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General introduction and scope of  the thesis

Insufficient sleep may have serious consequences for health and well-being. It has 

been suggested that short sleep may in the long run contribute to metabolic diseases 

such as obesity and type 2 diabetes. To address this issue, we experimentally 

restricted or disrupted sleep in rats under controlled laboratory conditions, which 

allowed for a detailed assessment of the metabolic consequences of sleep loss 

and its underlying mechanisms.

Sleep restriction and health

Over the past 50 years, average sleep duration in Western societies has 

decreased by almost 2 hours per night (Figure 1). This may not be without 

consequences. A decrease in the length and quality of sleep has been identified 

as a risk factor for the development of various diseases, such as mood disorders 

(Breslau et al., 1996;Ford and Kamerow, 1989;Neckelmann et al., 2007), immune 

system dysfunction (Imeri and Opp, 2009;Irwin, 2002;Opp and Toth, 2003) and 

cardiovascular disorders (Gangwisch, 2009;Knutson, 2010;Mullington et al., 

2009).

Along these same lines, many epidemiological studies in the last decade have 

shown correlations between short sleep and increased prevalence of metabolic 

disorders such as obesity and type 2 diabetes, in both adults and children (Chaput 

et al., 2006;Horne, 2011;Van Cauter and Knutson, 2008). In addition, decreased 

sleep quality has been linked to metabolic disorders. One typical example 

of reduced sleep quality in our modern society is shift work. Shift workers are 

expected to sleep at times when their biological clock is competing to maintain 

wakefulness. Hence, shift work is often associated with disturbed sleep (Akerstedt, 

2003). Several studies have shown that shift work constitutes a risk factor for 

Figure 1: Self-reported sleep duration (adapted from (Van Cauter et al., 2005)) and the percentage of obese 

people (adapted from (Ogden & Carroll., 2010)) over the past 50 years in the USA.
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obesity and type 2 diabetes (Akerstedt, 2003;Antunes et al., 2010;Atkinson et 

al., 2008;Knutsson, 2003;van Amelsvoort et al., 1999), providing support for the 

suggested link between reduced sleep quality and metabolic disorders.

 Another example for a relation between decreased sleep quality and metabolic 

disorders comes from people who suffer from obstructive sleep apnea (OSA), 

which is characterized by airway collapses during sleep, causing brief but 

frequent awakenings to resume breathing (Bandla and Gozal, 2000;Svanborg 

and Guilleminault, 1996). These frequent awakenings result in a serious reduction 

in sleep quality, even though the overall amount of sleep is not dramatically 

decreased. Vgontzas and colleagues reported a positive correlation between 

OSA and the development of obesity, type 2 diabetes and cardiovascular disease 

(Vgontzas et al., 2003). In fact, the relationship between OSA and obesity seems 

to be bidirectional: sleep apnea leads to obesity and weight gain also negatively 

impacts breathing and may lead to poor sleep quality (Peppard et al., 2000;Pillar 

and Shehadeh, 2008). 

 Although epidemiological and clinical studies report a clear association 

between restricted or disrupted sleep and metabolic disorders, it is unclear 

whether the relationship is causal. A causal relationship can only be established 

by experimental studies. Understandably, no study in humans has ever applied 

chronic sleep disturbance to the point that it resulted in diabetes type 2 or obesity. 

However, there are several experimental studies that assessed more immediate 

effects of sleep deprivation or restriction on metabolic processes that contribute to 

our understanding of this relationship.

Sleep restriction and metabolism in humans

Different approaches and terms have been used in literature to study sleep 

loss. Many studies in both humans and rodents have focused on the negative 

consequences of total sleep deprivation, which indicates that the subjects 

were not allowed to sleep at all for a certain period of time. However, chronic 

sleep restriction or disruption is a more common problem. Sleep restriction is 

characterized by shortening the amount of sleep per night, whereas sleep 

disturbance is characterized by arousals occurring throughout the night, without 

severely reducing the total amount of time spent asleep. 

 One of the first experimental studies that provided evidence for a direct effect of 

sleep restriction on glucose homeostasis was performed by Spiegel and colleagues 

in 1999 (Spiegel et al., 1999). Healthy subjects were exposed to 5 nights of 

restricted sleep, with 4h of sleep per night, and then subjected to an intravenous 

glucose tolerance test (IVGTT). An IVGTT is used to evaluate insulin response 

and glucose clearance after glucose infusion. It has been shown previously 

that an IVGTT is a successful tool to study glucose homeostasis (Strubbe and 

Bouman, 1978). Sleep restricted subjects displayed a decreased insulin response 

and an attenuated clearance of glucose from the blood in response to an IVGTT. 

The authors interpreted these results as a decrease in glucose tolerance (i.e., 

glucose intolerance) and concluded that sleep restriction has a harmful impact 
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on metabolism. It was suggested that the sleep restriction-induced decrease in 

glucose tolerance might reflect a first step towards the development of type 2 

diabetes. A follow-up study showed that several consecutive nights of reduced 

deep sleep without changes in total sleep time resulted in reduced insulin sensitivity 

and glucose intolerance (Tasali et al., 2008). A more recent study demonstrated 

that only one night of sleep restriction (4h of sleep allowance) is sufficient to cause 

moderate insulin resistance as measured by a hyperinsulineamic euglycemic 

clamp (Donga et al. 2010). 

 Regulatory hormones such as the orexigenic hormone ghrelin and the adiposity 

modulators leptin and insulin have a clear influence on food intake, fat mass, 

and body weight (review: Spiegelman and Flier, 2001). For that reason, several 

studies have assessed the effects of sleep restriction on feelings of hunger as well 

as on these regulatory hormones. A few days of sleep restriction lead to increased 

feelings of hunger accompanied by a decrease in leptin and an increase in ghrelin 

(Spiegel et al., 2004a;Spiegel et al., 2004b;Taheri et al., 2004). In contrast, another 

study with a similar degree of sleep restriction failed to reproduce these results, 

showing increased concentrations of leptin with no changes in feelings of hunger 

(van Leeuwen et al., 2010). The reason for this inconsistency is unclear, but it 

might be explained by differences in the length of the sleep restriction period, the 

amount of activity allowed and/or differences in energy intake. 

 The finding that sleep restriction has direct effects on glucose tolerance, 

insulin sensitivity and feelings of hunger is in agreement with epidemiological 

data suggesting that sleep restriction may serve as a risk factor for developing 

obesity and type 2 diabetes. However, it is not known how persistent the metabolic 

changes in these experimental studies are. It is important to investigate whether 

these metabolic changes would really lead to metabolic dysfunction in the long 

run, in case restricted sleep would truly become a chronic condition. Experimental 

studies in animals are of importance here. Animal models allow us to investigate 

the underlying mechanisms of sleep restriction induced changes in metabolic 

regulation both during acute and prolonged sleep restriction.

Sleep restriction and metabolism in rats

Experimental studies in rats have shown that sleep restriction leads to changes 

in food intake, body weight and regulating hormones such as insulin and leptin. 

In almost all studies, sleep deprivation led to an attenuation of weight gain, often 

associated with increased food intake (Everson and Crowley, 2004;Hipolide et 

al., 2006;Koban and Stewart, 2006;Koban et al., 2008). In rats, the adiposity 

modulators leptin (Everson and Crowley, 2004;Koban and Swinson, 2005) and 

insulin (Hipolide et al., 2006) generally decrease during sleep deprivation, which 

may be secondary to the attenuation of weight gain. Acute sleep deprivation 

does not affect body weight and leptin concentrations, but it does increase the 

concentration of the hunger hormone ghrelin (Bodosi et al., 2004). 

 While results from experimental rat studies are relatively consistent, the 

interpretation of these data remains difficult. For example, the reported reductions 
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in basal concentrations of insulin provide little information regarding insulin 

responses and glucose regulation under challenging conditions, i.e., in response 

to food intake. Additionally, none of these animal studies assessed glucose 

homeostasis by means of an IVGTT or a hyperinsulineamic euglycemic clamp. Also, 

while changes in metabolic hormones in animal studies appear to be consistent 

with data from human studies, the reduction in body weight found in rats has not 

been reported in humans. In fact, this finding is in contrast to the proposed role 

of short sleep in obesity as based on epidemiological studies. One should realize 

that the data on sleep restriction and metabolism in laboratory animals are derived 

from a wide variety of sleep restriction protocols, from short and prolonged total 

sleep deprivation to selective REM sleep deprivation. Unfortunately, few studies 

so far assessed the metabolic consequences of chronic partial sleep deprivation 

or sleep disturbance as it often occurs in our society, which is therefore the specific 

aim of the current project. 

Sleep restriction methods for rat studies

As mentioned before, there is a wide variety of methods available for sleep 

deprivation in animals, each of which may have its own specific effects and 

confounding factors (Rechtschaffen et al., 1999). Not all of these methods are 

suitable for studies on chronic sleep restriction and metabolism. A commonly used 

method for acute sleep deprivation is the gentle handling method. When used in 

our lab, animals are kept awake by a protocol consisting of tapping on the cage, 

gently shaking the cage and, if necessary, disturbing the nest (Hagewoud et al., 

2010;Van der Borght et al., 2006). While this method is relatively mild and appears 

to produce little stress in the animals, it is only practical for sleep deprivation 

of short duration because it requires a direct and continuous involvement of the 

experimenter. For chronic purposes, the following methods are available. 

 The flower pot method or platform method is known for its ability to selectively 

deprive rats of rapid-eye-movement (REM) sleep for prolonged periods of time 

(Cohen and Dement, 1965;Mendelson et al., 1974). The method is based on the 

fact that REM sleep is characterized by a complete loss of muscle tone. Rats are 

placed on a small platform or upside-down flower pot, surrounded by water. As 

soon as the rat enters the REM sleep stage and loses muscle tone, it will touch or 

fall into the water and wake up. The movement restriction and risk of falling into 

the water makes this method rather stressful and may have immediate and non-

specific effects on metabolism that could confound the result of our experiments.  

 Another method is the disk-over-water method, which is described by 

Rechtschaffen and colleagues (Rechtschaffen and Bergmann, 1995;Rechtschaffen 

and Bergmann, 2002). This method is based on continuous recording and online 

analysis of brain activity (electroencephalogram, EEG) and neck muscle activity 

(electromyogram, EMG). Rats are housed on a horizontal disk above water. As 

soon as the EEG and EMG signals indicate the onset of sleep, the disk starts to 

rotate at a low speed which awakens the rat and forces it to walk to avoid being 

carried into the water. This method has proven to be highly effective for prolonged 
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sleep deprivation studies but requires a computer-driven sleep deprivation set up 

for each individual rat. It also has the disadvantage that all rats in each experiment 

need to be equipped with electrodes for recording EEG and EMG. Moreover, the 

risk of rats eventually falling in the water is again not preferable in the context of 

studies on sleep restriction and metabolism.

