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Hybrid Feedback Stabilization of Nonlinear
Systems with Quantization Noise
and Large Delays

Claudio De Persis

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italy.

Summary. Control systems over networks with a finite data rate can be conve-
niently modeled as hybrid (impulsive) systems. For the class of nonlinear systems in
feedforward form, we design a hybrid controller which guarantees stability, in spite
of the measurement noise due to the quantization, and of an arbitrarily large delay
which affects the communication channel. The rate at which feedback packets are
transmitted from the sensors to the actuators is shown to be arbitrarily close to the
infimal one.

This paper is dedicated to Professor Alberto Isidori on the occasion of his
65th birthday, with admiration and gratitude.

1 Introduction

The problem of controlling systems under communication constraints has at-
tracted much interest in recent years. In particular, many papers have investi-
gated how to cope with the finite bandwidth of the communication channel in
the feedback loop. For the case of linear systems (cf. e.g. [2, 7, 9, 8, 23, 27, 3])
the problem has been very well understood, and an elegant characterization
of the minimal data rate – that is the minimal rate at which the measured
information must be transmitted to the actuators – above which stabiliza-
tion is always possible is available. Loosely speaking, the result shows that
the minimal data rate is proportional to the inverse of the product of the
unstable eigenvalues of the dynamic matrix of the system. Controlling using
the minimal data rate is interesting not only from a theoretical point of view,
but also from a practical one, even in the presence of communication chan-
nels with a large bandwidth. Indeed, having control techniques which employ
a small number of bits to encode the feedback information implies for instance
that the number of different tasks which can be simultaneously carried out is
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maximized, results in explicit procedures to convert the analog information
provided by the sensors into the digital form which can be transmitted, and
improves the performance of the system ([15]). We refer the reader to [25] for
an excellent survey on the topic of control under data rate constraints.

The problem for nonlinear systems has been investigated as well (cf. [16,
18, 24, 6, 13, 4]). In [16], the author extends the results of [2] on quantized
control to nonlinear systems which are input-to-state stabilizable. For the same
class, the paper [18] shows that the approach in [27] can be employed also for
continuous-time nonlinear systems, although in [18] no attention is paid on the
minimal data rate needed to achieve the result. In fact, if the requirement on
the data rate is not strict, as it is implicitly assumed in [18], it is shown in [6]
that the results of [18] actually hold for the much broader class of stabilizable
systems. The paper [24] shows, among the other results, that a minimal data
rate theorem for local stabilizability of nonlinear systems can be proven by
focusing on linearized system. To the best of our knowledge, non local results
for the problem of minimal data rate stabilization of nonlinear systems are
basically missing. Nevertheless, the paper [4] has pointed out that, if one
restricts the attention to the class of nonlinear feedforward systems, then it is
possible to find the infimal data rate above which stabilizability is possible. We
recall that feedforward systems represent a very important class of nonlinear
systems, which has received much attention in recent years (see e.g. [29, 22, 12,
10, 19], to cite a few), in which many physical systems fall ([11]), and for which
it is possible to design stabilizing control laws in spite of saturation on the
actuators. When no communication channel is present in the feedback loop,
a recent paper ([20], see also [21]) has shown that any feedforward nonlinear
system can be stabilized regardless of an arbitrarily large delay affecting the
control action.

In this contribution, exploiting the results of [20], we show that the min-
imal data rate theorem of [4] holds when an arbitrarily large delay affects the
channel (in [4], instantaneous delivery through the channel of the feedback
packets was assumed). Note that the communication channel not only intro-
duces a delay, but also a quantization error and an impulsive behavior [26],
since the packets of bits containing the feedback information are sent only at
discrete times. Hence, the methods of [20], which are studied for continuous-
time delay systems, can not be directly used to deal with impulsive delay
systems in the presence of measurement errors. In addition, our result re-
quires an appropriate redesign, not only of the parameters in the feedback
law of [20], but also of the encoder and the decoder of [4]. See [17] for another
approach to control problems in the presence of delays and quantization.

In the next section, we present some preliminary notions useful to formu-
late the problem. The main contribution is stated in Section 3. Building on
the coordinate transformations of [28, 20], we introduce in Section 4 a form
for the closed-loop system which is convenient for the analysis discussed in
Section 5). For the sake of simplicity, not all the proofs are presented, and
they can be found in [5]. In the conclusions, it is emphasized how the proposed
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solution is also robust with respect to packet drop-out. The rest of the section
summarizes the notation adopted in the paper.

Notation. Given an integer 1 ≤ i ≤ ν, the vector (ai, . . . , aν) ∈ R
ν−i+1

will be succinctly denoted by the corresponding uppercase letter with index
i, i.e. Ai. For i = 1, we will equivalently use the symbol A1 or simply a. Ii
denotes the i × i identity matrix. 0i×j (respectively, 1i×j) denotes an i × j
matrix whose entries are all 0 (respectively, 1). When only one index is present,
it is meant that the matrix is a (row or column) vector.

If x is a vector, |x| denotes the standard Euclidean norm, i.e. |x| =
√
xTx,

while |x|∞ denotes the infinity norm max1≤i≤n |xi|. The vector (xT yT )T will
be simply denoted as (x, y). Z+ (respectively, R+) is the set of nonnegative
integers (real numbers), R

n
+ is the positive orthant of R

n. A matrix M is said
to be Schur stable if all its eigenvalues are strictly inside the unit circle.

