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Abstract

A model is developed which describes the mass transfer in ion-selective membranes as used in the chloralkali electrolysis
process. The mass transfer model is based on the Maxwell–Stefan theory, in which the membrane charged groups are considered
as one of the components in the aqueous mixture. The Maxwell–Stefan equations are re-written in such a way that the current
density can be used as an input parameter in the model, which circumvents an extensive numerical iterative process in the
numerical solution of the equations. Because the Maxwell–Stefan theory is in fact a force balance, and the clamping force needed
to keep the membrane charged groups in its place is not taken into account, the model is basically over-dimensioned: the mole
fraction of the membrane can be calculated by using the equivalent weight (EW) of the membrane or by using the equations of
continuity. In this work, the latter method has been chosen. The results of the computer model were verified in several ways,
which show that the computer model gives reliable results. Several exploratory simulations have been carried out for a sulfonic
layer membrane and the conditions as encountered in the chloralkali electrolysis process. As there are no (reliable) Maxwell–Ste-
fan diffusivities available for a Nafion membrane, in this trend study the diffusivities were all chosen equal at a more or less
arbitrary value of 1.10−10 m2 s−1. Due to this, the absolute values of several performance parameters are incorrect as compared
with industrial chloralkali operation (e.g. an unrealistically high current efficiency of 95.7% was found), but the model can still
be used to obtain trends. For example, it is shown that the thickness of the membrane hardly increases the current efficiency (CE),
however, the required potential drop proportionally increases with thickness. The pH rapidly increases to values greater than 12
just inside the membrane at the anolyte side. Moreover, for different values of the pH in the anolyte, the pH profiles inside the
membrane nearly coincide with each other. A change in the anolyte strength does not have a significant effect on the performance
of the membrane. At low values of the current density, a high value of the current efficiency is found. However, this is not due
to a low OH− counter flux, but to the simultaneous transport of OH− and Cl− towards the catholyte. © 2001 Elsevier Science
Ltd. All rights reserved.
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Nomenclature

A matrix with non-idealities, transference numbers and diffusivities (mol m−1 s−1)
mass transfer parameter (follows from (Bn*)−1(�)) (mol m−1 s−1)Ai,j

Bn* matrix with diffusivities (s m mol−1)
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Bi,j coefficient with electrical and mass transfer parameters (s m mol−1)
transport coefficient (s m mol−1)Bi,j

n

Bi,j
n * modified transport coefficient (s m mol−1)

current efficiency (− )CE
CD current density (A m−2)

concentration of component i (mol m−3)ci

cT total concentration (mol m−3)
driving force of component i (J m−4)di

Ði,j binary Maxwell–Stefan diffusivity (m2 s−1)
Faraday constant (96487 C mol−1) Coulomb mol−1)F

I current density (Coulomb m2 s−1)
molar diffusive flux with respect to component n (mol m−2 s−1)Ji

n

friction coefficient (Js m−5)Ki, j

inverted transport coefficient (follows from the inverse of (Mn)) (m5 J s−1)Li,j
n

Mi,j modified transport coefficient (follows from (K)) (J s m−5)
modified transport coefficient ((M) without the nth row and column) (J s m−5)Mi, j

n

Ni molar flux of component i (mol m−2 s−1)
total number of components (− )n

P pressure (Pa)
universal gas constant (8.314413 J mol−1 K−1) (J mol−1 K−1)R
temperature (K)T
transference number of component i with respect to component n (− )t i

n

�i velocity of component i (m s−1)
mole fraction of component i (− )xi

electrical coefficient (1 m−1)Zi

electrical coefficient (s m mol−1)Zi*
electrical coefficient (Coulomb sm−1)Zi,j

c

zi ionic charge of component i (− )

Greek
�i mass transfer parameter (follows from [Bn*]−1(Z*)) (mol Coulomb m−2)

mass transfer parameter (follows from [Bn*][Zc]) (mol m−2 s−1)�i,j
�i,j thermodynamic factor (− )

activity coefficient of component i (− )�i

�i,j Kronecker-delta (�i, j=1 for i= j and �i, j=0 for i� j ) (− )
electrical potential (mol m−3)�

conductivity (1 � m−1)�

electrochemical potential of component i (mol m−3)�i

� i
o chemical potential of component i in the reference state (mol m−3)

chemical potential of component i (mol m−3)� i
chemical

factor consisting of transport and thermodynamic factors (− )�i,j

factor consisting of transport and thermodynamic factors (− )�i,j*

Sub/superscript
component index or index of vector/matrixi
component index or index of vector/matrixj

n nth component

Mathematical
( ) vector

matrix[ ]
[ ]−1 inverse of a square matrix

gradient�
Bold vectorial quantity
(�x) divergence of a vector field
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1. Introduction

Chlorine is one of the world’s most important chem-
icals and is used not only to produce (consumer) end
products, but also to produce a large amount of chlori-
nated intermediate products as applied in e.g. organic
substitution reactions. Chlorine is obtained via the
chloralkali electrolysis process, which uses NaCl as
basic material. The main reaction of the chloralkali
electrolysis is:

2NaCl+2H2O�Cl2+2NaOH+H2

In practice three different types of electrolysis cells
are used; the mercury cell, the diaphragm cell, and the
membrane cell. The present study restricts the attention
to the membrane electrolysis process. In this process,
the cell consists of a cathode and an anode compart-
ment divided by a cation-selective membrane (see Fig.
1). The anode compartment is fed with a brine solution
and at the anode gaseous chlorine is formed. The
cathode compartment is fed with water and at the
cathode gaseous hydrogen and hydroxyl ions are pro-
duced. The sodium ions diffuse and migrate through
the ion-selective membrane from the anode to the
cathode compartment. Combined with the hydroxyl
ions, sodium leaves the membrane cell as sodium hy-
droxide. Although this process is used industrially on a
large scale, only a very limited number of studies have
dealt with the fundamental description and basic under-
standing of the mass transfer process in the ion-selec-
tive membrane. To our knowledge, the results of the
(fundamental) mass transfer models have never been
compared with the experimental results as obtained for
industrially used multi-layer membranes for the condi-
tions as used in industry.