 A slightly different but simpler method is the rotating drum method, which is also 

based on forced locomotion. This method was originally described by Borbely and 

colleagues (Borbely and Neuhauss, 1979;Borbely et al., 1984). With this method, 

rodents are kept awake by placing them in a slowly and continuously rotating 

drum. In our lab, the rotating drum method has been used extensively for studies 

in rats that were aimed at mimicking restricted sleep as it often occurs in our 

society. In these studies, rats are generally allowed 4h of sleep per day. During 

the remaining 20h, rats are placed in the rotating drums and are forced to maintain 

wakefulness. To control for the mild forced locomotion in this sleep restriction 

protocol, another group of rats is subjected to forced locomotion for 10 h in the 

drum rotating at double the speed of the experimental group. With this protocol, 

rats walk the same distance as sleep restricted rats, but have sufficient time to 

sleep (14h). This approach has previously been validated in the context of mood 

disorders. In a series of studies, it was shown that chronically restricted sleep 

leads to neurobiological and neuroendocrine changes that are similar to what 

has been reported for depressed patients, e.g., reduced serotonin 1A receptor 

sensitivity (Novati et al., 2008;Roman et al., 2005), altered hypothalamic-pituitary-

adrenal axis regulation (Novati et al., 2008), and reduced hippocampal volume 

(Novati et al., 2011). Some of these changes did not occur after acute, short sleep 

deprivation but only developed gradually in the course of a prolonged period of 

sleep restriction (Novati et al., 2008;Roman et al., 2005). Moreover, some of the 

changes, such as the decrease in serotonin (5-HT) 1A sensitivity, proved to be 

rather long-lasting. Together these findings indicate that chronically restricted 

sleep may induce gradually developing and long-lasting consequences that have 

suggested implications for disease sensitivity. Therefore, sleep restriction induced 

by the rotating drum may serve as an appropriate approach for studies on the 

metabolic consequences of sleep loss as well.

Aim and scope of the thesis

Taken together, the data from experimental studies in humans and rodents do not 

yet provide a complete picture on the consequences of chronic sleep restriction for 

metabolic regulation.  Moreover, most rat studies are based on acute or prolonged 

total sleep deprivation or on selective REM sleep deprivation. Few studies 

assessed the consequences of chronic partial sleep deprivation as it often occurs 

in our modern society. Therefore, the aim of this thesis is to provide a detailed 

assessment of metabolic regulation in rats under conditions of both acute and 

chronic sleep restriction.

 In Chapter 2 we investigated the effects of chronic sleep restriction on sleep-

wake patterns, body weight, food intake, and regulatory hormones such as leptin 
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and insulin. Since sleep deprived or sleep restricted rats commonly show weight 

loss or attenuated weight gain despite an increase in food intake, we measured 

whether this attenuated weight gain might be the consequence of increased 

energy expenditure. Energy expenditure was measured during sleep restriction by 

means of the doubly labeled water method. 

 Although it is known that sleep deprivation may cause a decrease in basal 

concentrations of insulin, the interpretation of this result in terms of glucose 

regulation is met with difficulty. Changes in basal concentrations of insulin do 

not provide a clear picture of insulin responses and glucoses homeostasis under 

challenging conditions such as food intake. In chapter 3 we investigated if chronic 

sleep restriction affects insulin responses and glucose homeostasis by means of a 

controlled IVGTT. 

 Since our rotating drum method for sleep deprivation involves forced locomotion, 

we performed an experiment to study whether metabolic changes following chronic 

sleep restriction might be mediated by increased activity or by sleep loss per 

se. We therefore investigated the effect of forced and voluntary running activity 

on insulin regulation and glucose homeostasis by means of an IVGTT, without 

disturbing the sleep-wake pattern or total sleep time (chapter 4). 

 We then asked the question whether metabolic changes following chronic sleep 

restriction are due to a critical reduction in sleep duration or due to disruption of 

the sleep-wake rhythm, i.e., a circadian disruption irrespective of sleep time. For 

that reason we assessed the effects of a shift work protocol by forcing rats to be 

active during their normal resting phase without restricting their sleep time and 

measured the effects on insulin regulation and glucose homeostasis (chapter 5). 

 The attenuation of weight gain in sleep deprived or sleep restricted rats is 

in conflict with the hypothesis that sleep loss may lead to obesity according to 

epidemiological correlations. This apparent difference with the human situation 

may be caused by the alternation between periods of sleep restriction and sleep 

allowance that often occur in real life. Therefore, in chapter 6 we studied the 

metabolic consequences of a chronic sleep restriction protocol that modeled 

working weeks with restricted sleep time alternated with weekends of sleep 

allowance. We hypothesized that these weekends might not only allow the rats to 

recover from a weight deficit but that it could even lead to an overall weight gain.

 Another explanation for this apparent difference in weight gain between 

rats and the human situation may be a difference in diet. Therefore we assessed 

in chapter 7 the effects of a medium fat diet versus a standard chow diet during 

chronic sleep restriction on body weight, food intake and regulatory hormones such 

as leptin and insulin. In addition we studied the effects of both diets during sleep 

restriction on the serotonergic system in order to evaluate a potential connection 

with previous experiments performed in our laboratory, which demonstrated that 

chronic sleep restriction leads to reduced serotonin 1A receptor sensitivity. We 

hypothesized that metabolic consequences of sleep restriction underlie these 

neurobiological changes. Thus, a medium fat diet may, at least partially, prevent 

the attenuation of weight gain seen during sleep restriction and protect against the 
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desensitization of the serotonin 1A receptor seen previously after chronic sleep 

restriction. 

 Chapter 8 summarizes and discusses the main outcomes of our sleep restriction 

on glucose homeostasis data and how it relates to the literature, whereas chapter 9

discusses all the data presented in this thesis.
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Abstract
Epidemiological studies have shown an association between short or disrupted 

sleep and an increased risk to develop obesity. In animal studies, however, sleep 

restriction leads to an attenuation of weight gain that cannot be explained by 

changes in energy intake. In the present study, we assessed whether the attenuated 

weight gain under conditions of restricted sleep is a consequence of an overall 

increase in energy expenditure. Adult male rats were subjected to a schedule 

of chronic sleep restriction (SR) for 8 days with a 4h window of unrestricted rest 

per day. Electroencephalogram and electromyogram recordings were performed 

to quantify the effect of the sleep restriction schedule on sleep-wake patterns. 

In a separate experiment, we measured sleep restriction-induced changes in 

body weight, food intake, and regulatory hormones such as glucose, insulin, 

leptin and corticosterone. To investigate whether a change in energy expenditure 

underlies the attenuation of weight gain, energy expenditure was measured by 

the doubly labeled water method from day 5 until day 8 of the SR protocol. 

Results show a clear attenuation of weight gain during sleep restriction but 

no change in food intake. Basal plasma glucose, insulin and leptin levels are 

decreased after sleep restriction which presumably reflects the nutritional status 

of the rats. The daily energy expenditure during SR was significantly increased 

compared to control rats. Together, we conclude that the attenuation of body 

weight gain in sleep restricted rats is explained by an overall increase in energy 

expenditure together with an unaltered energy intake.
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Introduction
A substantial number of studies have demonstrated a correlation between short 

sleep and increased prevalence of obesity ((Bjorvatn et al., 2007;Chaput et al., 

2006;Chaput et al., 2009;Gangwisch et al., 2005;Hasler et al., 2004), for an overview 

see (Cappuccio et al., 2008)). While these studies form an important basis for the 

hypothesis that restricted sleep may contribute to metabolic diseases, they do not 

provide information on the cause and consequence in this relationship (Cizza et 

al., 2005;Marshall et al., 2008). To determine the relationship between insufficient 

sleep and altered metabolic regulation, controlled studies with experimental sleep 

restriction are required. 

 The present study aimed to assess the effects of chronic sleep restriction 

on energy metabolism in rats. For this purpose, we used a well-established 

rotating drum system to keep rats awake. Previously, we reported that chronic 

sleep restriction induced by this rotating drum method leads to gradual and, 

in some cases, persistent changes in a variety of neurobiological systems (e.g., 

serotonergic signaling:(Roman et al., 2005;Roman et al., 2006)), neuroendocrine 

regulation (e.g., hypothalamus-pituitary-adrenal (HPA-) axis regulation: (Meerlo 

et al., 2002;Novati et al., 2008)), and physiological processes (e.g., glucose 

homeostasis: (Barf et al., 2010)). We now investigated the effect of sleep 

restriction on specific metabolic parameters, including body weight, food intake 

and circulating regulatory hormones, in particular insulin, leptin and corticosterone. 

Leptin and insulin are known adiposity signals that regulate both food intake and 

body weight (for reviews see: Woods and Seeley, 2000;Woods and D’Alessio, 

2008). Corticosterone levels reflect HPA-axis activity, which may alter metabolic 

function and regulation of metabolic hormones, as seen during stress (for reviews 

see: Pecoraro et al., 2006;Sapolsky et al., 2000). 

 We particularly focused on changes in energy expenditure during sleep 

restriction. It has been shown that experimentally disturbed sleep in rats leads 

to an attenuation of weight gain, despite normal (Barf et al., 2010) or increased 

food intake (Everson and Crowley, 2004;Hipolide et al., 2006;Koban and Stewart, 

2006;Koban et al., 2008;Rechtschaffen and Bergmann, 1995;Rechtschaffen and 

Bergmann, 2002). An increase in energy expenditure might explain this, since 

being awake and active costs more energy than being asleep (Brebbia and 

Altshuler, 1965;Ryan et al., 1989). Spending a larger part of the day awake may 

therefore increase overall energy expenditure.

 To assess the effects of sleep restriction on different aspects of energy balance, 

we exposed male rats to sleep restriction for 8 days. Body weight and food intake 

were measured daily and at the end of the sleep restriction protocol and after a 

recovery period of 5 days blood samples were taken to determine blood glucose 

and plasma insulin, leptin and corticosterone levels. Energy expenditure during 

sleep restriction was studied by the doubly labeled water method. To quantify 

the effect of sleep restriction on sleep-wake patterns, measurements of sleep 

electroencephalograms (EEG) and electromyograms (EMG) were performed. 
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Methods

Animals and housing

All experiments were performed in adult male Wistar rats (Harlan Netherlands BV, 

Horst, The Netherlands) weighing approximately 320 g at the start of the experiment. 

The rats were individually housed in Plexiglas cages in a climate-controlled room 

(21 °C ± 1) under a 12:12 h light-dark cycle (lights on at 10:00 am). Rats had 

unrestricted access to water and were maintained ad lib on medium fat food

(45 % fat diet; Arie Blok Diervoeding B.V., Woerden, The Netherlands). Food intake 

and body weights were measured daily. Experiments were approved by the 

Institutional Animal Care and Use Committee of the University of Groningen.