The symbol sgn(x), with x a scalar variable, denotes the sign function
which is equal to 1 if x > 0, 0 if x = 0, and equal to −1 otherwise. If x is
an n-dimensional vector, then sgn(x) is an n-dimensional vector whose ith
component is given by sgn(xi). Moreover, diag(x) is an n×n diagonal matrix
whose element (i, i) is xi.

Given a vector-valued function of time x( · ) : R+ → R
n, the symbol

||x( · )||∞ denotes the supremum norm ||x( · )||∞ = supt∈R+
|x(t)|. In the pa-

per, two time scales are used, one denoted by the variable t in which the delay
is θ, and the other one denoted by r, in which the delay is τ . Depending on
the time scale, the following two norms are used: ||xt|| = sup−θ≤ς≤0 |x(t+ ς)|,
||xr || = sup−τ≤σ≤0 |x(r + σ)|. Moreover, x(t̄+) represents the right limit
limt→t̄+ x(t).

The saturation function [20] σ : R → R is an odd C1 function such that
0 ≤ σ′(s) ≤ 1 for all s ∈ R, σ(s) = 1 for all s ≥ 21/20, and σ(s) = s for
all 0 ≤ s ≤ 19/20. Furthermore, σi(s) = εiσ(s/εi), with εi a positive real
number.

2 Preliminaries

Consider a nonlinear system in feedforward form [29, 22, 12, 19], that is a sys-
tem of the form

ẋ(t) = f(x(t), u(t)) :=

⎛

⎜
⎜
⎝

x2(t) + h1(X2(t))
. . .

xn(t) + hn−1(Xn(t))
u(t)

⎞

⎟
⎟
⎠ , (1)

where xi(t) ∈ R, Xi(t) is the vector of state variables xi(t), xi+1(t), . . . , xn(t),
u(t) ∈ R, each function hi is C2, and there exists a positive real number
M > 0 such that for all i = 1, 2, . . . , n− 1, if |Xi+1|∞ ≤ 1, then

|hi(Xi+1)| ≤M |Xi+1|2 . (2)



468 C. De Persis

We additionally assume that a bound on the compact set of initial conditions
is available to both the encoder and the decoder, namely a vector ̄ ∈ R

n
+ is

known for which
|xi(t0)| ≤ ̄i , i = 1, 2, . . . , n . (3)

We investigate the problem of stabilizing the system above, when the measure-
ments of the state variables travel through a communication channel. There
are several ways to model the effect of the channel. In the present setting, we
assume that there exists a sequence of strictly increasing transmission times
{tk}k∈Z+ , satisfying

Tm ≤ tk+1 − tk ≤ TM , k ∈ Z+ (4)

for some positive and known constants Tm, TM , at which a packet of N(tk)
bits, encoding the feedback information, is transmitted. The packet is received
at the other end of the channel θ units of time later, namely at the times
θk := tk + θ. In problems of control under communication constraints, it is
interesting to characterize how often the sensed information is transmitted to
the actuators. In this contribution, as a measure of the data rate employed
by the communication scheme we adopt the average data rate [27] defined as

Rav = lim supk→+∞
k∑

j=0

N(tj)
tk − t0

, (5)

where
∑k

j=0 N(tj) is the total number of bits transmitted during the time
interval [t0, tk]. An encoder carries out the conversion of the state variable
into packets of bits. At each time tk, the encoder first samples the state vector
to obtain x(tk), and then determines a vector y(tk) of symbols which can be
transmitted through the channel. We recall below the encoder which has been
proposed in [4], inspired by [27, 18], and then propose a modification to handle
the presence of the delay. The encoder in [4] is as follows:

ξ̇(t) = f(ξ(t), u(t))
̇(t) = 0n t �= tk

ξ(t+) = ξ(t) + gE(x(t), ξ(t), (t))
(t+) = Λ(t) t = tk

y(t+) = sgn(x(t) − ξ(t)) t = tk ,

(6)

where ξ,  is the encoder state, y is the feedback information transmit-
ted through the channel, Λ is a Schur stable matrix, and gE(x, ξ, ) =
4−1diag [sgn (x− ξ)] . Note that each component of y takes value in {0,±1},
therefore y can be transmitted as a packet of bits of finite length. In particu-
lar, if ξi is on the left of xi then +1 is transmitted, if it is on the right, then
−1 is transmitted. The system above is an impulsive system ([1, 14]) and its
behavior is easily explained. At t = t0, given an initial condition ξ(t0), (t0),
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the updates ξ(t+0 ), (t+0 ) of the encoder state and y(t+) of the output are ob-
tained. The former update serves as initial condition for the continuous-time
dynamics, and the state ξ(t), (t) is computed over the interval [t0, t1]. At the
endpoint of the interval, a new update ξ(t+1 ), (t+1 ) is obtained and the pro-
cedure can be iterated an infinite number of times to compute the solution
ξ(t), (t) for all t.

