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CLUSTERS AND THE COSMIC WEB:
Identifying the location of filaments

Rien van de Weygaert
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV

Groningen, the Netherlands

Introduction

The interior of the Universe is permeated by a tenuous space-filling frothy network. Welded into
a distinctive foamy pattern, galaxies accumulate in walls, filaments and dense compact clusters
surrounding large near-empty void regions. As borne out by a large sequence of computer exper-
iments, such weblike patterns in the overall cosmic matter distribution do represent a universal
but possibly transient phase in the gravitationally propelled emergence and evolution of cosmic
structure. In this contribution we discuss the intimate relationship between the filamentary
features and the rare dense compact cluster nodes in this network, via the large scale tidal field
going along with them (see fig 1), following the cosmic web theory developed by Bond et al.
(1996). The Megaparsec scale tidal shear pattern is responsible for the contraction of matter
into filaments, and its link with the cluster locations can be understood through the implied
quadrupolar mass distribution in which the clusters are to be found at the sites of the overdense
patches (Van de Weygaert et al. 1996)). The pattern of the cosmic web can therefore be largely
tied in with the protocluster peaks in the primordial density field, and the subsequent nonlinear
evolution leads to the aggregation of matter into the sharp filamentary network defined by the
primordial tidal shear field.

We present a new technique for tracing the cosmic web, identifying planar walls, elongated
filaments and cluster nodes in the galaxy distribution. These will allow the practical exploitation
of the concept of the cosmic web towards identifying and tracing the locations of the gaseous
WHIM. These methods, the Delaunay Tessellation Field Estimator and the Morphology Mul-
tiscale Filter (Schaap & van de Weygaert 2000; Aragón-Calvo et al. 2006), find their basis in
computational geometry and visualization.

1 Anisotropic Collapse

A major characteristic of the formation of cosmic structure in gravitational instability scenarios
is the tendency of matter concentrations to collapse in an anisotropic manner. In a generic
random density field the gravitational force field at any location will be anisotropic. For a
particular structure the internal force field of the structure hangs together with the flattening
of the feature itself. It induces an anisotropic collapse along the main axes of the structure. In
reality, the internal evolution of the system will be dominated by internal substructure involving
a substantial measure of orbit crossing. The more quiescent external ‘background’ force field,
the integrated gravitational impact of all external density features in the Universe will also be
anisotropic.

In all, the resulting evolution can be most clearly understood in and around a density max-
imum (or minimum) δ, to first order corresponding to the collapse of a homogeneous ellip-
soid (Icke 1973; Eisenstein & Loeb 1995; Bond & Myers 1996), as illustrated in fig. 2. The



Figure 1: The relation between the cosmic web, the clusters at the nodes in this network and the
corresponding compressional tidal field pattern. It shows the matter distribution at the present
cosmic epoch, along with the (compressional component) tidal field bars in a slice through a
simulation box containing a realization of cosmic structure formed in an open, Ω◦ = 0.3, Universe
for a CDM structure formation scenario (scale: RG = 2h−1Mpc). The frame shows structure in
a 5h−1Mpc thin central slice, on which the related tidal bar configuration is superimposed. The
matter distribution, displaying a pronounced weblike geometry, is clearly intimately linked with
a characteristic coherent compressional tidal bar pattern. From: Van de Weygaert (2002)

overall characteristics can also be understood for the more generic circumstances of a density
fluctuation field, where the early phases of the collapse of a feature may be approximated by the
Zel’dovich deformation tensor ψmn (Zel’dovich 1970). Related to the total tidal force field Tmn

acting over a patch of density excess δ, including the contributions from the local (“internal”)
flattening of the density field as well as those generated by external density perturbations, the
eigenvalues λ1, λ2 and λ3 of the deformation tensor ψmn,

ψmn =
2

3a3ΩH2

∂2φ

∂qm∂qn
=

1
3

2
ΩH2a

(

Tmn +
1

2
ΩH2 δ δmn

)