Chronic sleep restriction

Rats were subjected to chronic sleep restriction (SR) according to a previously 

published method (Meerlo et al., 2002). The rats were allowed to sleep in their 

home cage for 4 hours per day at the beginning of the light phase, i.e., their 

normal resting phase. During the remaining 20 hours, they were kept awake 

by placing them in drums rotating at a constant speed of 0.4 m/min (Barf et al., 

2010;Novati et al., 2008;Roman et al., 2005). Rats were subjected to this schedule 

of sleep restriction for 8 days during which they had unlimited access to food and 

water inside the drums. All rats were habituated to the experimental conditions 

by placing them in the drums for 1-2 hours on 3 consecutive days before the onset of 

the sleep restriction protocol. Control rats (Control) were housed in the same room 

but were left undisturbed in their home cage throughout the experiment. During 

the recovery period afterwards, all rats were left undisturbed in their home cage. 

Experiment 1: Sleep-wake patterns and sleep EEG

In experiment 1, we assessed the actual sleep loss during the chronic sleep 

restriction protocol by measuring sleep-wake patterns and sleep EEG. To be able 

to record EEG and EMG inside the rotating drums, we used a wireless datalogger 

system mounted on the head of the animals (NeuroLogger mobile system, TSE, 

Homburg, Germany).

 The NeuroLogger head plug with electrodes for recordings of EEG and EMG 

was fixed to the skull under general isoflurane anesthesia (2%). Holes were drilled 

in the skull and 3 brass screws served as electrodes for epidural EEG (one 2.0 

mm lateral of sutura sagittalis, 1.5 mm rostral of lambda and one 2.0 mm rostral of 

the measurement electrode on the right side) and a reference electrode (2.0 mm 

mediocaudal of lambda). For placement of EMG electrodes, the neck muscle was 

pierced twice with a 21-gauge needle, approximately 2mm apart. Electrodes were 

then guided through these perforations and fixed into place using non-absorbable 

wire. Afterwards electrodes and head plug were covered with a layer of dental 

cement. A “dummy”, in size and weight comparable to the NeuroLogger, was 

attached to the head holder. After recovery from anesthesia the rat was placed 

back in its home cage. For postoperative care, rats received a single subcutaneous 

injection of finadyne (1.0 mg/kg). Rats were allowed to recover for at least 10 days 

before the start of the experiments.
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 Specialized software (CommSW, Newbehavior, Zurich, Switserland) was used 

to configure and start the NeuroLogger. EEG and EMG signals were sampled 

at 200 Hz and directly stored on a built-in 512mb data storage. The data was 

first saved in a hexadecimal format. These files were then transformed to text 

files using a MatLab routine and were further analyzed using SleepSign® for 

animals (KISSEI COMTEC, Nagano, Japan). At first, an automatic scoring took 

place using the wave form recognition and logic setup algorithm of the screening 

module of SleepSign®. Each file and epoch was then checked visually, and if 

necessary, corrected by an experienced observer. On the basis of this scoring, 

time spent in each vigilance state was calculated. In addition, the signals were 

subjected to spectral analysis by Fast Fourier Transformation (SleepSign®).

For all NREM sleep epochs, the EEG power in the 1-4 Hz delta range was calculated 

as an indicator of sleep intensity. To correct for inter-individual differences in 

strength of the EEG signal, the delta power values were normalized by expressing 

them as a percentage of each rats’ own average 24 hour baseline delta power. 

The normalized EEG delta power is referred to as slow wave activity (SWA).

 In this study, EEG and EMG measurements were done for baseline and day 1 of 

sleep restriction as well as day 8 of sleep restriction and the first day of recovery. 

In this experiment, sleep restricted rats (SR: n=4) served as their own controls.

Experiment 2: Plasma hormone levels

Experiment 2 established the effects of chronic sleep restriction on body weight, 

food intake and baseline circulating levels of blood glucose and plasma insulin, 

leptin and corticosterone. All rats in this experiment were equipped with a chronic 

jugular vein catheter allowing repeated and stress free blood sampling according 

to a previously described method (Steffens, 1969). Under 2% isoflurane inhalation 

anesthesia, a silicon heart catheter (0.95 mm OD, 0.50 mm ID) was inserted into 

the right jugular vein and kept in place with a ligament. The other end of the 

catheter was subcutaneously directed to the top of the head where it was fixed 

with dental cement and could be used to connect the rats to sampling tubes. 

Rats were allowed to recover for at least 10 days before the start of the 

experiment. Rats were then divided over two groups: a sleep restricted group 

(SR: n=11) and a home cage control group (Control: n=7). SR rats spent the first 

4h of the light phase in their regular home cages, where after they were transferred 

to the rotating drums. Blood samples were taken after 8 days of SR/Control 

(8d experiment) and after 5 days of recovery (5d recovery) during the fourth 

hour of the light period (ZT 4), at the end of the daily 4h sleep window. In case 

of blood sampling, food was removed at ZT0. 

 Blood samples (500 μL) were collected in tubes with EDTA (20 μL/ml blood) 

on ice. About 50 μL of fresh blood was immediately stored at − 20 °C for later 

determination of blood glucose levels by Hoffman’s ferrocyanide method. 

The remaining blood was centrifuged at 2600 g for 10 min and the plasma 

was then stored at − 20 °C until further analysis. Plasma levels of insulin 

were measured by Millipore Rat Insulin Radioimmunoassay (Linco Research, 

St Charles, MO, USA), plasma levels of leptin were measured by Linco Research Rat 
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leptin Radioimmunoassay (Linco Research), and plasma levels of corticosterone 

were measured by ImmuChem 125I Corticosterone Radioimmunoassay  

(MP Biomedicals, Orangeburg, NY, USA).

Experiment 3: Energy balance

Experiment 3 aimed to assess energy expenditure during chronic sleep restriction. 

Rats were divided over 2 groups: sleep restriction (SR: n=8) and home cage controls 

(Control: n=8). Body weight and food intake (45% fat diet: 1g = 4.8 kCal) were 

measured daily. Measurement of energy expenditure during sleep restriction was 

achieved by the doubly labeled water method as described previously (Speakman, 

1998). Energy expenditure was measured over a 3-day period, from day 5 until 

day 8 of the sleep restriction protocol. In brief, at day 5 of the sleep restriction 

protocol, an intraperitoneal injection of a mixture of 2H
2

16O (mixture enrichment 

of 2H = 33.32% atom%) and 1H
2

18O (mixture enrichment of 18O = 65.62 atom%) 

was administered. The syringes containing the mixture were weighed to 0.1 mg 

before and after injection to obtain a dose mass. Following isotope injection rats 

returned to their home cage to allow isotope equilibration with the rat’s water pool. 

Two-and-a-half hour after injection an initial blood sample was drawn from the tail 

(Fluttert et al., 2000;Meerlo et al., 2002). At day 8 of the sleep restriction protocol, 

a second blood sample was taken at the same circadian time as the first blood 

sample. All samples were collected in 50 μl Vitrex pre-calibrated capillaries and 

were immediately flame-sealed and stored until analysis. Analysis of the blood 

samples was achieved by previously described methods (Speakman, 1998). 

Data analysis 

In experiment 1, we measured time spent in NREM sleep, REM sleep or Wake 

and NREM sleep EEG SWA during a baseline day, day 1 of SR, day 8 of SR 

and the first day of recovery. All parameters were compared to baseline by a 

Paired t-test. In experiment 2, body weight and food intake was measured daily 

during the sleep restriction protocol and recovery period afterwards. At day 8 

of SR, regulatory metabolic hormones were measured. To test the effect of 8 

days of sleep restriction and the effect of 5 days of recovery thereafter on body 

weight, data were subjected to analysis of variance (ANOVA) with repeated 

measures. To test for effects of sleep restriction on food intake and glucose, 

insulin, leptin and corticosterone levels, data were subjected to One Way 

ANOVA. In experiment 3, body weight and food intake were measured daily. 

Energy expenditure was measured by doubly labeled water during day 5 until 

day 8 of the experimental protocol. Energy balance was calculated by subtracting 

energy expenditure from energy intake. To test for effects of sleep restriction 

on delta body weight, data were subjected to repeated measures ANOVA. 

To test for the effects of sleep restriction on food intake, energy expenditure 

and energy balance, data were subjected to One Way ANOVA. For all three 

experiments, data in text and figures are expressed as averages ± SEM and 

P<0.05 was considered statistically significant.
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Figure 1: Average sleep-wake patterns under baseline conditions, during day 1 and day 8 of the sleep 

restriction protocol and on the first recovery day. Rats (n=4) were subjected to sleep deprivation (SD) for 

20 h per day. The horizontal black-and-white bar at the bottom of the panels represent the light-dark cycle.

Figure 2: The total time spent asleep or awake during the baseline day, during day 1 and day 8 of SR protocol, 

and on the first recovery day. Time spent asleep is divided into NREM and REM sleep. Data are average 

values ± SEM (n=4). Statistics is done on total sleep time and total wake time. Asterisks indicate a significant 

difference in comparison to the baseline day (* P<0.05).
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Results

Experiment 1: Sleep-wake patterns and sleep EEG

The average sleep-wake pattern is shown in Figure 1 for baseline, day 1 and day 

8 of sleep restriction and the first day of recovery. The sleep restriction protocol 

reduced sleep time and increased overall waking time compared to baseline, both 

on the first and eighth day of the experiment (paired t-test: total sleep time day 

1 SR: t=16.27, P<0.01; total sleep time day 8 SR: t=18.11, P<0.01; total wake 

time day 1 SR: t= -26.97, P<0.001; total wake time day 8 SR: t= -72.59, P<0.001; 

see Figure 2 and Table 1). NREM and REM sleep time were significantly decreased 

during first and eighth day of sleep restriction (total NREM sleep day 1 SR: 

t= 25.69, P<0.001; total NREM sleep day 8 SR: t= 34.42, P<0.01; total REM 

sleep day 1 SR: t= 15.94, p<0.01; total REM sleep day 8 SR: t= 11.85, P<0.01;  

see Table 1).

 Although the sleep restriction procedure reduced NREM and REM sleep time, 

rats did have occasional micro sleeps in the rotating drum, which added up to 

approximately 1 hour of sleep during the daily 20h sleep deprivation phase, both 

on the first and eighth day of the experimental protocol (Table 1). Most of the 

sleep in the rotating drum consisted of NREM sleep, although sporadic REM 

sleep epochs occurred as well. In fact, the amount of REM sleep in the rotating 

drum significantly increased from day 1 to day 8 of the sleep restriction protocol 

(t= -7.65, P<0.05).