At the other end of the channel lies a decoder, which receives the packets
y(tk), and reconstructs the state of the system. The decoder is very similar to
the encoder. In fact, we have:

ψ̇(t) = f(ψ(t), u(t))
ν̇(t) = 0n t �= tk

ψ(t+) = ψ(t) + gD(y(t), ν(t))
ν(t+) = Λν(t) t = tk

(7)

with gD(y, ν) = 4−1diag(y)ν. The control law is

u(t) = α(ψ(t)) , (8)

where α is the nested saturated function specified later. Note that this control
law is feasible because the decoder and the actuator are co-located. If the
encoder and the decoder agree to set their initial conditions to the same
value, then it is not hard to see ([4]) that ξ(t) = ψ(t) and (t) = ν(t) for
all t. Moreover, one additionally proves that ξ(t) is an asymptotically correct
estimate of x(t), and the latter converges to zero [4].

When a delay affects the channel, the decoder does not know the first state
sample throughout the interval [t0, t0 + θ], and hence it can not provide any
feedback control action. The control is therefore set to zero. As the successive
samples y(tk) are all received at times θk = tk +θ, the decoder becomes aware
of the value of ξ θ units of time later. Hence, the best one can expect is to
reconstruct the value of ξ(t − θ) (see Lemma 1 below), and to this purpose
the following decoder is proposed:

ψ̇(t) = f(ψ(t), α(ψ(t − θ)))
ν̇(t) = 0n t �= θk

ψ(t+) = ψ(t) + gD(y(t− θ), ν(t))
ν(t+) = Λν(t) t = θk
u(t) = α(ψ(t)) .

(9)

We also need to modify the encoder. Indeed, as mentioned in the case with no
delay, for the encoder to work correctly, the control law (8), and hence ψ(t),
must be available to the encoder. To reconstruct this quantity, the following
equations are added to the encoder (6):

ω̇(t) = f(ω(t), α(ω(t− θ))) t �= θk
ω(t+) = ω(t) + gE(x(t− θ), ξ(t − θ), (t− θ)) t = θk .
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As in [28, 20], we shall adopt a linear change of coordinates in which the
control system takes a special form convenient for the analysis. Differently
from [4], this change of coordinates plays a role also in the encoding/decoding
procedure. Indeed, denoted by Φ the nonsingular matrix which defines the
change of coordinates, and which we define in detail in Section 4, the functions
gE , gD which appear in (11) and, respectively, (9) are modified as

gE(x, ξ, ) = (4Φ)−1diag [sgn (Φ(x − ξ))]  , gD(y, ν) = (4Φ)−1diag(y)ν ,

the initial conditions of the encoder and decoder are set as

||ωθ0 || = 0 , ξ(t0) = 0n , (t0) = 2Φ̄ ,

||ψθ0 || = 0 , ν(θ0) = 2Φ̄ ,
(10)

and, finally, the vector y which is transmitted through the channel take the
expression

y(t+) = sgn(Φ(x(t) − ξ(t))) .

Overall, the equations which describe the encoder are:

ω̇(t) = f(ω(t), α(ω(t− θ))) t �= θk
ξ̇(t) = f(ξ(t), α(ω(t)))
̇(t) = 0n t �= tk
ω(t+) = ω(t) + gE(x(t− θ), ξ(t − θ), (t− θ)) t = θk
ξ(t+) = ξ(t) + gE(x(t), ξ(t), (t))
(t+) = Λ(t)
y(t+) = sgn(Φ(x(t) − ξ(t))) t = tk .

(11)

The following can be easily proven.

Lemma 1. In the above setting, we have: (i) ω(t) = ψ(t) for all t ≥ t0, (ii)
ξ(t− θ) = ψ(t) and ν(t− θ) = (t) for all t ≥ θ0.

As anticipated, the encoder and decoder we introduced above are such that
the internal state of the former is exactly reconstructed from the internal state
of the latter. This also implies that in the analysis to come it is enough to
focus on the equations describing the process and the decoder only.

3 Main Result

The problem we tackle in this paper is, given any value of the delay θ, find
the matrices Λ,Φ in (11) and (9), and the control (8) which guarantee the
state of the entire closed-loop system to converge to the origin. As recalled
in the previous section, at times tk, the measured state is sampled, packed
into a sequence of N(tk) bits, and fed back to the controller. In other words,
the information flows from the sensors to the actuators with an average rate
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Rav given by (5). In this setting, it is therefore meaningful to formulate the
problem of stabilizing the system while transmitting the minimal amount of
feedback information per unit of time, that is using the minimal average data
rate. The problem can be formally cast as follows.
Definition 1. System (1) is semi-globally asymptotically and locally exponen-
tially stabilizable using an average data rate arbitrarily close to the infimal one
if, for any ̄ ∈ R

n
+, θ > 0, R̂ > 0, an encoder (11), a decoder (9), initial condi-

tions (3), (10), and a controller (8) exist such that for the closed-loop system
with state X := (x, ω, ξ, , ψ, ν), we have the following properties.

(i) The origin is a stable equilibrium point;
(ii) There exist a compact set C containing the origin, and T > 0, such that

X(t) ∈ C for all t ≥ T ;
(iii) For all t ≥ T , for some positive real numbers k, δ,

|X(t)| ≤ k||XT || exp(−δ(t− T )) .

(iv) Rav < R̂.