The cation membranes in the chloralkali electrolysis
frequently consists of two or three polymeric layers: one
with sulfonic groups (sulfonic layer) and one or two
with carboxylic groups (carboxylic layers). These cation
selective membranes absorb the ions selectively when

contacted with an electrolyte solution (often referred to
as Donnan exclusion). The membrane rejects equally
charged ions (co-ions), while oppositely charged ions
(counter-ions) are preferentially absorbed. The various
layers in the membrane will differ with respect to the
sorption properties of the ions and water, resulting in
concentration discontinuities at the various phase tran-
sitions (see for example Fig. 2). Also the transport
properties of the ions in the different membrane layers
will vary. Both aspects, the sorption of the ions at the
various interfaces and the transport of the ions in the
membrane layers, have to be incorporated in a mass
transfer model in order to obtain a reliable simulation
model. Furthermore, the mass transfer model itself
should, of course, represent the actual mass transfer
phenomena occurring in the membrane in a realistic
way. The sorption of ions at the various membrane
interfaces is usually described by the Donnan equilibria.
However, this is a very simplified representation of
reality. van der Stegen, van der Veen, Weerdenburg,
Hogendoorn and Versteeg (1999a) has shown that the
equilibria at the liquid–membrane interfaces can be
more accurately be described using a modified Pitzer
equilibrium model.

In the present contribution, a mass transfer model
based on the Maxwelll–Stefan theory will be developed
in order to describe the mass transfer through ion-selec-
tive layers. For the description of the equilibria at the
liquid–membrane interfaces as required in the mass
transfer model the modified Pitzer model as previously
developed by van der Stegen et al. (1999a) is used.

2. Application of the Maxwell–Stefan theory to the
membrane electrolysis process

2.1. Introduction

In the present model formulation the charged groups
of the ion-selective membranes are considered as an

Fig. 1. Schematic representation of the chloralkali process in a membrane cell.
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Fig. 2. Schematic representation of a possible concentration profile of a component A in a two-layer membrane. For simplicity reasons straight
concentration profiles are assumed. Note the concentration discontinuities at the various interfaces.

individual component present in the system and, there-
fore, also as a component in the Maxwell–Stefan equa-
tions. In this way the description is similar to the
treatment of the transport in porous media as described
with the Dusty Gas Model (Mason & Malinauskas,
1983). In the present contribution the Maxwell–Stefan
equations are re-written in such a way that the potential
gradient is eliminated from the model equations and
replaced by the current density. This has been done
because in the electrolysis industry the current density is
a control parameter, and should therefore preferably be
used as an input parameter in the model. Moreover, by
using the current density in the model equations instead
of the potential gradient, a cumbersome and time-con-
suming iterative procedure of adjusting the potential
drop over the membrane until the desired current den-
sity is reached is avoided.

In this section, the transport equations based on the
Maxwell–Stefan theory are given which are required
for the description of the transport in the membrane
electrolysis cell. As mentioned before, in the model it is
assumed that the charged groups of the membrane can
be regarded as one of the components in the aqueous
electrolyte solution. The membrane charged groups are
kept in place by some arbitrary external, clamping
force.

2.2. Degrees of freedom

Before discussing the mass transfer model in detail
first a discussion about the degrees of freedom is re-
quired. If a mass transport model is applied to a
non-ionic solution, then there are basically (n−1) inde-
pendent flux equations (continuity) and one equation
originating from the Gibbs–Duhem condition that
states that

�
n

i=1

xi=1 i=n (1)

For an electrolyte solution the number of indepen-
dent flux equations decreases to (n−2) as one addi-
tional equation has to be fulfilled dictated by the
Gibbs–Duhem condition:

�
n

i=1

zixi=0 i=n−1 (2)

In the present model, the charged groups of the
membrane are considered as ‘ordinary’ ions. This
means that the mass transfer model should basically
comprise of (n−2) flux equations complemented by
Eqs. (1) and (2). The concentration (or mole fraction)
of the charged groups in the membrane and the mole
fractions of all other components can now be calculated
by applying the mass transport model and appropriate
boundary conditions.

On the other hand, the concentration of the mem-
brane, in this case the concentration of the fixed
charged groups in the membrane, is also known
throughout the membrane because it is an a priori
known membrane property determined by the so-called
equivalent weight. Therefore, the membrane process
should actually be defined by (n−3) independent mass
transport equations combined with Eqs. (1) and (2) and
an additional equation that describes the mole fraction
of the ionic groups in the membrane. However, rear-
rangement of the set of mass transfer equations to
include this demand and arrive at (n−3) independent
flux equations (in a similar way the demands imposed
by Eqs. (1) and (2) can be included in the mass trans-
port equations so that (n−2) independent flux equa-
tions remain) is impossible. The reason for this is that
the number of equations exceeds the number of un-
knowns. The membrane concentration can be calcu-
lated with the mass transfer model on one hand (using
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(n−2) independent flux equations combined with Eqs.
(1) and (2)), but at the same time it can be regarded as
a membrane property and hence the mole fraction can
also be calculated from that (so without any mass
transfer model). This makes the problem over-specified.
If it is kept in mind that the Maxwell–Stefan theory is
in fact a force balance, this over-specification can be
explained, in the mass transport model no clamping
force for the membrane groups is inserted, which is
actually required to keep the membrane at its position
during the transport process. If this force was intro-
duced, there would be one extra degree of freedom and
the system would be described mathematically correct.
However, it seems not useful to introduce such a
clamping force because it would simply be a fitted
parameter. Therefore, it was omitted from the model,
which results in an over-specified problem from a fun-
damental point of view. Based on this complication two
correctional approaches can be followed.
1. Solving (n−2) equations of continuity. The mole

fractions of the other two components follow from
the summation of the mole fractions (Eq. (1)) and
the condition of electroneutrality (Eq. (2)).

2. Solving the equation of continuity in combination
with the specified membrane concentration. The
number of continuity equations of continuity is in
this case n−3. The mole fractions of the other three
components follow from the summation of the mole
fractions (Eq. (1)), the condition of electroneutrality
(Eq. (2)) and from the specified membrane
concentrations.