Baseline Day 1 Day 8 Recovery

NREM (min)

20h SR 411.8 ± 4.7 65.8 ± 9.9* 65.1 ± 13.6* 473.0 ± 9.2*

4h recovery 132.8 ± 12.1 142.1 ± 4.1 131.5 ± 3.7 130.8 ± 11.3

24h total 544.7 ± 16.7 207.9 ± 9.0* 196.6 ±17.3* 603.8 ±11.3

REM (min)

20h SR 99.5 ± 6.9 2.1 ± 1.0* 9.2 ± 1.6*# 162.3 ± 12.0*

4h recovery 26.7 ± 3.8 60.2 ± 3.1* 65.7 ± 6.8* 39.1 ± 2.2

24h total 126.2 ± 10.2 62.4 ± 3.4* 74.9 ± 8.2* 201.4 ± 12.0*

Wake (min)

20h SR 688.6 ± 10.3 1132.1 ± 9.9* 1125.7 ± 15.1* 564.7 ± 18.6*

4h recovery 80.5 ± 15.5 37.6 ± 6.7* 42.8 ± 10.4 70.1 ± 1.1

24h total 769.1 ± 25.3 1169.8 ± 7.4* 1168.8 ± 19.3* 634.8 ± 19.3*

Time spent in various sleep stages during the total 24h, 20h of sleep restriction and 4h window of sleep 

allowance (recovery) during day 1 and 8 of SR. The same time points were used for the baseline and the 

first recovery day. Data are average ± SEM. * P<0.05 compared to baseline, # P<0.01 compared to day1.

Table 1: Time (minutes) spent in NREM, REM or Wake.



28 29

Metabolic consequences of  chronic sleep restriction in rats: changes in body weight regulation 
and energy expenditure

During the daily 4 hour sleep window, REM sleep time was significantly increased 

as compared to the same period under baseline conditions (day 1 SR: t= -20.96, 

P<0.001; day 8 SR: t= -10.73, P<0.01). NREM sleep time during this 4 hour 

window was not significantly changed compared to baseline conditions. However, 

the average NREM sleep EEG SWA during this 4h window was higher on sleep 

restriction days than during baseline. Due to the small sample size and variation, 

this did not reach statistical significance (SWA Baseline: 116.7 ± 1.1%, SWA Day 1 

SR: 132.5 ± 5.1%, SWA Day 8 SR: 129.0 ± 10.2%: Paired t-test: Baseline vs. Day 

1 SR: t= -3.06, P=0.055, Baseline vs. Day 8 SR: t= -1.17, P=0.36). 

 During the first day of recovery total sleep time was significantly increased 

(t=-4.99, P<0.05) and total wake time significantly decreased when compared 

to baseline (t= 5.00, P<0.05). Total REM sleep time was significantly increased 

(t=-29.13, P<0.01), but NREM sleep time was only increased during 20 h 

(t=-12.32, P<0.05) and not during total 24 h of recovery.

Experiment 2: Plasma hormone levels

Sleep restriction by forced locomotion significantly suppressed the weight gain 

that was seen in home cage control rats (Repeated Measures ANOVA: time x 

treatment interaction: F(18,306)=17.38, P<0.001; see Figure 3A). Upon termination 

of the sleep restriction protocol, weight gain seemed to normalize, but the overall 

increase in body weight remained significantly lower compared to controls even 

after 5 days of recovery. There were no significant differences in total food intake 

(Figure 3B). 

 The changes in blood glucose and plasma insulin, leptin and corticosterone 

levels after 8 days of sleep restriction and after a subsequent 5 day recovery period 

are shown in Figure 4. Blood glucose levels were significantly decreased after 8 

days of SR (One way ANOVA: F(1,14)=8.16, P<0.05) but levels had returned to 

control levels after 5 days of recovery (One way ANOVA F(1,10)=0.88, P>0.5). 

 Insulin levels were decreased after 8 days of SR compared to controls 

(One way ANOVA: F(1,14)=17.42, P<0.01) and after 5 days of recovery they were 

no longer significant different compared to controls (One way ANOVA: F(1,9)=1.30, 

P>0.1). Plasma levels of leptin showed the same pattern. After 8 days of SR, 

leptin levels were significantly decreased compared to control rats (One way 

ANOVA: F(1,12)=11.63, P<0.01) and after 5 days of recovery they were no longer 

significant different compared to controls (One way ANOVA: F(1,12)=0.71, P>0.1). 

Corticosterone levels after 8 days of SR and 5 days of recovery did not differ 

between groups. 

Experiment 3: Energy balance

Energy expenditure in SR rats, assessed by the doubly labeled water method from 

day 5 until day 8 of the sleep restriction protocol, was significantly higher compared 

to energy expenditure in home cage control rats (F(1,14)= 118.0, P<0.0001; see 

Figure 5). During the same 3-day period, food intake was not different between 

the groups, leading to a significant difference in energy balance (energy intake 
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minus energy expenditure: Control: 18.8 ± 2.5 kCal/day; SR: 0.1 ± 2.2 kCal/day: 

One Way ANOVA: F(1,14)= 30.7, P<0.001). In agreement with this, weight gain 

during this 3-day period was significantly lower in sleep restricted rats than control 

animals (F(1,14)= 58.1, P<0.0001; see Figure 5). Body weight over the 3-day 

period was significantly increased over time for control rats (Repeated Measures 

ANOVA: F(1,7)= 63.57, P<0.001) and significantly decreased over time for SR rats 

(F(1,7)= 13.32, P<0.01).

Figure 3: Daily body weight (A) and food intake (B) during the baseline, experimental and recovery phase of 

the experiment for sleep restricted rats (SR, n=11) and control rats (Control, n=7). The horizontal grey bar at 

the bottom of panel A represents the 8 day sleep restriction period. Data are average values ± SEM. Asterisks 

indicate a significant difference between SR and control rats (* P<0.01).
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Figure 5: Daily energy expenditure and energy intake measured during the last 3 days of the 8-day sleep 

restriction protocol (left panel) and the change in body weight during the same 3d-period (right panel). 

Measurement of energy expenditure was performed by the doubly labeled water method and energy intake 

was calculated on the basis of food intake and the caloric value of the diet. n=8 for both groups. Data are 

average values ± SEM. Asterisks indicate a significant difference (* P<0.05).

Figure 4: Plasma levels of glucose, insulin, corticosterone and leptin at the end of the 8d experiment and after 

5d of recovery in sleep restricted rats (SR, n=11) and control rats (Control, n=7). Data are average values ± 

SEM. Asterisks indicate a significant difference (* P<0.05).
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Discussion
The slowly rotating drum method effectively restricted sleep time in rats. 

The reduction of total sleep time led to an attenuation of weight gain. During 

the sleep restriction period, energy intake in terms of food consumption was not 

affected while daily energy expenditure was significantly increased. This implies 

that the attenuation in weight gain during sleep restriction is caused by an increase 

in energy expenditure. Plasma levels of glucose, insulin and leptin were reduced, 

reflecting the nutritional status and attenuation of weight gain.

 In the present study, chronic sleep restriction, achieved by the slowly rotating 

drum method, significantly reduced total sleep time. Total sleep decreased from 11 

h on the baseline day to about 4.5 h on sleep restriction days. Most of this sleep 

occurred in the daily 4 h sleep window, but during the daily 20 h forced wakefulness 

periods, inside the rotating drums, rats had occasional micro sleeps as well. 

The latter only added up to approximately one hour of sleep. It cannot be excluded 

that sleep restricted rats experienced some additional sleep like processes, 

perhaps even locally in specific brain regions but this was not accounted for in 

our global analysis of vigilance states. A recent study in rats showed that under 

conditions of sleep deprivation, local clusters of cortical neurons may go offline 

while the rest of the brain stays awake (Vyazovskiy et al., 2011). However, it is 

unlikely that such local processes are sufficient to compensate for the substantial 

deficit of sleep that our rats experienced. 

 Weight gain was attenuated as a consequence of chronic sleep restriction. 

This attenuation appears to be a direct result of increased energy expenditure. 

In control rats, energy intake was higher than energy expenditure, resulting in 

weight gain. In sleep restricted rats, energy expenditure was increased compared 

to controls. One has to keep in mind that energy expenditure measurement by 

means of the doubly labeled water method is a relative underestimation (Kaiyala 

and Ramsay, 2011). This method does not take heat production and anaerobic 

phosphorylation into account. This may explain why SR rats lost some weight 

during the 3-day period when energy expenditure was measured, even though 

energy intake and energy expenditure seem to be in balance. 

 There may be multiple explanations for the increase in energy expenditure in 

sleep restricted rats. First, being awake costs more energy than being asleep 

(Brebbia and Altshuler, 1965;Ryan et al., 1989;Brebbia and Altshuler, 1965;Jung et 

al., 2011). During wakefulness and sleep deprivation, the activity of the sympathetic 

autonomic nervous system is higher than during sleep (for review, see Meerlo et 

al., 2008). As a consequence, body temperature (Bergmann et al., 1989;Bodosi 

et al., 2004;Everson et al., 1994;Sgoifo et al., 2006) and heart rate are increased 

(Everson et al., 1989;Spiegel et al., 2004). As a result, it is not surprising to see 

an increase in energy expenditure during prolonged wakefulness. 

 A second explanation for the increase in energy expenditure might be that our 

sleep deprivation procedure involves a certain degree of (forced) locomotion. 

However, our lab previously found that rats on both a forced or voluntary 

exercise protocol did not show an attenuation of body weight gain, even though 
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both groups of rats walked approximately 5500 m/day (Boersma et al, submitted). 

The latter is ten times as much as the distance walked by SR rats in the present 

study. Therefore, it is unlikely that the daily forced locomotion during sleep 

restriction is the only factor involved in the increase in energy expenditure 

and in turn the attenuation of weight gain. 

 A third explanation for the increase in energy expenditure during sleep 

restriction may be that the procedure causes stress in rats. Various studies 

have shown that uncontrollable stress leads to increased energy expenditure 

(Fuchs and Kleinknecht, 1986) together with an attenuation of weight 

gain (Meerlo et al., 1996). However, in our experiment, plasma levels of 

the stress hormone corticosterone were not changed after 8 days of SR, 

suggesting that forced locomotion as a sleep restriction method is not a major 

stressor.

 It is intriguing that rats in our sleep restriction model do not increase 

their food intake, despite an increase in energy expenditure. Studies by other 

investigators have shown hyperphagia in sleep deprived rats, which may indicate 

an attempt to compensate for the increased energy use (Everson and Crowley, 

2004;Galvao et al., 2009;Koban et al., 2008;Rechtschaffen and Bergmann, 

1995). However, even in those studies, sleep deprived rats lost weight compared 

to controls. We showed that plasma insulin and leptin levels were decreased 

after 8 days of SR. These hormonal changes are likely a reflection of the 

nutritional state of the rats, as seen in literature (Benoit et al., 2004;Levin and 

Keesey, 1998). At the end of the 5 day recovery phase, body weight of SR rats 

remained significantly lower compared to controls, which still seemed to be 

reflected in leptin and insulin levels, even though these levels were no longer 

significantly different from controls. Interestingly, since leptin is a satiety 

signal (Woods and Seeley, 2000;Woods and D’Alessio, 2008), one might 

expect that a decrease in the levels of this hormone would lead to an increase 

in food intake. However, in the present study SR rats refrained from 

increasing their food intake, despite a decrease in leptin and insulin levels.