(1)

(underlined quantities are the linearly extrapolated values). Dependent on whether one or
more of the eigenvalues λi > 0, the feature will collapse along one or more directions. The
collapse will proceed along a sequence of three stages. First, collapse along the direction of the
strongest deformation λ1. The feature will be like a wall, flattened. If also the second eigenvalue
is positive, the object will contract along the second direction and an elongated filamentary

structure results. Total collapse will occur if also λ3 > 0. In N -body simulations as well as
in galaxy redshift distributions it are in particular the filaments which stand out as the most
prominent feature of the Cosmic Web. It even remains unclear whether walls are even present
at all. Some argue that once nonlinear clustering sets in the stage in which walls form is of



Figure 2: The evolution of an overdense homogeneous ellipsoid, with initial axis ratio a1 :
a2 : a3 = 1.0 : 0.9 : 0.9, embedded in an Einstein-de-Sitter background Universe. The two
frames show a time sequel of the ellipsoidal configurations attained by the object, starting
from a near-spherical shape, initially trailing the global cosmic expansion, and after reaching a
maximum expansion turning around and proceeding inexorably towards ultimate collapse as a
highly elongated ellipsoid. Left: the evolution depicted in physical coordinates. Red contours
represent the stages of expansion, blue those of the subsequent collapse after turn-around. Right:
the evolution of the same object in comoving coordinates, a monologous procession through ever
more compact and more elongated configurations.

a very short duration or does not occur at all: true collapse would proceed along filamentary
structures (Sathyaprakash et al. 1996; Jain & Bertschinger 1994; Hui & Bertschinger 1996).
Indeed, it can be argued that the typical density contours of overdense regions subject to tidal
shear constraints are already more filamentary than sheet-like in the linear density field, and
becomes even more so in the quasi-linear regime (Bond et al. 1996). In addition, there is also a
practical problem in identifying them, due to walls having a far lower surface density than the
filaments. This is exacerbated as there are hardly any objective feature detection techniques
available available. Very recent results based upon the analysis of an N -body simulation of
cosmic structure formation by means of the new Multiscale Morphology Filter technique indeed
identified walls in abundance whether they had not been seen before (Aragón-Calvo et al.
2006). Another indication is that the dissipative gaseous matter within the cosmic web indeed
partially aggregates in walls with low overdensities (Kang et al. 2005; Kang 2006), arguing for
the presence of moderate potential wells tied in with dark matter walls.

2 Cosmic Web: Tides and Quadrupoles

Bond, Kofman & Pogosyan (1996) coined the word ‘cosmic web’ in their study of the physical
content of the web, in which they drew attention to their observation that knowledge of the
value of the tidal field at a few well-chosen cosmic locations in some region would determine
the overall outline of the weblike pattern in that region. This relation may be traced back to a
simple configuration, that of a “global” quadrupolar matter distribution and the resulting “local”
tidal shear at a particular location r. Such a quadrupolar primordial matter distribution will
almost by default evolve into the canonical cluster-filament-cluster configuration which appears
so prominently in the cosmic foam (see fig 3). For a cosmological (random) matter distribution



this close connection between local force field and global matter distribution may be elucidated
through the expression of the tidal tensor in terms of the generating cosmic matter density
fluctuation distribution δ(r) (Van de Weygaert et al. 1996):

Tij(r) =
3ΩH2

8π

∫

dr′ δ(r′)

{

3(r′i − ri)(r
′

j − rj) − |r′ − r|2 δij

|r′ − r|5

}

−

−
1

2
ΩH2 δ(r, t) δij (2)