If the first method is followed, then the molar fluxes
of all components turn out to be constant in the steady
state (i.e. the molar fluxes are no function of position in
the mass transfer layer). However, the calculated mem-
brane concentration does not exactly coincide with the
independently determined and a priori known mem-
brane concentration. On the other hand, if the second
approach is followed this discrepancy is avoided be-
cause this concentration has been imposed. However, in
this case the molar flux of one component is not
constant in the steady state. It is obvious that a choice
has to be made between.
1. Demanding that all components have a constant

molar flux in the steady state, which implies that the
membrane concentration cannot be specified. Pre-
liminary model calculations (the complete model is
treated in subsequent sections) have shown that in
this case deviations between the experimental mem-
brane concentration and the calculated membrane
concentration up to a few percent can occur.

2. Specifying the membrane concentration. In this case
the molar flux of one component is not constant.
Scouting calculations with the model (presented in
Section 2.3) have shown that for this case variations
in the molar flux of this component up to 30% can
occur.

For the present study the first approach was selected.
A fundamental principle of mass transfer processes is
that the molar fluxes of all components are constant in
the steady state, so that no accumulation in the system
occurs.

2.3. Deri�ation of the transport equations for the mass
transfer in an electrochemical system

The Maxwell–Stefan theory is a steady state force
balance in which the total sum of the driving forces
acting on a molecule of a certain component are equal
to the friction forces acting on the molecule. In multi-
component systems all interactions (frictions) between a
molecule with other types of molecules present in the
solution are taken into account. For each component i
in a mixture a Maxwell–Stefan equation can be formu-
lated, which can be represented as (Taylor & Krishna,
1993):

ci�T,P�i=RT �
n

j=1

cicj

cTÐi, j

(�j−�i)=RT �
n

j=1

xiNj−xjNi

Ði, j

(3)

The left hand side of Eq. (3) contains all driving
forces of the mass transfer process, the right hand side
contains the interactions between a component i with
all other components present in the system. The friction
between the various components is lumped in the vari-
ous Maxwell–Stefan diffusivities, Ði,j, which are a mea-
sure of the interaction between component i and j.

In Eq. (3) the electrochemical potential is defined as:

�i=� i
chemical+ziF�=� i

0+RT ln(xi�i)+ziF� (4)

For the development of the present model the main
assumptions are.
� No convective transport due to pressure differences

over the membrane occurs. However, in practice, a
small pressure difference over the membrane (�0.1
bar) is applied in order to assure that the membrane
is pressed against the anode. Preliminary estima-
tions, however, have shown that the pressure differ-
ence causes a negligible contribution to the total
driving force compared with those of the concentra-
tion and potential gradient (Taylor & Krishna,
1993).

� The transport process in the membrane is isother-
mal. The assumption that the mass transfer process
is isothermal, makes it superfluous to implement and
simultaneously solve the energy balance in the mass
transport model. This assumption is allowed because
no reactions, and, therefore, no heat consumption or
evolution takes place inside the membrane. More-
over, the heat generated due to Ohmic resistance
(calculated according to the method described in
Taylor & Krishna, 1993) was estimated to be negligi-
ble: for typical conditions of the chloralkali electrol-



J.A. Hogendoorn et al. / Computers and Chemical Engineering 25 (2001) 1251–12651256

ysis process the temperature rise in the membrane
was less than 0.2 K.
As a result of the above assumptions the mass trans-

fer rate is determined by two gradients, a gradient in
the activity (xi�i) and a gradient in the electrical poten-
tial. It is possible to combine these gradients into one
overall gradient of the mole fraction. In this way, the
driving force of the mass transfer process can be ex-
pressed as a function of one set of variables, the mole
fractions of the components present in the mixture.
Solving the transport equations for a specified current
density results in this case in the calculation of the mole
fraction profile and the molar fluxes. With these results
the electrical potential profile in the membrane can then
be obtained. The exact derivation of the resulting trans-
port equations has been given in Appendix A. The mass
transfer process in a mixture consisting of n compo-
nents (including the solvent as the (n−1)th and the
membrane charged groups as the nth component) can
be described with the following equations (in matrix
notation).
� n−2 Independent Maxwell–Stefan equations for

components 1 to n−2:

(N)= [A ](�x)− [� ]x (5)

in which N is the matrix with the (n−2) fluxes with
respect to the (in time and space stationary) mem-
brane (see Appendix A).

� Two supplementary equations for component n−1
and n :

�
n

i=1

xi=1 i=n (1)

�
n

i=1

zixi=0 i=n−1 (2)

For steady state operation, the equation of continuity
holds:�dNi

dz
�

=0 i=1, 2, …, n (6)

and, therefore, the molar fluxes are not functions of
position in the membrane.

The set of Eqs. (1), (2), (5) and (6) are second order
differential equations. So, for each component two
boundary conditions are required in order to solve the
set of equations uniquely.

2.3.1. Boundary conditions
It is assumed that at the phase transition between

liquid and membrane at both the anolyte and catholyte
side locally equilibrium holds (see Fig. 2, note that this
does not implicate that no mass transfer resistance can
be present in the liquid (or membrane)). For an ion-se-
lective material these equilibria are often described us-

ing Donnan-equilibrium expressions. In a previous
paper, van der Stegen et al. (1999a) has shown that
these equilibria can more extensively and accurately be
described by a modified Pitzer equilibrium model. This
model has been used to predict the composition just
inside the membrane at x=0 and x=L for a given
composition just outside the membrane (i.e. catholyte
and anolyte side, see Fig. 2 for a schematic representa-
tion). This way the boundary conditions for the mass
transfer model could be determined.

