). Further proof 

that members of the miR-17~92 cluster have oncogenic potential was obtained 

from studies in a MYC mouse model in which expression of miR-17~92 

accelerated lymphomagenesis (He et al., 2005). Besides overexpression induced 

by amplification of the 13q31-32 region, C13ORF25 was also shown to be 

upregulated by MYC (Chang et al., 2008). E2F1, a well known MYC target 

(Matsumura et al., 2003), was targeted by two of the C13ORF25 miRNAs, i.e. 

miR-17-5p and miR-20a (O'Donnell et al., 2005). This indicated a complex 

network between MYC, the E2F family, miR-17-5p and miR-20a (Ji et al., 2011). 

MiR-19a and miR-19b have been shown to be the major oncogenic components 

in the Eµ-myc transgenic mouse model of B-cell lymphoma, this was at least 

partly due to the repression of the tumor suppressor Phosphatase and tensin 

homolog (PTEN) (Mu et al., 2009) 

 The expression of individual members of polycistrons, including 

C13ORF25, has been studied in leukemia cell lines (Yu et al., 2006) and 

revealed marked differences between levels of miRNAs derived from the same 

polycistrons, suggesting variation in processing and/or stability of the individual 

miRNAs. Remarkably, in solid tumors (Li et al., 2012; Tsuchida et al., 2011) as 

well as in lymphoma (Li et al., 2012; Venturini et al., 2007), often only a single 

miRNA or a subset of the miRNAs of the miR-17~92 cluster are differentially 

expressed. 

 In this study, we determined the relative abundance of the six miRNAs of 

the C13ORF25 polycistron in a NHL cohort (n=117) including Burkitt lymphoma 

(BL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and 

diffuse large B-cell lymphoma (DLBCL). The aim of this study is to analyze the 

expression patterns and to determine possible differences in these patterns in B-

cell lymphoma in comparison to normal B-cell subsets and between NHL 

subtypes. 
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RESULTS 

Levels of C13ORF25 vary in B-cell NHL 

C13ORF25 levels were determined by qRT-PCR in normal B-cell subsets, in 117 

B-cell NHL samples, including 20 MCL, 19 BL, 50 DLBCL and 28 CLL cases, and 

in 21 B-cell NHL-derived cell lines. Within the normal B-cell subsets, a 

significantly higher C13ORF25 level was observed for naïve B cells compared to 

GC B cells (p<0.05) (Fig. 1A). C13ORF25 expression within the 117 NHL 

subtypes revealed marked differences between the four NHL subtypes (Fig. 1B). 

The levels were the highest in BL and the lowest in CLL (9 fold difference) with 

marked differences in expression levels between individual cases of each NHL 

subtype. The BL cases showed a significantly higher C13ORF25 level compared 

to CLL (p<0.001) and MCL (p<0.01). We also observed a significant difference 

between DLBCL and CLL (p<0.001). The overall pattern observed in the NHL cell 

lines was similar to the NHL cases, but the differences between NHL subtypes 

were not significant (Fig. 1C) probably due to smaller group sizes. The BL cell 

lines showed the highest levels of C13ORF25, followed by MCL and CLL cell lines, 

whereas DLBCL cell lines had the lowest levels. 

Different levels of the miR-17~92 cluster members in B-cell NHL  

We next studied the levels of the six individual members of the C13ORF25 

cluster, i.e. miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-92a. Each 

B-cell subset showed a similar pattern with the highest level observed for miR-

92a (up to 60% of the total of all miR-17~92 members together) and the lowest 

levels for miR-18a and miR-19b (less than 1%) (Fig. 2A). In all three B-cell 

subsets miR-92a levels were significantly higher than the levels of the other 

miRNAs (p< 0.01). The NHL cases also had significant differences in the levels of 

each of the six miR-17~92 cluster members. For MCL, BL and CLL, miR-92a was 

the most abundant miRNA (60-80%) followed by miR-19b (10-30%). In DLBCL, 

miR-19b was most abundant (~60%), whereas miR-92a levels were much lower 

(<20%), in the same range as miR-20a and miR-19a. 
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FIGURE 1. Expression levels of C13ORF25 in normal and malignant B cells. (A) The 
normal B-cell subsets showed a significant difference in the primary miR-17~92 transcript 
levels only between naïve and GC B-cell subsets. (B) The B-cell malignancies showed 
significantly different C13ORF25 levels that were the highest in BL and the lowest in CLL. 
C13ORF25 levels were normalized to an external common calibrator using a comparative 
threshold cycle method to allow comparison of the levels between the four B-cell 
malignancies. (C) In the BL cell lines, the levels of C13ORF25 were significantly higher 
compared to the DLBCL cell lines. P values were determined using a Kruskal-Wallis test. 
(*p<0.05, **p<0.01, ***p<0.001) 

 

FIGURE 2. Expression patterns of miR-17~92 miRNAs in B cells and NHL. (A) In 
the normal B-cell subsets miR-92a levels are significantly higher as compared to the levels 
of the five other miRNAs. (B) The B-cell malignancies MCL, BL and CLL showed the highest 

levels of miR-92a, whereas in DLBCL a higher level was observed for miR-19b. (C) The cell 
lines also showed significant differences within the miR-17~92 cluster with the highest 
levels for miR-92a. P values were determined using a Kruskal-Wallis test.  
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The cell lines derived from the four NHL subsets showed similar expression 

patterns, with miR-92a being the most abundant cluster member (45-73%). 

MiR-19b was the second most abundant in BL and DLBCL (~21%). In MCL, miR-

19b and miR-20a levels were similar (~22%) and were the second/third most 

abundant miRNAs in MCL. In CLL, four of the five remaining miRNAs showed 

similar low levels (3-8%). 

 We next studied the correlation between the levels of the six mature 

miRNAs and the C13ORF25 levels for all NHL cases and cell lines. In the NHL 

cases (Fig. 3A), BL cases showed a significant correlation for five of the six 

miRNAs, i.e. miR-18a (r=0.50, p=0.03), miR-19a (r=0.50, p=0.03), miR-20a 

(r=0.55, p=0.01), miR-19b (r=0,92; p<0.0001) and miR-92a (r=0.70, 

p=0.0008). Correlations for the other NHL subtypes were less pronounced, with 

a significant association observed for miR-92a in MCL, miR-20a in DLBCL, miR-

17 and miR-19a in CLL. In the NHL cell lines (Fig. 3B) only two significant 

associations were observed, which is probably due to the lower number of cell 

lines studied. Both significant associations were observed in BL cell lines, i.e. 

miR-19b (r=0.93, p=0.007) and miR-92a (r=0.82, p=0.003). 

 A possible explanation for the marked differences in expression of 

individual cluster members might be caused by differences in efficiency of the 

qRT-PCR procedure. Therefore, we tested the efficiency of the Taqman miRNA 

assays on serial dilutions of cDNA from the BL-derived CA46 cell line that had a 

relative high expression level of all six cluster members. The efficiency ranged 

from 103% to 109% (Supplementary Fig. 1), with the highest efficiency for miR-

17 and the lowest efficiency for both miR-18a and miR-92a. Thus, based on 

these efficiencies it is highly unlikely that the high miR-92a levels are caused by 

efficiency differences in the qRT-PCR.  

 A second explanation for the observed differences might be a high or 

variable expression of the homologous pri-miR-106a~363 transcript that 

contains two precursor sequences that are highly homologous to the C13ORF25 

precursors of miR-92a and miR-19b and result in identical mature miR-92a and 

miR-19b. To compare both transcripts, qRT-PCR was performed on 7 MCL, 7 BL, 

7 DLBCL and 5 CLL cases. In comparison to the high expression levels of 
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C13ORF25, the levels of pri-miR-106a~363 were much lower (range 4 to 20 

fold) (Supplementary Fig. 2). This indicates that it is unlikely that the high levels 

of miR-92a and miR-19b in comparison to the other members of the C13ORF25 

cluster can be explained by expression of the homologous pri-miR-106~363 

cluster. 

 
FIGURE 3. Correlation of C13ORF25 levels with the levels of the six individual 
miRNAs. (A) In the NHL cases correlations were seen in each of the four NHL subtypes. In 
MCL and DLBCL, miR-92a showed a significant correlation with C13ORF25 levels. In BL a 
significant correlation was seen for five out of the six miRNAs whereas in CLL miR-17 and 
miR-19a levels showed significant correlations with C13ORF25 levels. (B) In the NHL cell 
lines only two significant correlations were observed, i.e. for miR-19b and miR-92a in the 
BL cell lines. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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 A third possibility is that factors influencing the processing efficiency or 

stability of the individual miRNAs cause differences in mature miRNA levels. KH-

type splicing regulatory protein (KSRP) and the RNA binding protein 

heterogeneous nuclear ribonucleoprotein A1 (HnRNP A1) have been reported to 

regulate processing of miR-20a and miR-18a, respectively. To identify a possible 

relation between KSRP levels and the levels of miR-20a, we performed qRT-PCR 

on 3 MCL, 12 DLBCL, 6 BL, 9 CLL. No relation was observed between KSRP 

levels and the mature miR-20a levels (data not shown). Immunohistochemical 

staining of HnRNP A1 in NHL cases showed no difference in expression between 

tumors with high or low miR-18a levels (data not shown). 

Fold induction levels in NHL subtypes  

To determine whether the levels of the members of the miR-17~92 cluster are 

deregulated in NHL we studied the fold induction of the miR-17~92 cluster 

members for each NHL subtype in relation to their normal B-cell counterparts 

(Fig. 4). The levels of all miR-17~92 cluster members were increased compared 

to their normal counter parts albeit at variable levels. The strongest fold 

increases were observed for miR-19b in all four NHL subtypes. For NHL cases 

the fold induction for miR-19b ranged from 10-fold for CLL compared to memory 

B cells to 415-fold for MCL compared to naïve B cells. For the cell lines the fold 

increase ranged from 746-fold for CLL compared to memory B cells, to 1344-fold 

for DLBCL compared to GC B cells. For the five other members of the miR-

17~92 cluster the fold increase in comparison to normal B cells ranged from 1 to 

21 fold for the NHL cases and from 5 to 643 fold for the cell lines. Despite the 

marked high levels of miR-92a, there was no apparent fold increase as 

compared to normal B cell subsets. Thus, miR-19b is the most pronounced 

upregulated member of the miR-17~92 cluster in NHL. 
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FIGURE 4. Fold induction levels in NHL subtypes. Levels of the mature miRNAs in the 
NHL cases are given relative to the levels of the mature miRNAs in their bormal B-cell 
counterparts.  The cases all showed a significant fold increase in the expression levels of 
miR-19b (p<0.001). The cell lines also showed a significant fold increase in the expression 
of miR-19b (p<0.05). P values were determined using a Kruskal-Wallis test. 

DISCUSSION 

In this study we analyzed the expression pattern of the 6 miRNAs that are 

processed from the noncoding C13ORF25 transcript in NHL. We showed that 

normal B cells and each of the four NHL subtypes have a distinct expression 

pattern for the six miRNAs. MiR-92a was the most abundant miRNA in the 

normal B-cell subsets and three of the four NHL subtypes, whereas miR-19b was 

the most abundant cluster member in DLBCL. In comparison to their normal B 

cell counterparts, all NHL subtypes showed the strongest fold increase for the 

oncogenic miR-19b. 

 MYC and 13q31-32 amplification are two well known mechanisms to 

induce C13ORF25 in NHL (Navarro et al., 2009; O'Donnell et al., 2005; Ota et 

al., 2004; Tagawa et al., 2007). We observed significantly different C13ORF25 

levels in each of the four NHL subtypes. BL cases showed the highest C13ORF25 

levels, which is consistent with the genetic hallmark of BL; a translocation of the 

MYC locus to one of the immunoglobulin loci. The variations in C13ORF25 levels 

observed between and within each NHL subtype are most likely caused by 
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differences in MYC levels and/or the presence of 13q31-32 amplifications in 

individual cases.  

 The most abundant miR-17~92 cluster members in B cells and NHL were 

miR-92a and miR-19b. The miR-106a~363 cluster contains miRNAs that are 

identical to miR-19b and miR-92a derived from the miR-17~92 cluster (Landais 

et al., 2007). In the NHL cases the level of C13ORF25 was always much higher 

than the level of pri-miR-106a~363. Thus, despite the presence of a homologue 

cluster that also contains miR-19b and miR-92a, it is unlikely that the higher 

miR-92a and miR-19b levels in comparison to the four other C13ORF25 

members can be explained by co-expression of the pri-miR-106a~363 cluster. 

We next examined the correlation between the primary miRNA transcript and 

the mature miRNAs to assess possible differences in the biogenesis or stability of 

individual miRNAs. BL showed a good correlation between C13ORF25 and five of 

the six cluster members, in the other NHL subtypes the correlation was less 

obvious. A poor correlation between primary transcript and mature miRNAs has 

been reported for miR-138 in murine brain and murine neuroblastoma cell line 

N2A (Obernosterer et al., 2006), let-7 in neural cell specification (Wulczyn et al., 

2007) and miR-143 and miR-145 in colorectal adenocarcionoma (Michael et al., 

2003). These studies indicate that the levels of primary transcripts do not 

necessarily correlate with the levels of mature miRNAs. 

 Two RNA binding proteins, i.e. KSRP and hnRNP A1, have been shown to 

be involved in biogenesis of certain members of the miR-17~92 cluster. HnRNP 

A1 facilitates processing of miRNA-18a (Guil and Caceres, 2007) and KSRP 

enhances biogenesis of a group of miRNAs including miR-20a and miR-106a 

(Garcia-Mayoral et al., 2007; Trabucchi et al., 2009). We observed no difference 

in hnRNP A1 staining intensity between tumors with high and low miR-18a 

levels, indicating that differences in miR-18a levels are not likely due to 

differences in hnRNP A1 expression. This might in part be caused by the overall 

low miR-18a levels observed in NHL. Since there was no antibody available that 

showed a good staining pattern on FFPE tissue sections, we analyzed KRSP by 

qRT-PCR. KRSP levels showed no relationship to miR-20a expression on a 

selection of the NHL cases with variable miR-20a levels. There are currently no 
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known factors that affect biogenesis of miR-19a, miR-19b or miR-92a. Chaulk et 

al. showed that the tertiary structure of the miR-17~92 transcript in vitro is 

organized in such a way that the miR-92a and miR-19b stem-loops are 

internalized making them less accessible and thus less efficiently processed 

(Chaulk et al., 2011). It would be interesting to analyze the structure of this 

primary transcript in B cells or in NHL cell lines to establish if in this cell type the 

miR-92a and miR-19b stem-loops are more accessible for processing. Moreover, 

it may be speculated that despite lower pri-miR-106a~363 levels, accessibility of 

miR-19b and miR-92a is much better in this transcript, and that a substantial 

proportion of the mature miR-19b and miR-92a miRNAs are derived from this 

transcript despite its lower levels.  

 We observed that miR-92a was the most abundant miRNA in the B-cell 

subsets, the MCL, BL and CLL cases and in the NHL cell lines. MiR-19b usually 

was the second most abundant miRNA in the NHL cases and cell lines. In 

contrast to the MCL, BL and CLL cases, the DLBCL cases showed the highest 

levels for miR-19b. Analysis of the individual DLBCL cases showed that in 49 of 

the 50 cases the miR-19b levels were indeed higher than the miR-92a levels 

(Supplementary Fig. 3). MiR-92a has been shown to be involved in 

carcinogenesis by suppression of angiogenesis by targeting Integrin α5 (ITGA5) 

(Bonauer et al., 2009) and by affecting cellular proliferation in colon and 

hepatocellular carcinoma cell lines (Tsuchida et al., 2011).  MiR-92a is 

overexpressed in a wide variety of cancers, but a role in B-cell lymphomagenesis 

is less evident. MiR-92a is usually not among the consistently overexpressed 

miRNAs in profiling studies in NHL (Lawrie et al., 2009; Malumbres et al., 2009; 

Roehle et al., 2008). He et al. demonstrated that overexpression of a truncated 

miR-17~19b cluster, thus without miR-92a, cooperates with MYC to promote 

lymphomagenesis in mouse models (He et al., 2005). This indicates that miR-

92a is not essential for the oncogenic effect of the miR-17~92 cluster. We 

observed no specific induction of miR-92a in comparison to their normal B cell 

counterparts, despite the high miR-92a levels observed in the majority of the 

NHL cases. Thus, it is unlikely that miR-92a plays a main role in NHL 

lymphomagenesis. 
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 Finally, we assessed the putative oncogenic changes of the mature miRNA 

levels in relation to their normal counterparts. For all four NHL subtypes, miR-

19b showed the highest fold increase ranging from 10- to ~1300-fold. It is 

unclear why only miR-19b and not the closely related miR-19a is induced in the 

NHL cases and cell lines. This might indicate that targets specific for miR-19b 

play a role in lymphomagenesis. MiR-19b, together with miR-19a, accelerated 

the MYC-induced lymphomagenesis in transgenic mice models (Mu et al., 2009; 

Olive et al., 2009). MiR-19a and miR-19b have also been shown to be 

significantly upregulated in Cyclin D1-positive MCL patients (Iqbal et al., 2012).  

Proven targets of miR-19b include protein kinase, AMP-activated, alpha 1 

catalytic subunit (Prkaa1), protein phosphatase 2 (PP2a),  Bcl-2-like protein 11 

(Bim) (Mavrakis et al., 2010), pro-angiogenic protein FGFR2 (Yin et al., 2012) 

and the tumor suppressor gene PTEN (Takakura et al., 2008). PTEN negatively 

regulates the phosphatidylinosiol-3-kinase (PI3K) pathway (Takakura et al., 

2008) and activation of the PI3K pathway is a key element for the malignant 

transformation of MYC expressing germinal center B cells in a BL mouse model 

(Sander et al., 2012). Overall, there is strong evidence that miR-19a and miR-

19b are important oncogenic miRNAs in NHL pathogenesis. The mechanism of 

specific upregulation of miR-19b and not the other members of the miR-17-92 

cluster in NHL compared to normal B cells is not yet known. It is possible that 

miR-19b processing is regulated by an unknown regulatory protein that is 

differential expressed in NHL in comparison to B cells.   

 In conclusion, we showed that miR-92a is the most abundant miRNA of 

the miR-17~92 cluster, in normal B cells, CLL, MCL and BL cases. In DLBCL, 

miR-19b showed the highest levels, and miR-92a was the second most abundant 

miRNA. Despite high miR-92a levels, we observed the highest fold induction for 

miR-19b in all four NHL subtypes in comparison to their normal B-cell 

counterparts, consistent with its known oncogenic role. 

MATERIALS AND METHODS 

B-cell subsets. B cells were purified from human tonsils obtained from children 

undergoing routine tonsillectomy as previously described (Koopman et al., 
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1994). Briefly, mononuclear cells were isolated by Ficoll-Isopaque density 

gradient centrifugation. Monocytes and T cells were depleted by plastic 

adherence and sheep red blood cell (SRBC) rosetting, respectively. The total B 

cell subset was >97% pure as determined by FACS analyses. To sort the 

different B cell sub populations (naive B cells, memory B cells and GC B cells), 

cells were stained with FITC-conjugated anti-human IgD, PE-conjugated anti-

human CD20, and allophycocyanin-conjugated anti-CD38 and sorted using a 

FACS aria (BD Biosciences): naive B cells (CD20+IgD+,CD38-), germinal center 

B cells (CD20+IgD-CD38+) and memory B cells (CD20+IgD-CD38-). 

Patient samples. Formaldehyde Fixed-Paraffin Embedded (FFPE) tissue was 

obtained from 20 cases of MCL, 19 cases of BL, 50 cases of primary stage I and 

II nodal and extranodal DLBCL and 28 cases of CLL from the tissue bank at the 

Department of Pathology, University Medical Center Groningen and the tissue 

bank at the Department of Pathology, The Netherlands Cancer Institute, 

Amsterdam (a gift from Dr. D. de Jong). Each case history was reviewed by a 

hematopathologist and diagnoses were established according to the criteria of 

the World Health Organization classification. Only cases containing a tumor cell 

percentage of >80% were used for RNA isolation and qRT-PCR. All protocols for 

obtaining and studying human tissues and cells were approved by the 

institution’s review board for human subject research. 