3 Constrained Random Field Formalism

The set of density field realizations δ(r) within a sample volume Vs that would generate a tidal
field Tij at location r can be inferred from the theory of constrained random fields (Bertschinger
1987). Bertschinger described how a set Γ of functional field constraints Ci[f ] = ci, (i =
1, . . . ,M) of a Gaussian random field f(r, t) would translate into field configurations for which
these constraints would indeed have the specified values ci. Any such constrained field realization

fc can be written as the sum of a mean field f̄(x) = 〈f(x)|Γ〉, the ensemble average of all field
realizations obeying the constraints, and a residual field F (x), embodying the field fluctuations
characterized and specified by the power spectrum P (k) of the particular cosmological scenario
at hand,

fc(x) = f̄(x) + F (x) (3)

Bertschinger(1987) showed the specific dependence of the mean field on the nature Ci[f ] of the
constraints as well as their values ci. In essence the mean field can be seen as the weighted
sum of the field-constraint correlation functions ξi(x) ≡ 〈f Ci〉 (where we follow the notation
of Hoffman & Ribak (1991)). Each field-constraint correlation function encapsulates the reper-
cussion of a specific constraint Ci[f ] for a field f(x) throughout the sample volume Vs. Not
surprisingly, the field-constraint correlation function for the tidal constraint Tij is a quadrupolar
configuration. The weights for each of the relevant ξi(x) are determined by the value of the
constraints, cm, and their mutual cross-correlation ξmn ≡ 〈CmCn〉,

f̄(x) = ξi(x) ξ−1

ij cj . (4)

Generating the residual field F is a nontrivial exercise: the specified constraints translate into
locally fixed phase correlations. This renders a straightforward random phase Gaussian field
generation procedure unfeasible. Hoffman & Ribak (1991) pointed out that for a Gaussian ran-
dom field the sampling is straightforward and direct, which greatly faciliated the application of
CRFs to cosmological circumstances. This greatly facilitated the application of CRFs to complex
cosmological issues (Klypin et al. 2003; Mathis et al. 2002). Van de Weygaert & Bertschinger
(1996), following the Hoffman-Ribak formalism, worked out the specific CRF application for
the circumstance of sets of local density peak (shape, orientation, profile) and gravity field con-
straints. With most calculations set in Fourier space, the constrained field realization for a linear
cosmological density field with power spectrum P (k) can be computed from the Fourier integral

f(x) =

∫

dk

(2π)3

[

ˆ̃
f(k) + P (k) Ĥi(k) ξ−1

ij (cj − c̃j)

]

e−ik·x (5)

with Ĥi(k) the constraint i’s kernel (the Fourier transform of constraint Ci[f ]), cj the value of
this constraint, while the tilde indicates it concerns a regular unconstrained field realization f̃ .
While the CRF formalism is rather straightforward for idealized linear constraints, reality is less
forthcoming. If the constraints are based on measured data these will in general be noisy, sparse
and incomplete. Wiener filtering will be able to deal with such a situation and reconstruct the



Figure 3: Constrained field construction of initial quadrupolar density pattern in a SCDM cosmological

scenario. The tidal shear constraint is specified at the box centre location, issued on a Gaussian scale

of RG = 2h−1Mpc and includes a stretching tidal component along the x- and y-axis acting on a small

density peak at the centre. Its ramifications are illustrated by means of three mutually perpendicular

slices through the centre. Top row: the “mean” field density pattern, the pure signal implied by the

specified constraint. Notice the clear quadrupolar pattern in the y- and z-slice,directed along the x-

and y-axis, and the corresponding compact circular density contours in the x-slice: the precursor of a

filament. Central row: the full constrained field realization, including a realization of appropriately added

SCDM density perturbations. Bottom row: the corresponding tidal field pattern in the same three slices.

The (red) contours depict the run of the tidal field strenght |T |, while the (green) tidal bars represent

direction and magnitude of the compressional tidal component in each slice (scale: RG = 2h−1Mpc).