2.3.2. Numerical technique
In the present study, a numerical technique was used

which enables the calculation of the non-steady state
version of Eq. (6). The resulting set of partial differen-
tial equations was solved with the help of a finite
difference technique as proposed by Baker and Oli-
phant (Taylor, Hoefsloot & Kuipers, 1995). The main
reason for solving the unsteady state version of Eq. (6)
in combination with Eqs. (1), (2) and (5) is that the
numerical solution method is more stable and less
sensitive to the initial guesses. For this unsteady state
calculation procedure initial concentration profiles are
required, which were arbitrarily chosen as straight con-
centration profiles in each mass transfer layer inside the
membrane. The calculation procedure was continued
until the concentration profiles became time-indepen-
dent, which meant that a steady state situation was
obtained.

It is emphasized that in the presently derived form of
the Maxwell–Stefan equations, the current density is an
input parameter, and not a parameter which can only
be determined after the complete mass transfer problem
is solved. This means that with the present formulation
a cumbersome, time consuming, iterative procedure is
avoided.

2.4. Computer model

Based on the theory presented, a mathematical model
has been developed and solved numerically. As already
mentioned in the previous section an implicit discretiza-
tion technique according to the scheme of Baker and
Oliphant was used for the discretization of the partial
differential equations (see Taylor et al., 1995).

The computer model contains the following elements.
1. The number of components can be chosen freely.
2. The number of mass transfer layers can be chosen

freely including external mass transfer resistances.
For each mass transfer layer, the model needs a
specific set of data with the physical and thermody-
namic properties and the material properties (for the
membrane phases) of that layer. The required data
can be inserted in the computer model. The required
physical parameters can be implemented as a func-
tion of composition, temperature and pressure.
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3. The computer model includes the modified Pitzer
model for the determination of the activity coeffi-
cients in the membrane and the equilibria at the
various interfaces (see van der Stegen et al., 1999a).

For any arbitrary initial profile, the computer model
calculates the steady state of the mass transfer process
and returns the mole fraction profiles and molar fluxes
of the components present in the system as a function
of position. Further, also the electrical potential profile
is calculated using Eq. (A.13) (see Appendix A).

2.5. Verification of the algorithm of the computer
model

The algorithm of the computer model was extensively
verified; i.e. the results of the model were compared
with the analytical results for various asymptotic situa-
tions. In another paper (van der Stegen van der Veen,
Weerdenburg, Hogendoorn & Versteeg, 1999b), the
model results are fitted to experimental results of a
chloralkali electrolysis process to obtain a set of
Maxwell–Stefan diffusivities for this process and there-
with be able to predict the performance of the process
at various conditions.

Firstly, for both a single layer and a multi-layer
membrane (with arbitrarily chosen properties), the con-
dition of the continuity of the fluxes was verified. The
fluxes were constant with less than 10−4% difference at
the various positions in the membrane (even at the
interfaces where due to the liquid–membrane or mem-
brane–membrane transition a discontinuity in the mole
fractions occurs, these equilibria are described by the
modified Pitzer model as developed by van der Stegen
et al. (1999a)). Secondly, for a one layer membrane the
model output (mole fraction profile and potential
profile) was substituted in the original Maxwell–Stefan
equations (relation 1), which yielded a good agreement.
Thirdly, a one layer membrane was fictively subdivided
in three different separate layers, all having identical
properties. The model results for the one layer model

were identical to that of the three layer model.
Fourthly, for a very diluted 1:1 electrolyte solution
without the presence of a membrane or potential differ-
ence, the model results were compared with Fick’s law
(which is valid for these conditions), which also yielded
excellent agreement. Fifthly, for a very diluted elec-
trolyte solution containing no membrane and 1 type of
positive ions and two types of negative ions (e.g. a
NaOH/NaCl aqueous mixture), the model output was
compared with the predictions of the Nernst–Planck
model for a current density of CD=0 A m−2 and
CD=1 A m−2. For these conditions, the Nernst–
Planck model yields an approximate solution for the
Maxwell–Stefan equations. Also this comparison
showed a good agreement. Furthermore, several
asymptotic situations have been simulated, to see if the
model behaves according to the expectations. For ex-
ample, in one of the simulations carried out a three
layer membrane was chosen, in which the diffusivities
in the second layer were chosen very large. Indeed, the
model results indicated that the mole fraction and
potential profile were nearly flat (i.e. constant) in the
second layer.

From the test results, it was concluded that the
outcome of the computer model satisfies the original
model equations. Thus it can be used reliably to simu-
late the mass transfer process according to the
Maxwell–Stefan theory in a membrane used in the
chloralkali electrolysis process.

3. Model simulations

In this section, the results of the model simulations
will be presented which demonstrate the influence of
process parameters on the performance of the chloral-
kali electrolysis process. This influence on the perfor-
mance is simulated for a relatively simple configuration
consisting of a single-layer cation-selective sulfonic
membrane for conditions as encountered in the chloral-
kali electrolysis process. The present study gives some
numerical examples to show the capabilities of the
model without extensive comparison or fitting to exper-
imental chloralkali electrolysis data, this is done in
another study (van der Stegen et al., 1999b). Because
no complete set of Maxwell–Stefan diffusivities for the
various components is available for these ion-selective
sulfonic membranes, and because the present study is
not aimed at an extensive comparison with experimen-
tal data a reduced set of Maxwell–Stefan diffusivities
was used in the simulations. In Table 1 all Maxwell–
Stefan diffusivities as encountered in the chloralkali
industry are summarized. To determine the set of rele-
vant Maxwell–Stefan diffusivities, initially, all these
diffusivities were given an equal value of 1.10−10 m2

s−1. This value was derived from the approximate

Table 1
The Maxwell–Stefan diffusivities and the selection which has been
incorporated in the model calculations

Incorporated in the calculationsDiffusivity

ÐCl−w Yes
ÐOH−w Yes
ÐNa+w Yes

YesÐm,w

ÐCl−OH− No
NoÐCl−Na+

NoÐCl−m

ÐOH−Na+ No
ÐOH−m No

YesÐNa+m
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Table 2
Base case conditions and calculated performance of the sulfonic
membrane for these conditionsa

Membrane and process conditions

NaCl in anolyte 180 g dm−3

NaOH in catholyte 23 wt.%
5pH anolyte

61.8×10−6 mThickness sulfonic membrane
1100 g mol−1EWmembrane

Current density (CD) 2000 A m−2

CatholyteAnolyteCalculated mole fractions (−)
0.055Cl− 2.03×10−5

Na+ 0.055 0.106
0.1060OH−

0.89H2O 0.79

Calculated data
1.98×10−2Flux Na+ (mol m−2 s−1)
4.40×10−5Flux Cl− (mol m−2 s−1)

Flux OH− (mol m−2 s−1) −9.36×10−5

8.45×10−2Flux H2O (mol m−2 s−1)
4.08 molWater transport number

F−1

95.7%Current efficiency (CE)
0.149 VPotential drop

a A positive flux resembles a flux from the anode to the cathode
side.