 

Cell lines. 21 cell lines were used for the analysis, including 4 MCL cell lines 

(HBL-2, JEKO-1, GRANTA-519 and UPN-1), 7 BL cell lines (Raji, CA46, BL65, 

NAMALWA, DG75, Jiyoye and Ramos), 6 DLBCL cell lines (ROSE, VER, SUDHL6, 

SUDHL4, OCI-Ly3 and SCHI) and 4 CLL cell lines (EHEB, MEC-1, MEC-2 and 

JVM3). The mantle cell lines UPN-1 and HBL-2 were obtained from Dr. W. 

Klapper (Kiel, Germany); JEKO-1, Granta-519 and CLL cell lines JVM-3, MEC-1 

and MEC-2 were obtained from Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH (DSMZ, Branschweig, Germany). The Burkitt cell lines DG75 

and CA46 were obtained from the American type culture collection (ATCC) (LGC 
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standards, Middlesex, UK). The DLBCL cell lines SU-DHL-4 and SU-DHL-6 were 

obtained from A. Epstein (UCLA, Los Angeles, CA).  

 Cell lines were propagated in DMEM medium containing 10% FBS (Granta-

519), IMDM medium containing 20% (OCI-Ly3) or 10% (MEC-1, MEC-2) FBS or 

RPMI-1640 medium containing 10% FBS (other cell lines) (Cambrex Biosciences, 

Walkersville, USA) supplemented with ultraglutamine (2mM), penicillin 

(100U/ml), streptomycin (0.1 mg/ml; Cambrex Biosciences). Cell lines were 

cultured at 37°C under an atmosphere containing 5% CO2.  

 

Quantitative RT-PCR. RNA isolation from FFPE material of DLBCL, CLL, BL and 

MCL cases was performed as described previously (Robertus et al., 2009). All 

samples were DNAse treated using Turbo DNA free kit (Ambion, USA) according 

to the manufacturer’s instructions. Efficiency of the DNase procedure was 

checked using a multiplex PCR with 5 primer sets specific for different genomic 

DNA loci and subsequent analysis on a 1.5% agarose gel. No PCR products were 

seen confirming the effectiveness of the DNAse treatment. RNA concentrations 

were measured on a NanoDrop® ND-1000 Spectrophotometer (Nano Drop 

Technologies, Wilmington, Delaware, USA). 

 For miRNA-specific cDNA synthesis we used 5ng total RNA, the Taqman 

MicroRNA Reverse Transcription Kit and Taqman miRNA assays for six mature 

miRNAs of the C13ORF25 cluster. The qPCR reaction was carried out on 0.44ng 

cDNA using miRNA specific primers in accordance with the instructions supplied 

by the manufacturer (Applied Biosystems, Foster City, CA, USA). The cDNA 

synthesis for mRNA was primed with random hexamer primers using Superscript 

II (Invitrogen, USA) on 200ng of total RNA. SYBR green (Applied Biosystems) 

was used for the relative quantification of C13ORF25, KSRP with 2ng of cDNA 

input in a 20µl reaction. PCR reactions were performed in triplicate, positive and 

negative controls were included in each run. Primer sequences used for PCR 

were as follows, C13ORF25 forward primer 5’-TGTGATGTTTTGTTGTGGGTTTG-3’; 

reverse primer 5’-AGTGCTTTCTTTCCAAATATAGGC-3’. Pri-miR-106~363 forward 

primer 5’-CAGGGATGAATGGGCAGAG-3’; reverse primer 5’-

TGCTTCCTACGTCTGTGTGAACA-3’. KSRP: forward primer 5’-
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CAGAATACGAATGTGGACAAA-3’; reverse primer; 5’-TCACGTTCCCGGAGGATGT-

3’.  Quantification was performed using Taqman MicroRNA together with the 

7900HT ABI Fast Real-Time PCR system (Applied Biosystems, USA). 

Fluorescence was quantified with the sequence detection system software SDS 

(version 2.1, Applied Biosystems, USA). Mean cycle threshold values (Ct) and 

standard deviations (SD) were calculated for all miRNAs and genes. U6 was 

selected as a housekeeping gene to normalize the mRNA and miRNA levels as it 

showed a uniform expression level in all samples and a sufficiently low threshold 

Ct value. Cases with a Ct value for U6 > 30 were regarded to have bad RNA 

quality and therefore excluded from further analysis. The relative expression 

levels were expressed as 2-ΔCt.  

 Given the large number of NHL samples (n=119), qRT-PCR of the NHL 

cases was performed in separate runs for each of the four subtypes. The 

comparative threshold cycle method was applied using RNA isolated from a 

pediatric tonsil obtained during routine tonsillectomy as endogenous reference 

using the formula 2-ΔΔCt (ΔΔCt = (Ct sample - Ct U6 sample) - (ΔCt Tonsil - ΔCt U6 Tonsil). 

To allow comparison of the levels of the individual members of the miR-17~92 

cluster the sum of the 2-ΔCt values were set at 100%.  

 To determine the efficiency of the miRNA qPCR, a 2x serial dilution of 

cDNA of a cell line with relatively high expression of each of the miRNAs was 

used in a qPCR reaction. The amplification efficiency was calculated based on the 

dependence of the Ct value on the cDNA dilution using the following equation: 

1002(%)Efficiency
1

slope

1




. 

Immunohistochemistry. HnRNP A1 was stained using ab50492 (Abcam, 

Cambridge, UK) with tris/EDTA pre-treatment and a 1:100 antibody dilution 

followed by detection with labeled GaRPO  followed by RaGPO and DAB substrate 

chromagen solution. Slides were lightly counter-stained with hematoxylin before 

imaging. 
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Data analysis. To determine significant differences in C13ORF25 and individual 

miRNAs levels within each NHL subtype a Kruskal-Wallis test was performed with 

a Dunn’s Multiple Comparison Test and a p-value <0.05 was considered 

significant (GraphPad Prism software, version 5.04). To determine the 

association between the primary transcript and mature miRNA, Pearson and 

Spearman’s rank correlations together with univariate linear regression were 

used. A p-value <0.05 was considered significant. 

C
H

A
P

TE
R

 4
 



Differences in the miR-17~92 miRNA expression pattern in NH 

 

92 

REFERENCES  

Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., 

Fox, H., Doebele, C., Ohtani, K. et al. 2009. MicroRNA-92a controls angiogenesis and 
functional recovery of ischemic tissues in mice. Science 324: 1710-1713.  

Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., 
Thomas-Tikhonenko, A. and Mendell, J.T. 2008. Widespread microRNA repression by Myc 
contributes to tumorigenesis. Nat. Genet. 40: 43-50.  

Chaulk, S.G., Thede, G.L., Kent, O.A., Xu, Z., Gesner, E.M., Veldhoen, R.A., Khanna, S.K., 
Goping, I.S., MacMillan, A.M., Mendell, J.T. et al. 2011. Role of pri-miRNA tertiary 
structure in miR-17~92 miRNA biogenesis. RNA Biol. 8: 1105-1114.  

Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee, 
W.M., Enders, G.H., Mendell, J.T. et al. 2006. Augmentation of tumor angiogenesis by a 
Myc-activated microRNA cluster. Nat. Genet. 38: 1060-1065.  

Garcia-Mayoral, M.F., Hollingworth, D., Masino, L., Diaz-Moreno, I., Kelly, G., Gherzi, R., 
Chou, C.F., Chen, C.Y. and Ramos, A. 2007. The structure of the C-terminal KH domains of 
KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15: 485-
498.  

Guil, S. and Caceres, J.F. 2007. The multifunctional RNA-binding protein hnRNP A1 is 
required for processing of miR-18a. Nat. Struct. Mol. Biol. 14: 591-596.  

Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, 
Y., Kawahara, K., Sekido, Y. and Takahashi, T. 2005. A polycistronic microRNA cluster, 
miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. 
Cancer Res. 65: 9628-9632.  

He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, 
S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J. et al. 2005. A microRNA polycistron as a 
potential human oncogene. Nature 435: 828-833.  

Humphreys, K.J., Cobiac, L., Le Leu, R.K., Van der Hoek, M.B. and Michael, M.Z. 2012. 
Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for 
members of the oncogenic miR-17-92 cluster. Mol. Carcinog.  

Iqbal, J., Shen, Y., Liu, Y., Fu, K., Jaffe, E.S., Liu, C., Liu, Z., Lachel, C.M., Deffenbacher, 

K., Greiner, T.C. et al. 2012. Genome-wide miRNA profiling of mantle cell lymphoma 
reveals a distinct subgroup with poor prognosis. Blood 119: 4939-4948.  

Ji, M., Rao, E., Ramachandrareddy, H., Shen, Y., Jiang, C., Chen, J., Hu, Y., Rizzino, A., 
Chan, W.C., Fu, K. et al. 2011. The miR-17-92 microRNA cluster is regulated by multiple 
mechanisms in B-cell malignancies. Am. J. Pathol. 179: 1645-1656.  



Differences in the miR-17~92 miRNA expression pattern in NHL 

 

93 

Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., 
Califano, A., Migliazza, A., Bhagat, G. et al. 2010. The DLEU2/miR-15a/16-1 cluster 
controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer. 
Cell. 17: 28-40.  

Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., Jacobs, S., 
Poppema, S. and Kroesen, B.J. 2007. Regulation of pri-microRNA BIC transcription and 
processing in Burkitt lymphoma. Oncogene 26: 3769-3776.  

Koopman, G., Keehnen, R.M., Lindhout, E., Newman, W., Shimizu, Y., van Seventer, G.A., 
de Groot, C. and Pals, S.T. 1994. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 
(CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal 
center B cells. J. Immunol. 152: 3760-3767.  

Landais, S., Landry, S., Legault, P. and Rassart, E. 2007. Oncogenic potential of the miR-
106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 67: 5699-5707.  

Lawrie, C.H., Chi, J., Taylor, S., Tramonti, D., Ballabio, E., Palazzo, S., Saunders, N.J., 
Pezzella, F., Boultwood, J., Wainscoat, J.S. et al. 2009. Expression of microRNAs in diffuse 
large B cell lymphoma is associated with immunophenotype, survival and transformation 
from follicular lymphoma. J. Cell. Mol. Med. 13: 1248-1260.  

Lewis, B.P., Burge, C.B. and Bartel, D.P. 2005. Conserved seed pairing, often flanked by 
adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-
20.  

Li, Y., Vecchiarelli-Federico, L.M., Li, Y.J., Egan, S.E., Spaner, D., Hough, M.R. and Ben-
David, Y. 2012. The miR-17-92 cluster expands multipotent hematopoietic progenitors 
whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in 
mice. Blood 119: 4486-4498.  

Malumbres, R., Sarosiek, K.A., Cubedo, E., Ruiz, J.W., Jiang, X., Gascoyne, R.D., 
Tibshirani, R. and Lossos, I.S. 2009. Differentiation stage-specific expression of microRNAs 
in B lymphocytes and diffuse large B-cell lymphomas. Blood 113: 3754-3764.  

Matsumura, I., Tanaka, H. and Kanakura, Y. 2003. E2F1 and c-Myc in cell growth and 
death. Cell. Cycle 2: 333-338.  

Mavrakis, K.J., Wolfe, A.L., Oricchio, E., Palomero, T., de Keersmaecker, K., McJunkin, K., 
Zuber, J., James, T., Khan, A.A., Leslie, C.S. et al. 2010. Genome-wide RNA-mediated 
interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic 
leukaemia. Nat. Cell Biol. 12: 372-379.  

Michael, M.Z., O'Connor, S.M., van Holst Pellekaan, N.G., Young, G.P. and James, R.J. 
2003. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer. 
Res. 1: 882-891.  

C
H

A
P

TE
R

 4
 



Differences in the miR-17~92 miRNA expression pattern in NH 

 

94 

Mu, P., Han, Y.C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., de Stanchina, E., 
D'Andrea, A., Sander, C. and Ventura, A. 2009. Genetic dissection of the miR-17~92 
cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23: 2806-2811.  

Navarro, A., Bea, S., Fernandez, V., Prieto, M., Salaverria, I., Jares, P., Hartmann, E., 
Mozos, A., Lopez-Guillermo, A., Villamor, N. et al. 2009. MicroRNA expression, 
chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in 
Mantle cell lymphomas. Cancer Res. 69: 7071-7078.  

Obernosterer, G., Leuschner, P.J., Alenius, M. and Martinez, J. 2006. Post-transcriptional 
regulation of microRNA expression. RNA 12: 1161-1167.  

O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. and Mendell, J.T. 2005. c-Myc-
regulated microRNAs modulate E2F1 expression. Nature 435: 839-843.  

Olive, V., Bennett, M.J., Walker, J.C., Ma, C., Jiang, I., Cordon-Cardo, C., Li, Q.J., Lowe, 
S.W., Hannon, G.J. and He, L. 2009. miR-19 is a key oncogenic component of mir-17-92. 
Genes Dev. 23: 2839-2849.  

Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y. and Seto, M. 
2004. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-
q32 amplification in malignant lymphoma. Cancer Res. 64: 3087-3095.  

Robertus, J.L., Harms, G., Blokzijl, T., Booman, M., de Jong, D., van Imhoff, G., Rosati, S., 
Schuuring, E., Kluin, P. and van den Berg, A. 2009. Specific expression of miR-17-5p and 
miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod. 
Pathol. 22: 547-555.  

Roehle, A., Hoefig, K.P., Repsilber, D., Thorns, C., Ziepert, M., Wesche, K.O., Thiere, M., 
Loeffler, M., Klapper, W., Pfreundschuh, M. et al. 2008. MicroRNA signatures characterize 
diffuse large B-cell lymphomas and follicular lymphomas. Br. J. Haematol. 142: 732-744.  

Salaverria, I., Zettl, A., Bea, S., Moreno, V., Valls, J., Hartmann, E., Ott, G., Wright, G., 
Lopez-Guillermo, A., Chan, W.C. et al. 2007. Specific secondary genetic alterations in 
mantle cell lymphoma provide prognostic information independent of the gene expression-
based proliferation signature. J. Clin. Oncol. 25: 1216-1222.  

Sander, S., Calado, D.P., Srinivasan, L., Kochert, K., Zhang, B., Rosolowski, M., Rodig, 
S.J., Holzmann, K., Stilgenbauer, S., Siebert, R. et al. 2012. Synergy between PI3K 
Signaling and MYC in Burkitt Lymphomagenesis. Cancer. Cell. 22: 167-179.  

Tagawa, H., Karube, K., Tsuzuki, S., Ohshima, K. and Seto, M. 2007. Synergistic action of 
the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer. Sci. 98: 
1482-1490.  

Takakura, S., Mitsutake, N., Nakashima, M., Namba, H., Saenko, V.A., Rogounovitch, T.I., 
Nakazawa, Y., Hayashi, T., Ohtsuru, A. and Yamashita, S. 2008. Oncogenic role of miR-17-
92 cluster in anaplastic thyroid cancer cells. Cancer. Sci. 99: 1147-1154.  



Differences in the miR-17~92 miRNA expression pattern in NHL 

 

95 

Tanzer, A. and Stadler, P.F. 2004. Molecular evolution of a microRNA cluster. J. Mol. Biol. 
339: 327-335.  

Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A.D., Filipowicz, W., Ramos, A., 
Gherzi, R. and Rosenfeld, M.G. 2009. The RNA-binding protein KSRP promotes the 
biogenesis of a subset of microRNAs. Nature 459: 1010-1014.  

Tsuchida, A., Ohno, S., Wu, W., Borjigin, N., Fujita, K., Aoki, T., Ueda, S., Takanashi, M. 
and Kuroda, M. 2011. miR-92 is a key oncogenic component of the miR-17-92 cluster in 
colon cancer. Cancer. Sci. 102: 2264-2271.  

Venturini, L., Battmer, K., Castoldi, M., Schultheis, B., Hochhaus, A., Muckenthaler, M.U., 
Ganser, A., Eder, M. and Scherr, M. 2007. Expression of the miR-17-92 polycistron in 
chronic myeloid leukemia (CML) CD34+ cells. Blood 109: 4399-4405.  

Wulczyn, F.G., Smirnova, L., Rybak, A., Brandt, C., Kwidzinski, E., Ninnemann, O., 
Strehle, M., Seiler, A., Schumacher, S. and Nitsch, R. 2007. Post-transcriptional regulation 
of the let-7 microRNA during neural cell specification. FASEB J. 21: 415-426.  

Yin, R., Bao, W., Xing, Y., Xi, T. and Gou, S. 2012. MiR-19b-1 inhibits angiogenesis by 
blocking cell cycle progression of endothelial cells. Biochem. Biophys. Res. Commun. 417: 
771-776.  

Yu, J., Wang, F., Yang, G.H., Wang, F.L., Ma, Y.N., Du, Z.W. and Zhang, J.W. 2006. 
Human microRNA clusters: genomic organization and expression profile in leukemia cell 
lines. Biochem. Biophys. Res. Commun. 349: 59-68.  

 

C
H

A
P

TE
R

 4
 



Differences in the miR-17~92 miRNA expression pattern in NH 

 

96 

SUPPLEMENTARY FIGURES 

 
SUPPLEMENTARY FIGURE 1. Relative expression of C13ORF25 and pri-miR-
106a~363. In the four NHL subtypes C13ORF25 levels were higher than the levels of the 
homolog pri-miR-106a~363 cluster. 

 

 

SUPPLEMENTARY FIGURE 2. Efficiency of qRT-PCR procedure. Using a sample with 
relative high levels of all six cluster members the PCR efficiency was determined. The 
efficiencies ranged from 103% for miR-92a to 109% for miR-17.  

 
SUPPLEMENTARY FIGURE 3. Expression levels of miR-19b and miR-92a in 
individual DLBCL cases. To determine if the relative high expression of miR-19b in 
contrast to miR-92a is due to extreme outliers, the levels of both miRNAs were compared 
separately for each DLBCL case. Only one DLBCL case showed a higher level of miR-92a 
compared to miR-19b. 
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ABSTRACT 

MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense 

sequences that can sequester miRNAs from their endogenous targets and thus 

serve as a decoy. Stably expressed miRNA sponges are especially valuable for 

long-term loss-of-function studies and can be used in vitro and in vivo. We 

describe here a straightforward method to generate retroviral miRNA sponge 

constructs using a single directional ligation reaction. This approach allows 

generation of sponges containing more than 20 miRNA binding sites. We provide 

a basis for the design of the sponge constructs with respect to the sequence of 

the miRNA binding site and the sequences flanking the miRNA binding sites. In 

silico validation approaches are presented to test the predicted efficiencies of the 

sponges in comparison to known target genes. In addition, we describe in vitro 

validation experiments to confirm the effectiveness of the miRNA sponges. 

Finally, we describe how the described procedure can be adapted to easily 

generate sponges that target multiple miRNAs simultaneously. In summary, our 

approach allows rapid generation of single or combination miRNA sponges that 

can be used for long-term miRNA loss-of-function studies.  
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INTRODUCTION 

Several approaches have been described to study the effect of miRNA loss-of-

function in a specific cell type of interest, e.g. using microRNA (miRNA) 

antisense inhibitor oligonucleotides, knockout animal models and miRNA 

sponges or decoys (Brown and Naldini, 2009; Ebert et al., 2007; Kloosterman et 

al., 2007; Krutzfeldt et al., 2005; Park et al., 2010). Inhibitor oligonucleotides 

are effective for short-term (24h – 72h) experiments. However, these synthetic 

oligonucleotides are expensive and not very suitable for long-term experiments 

due to degradation and dilution caused by cell proliferation. MiRNA knockout 

animal models that are the method of choice for functional in vivo studies and 

conditional models allow studying the effect of miRNA knockout in specific cell 

types or at specific time points during development. An important disadvantage 

is the time-consuming procedures and costs to generate knockout animals. 

Moreover, generation of miRNA knockout animals may be technically challenging 

as a large percentage of miRNAs are located within protein-coding genes, are 

part of a miRNA cluster or have multiple copies on the genome. MiRNA sponges 

or decoys are in vivo expressed transcripts that contain multiple high affinity 

miRNA antisense binding sites (MBS). These transcripts can efficiently sequester 

specific miRNAs and, thereby, prevent their binding to endogenous target genes 

(Ebert and Sharp, 2010; Kumar et al., 2008; Papapetrou et al., 2010). The 

experimental application of miRNA sponge technology has met increasing 

interest for in vitro and in vivo applications, indicating that this approach can 

greatly aid to the understanding of miRNA functioning (Chaudhuri et al., 2012; 

Liu et al., 2012; Ma et al., 2011; Otaegi et al., 2011; Zhu et al., 2011).  