 Since the decreased levels of leptin and insulin did not lead to increased 

food intake, it may be that these neuroendocrine signals are processed 

differently at the central level. Some sleep deprivation studies in literature 

show hyperphagia together with increased neuropeptide Y mRNA levels and 

orexin/hypocretins levels in the cerebrospinal fluid (Koban et al., 2006;Koban 

et al., 2008;Martins et al., 2010). Thus it may be that the increases in 

these neuropeptides, together with decreased levels of leptin and insulin, are 

necessary to induce hyperphagia. One can speculate that we did not 

see hyperphagia in our experiment due to the fact that these neuropeptides 

are not changed with this particular sleep restriction protocol. 

Future experiments should be performed to verify this. 

 In conclusion, eight days of sleep restriction leads to an attenuation of 

weight gain which is largely explained by an increase in energy expenditure. 

During sleep restriction, food intake is not changed despite a decrease in the 
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regulatory hormonal factors insulin and leptin. An explanation may be that sleep 

restriction disturbs the regulation of food intake at a more central level such that 

the decrease in plasma leptin and insulin is not sufficient to induce hyperphagia.
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Abstract
Epidemiological studies have shown an association between short or disrupted 

sleep and an increased risk for metabolic disorders. To assess a possible causal 

relationship, we examined the effects of experimental sleep disturbance on 

glucose regulation in Wistar rats under controlled laboratory conditions. Three 

groups of animals were used: a sleep restriction group (RS), a group subjected 

to moderate sleep disturbance without restriction of sleep time (DS), and a home 

cage control group. To establish changes in glucose regulation, animals were 

subjected to intravenous glucose tolerance tests (IVGTT) before and after 1 or 8 

days of sleep restriction or disturbance. Data show that both RS and DS reduce 

body weight without affecting food intake and also leads to hyperglycemia and 

decreased insulin levels during an IVGTT. Acute sleep disturbance also caused 

hyperglycemia during an IVGTT, yet, without affecting the insulin response. In 

conclusion, both moderate and severe disturbances of sleep markedly affects 

glucose homeostasis and body weight control.
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Introduction
Sleep and metabolism seem to be related. Epidemiological studies have 

established a link between disturbed sleep and increased risk for the development 

of obesity and type 2 diabetes (Cappuccio et al., 2008;Chaput et al., 2006;Chaput 

et al., 2007;Gottlieb et al., 2005). These studies revealed that habitual short sleep 

is a risk factor, independent of classical risk factors such as BMI, food intake and 

reduced exercise [for reviews, see (Knutson et al., 2007;Penev, 2007;Spiegel et 

al., 2009)]. Whether or not these relationships are causal is still a matter of debate 

(Horne, 2008). 

 Experimental studies in both humans and animals have shown clear effects of 

sleep deprivation on body temperature, food intake, body weight gain and energy 

expenditure (Banks and Dinges, 2007;Nedeltcheva et al., 2009;Rechtschaffen 

and Bergmann, 1995;Vaara et al., 2009). Sleep deprivation also leads to changes 

in the activation of the sympathetic nervous system, to reduced levels of leptin 

and to increased levels of ghrelin in the general circulation (Taheri et al., 2004). 

Finally, a number of recent experimental studies suggest that even mild sleep 

disturbance leads to glucose intolerance, the first step in the development of type 

2 Diabetes (Spiegel et al., 1999;Tasali et al., 2008). 

 While epidemiological studies mainly focused on mild but chronic sleep 

disturbances, laboratory studies mostly focus on the consequences of acute 

and short-lasting sleep deprivation. Frequent or chronic sleep disruption may 

gradually lead to changes in brain and body that are not noticeable after acute 

sleep deprivation (Meerlo et al., 2002;Novati et al., 2008;Roman et al., 2005). 

Yet, studies on metabolism and glucose regulation under conditions of mild but 

chronic sleep disturbance in a controlled experimental setting are scarce (Everson 

and Szabo, 2009;Spiegel et al., 1999). Therefore, in the current study we applied 

an animal model to investigate the effect of chronically disturbed sleep on glucose 

homeostasis. To this end, rats were subjected to a series of intravenous glucose 

tolerance tests (IVGTT) before and after a period of either moderate sleep 

disturbance or severe sleep restriction. To compare the effects of acute and 

chronic sleep disturbance, the experiment was performed after a period of 1 or 8 

days of sleep disturbance. 

Methods

Animals and housing

Male Wistar rats (weight ± 320g; Harlan Netherlands BV, Horst, The Netherlands) 

were individually housed in Plexiglas cages in a climate-controlled room (21 °C ± 1) 

under a 12h: 12h light-dark cycle (lights on at 10:00 am). Animals were maintained 

ad lib on medium fat food (45% fat; Arie Blok Diervoeding B.V., Woerden, The 

Netherlands). Water was available ad lib throughout the study. Food intake and 

body weights were measured daily. Experiments were approved by the Ethical 

Committee of Animal Experiments of the University of Groningen. 
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Surgery

All animals were instrumented with chronic heart catheters bilaterally in the jugular 

vein (Steffens, 1969) allowing stress free blood sampling during an intravenous 

glucose tolerance test (IVGTT). Surgeries were carried out under general 

isoflurane (2%) anesthesia. Animals had at least 10 days to recover before the 

start of the experiments. Cannulas were checked every week for patency.

Sleep restriction and sleep disturbance

The animals were divided over three groups (see Figure 1): a sleep restricted 

group (restricted sleep: RS), a moderately sleep disturbed group (disturbed sleep, 

DS) and a home cage control group (controls). The sleep restricted animals (RS) 

were allowed to sleep in their home cage for only 4 hours per day at the beginning 

of the light phase. During the remaining 20 hours, the rats were kept awake by 

placing them in slowly rotating drums (diameter 40cm), rotating at a constant speed 

of 0.4 m/min (Novati et al., 2008;Roman et al., 2005). The animals of the sleep 

disturbed group (DS) were forced to walk in the rotating drums for a total of 10 

hours/day with the aim to disturb their normal sleep-wake cycle without restricting 

their sleep time. The 10h of forced activity in this group was divided in 4 blocks 

of 2 or 3h with 3 or 4h of rest in between (Figure 1). The animals of the DS group 

walked at double speed (0.8 m/min) and therefore covered the same distance as 

the RS animals (0.48 km/day). For comparison, rats run approximately 2-3 km/day 

when allowed to run voluntarily (Scheurink et al., 1999). Both RS and DS animals 

spent the first 4h of the light phase in their regular home cages for IVGTT’s and 

blood sampling. All animals were habituated to the experimental conditions by 

placing them in the drums for 1-2h for 3 consecutive days before the onset of the 

experiments. Control animals were left undisturbed in their home cage. 

Intravenous glucose tolerance test and chemical analyses

To assess the effects of sleep restriction and/or sleep disturbance on glucose 

regulation, rats were subjected to a series of intravenous glucose tolerance tests 

(IVGTT). The IVGTT’s were performed during the third and fourth hour of the 

light phase. Food was removed at lights on and rats were connected to the blood 

sampling and infusion tubes at least one hour before the IVGTT. During the IVGTT, 

a 15% glucose solution was infused for 30 minutes at a rate of 0.1 ml/min. The 

start of the infusion was designated time point t = 0 min. Blood samples (0.2 ml) 

for determination of blood glucose and plasma insulin levels were taken before, 

during and after the infusion of glucose at time points t = -10, -1, 5, 10, 15, 20, 25, 

30, 35, 40 and 50 min. Note that the glucose infusion prevented any hypovolemic 

effect of the blood sampling. Blood samples were collected in EDTA (20μL/ml 

blood) containing tubes on ice. Blood was centrifuged at 2600g for 10 min and 

plasma was stored at − 20 °C until analysis. Blood glucose levels were measured 

by Hoffman’s ferrocyanide method and plasma levels of insulin were measured by 

Millepore Rat Insulin Radioimmunoassay (Linco Research, St Charles, MO, USA).
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Experimental design

Two experiments were performed. Experiment 1 was designed to study 

glucose homeostasis under conditions where sleep was disrupted or restricted 

chronically. In this experiment, the animals were subjected to an IVGTT before 

(pre-experimental baseline) and after an 8-day period of sleep disturbance (RS 

or DS). Rats that remained in their home cage without any sleep disturbance 

served as controls. Experiment 2 served as a control experiment for the chronic 

sleep disturbance study and assessed the effects of acute sleep disturbance. 

In this second experiment a single IVGTT was performed after 1 day of sleep 

disturbance. In both experiments, blood samples were collected for measurement 

of glucose and insulin levels. In the second experiment an additional 0.1 ml blood 

sample was taken at t = -10 minutes for determination of plasma corticosterone 

levels (ImmuChem 125I Corticosterone Radioimmunoassay, MP Biomedicals, 

Orangeburg, NY, USA).

Statistical analysis

Data are expressed as averages ± SEM. Body weight is expressed as the change 

in weight relative to day 0 (the onset of sleep disturbance). The effects of RS and 

DS on food intake and body weight, as well as glucose and insulin responses to 

IVGTT were tested by comparing the experimental and control groups with each 

other and, in Experiment 1, with the pre-experimental baseline using repeated 

measures analysis of variance (ANOVA). When appropriate, a posthoc Tukey test 

was applied to establish differences between the three groups (controls, RS and 

DS). P < 0.05 was considered statistically significant.

Figure 1: Schematic overview of the sleep disturbance protocols for the restricted sleep group (RS), disturbed 

sleep group (DS), and control group. For each treatment group, periods of wakefulness induced by forced 

locomotion are shown in light grey. The RS group was subjected daily to one consolidated block of 20h forced 

activity while the DS group was subjected to blocks of 2-3h forced activity interspersed by 3-4h blocks of rest. 

Control animals were left undisturbed.
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Results

The average 24 hour food intake before, during and after the treatment for 

the different groups is shown in figure 2A. There were neither differences in 

food intake between the 3 groups, nor changes over time within the groups. 

Body weights are shown in figure 2B. The RS and DS animals were significantly 

lower in body weight than the home cage controls already after 2 days of sleep 

disturbance (Repeated Measures ANOVA: F(36,486)=11.02, P<0.001; posthoc 

Tukey Test: controls vs. RS P<0.01 and controls vs. DS P<0.01). There were 

no body weight differences between the RS and the DS animals.

 Figure 3 depicts the glucose and insulin levels before, during and after the 

30-min intravenous infusion of glucose, both under baseline (pre-experimental) 

conditions and after 8 days of sleep disturbance (RS and DS versus controls). 