The sulfonic membrane chosen has the same proper-
ties as the sulfonic layer of the Nafion DuPont mem-
brane with an equivalent weight of 1.1 kg mol−1. In a
previous paper (van der Stegen et al., 1999a) developed
a modified Pitzer equilibrium model to describe the
equilibria between a liquid and an ion-selective mem-
brane. In the present mass transport model equilibrium
is assumed at the membrane–liquid interfaces. This
means that the modified Pitzer model can be used to
predict the concentrations of various species just inside
the membrane for a given composition of the liquid just
outside the membrane. In the mass transfer model it is
further assumed that the mass transfer resistance from
the bulk towards the membrane is negligible, so the
composition at the liquid side of the membrane–liquid
interfaces is equal to the anode and cathode composi-
tion, respectively. This means that the overall resistance
against mass transfer is located in the membrane itself.

The influence of the thickness of the membrane (30–
75 �m), the anolyte concentration (150–220 g l−1) the
current density (500–2500 A m−2) and the pH in the
anolyte compartment (Eqs. (1)–(6)), respectively, were
studied by varying these parameters around a base case.
The conditions of the base case and the corresponding
simulated performance are given in Table 2. As can be
seen in Table 2 the current efficiency is much higher
than encountered in industrial chloralkali operation
(95.7%). This is due to the fact that all diffusivities were
chosen equal and the value of the diffusivities was more
or less chosen arbitrarily at a value of 1.10−10 m2 s−1.
This means that the absolute values of the performance
parameters (e.g. potential drop and current efficiencies)
are not directly comparable to values obtained during
industrial operation, but the model can still be used to
predict several trends in the aforementioned
parameters.

In Fig. 3 the influence of the thickness of the mem-
brane is given. As it can be seen the current efficiency,
which is defined as the fraction of the current trans-
ported by Na+ ions, slightly increases (�0.5%) with
the thickness of the membrane. However, the potential
drop over the membrane increases more or less propor-
tionally with the thickness resulting in a proportional
larger power consumption and only a small increase in
current efficiency. This indicates that merely increasing
the thickness of the membrane does hardly improve on
the selectivity but only increases the resistance against
mass transport and therewith leads to a higher potential
drop. The water transport number, which is defined as
the number of moles of water transported per mole of
Na+ transported, remains nearly identical at a value of
4.1 and is therefore not shown in Fig. 3. If the pH
profile inside the membrane is studied it is remarkable
that directly inside the membrane at the anolyte side,
the pH increase rapidly to values above 7 (see Fig. 4).
In Fig. 4 also the pH profile in the membrane is shown

value of Fick’s law diffusivities in aqueous solutions
and applying a correction for the tortuosity and poros-
ity of the membrane. With these values and the com-
plete set of Maxwell–Stefan diffusivities preliminary
simulations were carried out in which one of the diffu-
sivities was changed with several orders of magnitude
without changing the other ones. If the change did not
seriously affect the simulation results, the specific diffu-
sivity was regarded as ‘unimportant’. On the other
hand, if a change of a specific diffusivity led to a
considerable change in the simulation results, the diffu-
sivity was regarded as ‘important’. In Table 1 the
selection of Maxwell–Stefan diffusivities which has
been taken into account is denoted with ‘yes’, and
constitutes of the Maxwell–Stefan diffusivities of the
ions with water and the Maxwell–Stefan diffusivity of
Na+ with the membrane. Because the membrane is
cation selective the uptake of Cl− and OH− will be
relatively small, and, therefore, the interaction of these
ions with other ions in the membrane is small and
shown to be negligible according to some preliminary
calculations (not shown here). The value of the selected
diffusivities was chosen at a value of 1.10−10 m2 s−1.
The other diffusivities were given a value 1.10−4 m2

s−1 thereby excluding any influence by them. Of
course, the present selection of the Maxwell–Stefan
diffusivities and the values of these diffusivities does
not pretend to be complete or correct, so only a quali-
tative impression of the behavior of such a sulfonic
membrane can be obtained. Nevertheless, interesting
phenomena can be observed.
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Fig. 3. Influence of the membrane thickness on the current efficiency and the potential drop across the membrane.

Fig. 4. Influence of pH in the anolyte on the pH profiles inside the membrane. Note that the lines for different pH’s practically coincide. The
dimensionless position of zero represents the anolyte side while one represents the catholyte side.

if the pH in the anolyte is changed from 6 to 1. Apart
from the pH profiles directly at the anolyte side, the pH
profiles inside the membrane nearly completely coin-
cide. Also the current efficiency and potential drop over
the membrane did not show a noticeable change as
compared with the base case. If the anolyte strength is
changed (Fig. 5), this also does not have a large influ-
ence on the current efficiency and the potential drop
(potential drop is not shown but remains practically
constant). Contrary, the water transport number de-
creases as the anolyte strength increases. This is mainly
due to the fact that at higher anolyte strengths the
sorption of water in the membrane decreases (see van
der Stegen et al., 1999a) and therewith it affects the
mole fraction profiles and consequently the fluxes. As
the current density increases, the current efficiency first
decreases substantially, whereafter it increases slightly
again (Fig. 6). The reason for this is that at low current

densities the flux of OH− and Cl− are of the same
order of magnitude but opposite in direction. The flux
of OH− causes a current; however, the simultaneous
transport of Na+ and Cl− in the same direction does
not. Due to the simultaneous transport of Cl−, the flux
of Na+ should be larger than in the absence of this Cl−

flux in order to meet the imposed current density. By
definition of the current efficiency this leads to a higher
current efficiency at an imposed current density. At
higher current densities the flux of Cl− does decrease,
because the driving force for diffusion-driven transport
remains constant, while the oppositely directed driving
force for potential-driven transport strongly increases
and therewith inhibits Cl− transport towards the
cathode. This means that at high current densities the
total current is for the major part determined by the
sum of fluxes of both OH− and Na+. In industry the
current efficiency is mostly used in terms of loss of
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Fig. 5. Influence of the anolyte strength on the current efficiency (%) and the water transport number (mol F−1).