 Besides the strategy described by us, two different approaches have been 

described for the generation of miRNA sponges with multiple MBS. The first 

approach is based on the non-directional concatemerization of oligonucleotide 

duplexes followed by a ligation of 5’ and 3’ adapters and ligation into the vector 

of choice (Ebert et al., 2007). This method is relatively inefficient due to the 

non-directional cloning and multiple ligation steps. The second approach uses 

long oligonucleotides with two (~50-mers) or four MBS (~100-mers) that are 
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designed with appropriate restriction enzyme overhangs to allow direct 

directional cloning into a vector (Brown et al., 2007; Papapetrou et al., 2010). A 

disadvantage of this method is that only a limited number of MBS can be cloned, 

which may not be sufficient to sequester all endogenous miRNAs. We have 

developed a novel approach that allows rapid and efficient generation of miRNA 

sponges with varying sizes using a single ligation reaction (Kluiver et al., 2012). 

Effectiveness of the sponges was shown by demonstrating effects on cell growth 

in GFP proliferation assays, modulation of luciferase activity in luciferase 

reporter assays and presence of the sponge transcripts in the Ago2 

immunoprecipitation fraction of cell lines that overexpress the sponge 

constructs. Here, we provide a detailed description of the design and cloning 

strategy to generate miRNA sponge constructs and to validate their 

effectiveness in vitro.  

MATERIALS 

MiRNA sponge design  

Sense and antisense oligonucleotides containing two miRNA binding sites 

separated by a short sequence (“spacer”) and 5’phosphates are ordered PAGE 

purified at a 100nmol scale (IDT, Coralville, IO, USA). The oligonucleotide 

duplexes are designed with overhangs that are compatible with the restriction 

endonuclease SanDI (Fermentas, St. Leon-Rot, Germany) to enable directional 

cloning of multiple oligonucleotide duplexes (Fig. 1a). As a negative control, a 

sponge with a similar design but a scrambled seed sequence (i.e. nucleotide 2-

8) can be used. Combination sponges (combi-sponges) for the simultaneous 

inhibition of multiple miRNAs of interest can be ordered as minigenes (IDT). 

PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html, Kertesz et 

al., 2007); and STarMir (http://sfold.wadsworth.org/cgi-bin/STarMir.pl, Long et 

al., 2007) software applications are used to predict RNA folding and accessibility 

of the miRNA binding site, as well as the specificity and binding capacity of the 

sponge transcripts.  

http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
http://sfold.wadsworth.org/cgi-bin/starmir.pl
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MiRNA sponge cloning 

For the construction of miRNA sponges starting with oligonucleotide duplexes, 

we use the compatible ends of the interrupted palindromic SanDI restriction site. 

To allow cloning and subsequent studies, we adapted the pMSCV-PIG vector 

(Addgene, www.addgene.org, plasmid 21654) by inserting a SanDI restriction 

site containing linker between the XhoI and EcoRI restriction sites yielding 

pMSCV-PIG-sp (Fig. 1b). 

 

FIGURE 1. Example of a MBS oligonucleotide duplex design and a SanDI linker (A) 
Oligonucleotide design used to generate a miR-19 bulged sponge. Shown are the sense 
and antisense sequences of the miR-19 sponge and how the sense strand can bind to miR-
19a and miR-19b. SanDI compatible ends are depicted in bold, the grey box indicates the 
bulge in the miRNA binding site, and the spacer sequence is depicted in italic. (B) The 
linker design used to introduce a SanDI restriction enzyme recognition site in the pMSCV-
PIG vector. A 5’ Xho-I site and a 3’ EcoRI site were added to the ends of the linker for 
efficient subcloning. Besides a SanDI site (bold) for the generation of miRNA sponges, two 
other restriction sites were added to allow flexibility for potential further subcloning. Sp = 
sponge, S = sense, AS = antisense, MBS = miRNA binding site and Phos = phosphate 
group 

 

The pMSCV-PIG-sp vector is prepared for oligonucleotide duplex ligation by 

digestion with SanDI and dephosphorylation with CIAP (1 U/ul, Invitrogen, 

Carlsbad, CA, USA). For ligation of minigenes, the vector should be restricted 

with EcoRI and XhoI (NEB, Ipswich, MA, USA). Digested vectors are gel purified 

using a DNA gel extraction kit (Zymoclean Gel DNA recovery kit, Zymo 

Research, Irvine, CA, USA). For the ligation reaction, T4 DNA ligase is used 

(Invitrogen). Additional material needed for transformation of the ligation 

reaction and screening of colonies include competent E. coli cells, SOC medium, 

waterbath, agar plates with appropriate antibiotic (ampicillin for pMSCV-PIG-sp), 

incubator, PCR reagents (for colony PCR using pMSCV-PIG-sp: forward primer = 
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5'-TTTATCCAGCCCTCACTCC-3', reverse primer = 5'-TTGTGTAGCGCCAAGTGCC-

3') and PCR machine to screen for insert-containing colonies and a plasmid 

isolation kit. 

In vitro validation of sponge efficiency 

Luciferase assay 

MicroRNA sponge sequences are subcloned into the 3’UTR of the Renilla 

luciferase gene in the psiCHECK2 vector (Promega, Madison, USA). For 

transfection of HEK293 cells, the Amaxa nucleofector I device (Amaxa, 

Gaithersburg, USA) is used with solution V, program Q-01. MiRNA inhibitor 

oligonucleotides are designed as previously described (Kluiver et al., 2012) 

(Exiqon, Vedbaek, Denmark). MiRNA precursors are purchased from Ambion 

(Life technologies, Grand Island, NY, USA). For assessment of Renilla and Firefly 

activity the Dual-luciferase Reporter assay (Promega) is used. Luciferase activity 

is measured on a Luminoskan luminometer (Thermo scientific, Asheville, NC, 

USA). 

Ago2-IP 

Ago2-IP procedure and material details were fully described previously (Tan et 

al., 2009; Tan et al., 2011). The anti-Ago2 antibody clone 2E12-1C9 (Abnova, 

Taipei, Taiwan) is used for the IP procedure. 

METHODS 

MiRNA sponge design  

Oligonucleotide and minigenes composition 

The method of choice for the generation of miRNA sponges may depend on 

number of miRNAs that need to be targeted simultaneously with a single sponge 

construct. For the generation of sponges that target one or two miRNAs, the 

oligonucleotide duplex approach can be used. For the generation of sponges 
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targeting more than two miRNAs, the minigene approach is more efficient (Fig. 

2). As an appropriate negative control for both approaches, one may generate 

the sponge sequence harboring a scrambled miRNA seed-binding region.  

 For the oligonucleotide duplex approach, oligonucleotides are designed 

with two identical MBS, in case one miRNA is inhibited, or two different MBS, in 

case two miRNAs are inhibited simultaneously (Fig. 1A). Each MBS is the 

antisense sequence of the miRNA to be studied, with a central mismatch at 

position 9-12 of the miRNA sequence (“bulge”). This bulge is created by deletion 

of one nucleotide and changing the remaining three nucleotides in such a way 

that chance of base paring (including G-U wobbling) is minimal. The two MBS 

are separated by a short 4-6nt sequence (“spacer”). The 5’ and 3’ ends of the 

oligonucleotide duplex consist of overhangs that are compatible with the SanDI 

restriction endonuclease. This enzyme recognizes a 7-bp interrupted palindromic 

sequence, i.e. 5′-GGGWCCC-3′ (W = A or T), and produces 3nt long 5′ 

protruding ends that will enable directional ligation of the oligonucleotide 

duplexes.  

   

  
 
FIGURE 2. Scheme for the selection of the most appropriate cloning strategy for 
generation of sponges with MBS for one, two, or more than two miRNAs. Sp = 
sponge, LTR = long terminal repeat, PGK = phosphoglycerate kinase, IRES = internal 
ribosome entry site, GFP = green fluorescent protein. 
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 For the cloning of minigenes, the same approach is applied. For directional 

cloning, 5’-XhoI and 3’-EcoRI sites are added to the minigene design. A pre-

selected number of MBS for each miRNA can be included (see also hints section 

4.4). Increase in the total number of MBS will increase the size and thus also the 

cost of the minigene. Different spacers between MBS may be used and the order 

of MBS can be shuffled. Testing the effects of these variations using in silico 

validation will aid in maximizing the binding efficiency of the miRNA sponge to 

each of the selected miRNAs (see next paragraph). 

In silico validation of sponge specificity and binding efficiency 

To optimize the sequence of the desired sponges, two published algorithms, i.e. 

PITA (Kertesz et al., 2007) and STarMir are used with standard settings (Long et 

al., 2007). For this in silico analysis, the full RNA transcript as generated from 

the vector of interest plus the desired number of MBS is uploaded in the 

program. For our pMSCV-PIG-sp vector this included the end of the psi 

packaging signal up to the start of the PGK promoter resulting in a transcript of 

466bp + the length of the sponge sequence. Based on different RNA folding 

computations, both algorithms predict the effectiveness of the designed MBS in 

the sponges by calculating the difference between the free energy gained by 

binding of the miRNA to the MBS and the free energy lost by unwinding of the 

MBS nucleotides (∆∆G (PITA) and ∆Gtotal (STarMiR)). The PITA algorithm also 

provides information on all other miRNAs that can potentially bind to the sponge 

sequence. The binding energy of the miRNA to the sponge transcript can be 

compared with the binding energy of experimentally proven endogenous targets. 

By varying sequences within the sponge, a design that has a high free energy 

gain upon miRNA binding to most or all MBS and minimal off-target miRNA 

binding can be generated. Variations that can be tested include nucleotide 

composition, length of the spacer sequence and the nucleotide sequence in the 

bulge region (position 9-12) of the MBS. In case the oligonucleotide duplex 

approach is used, one can also vary the nucleotide in the middle of the SanDI 

restriction site (A or T). Care should be taken to ensure the SanDI site in the 

cloning vector is compatible with the A or T choice in the SanDI compatible 
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overhangs of the oligonucleotide duplex. It is important to also test the 

scrambled seed-binding control constructs to rule out the possibility of creation 

of novel off-target effects.   

MiRNA sponge cloning 

Oligonucleotide duplex generation 

Oligonucleotides are dissolved to 50µM in STE-4 (100mM NaCl, 10mM Tris/HCl, 

1mM EDTA, pH 8.0). Sense and antisense oligonucleotides are mixed at a 1:1 

ratio resulting in a final concentration of 25µM for each oligonucleotide. 

Oligonucleotide mixtures are placed in boiling water for 10 minutes and slowly 

cooled to room temperature to allow annealing of the two oligonucleotides (let 

boiling water slowly cool to room temperature in approx. 30 minutes). Store 

oligonucleotide duplexes at -20°C. 

Preparation of cloning vector  

The pMSCV-PIG-sp vector is digested with SanDI according to the reaction 

conditions recommended by the supplier. After completion of the restriction 

enzyme reaction (check small aliquot on 0.7% agarose gel) add 1µl CIAP and 

incubate for an additional 5 minutes at 37°C to dephosphorylate the sticky ends 

of the vector. Enzymes are inactivated by incubation at 65°C for 10 minutes. 

When cloning minigenes, the pMSCV-PIG-sp vector should be digested with 

EcoRI and XhoI. Gel-purify the restricted and dephosphorylated vector using a 

DNA gel extraction kit. After purification, the DNA concentration is measured on 

a NanoDrop. 

Ligation reaction 

For ligation of sponge oligonucleotide duplexes into the vector, a vector/insert 

ratio of 1:300 or 1:1000 is recommended. A higher ratio results in an average 

longer insert size at the cost of a lower number of clones. The number of MBS 

we obtained varied between 2-16 (average 6) for a ratio of 1:300 and 2-22 

(average 7.5) for a ratio of 1:1000 (Table 1). To calculate the amount of vector 
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and oligonucleotide duplexes required for the ligation the following formula is 

used: ng insert = { (bp insert * ng vector) / bp vector } * ratio. For efficient 

ligation, a minimum of 50-100ng of digested vector is recommended. Ligation 

reactions are performed in 10µl with 1μl 5U/μl T4 DNA ligase in the buffer 

supplied by the manufacturer. In addition, it is recommended to perform ligation 

control reactions to be able to determine whether the prepared vector is 

efficiently digested and dephosphorylated (see troubleshooting section, 5.1). For 

the minigene cloning strategy, inserts with 5’XhoI – 3’EcoR1 overhangs are 

ligated at a standard 1:3 ratio into the pMSCV-PIG-sp vector. The ligation 

reaction is performed by incubation at room temperature for 30 minutes. 

Approximately 10ng DNA (vector + insert) of the ligation reaction is used for 

standard transformation to E. coli and at least two different amounts of the 

transformed bacteria culture are plated on agar plates.  

TABLE 1. Expected number of MBS per clone upon ligations with different vector/insert 
ratios.  

Ratio vector/insert # MBS/insert Median # MBS/insert Mean # MBS/insert 

1:3 2-8 2 3.2 

1:100 2-10 5 5.5 

1:300 2-16 6 6.0 

1:1000 2-22 6 7.5 

Check presence and length of insert 

As a rapid screen to select clones with the desired number of MBS, a colony PCR 

can be done. Mark the selected colonies and pick part of the colony with a sterile 

toothpick and re-suspend the bacteria in 100μl water. Boil samples for 10 

minutes, spin tubes and use 1ul of the supernatant as template DNA for an 

insert PCR using primers that flank the multiple cloning site. Run PCR products 

on an agarose gel. The size of the PCR product indicates the number of MBS 

present in the selected clone (empty vector PCR product for pMSCV-PIG-sp is 

144bp). Select the clones with the desired insert sizes, grow bacteria on a large 

scale and isolate plasmid DNA (Qiagen, Venlo, the Netherlands). These clones 
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are submitted for Sanger sequencing to confirm the insert sequence (LGC 

genomics, Berlin, Germany).  

In vitro validation of sponge efficiency 

Luciferase assay 

To validate the effectiveness of the sponge transcript to bind to the desired 

miRNA, the entire sponge is subcloned into the 3’UTR of the Renilla luciferase 

gene of the dual-luciferase reporter vector psiCHECK2 using XhoI and PmeI 

restriction sites. HEK293 cells or other easy to transfect cells can be used for 

these experiments. One million HEK293 cells are transfected with 2μg of each 

construct with or without miRNA precursor (100nM) or inhibitor (20μM). Harvest 

cells after 24 hours and make cell lysates for luciferase measurement according 

to the manufacturer’s protocol. Renilla and Firefly activities are measured in 

duplicate for each transfection and each transfection is performed at least in 

triplicate to obtain robust results. A decreased Renilla to Firefly luciferase ratio is 

expected upon transfection with the miRNA precursor, while transfection with 

the miRNA inhibitor should lead to an increase in the Renilla to Firefly luciferase 

ratio. 

Ago2-IP 

To confirm that the miRNA containing RISC complexes are bound to the miRNA 

sponge transcripts, an Ago2 immunoprecipitation can be performed. Sponge 

transcripts should be enriched in the IP fraction similar to endogenous miRNA 

targets. The immunoprecipitation of Ago2-containing protein-RNA complexes is 

described in detail elsewhere (Tan et al., 2011). In short, 15-30 million cells 

that express the miRNA and the miRNA sponge of interest are lysed. The 

cleared supernatant is incubated with sepharose beads coated with Ago2 

or IgG control antibody at 4°C overnight. After washing, total, flow-

through and immunoprecipitated fractions are harvested for protein and 

RNA isolation. Western blot is used to show that Ago2 is enriched in the 

C
H

A
P

TE
R

 5
 



Generation of miRNA sponge constructs 

 

108 

IP fraction and thus confirm effectiveness of the IP procedure.  QRT-PCR 

of the sponge transcripts is performed to determine enrichment in the 

Ago2 IP fraction as compared to the IgG control IP, the total cell lysate 

and the IP flow-through fractions. 

HINTS  

Targeting seed-families 

Several miRNAs have seed family members at different genomic loci that most 

likely have a large overlap in their target genes and thus have similar functions. 

In general, the miRNA sequences of these seed family members are highly 

similar and oligonucleotides may be designed in such a way that all members 

can be targeted simultaneously. If this is not possible, two slightly different MBS 

can be made within the oligonucleotide to enable optimal binding of all individual 

miRNA seed family members. The sponge approach thereby allows an effective 

loss-of-function analysis of entire seed families.  

Generation of combi-sponges 

For the generation of combi-sponges that target two unrelated miRNAs, a 

strategy similar to the single sponge procedure can be followed. The principle 

difference is that the oligonucleotides contain two different miRNA binding sites. 

For the generation of sponges with binding sites for multiple miRNAs, e.g. MBS 

for all miRNAs of a specific miRNA cluster; it may be more convenient to use a 

minigene approach. In this way the number of binding sites for each miRNA can 

be easily selected. Also for these constructs, the binding efficiency and 

availability of each binding site should be checked using the STarMir and/or PITA 

software.  

Bulged or perfect MBS sponges 

Bulged miRNA sponges are reported to be more effective for the sequestration of 

miRNAs than perfect antisense sponges (Ebert et al., 2007; Gentner et al., 
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2009; Haraguchi et al., 2009). Consistent with these findings we also showed 

that miR-19 bulged MBS sponges are effective inhibitors of miR-19 driven 

proliferation while miR-19 perfect MBS sponges are not (Kluiver et al., 2012). 

This difference may be caused by degradation of the sponge transcripts due to 

endonucleolytic cleavage activity of the Ago2 complex upon perfect binding of 

the miRNA to its binding site. Thus, perfect MBS may be more suitable for the 

induction of degradation of a transcript upon binding of the miRNA.   

Number of MBS per sponge 

Several factors may influence the number of MBS in a sponge needed for 

maximal miRNA inhibition for a specific cell type, i.e. the miRNA expression 

levels, the miRNA sponge transcript levels and the miRNA binding efficiency of 

the MBS of endogenous targets. We showed that when comparing miR-19 

sponges with 2, 6 or 12 MBS, 6 MBS appeared to be sufficient for maximal miR-

19 mediated inhibition of WEHI-231 cell growth (Kluiver et al., 2012). In a study 

utilizing neuroblastoma cells, a miRNA sponge construct containing 12 miR-9 

MBS was reported to be more effective than 6 or 24 miR-9 MBS (Otaegi et al., 

2011). Thus, for each experimental setting the optimal or minimal number of 

MBS needed may vary and should be determined experimentally. The fact that 

increasing the number of MBS in the sponge construct does not, by definition, 

correlate with increased effectiveness of functional miRNA sequestration may be 

explained by increased sponge transcript degradation caused by the high 

number of MBS. In our experience sponges with 6-12 MBS are a good starting 

point for testing functional effects of long-term miRNA inhibition.  

TROUBLESHOOTING 

Ineffective cloning results 

If no or only a few colonies are obtained, vector preparation, ligation efficiency 

or the transformation procedure might have failed. To check the efficiencies of 

each of these steps the following negative and positive controls can be 

performed. Transformation of digested non-ligated vector should yield no or only 
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a very few colonies to confirm that the vector was efficiently digested. To test 

the dephosphorylation step, a ligation reaction without insert can be performed 

which again should yield no or only a few colonies upon transformation. To test 

the T4-DNA-ligase, a ligation reaction with digested vector which has not been 

dephosphorylated can be performed. After transformation a high number of 

colonies (>500) should be obtained. To test transformation efficiency, a control 

circular plasmid vector can be transformed and this should yield a high number 

of colonies (>1,000). For optimal transformation, an aliquot of the ligation 

reaction containing a maximum of 10ng of DNA (plasmid and oligonucleotide 

duplex) should be used (too much DNA input is toxic and will result in a lower 

number of colonies). To increase the efficiency of the ligation reaction in 

general, the vector concentration can be increased from 50ng to 200ng per 10μl 

ligation reaction. To increase the number of colonies the vector/oligonucleotide 

duplex ratio can be lowered to 1:100. However, this will result in a decrease of 

the average insert size (Table1).  

Sponges have no (obvious) functional effect 

When there is a known functional readout for the miRNA of interest and no or 

little effect is observed upon overexpression of the sponge this may indicate 

ineffective sequestration of the miRNAs by the sponge. A sponge containing 

more MBS may be tested or a new sponge with an altered design of the 

oligonucleotide duplexes can be tested. In addition, the expression level of the 

sponge transcript may be checked in relation to the level of the endogenous 

miRNA. In case the expression levels of the sponge are low and the levels of the 

endogeneous miRNAs of interest are high, testing different promoters for the 

sponge transcript may help to achieve an optimal balance between the 

expression level of the sponge and the edogeneous miRNA. Suitable strong 

promoters include PGK, EF1α, MSCV, SFFV and CMV promoters (Hong et al., 

2007). Selection of the most optimal promoter depends on the cell type of 

interest and the application. 