From: Van de Weygaert (2002)



Figure 4: The emergence of a filament in an SCDM structure formation scenario. Lefthand
column: density/particle distribution in z-slice through the centre of the simulation box. Right-
hand column: the corresponding tidal field configurations, represented through the full tidal field
strength |T | contour maps (red), as well as the corresponding compressional tidal bars (scale:
RG = 2h−1Mpc). From top to bottom: primordial field, a = 0.2 (visible emergence filament),
present epoch. Note the formation of the filament at the site where the tidal forces peaked in
strength, with a tidal pattern whose topology remains roughly similar. From: Van de Weygaert
(2002)



implied mean field, at the cost of losing signal proportional to the loss in data quality (see e.g. ?).
A major practical limitation concerns the condition that the constrained field is Gaussian. For
more generic nonlinear clustering situations the formalism is in need of additional modifications.
For specific situations this may be feasible (Sheth 1995), but for more generic circumstances
this is less obvious (however, see Jones & van de Weygaert (2006)).

4 Tidal connections: Filaments and Clusters

One of the major virtues of the constrained random field construction technique is that it offers
the instrument for translating locally specified quantities into the corresponding implied global
matter distributions for a given structure formation scenario. In principle, the choice of possible
implied matter distribution configurations is limitless, yet it gets substantially curtailed by the
statistical nature of its density fluctuations, the coherence scale of the matter distribution and
hence of the generated force field as well as the noise characteristics over the various spatial
scales, both set by the power spectrum of fluctuations. Van de Weygaert & Bertschinger (1996)
illustrate the repercussion of a specified constraint on the value of the tidal shear at some specific
location. Figure 4 shows the result of such a tidal constraint. It provides a 3-D impression of
the structure in the region immediately surrounding the location of the specified shear. We
have crudely included the concept of “external” by (spherically) filtering the field on a (rather
arbitrary) scale of 2h−1Mpc.

The mean field f̄ of the specified constraints (top panels) represents a clear depiction of the
average density field configuration inducing the specified tidal tensor: the constraint works out
into a perfect global quadrupolar field. Superimposing the residual power spectrum fluctuations
F , whose amplitude is modified by the local correlation with the specified constraints, results
into a representative individual realization of a matter density distribution that would induce
the specified constraint (second row). The close affiliation with a strong anisotropic force field,
within the surrounding region, can be directly observed from the lower row of corresponding
slices. The contour maps, indicating the total tidal field strength, reveal that the constraints
correspond to a tidal field elongated along the axis of the box with a maximum tidal strength
at the centre of the box. Along the full length of the filament we observe a coherent pattern
of strong compressional forces perpendicular to its axis1. Assessing the evolution of the spatial

matter distribution in and around the (proto)filament, see Fig. 4, demonstrates the intimate cor-
relation between the anisotropy in the cosmic force field and the presence of strongly anisotropic
features. It shows the emergence of a filament in a CDM structure formation scenario, with
the density//particle distribution along the “spine” of the emerging filament in the lefthand
column and the corresponding tidal configuration (full tidal field strength contour map as well
as corresponding bars of compressional tidal component) in the righthand column. The top row
corresponds to the primordial cosmic conditions, the centre row to a = 0.2 and the bottom row
to a = 0.8. At a = 0.2 we can clearly recognize the onset of the emerging filament, which at
a = 0.8 has emerged as the dominant feature in the mass distribution. Two striking aspects of
the depicted evolution are particularly relevant for this contribution:

1on the basis of the effect of a tidal field, we may distinguish at any one location between “compressional”
and “dilational” components. Along the direction of a “compressional” tidal component Tc (for which Tc < 0.0)
the resulting force field will lead to contraction, pulling together the matter currents. The “dilational” (or
“stretching”) tidal component Td, on the other hand, represents the direction along which matter currents tend
to get stretched as Td > 0. Note that within a plane, cutting through the 3-D tidal “ellipsoid”, the tidal field can
consist of two compressional components, two dilational ones or – the most frequently encountered situation – of
one dilational and one compressional component.