In all groups, intravenous infusion of glucose led to an increase in both blood 

glucose and plasma insulin levels. After termination of the infusion, both glucose 

and insulin returned to pre-infusion levels. Eight days of sleep disturbance 

markedly changed the glucose and insulin responses to an IVGTT. Blood 

glucose levels were higher and plasma insulin levels were lower in the RS 

and DS animals compared to the pre-experimental IVGTT levels (Glucose 

RS: F(10,140)=10.05, P<0.0001; Glucose DS: F(10,160)=9.64, P<0.0001; 

Insulin RS: F(10,150)=10.53, P<0.0001; Insulin DS: F(10,160)=8.97, P<0.0001). 

Also in comparison to the home cage controls, glucose levels were higher and 

insulin levels were lower in both experimental groups (Glucose: F(20,200)= 

3.37, P<0.0001; posthoc Tukey Test: RS vs. controls P<0.05 and DS vs. 

controls P<0.05; Insulin: F(20,190)=3.70, P<0.0001; posthoc Tukey Test: RS 

vs. controls P<0.01 and DS vs. controls P<0.05). No differences were found 

between the RS and DS rats.        

 Figure 4 shows the glucose and insulin levels before, during and after the 

glucose infusion after a single day of sleep disturbance. In both the RS and DS 

animals, glucose levels were significantly higher than the levels in undisturbed 

home cage controls (F(21,210)=12.49, P<0.0001; posthoc Tukey Test: RS 

vs. controls P<0.001 and DS vs. controls P<0.001) There were no differences 

between the groups with regard to the plasma insulin response to an IVGTT 

after one day of sleep disturbance.

 In Experiment 2, after 1 day of RS or DS, at time point t = -10 min immediately 

preceding the IVGTT, plasma levels of corticosterone were low and not 

different between the groups (RS: 1.4 ± 0.2 μg/dl, DS: 1.3 ± 0.1 μg/dl, controls: 

2.4 ± 0.2 μg/dl).
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Figure 2: Average daily food intake (a) and body weight (b) in the baseline, experimental and recovery phase 

of the experiment for RS (n=11), DS (n=12) and control (n=7) animals. The horizontal grey bars at the bottom 

of the graphs represent the 8 day period of RS or DS. Data are average values ± SEM. Asterisks indicate a 

significant difference between sleep disturbed (DS and RS) and control animals (* P<0.01).
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Figure 3: Blood glucose and plasma insulin levels in response to a 30-min intravenous glucose infusion 

after 8 days of sleep restriction (graphs C and F, n=11), sleep disturbance (graphs B and E, n=12) 

or control (graphs A and D, n=7). Each graph presents the glucose or insulin profiles under 

pre-experimental baseline conditions (Baseline: open circles) and after 8 days of sleep disturbance 

(Experiment: closed circles). The horizontal grey bars at the bottom of each graph represent the 30 min of 

15% glucose infusion. Data are average values ± SEM. Asterisks indicate a significant difference between 

baseline and experimental conditions (* P<0.05).
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Figure 4: Blood glucose (a) and plasma insulin levels (b) in response to a 30-min intravenous glucose 

infusion after 1 day of sleep restriction (closed triangles, n=8), sleep disturbance (closed circles, n=8) or 

control (open circles, n=8). The horizontal grey bars at the bottom of the graphs represent the 30 min of 15% 

glucose infusion. Data are average values ± SEM. Asterisks indicate a significant difference between sleep 

restricted rats and controls (* P<0.05) and # indicates a significant difference between sleep disturbed rats 

and controls (# P<0.05). 
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Discussion
This study shows that eight days of sleep disturbance markedly interferes with 

body weight maintenance and glucose metabolism in rats. The main findings 

were: 1) chronic sleep disturbance reduces body weight without changes in food 

intake; 2) chronic sleep disturbance leads to hyperglycemia and a concomitant 

reduction in the insulin response to an IVGTT; 3) acute sleep disturbance also 

leads to hyperglycemia without changes in the insulin response to an IVGTT; 

4) the metabolic effects of moderate sleep disturbance and more severe sleep 

restriction are remarkably similar.

 The elevated glucose levels that occurred after both short and long term sleep 

disturbance confirm data from previous studies in humans in which was found that 

moderate sleep restriction or even suppression of sleep intensity without affecting 

sleep time may lead to glucose intolerance (Spiegel et al., 1999;Tasali et al., 2008). 

In our study, the increase in blood glucose during the IVGTT already occurred 

after one day of sleep disturbance. The data from the chronic sleep disturbance 

experiment might suggest that the elevated glucose levels are caused by a reduced 

insulin response. However, the finding of hyperglycemia without changes in plasma 

insulin response after acute sleep disturbance makes this explanation less likely. 

An alternative explanation might be that the hyperglycemia is caused by increased 

HPA-axis activity reflecting the stress of sleep disturbance. To test this possibility 

we measured plasma corticosterone levels in the sleep disturbed animals just prior 

to the infusion of glucose. Since corticosterone levels were not different between 

the groups, elevated HPA-axis activity can also not explain the hyperglycemia 

after sleep disturbance. Therefore, the reason for the hyperglycemia following 

both short and long term sleep disturbance remains unclear. Our current studies 

focus on the hypothesis that this hyperglycemia may be secondary to changes in 

hypothalamic orexin, a neuropeptide known to be involved in both the sleep/wake 

cycle and glucose metabolism (Sakurai, 2007;Tsujino and Sakurai, 2009;Yi et al., 

2009). A number of recent studies suggest that REM sleep deprivation increases 

orexin immunoreactivity in the lateral hypothalamic area and orexin levels in the 

CSF, which may underlie some of the metabolic changes described after restricted 

or disrupted sleep (Galvao et al., 2009;Pedrazzoli et al., 2004).

 Eight days of sleep disturbance caused a reduction in body weight together with 

a decrease in basal levels of glucose and insulin and a decrease in IVGTT levels 

of insulin. The literature suggests that the lower levels of glucose and insulin and 

the attenuated insulin response to the glucose tolerance test are most likely a 

direct consequence of the drop in body weight (Redman and Ravussin, 2009). 

 Surprisingly, the weight loss in our rats was not accompanied by a change in food 

intake, which may suggest that sleep disturbance leads to increased daily energy 

expenditure. The latter indeed is supported by data in the literature (Everson, 

1995;Rechtschaffen and Bergmann, 1995). One cause of an increased energy 

expenditure in our protocol of sleep disturbance might be the forced locomotion 

in the rotating drums. However, one should note that in both the RS and 

DS condition the rats walked only 480 m/day, which is less than 20% of the 
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distance they would voluntarily run in a running wheel (Scheurink et al., 1999). 

Furthermore, although long term exercise may lead to improved insulin sensitivity 

and therefore reduced plasma insulin levels (Borghouts and Keizer, 2000), in rats, 

it does not lead to extensive weight loss and/or hyperglycemia (Donovan and 

Sumida, 1990). Therefore, the decrease in body weight and hyperglycemia in our 

study are not likely a result of the mild increase in activity involved in our sleep 

disturbance protocols.

 The metabolic changes after sleep disturbance were similar in the RS and 

DS animals. This was unexpected because the degree of sleep restriction 

was markedly different between the two groups. The DS rats were subjected 

to a disruption of the normal sleep-wake cycle without restriction of their sleep 

time, whereas the RS rats were genuinely sleep restricted. Based on this 

observation, we speculate that the metabolic consequences of sleep curtailment 

are mainly related to the occurrence of frequent sleep interruptions and a 

disturbed sleep-wake cycle rather than sleep loss per se. In other words, it is 

the quality rather than the quantity of sleep that is important. Indeed, a recent 

study in humans found that suppression of sleep intensity without changes in total 

sleep time was sufficient to cause glucose intolerance and a decreased acute 

insulin response (Tasali et al., 2008). Patients suffering from obstructive sleep 

apnea (OSA) provide comparable evidence (Bandla and Gozal, 2000;Svanborg 

and Guilleminault, 1996). Total sleep time in OSA patients is not 

dramatically altered, still there are direct correlations between OSA and 

obesity, type 2 diabetes and cardiovascular diseases (Vgontzas et al., 2003). 

The opposite is true as well: modest weight gain or weight loss lead to 

a significant worsening or improvement, respectively, of sleep apnea in 

middle-aged individuals (Peppard et al., 2000;Pillar and Shehadeh, 2008). 

Thus, several lines of evidence together suggest that disturbed sleep by 

itself is sufficient to affect glucose homeostasis. 

 In conclusion, our data reveal that disturbance of the regular sleep-

wake rhythm has a marked effect on glucose homeostasis and body weight 

control. Sleep disturbance directly leads to glucose intolerance and 

hyperglycemia and, on the long term, to weight loss accompanied with reduced 

insulin responses. The data further suggest that a disturbance of the normal 

sleep pattern, even without restriction of total sleep time, is sufficient to affect 

glucose metabolism and body weight maintenance.
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Abstract
There are large individual differences in the success rate of exercise intervention 

programs aimed at the prevention and treatment of obesity related disorders. 

In the present study we tested the hypothesis that differences in coping style 

may have repercussion for the success rate of these intervention programs. 

To this end we tested the insulin responses before and after voluntary wheel 

running, via intravenous glucose tolerance tests (IVGTT), in both passive (insulin 

resistant) Roman Low Avoidance (RLA) and proactive (insulin sensitive) Roman 

High Avoidance (RHA) rats. To control for the potential difference between 

voluntary and forced exercise, we also included RLA and RHA rats that were 

subjected to forced-running. We found that 1) when given the opportunity to run 

voluntarily in a running wheel passive RLAs run more than proactive RHAs, 2) 

voluntary exercise leads to a normalization of the insulin response during an IVGTT 

in the RLA rats, and 3) there were no behavioral and physiological differences 

in efficacy between voluntary and forced running. We thus conclude that 

exercise, both forced and voluntary, is a successful lifestyle intervention for the 

treatment of hyperinsulinemia, especially in individuals with a passive coping style.
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Introduction
Successful life style intervention may halt the ever increasing prevalence of 

metabolic disorders such as obesity, the metabolic syndrome and type 2 diabetes 

(Dunstan et al., 1997; Lindstrom et al., 2006). Exercise-based intervention 

programs are particularly successful (Vanninen et al., 1992; Torjesen et al., 1997), 

for a recent review see (McCall and Raj, 2009). Exercise reduces body adiposity, 

improves glucose tolerance and increases insulin sensitivity (DeFronzo et al., 

1987; Ebeling et al., 1993; Hughes et al., 1993; Mayer-Davis et al., 1998; Afonso 

and Eikelboom, 2003; Alessio et al., 2005). There are, however, large individual 

differences in the success rate of exercise intervention programs (Teixeira et 

al., 2004), partly due to the large individual differences in the susceptibility for 

these metabolic disorders (recently reviewed in (Andreassi, 2009)). Our working 

hypothesis is that differences in coping style may explain the large individual 

variation in the success rate of exercise interventions programs in metabolic 

disorders such as type 2 Diabetes and the metabolic syndrome.