Remark 1. It is straightforward to verify that the origin is indeed an equilib-
rium point for the closed-loop system. Moreover, item (iii) explains what is
meant by stabilizability using an average data rate arbitrarily close to the
infimal one. As a matter of fact, (iv) requires that the average data rate can
be made arbitrarily close to the zero, which of course is the infimal data rate.
It is “infimal” rather than “minimal”, because we could never stabilize an
open-loop unstable system such as (1) with a zero data rate (no feedback). �

Compared with the papers [29, 22, 12, 19], concerned with the stabiliza-
tion problem of nonlinear feedforward systems, the novelty here is due to the
presence of impulses, quantization noise which affects the measurements and
delays which affect the control action (on the other hand, we neglect para-
metric uncertainty, considered in [19]). In [30], it was shown robustness with
respect to measurement errors for non-impulsive systems with no delay. In
[20], the input is delayed, but neither impulses nor measurement errors are
present. Impulses and measurement errors are considered in [4], where the
minimal data rate stabilization problem is solved, but instantaneous delivery
of the packets is assumed.
We state the main result of the paper.
Theorem 1. System (1) is semi-globally asymptotically and locally exponen-
tially stable with an average data rate arbitrarily close to the infimal one.

Remark 2. The proof is constructive and explicit expressions for Λ,Φ, and the
controller are determined. �

Remark 3. This result can be viewed as a nonlinear generalization of the well-
known data rate theorem for linear systems. Indeed, the linearization of the
feedforward system at the origin is a chain of integrators, for which the mini-
mal data rate theorem for linear systems states that stabilizability is possible
using an average data rate arbitrarily close to zero. �
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4 Change of Coordinates

Building on the coordinate transformations in [20, 28], we put the system
composed of the process and the decoder in a special form. Before doing this,
we recall that for feedforward systems encoders, decoders and controllers are
designed in a recursive way [28, 29, 22, 12, 20, 4]. In particular, at each step
i = 1, 2, . . . , n, one focuses on the last n − i + 1 equations of system (1),
design the last n− i+ 1 equations of the encoder and the decoder, the first i
terms of the nested saturated controller, and then proceed to the next step,
where the last n− i equations of (1) are considered. To this end, it is useful to
introduce additional notation to denote these subsystems. In particular, for
i = 1, 2, . . . , n, we denote the last n− i+ 1 equations of (1) by

Ẋi(t) = Hi(Xi+1(t), u(t)) =

⎛

⎜
⎜
⎝

xi+1(t) + hi(Xi+1(t))
. . .

xn(t) + hn−1(Xn(t))
u(t)

⎞

⎟
⎟
⎠ , (12)

with u(t) = α(ψ(t)), while for the last n− i+ 1 equations of the decoder (9)
we adopt the notation

Ψ̇i(t) = Hi(Ψi+1(t), u(t− θ))
Ṅi(t) = 0n−i+1 t �= θk ,

Ψi(t) = Ψi(t−) + (4Φi)−1diag(Yi(t− θ))Ni(t−)

Ni(t) = ΛiNi(t−) t = θk ,

(13)

whereNi denotes the components from i to n of ν. Moreover, for given positive
constants L ≤ M , κ ≥ 1, with M defined in (2), we define the non singular
positive matrices1 Φi as:

ΦiXi :=

⎡

⎢
⎢
⎢
⎢
⎣

pi

(
M

L
κi−1xi, . . . ,

M

L
κn−1xn

)

. . .

pn

(
M

L
κn−1xn

)

⎤

⎥
⎥
⎥
⎥
⎦
,

i = 1, . . . , n ,

(14)

where the functions pi, qi : R
n−i+1 → R are [28, 20]

pi(ai, . . . , an) =
n∑

j=i

(n− i)!aj
(n− j)!(j − i)! ,

qi(ai, . . . , an) =
n∑

j=i

(−1)i+j(n− i)!aj
(n− j)!(j − i)! ,

1 The matrix Φ1 will be simply referred to as Φ.
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with pi(qi(ai, . . . , an), . . . , qn(an)) = ai, qi(pi(ai, . . . , an), . . . , pn(an)) = ai.
Finally, let us also introduce the change of time scale

t = κr , (15)

and the input coordinate change

v(r) = κpn

(
M

L
κn−1u(κr)

)

. (16)

Then we have the following.

Lemma 2. Let i ∈ {1, 2, . . . , n} and

τ := θ/κ , rk := tk/κ , ρk := θk/κ . (17)

The change of coordinates (15), (16), and

Zi(r) = ΦiXi(κr)
Ei(r) = Φi(Ψi(κr) −Xi(κ(r − τ))) ,
Pi(r) = Ni(κr)

(18)

transforms system (12)–(13) into

Żi(r) = ΓiZi(r) + 1n−i+1v(r) + ϕi(Zi+1(r))
Ėi(r) = ΓiEi(r) + ϕi(Ei+1(r) + Zi+1(r − τ))

−ϕi(Zi+1(r − τ))
Ṗi(r) = 0n−i+1 r �= ρk

Zi(r+) = Zi(r)
Ei(r+) = Ei(r) + 4−1diag(sgn(−Ei(r)))Pi(r)
Pi(r+) = ΛiPi(r) r = ρk ,

(19)

where

Γi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 . . . 1 1
0 0 1 . . . 1 1
...