 In case the miRNA loss-of-function phenotype is not known, it may be 

difficult to determine the effectiveness of the sponge. To ensure effective 
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binding of the miRNAs to the sponge a luciferase reporter assay may be 

performed or enrichment of the sponge transcripts in the Ago2-IP fraction 

following Ago2 immunoprecipitation may be tested.  

SUMMARY 

We describe a method that allows straightforward generation of retroviral miRNA 

sponges with a selected number of MBS that can target one or more miRNAs 

simultaneously. We also provide in silico and in vitro approaches to verify the 

(putative) effectiveness of miRNA binding to the miRNA sponges. The practical 

guidelines to generate miRNA sponges described here will contribute to our 

understanding of the role of miRNAs in diverse biological processes. 
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ABSTRACT  

MiR-155 is an important regulator of B-cell development and deregulation of 

miR-155 contributes to B-cell lymphomagenesis. High miR-155 levels are 

observed in several types of lymphoma, including Hodgkin lymphoma. In 

contrast, Burkitt lymphoma is characterized by very low miR-155 levels. To 

determine the function of miR-155 in B-cell lymphoma, we studied the effect of 

miR-155 induction on BL cell growth and identified miR-155 target genes in BL 

and HL. Overexpression of miR-155 enhanced growth of ST486 BL cells but not 

of Ramos BL cells in a GFP competition assay. Ago2-RIP-Chip in miR-155-

transduced or empty vector-transduced cells revealed 54 miR-155 target genes 

in ST486 and 15 in Ramos cells. Besides the higher number of targets, also the 

fold enrichments were much higher in miR-155-ST486 as compared to miR-155-

Ramos. In silico validation of the 54 genes identified in ST486 cells indicated 

that 32% of the genes were predicted as miR-155 targets by TargetScan and 

77% contained the 6-mer miR-155-binding motif in the 3’UTR. We confirmed 

miR-155 targeting for the 5 most enriched genes, i.e. DET1, TBRG1, TRIM32, 

HOMEZ and PSIP1, and a known miR-155 target, JARID2, using luciferase 

reporter assays in ST486 cells. Inhibition of miR-155 in KM-H2 HL cells using a 

sponge construct revealed that DET1, TBRG1, TRIM32, HOMEZ and JARID2 are 

also targeted by endogenous miR-155 in KM-H2 cells. To determine if the 

identified miR-155 target genes were involved in the observed enhanced growth 

of ST486 cells upon miR-155 overexpression, we inhibited the 6 selected genes 

by shRNA constructs and showed that inhibition of TBRG1 enhanced growth of 

ST486 cells. In conclusion, we identified novel miR-155 targets in BL and HL and 

showed that miR-155 promotes growth of BL cells by targeting the TBRG1 gene. 
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INTRODUCTION 

MicroRNAs (miRNAs) constitute a subgroup of short (~22nt) single-stranded 

RNAs that belong to the family of noncoding RNAs (Bartel, 2004). MiRNAs are 

transcribed as longer primary transcripts (pri-miRNAs) that contain one or more 

hairpin-structures which are processed by the Microprocessor complex in the 

nucleus (Cai et al., 2004; Denli et al., 2004; Gregory et al., 2004). The resulting 

precursor miRNAs (pre-miRNAs) are transported to the cytoplasm by Exportin-5 

and further processed by Dicer to the mature miRNAs (Bohnsack et al., 2004; 

Grishok et al., 2001; Hutvagner et al., 2001; Yi et al., 2003). Mature miRNAs 

are bound by one of the Argonaute (Ago) proteins and incorporated into the 

RNA-induced silencing complex (RISC) (Hutvagner and Zamore, 2002; 

Mourelatos et al., 2002). The miRNA guides the RISC to protein-coding RNA 

transcripts (mRNAs) based on partial sequence homology and inhibits their 

translation or induces RNA degradation (Eulalio et al., 2008; Filipowicz et al., 

2008). MiRNAs regulate expression of more than 30% of all human genes 

(Bartel, 2009) including genes that play important roles in fundamental cell 

biological processes like differentiation, proliferation and apoptosis. In line with 

their obvious importance to regulate and maintain cellular and physiological 

homeostasis, deregulation of miRNA levels has been linked to pathological 

conditions such as development and progression of cancer.  

 The well-known oncogenic miR-155 is an important regulator of diverse 

aspects of the immune response including B-cell development. MiR-155 is 

processed from the transcript of the B-cell integration cluster (BIC) gene (Lagos-

Quintana et al., 2002). Most germinal center (GC) B cells express BIC and miR-

155 in the course of the GC response (Thai et al., 2007). The role of miR-155 for 

normal B-cell development was demonstrated in miR-155-deficient mice that  

have reduced numbers of germinal centre B cells, abolished antibody affinity 

maturation and fail to generate memory B cells (Rodriguez et al., 2007; Thai et 

al., 2007; Vigorito et al., 2007). Deregulation of miR-155 expression has been 

shown to contribute to the pathogenesis of hematological malignancies by 

different mechanisms. The oncogenic potential of miR-155 was shown in miR-
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155 transgenic mice in which overexpression of miR-155 driven by the B-cell-

specific Eµ-enhancer induced pre-B-cell lymphoma (Costinean et al., 2006). 

Recently, Babar et al. showed that induction of miR-155 in lymphoid tissues of 

mice caused disseminated lymphoma characterized by a clonal, transplantable 

pre-B-cell population (Babar et al., 2012). Withdrawal of miR-155 lead to tumor 

regression, partly due to increased apoptosis of the malignant cells, 

demonstrating that the tumor cells were dependent on miR-155. MiR-155 levels 

were shown to be high in GC B cell-derived lymphomas like Hodgkin lymphoma 

(HL), primary mediastinal and diffuse large B-cell lymphomas (Kluiver et al., 

2005; van den Berg et al., 2003). In contrast, very low levels of miR-155 were 

observed in GC B-cell derived Burkitt lymphoma (BL) (Kluiver et al., 2006) 

suggesting a tumor suppressive function in this B-cell lymphoma subtype. This 

was supported by the finding that miR-155 targeted activation-induced cytidine 

deaminase (AID) and that miR-155 downregulation resulted in an increased 

number of AID-mediated MYC translocations in B cells (Dorsett et al., 2007). 

The hallmark of Burkitt lymphoma is the (8;14) translocation which involves the 

MYC and one of the immunoglobulin gene loci (Taub et al., 1982). Thus, low 

miR-155 levels may be required to drive AID-mediated formation of the MYC/Ig 

translocations in BL. These findings demonstrate that both high and low miR-155 

levels may be beneficial for lymphomagenesis depending on the target gene 

repertoire and deregulation of miR-155 is a common feature in different 

lymphoma subtypes. 

 To understand the function of miR-155 in B-cell lymphomas, it is crucial to 

identify genes that are targeted by miR-155. In this study, we show that 

overexpression of miR-155 in BL derived cell lines leads to enhanced growth of 

the ST486 cells, whereas no effect was observed in Ramos cells. We 

subsequently identified miR-155 target genes in both ST486 and Ramos cells 

and found 54 targets in ST486 and 15 in Ramos. Six selected genes were 

validated as miR-155 targets and five of them, i.e. DET1, TBRG1, TRIM32, 

HOMEZ and JARID2, were shown to be targeted by endogenous miR-155 in 

Hodgkin lymphoma cells. Inhibition of TBRG1, which is a miR-155 target in 
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ST486 but not in Ramos, caused increased growth of ST486 cells similar to the 

miR-155 overexpression phenotype.  

RESULTS 

MiR-155 confers growth advantage in ST486 Burkitt lymphoma cells 

To determine the effect of miR-155 in BL cell lines, we overexpressed miR-155 

in two EBV-negative BL-derived cell lines, i.e. ST486 and Ramos. These cell lines 

were chosen based on their very low endogenous miR-155 levels and similar 

response to anti-IgM treatment. Upon miR-155 overexpression, we observed a 

200-400 fold increase in miR-155 levels in both miR-155-ST486 and miR-155-

Ramos compared to empty vector (EV)-transduced cells (Fig. 1A). These levels 

were ~3 fold lower than the endogenous miR-155 levels observed in the 

Hodgkin lymphoma cell line KM-H2 (Fig. 1A). Next, we determined the effect of 

miR-155 overexpression on growth of ST486 and Ramos cells in a GFP 

competition assay. We observed a growth advantage of GFP+ miR-155-ST486 

cells compared to GFP- wild-type ST486 cells (Fig. 1B). In 3 weeks, the GFP+ 

miR-155-ST486 cell fraction increased ~2 fold over the GFP- wild-type cell 

fraction. In contrast, overexpression of miR-155 did not result in any difference  

 

FIGURE 1. Overexpressed miR-155 enhanced growth of ST486 but not Ramos 
cells. (A) Levels of miR-155 were strongly increased in miR-155-ST486 and miR-155-
Ramos cells compared to empty vector (EV) control. Endogenous miR-155 levels in KM-H2 
HL cells were ~3 fold higher. (B) ST486 cells showed a 2 fold increase in the percentage of 
GFP+ cells after 22 days in comparison to GFP- cells. (C) Ramos cells showed no difference 
in cell growth. The GFP+ percentage in EV control remained stable in both cell lines. 
Changes in the percentage of GFP+ cells were calculated as the fold increase/decrease 
relative to the percentage of GFP+ cells at day 4. An average of three independent GFP 
competition assay experiments was presented. P value was determined by linear 
regression (**** p<0.0001). 
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in growth between GFP+ and GFP- Ramos cells (Fig. 1C). Empty vector control did 

not cause any difference in the percentage of GFP+ cells. Thus, these two Burkitt 

lymphoma cell lines respond differently to overexpression of miR-155, despite the 

similar high miR-155 levels.  

High-throughput identification of endogenous miRNA targets 

To determine the miRNAs target genes in ST486 and Ramos cells, we 

characterized the miRNA targetome of ST486 and Ramos cells using the RIP-

Chip approach (Tan et al., 2009). We used an antibody against endogenous 

Ago2 to immunoprecipitate (IP) RISC together with the miRNA target 

transcripts. Enrichment of Ago2 in the Ago2-IP fraction and depletion of Ago2 in 

the flowthrough (FT) fraction was confirmed in both cell lines by Western blot 

(Supplementary Fig. 1A). In addition, we also showed efficiency of the IP 

procedure by enrichment of miR-155 and miR-19b in the Ago2-IP fraction, but 

not in the negative control IgG-IP fraction when compared to the total fraction 

(Supplementary Fig. 1B). RNA samples isolated from the total and IP fractions of 

ST486 and Ramos cells were analyzed on the Agilent microarray platform. The 

miRNA-targetome was defined by the transcripts that were more than two fold 

enriched in the IP fraction compared to the total fraction (Table 1). The miRNA 

targetome included 12,5% and 16,5% of all analyzed probes in ST486 cells and 

Ramos cells, respectively. 

TABLE 1. Number of probes in miRNA targetome of ST486 and Ramos cells 

Enrichment ST486 (n=14,468*) Ramos (n=11,928*) 

# probes IP/T>2 1,804 (12.5%) 1,969 (16.5%) 

 IP/T>4 664 (4.6%) 743 (6.2%) 

 IP/T>8 239 (1.7%) 269 (2.3%) 

*Number of probes that are flag present and show consistent signals for Cy3 and Cy5 

 

 To identify miRNAs that contribute to the targetome in ST486 and Ramos 

cells, we performed a gene set enrichment analysis (GSEA) (Subramanian et al., 

2005) comparing gene abundance levels in IP and total fractions. The most 
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enriched gene set for both cell lines was the miR-17 seed family binding motif 

(Fig. 2A). This is consistent with the high abundance of the miR-17 seed family 

members in ST486 and Ramos and the overall high percentage of miR-17 

targets in the human genome as predicted by TargetScan. The 20 most enriched 

gene sets in IP vs total fraction included 14 miRNA binding motifs in ST486 and 

17 in Ramos cells (Supplementary Table 1).  

 

FIGURE 2. Enrichment of the miR-17 seed family and miR-155 binding motives in 
the Ago2-IP fraction compared to the total fraction. (A) miR-17 family binding motif 
was the most enriched gene set in the IP of ST486 and Ramos cells. (B) miR-155 binding 
motif was the 13th most enriched gene sets in miR-155-ST486. In miR-155-Ramos and 
the EV-transduced cells, the miR-155 binding motif was not among the top-20 most 
enriched gene sets. FDR- false discovery rate. 
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Identification of miR-155 target genes 

To identify the genes that were targeted by miR-155 in miR-155-ST486 and 

miR-155-Ramos cells, we compared the targetomes of miR-155 and EV-

transduced cells. Targetomes of miR-155-ST486 and miR-155-Ramos consisted 

of a similar number of probes as compared to their EV-transduced controls 

(Supplementary Table 2). The most enriched gene set in the IP fraction of miR-

155-ST486 and miR-155-Ramos was the miR-17 seed family binding motif (Fig. 

2A). EV and miR-155 transduced cells shared 16 and 17 of the top-20 most 

enriched gene sets in ST486 and Ramos, respectively (Supplementary Table 1). 

In miR-155-ST486 the miR-155-binding motif was the 13th most enriched gene 

set with a false discovery rate (FDR) <0.001 (Fig. 2B). In contrast, the miR-155-

binding motif was not within the 20 most enriched gene sets for EV-ST486 or 

any of the transduced Ramos cell lines.  

 To identify the miR-155-specific targets we determined which probes are 

more than two-fold stronger enriched in the IP fraction of miR-155 compared to 

EV-transduced cells. We identified 64 probes that fulfilled this condition in ST486 

and 18 probes in Ramos cells. Out of the 64 probes identified in ST486, 61 

probes belonged to 54 genes and 3 probes did not correspond to any known 

gene. The fold enrichment in the targetome of miR-155-ST486 compared to EV-

ST486 ranged from 2.0 to 12.6 fold. In silico validation indicated that 26 of the 

54 identified genes (48%) contained an 8-mer miR-155 binding site 

(AGCATTAA) and 43 genes (80%) contained a 6-mer miR-155 binding site 

(GCATTA) in the 3’UTR. 18 of the 54 genes (33%) were predicted to be miR-155 

targets by TargetScan (Supplementary Table 3). This percentage was strongly 

increased as compared to the ~1.7% predicted miR-155 targets among all 

expressed genes. For Ramos cells, 15 of the 18 probes were assigned to known 

genes. The enrichment fold in the targetome of miR-155-Ramos compared to 

EV-Ramos ranged from 2.0 to 2.6 fold. Two of the genes (13%) contained an 8-

mer and 9 genes (60%) contained a 6-mer miR-155 binding site 

(Supplementary Table 4). Three of the 15 genes (20%) were predicted to be 

miR-155 targets by TargetScan. Five of the miR-155 target genes are identified 

in both ST486 and Ramos cells. Three of these genes showed similar fold 
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enrichment in both cell lines, whereas the fold enrichment for De-etiolated-1 

(DET1) and PC4 and SF2 interacting protein 1 (PSIP1) was much higher in 

ST486 cells (Fig. 3A).  

MiR-155 target genes validation 

We selected six miR-155 target genes for validation, i.e. one known target gene, 

Jumonji AT rich interactive domain 2 (JARID2), and the five genes that were 

most enriched in the targetome of miR-155-ST486 cells, i.e. DET1, Transforming 

growth factor beta regulator (TBRG1), Tripartite motif-32 (TRIM32), Homeobox 

leucine zipper (HOMEZ) and PSIP1. Four of the six genes, TBRG1, TRIM32, 

HOMEZ and JARID2, were ST486-specific miR-155 target genes and two genes, 

DET1 and PSIP1, were found both in ST486 and in Ramos (Fig. 3A). We first 

compared the endogenous levels of the six selected genes in wild-type ST486 

and Ramos cells (Fig. 3B). The levels of TBRG1, HOMEZ, JARID2, DET1 and 

PSIP1 were similar for ST486 and Ramos cells, whereas the TRIM32 level was 

substantially lower in Ramos cells. Thus, the lack of TRIM32 enrichment in the IP 

fraction of miR-155-Ramos cells can be explained by its very low expression 

level.  

 We performed luciferase reporter assay in ST486 cells to validate the six 

selected genes as miR-155 target genes. The 3’UTRs of TBRG1, TRIM32, 

JARID2, DET1 and PSIP1 genes and the coding sequence of HOMEZ contained 

miR-155 binding sites that were cloned into the psiCHECK2 luciferase vector 

(Fig. 3C). Co-transfection of the resulting luciferase constructs with a miR-155 

precursor to ST486 wt cells resulted in significantly decreased relative luciferase 

levels, ranging from 15 to 53%, compared to co-transfection with negative 

control precursors (Fig. 3D). Western blot analysis for the most enriched gene in 

the targetome of miR-155-ST486 cells, i.e. DET1, revealed a 2 fold decrease in 

DET1 protein level in miR-155-ST486 compared to EV-ST486 cells (Fig. 3E, F). 

Thus, we confirmed that TBRG1, TRIM32, HOMEZ, JARID2, DET1 and PSIP1 are 

valid miR-155 target genes in ST486 cells. 
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FIGURE 3. Validation of miR-155 target genes. (A) Venn diagram showing the overlap 
between  miR-155 target genes in ST486 and Ramos cells upon overexpression of miR-155 
as identified by AGO2-RIP-CHIP. Genes selected for validation are presented in the boxes. 
Fold enrichment in IP/T ratio in miR-155 compared to EV cells is indicated. (B) Transcript 
levels of TBRG1, TRIM32, HOMEZ, JARID2, DET1 and PSIP1 were measured by qRT-PCR in 
wild-type ST486 and Ramos cells. TRIM32 levels were much lower in Ramos compared to 
ST486 cells. (C) Schematic overview of 3’UTR regions with the positions of the predicted 
miR-155 binding sites indicated by the arrows (8-mer and 6-mer sites) in 3’UTRs. For 
HOMEZ, no miR-155 binding sites were predicted in the 3’UTR, but two putative sites were 
observed in the coding region. For TBRG1 and PSIP1, the 3’UTR of the isoforms containing 
the miR-155 binding sites are shown (ENST00000441174 and NM_021144, respectively). 
(D) Luciferase reporter assay for six selected genes in ST486 cells revealed reduced 
Renilla luciferase (RL) / Firefly luciferase (FL) ratios for all six genes. Thus, TBRG1, 
TRIM32, HOMEZ, JARID2, DET1 and PSIP1 are validated miR-155 target genes in ST486 
cells. Ratios were calculated for cells co-transfected with the psiCHECK2 construct and 
either synthetic miR-155 precursor or a negative control (NC). Luciferase ratio for miR-155 
precursor relative to negative control was calculated for each construct. P values were 
calculated with Student’s t-test (*p<0.05, **p<0.001, ***p<0.01). (E) DET1 protein level 
was decreased in miR-155-ST486 compared to EV-ST486. (F) Quantification of the 
Western blot for DET1 relative to GAPDH. EV-ST486 was set as 1, the average of 2 
experiments was shown. 

TBRG1, TRIM32, HOMEZ, JARID2 and DET1 are targeted by endogenous 

miR-155 in Hodgkin lymphoma 

We next investigated whether the six validated miR-155 target genes are also 

targeted by endogenous miR-155 in HL cells. We inhibited miR-155 using a 

retroviral vector containing a miR-155 sponge with 14 binding sites (Kluiver et 

al., 2012) in KM-H2 HL cells that have high endogenous miR-155 level (Fig. 1A). 

We performed Ago2-RIP-Chip in KM-H2 cells transduced with EV (EV-KM-H2) or 

miR-155 sponge (miR-155AS-KM-H2) to identify the miR-155 targets 

(Supplementary Table 5). The IP/T ratio for TBRG1, TRIM32, HOMEZ, JARID2 

and DET1 decreased in miR-155AS-KM-H2 cells, whereas there was no 

difference in the IP/T ratios for PSIP1. These results indicate that TBRG1, 

TRIM32, HOMEZ, JARID2 and DET1 are targeted by endogenous miR-155 in KM-

H2 cells. For comparison we also show the increase in IP/total ratio observed in 

miR-155-ST486 compared to EV-ST486 cells (Fig. 4A, B).  
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FIGURE 4. Five of the six validated miR-155 target genes are also targeted by 
endogenous miR-155 in HL. (A) IP/T ratio of the six miR-155 target genes was 
increased in miR-155-ST486 with compared to EV-ST486. (B) IP/T ratio of in five of the six 
genes was decreased in miR-155AS-KM-H2 compared to EV-KM-H2. IP/T ratios were 
calculated from expression levels as determined by the gene expression microarrays.  