 Differences in coping style are a wide-spread phenomenon in the animal 

kingdom (Careau et al. 2010; Wolf et al., 2008). This is, however, largely ignored 

in animal studies modeling the development of type 2 Diabetes, insulin resistance 

or the metabolic syndrome. In our most recent studies, we have filled in this gap 

using the Roman High and Low Avoidance rat selection lines (Boersma et al. 

2009; Boersma et al. 2010; Boersma et al., 2011b). Rats from these selection lines 

are different at the level of several neuroendocrine, cardiovascular and metabolic 

parameters (Corda et al., 1997; Giorgi et al., 2003; Boersma et al., 2009), but 

do also differ in emotional reactivity and coping style. Roman Low Avoidance 

(RLA) rats are highly emotional individuals with a passive coping style, Roman 

High Avoidance (RHA) rats are (pro)active rats with low emotional reactivity. We 

recently demonstrated that the passive animals display, already at normal weight, 

several characteristics of the metabolic syndrome, such as insulin resistance, 

visceral adiposity and hypertension (Boersma et al. 2009; Boersma et al. 2010; 

Boersma et al. 2011a; Boersma et al., 2011b). We have extended and confirmed 

these findings in passive and proactive individuals in outbred wild-type Groningen 

rats, in which coping style appeared to predict changes in metabolic profiles 

analogous to those observed in the RHA/RLA rats (Boersma et al. 2010; Boersma 

et al. 2011b).

 In the present study we particularly focused on the importance of differences 

in coping style on the potential beneficial effect of exercise on insulin resistance 

and visceral adiposity. To this end, we performed a series of experiments in which 

the insulin response during an intravenous glucose tolerance test (IVGTT) was 

measured in both passive (insulin resistant) RLA and proactive (insulin sensitive) 

RHA rats, under sedentary conditions and after 18 days of exercise in a running 

wheel.

 In most animal studies, exercise consists of voluntary running in a wheel. The 

voluntary running in rats is used to mimic exercise programs in humans. However, 

these programs are, at least by a part of the participants perceived as unpleasant, 
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stressful and/or aversive. This means that there is a discrepancy between 

voluntary exercise in the rat model and forced exercise in the human. Therefore, 

to control for the potential difference between stressful and stress-free exercise, 

we also included two groups of RHA and RLA rats that were subjected to 18 days 

of forced running.

Materials and methods

Animals and housing

The experiments were approved by the local animal experimental welfare and 

care committee (DEC, Groningen, the Netherlands). Roman High (RHA) and 

Low (RLA) Avoidance rats, obtained from a breeding colony at the Clinical 

Psychopharmacology Unit (APSI) of the University of Geneva, were housed in 

a room controlled for temperature and humidity (20 ± 2 °C; 60%). The room was 

kept at a 12-12 hours light-dark cycle (lights on = CT0 at 01:00 hrs., lights off = 

CT12 at 13:00 hrs.). The rats were fed a standard lab chow diet (Hope Farms, 

Arie Blok Diervoeding, Woerden, NL; 3.7 kcal/g, 14 % fat). Food and water was 

available ad libitum.

Experimental design

The following experiments were performed: 1) Experiment 1 in which both RHA 

and RLA rats were submitted to an intravenous glucose tolerance test (IVGTT) at 

baseline and after 18 days of voluntary wheel running and 2) Experiment 2 in which 

both RHA and RLA rats were submitted to IVGTTs at baseline and after 18 days 

of forced wheel running. For both studies, the rats underwent surgery to place two 

indwelling jugular vein catheters for infusion and blood sampling (Steffens, 1967). 

Rats were accustomed to the infusion and blood sample procedures before the 

onset of the experiments (Steffens, 1969). The experiments started two weeks 

after surgery. Body weights and food take was measured daily throughout the 

experiment. The experimental design is summarized in figure 1.

Experiment 1

Twelve rats (6 RHA and 6 RLA) were housed in standard cages (24x24x32 cm). 

Two weeks after surgery, at day -14, a baseline IVGTT was performed. At day -10, 

the rats were transferred to standard running wheel cages (Nalgene polycarbonate 

running wheel cages [50-27-36 cm]) with free access to a running wheel 

(diameter 27cm, Mini Mitter, Oregon, USA). The rats were allowed to habituate 

to the wheel running for 10 days. During this habituation period running activity 

typically increases after which it stabilizes. After habituation, the rats were allowed 

to run voluntary for 18 days (intervention period: day 0 until day 18). A second 

IVGTT was performed on day 18. Four days later, the rats were sacrificed for 

carcass analysis.
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Experiment 2

Sixteen rats (8 RLA and 8 RHA) were housed in standard cages (24x24x32 cm). 

A baseline IVGTT was performed at day -14. At day -10, the rats were transferred 

to forced activity cages (TSE, Bad Homburg, Germany). These cages contain 

running wheels with a diameter of 25 centimeter that force the rat to run. Both 

running speed and time spent on running are controlled. All animals were forced 

to run in a schedule that mimicked the voluntary running activity patterns of the 

pro-active RHA rats that participated in Experiment 1 (see Figure 3B). Since we 

observed that rats are running in bouts of circa 5 minutes, we decided to force the 

animals to run in a schedule of 5 minutes running and 5 minutes rest. The speed 

(max 20 m/min) was adjusted so that the total distance per hour was similar to that 

of the RHA rats. The rats were accustomed to the forced running paradigm for 10 

days (day -10 until day 0). Intensity and duration was slowly built up, in parallel to 

the increased running in the habituation period in the voluntary running animals in 

Experiment 1. Running only took place in the dark phase, and the running pattern 

mimicked the average hourly running activity patterns of the voluntary running 

RHA rats. Hereby the forced running rats, similar to voluntary running rats, had 

ample time to eat, sleep and drink, and effects of alterations in circadian rhythms 

were minimized. During the intervention the rats were forced to run 5000 m/day. 

The forced activity intervention period lasted from day 0 until day 18. A second 

IVGTT was performed on day 18. Four days later, the rats were sacrificed for 

carcass analysis.

Intravenous glucose tolerance test

At the day of an IVGTT, food was removed at the beginning of the light phase 

at CT 0. The IVGTTs were performed in the light phase, between CT 4 and CT 

6. An IVGTT consisted of 30 minutes infusion of 15 mg glucose in 0.1 ml saline 

per minute (total 450 mg in 3 ml). Before the onset of the infusion, two baseline 

samples (0.2 ml) were taken at time points t = -11 and 1 minutes. The infusion of 

glucose was started at time point t = 0 minutes. Additional blood samples were 

taken at time points t = 5, 10, 15, 20, 25, 30, 35, 40, and 50 minutes. A total blood 

volume of 2.2 ml was taken. Blood samples were kept on ice and stored in files 

with 10 μl EDTA (0.09g/ml). For glucose determination 50 μl of full blood with 

Figure 1: The experimental design for experiment 1 and experiment 2.
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450 μl Heparin solution (2%) was stored at -20°C until analysis. Blood glucose 

levels were determined using the ferry-cyanide method (18) in a Technicon auto 

analyzer. The remaining blood was centrifuged for 15 minutes and plasma was 

stored for insulin and corticosterone determination. Plasma levels of insulin and 

corticosterone were measured with commercial radioimmunoassay (RIA) kits 

(Linco Research and.M P Biomedicals).

Carcass analysis

An extensive carcass analysis was performed 4 days after the last IVGTT. 3 

hours before lights off, rats were sacrificed using an overdose of pentobarbital. 

Epididymal and retroperitoneal fat pads and the liver were taken out and weighed. 

The skin with the subcutaneous fat was removed from the carcass. The liver, skin, 

and carcasses were dried at 80 °C for 5 days. The fat content was determined 

by extracting the fat from the tissue using a petroleum based Soxlet fat extractor. 

After fat extraction the tissue was dried for 5 days again. The difference between 

dry tissue weight before and after fat extraction provides information on the fat 

content of the tissue.

Data analysis

Food intake and body weight data are presented as daily averages with standard 

error of the mean (SEM). Average running wheel activity was calculated as 

averages from day 0 until day 18 for each individual animal. Glucose and insulin 

levels are presented in group averages with standard error of mean. Statistical 

differences between groups were determined with repeated measures ANOVA 

followed by Tukey post-hoc test using coping style and type of intervention as 

between subjects factors and time of measurement as within subjects factor. 

The area under the curves (AUC) of the insulin responses were calculated and 

averaged. Percentage fat mass was calculated by dividing total dry fat mass by 

total dry lean body mass and multiplying this with 100%. Fat mass and weight of 

the different fat pads are presented as group averages with standard error of the 

mean. Differences in the area under the insulin response curve, and the body 

composition were statistically tested with one-way ANOVA followed by Tukey post 

hoc analysis using coping style and type of intervention as the between subject 

factors. All statistical analyses used a 5% confidence interval.

Results

Figure 2 displays body weight gain (A) and food intake (B) of the different groups 

during the intervention period from day 0-18. There were no differences in food 

intake or body weight gain among any of the groups. In all groups, food intake 

was higher during the intervention period when compared to the intake during 

the baseline period (baseline: 101 ± 4.8 kcal/day; intervention: 120 ± 5.6 kcal/

day; F(1,27)= 4.562, p<0.05). Figure 3 displays the running activity of all 

groups. In Experiment 1, RLA rats ran significantly more than RHA rats 

(F(1,15)= 9.332, p< 0.01). 
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Blood glucose and plasma insulin levels are presented in Figure 4. There were 

no significant differences in blood glucose levels among the groups. Insulin 

responses were significantly different (F(5,39)= 6.294, p<0.01): 1) at baseline, 

when RLAs have much higher levels than RHAs (p<0.01),   2) in the RLAs, in 

which the baseline levels were much higher than those after 18 days of both 

voluntary and forced exercise (voluntary running p<0.01; forced running p<0.01) 

and 3) in the RHAs when baseline levels were higher than those after 18 days 

of voluntary but not forced exercise (voluntary running p<0.05; forced running 

p=0.103). There were no differences in plasma insulin responses between the 

voluntary runners and the forced runners, both under baseline conditions and after 

18 days of exercise.

 Corticosterone levels at the end of the light phase were not different between 

the forced and voluntary running rats under any circumstances (RLA baseline: 250 

± 35.3 ng/ml; RHA baseline: 225 ± 29.3 ng/ml; RLA voluntary running: 242 ± 29.7 

ng/ml; RHA voluntary running: 226 ± 25.3 ng/ml; RLA forced running: 263 ± 29.7 

ng/ml; RHA forced running: 233 ± 25.26 ng/ml). Baseline levels of corticosterone 

at circadian peak level tended to be higher in the passive RLAs when compared to 

the proactive RHAs, but this difference did not reach statistical significance.