...
...

...
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, ϕi(Zi+1) :=

⎡

⎢
⎢
⎢
⎢
⎣

fi(Zi+1)
fi+1(Zi+2)

. . .
fn−1(Zn)

0

⎤

⎥
⎥
⎥
⎥
⎦
.

Proof. It is shown in [20] that, (15), (16) and Zi(r) = ΦiXi(κr) transforms
(12) into

Żi(r) = Fi(Zi+1(r), v(r))

:=

⎡

⎢
⎢
⎢
⎣

∑n
j=i+1 zj(r) + v(r) + fi(Zi+1(r))∑n

j=i+2 zj(r) + v(r) + fi+1(Zi+2(r))
...

v(r)

⎤

⎥
⎥
⎥
⎦
,

(20)
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where
|fi(Zi+1)| ≤ P |Zi+1|2 , P = n3(n!)3Lκ−1 , (21)

provided that |Zi+1|∞ ≤ (Mκ)/(L(n+1)!). Clearly, the equation (20) is equal
to the first equation of (19). Bearing in mind (20), and by differentiating Ei

defined in (18), we obtain

Ėi(r) = Fi(Ei+1(r) + Zi+1(r − τ), v(r − τ))− Fi(Zi+1(r − τ), v(r − τ))
= Γi(Ei(r) + Zi(r − τ)) + 1n−i+1v(r − τ) + ϕi(Ei+1(r) + Zi+1(r − τ))
−Γi(Zi(r − τ)) − 1n−i+1v(r − τ) − ϕi(Zi+1(r − τ))

= ΓiEi(r) + ϕi(Ei+1(r) + Zi+1(r − τ)) − ϕi(Zi+1(r − τ))
(22)

for r �= ρk, while for r = ρk, we have:

Ei(ρ+
k ) = Φi(Ψi(κρ+

k )−Xi(κ(ρk − τ)+))
= Φi(Ψi(θ+

k )−Xi(t+k ))
= Φi(Ψi(θk) + (4Φi)−1diag(Yi(t+k ))Ni(θk)−Xi(tk))
= Φi(Ψi(θk)−Xi(tk)) + 4−1diag(sgn(Φi[Xi(tk)−Ξi(tk)]))Ni(θk)
= Φi(Ψi(θk)−Xi(tk)) + 4−1diag(sgn(Φi[Xi(tk)− Ψi(θk)]))Ni(θk) ,

(23)
where the last equality descends from (ii) in Lemma 1, and implies

Ei(ρ+
k ) = Ei(ρk) + 4−1diag(sgn(−Ei(ρk)))Ni(θk) . (24)

The thesis then follows if we observe that the variable Pi defined in (18)
satisfies

Ṗi(r) = 0n−i+1 r �= ρk
Pi(r+) = ΛiPi(r) r = ρk .

(25)

��

Before ending the section, we specify the nested saturated controller u(t) =
α(ψ(t)) which is shown to stabilize the closed-loop system in the next section.
In particular, we have

α(ψ(t)) = − L

Mκn
σn

(

pn

(

κn−1M

L
ψn(t)

)

+ σn−1

(

pn−1

(

κn−2M

L
ψn−1(t),

κn−1M

L
ψn(t)

)

+ . . .+ σi

(

pi

(

κi−1M

L
ψi(t), . . . , κn−1M

L
ψn(t)

)

+λi−1(t)) . . .) ,

with

λi−1(t) = σi−1

(

pi−1

(

κi−2M

L
ψi−1(t), . . . , κn−1M

L
ψn(t)

)

+ . . .+ σ1

(

p1

(
M

L
ψ1(t), . . . , κn−1M

L
ψn(t)

))

. . .

)

,

and where the saturation levels εi of σi(r) = εiσ(r/εi) are chosen as follows:
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1 = 80εn = 802εn−1 = . . . = 80nε1 . (26)

In the new coordinates (15)–(16), (18), the controller takes the form

v(r) = −σn(en(r) + zn(r − τ) + σn−1(en−1(r) + zn−1(r − τ)+
. . .+ σi(ei(r) + zi(r − τ) + λ̂i−1(r)) . . .)) ,

(27)

with λ̂i−1(r) = σi−1(ei−1(r) + zi−1(r − τ) + . . .+ σ1(e1(r) + z1(r − τ)) . . .).

5 Analysis

In the previous sections, we have introduced the encoder, the decoder and the
controller. In this section, in order to show the stability property, we carry
out a step-by-step analysis, where at each step i, we consider the subsystem
(19) in closed-loop with (27). We first introduce two lemmas which are at the
basis of the iterative construction. The first one, which, in a different form,
was basically given in [4], shows that the decoder asymptotically tracks the
state of the process under a boundedness assumption. The proof we present
here is more straightforward than the original one.