• Two massive clusters emerge on either side of the filament. These matter assemblies, in
conjunction with the correspondingly large underdense volumes surrounding the filament
perpendicular to its spinal axis, define a roughly quadrupolar density field and are a
natural consequence of the primordial density field suggested by the central tidal force
field constraint (fig. 3).

• The strong correlation between the compressional component of the tidal field and the
presence of a dense filamentary feature suggests a strong causal link (fig. 1, 4). A compar-
ison between the evolving cosmic web and the corresponding tidal force field, specifically
of its compressional components, does suggest an intimate link. While the spatial pattern
of the tidal field remains quite close to its primordial configuration, we see the formation
of the filament precisely there where the primordial compressional field is very strong and
coherent. In other words, it is as if the primordial mapping of the compressional tidal

component represents a prediction for the locus of the main cosmic web features. The
gradual emergence of one particular filament is seemingly predestinated by the tidal field
configuration.

5 Tidal connections: Clusters and the Web

Inverting the relation between clusters and the cosmic web, we may investigate the reper-
cussions of imposing the locations and nature of cluster nodes to trace out the implied cosmic
web. This has been described in detail in Bond et al. (1996). Clusters are defined according to
the peak-patch formalism of Bond & Myers (1996): they are peaks in the primordial Gaussian
field, identified with the peak on the largest smoothing scale RG on which they have collapsed
along all three directions (according to the homogeneous ellipsoidal model).

As argued in the above, the presence of two protocluster peaks may imply that the tidal
shear field configuration in between the peaks is such that a filament will form along the axis
connecting the two clusters. The strength of the filamentary bridge depends on the distance
between the two peaks. Its coherence and strength are set by the field-constraint correlation
function ξk(r) = 〈δ(r)Tij(rT)〉 between the density field and the tidal shear. The strength of the
correlation will depend strongly on both orientation and of the clusters and their mutual distance
(Bond et al. (1996), also see Van de Weygaert et al. (1996)). This was indeed confirmed in a
study of fully evolved intracluster filaments in GIF simulations (Colberg et al. 2005). In the
observed galaxy distribution, “superclusters” are therefore filamentary cluster-cluster bridges,
and the most pronounced ones will be found between clusters of galaxies that are close together
and which are aligned with each other. Very pronounced galaxy filaments, the Pisces-Perseus
supercluster chain is a telling example, are therefore almost inescapably tied in with a high
concentration of rich galaxy clusters.

These observations can provide the path towards an efficient tracing of weblike patterns at
higher redshifts. Clusters of galaxies are observable out to high redshifts z > 1. Using the
cluster distribution within a particular cosmic region as input, the CRF technique will allow
the reconstruction of the corresponding filamentary weblike patterns. This in turn may focus
attention on the highest density patches for tracing the intergalactic gas and thus suggest an
efficient observational technique. In turn, it will allow a test of structure formation.

6 Clusters and Filaments: Identification

Astronomical applications are usually based upon a set of user-defined filter functions. Nearly
without exception the definition of these include pre-conceived knowledge about the features one
is looking for. A telling example is the use of a Gaussian filter. This filter will suppress the
presence of any structures on a scale smaller than the characteristic filter scale. Moreover, nearly



Figure 5: The Cosmic Web in a box: GIF N-body simulation of structure formation in a
ΛCDM cosmology. Three consecutive zoom-ins onto a central slice through the simulation box.
Courtesy: Willem Schaap.



Figure 6: MMF (multiscale morphology filter) analysis of a slice in te SDSS survey. From the
full galaxy distribution (left), the MMF identifies the galaxies belonging to clusters (top right)
and to filaments (bottom right). From: Aragón-Calvo et al. (2006)



always it is a spherically defined filter which tends to smooth out any existing anisotropies. Such
procedures may be justified in situations in which we are particularly interested in objects of
that size or in which physical understanding suggests the smoothing scale to be of particular
significance. On the other hand, they may be crucially inept in situations of which we do not
know in advance the properties of the matter distribution. The gravitational clustering process
in the case of hierarchical cosmic structure formation scenarios is a particularly notorious case.
As it includes structures over a vast range of scales and displays a rich palet of geometries and
patterns any filter design tends to involve a discrimination against one or more – and possibly
interesting – characteristics of the cosmic matter distribution it would be preferrable to define
filter and reconstruction procedures that tend to be defined by the discrete point process itself.