Fig. 6. Influence of the current density on the current efficiency and the potential drop across the membrane.

current due to the counter transport of OH−. However,
this example illustrates that at low current densities this
rule-of-thumb definition of the current efficiency can
give misleading results, although the current efficiencies
calculated for low current densities seem attractively
high, this is due to the definition of the current density
and is at the expense of contamination of the catholyte
with Cl−. As it can be expected the potential drop
across the membrane is proportionally dependent on
the current density (Fig. 6).

4. Conclusions

A model has been developed which describes the
mass transfer in ion-selective membranes as used in the

chloralkali electrolysis process. The mass transfer
model is based on the Maxwell–Stefan theory, in which
the membrane charged groups were considered as one
of the components in the aqueous mixture. The
Maxwell–Stefan equations were re-written in such a
way that the current density can be used as an input
parameter in the model, which circumvents an extensive
numerical iterative process in the numerical solution of
the equations. Due to the fact that the Maxwell–Stefan
theory is in fact a force balance, and the clamping force
needed to keep the membrane charged groups in its
place is not taken into account, the model is basically
over-specified, the mole fraction of the membrane can
be calculated by using the equivalent weight (EW) of
the membrane or by using the equations of continuity.
The model itself is able to predict the mole fraction of
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the membrane charged groups using the equations of
continuity, but this fraction can also be calculated a
priori because it is a membrane property determined by
the equivalent weight. It was decided not to use the
equation that gives the membrane mole fraction based
on the equivalent weight, but use the equation of
continuity instead. This yielded only a few percent
difference between the two differently calculated mem-
brane mole fractions. The results of the computer
model were verified in several ways, which showed that
the computer model gives reliable results. Several ex-
ploratory simulations have been carried out for a sul-
fonic layer membrane and the conditions as
encountered in the chloralkali electrolysis process. In
the calculations a selection of the Maxwell–Stefan dif-
fusivities was used, the selection being based on a
sensitivity analysis. Because in literature no accurate
Maxwell–Stefan diffusivities are available for ion-selec-
tive membranes (or other systems) the selected diffusiv-
ities were chosen equal in these exploratory
calculations. Therefore, the absolute values of the vari-
ous performance parameters are incorrect as compared
with industrial operation (e.g. current efficiency and
potential drop), but the model can be used to predict
trends in these parameters with a change in operating
conditions. It was shown that the thickness of the
membrane hardly increases the current efficiency, how-
ever, the required potential drop proportionally in-
creases with it. The pH rapidly increases to values �12
just inside the membrane at the anolyte side. Moreover,
for different values of the pH in the anolyte, the pH
profiles inside the membrane nearly coincide. A change
in the anolyte strength does not seem to have a signifi-
cant effect on the performance of the membrane. A low
current density shows a high current efficiency, but this
is due to an artifact, because it is not caused by a
desired low OH− counter flux but by the undesired
transport of Cl− towards the catholyte. It is clear that
the model needs a reliable input for the Maxwell–Ste-
fan diffusivities before it can be used to reliably simu-
late the performance of an industrially used membrane
and applications in development and design. In another
paper, these diffusivities have been be determined for
the industrially used Nafion membrane of DuPont (van
der Stegen et al., 1999b).

Appendix A. Development of the mass transfer model

A.1. Introduction

In this appendix the complete mass transfer model
for an electrochemical system will be developed. The
fundamentals of this model are constituted by the mass
transport equations, which describe the mass transfer in
an electrochemical system. These equations are derived

in subsection A.2. For the complete description of the
mass transfer in an electrochemical system a number of
additional equations should be added to the mass trans-
port equations. In subsection equation, A1.3 the com-
plete model is given which includes all relevant
equations.

A.2. Deri�ation of the mass transport equations

Starting point for the derivation of the set of mass
transport equations is the Maxwell–Stefan equation for
component i2:

ci�T,P�i=RT �
n

j=1

cicj

cTÐi, j

(�j−�i)=RT �
n

j=1

xiNj−xjNi

Ði, j

(A.1)

The driving force for the mass transport is the elec-
trochemical potential gradient ��i, in which the electro-
chemical potential �i is defined as follows:

�i=� i
chemical+ziF�=� i

o+RT ln(xi�i)+ziF� (A.2)

The main assumption in the above formulation of the
Maxwell–Stefan equation and the equation for the
electrochemical potential of component i is that pres-
sure differences and/or other external forces do not
affect the mass transfer process. Besides, it is assumed
that the transport process takes place isothermally.

It is preferable to express the driving force of the
mass transfer process as a function of one set of
variables, namely the mole fractions of the components
present in the liquid mixture. The derivation of the
transport equations can be split into three parts:
1. Derivation of an expression of the electrical poten-

tial gradient as a function of the gradient in the
activity.