Lemma 3. Suppose (3) is true. If for some i = 1, 2, . . . , n there exists a pos-
itive real number Z̄i+1 such that 2

||Zi+1( · )||∞ ≤ Z̄i+1 ,

and, for all r ≥ ρ0,

|ej(r)| ≤ pj(r)/2 , j = i+ 1, i+ 2, . . . , n ,

with3

Pi+1(ρ+) = Λi+1Pi+1(ρ) ρ = ρk ,

and Λi+1 a Schur stable matrix, then for all r ≥ ρ0,

|ei(r)| ≤ pi(r)/2 ,

with pi(r+) = pi(r)/2, for r = ρk, if i = n, and
[

pi(r+)
Pi+1(r+)

]

=
[

1/2 ∗
0n−i Λi+1

] [
pi(r)
Pi+1(r)

]

r = ρk , (28)

if i ∈ {1, 2, . . . , n− 1}, where ∗ is a 1× (n− i) row vector depending on Z̄i+1,
̄, and TM .
2 The conditions are void for i = n.
3 In the statement, the continuous dynamics of the impulsive systems are trivial –

the associated vector fields are identically zero – and hence omitted.



476 C. De Persis

Proof. Recall first (22), (24). Furthermore, by (10), the definition of Φ, and
(3), |ej(ρ0)| ≤ pj(ρ0)/2 for j = i, i+1, . . . , n. For i = n, as |en(ρ0)| ≤ pn(ρ0)/2,
it is immediately seen that

|en(ρ+
0 )| = |en(ρ0) + 4−1sgn(−en(ρ0))pn(ρ0)| ≤ 4−1pn(ρ0)

which proves that |en(ρ+
0 )| ≤ pn(ρ+

0 )/2, provided that Λn = 1/2. As ėn(r) =
0, then |en(r)| ≤ pn(ρ+

0 )/2 for r ∈ [ρ0, ρ1). As ṗn(r) = 0, also |en(ρ1)| ≤
pn(ρ1)/2, and iterative arguments prove that |en(r)| ≤ pn(ρ+

k )/2 on each
interval [ρk, ρk+1). Notice that the single trivial eigenvalue of Λn is strictly
less than the unity. The first equation of (22) writes as:

ėi(r) = 1n−iEi+1(r) + ϕi(Ei+1(r) + Zi+1(r − τ)) − ϕi(Zi+1(r − τ))

=

(

1n−i +
[
∂ϕi(yi+1)
∂yi+1

]

α(r)Ei+1(r)+Zi+1(r−τ)

)

Ei+1(r) ,

with α(r) ∈ [0, 1] for all r. As both Ei+1 and Zi+1 are bounded, it is not hard
to see [4] that there exists a positive real number Fi depending on Z̄i+1 and
̄, such that, for r ∈ [ρk, ρk+1),

ei(r) ≤ ei(ρ+
k ) + Fi(ρk+1 − ρk)

n∑

j=i+1

pj(ρ+
k )/2 ,

with |ei(ρ+
0 )| ≤ pi(ρ0)/4. By iteration, the thesis is inferred provided that

pi(ρ+
k ) =

1
2
pi(ρk) + FiTM1n−iΛi+1Pi+1(ρk)

≥ 1
2
pi(ρk) + Fi(ρk+1 − ρk)

n∑

j=i+1

pj(ρ+
k ) .

Note that, by the definition of pi(ρ+
k ) above, Pi(ρ+

k ) = ΛiPi(ρk), with Λi the
matrix in (28), that shows Λi to be a Schur stable matrix provided that so is
Λi+1. ��

The following remark will be useful later on.

Remark 4. From the proof of the lemma, it is possible to see that, if ||z( · )||∞ ≤
Z, for some Z > 0, then e and p in (19) (with i = 1) obey the equations4

ė(r) = A(r)e(r)
ṗ(r) = 0n r �= ρk
e(r) = e(r−) + 4−1diag[sgn(−e(r−))]p(r−)
p(r) = Λp(r−) r = ρk ,

(29)

4 Again, we adopt the symbol Λ rather than Λ1.
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with

A(r) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a12(r) a13(r) . . . a1n−1(r) a1n(r)
0 0 a23(r) . . . a2n−1(r) a2n(r)
...

...
...

...
...

...
0 0 0 . . . 0 an−1n(r)
0 0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (30)

and where the off-diagonal components of A, rather than as functions of
(r, e(r), z(r − τ)), are viewed as bounded (unknown) functions of r, whose
absolute value can be assumed without loss of generality to be upper bounded
by a positive constant depending on Z, ̄ and TM . �

The next statement, based on Lemma 10 in [20], shows that a controller exists
which guarantees the boundedness of the state variables, a property required
in the latter result. Note that the arguments of the proof in [20] hold even in
the presence of a “measurement” disturbance e induced by the quantization,
which can be possibly large during the transient but it is decaying to zero
asymptotically.

Lemma 4. Consider the system

Ż(r) = −εσ
[
1
ε
(Z(r − τ) + e(r) + λ(r))

]

+ μ(r)

where Z ∈ R, ε is a positive real number, and additionally:

• λ( · ) and μ( · ) are continuous functions for which positive real numbers
λ∗ and μ∗ exist such that, respectively, |λ(r)| ≤ λ∗, |μ(r)| ≤ μ∗, for all
r ≥ r0;

• e( · ) is a piecewise-continuous function for which a positive time r∗ and
a positive number e∗ exist such that |e(r)| ≤ e∗, for all r ≥ r∗.

