

 University of Groningen

Improving quality attributes of software systems through software architecture patterns
Harrison, Neil Bruce

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Harrison, N. B. (2011). Improving quality attributes of software systems through software architecture
patterns. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/5adbd39c-20f7-4d35-8866-3f6aa4a05afd

246

Summary

Some of the most important requirements of any system are those that concern its

quality attributes, such as reliability, performance, security, and usability. Quality

attributes tend to be system-wide characteristics. Because of this, they require

system-wide design approaches; that is, measures to achieve these quality attributes

have architectural implications. Conversely, architectural decisions can make it

easier or harder to achieve the quality attributes. Thus early decisions impact the

quality attributes.

During the process of software architectural design, architects select architecture

patterns to be used. The structure of the patterns is clear, but their impact on the

all-important quality attributes is not apparent from observing the patterns. That

means that one might select patterns that are incompatible with or even detrimental

to the satisfaction of quality attribute requirements. However, one cannot easily

ascertain whether a quality attribute is sufficiently satisfied until the system is largely

complete. By this time, architectural changes can cause significant disruption to the

code already written. In short, architects must select architecture patterns early, yet

the impact of these decisions on the quality attributes are not fully understood until

it is too late to easily change the architecture.

The consequence of this problem is that software may fail to meet its quality

attribute requirements. The consequences can be serious: at the very least, users

may experience inconvenience and frustration. Beyond inconvenience, software

quality attribute failures may burden users and software providers with financial

liabilities.

The goal of this research is to leverage patterns to create architectures that meet

quality attribute requirements, during the analysis, synthesis, and evaluation phases

of software architecture. This will help improve the ability of architects to design

systems that meet their quality attributes requirements; helping them to make

informed decisions at architectural design time about how well the software under

design will satisfy the quality attributes. This can be done because architecture

patterns impact quality attributes in regular ways, and we can understand the nature

of these interactions. The knowledge of these interactions can be applied to the

architectural design and evaluation processes.

This work begins by exploring how extensively architecture patterns are used, as well

as which patterns are most commonly used. It was determined that architecture

patterns are very common, found in nearly all industrial systems. Most software

systems use between 1 and 4 architecture patterns. The most commonly used architecture

patterns are, in descending order of frequency, Layers, Shared Repository, Pipes and Filters,

Client-Server, Broker, Model View Controller, and Presentation Abstraction Control.

This leads us to the question of how architecture patterns’ use impacts important

quality attributes of systems. The application of a pattern constitutes a major

247

architecture decision that achieves the satisfaction of a quality attribute requirement

or the lack thereof.

Architectural decisions are important artifacts of architectural knowledge, as they

help future developers understand the architectural structure and the reasons

particular structures were originally used. Architecture patterns embody major

architectural decisions about which architectural structures to employ. Because

architecture patterns are well understood and documented, use of architecture

patterns helps solve the difficult problem of documenting architectural decisions,

the rationale behind them, and their consequences, particularly with respect to

quality attributes.

Different patterns have different impacts on quality attributes; thus certain patterns

and quality attributes are compatible with each other, while others are less so.

Among the most common quality attributes, usability is highly compatible with

Model View Controller, security with Broker, maintainability and reliability with

Layers, efficiency and portability with Pipes and Filters, and implementability with

Broker.

The nature of quality attributes influences their compatibility with architecture

patterns. Quality attributes are achieved through the implementation of specific

measures called runtime tactics. The tactics are implemented within the structure

and behavior imposed by the architecture patterns, and may require some measure

of change to the pattern. The types of significant changes to patterns include adding

components that do not fit with the pattern, or changing the nature of connections

among components of the pattern. The magnitude of change caused to a pattern by

the implementation of a tactic can thus be evaluated.

Because nearly all systems employ multiple patterns and are concerned with

multiple quality attributes, the impact on the architecture of implementing a tactic is

somewhat more involved. Further analysis of tactics reveals that some naturally

impact all components in a system, while others can be implemented in just a few

selected components. If the tactic can be implemented in just a few components, it

might be implemented within the architecture pattern where it best fits. However,

the decision of where it is implemented is strongly influenced by the system

requirements; this takes precedence over goodness of fit with the patterns.

The information about how tactics interact with patterns can be used during the

processes of architectural evaluation and synthesis to help architects create

architectures that more easily support the quality attributes. They can help

architects select among alternative tactics for a particular quality attribute, and

choose among different patterns to use. This can be done as part of normal

architecting processes.

This information is particularly useful during architectural evaluation activities. It can

help reviewers of architectures identify potential problems in architectures where

the current architecture may hinder the effective implementation of tactics for the

desired quality attributes. It can also identify potential opportunities where

248

additional or alternate patterns or tactics may be employed. Numerous pattern-

based architecture reviews have been completed, and have demonstrated their

utility. In nearly every case, significant architectural issues were uncovered, resulting

in improvement to the architecture.