Inhibition of TBRG1 phenocopy miR-155 overexpression in ST486 cells 

To show the relevance of these six validated miR-155 target genes we generated 

12 shRNA constructs directed against these six genes. Effectiveness of the 

shRNA constructs was determined by qRT-PCR (Supplementary Fig. 2). 

Inhibition of TRIM32, HOMEZ, JARID2, DET1 and PSIP1 decreased growth of 

ST486 cells during GFP competition assay for at least one of the two shRNA 

constructs (Supplementary Fig. 2). For TBRG1, there are 11 transcript variants 

in the Ensemble database (Supplementary Table 6). Only 3 of the 11 variants 

contain the miR-155 binding site, i.e. ENST00000441174, ENST00000284290 

and ENST00000529543 (Supplementary Table 6). Deng et al. assessed levels of 

7 of the 11 transcripts and showed that isoforms ENST00000441174 and 

ENST00000473629 were most abundant in the Burkitt lymphoma cell line MutuI 

(Deng et al., 2011) (Fig. 5A). The Agilent platform contains two probes for 

TBRG1, i.e. one probe that binds to both abundant isoforms (probe 1) and one 

probe that is specific for the protein-coding isoform that contains the miR-155 

binding site (probe 2). Consistent with the findings of Deng et al. (2011) we 

observed that probe 1 showed much higher signals than probe 2 (Fig. 5B). Probe 
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1 was not enriched in the IP, whereas probe 2 was 5.4 fold enriched in the IP 

fraction. Thus, miR-155 binds specifically to the protein coding isoform. We used 

three shRNAs to inhibit TBRG1, one was specific for the protein-coding isoform 

and the other two were targeting most TBRG1 isoforms. Inhibition of the 

protein-coding TBRG1 isoform resulted in enhanced growth of ST486 cells, 

whereas inhibition of the other isoforms revealed no change or a decrease in 

growth of ST486 cells (Fig. 5C). Thus, inhibition of the protein-coding isoform of 

TBRG1 phenocopied the growth promoting effect of miR-155 overexpression in 

ST486 cells. 

 

 

FIGURE 5. Specific inhibition of the protein-coding isoform of TBRG1 caused 
increase of ST486 cell growth. (A) Schematic overview of two most abundant TBRG1 
isoforms. Position of the miR-155 binding site (miR-155BS), the region targeted by the 
shRNAs and the location of the two microarray probes were indicated. (B) Signal intensity 

measured by probe 1 was much higher than the signal intensity measured by probe 2. The 
protein-coding isoform detected specifically by probe 2 was strongly enriched in the 
targetome of miR-155-ST486 cells, whereas the common probe was not enriched. (C) 
shRNA-1 that specifically inhibits the protein-coding isoform induced a growth advantage 
of ST486 cells in a GFP competition assay. shRNA-2 resulted in decreased cell growth and 
shRNA-3 had no effect on cell growth of ST486 cells. 

 

C
H

A
P

TE
R

 6
 



Identification of miR-155 target genes in B-cell lymphoma 

 

128 

DISCUSSION 

MiR-155 and the miR-155 primary transcript, BIC, are among the most studied 

miRNAs in B-cell lymphoma. Over the past few years many target genes 

involved in functioning of normal hematopoietic cells have been identified. In the 

context of B-cell lymphoma, it is frequently not clear which target genes are 

relevant for the pathogenesis of a specific B-cell lymphoma subtype. In this 

study we showed that upon overexpression of miR-155 in BL cells, growth of 

ST486 cells was enhanced, whereas growth of Ramos cells was not affected. 

Phenotype copy experiments revealed that TBRG1 is involved in the enhanced 

growth observed upon miR-155 overexpression in ST486 cells. 

 We selected two commonly used BL cell lines for the functional studies 

that have similar miRNA and gene expression profiles (data not shown) and both 

show very low miR-155 levels. Nevertheless, ST486 and Ramos cells responded 

differently to overexpression of miR-155 and Ago2-RIP-Chip analysis upon miR-

155 induction resulted in the identification of a larger and more enriched set of 

miR-155 target genes in ST486 than in Ramos cells. The differences in targeting 

were not caused by differences in endogenous expression levels of the target 

genes, because the endogenous levels were similar for 5 out of 6 genes. For 

TRIM32 we observed low expression levels in Ramos cells compared to ST486 

cells which might explain the absence of TRIM32 in the IP fraction of Ramos 

cells. Besides similar endogenous transcript levels, also the induced miR-155 

levels were similar in both cell lines making it unlikely that the miR-155 levels 

were insufficient to target these genes in Ramos cells. However, we did see a 

slightly higher enrichment of miR-155 in the IP fraction of ST486 as compared to 

Ramos cells (Supplementary Fig. 1), which might in part explain differences in 

miR-155 targeting and phenotype.  

 We selected six miR-155 target genes for validation and confirmed 

effective targeting in ST486 BL cells for all. One gene, JARID2, was a known 

target, whereas TRIM32, DET1, HOMEZ, PSIP1 and TBRG1 were novel miR-155 

targets. In contrast to the observed miR-155 effect on growth of ST486 cells, 

inhibition of five of the target genes revealed either no or a growth inhibitory 
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effect. Only inhibition of TBRG1 phenocopied the observed effect upon miR-155 

overexpression in ST486 cells. 

 JARID2 was previously shown to inhibit apoptosis in chicken B-cell 

lymphoma (Bolisetty et al., 2009) and cardiomyocyte proliferation by regulating 

Cyclin D1, D2 and D3 (Jung et al., 2005). TRIM32 and DET1 have been shown to 

be involved in the ubiquitinylation pathway and the subsequent degradation of 

proteins. TRIM32 is a member of the ubiquitination-related tripartite motif 

(TRIM) family and was shown to ubiquitinylate MYC, inhibit proliferation and 

enhance differentiation of mouse neuronal progenitors (Schwamborn et al., 

2009). Overexpression of TRIM32 in mouse embryonic fibroblast cell line, NIH 

3T3, resulted in accelerated proliferation (Kano et al., 2008). Another 

established function of TRIM32 is enhancement of activity of certain miRNAs, 

including the cell differentiation-promoting miRNA let-7a. DET1 is a component 

of the E3 ubiquitin ligase DCX DET1-COP1 complex, which is involved in c-Jun 

ubiquitination and degradation. Inhibition of DET1 induced apoptosis of human 

osteosarcoma cells (Wertz et al., 2004). This is consistent with the growth 

inhibition that we observed upon DET1 inhibition in ST486 cells. HOMEZ did not 

have a miR-155 binding site in the 3’UTR, and consistent with this we observed 

no effect in the luciferase reporter construct upon cloning of this 3’UTR region 

(data not shown). However, the two putative miR-155 binding sites in the 

coding region were validated by the luciferase reporter assay. In general, the 

majority of the miRNA binding sites are found in the 3’UTR and the remaining 

binding sites are located in the 5’UTR or in the coding region (Chi et al., 2009). 

The cellular function of HOMEZ is not well characterized, but based on the 

protein domains it is predicted to function as a transcription factor (Bayarsaihan 

et al., 2003). Inhibition of HOMEZ decreased growth of ST486 cells, suggesting 

that it may be involved in regulation of genes involved in growth of Burkitt 

lymphoma cells. PSIP1 encodes two protein isoforms, i.e. p52 and p75, which 

are generated by alternative splicing. Only the Psip1/p52 has a miR-155 binding 

site in the 3’UTR and consistent with this we indeed observed enrichment of the 

probe that recognizes this isoform in the IP fraction, whereas the probe for the 

other isoform was not enriched (data not shown). Psip1/p52 was shown to be 
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involved in alternative splicing (Pradeepa et al., 2012). Tissue specific 

expression patterns of Psip1/p52 and Psip1/p75 are consistent with different 

regulation of these two proteins and support different cellular functions.  

 For TBRG1 only one probe detecting two out of eleven isoforms was 

enriched in the IP fraction, which was consistent with the putative miR-155 

binding site that was present in the 3’UTR of these isoforms. These isoforms are 

not the dominant isoforms in our BL cells as was apparent from the lower probe 

signals in the microarrays. In Mutu1 BL cells, Deng et al. showed that the 

protein-coding isoform containing the miR-155 binding site constitutes only 

~35% of all detected TBRG1 transcripts (Deng et al., 2011). In addition, the 

authors showed that also for some other genes a non-dominant isoform is 

targeted by miRNAs, which is consistent with our findings. Inhibition of the 

protein-coding isoforms of TBRG1 using an shRNA construct phenocopied the 

enhanced growth of ST486 cells as observed for miR-155 overexpression. The 

two other shRNA constructs, targeting most isoforms, showed either no or a 

growth inhibitory effect. This indicates that the protein-coding isoform of TBRG1 

is involved in the growth stimulating effect of miR-155 in ST486 cells. This is 

consistent with growth inhibitory role of TBRG1 protein described by Tomkins et 

al. (Tompkins et al., 2007). They showed that TBRG1 was linked to ARF-MDM2-

p53 signaling in several ways. The level of TBRG1 protein was downregulated by 

MDM2-mediated ubiquitination. TBRG1 in cooperation with alternative reading 

frame (ARF) protein induced G1-phase arrest in human osteosarcoma cells. 

Moreover, both TBRG1 and ARF were shown to increase p53 activity (Tompkins 

et al., 2007). Microarray studies indicated that TBRG1 was downregulated in 

various types of cancer, including diffuse large B cell lymphoma and chronic 

lymphocytic leukemia (Tompkins et al., 2007). This is consistent with the high 

miR-155 levels found in many types of cancer and supports our findings 

regarding to the role of TBRG1 in growth of ST486 cells.  

 Dorsett et al. showed that low miR-155 in B cells results in increased level 

of the miR-155 target gene AID and this enhanced the frequency of MYC 

translocations (Dorsett et al., 2008). Since MYC translocations are the hallmark 

of BL, it might be anticipated that low miR-155 levels are especially crucial at 
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the initiation step of the malignant transformation of the germinal center 

precursor B cells. This might explain why we do see an oncogenic effect of high 

miR-155 levels in an established Burkitt lymphoma cell lines. Our data show that 

the effect of miR-155 modulation may be different even between similar cell 

types such as ST486 and Ramos. It may be speculated that the balance between 

the target gene transcript levels and the efficiency of regulation by miR-155 and 

probably other miRNAs determines the final outcome of miR-155 modulation.  

 In conclusion, we identified six miR-155 target genes in BL cells with 

overexpression of miR-155 and showed that five of these genes are also 

targeted by endogenous miR-155 in HL cells. Induction of miR-155 enhances 

growth of ST486 BL cells and this phenotype involves inhibition of the TBRG1 

gene. 

MATERIAL AND METHODS 

Cell lines. The ST486 and Ramos BL cell lines and the KM-H2 HL cell line were 

cultured at 37°C under an atmosphere containing 5% CO2 in RPMI-1640 medium 

(Cambrex Biosciences, Walkersville, USA) supplemented with ultraglutamine 

(2mM), penicillin (100U/ml), streptomycin (0.1mg/ml; Cambrex Biosciences), 

and 20% (ST486) or 10% (Ramos, KM-H2) fetal calf serum (Cambrex 

Biosciences). Cell lines were purchased from ATCC (ST486) or DSMZ (Ramos, 

KM-H2). 

DNA constructs. To overexpress miR-155, the pre-miR-155 and 

~150ntflanking sequences were amplified from genomic DNA using Taq 

polymerase and primers listed in Supplementary Table 7. A XhoI restriction site 

was added to the forward and an EcoRI site to the reverse primer to allow 

directional cloning to the retroviral MXW-PGK-IRES-GFP vector (Mao and Chen, 

2007) using standard laboratory procedures. The MXW-PGK-IRES-GFP vector 

was a kind gift from C-Z. Chen (Stanford University, CA). To inhibit miR-155, a 

miR-155 sponge construct was generated as previously described (Kluiver et al., 

2012). Briefly, we cloned 14 bulged miR-155 binding sites to the retroviral 
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pMSCV-PIG vector (Addgene). The 3’ UTR of DET1, TRIM32, JARID2, PSIP1, 

TBRG1 and the ~300nt fragment of HOMEZ in the coding sequence containing 

the potential miR-155-binding sites were amplified from genomic DNA using the 

primers listed in Supplementary Table 7. A NotI restriction site was added to the 

forward and a SstI to the reverse primers to enable cloning of the PCR products 

in the psiCHECK2 vector (Promega, Madison, WI). To inhibit DET1, TRIM32, 

JARID2, PSIP1, TBRG1 and HOMEZ, shRNA sequences were selected from shRNA 

library (TRC, Broad Institute, http://www.broadinstitute.org/rnai/trc/lib). 

Sequences of the shRNA oligo’s are listed in Supplementary Table 8. XhoI and 

EcoRI sites were added to enable cloning to the retroviral pMDH1-PGK-GFP 2.0 

vector (Mao and Chen, 2007). The pMDH1-PGK-GFP 2.0 vector was a kind gift 

from C-Z. Chen (Stanford University, CA). All inserts were verified by 

sequencing. 

 

Retroviral transductions. To generate retroviral particles, Phoenix-Ampho 

packaging cells (Swift et al., 2001) were CaPO4 transfected using 37,5μg of 

retroviral vector in T75 flasks. Viral particles were harvested after two days and 

concentrated with Retro-X concentrator (Clontech, Saint-Germain-en-Laye, 

France) according to the manufacturer’s protocol. Target cells were transduced 

with the virus by spinning at 2,000rpm for 2hrs. Cells transduced with retroviral 

vectors were sorted for GFP+ cells using MoFlo sorter (Dako cytomation). 

Quantitative RT-PCR. Total RNA from total, FT and IP fractions was isolated 

using miRNeasy kit (Qiagen, Carlsbad, USA). Total RNA from other samples was 

isolated using Trizol (Invitrogen, Carlsbad, USA) according to the manufacturer’s 

protocol for the cell lines. The RNA concentration was measured with a 

NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, 

USA) and RNA integrity was evaluated by 1% agarose electrophoresis. qRT-PCR 

for miR-155, miR-19b and RNU48 (control) was performed using miRNA qRT-

PCR assays (Applied Biosystems, Foster City, USA) as described previously 

(Gibcus et al., 2009). Reverse transcription (RT) primers specific for a miR-155, 

miR-19b and RNU48 were multiplexed in 15µl RT reactions containing 1µl of 

each RT primer. MiR-155 and miR-19b levels were normalized to the RNU48 

http://www.broadinstitute.org/rnai/trc/lib
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levels. To determine the levels of TBRG1, TRIM32, HOMEZ, JARID2, DET1, 

PSIP1, cDNA was synthesized using 500ng input RNA, SuperScript II and 

random primers according to the manufacturer’s protocol (Invitrogen). The qPCR 

reaction contained a final concentration of 1x qPCR MasterMix Plus (Eurogentec, 

Liege, Belgium), 1x Gene expression assay (Applied Biosystems, Foster City, 

USA), and 1ng of cDNA in a total volume of 10µl. The following gene expression 

assays were used: Hs00262345_m1 (TBRG1), Hs00705875_s1 (TRIM32), 

Hs01866743_s1 (HOMEZ), Hs01004460_m1 (JARID2), Hs00894490_m1 (DET1), 

Hs01045711_g1 (PSIP1) (All Applied Biosystems). Gene expression levels were 

normalized to HPRT levels. Mean cycle threshold (Ct) values were determined 

with the SDS software (version 2.1). Relative expression levels were calculated 

as 2-∆Ct. 

Transfection of cell lines and luciferase assay. Luciferase assay was 

performed using Promega Dual-Luciferase Reporter Assay System (Promega, 

Madison, WI) as described previously (Gibcus et al., 2009). Briefly, two million 

ST486 cells were transfected with 4µg of each psiCHECK2 construct and co-

transfected with 100nM miR-155 precursor (Ambion) or negative control #1 

(Ambion) using Amaxa nucleofector device, program A23 (Amaxa, Gaithersburg, 

MD). Cell lysates were made 24 hours after transfection. For each transfection, 

the Renilla and Firefly luciferase activities were measured in duplicate, the 

Renilla over Firefly (R/L) luciferase ratio for miR-155 precursor was calculated 

and compared to negative control (set at 100%). Transfections were performed 

in triplicate and standard deviations were calculated. To determine significance 

of difference in the R/F ratio between miR-155 precursor and negative control 

#1 a Student’s t-test was performed. 

Western Blot. Cell lysates were prepared, separated on polyacrylamide gels 

and transferred onto nitrocellulose membranes using standard protocols. Mouse 

anti-DET1 antibody (clone 3G5, Genentech, San Francisco, CA) was diluted to a 

concentration of 1µg/ml in 5% milk in Tris-buffered saline with Tween-20 

(TBST). Immunoblots were incubated with primary anti-DET1 antibody at 4ºC 

overnight. Secondary rabbit anti-mouse antibody conjugated with horseradish 
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peroxidase was used. Chemiluminescence was detected with the ChemiDoc MP 

scanner and protein bands were visualized and quantified with Image Lab 4.0.1 

software (both BioRad, Veenendaal, NL). To detect protein levels of TBRG1, 

TRIM32 and JARID2, we tested the following antibodies: anti-TBRG1, clone 

11E12, kindly provided by D. Quelle (The University of Iowa, Iowa) and clone 

18951-1-AP purchased from Proteintech Manchester, UK; anti-TRIM32, clone 

10326-1-AP (Proteintech); anti- JARID2,  antibody was kindly provided by D. 

Reinberg (NYU School of Medicine Smilow Research Center, NY). However, we 

were not able to obtain reliable immunoblot results for these three proteins.  

FACS analysis. For GFP competition assays, ST486 and Ramos cells were 

transduced with the MXW-PGK-IRES-GFP empty vector or miR-155 containing 

construct. For GFP competition assays with shRNAs, ST486 cells were 

transduced with the pMDH1-PGK-GFP 2.0 empty vector of shRNA containing 

construct (Supplementary Table 8). GFP expression was measured on a FACS 

Calibur flow cytometer (BD PharMingen) at day 3 or 4 post-transduction and 

monitored for three weeks tri-weekly. The percentage of GFP positive cells at 

day 3 or 4 was set to 1 and a fold difference per measurement was calculated.  

 

Ago2-RIP-Chip procedure. Immunoprecipitation of Ago2-containing RISC 

complexes was performed as described previously (Tan et al., 2009). Briefly, 

cleared lysate of 10-20 million cells was incubated with protein G Sepharose 

beads (GE Healthcare) coated with anti-Ago2 antibody (Clone 2E12-1C9, 

Abnova, Taiwan) at 4°C overnight. Anti-IgG antibody was used as a negative 

control (Millipore BV, Amsterdam, The Netherlands). After washing the beads, 

RNA was harvested for microarray and qRT-PCR analysis and protein lysates 

were prepared for Western blot. Western blot for Ago2 was performed as 

described previously (Tan et al., 2009). Total RNA was isolated with miRNeasy 

Kit (Qiagen) according to manufacturer’s protocol. RNA from total and Ago2-IP 

fractions of miR-155-ST486, EV-ST486, miR-155-Ramos, EV-Ramos, miR-

155AS-KMH2 and EV-KMH2 cells was used for microarray analysis. Labelling and 

hybridization was performed using two-color Quick Amp Labeling Kit (ST486 and 

Ramos) and Low Input Quick Amp Labeling Kit (KM-H2), according to 
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manufacturer’s protocol (Agilent, Santa Clara, USA). Briefly, 60-100ng of RNA 

from total and Ago2-IP samples was used for cDNA synthesis, followed by cRNA 

amplification and Cy3 and Cy5 labelling. cRNA was purified with RNeasy Kit 

(Qiagen) and quantified on NanoDropTM 1000 Spectrophotometer (Thermo 

Fisher Scientific Inc.). Equal amounts of Cy3 and Cy5-labelled cRNA were 

combined and hybridized at 65°C overnight on the 44k Human Whole Genome 

Oligo Microarray. Next, slides were washed and scanned with GenePix 4000B 

(Agilent). Scanned images were used for Agilent Feature Extraction software 

version 10.5., converted into Linear and Lowess normalized data. Quality control 

report was generated for each microarray. Using GeneSpring GX version 9.0 

(Agilent), quantile normalization of the signals was performed separately for 

Ramos, ST486 and KM-H2 samples. Next, probes not detected in more than half 

of the samples and probes that were inconsistent (more than 2 fold different) in 

Cy3 and Cy5 replicates of the same sample were filtered out. The averaged 

signals for Cy3 and Cy5 replicates were used to calculate the IP/T ratio for each 

sample.  