If

τ ∈
(

0,
1
24

]

, λ∗ ∈
(
0,

ε

80

]
, e∗ ∈

(
0,

ε

80

]
, μ∗ ∈

(
0,

ε

80

]
,

then there exist positive real numbers Z∗ and R ≥ 0 such that ||Z( · )||∞ ≤ Z∗,
and for all r ≥ R,

|Z(r)| ≤ 4(λ∗ + μ∗ + e∗) .

Remark 5. The upper bounds on λ∗, e∗, μ∗ could be lowered to ε/40 and the
result would still hold. The more conservative bounds are needed in forthcom-
ing applications of the lemma. �

To illustrate the iterative analysis in a concise manner, the following is
very useful (cf. [20]).

Inductive Hypothesis There exists Z̄i > 0 such that ||Zi( · )|| ≤ Z̄i. Moreover,
for each j = i, i + 1, . . . , n, |ej(r)| ≤ pj(r)/2, for all r ≥ ρ0, and there exists
Ri > τ such that for all r ≥ Ri,
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|zj(r)| ≤
1
4
εj , |ej(r)| ≤

1
2n

·
1

80j−i+2
εj .

Initial step (i = n) The initial step is trivially true, provided that τ ≤ 1/24,
and εn = 1/80. Indeed, consider the closed-loop system (19), (27) with i = n,
to obtain:

żn(r) = −σn(zn(r − τ) + en(r) + λ̂n−1(r))
ėn(r) = 0
ṗn(r) = 0 r �= ρk

zn(r+) = zn(r)
en(r+) = en(r) + 4−1sgn(−en(r))pn(r)
pn(r+) = Λnpn(r) r = ρk ,

(31)

where we set Λn := 1/2. By Lemma 3 and (31), |en(r)| ≤ εn/80 from a cer-
tain time R′

n on. Applying Lemma 4 to the zn sub-system, we conclude that
||zn( · )||∞ ≤ Z̄n, and there exists a time Rn > R′

n such that |zn(r)| ≤ εn/4,
and |en(r)| ≤ εn−1/(n · 160) for all r ≥ Rn, the latter again by Lemma 3.

Inductive step The inductive step is summarized in the following result.

Lemma 5. Let

P ≤ Pm ≤ [20 · (80)nn]−1 , τ ≤ τm ≤ [4 · 80n+1n(n+ 2)]−1 . (32)

If the inductive hypothesis is true for some i ∈ {2, . . . , n}, then it is also true
for i− 1.

Applying this lemma repeatedly, one concludes that, after a finite time, the
state converge to the linear operation region for all the saturation functions,
and the closed-loop system starts evolving according to the equations (cf. Re-
mark 4)

ż(r) = A1z(r) +A2z(r − τ) +A2e(r) + ϕ(z(r))
ė(r) = A(r)e(r)
ṗ(r) = 0n r �= ρk

z(r+) = z(r)
e(r+) = e(r) + 4−1diag[sgn(−e(r))]p(r)
p(r+) = Λp(r) r = ρk ,

(33)

where:

(i) A1, A2 are matrices for which there exist q = (1 + n2)n−1, a = n, and
Q = QT > 0 such that

(A1 +A2)TQ+Q(A1 +A2) ≤ −I ,

with ||Q|| ≤ q and ||A1||, ||A2|| ≤ a;
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(ii) there exists γ > 0 such that ϕ(z(r)) := [ f1(Z2(r)) . . . fn−1(Zn(r)) 0 ]T

satisfies
|ϕ(z)| ≤ γ|z| ;

(iii) A(r) is as in (30);
(iv) Λ is the Schur stable matrix designed following the proof of Lemma 3.

Remark 6. It can be shown that the same arguments used for the proofs of
the Lemma 3 to 5 lead to the conclusion that there always exists a sufficiently
small neighborhood of initial conditions for the system (19), (27), with i = 1,
such that the entire state evolves in a set where all the saturation functions
operate in their linear region. This remark is important to conclude Lyapunov
stability of the closed-loop system. �

In [20] the authors investigate the stability property of

ż(r) = A1z(r) +A2z(r − τ) + ϕ(z(r)) ,

that is the first component of system (33), with e = 0 and no impulses. In the
present case, e is due to the quantization noise and drives the z-subsystem.
The “driver” subsystem is composed of the (e, p) equations of (33). Hence, we
have to study the stability of a cascade system with impulses. To this end,
concisely rewrite the (e, p) equations of the system above as ([1])

ε̇(r) = B(r)ε(r) r �= ρk
ε(r+) = gk(ε(r)) r = ρk ,

(34)

with ε = (e, p), |gk(ε)| ≥ |ε|/2, and notice the following consequence of
Lemma 3 above, and [1], Theorem 15.2.

Corollary 1. There exists a function V (r, ε) = V (r, e, p) : R+ × R
n × R

n →
R+ such that, for all r ∈ R+ and for all ε = (e, p) ∈ R

n × R
n for which

|e| ≤ |p|/2, satisfies

c1|ε|2 ≤ V (r, ε) ≤ c2|ε|2

∂V

∂r
+
∂V

∂ε
B(r)ε(r) ≤ −c3|ε|2 r �= ρk

V (r+, gk(ε)) ≤ V (r, ε) r = ρk
∣
∣
∣
∣
∂V (r, ε)
∂ε

∣
∣
∣
∣ ≤ c4|ε| ,

for some positive constants ci, i = 1, . . . , 4.