2. Derivation of an expression of the gradient in the
activity as a function of the gradient in the mole
fractions.

3. Rearrangement of the set of Maxwell–Stefan
equations.

A.2.1. Deri�ation of an expression of the electrical
potential gradient as a function of the gradient in the
acti�ity (see also Newman, 1963)

The Maxwell–Stefan equation for component i can
be rewritten as3:

2 In the following ��k should be read as �T,P�k.
3 �n

j=1 Ki, j(�j−�i)=�n
j=1 Ki, j(�j−�i)−�n�n

j=1 Ki, j+�n �n
j=1 Ki, j

=�n
j=1
j� i

Ki, j�j+Ki,i�i−�n
j=1 Ki, j�i

−�n �n
j=1
j� i

Ki, j−�nKi,i+�n�n
j=1Ki, j

=�n
j=1
j� i

Ki, j(�j−�n)

+ (Ki,i−�n
j=1 Ki, j)(�i−�n)

=�n
j=1 Mi, j(�j−�n).
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ci��i=RT �
n

j=1

cicj

cTÐi, j

(�j−�i)= �
n

j=1

Ki, j(�j−�i)

= �
n

j=1

Mi, j(�j−�n) (A.3)

with:

Mi, j=Ki, j i� j=1, 2, …, n (A.3a)

Mi,i=Ki,i− �
n

k=1

Ki,k i=1, 2, …, n (A.3b)

Ki, j=RT
xixjcT

Ði, j

(A.3c)

The mass transport in a mixture of n components can
be described fundamentally with n Maxwell–Stefan
equations. However, due to the Gibbs–Duhem rela-
tionship only n−1 Maxwell–Stefan equations are inde-
pendent. With this restriction, the preceding Eq. (A.3c)
can be rewritten as:

�j−�n= − �
n−1

k=1

Lj,k
n ck��k (A.4)

with:

[Ln]= − [Mn]−1 (A.4a)

[Mn] is obtained from [M ] in which the nth row and the
nth column has been removed4.

The current density I can be obtained from the
component velocities5:

I=F �
n

i=1

zici�i=F �
n−1

i=1

zici�i+Fzncn�n

=F �
n−1

i=1

zici�i−F�n �
n−1

i=1

zici=F �
n−1

i=1

zici(�i−�n)

= −F �
n−1

i=1

zici �
n−1

k=1

Li,k
n ck��k

= −F �
n−1

i=1

ci��i �
n−1

k=1

Lk,i
n ckzk (A.5)

Definition of � and t i
n

If no concentration gradients are present in the liquid
phase, then the expression for the electrochemical po-
tential gradient reduces to:

��i=ziF�� (A.6)

Substitution of Eq. (A.6) into Eq. (A.5) results in the
following relation for I :

I= −F2�� �
n−1

i=1

zici �
n−1

k=1

Li,k
n zkck= −��� (A.7)

with:

�=cT
2 F2 �

n−1

i=1

�
n−1

j=1

zizjxixjLi, j
n (A.8)

In other words, if no concentration-driven mass
transfer occurs, then the relationship between the cur-
rent density and the electrical potential gradient follows
Ohm’s law (� is the conductivity of the solution, 1/� is
a kind of electrical resistance).

The contribution of each component to the current
density I can be expressed with the help of a transfer-
ence number for each component (except the nth). The
transference number t i

n is defined as follows:

t i
nI=−t i

n���=ciziF(�i−�n)� t i
n

=
zixicT

2 F2

�
�

n−1

k=1

Li,k
n zkxk (A.9)

N.B.:

�
n−1

i=1

t i
n=1

Eq. (A.8) can also be written as:

�
n−1

k=1

Li,k
n zkxk=

t i
n�

zixicT
2 F2 (A.10)

Introduction of � and t i
n in the relation Eq. (A.9)

If concentration gradients are present in the liquid
phase (which is the case with membrane processes),
then Eq. (A.5) changes after combination with Eq.
(A.10) to:

I= −F �
n−1

i=1

ci��i �
n−1

k=1

Lk,i
n ckzk= −

�

F
�

n−1

i=1

t i
n

zi

��i (A.11)

Substitution of Eq. (A.2) in Eq. (A.11) results into:

I= −
�

F
�

n−1

i=1

t i
n

zi

{RT�(ln(xi�i))+ziF��}

= −���−
RT�

F
�

n−1

i=1

t i
n

zi

�(ln(xi�i)) (A.12)

from which the following expression for the electrical
potential gradient is obtained:

��= −
I
�

−
1
F

�
n−1

i=1

t i
n

zi

�� i
chemical

= −
I
�

−
RT
F

�
n−1

i=1

t i
n

zi

�(ln(xi�i)) (A.13)

The first part of the right hand side of Eq. (A.13)
gives the Ohmic contribution to the electrical potential,
the second part gives the diffusion potential, which is a
correction of the electrical potential gradient due to the
presence of concentration differences in the solution.

4 Note that [M ], [Mn] and [Ln] are symmetrical.
5 With the derivation of Eq. (A.5) the condition of electroneutrality

has been applied, which can be formulated as follows �n
i=1 zixi=

cT�n
i=1 zixi=�n

i=1 zici=0.
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A.2.2. Deri�ation of an expression of the gradient in
the acti�ity as a function of the gradient in the mole
fractions

Rearrangement of the set of Maxwell–Stefan
equations.

According to Taylor and Krishna (1993) the follow-
ing expression can be derived:

di= �
n−1

j=1

�i, j�xj−
xiziFI
RT�

= �
n

j=1

xiNj−xjNi

cTÐi, j

(A.14)

As pointed out by Taylor and Krishna (1993), the
molar flux Ni needs to be defined with respect to a
certain reference frame. For this case, the velocity of
the nth component will be chosen as the reference
frame in order to obtain the diffusive flux of the other
components. For the diffusive flux (Ji

n), which is the
flux of component i with respect to the velocity of
component n, the following relation can be derived:

Ji
n=Ni−ci�n (A.15)

The diffusive flux Jn
n is equal to zero with this defini-

tion (Taylor & Krishna, 1993).
Eq. (A.14) can now be rearranged to (Taylor &

Krishna, 1993):

di= �
n−1

j=1

Bi, j
n J j

n (A.16)

with:

Bi,i
n = −

1
cT

�
n

k=1 i�k

xk

Ði,k

i=1, 2, …, n−1 (A.16a)

Bi, j
n =

xi

cTÐi, j

i� j=1, 2, …, n−1 (A.16b)

The set of n−1 Maxwell–Stefan equations for the
description of the mass transfer in an n-component
mixture can be represented in matrix notation as
follows:

(d)= [�](�x)− (Z)= [Bn](Jn) (A.17)

with:

Zi=
xiziFI
RT�

i=1, 2, …, n−1 (A.17a)