 

Gene Set Enrichment Analysis. To determine which genes sets are 

significantly enriched in the Ago2-IP in comparison to the total fraction in miR-

155-ST486, EV-ST486, miR-155-Ramos and EV-Ramos, we performed a Gene 

Set Enrichment Analysis using The Molecular Signatures Database (GSEA; 

http://www.broad.mit.edu/gsea, Subramanian et al., 2005). If more than one 

probe was assigned for a certain gene, we selected the probe with the highest 

fold enrichment in the IP/T ratio in miR-155-ST486 or miR-155-Ramos 

compared to EV controls. This selection resulted in 9,047 genes submitted for 

analysis for ST486 and 7,809 genes for Ramos.  
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SUPPLEMENTARY DATA 

SUPPLEMENTARY TABLE 1. 20 most enriched gene sets in EV-ST486, miR-155-ST486, 
EV-Ramos and miR-155-Ramos  

 
Position in GSEA 

Gene set ST486  Ramos 

 EV miR-155  EV miR-155 

GCACTTT,MIR-17-5P,MIR-20A,MIR-106A,MIR-106B,MIR-20B,MIR-519D 1 1  1 1 

ACACTAC,MIR-142-3P 2 3  11 12 

AGCACTT,MIR-93,MIR-302A,MIR-302B,MIR-302C,MIR-302D,MIR-372,MIR-
373,MIR-520E,MIR-520A,MIR-526B,MIR-520B,MIR-520C,MIR-520D 

3 2  4 4 

CTACTGT,MIR-199A 4 8  10 9 

GTGCAAT,MIR-25,MIR-32,MIR-92,MIR-363,MIR-367 5 4  3 3 

TGAATGT,MIR-181A,MIR-181B,MIR-181C,MIR-181D 6 6  7 7 

TTTGCAC,MIR-19A,MIR-19B 7 7  5 5 

AAGCACT,MIR-520F 8 10  16 15 

ACTTTAT,MIR-142-5P 9 11  6 6 

NAGASHIMA_NRG1_SIGNALING_UP 10 9    

TGCACTT,MIR-519C,MIR-519B,MIR-519A 11 5  2 2 

KIM_WT1_TARGETS_UP 12 14    

TTGCCAA,MIR-182 13     

BONCI_TARGETS_OF_MIR15A_AND_MIR16_1 14     

TGCACTG,MIR-148A,MIR-152,MIR-148B 15 12  8 10 

TGTTTAC,MIR-30A-5P,MIR-30C,MIR-30D,MIR-30B,MIR-30E-5P 16 20    

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_DN 17 18    

ATAAGCT,MIR-21 18     

TACTTGA,MIR-26A,MIR-26B 19 15  18 18 

AMIT_EGF_RESPONSE_40_HELA 20     

AGCATTA,MIR-155  13    

NAGASHIMA_EGF_SIGNALING_UP  16    

ACATATC,MIR-190  17    

TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC_UP  19    

DAZARD_RESPONSE_TO_UV_NHEK_DN    9 8 

TTGCACT,MIR-130A,MIR-301,MIR-130B    12 11 

DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN    13 16 

CACTTTG,MIR-520G,MIR-520H    14  

DACOSTA_UV_RESPONSE_VIA_ERCC3_DN    15 13 

GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_TURQUOISE_UP    17  

ATTACAT,MIR-380-3P    19  

TGCTGCT,MIR-15A,MIR-16,MIR-15B,MIR-195,MIR-424,MIR-497    20 19 

ATGCTGC,MIR-103,MIR-107     14 

GTACTGT,MIR-101     17 

CTTTGCA,MIR-527     20 
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SUPPLEMENTARY TABLE 2. Similar numbers of probes were identified in the miRNA-

targetomes of EV and miR-155-transduced ST486 and Ramos cells. 

 ST486 (n=14,468*)  Ramos (n=11,928*) 

Enrichment EV miR-155  EV miR-155 

# probes IP/T>2 1,804 (12.5%) 1,833 (12.7%)  1,969 (16.5%) 1,927 (16.2%) 

 IP/T>4 664 (4.6%) 701 (4.8%)  743 (6.2%) 751 (6.3%) 

 IP/T>8 239 (1.7%) 226 (1.6%)  269 (2.3%) 263 (2.2%) 

*Number of probes that were flag present and showed consistent signals in Cy3 and Cy5 
signals. 

SUPPLEMENTARY TABLE 3. MiR-155 target genes in miR-155-ST486 cells identified with 
Ago2-RIP-Chip. 

Gene ProbeName miR-155 

IP/T 

EV 

IP/T 

miR-155/ 

EV 
TS1 # 8-mer2 in 

3'UTR 

# 6-mer3 in 

3'UTR 

DET1* NM_017996 A_23_P26184 17.5 1.4 12.6 + 1 3 

TBRG1 NM_032811 A_23_P98463 11.6 2.2 5.4 + 1 2 

TRIM32 NM_012210 A_23_P112311 2.1 0.4 5.2 + 1 1 

HOMEZ NM_020834 A_23_P76829 5.1 1.1 4.7  0
4
 0

4
 

PSIP1* NM_021144 A_23_P256384 9.8 2.4 4.1 + 1 2 

C14orf159 BC009182 A_24_P58177 2.0 0.6 3.7  0 1 

CCDC126 NM_138771 A_23_P168592 4.0 1.1 3.7  1 3 

MAX NM_145114 A_23_P436138 2.1 0.6 3.7  0 0 

PSKH1 NM_006742 A_23_P390596 11.7 3.3 3.5 + 1 1 

BRWD1 NM_018963 A_24_P190541 3.5 1.1 3.3 + 0 2 

ZNF578 NM_001099694 A_23_P339601 5.0 1.5 3.3  1 1 

IER5 NM_016545 A_23_P86330 3.4 1.1 3.1  0 1 

TCF4 NM_003199 A_23_P27332 3.1 1.0 3.1 + 2 4 

SAR1A NM_020150 A_23_P127175 4.6 1.5 3.0  0 0 

KLHL5 NM_015990 A_23_P121527 3.9 1.3 3.0  1 3 

TBC1D14 NM_020773 A_24_P120352 2.3 0.8 3.0  1 1 

JARID2 NM_004973 A_23_P214876 6.8 2.2 3.0 + 2 2 

PRDM15 AY063456 A_32_P145989 2.8 1.0 3.0  1 2 

ZNF845 NM_138374 A_32_P207428 6.2 2.1 2.9  1 2 

USPL1* NM_005800 A_24_P338757 6.4 2.2 2.9  0 1 

DPY19L1 NM_015283 A_23_P358628 3.4 1.2 2.8  1 3 

ARRDC2 NM_001025604 A_23_P130965 2.1 0.7 2.8  0 1 

FAM119A NM_145280 A_23_P209337 2.6 1.0 2.7  0 0 

PHKB NM_001031835 A_23_P206532 2.2 0.8 2.7  0 1 

TAB2 NM_015093 A_23_P19702 7.1 2.7 2.6 + 1 2 

ERI2 NM_080663 A_23_P129717 6.6 2.5 2.6  0 0 

PICALM NM_007166 A_23_P147995 2.2 0.9 2.6  0 4 

ZFP36* NM_003407 A_23_P39237 19.4 7.6 2.6  0 1 
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SUPPLEMENTARY TABLE 3 continued 

VAMP3* NM_004781 A_24_P370887 20.2 7.9 2.5  0 3 

CENPI NM_006733 A_23_P252292 2.1 0.8 2.5  0 0 

BACH1 NM_206866 A_23_P211047 14.5 5.8 2.5 + 1 3 

RHEB NM_005614 A_23_P134247 3.8 1.5 2.5 + 0 1 

PHC2 NM_198040 A_23_P423864 2.6 1.1 2.4 + 1 1 

ZNF320 NM_207333 A_32_P540407 6.1 2.5 2.4  1 2 

PLEKHB2 NM_001100623 A_24_P873414 4.6 1.9 2.4  1 1 

C5orf15 NM_020199 A_23_P81650 3.2 1.3 2.4  0 0 

ARFIP1 NM_001025595 A_24_P166094 2.3 1.0 2.4  0 1 

CLUAP1 NM_024793 A_23_P77714 2.6 1.1 2.3  1 1 

RNF26 NM_032015 A_23_P64630 2.2 1.0 2.3  1 1 

PPA2 NM_176869 A_24_P214625 3.0 1.3 2.2  0 0 

PANK1 NM_148977 A_23_P127054 3.7 1.7 2.2 + 0 1 

GALT NM_000155 A_24_P12865 2.4 1.1 2.1  1 1 

TPD52 NM_001025252 A_23_P216257 2.6 1.2 2.1  0 1 

ZNF137 NR_023311 A_23_P208238 3.1 1.5 2.1  0 0 

CD58 NM_001779 A_23_P138308 3.8 1.9 2.1  0 2 

CSRP2 NM_001321 A_23_P44724 10.8 5.2 2.0  1 2 

LIN9 NM_173083 A_23_P301995 2.2 1.1 2.0  0 1 

DCTN6 NM_006571 A_23_P43049 8.8 4.3 2.0  0 0 

FGF7 NM_002009 A_23_P14612 10.7 5.3 2.0 + 1 2 

KIAA1715 CR936742 A_32_P127248 2.6 1.3 2.0 + 0 2 

MARK2 NM_004954 A_24_P914495 3.3 1.6 2.0 + 0 1 

CSNK1G2 NM_001319 A_24_P99963 3.2 1.6 2.0 + 1 1 

MFSD5 NM_032889 A_23_P72850 5.0 2.5 2.0  0 0 

LNX2 NM_153371 A_23_P402287 3.4 1.7 2.0 + 1 1 

*present on miR-155-Ramos miR-155 target list,
1
TS-miR-155 target predicted by TargetScan 6.2, 

2
8-

mer sequence – AGCATTAA, 
3
6-mer sequence – GCATTA, 

4
8-mer and 6-mer in CDS 
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SUPPLEMENTARY TABLE 4. MiR-155 target genes in miR-155-Ramos cells identified 
with Ago2-RIP-Chip. 

Gene Probe 
miR-155 

IP/T 
EV 
IP/T 

miR-155/ 
EV 

TS1 
# 8-mer2 
in 3'UTR 

# 6-mer3 

in 3'UTR 
 
 MCM3APAS

4 
NR_002776 A_24_P117301 13.5 5.1 2.6  NA

4
  NA 

DET1* NM_017996 A_23_P26184 4.1 1.5 2.6 + 1 3 

SLC23A2 NM_203327 A_24_P254278 3.3 1.3 2.6  0 0 

VAMP3* NM_004781 A_24_P370887 9.0 3.6 2.5  0 3 

USPL1* NM_005800 A_24_P338757 5.0 2.0 2.5  0 1 

ZFP36* NM_003407 A_23_P39237 11.1 4.6 2.4  0 1 

AKTIP NM_001012398 A_32_P224840 7.2 3.0 2.4  0 1 

ZBTB4 NM_020899 A_23_P100654 34.4 15.1 2.3  0 0 

SNAP23 NM_003825 A_23_P206177 3.3 1.5 2.2  0 0 

SETD7 NM_030648 A_24_P251841 2.5 1.2 2.1 + 0 4 

STK38 NM_007271 A_24_P63727 2.8 1.4 2.0  0 1 

FAM82A2 NM_018145 A_24_P296280 3.9 1.9 2.0  0 0 

RC3H2 NM_018835 A_23_P94636 2.8 1.4 2.0  0 3 

PSIP1* NM_021144 A_23_P256384 4.6 2.3 2.0 + 1 2 

OAZ3 NM_016178 A_23_P432583 5.3 2.7 2.0   0 0 

*present on miR-155-ST486 miR-155 target list,
1
TS-miR-155 target predicted by TargetScan 6.2, 

2
8-mer 

sequence – AGCATTAA, 
3
6-mer sequence – GCATTA, 

4
Antisense RNA 
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SUPPLEMENTARY TABLE 5. MiR-155 target genes in KM-H2 cells (Ago2-RIP-Chip). 

Gene Probe 
miR-155 

AS IP/T 
EV IP/T 

miR-155 

AS/ EV 
TS1 

# 8-mer2 

in 3'UTR 

# 6-mer3 

in 3'UTR 

RICTOR NM_152756 A_32_P193322 7.2 17.0 0.42 + 1 3 

OOEP NM_001080507 A_32_P14762 1.0 2.3 0.42  1 1 

SMC4 NM_005496 A_23_P91900 1.4 3.1 0.47  0 0 

ASPH NM_032466 A_24_P18105 5.3 10.9 0.49  0 2 

TMTC3 NM_181783 A_24_P141804 4.9 9.9 0.49  0 1 

EPG5 NM_020964 A_24_P392146 5.5 11.2 0.49  0 0 

RBBP6 NM_032626 A_23_P342053 1.0 2.0 0.51  0 3 

SLC25A25 NM_001006641 A_23_P9435 1.7 3.3 0.52  0 0 

PDE4B NM_001037341 A_24_P325333 4.1 7.7 0.53  0 0 

GCNT2 NM_001491 A_24_P397489 6.8 12.6 0.54  0 0 

ISCA1 NM_030940 A_24_P387609 2.2 3.9 0.56  0 0 

DNA2 NM_001080449 A_24_P366107 4.6 8.2 0.57  0 0 

PKN2 NM_006256 A_24_P387869 40.3 70.0 0.58 + 1 1 

JARID2* NM_004973 A_23_P214876 3.7 6.5 0.58 + 2 2 

HIF1AN NM_017902 A_23_P46964 1.4 2.5 0.58  0 0 

ZNF174 NM_003450 A_24_P193600 1.3 2.3 0.58  0 0 

SETD8 NM_020382 A_32_P82807 2.2 3.8 0.59  0 0 

SLC30A1 U68494 A_24_P937095 3.5 5.8 0.60  0 1 

TBRG1* NM_032811 A_23_P98463 3.7 6.2 0.60 + 1 2 

AKAP11 NM_016248 A_23_P204929 11.3 18.7 0.60  0 0 

ZNF776 AK095607 A_23_P378499 2.5 4.1 0.60  0 1 

SYNJ1 NM_203446 A_23_P324718 9.5 15.6 0.61  0 1 

FAM108C1 NM_021214 A_23_P369701 3.1 5.0 0.61  0 0 

BET1 NM_005868 A_23_P59700 1.3 2.1 0.62  0 1 

DET1* NM_017996 A_23_P26184 3.4 5.5 0.62 + 1 3 

MORF4L1 NM_206839 A_32_P164314 1.5 2.4 0.62  0 0 

PANK3 CR612518 A_24_P311845 14.5 23.1 0.63  0 1 

SLC2A3 NM_006931 A_24_P81900 7.8 12.3 0.63  0 0 

POLK NM_016218 A_23_P386450 2.9 4.7 0.63  0 0 

HDAC4 NM_006037 A_23_P210048 2.1 3.3 0.63 + 1 2 

C6orf204 NM_001042475 A_32_P49832 5.1 8.1 0.64  0 0 

DCAF8 NM_015726 A_23_P200143 1.5 2.3 0.64  0 0 

BICD1 BC010091 A_24_P916586 1.3 2.0 0.64  0 0 

ABCC5 NM_005688 A_23_P212665 7.7 11.9 0.64  0 0 

RB1CC1 NM_014781 A_23_P9056 2.4 3.7 0.64  0 0 

HOMEZ* NM_020834 A_23_P76829 1.6 2.5 0.64  0 0 

BRWD1 NM_001007246 A_24_P861009 1.8 2.7 0.65  0 0 

TCF7L2 NM_001198525 A_24_P921823 5.3 8.2 0.65 + 1 2 

UBE2D1 NM_003338 A_24_P364025 2.7 4.2 0.65  0 0 

ZNF729 NM_001242680 A_24_P161696 20.9 32.1 0.65  0 0 

TMEM127 NM_017849 A_24_P80181 1.9 2.9 0.65  0 0 

TBC1D20 NM_144628 A_23_P354193 2.6 4.0 0.65  0 1 

*present on miR-155-ST486 miR-155 target list,
1
TS-miR-155 target predicted by TargetScan 6.2, 

2
8-mer 

sequence – AGCATTAA, 
3
6-mer sequence – GCATTA 
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SUPPLEMENTARY TABLE 6. TBRG1 transcript isoforms deposited in the Ensemble 
database. 

Name 
TBRG1 

Transcript ID 
ENST 

Length 
(bp) 

Biotype miR-155BS 
in 3’UTR 

shRNA-1 shRNA-2 shRNA-3 

001 00000441174* 4004 Protein coding Yes Yes Yes Yes 

011 00000531667 552 Protein coding No No No Yes 

201 00000375005 1483 Protein coding No No Yes Yes 

003 00000284290 4461 
Nonsense mediated 

decay 
Yes No Yes Yes 

004 00000452080 730 
Nonsense mediated 

decay 
No No Yes No 

005 00000529543 2142 
Nonsense mediated 

decay 
Yes No No Yes 

009 00000530731 1571 
Nonsense mediated 

decay 
No No Yes Yes 

007 00000438907 842 Processed transcript No No Yes Yes 

002 00000473629 1634 Retained intron No No Yes Yes 

006 00000491010 2308 Retained intron No No No Yes 

008 00000531033 1809 Retained intron No No No No 

* CCDS8448 

SUPPLEMENTARY TABLE 7. Primer sequences used for cloning.  

Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

miR-155 TGTCACCTCCAGCTTTATAACC GGCTTTATCATTTTTCAATCT 

DET1 GTGCCTCACCAGAGCCAGAT CACTTAGTTCTCCCAGGAACAG 

TRIM32 GAGAAATTATCAGTTTCTTCTGC GTTCAACATCATTTTAATGACC 

JARID2 AACGCCCGTGGTCGATTTAT TATTATTAAACCTTGTAGTACAAAC 

TBRG1 ACAAGAAGGGATCAGATGCCACATCG  GAAAGAGGCCTTCAGTGTTTG 

PSIP TTGGGCTCAAAGCATTAATC TTTGGTTACAGTTTCATTCTT 

HOMEZ ATGGCATAGGTACTGCTTCC GAGTTATGCCGTAGCCCTTG 

TBRG1 CTCCATGTTCCATGCAACTG GGGTAACTAAGGCATCCCAC 
C
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SUPPLEMENTATY TABLE 8. shRNA sequences. 

shRNA Sequence (5'-3' ) 

shTRIM32-1-S* TCGAGATAACTCCCTCAAGGTATATACTCGAGTATATACCTTGAGGGAGTTATTTTTTG 

shTRIM32-1-AS* AATTCAAAAAATAACTCCCTCAAGGTATATACTCGAGTATATACCTTGAGGGAGTTATC 

shTRIM32-2-S TCGAGGCCACTTCTTCTCGGAGAATGCTCGAGCATTCTCCGAGAAGAAGTGGCTTTTTG 

shTRIM32-2-AS AATTCAAAAAGCCACTTCTTCTCGGAGAATGCTCGAGCATTCTCCGAGAAGAAGTGGCC 

shHOMEZ-1-S TCGAGAGGCACCATGCCTCCTAATAACTCGAGTTATTAGGAGGCATGGTGCCTTTTTTG 

shHOMEZ-1-AS AATTCAAAAAAGGCACCATGCCTCCTAATAACTCGAGTTATTAGGAGGCATGGTGCCTC 

shHOMEZ-2-S TCGAGTACCTCGGCCTGAGATCATTCCTCGAGGAATGATCTCAGGCCGAGGTATTTTTG 

shHOMEZ-2-AS AATTCAAAAATACCTCGGCCTGAGATCATTCCTCGAGGAATGATCTCAGGCCGAGGTAC 

shJARID2-1-S TCGAGGAAACAGGTTTCTAAGGTAAACTCGAGTTTACCTTAGAAACCTGTTTCTTTTTG 

shJARID2-1-AS AATTCAAAAAGAAACAGGTTTCTAAGGTAAACTCGAGTTTACCTTAGAAACCTGTTTCC 

shJARID2-2-S TCGAGGCCCAACAGCATGGTGTATTTCTCGAGAAATACACCATGCTGTTGGGCTTTTTG 

shJARID2-2-AS AATTCAAAAAGCCCAACAGCATGGTGTATTTCTCGAGAAATACACCATGCTGTTGGGCC 

shDET1-1-S TCGAGAACGTTGAAAAGCCTCCTTGTCTCGAGACAAGGAGGCTTTTCAACGTTTTTTTG 

shDET1-1-AS AATTCAAAAAAACGTTGAAAAGCCTCCTTGTCTCGAGACAAGGAGGCTTTTCAACGTTC 

shDET1-2-S TCGAGAAGACTATTCCCTCCATATCACTCGAGTGATATGGAGGGAATAGTCTTTTTTTG 

shDET1-2-AS AATTCAAAAAAAGACTATTCCCTCCATATCACTCGAGTGATATGGAGGGAATAGTCTTC 

shPSIP1-1-S TCGAGGCAGCAACTAAACAATCAAATCTCGAGATTTGATTGTTTAGTTGCTGCTTTTTG 

shPSIP1-1-AS AATTCAAAAAGCAGCAACTAAACAATCAAATCTCGAGATTTGATTGTTTAGTTGCTGCC 

shTBRG1-1 -S TCGAGACTGGAAGTTCTGAAGAAACTCGAGTTTCTTCAGAACTTCCAGTTTTTTG 

shTBRG1-1 -AS AATTCAAAAAACTGGAAGTTCTGAAGAAACTCGAGTTTCTTCAGAACTTCCAGTC 

shTBRG1-2-S TCGAGGAGAACAACAAACTGGAAGATCTCGAGATCTTCCAGTTTGTTGTTCTCTTTTTG 

shTBRG1-2-AS AATTCAAAAAGAGAACAACAAACTGGAAGATCTCGAGATCTTCCAGTTTGTTGTTCTCC 

shTBRG1-3-S TCGAGCCAGACCAGAAGTGTCTATATCTCGAGATATAGACACTTCTGGTCTGGTTTTTG 

shTBRG1-3-AS AATTCAAAAACCAGACCAGAAGTGTCTATATCTCGAGATATAGACACTTCTGGTCTGGC 

*S-sense strand, AS-antisense strand 
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SUPPLEMENTARY FIGURE 1. Ago2, miR-19b and miR-155 are enriched in Ago2-IP 
fraction in ST486 and Ramos cells. (A) Analysis of the IP efficiency by Western blotting 
for Ago2 protein. Ago2 was pulled down when anti-Ago2 antibody was used and not when 
IgG1 negative control antibody was used. (B) IP efficiency of the Ago2-RISC complex 
analyzed by qRT-PCR for miR-19b and miR-155. Both miRNAs were pulled down with anti-
Ago2 antibody and not with IgG1 negative control antibody. MiRNA levels were normalized 
to RNU48. MiR-155 levels could only be measured in miR-155-transduced samples, since 
the levels in EV-transduced samples were not detectable. 

 
SUPPLEMENTARY FIGURE 2. GFP competition assay of cells transduced with 
shRNAs against five validated miR-155 target genes. Percentage of GFP+ cells was 
normalized to day 3 and fold increase or decrease within 21 days was shown. For TRIM32, 
JARID and DET1, one shRNAs caused decrease in percentage of GFP+ ST486 cells, 
whereas the other shRNA construct had no effect. For HOMEZ, both shRNAs showed an 
growth inhibitory effect. For PSIP1 the shRNA construct also resulted in growth inhibition 
of ST486 cells. The average of 2 or 3 experiments was presented. P value was determined 
by linear regression (**p<0.01, **** p<0.0001). Decrease in mRNA level of selected 
genes upon shRNA presented in a table as a ratio between mRNA level in GFP+ cells with 
shRNA compared to GFP+ cells with EV. None of the shRNAs induced a phenotype similar 
to that observed for miR-155. 
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SUMMARY AND DISCUSSION 
MiRNAs are effective gene expression regulators that play crucial roles in many 

cellular processes, such as apoptosis, proliferation and differentiation. 

Deregulated miRNA levels are observed in many diseases including cancer and 

have been causatively implicated in the cancer pathogenesis. The mechanisms 

causing altered miRNA levels or the genes affected by miRNA deregulation are 

often unknown. The aim of the research project presented in this thesis was to 

elucidate key aspects of the regulation of miRNA biogenesis (chapter 2-4) and 

consequences of altered miR-155 levels (chapter 5-6) in B-cell lymphoma. 

Regulation of miRNA biogenesis 

MiRNA levels are regulated at the transcriptional and post-transcriptional level. 

At the transcriptional level, the regulation of expression is often similar to that of 

protein-coding genes and includes regulation of expression by transcription 

factors, methylation, etc. A very important additional step in the regulation of 

miRNA expression is the processing from the primary transcript to the mature 

miRNA. In chapter 2, we discuss currently known mechanisms involved in 

regulation of miRNAs processing and we indicate that most regulatory factors 

are specific for individual miRNAs or for a subgroup of the miRNAs. Several 

tissue-specific mechanisms have been identified that result in either enhanced or 

inhibited miRNA processing. Regulatory mechanisms, as currently known from 

the literature, are described for a group of ~30 miRNAs. We speculate that in 

addition to the miRNAs specifically addressed in this chapter, many more 

miRNAs are being regulated during processing. 

 MiR-155 is one of the most studied oncogenic miRNAs that has a 

presumed regulated processing in B-cell lymphoma, although no regulating 

factors have been identified so far. MiR-155 belongs to a small group of exonic 

miRNAs that are characterized by location of the stem-loop structure in exons of 

non-protein-coding genes. Processing of miR-155 and two additional exonic 

miRNAs was investigated in chapter 3. 
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 We assessed levels and subcellular localization of unspliced and spliced primary 

transcripts in B-cell lymphoma cell lines. We showed that unspliced transcripts 

are predominantly nuclear, whereas spliced transcripts are partly transported to 

the cytoplasm and are, as such, unavailable for processing by the 

Microprocessor complex. These results indicate that splicing and nuclear export 

can serve as a mechanism to prevent processing of exonic miRNAs. Upon 

stimulation of B-cell lymphoma cells the unspliced/spliced transcript ratio of BIC 

(pri-miR-155) decreased, indicating that external stimuli may affect the 

efficiency of pri-miRNA splicing and nuclear export, and thereby regulate the 

levels of exonic miRNAs.  

 A second oncogenic miRNA cluster that is frequently deregulated in B-cell 

lymphoma is the miR-17~92 cluster that consists of six miRNAs, i.e. miR-17, 

miR-18a, miR-19a, miR-20a, miR-19b and miR-92a. In chapter 4, we 

investigated the expression pattern of these six miRNAs in 117 non-Hodgkin 

lymphoma (NHL) cases and in 21 NHL cell lines. We show that miR-92a is the 

most abundant miRNA in three of the four subtypes of the NHL cases, all NHL 

cell lines and in the normal B-cell subsets. Only in diffuse large B-cell lymphoma, 

miR-19b levels were higher than the miR-92a levels. Comparison of the 

individual miRNA levels in NHL as compared to their normal counterparts 

showed that miR-19b is the most significantly induced miR-17~92 cluster 

member. This suggests that either the processing efficiency or the stability of 

miR-19b is increased in NHL. The observed miR-19b induction is consistent with 

the known oncogenic role of miR-19b in lymphomagenesis. 

Identification of microRNA-155 target genes 

Studying the cellular function of specific miRNAs often includes their inhibition or 

overexpression in the cell type of interest. Transfection of small precursor-like 

molecules or anti-sense oligo’s is effective only for short-term experiments. To 

achieve long-term induction or inhibition of specific miRNAs, viral vectors are 

commonly used. For overexpression of miRNAs, cloning of the stem-loop region 

with the 100-150nt 3’ and 5’ flanking region is generally effective to induce the 

miRNA of interest. Effective strategies for inhibition of highly abundant miRNAs 
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or all members of a specific seed family are technically more challenging. In 

chapter 5, we describe a straightforward and rapid method to generate 

constructs with antisense miRNA sequences against single miRNAs, multiple 

miRNAs or seed families. These so-called miRNA sponges were generated 

starting from short oligo’s that were ligated to concatamers of variable sizes and 

cloned in a selected vector. We demonstrate that these miRNA sponges 

efficiently sequester miRNAs, inhibit their function and, as such, can be used for 

in vitro or in vivo loss-of-function studies.  

 To study the role of miR-155 and identify its target genes, we 

overexpressed miR-155 in two Burkitt lymphoma cell lines, ST486 and Ramos 

(chapter 6). Both cell lines have very low endogenous miR-155 levels compared 

to the levels in germinal center B cells. Interestingly, we observed an enhanced 

growth of ST486 cells upon miR-155 overexpression, but not of Ramos cells. 

Using Ago2-RIP-Chip we identified 54 and 15 miR-155 target genes in ST486 

and Ramos cells, respectively. The lower number of target genes and the lower 

fold enrichment of the miR-155 targets in the Ago2-IP fraction observed for miR-

155-transduced Ramos cells suggest a differential targeting efficiency in these 

two cell lines. We selected four ST486-specific miR-155 targets, TBRG1, TRIM32, 

HOMEZ, JARID2, and two common targets, DET1 and PSIP1, for further 

validation. All six genes were confirmed as miR-155 targets in a luciferase 

reporter assay. Next, we investigated whether these miR-155 targets were also 

targeted in Hodgkin lymphoma cells with high endogenous miR-155 levels. Five 

of the six selected target genes showed diminished abundance in the miRNA 

targetome of cells transduced with miR-155 sponge compared to cells 

transduced with empty vector. This suggests that these five genes are also 

targeted by endogenous miR-155 in Hodgkin lymphoma cells. To determine if we 

can copy the growth promoting phenotype observed in ST486 cells upon miR-

155 overexpression, we inhibited TBRG1, TRIM32, HOMEZ, JARID2, DET1 and 

PSIP1 using shRNA constructs. Inhibition of TBRG1 resulted in growth 

enhancement suggesting that TBRG1 is involved in growth promoting phenotype 

observed upon miR-155 overexpression in ST486 cells.  
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 In conclusion, in this thesis we investigated mechanisms involved in 

regulation of miRNA processing and proposed a novel mechanism to regulate 

processing of exonic miRNAs by nuclear export of spliced pri-miRNA transcripts. 

We also showed differential processing of miR-17~92 cluster members and 

specific upregulation of miR-19b in NHL. In the second part, we investigated the 

effect of miRNA modulation on B-cell lymphoma cells and we described method 

to inhibit miRNAs by miRNA sponges. Finally, we identified novel miR-155 

targets in B-cell lymphoma and showed that miR-155 induced cell growth by 

targeting the TBRG1 gene. 

FUTURE PERSPECTIVES 

In the past 10 years, the miRNA research field has greatly expanded and 

knowledge regarding miRNA processing, target gene recognition and functioning 

has been gained. Despite these developments it is also clear that there are still 

many questions that need to be answered to fully understand miRNA biology. 

Identification of miRNAs with (de)regulated processing 

In this thesis we discussed miRNAs that undergo regulated processing. 

Specifically, we investigated processing of miR-155 and the miR-17~92 cluster. 

The group of miRNAs regulated at the processing level is likely to be much larger 

than currently described in the literature. An indication for regulated processing 

is an inconsistency between primary and mature miRNA levels. We started 

analysis of pri-miRNAs and mature miRNAs levels in 12 samples of normal B 

cells and B-cell lymphoma to gain a global insight in the number of miRNAs that 

are potentially regulated at the processing level.  

 The incomplete characterization of a significant subset of the primary 

miRNA transcripts makes it challenging to reliably analyze their expression 

levels. Many miRNAs are localized in introns of protein coding genes and 

commercially available probes that mostly detect spliced transcripts are not 

suitable for detection of such pri-miRNAs. Potential problems that may affect 

detection of primary miRNA transcripts of miRNAs are that (1) the exact length 
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and transcriptional start site of intergenic pri-miRNAs transcripts is frequently 

unknown; (2) it is unknown if the spliced or unspliced transcripts serve as 

templates for the biogenesis of exonic miRNA; (3) many intronic miRNAs are 

transcribed from a promoter that is different from the promoter used by the 

protein-coding host gene and this might lead to different transcript sizes; (4) 

some mature miRNAs can be transcribed from multiple loci on the genome. All 

these aspects complicate the design of a good platform to determine the 

expression levels of pri-miRNA transcripts. To address these putative 

complicating factors we designed a custom gene expression array containing 

probes that cover the stem-loop region and sequences flanking the stem-loop 

regions of all pri-miRNA transcripts (Fig. 1A). For data analysis we selected the 

probe that showed the highest signal for each stem-loop region. Probes 

corresponding to 974 miRNAs were present on both the mature and the pri-

miRNA arrays and were detectable for the pri-miRNA and/or mature miRNA in at 

least 1 of the 12 samples. Comparison of the levels of pri-miRNAs and mature 

miRNAs revealed a significant positive correlation for only 39 miRNAs, whereas a 

significant inversed correlation was observed for 35 miRNAs (Table 1). 

  The group of miRNAs with a positive correlation contained all six 

members of the miR-17~92 cluster with a Pearson correlation coefficient that 

ranged from 0.77 to 0.92 (p< 0.01). This was consistent with the positive 

correlation observed for these six miRNAs and the C13ORF25 transcript levels in  

TABLE 1. Correlation between pri-miRNA and mature miRNA. 

 #miRNAs Pearson correlation p-value 

Significant positive correlation 39 0.57- 0.92 <0.05 

Positive correlation 121 0-0.56 >0.05 

Significant negative correlation 35 -0.94- -0.58 <0.05 

Negative correlation 99 -0.57-0 >0.05 

Only pri-miRNA detected* 629 - - 

Only mature miRNA detected* 51 - - 

Total 974   

*Detected at least in 1 of 12 samples 
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NHL cases and cell lines (chapter 4). MiR-155 levels were also positively 

correlated with BIC transcript levels and showed a Pearson correlation coefficient 

of 0.56 (p=0.055). This is in accordance with the positive miR-155 - BIC 

correlation observed in B-cell lymphoma cell lines (chapter 3). For the vast 

majority of the analyzed miRNAs, i.e. 629 (65%), we only detected the pri-

miRNA transcripts and not the mature miRNAs. This suggests that most of the 

primary transcripts are expressed, but not processed to mature miRNAs in B 

cells or B-cell lymphoma. Another explanation might be that the mature miRNAs 

are unstable or actively degraded. 

 DGCR8 is an essential component of the Microprocessor complex and 

therefore required for miRNA processing (Han et al., 2006; Landthaler et al., 

2004). Inhibition of DGCR8 should prevent miRNA biogenesis and thus result in 

an increase of pri-miRNA levels. In our initial experiment with an shRNA against 

DGCR8 in HL cell line we observed enhanced levels for only a small fraction 

(n=53) of the pri-miRNA transcripts (Fig. 1B). The lack of enhanced pri-miRNA 

levels for the vast majority of the transcripts is not caused by a global shift in 

pri-miRNA levels during normalization procedures, since we observed no 

difference for the protein-coding transcript levels that were also present on the 

array. The efficiency of DGCR8 inhibition was shown by 2.4 fold decrease in 

DGCR8 transcript levels (Fig. 1C) and 3 fold decrease in miR-155 levels (Fig. 

1D). 

 There was a striking overlap, i.e. 33 of the 53 (62%), between the 

miRNAs that showed enhanced pri-miRNA levels upon DGCR8 inhibition and the 

miRNAs that showed a positive correlation between the mature and primary 

transcript levels. Probes for all six members of the miR-17~92 cluster as well as 

miR-155 showed 15 to 65 fold higher transcript levels upon shDGCR8 and were 

among the top ten most affected probes.  

 At present, we cannot explain why the correlation between primary and 

mature miRNA levels is so poor and why the levels of most pri-miRNA transcripts 

are not enhanced upon DGCR8 inhibition. This poor correlation might represent 

a mechanism for the cells to achieve tissue-specific miRNA expression patterns. 

This would mean that pri-miRNAs are abundantly expressed, but need auxiliary  
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FIGURE 1. Inhibition of DGCR8 affect only fraction of pri-miRNAs. (A) Up to 6 

probes were designed for each miRNA stem-loop (indicated in red), i.e. 2 probes that 
cover stem-loop region, 2 probes located within 100nt stem-loop flanking sequence and 2 
probes located in the region 100-200nt from stem-loop structure. (B) Comparison of levels 
of pri-miRNAs (indicated in black) in L1236 cells transduced with lentiviral vector 
containing shDGCR8 versus scrambled control. Correlation of protein-coding gene levels 
was indicated in color. All transcripts were detected by Agilent custom gene expression 
array. Levels of DGCR8 (C) and miR-155 (D) were decresed upon DGCR8 inhibition 
measured by qRT-PCR relative to HPRT and RNU48 levels, respectively. 

tissue-specific proteins to regulate processing by the Microprocessor complex. To 

identify the proteins that are bound to specific pri-miRNAs, immunoprecipitation 

of the Microprocessor complex and the subsequent identification of the proteins 

in different cell types need to be performed. On the other hand, it might be that 

a 2.4 fold inhibition of DGCR8 is not sufficient to effectively inhibit biogenesis of 

pri-miRNA transcripts. It would be interesting to investigate whether the same 

set of pri-miRNAs is affected in different tissue types and whether the correlation 

between specific pri-miRNAs and mature miRNAs is tissue-specific. Based on 
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these preliminary findings it is tempting to speculate that only a minority of the 

actively transcribed pri-miRNAs is processed to mature miRNAs. This implies 

that regulation of miRNA biogenesis might be a much more general phenomenon 

than currently anticipated. 

Identification of miRNA target genes in B-cell lymphoma 

In the studies described in this thesis, a clear phenotype of enhanced miR-155 

levels was observed in one of two BL cell lines. One of the identified miR-155 

targets, TBRG1, phenocopied this effect. To further study the relevance of 

TBRG1 in the pathogenesis of B-cell lymphoma it would be interesting to 

determine TBRG1 protein expression patterns in B-cell lymphoma cases with 

high and low miR-155 levels. In addition, it would be of interest to study the 

effect of enhanced TBRG1 expression in HL cell lines and study the effect of 

TBRG1 shRNA constructs in the Ramos BL cell line that did not show a 

phenotype upon miR-155 induction. It is clear that miR-155 modulation may 

have different effects in various subtypes of B-cell malignancies. To unravel 

these cell type-specific miR-155 functions the miR-155 targetomes should be 

studied in different stages of B-cell development and in different B-cell 

lymphoma subtypes. It is intriguing, why some genes are very efficiently 

targeted by specific miRNAs in one cell type, whereas they are not regulated by 

the same miRNAs in other cell types despite being expressed at high levels. 

Comparison of the miRNA targetomes of normal B cells to that of malignant B 

cells will allow indentification of the target genes that are related to the 

malignant transformation. However, it is challenging to obtain enough normal 

GC B cells for efficient immunoprecipitation of endogenous Ago2. Analogous to 

miR-155 and the previously analyzed miR-17 family target genes, several other 

miRNAs that are important for lymphomagenesis, such as miR-150, miR-21 and 

miR181b (Kotani et al., 2010), should be modulated in B-cell lymphoma cells 

and subjected to Ago2-RIP-Chip.  

 In this thesis we used anti-Ago2 antibody for immunoprecipitation of the 

RISC and the subsequent identification of miRNA target genes. However, Ago1, 

3 and 4 can also be a part of the RISC complex and the four isoforms are 
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generally redundant (Azuma-Mukai et al., 2008; Liu et al., 2004; Meister et al., 

2004). In B-cell lymphoma, we showed that Ago1 and Ago2 are expressed at 

high levels, whereas Ago3 and Ago4 are much less abundant (Tan et al., 2009). 

Nevertheless, it would be of interest to investigate the miRNA targetome using 

antibodies for all Ago isoforms separately or use a pan-Ago antibody for the RIP-

Chip. 