The corollary points out that there exists an exponential Lyapunov func-
tion for the system (34). Based on this function, one can build a Lyapunov-
Krasowskii functional to show that the origin is exponentially stable for the
entire cascade impulsive system (33), thus extending Lemma 11 in [20] in the
following way.
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Lemma 6. Consider system (33), for which the conditions (i)–(iv) hold. If

γ ≤ 1
8q

and τ ≤ min
{

1
16a2(8aq + 1)2

,
1

32q2a4
, 2
}

,

then, for all r ≥ ρ0, for some positive real numbers k, δ, we have

|(z(r), ε(r))| ≤ k||(z, ε)ρ0 || exp(−δ(r − ρ0)) .

We can now state the following stability result for the system (19), (27).

Proposition 1. Consider the closed-loop system (19), (27) and let |ei(ρ0)| ≤
pi(ρ0)/2 for all i = 1, 2, . . . , n. If (26) holds,

L ≤ min{M,
Mκ

(n+ 1)!
} (35)

and

0 ≤ τ ≤ τm = [max
{
4 · (80)n+1n(n+ 2), 16n2(8n(1 + n2)n−1 + 1)2,

32(1 + n2)2(n−1)n4
}
]−1

0 ≤ P ≤ Pm = [max{20 · 80n+1n, 8(1 + n2)n−1
√
n(n− 1)}]−1 ,

(36)

then the following properties hold.

(i) The origin of the closed-loop system is stable;
(ii) There exist a compact neighborhood Ĉ of the origin and R > 0 such that,

for all r ≥ R, the state belongs to Ĉ;
(ii) For all r ≥ R, for some positive real numbers k̂, δ̂,

|(z(r), e(r), p(r))| ≤ k̂||(z, e, p)R|| exp(−δ̂(r −R)) . (37)

Proof. Bearing in mind (21) and that εi < 1, for i = 1, 2, . . . , n, and
(Mκ)/(L(n + 1)!) ≥ 1, then γ in (ii) after (33) is seen to be equal to√
n(n− 1)P , and the condition P ≤ [8(1 + n2)n−1

√
n(n− 1)]−1 in (36) ac-

tually implies γ ≤ 1/(8q). Analogously, one can check that the requirements
on τ and P in (36) imply that all the conditions in Lemma 5 and 6 are true.
These lemma (see also Remark 6) allow us to infer the thesis. ��

The proof of the main result of the paper simply amounts to rephrase the
proposition above in the original coordinates. This is straightforward and we
omit it. We only discuss briefly the issue of the minimality of the data rate. By
definition of Rav, it is always possible to guarantee that Rav < R̂, provided
that Tm ≥ 2n/R̂. Now the stability results we presented hold for a given value
of Tm which may or may not fulfill the inequality above. Suppose it does not.
Can we increase Tm above 2n/R̂ and still have stability? The answer is yes,
for the value of Tm (and hence of TM ≥ Tm) affects the entries of A(r) and Λ,
but the exponential stability of the (e, p) equations (and therefore of system
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(29)) remains true, as it is evident from the proof of Lemma 3. Hence, the
arguments above still apply and minimality of the data rate is proven.

We stress that the proof of the result is constructive, that is we give the ex-
plicit expressions of the encoder, the decoder and the controller which solve the
problem. As a matter of fact, the equations of encoder and the decoder are in-
troduced in (11) and, respectively, (9). The matrices Λ and Φ appearing there
are, respectively, designed in Lemma 3, and defined in (14). The parameters of
the nested saturated controller are L, κ and the saturation levels εi. The latter
are defined in (26). The former must be chosen in such a way that (35) and (36)
are satisfied. Bearing in mind the definitions (17), (21), it is easy to see that,
for any value of the delay θ, there exist a sufficiently large value of κ and a suf-
ficiently small value of L such that (35) and (36) are true. These values will be,
respectively, larger and smaller than the corresponding values given in [20],
as the presence of the quantization error requires a stronger control action.

6 Conclusion

We have shown that minimal data rate stabilization of nonlinear systems is
possible even when the communication channel is affected by an arbitrarily
large transmission delay. The system has been modeled as the feedback inter-
connection of a couple of impulsive nonlinear control systems with the delay
affecting the feedback loop. In suitable coordinates, the closed-loop system
turns out to be described by a cascade of impulsive delay nonlinear control
systems, and semi-global asymptotic plus local exponential stability has been
shown. The proof relies, among other things, on the design of a Lyapunov-
Krasowskii functional for an appropriate cascade impulsive time-delay system.
If the encoder is endowed with a device able to detect abrupt changes in the
rate of growth of xn, or if a dedicated channel is available to inform the encoder
about the transmission delays, then it is not difficult to derive the same kind
of stability result for the case when the delays are time-varying and upper-
bounded by θ. Similarly, by adjusting TM in (4), it is possible to show that the
solution proposed in this paper is also robust with respect to packet drop-outs.
The same kind of approach appears to be suitable for other problems of control
over communication channel with finite data rate, delays and packet drop-out.
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