Here we exploit the potential of spatial tessellations as a means of estimating and interpo-
lating discrete point samples into continuous field reconstructions, in particular that of Voronoi

and Delaunay tessellations . Both tessellations – each others dual – are fundamental concepts in
the field of stochastic geometry. They formed the basis of the technique of the Delaunay Tessel-
lation Field Estimator (DTFE), defined and introduced by Schaap & van de Weygaert (2000).
The DTFE technique is capable of delineating the hierarchical and anisotropic nature of spatial
point distributions and in outlining the presence and shape of voidlike regions. It is precisely this
which marks the spatial structure of the cosmic web. DTFE is based upon the use of the Voronoi
and Delaunay tessellations of a given spatial point distribution to form the basis of a natural,
fully self-adaptive filter for discretely sampled fields in which the Delaunay tessellations are used
as multidimensional interpolation intervals. DTFE exploits two particular properties of Voronoi
and Delaunay tessellations. The tessellations are very sensitive to the local point density, in that
the volume of the tessellation cells is a strong function of the local (physical) density. The DTFE
method uses this fact to define a local estimate of the density. It subsequently uses the adaptive
and minimum triangulation properties of Delaunay tessellations to use them as adaptive spatial
interpolation intervals for irregular point distributions. In this it is the first order version of the
Natural Neighbour method (NN method). The theoretical basis for the NN method, a generic
smooth and local higher order spatial interpolation technique developed by experts in the field
of computational geometry, has been worked out in great detail by (Sibson 1980, 1981; Watson
1992). As has been demonstrated by telling examples in geophysics (Sambridge et al. 1995) and
solid mechanics and engineering (Sukumar 1998) NN methods hold tremendous potential for
grid-independent analysis and computations. The performance of DTFE may be appreciated
from fig. 5. It clearly produces a continuous density field that includes, both qualititatively and
quantitatively, all essential information of the underlying cosmic web. Based on this optimized

cosmic web reconstruction Aragón-Calvo et al. Aragón-Calvo et al. (2006) developed the Mul-
tiscale Morphology Filtere technique, particularly oriented towards recognizing and identifying
the major characteristic elements in the Megaparsec matter density field. The MMF yields a
unique framework for the combined identification of dense, compact bloblike clusters, of the
salient and moderately dense elongated filaments and of tenuous planar walls. Of fundamental
importance is the use of a morphologically unbiased and optimized continuous density field re-
taining all features visible in a discrete galaxy or particle distribution. This is accomplished by
means of DTFE.

It is based upon an assessment of the coherence of a density (or intensity) field along a range
of spatial scales and with the virtue of providing a generic framework for characterizing the
local morphology of the density field and enabling the selection of those morphological features
which the analysis at hand seeks to study. The technology finds its origin in computer vision
research and has been optimized within the context of feature detections in medical imaging.
Frangi et al. (1998) and Sato et al. (1998) presented its operation for the specific situation of
detecting the web of blood vessels in a medical image, a notoriously complex pattern of elongated



tenuous features whose branching make it closely resemble a fractal network. Aragón-Calvo et
al. (Aragón-Calvo et al. 2006) translated, extended and optimized this technology towards the
recognition of the major characteristic structural elements in the Megaparsec matter distribution
of a method finding its origin in computer vision research.

The first applications to the galaxy distribution in the Sloan Digital Sky Survey produced
a spectacular result: an objective cluster and filament catalog. Equally encouraging were the
results of an application to a modelled galaxy distribution in the Millennium Simulation.
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