The gradient in the mole fraction follows from Eq.
(A.17):

[�](�x)= [Bn](Jn)+ (Z) (A.18)

However, the set of (n−1) equations defined by Eq.
(A.18) contains one dependent equation due to the
condition of electroneutrality. It is possible to eliminate
the dependent equation by substituting the following
relations into Eq. (A.18):

I=F �
n

i=1

ziNi=F �
n

i=1

zi J i
n (A.19)

and:

�
n

i=1

�xi=0 (A.20a)

�
n

i=1

zi�xi=0 (A.20b)

Rearrangement of Eq. (A.18) with the help of Eqs.
(A.19), (A.20a) and (A.20b) yields:

[��](�x)= [Bn* ](Jn)+ (Z*)I (A.21)

with:

�i, j* =�i, j−�i,n−1

zj−zn

zn−1−zn

i=1…n−2;

j=1 ,…, n−2 (A.22a)

Bi, j
n *=Bi, j

n −Bi,n−1
n zj

zn−1

i=1…n−2;

j=1, …, n−2 (A.22b)

Zi*=
�xiziF

RT�
+

Bi,n−1
n

Fzn−1

�
i=1, …, n−2 (A.22c)

Eq. (A.21) can be reworked to:

(Jn)= [A ](�x)− (�)I (A.22)

with:

[A ]= [Bn* ]−1[�* ] (A.22a�)

(�)= [Bn* ]−1(Z*) (A.22b�)

This equation can be further rewritten as:

(Jn)= [A ](�x)− [� ]x (A.23)

with:

[� ]= [Bn* ]−1[Zc]

in which:

Zi, j
c =0 i� j=1, 2, …, n−2 (A.24.a)

Zi,i
c =

� ziF
RT�

+
1

FcTÐi,n−1zn−1

�
I i=1, 2, …, n−2

(A.24.b)

Relationship (Eq. (A.23)) defines a set of n−2 inde-
pendent equations, which can be solved with the help of
to following supplementary equations:

�
n

i=1

zixi=0 (condition of electroneutrality)

�
n

i=1

xi=1 (A.25)

Eq. (A.23) is the basic equation for the description of
the mass transport in a electrochemical system. This
equation can be further adjusted for the membrane
electrolysis process. The membrane in these processes is
often modeled as a component, in which the membrane
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concentration is chosen equivalent to the concentration
of the fixed charged groups in the membrane and the
ionic charge of the membrane (zmembrane) equivalent to
the charge of the charged groups in the membrane. In
membrane processes the reference velocity with the
application of the Maxwell–Stefan theory is often the
velocity of the membrane, which is (mostly) 0 m s−1. If
the membrane is the nth component Eq. (A.15) can be
written as:

�n=
−1
cm

Jm
n =0 (A.26)

If the membrane is the nth component in the system,
then the molar flux of component i (for i=1, …, n−2)
follows from:

Ni=Ji
n−ci�n=Ji

n−
ci

cm

Ji
n

=Ji
n−

xi

xmembrane

Jmembrane
n =Ji

n (A.27)

in which Ji
n follows from Eq. (A.23). If component

(n−1) is ionic, the flux of this component can be easily
calculated using Eq. (A.19). Otherwise, for component
(n−1) it is also possible to calculate the flux by substi-
tuting the resulting calculated mole fraction profile in
Eq. (A.23). With the known mole fraction profile, the
potential profile can now be calculated using Eq.
(A.13).

A.3. Final model equations

In conclusion this gives for the present system.
� n−2 Independent Maxwell–Stefan equations for

components 1–n−2:

(N)= [A ](�x)− [� ]x (A.28)

in which N is the matrix with the (n−2) fluxes with
respect to the (in time and space stationary)
membrane.

� Two supplementary equations for component n−1
and n :

�
n

i=1

zixi=0 i=n−1 (A.29)

�
n

i=1

xi=1 i=n (A.30)

in which matrix A contains diffusivities, thermody-
namic non-idealities and transference numbers:

[A ]= [Bn* ]−1[�* ] (A.31)

The matrix [A ] can be divided into two parts:
� One matrix with diffusivities [Bn*].
� One matrix with thermodynamic non-idealities and

transference numbers [�*]; and matrix � with diffu-
sivities and the current density:

[� ]= [Bn* ]−1[Zc] (A.32)

The different matrices are defined as.
� Matrix with diffusivities [Bn*]:

Bi, j
n *=Bi, j

n −Bi,n−1
n zj

zn−1

i=1, …, n−2 (A.33)

with:

Bi,i
n = −

1
cT

�
n

k=1k� i

xk

Ði,k

(A.33a)

Bi, j
n =

xi

cTÐi, j

i� j (A.33b)

� Matrix with thermodynamic non-idealities and trans-
ference numbers [�]:

�ij*=�i, j−�i,n−1

zj−zn

zn−1−zn

i=1, …, n−2

j=1, …, n−2 (A.34)

with:

�i, j=�i, j−xizi �
n−1

k=1

�k, j

tk
n

zkxk

(A.34a)

�i, j=�i, j+xi

� ln �i

�xj

�
T,P,xk,k� j=1…n−1

(A.34b)

t j
n=

zjxjcT
2 F2

�
�

n−1

k=1

Lj,k
n zkxk (A.34c)

�=cT
2 F2 �

n−1

i=1

�
n−1

j=1

zizjxixjLi, j
n (A.34d)

[Ln]= − [Mn]−1 (A.34e)

[Mn] follows from [M ] in which the nth row and
column have been removed:

Mi, j=Ki, j i� j=1, 2, …, n (A.34f)

Mi,i=Ki,i− �
n

k=1

Ki,k i=1, 2, …, n (A.34g)

Ki, j=RT
xixjcT

Ði, j

(A.34h)

� Matrix with diffusivities and current density Zc:

Zi, j
c =0 i� j=1, 2, …, n−2 (A.35a)

Zi,i
c =

� ziF
RT�

+
1

FcTÐi,n−1zn−1

�
I i=1, 2, …, n−2

(A.35b)
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