 Studies described in this thesis have been performed with miRNA and 

gene expression microarray analysis using the Agilent platform. In future 

studies, it would be advisable to use RNA-sequencing instead of gene expression 

arrays. For identification of miRNA target sequence by Ago2-RIP-Chip, RNA-seq 

analysis will allow specific identification of alternative splice isoforms that may 

be differentially regulated by miRNAs as shown for targeting of TBRG1 by miR-

155. Targeting of specific transcript isoforms by a miRNA has been suggested to 

represent a more common phenomenon (Deng et al., 2011). Also for miRNA 

profiling studies small-RNA-seq should be implemented to allow identification of 

novel miRNAs that are important for B-cell lymphoma. In addition, this will 

provide specific information concerning sequence variations of the miRNAs. 

Moreover, small-RNA-seq of the RIP-Chip fraction, also allows to specifically 

identify the miRNAs that are indeed loaded into the RISC and this may facilitate 

discrimination of true novel miRNAs from RNA degradation products. Recent 

technical developments such as HITS-CLIP, PAR-CLIP and CLASH attempt to 

improve methods to experimentally link miRNAs to their cellular target genes 

(Chi et al., 2009; Hafner et al., 2010; Kudla et al., 2011). This will facilitate 

identification of cell type-specific miRNA-target gene combinations, without 

modulation of miRNA levels. 

 At present, the only antisense miRNA-based therapy which is a subject of 

clinical trials is directed against miR-122 and aims to block hepatitis C virus 

replication and viremia (Elmen et al., 2008; Jopling et al., 2005; Sarasin-

Filipowicz et al., 2009). Modulation of miRNA levels also has a great potential in 

anti-cancer therapy. Mice overexpressing miR-155 and miR-21 develop miRNA-

dependent lymphomas, and removal or inhibition of these miRNAs leads to 

reduced tumor sizes indicating that the tumor cells are “addicted” to these 
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oncogenic miRNAs (Babar et al., 2012; Medina et al., 2010). Therefore, these 

miRNAs present promising candidates for antisense therapy to treat B-cell 

lymphoma patients. In this respect, it would be valuable to study the potential of 

miRNA sponges described in chapter 5 to inhibit miRNAs in vivo. Tightly 

controlled modulation of miRNA levels in combination with predictable outcome 

of such modulations, i.e. the affected miRNA target genes, will enable the 

application of miRNA modulating agents in anti-cancer therapy in future studies.  
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NEDERLANDSE SAMENVATTING 

MicroRNAs (miRNAs) zijn korte, ~22 nucleotiden (nt), RNA moleculen die 

betrokken zijn bij de regulatie van genexpressie en daarmee een cruciale rol 

spelen in een groot aantal cellulaire processen, zoals apoptose, proliferatie en 

differentiatie. Veranderingen in het expressie patroon van miRNAs zijn 

kenmerkend voor allerlei ziektebeelden en ook tumoren worden gekenmerkt 

door een afwijkend miRNA expressiepatroon. Functionele in vitro en in vivo 

studies hebben aangetoond dat deze afwijkende miRNA expressie patronen 

causaal geassocieerd zijn met het ontstaan van kanker. Echter, de mechanismen 

die betrokken zijn bij de veranderingen in het miRNA expressie patroon en de 

genen die daardoor worden gereguleerd zijn vaak nog niet bekend. Het doel van 

deze promotie studie was om factoren betrokken bij de regulatie van de miRNA 

biogenese te onderzoeken (hoofdstuk 2-4) en om de effecten van een miRNA 

dat frequent verhoogd tot expressie komt in B-cel lymfomen, miR-155,  te 

onderzoeken (hoofdstuk 5-6). 

Regulatie van de miRNA biogenese 

De expressie van miRNAs in de cel kan op transcriptioneel en post-

transcriptioneel niveau gereguleerd worden. Op het niveau van transcriptie zijn 

de regulerende mechanismen gelijk aan de mechanismen die ook de expressie 

van eiwit coderende genen reguleren, waarbij transcriptiefactoren en methylatie 

een belangrijke rol spelen. Post-transcriptioneel wordt de expressie van miRNAs 

in belangrijke mate gereguleerd door de biogenese van de functionele mature 

miRNAs uit de langere primaire transcripten. In hoofdstuk 2 wordt een overzicht 

gegeven van de factoren waarvan bekend is dat ze de biogenese van mature 

miRNAs kunnen beïnvloeden. Deze factoren oefenen direct of indirect invloed uit 

op de activiteit / specificiteit van de twee enzym complexen die betrokken zijn 

bij de biogenese. Ook kunnen ze door binding aan de "stem" of aan de "loop" 

van het primaire of precursor miRNA transcript de biogenese beïnvloeden. Tot 

op heden zijn er voor in totaal zo’n 30 verschillende miRNAs verschillende 

weefsel specifieke factoren gepubliceerd.  
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In hoofdstuk 3 hebben we de biogenese onderzocht van een relatief kleine groep 

van miRNAs die in exonen van niet coderende genen liggen. Voor deze groep 

van miRNAs kan het transcript met of zonder intronen dienen als template voor 

de biogenese van de mature miRNAs. Voor miRNAs die in de intronen liggen van 

coderende of niet coderende genen kunnen splicing en de eerste stappen van de 

miRNA biogenese tegelijkertijd plaats vinden. We hebben ons onderzoek gericht 

op drie miRNAs: miR-22, miR-146a en miR-155, die in exonen liggen van niet 

coderende genen. We hebben eerst gekeken naar de intracellulaire locatie van 

de primaire (pri-)miRNA transcripten met en zonder intronen. Hieruit bleek dat 

de intron houdende pri-miRNA transcripten bijna exclusief in de kern 

gelokaliseerd zijn, terwijl de pri-miRNA transcripten na splicing van de intronen 

gedeeltelijk in de kern zitten en gedeeltelijk in het cytoplasma. Aangezien de 1e 

stap voor de biogenese uitsluitend in de kern plaats vindt, is het aannemelijk dat 

de intron-houdende pri-miRNA transcripten de belangrijkste bron voor de miRNA 

biogenese zijn. De verhouding tussen de hoeveelheid transcript voor en na 

splicing kan variëren onder invloed van stimulatie, wat er op kan duiden dat de 

miRNA biogenese gereguleerd kan worden door het veranderen van de balans 

tussen splicing in combinatie met het nucleair export of miRNA biogenese. 

Overexpressie van een transcript zonder intronen resulteerde echter wel in een 

duidelijk toename van de hoeveelheid mature miRNA. Dit betekent dat het 

transcript zonder intronen wel degelijk gebruikt kan worden voor de miRNA 

biogenese mits in voldoende mate aanwezig in de kern. 

In hoofdstuk 4 hebben we een aantal karakteristieken van het miR-17~92 

transcript in B-cel lymfomen onderzocht. Dit oncogene miRNA cluster bevat de 

“stem-loop” structuren voor 6 miRNAs, miR-17, miR-18a, miR-19a, miR-20a, 

miR-19b and miR-92a. Er zijn twee iso-vormen van dit transcript, waarbij de 

stem-loop structuren zich kunnen bevinden in het exon van de ene iso-vorm en 

in het intron van de andere iso-vorm. Opmerkelijk is dat de expressie van de 

mature miRNAs in de cel sterk kan verschillen, terwijl ze allen afkomstig zijn van 

hetzelfde primaire transcript. We hebben de hoeveelheid van de zes miRNAs 

bepaald in drie B cel maturatie stadia, 117 B cel lymfomen en in 21 B cel 
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lymfoom cellijnen. In normale B cel subsets en drie B cel lymfoom subtypen was 

de expressie van miR-92 10 tot 100x hoger dan de 5 andere miRNAs. Alleen bij 

het diffuus groot cellig B cel lymfoom was de expressie van miR-19b het hoogst. 

In vergelijking met de normale voorloper cellen lieten alle lymfoom subtypen 

een sterke toename zien van met name miR-19b, terwijl geen toename werd 

gezien van miR-92. Ook voor de andere vier miRNAs werden geen verhoogde 

expressie niveaus gevonden ten opzichte van de normale B cellen. De sterke 

inductie van miR-19b is consistent met de oncogene effecten van dit miRNA 

zoals aangetoond in muis modellen. Onze data duiden erop dat er een sterke 

regulatie is van de hoeveelheid mature miRNAs, dit kan bereikt worden door 

verschillen in de processing efficiency van de zes precursor miRNAs en/of door 

verschillen in de stabiliteit van de mature miRNAs.   

miRNA-155 target genen 

In hoofdstuk 5 beschrijven we een methode waarmee we op een efficiënte 

manier de functie van miRNAs kunnen remmen door productie van antisense 

transcripten met meerdere bindingsplaatsen voor de miRNA(s) van interesse. De 

antisense transcripten worden op een zodanige manier ontwikkeld dat ze een 

variabel aantal bindingsplaatsen gericht tegen een of meerdere miRNAs kunnen 

bevatten. De antisense transcripten worden tot overexpressie gebracht door 

klonering in een virale vector en infectie in het celtype van interesse. We laten 

op verschillende manieren, waaronder reporter testen en functionele testen, zien 

dat deze zogenaamde spons vectoren effectief zijn in B cel lymfoom cellijnen. De 

methode is gebaseerd op concatemerisatie van dubbelstrengs oligo’s die twee 

miRNA bindingsplaatsen bevatten met daar tussen een korte willekeurige 

sequentie. De 1-staps ligatie reactie met een oligo-vector ratio variërend van 

1:10 tot 1:1000 resulteert in constructen met een variabel aantal oligo’s en dus 

ook een variabel aantal miRNA bindingsplaatsen. De spons vectoren kunnen op 

deze manier efficiënt gemaakt worden gebruikt worden om het effect van miRNA 

inhibitie in een specifiek celtype te bestuderen.   
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Om de oncogene rol van miR-155 verder te bestuderen hebben we in hoofdstuk 

6 dit miRNA tot overexpressie gebracht in twee Burkitt lymfoom cellijnen, ST486 

and Ramos. Deze twee cellijnen hebben een lage endogene miR-155 expressie 

in vergelijking met de normale voorloper cellen. In een cel proliferatie test 

toonden we aan dat in ST486 cellen miR-155 een groei voordeel opleverde, 

terwijl in Ramos cellen geen effect werd gezien op de groei snelheid. Door 

immuunprecipitatie van het RNA-induced silencing complex in cellen met 

overexpressie van miR-155, en de daarop volgende gen expressie profiling 

konden we 54 miR-155 target genen in ST485 en 15 in Ramos aan tonen. Voor 

zes genen hebben we vervolgens aanvullende functionele studies uitgevoerd om 

te kijken of een van deze genen betrokken was bij het miR-155 fenotype in 

ST486. TBRG1, TRIM32, HOMEZ en JARID2 werden alleen in ST486 gevonden 

als zijnde miR-155 targets, terwijl DET1 en PSIP1, in zowel ST486 als ook in 

Ramos als target genen voor miR-155 werden geïdentificeerd. Voor zes 

geselecteerde genen hebben we middels een luciferase test binding door miR-

155 bevestigd. Voor DET1 konden we ook op eiwit niveau aantonen dat er 

regulatie door miR-155 plaats vond. Remming van miR-155 in een Hodgkin 

lymfoom cellijn met hoge endogene miR-155 niveaus, bevestigde binding van 

miR-155 voor vijf van de zes genen. Cel proliferatie testen met shRNAs tegen 

alle zes genen in ST486 lieten voor vijf genen geen effect of geen groei remming 

zien. Voor TBRG1 zagen we groei stimulerend effect, vergelijkbaar met het 

effect zoals gevonden voor miR-155. Dit onderzoek toont aan dat het groei 

stimulerende effect van miR-155 op zijn minst gedeeltelijk kan worden 

toegeschreven aan het remmen van TBRG1 in ST486 cellen. 

 

Samenvattend, laten we in dit proefschrift zien hoe de miRNA biogenese 

gereguleerd kan worden voor een specifieke groep van miRNAs die gelokaliseerd 

zijn in exonen van niet voor eiwit coderende genen. Verder laten we zien dat er 

in B cel lymfomen een sterke regulatie is van de miRNA expressie niveaus van 

miRNAs die afkomstig zijn van hetzelfde primaire miR-17~92 miRNA transcript. 

in alle B cel lymfoom subtypen werd overexpressie van het oncogene miR-19b 

gevonden. In het tweede deel van dit proefschrift hebben we een methode 
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ontwikkeld om op een effectieve manier miRNAs te kunnen remmen. Daarnaast 

hebben we de rol van miR-155 onderzocht in B cel lymfomen en aangetoond dat 

TBRG1 een belangrijk target gen is voor de oncogene rol van miR-155.  

Translated by Anke van den Berg 

 



Publications 

 

168 

PUBLICATIONS 

Slezak-Prochazka I, Kluiver J, de Jong D, Halsema N, Poppema S, Kroesen BJ, 

van den Berg A. 2012. Cellular localization and processing of primary transcripts 

of exonic microRNAs. PLoS One, provisionally accepted. 

Kluiver J, Slezak-Prochazka I, van den Berg A. 2012. Studying MicroRNAs in 

Lymphoma. Methods in Molecular Biology  971, in press. 

Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, 

van den Berg A. 2012. Generation of miRNA sponge constructs. Methods 58: 

113-117. 

Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, Slezak-

Prochazka I, Ding Y, Kroesen BJ, van den Berg A. 2012. Rapid generation of 

microRNA sponges for microRNA inhibition. PLoS One 7(1):e29275. 

Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. 2010. MicroRNAs, 

macrocontrol: Regulation of miRNA processing. RNA 16: 1087-1095. 

 



Dankwoord 

169 

ACKNOWLEDGEMENTS 

Every journey starts with a first step. My first step in Groningen was 5 years ago 

when I started my internship and I immediately knew that I wanted to do my 

PhD here. I would like to thank my promoter Prof. Anke van den Berg for giving 

me this opportunity. Anke, you showed me how to be a good scientist and how 

to make, sometimes difficult, decisions and cherish small successes. You made 

me believe in myself. You also knew when to push me and when to let go. I 

admire how you can do so much so quickly and always think logical.  

I would like to acknowledge my co-promoters Dr. Bart-Jan Kroesen and 

Dr. Joost Kluiver. Bart-Jan, I admire your writing skills and ability to put 

thoughts into exactly the right words. Thank you also for your easy-going 

attitude. Joost, I learned a lot from you on how to design experiments and 

analyze data. I enjoyed our work-related and less work related conversations. 

Thank you for your help with solving my countless scientific and daily-life 

problems and for cheering me up when I needed it.  

I would also like to express my gratitude to Prof. Gerald de Haan, Prof. 

Philip Kluin and Prof. Jan Jacob Schuringa. I appreciate that you accepted to be 

members of my reading committee and spent your valuable time on reading my 

thesis.  

My utmost thanks go to all present and former members of the “miRNA 

group”. It was a pleasure to work with you. Johan, you were an inspiring and 

motivating supervisor during my internship and as a colleague later on. I 

admired how you came up with new fascinating ideas and so passionately talked 

about them. Jan-Lukas, I am grateful that you shared your project that resulted 

in my chapter 4. I like your English sense of humor and stories about your 

daughter. Debora, you were a huge help in the lab, especially in the last 

months. You were understanding when I needed to have everything done before 

yesterday and enthusiastic when something worked out.  I am very happy that 

you agreed to be my paranimf. Nancy, I appreciate especially your help with 

microarrays, how you calmed me down when I was jittery over pipetting 

samples on glass slides and when scanning didn’t work. DNA-lab is not the same 



Dankwoord 

 

170 

without you… Gertrud, you made me smile every time I saw you. Thank you that 

you were eager to help and that you put so much heart into whatever you did. 

Bea, I appreciate your help with Western Blots and RNA isolations. Melanie, 

thank you for spending your holidays on handling the massive amount of work I 

had for you. Rikst-Nynke, you introduced me to the lab during my internship, 

patiently answered all my beginners questions and were so kind to me. Geert, 

your experience with qRT-PCR analysis and microarrays was very helpful and I 

am grateful for teaching me how to handle the plating robot. Chris, thank you 

for the 3 months when you handled the things I didn’t have time for and for 

your Friday afternoon jokes. Pytrick, thanks for work discussions and sharing 

reagents. 

I am also thankful to the co-authors and collaborators. Prof. Sibrand 

Poppema, thank you for your expert opinion on my research. I very much 

enjoyed the two Allersmaborg meetings, where we could discuss our projects 

from a global point of view in a very friendly atmosphere. Klaas, your help with 

designing and analyzing custom arrays is highly appreciated. I learnt a lot from 

you and Martijn about analysis of large datasets in a systematic way. Ye Ding, 

thank you for your expertise on designing miRNA sponges and for taking me for 

Chinese dinner in Vancouver.  

I would also like to acknowledge Lydia and Arjan from the Malignant 

Lymphoma group. Lydia, thank you for your kind words just in the right time 

and for the delicious carrot cake on my farewell party. I also very much enjoyed 

the multicultural meeting with you and the PhD students at your place. Arjan, I 

appreciate your stimulating questions during my presentations.  

I would also like to say that thank you to all the people from the DNA and 

O&O labs (Mirjam, Lorian, Weird, Klaas, Sippie, Inge, Jenny, Sicco, Eric, Sharon, 

Annelies, Hans, Rianne and others). I very much enjoyed working with you. You 

helped me whenever I had doubts and created a very nice working environment 

(and the labs were so well organized!). 

A special thanks to fellow PhD students. Wouter, I liked talking to you 

about serious and not serious issues. I know that you keep a list of things I 

shouldn’t have said… Sietse, thanks for your help with translating Dutch letters. 



Dankwoord 

171 

To my fellow foreign PhD students (Lu Ping, Chuanhui, Kushi, Ali, Mina, Yuxuan, 

Huang Xin, Richard, Zheng Liang, Rea, Achmed, Nato, Li Jun), I appreciate that 

we could talk about differences in our cultures, try traditional food (at Lydia’s 

and Anke’s place) and discuss difficulties that we encounter as foreigners.  Lu 

Ping, you gave me some good pieces of advice when I was starting my PhD. 

Thank you for establishing Ago2-RIP-Chip technique in our lab. As you can see it 

works well! Kushi, I enjoyed listening to your stories about Indian weddings. Ali, 

you had a good conclusion, namely that Iranian and Polish people are very 

similar. Chuanhui, Huang Xin, Richard, I hope you are doing well in China. 

Kushi, Ali, Yuxuan, Zheng Liang, Rea, Achmed, Mina, Nato, Li Jun, good luck 

with your projects and I am looking forward to getting your dissertations!  

I am also grateful to Geert, Henk and Roelof-Jan from FACS facility for 

patiently sorting my “difficult” cells and squeezing my sorts in the very busy 

sorting schedule. Big thanks to my two German students, Ann-Christin and 

Julian. You were great students and thanks to you I realized that I like teaching. 

Thank you Jan and Roel for help with computers and thanks to the secretaries 

from our department for being helpful and efficient.  

I am also grateful to Prof. Hanna Rokita for mentoring me during my 

studies at the Jagiellonian University and encouraging me to participate in the 

Erasmus program. 

Thank you to my Polish lunch team (Marta, Kasia, Paulina). Girls, thank 

you for always being there for me. You were like a family. Marta, I wish you all 

the best with your work as scientist/doctor/fitness instructor. I enjoyed our 

Friday evening outings. I will never forget that you drove all the way to 

Eindhoven and we made it 1 minute before the gate at the airport closed. Kasia, 

thank you for our long evening coffee chats. It was nice to have someone with 

similar problems and sometimes very different point of view. Good luck with 

your and Marcin’s defense! Paulina, you were a great flatmate and I loved your 

sarcastic comments. Marta and Kasia, it is great that you are willing to be my 

paranimfen! 

I would like to thank my family. Mamo i Tato, dziękuję Wam za to, że 

nauczyliście mnie by podążać za marzeniami i zmieniać je w plany i że wszystko, 



Dankwoord 

 

172 

co robię powinnam robić najlepiej jak potrafię (Mum and Dad, thank you for 

teaching me to follow my dreams and change dreams into plans and that 

whatever I do I should do my best). Kora, I could always call you when I felt 

lonely. Bartek, without your constant support, love, friendship and ability to 

make me laugh I couldn’t finish it. I am so happy that we proved ourselves that 

long-distance relationship can work out! 

I smile to my computer when writing these acknowledgements and 

recalling all the nice memories. It is time to move on, but the people I met in 

Groningen will always be in my mind and heart. Thank you all! 

 