 Carcass analysis showed there were no differences in the percentage of body 

fat at the end of the study (RLA voluntary running: 35.9 ± 0.47 %; RHA voluntary 

running: 34.9 ± 0.54 %; RLA forced running: 33.3 ± 0.56 %; RHA forced running: 

33.1 ± 0.62 %). The distribution of body fat was however different between 

the groups: passive RLAs have relatively more fat in the epididymal depot in 

comparison to proactive RHAs (RLA voluntary running: 4.42± 0.24 g; RHA 

voluntary running: 3.91 ± 0.21 g; RLA forced running: 5.8 ± 0.49 g; RHA forced 

running: 3.6 ± 0.26 g; (F (3,25) = 6.426 p<0.05)). There were no differences 

between RLAs and RHAs in the amount of fat distributed in the retroperitoneal fat 

depot (RLA voluntary running: 7.7 ± 0.77 g; RHA voluntary running: 7.1 ± 0.69 g; 

RLA forced running: 8.1 ± 0.76 g; RHA forced running: 7.6 ± 0.84g).
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Figure 3: Running activity in experiments 1 and 2. White symbols = voluntary running RLA rats, Black symbols 

= voluntary running RHA rats, Grey symbols = forced running rats of both strains * indicates a significant 

difference between voluntary running RLAs and RHAs. 

Figure 2: Body weight gain and food intake of passive and proactive rats that ran voluntarily or forced.

Black circles = proactive forced runners (n=8), white circles = passive forced runners (n=8), 

black triangles = proactive voluntary runners (n=6), white triangles = passive voluntary runners (n=6). 
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Figure 4: Blood glucose (A and B) and plasma insulin (C and D) levels before, during and after an IVGTT 

at baseline and after 18 days voluntary or forced running in both RLAs (A and C) and RHAs (B and D). 

Baseline values in experiment 1 and 2 are combined in one graph. Black triangles = baseline, light grey 

circles = voluntary runners, dark grey squares = forced runners. Area under the insulin curve at baseline and 

after 18 days of voluntary and forced running in RLA (E) and RHA (F) rats. Black bars = baseline voluntary 

runners, medium grey bars = 18 days voluntary running, dark grey bars = baseline forced runners, light grey 

bars = 18 days forced running. vr = voluntary running, fr = forced running. * indicates a significant difference 

between baseline conditions and both voluntary running and forced running conditions.
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Discussion
The aim of the current study was to investigate the interaction between coping 

style and exercise in relation to the treatment of hyperinsulinemia. The major 

findings of this study were: 1) when given the opportunity to run voluntarily in a 

running wheel, passive RLAs run more than proactive RHAs, 2) voluntary exercise 

leads to normalization of the insulin response during an IVGTT in the RLA rats, 

and 3) there are no behavioral and physiological differences between voluntary 

and forced running. 

 Consistent with our previous studies, passive RLA rats displayed a much higher 

insulin response to an intravenous glucose tolerance test under baseline conditions 

when compared to  the RHA rats (Boersma et al., 2009). Exercise completely 

normalized this elevated insulin response to control levels indicating that exercise 

is a successful life style intervention for the treatment of hyperinsulinemia, in 

particular in rats with a passive coping style.  

 The most interesting finding is the increased running activity in the passive RLA 

rats when they were allowed to run voluntarily. This is remarkable since these 

so-called passive rats are generally characterized as having lower locomotor 

activity. This ‘passive’ behavior was observed in several different experimental 

conditions such as the open field test, the Porsolt forced swim procedure and the 

elevated plus maze test (Ferre et al., 1995; Steimer and Driscoll, 2005; Smith and 

MacKenzie, 2006). However, these tests are all short term responses to unfamiliar 

conditions, whereas in our study we monitored the internal motivation to be active 

in a familiar environment.

 Increased running in the RLAs resulted in the normalization of the insulin 

response during an IVGTT, which is a strong indication of improvement of insulin 

sensitivity. Such a phenomenon, i.e. increased spontaneous wheel running 

activity in metabolically deranged rodents has been reported before, among 

others in overweight animal models such as the OLEFT rat (Bi et al., 2005) 

and the MC4 knockout mouse (Haskell-Luevano et al., 2009). Both the OLEFT 

and the MC4 knockouts have an obese and insulin resistant phenotype under 

sedentary conditions, but compensate for this by increased activity when allowed 

to run spontaneously in wheels, leading to normalization of their body weight. 

In the present study, we observe that presumably insulin resistant rats show 

increased running to normalize their insulin sensitivity. Therefore it is tempting to 

speculate that the increased running may be considered as a behavioral strategy 

to compensate for the reduced insulin sensitivity in the sedentary state. Like 

insulin, muscular contractile activity causes glucose transporter type 4 (GLUT4) 

translocation and increases glucose uptake (Ploug and Ralston, 1998), hence 

exercise would benefit RLA rats more than RHA rats. Along these lines, it may be 

speculated that exercise has a larger impact on glucose availability to neuronal 

circuitry (Bequet et al., 2000) in RLA rats than in RHA rats, which might be a 

mechanisms by which RLA rats sustain a higher level of running wheel activity 

than RHA rats. Another implication of these results is that the sedentary state, at 

least in rodents, should not be considered as a proper control condition because 
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physical activity and health are inevitably linked (Booth et al., 2006). A point that 

is illustrated by the healthy insulin profiles in the voluntary running RLA rats.  

 We argued in the introduction section that the translational value of voluntary 

exercising animals might be limited, because humans subjected to exercise-based 

interventions may perceive it as a stressful workload. Our second study therefore 

investigated difference in the efficacy of forced and voluntary exercises in the RLA 

rats. We showed that both forced and voluntary running resulted in “normalized” 

insulin responses to an IVGTT in the RLA rats. This suggests that the exercise 

itself rather than the voluntary or forced nature of the running determines the 

beneficial effects of the wheel running on insulin sensitivity. In the current study, 

the amount of forced running was based on the average voluntary running activity 

of proactive RHA rats. Proactive rats were shown to run less voluntarily than 

passive rats. Since this forced running improved insulin signaling in the RLA rats, 

one may argue that the amount of running might not be crucial for the attenuation 

of hyperinsulinemia in the RLAs.

 The current set-up was chosen to minimize the stress of the forced running 

paradigm, especially since it might be perceived differently in RLA and RHA rats. 

A difference in perception of the workload imposed on them might, however, prove 

important when studying exercise based lifestyle interventions. In humans it is 

argued that individuals with proactive personality traits have a lower perception 

of exertion and endure higher amounts of exercise than individuals with passive 

personality traits (Hassmen et al., 1993). Nevertheless, the observation that there 

are no behavioral and physiological differences between voluntary and forced 

running animals, strengthens the face validity of the voluntary rat model for 

translation to human studies. Finally, we may conclude that exercise, either forced 

or voluntary, may serve as a successful lifestyle intervention for the treatment of 

hyperinsulinemia, especially in rats with a passive coping style.
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Abstract
Epidemiological and clinical studies suggest that working in shifts may lead to 

health problems and contribute to the development of obesity and type 2 diabetes. 

In support of this idea, an experimental study in rats showed that a simulated shift 

work protocol leads to loss of glucose rhythmicity and increased body weight. 

Based on these findings, we hypothesized that simulated shift work in rats will 

lead to glucose intolerance. Two groups of rats were included in this experiment. 

One group was subjected to a shift work protocol for 14 days. Rats were forced 

to be active for 8h per day during the light phase, i.e., their normal resting phase, 

which was achieved by placing them in slowly rotating drums. The second 

group was forced to be active for 8h during the dark phase, i.e., their normal 

active phase. All rats were subjected to an intravenous glucose tolerance test 

(IVGTT) before and after 14 days of (shift) work. Rats subjected to the shift 

work protocol showed a gradual increase in food intake during the forced 

waking period but immediately returned to their normal baseline pattern of food 

intake during the recovery period following shift work. Despite this shift in food 

intake, total food intake was not changed, body weight was slightly attenuated 

and no effect was found on glucose homeostasis. In conclusion, our current 

data do not support the hypothesis that shift work leads to disturbed metabolic 

regulation and glucose intolerance.
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Introduction
Shiftwork is a common phenomenon in our modern industrialized societies. Several 

epidemiological and clinical studies suggest that working during the normal sleep 

phase on a regular basis is a risk factor for the development of various diseases 

including metabolic disorders such as obesity and type 2 diabetes (de Assis 

et al., 2003;Knutsson, 2003;Nagaya et al., 2002;van Amelsvoort et al., 1999). 

The negative metabolic consequences of shift work may be mediated by a 

variety of different factors, e.g., circadian disturbance, sleep disturbance, altered 

food intake and increased snacking behavior (for review see: (Akerstedt, 2003; 

Antunes et al., 2010;Atkinson et al., 2008;Boggild and Knutsson, 1999;Knutsson, 

2004). Unfortunately, few experimental and well-controlled studies have been 

devoted to this topic.

 A study in rats demonstrated that 8h of forced activity during the sleep phase 

shifted food intake from the normal activity phase to the forced activity phase 

(Salgado-Delgado et al., 2008). This was accompanied by an increase in 

body weight and loss of glucose rhythmicity. Since there were no changes in 

the expression profiles of the circadian clock proteins PER1 and PER2 in the 

suprachiasmatic nucleus (SCN), these observations indicate that in rats shift work 

leads to an uncoupling of metabolic function from the biological clock in the SCN. 

 Loss of glucose rhythmicity per se does not provide information on the effect 

of shift work on glucose homeostasis. An intravenous glucose tolerance test 

(IVGTT) is more informative in this respect, since an IVGTT is used to evaluate 

insulin response and glucose clearance after glucose infusion. It has been shown 

previously that an IVGTT is a successful tool to study glucose homeostasis 

(Strubbe and Bouman, 1978).

 In the present study, we assessed the effect of shift work on food intake patterns, 

body weight and glucose homeostasis. The experiment included two groups of 

rats that were subjected to forced activity during different phases of the circadian 

cycle. The first group was forced to be active during the light (inactive) phase 

(shift work group). A second group was forced to be active during the dark 

(active) phase and was therefore not disturbed in their normal circadian 

organization (control work group). The rats were subjected to IVGTTs before 

and after a 2-week period of control work or shift work. We first assessed if shift 

work leads to a change in food intake pattern, similar to data of Salgado-Delgado 

and colleagues (Salgado-Delgado et al., 2008). Second, we hypothesized that 

shift work rats would have an impaired glucose tolerance.

Methods

Animals and housing

Adult male Wistar rats (Harlan Netherlands BV, Horst, The Netherlands) weighing 

322.3 ± 1.6 g at start of the experiment were individually housed in Plexiglas 

cages in a climate-controlled room (21 °C ± 1) under a 12h:12h light-dark cycle. 

Rats were maintained ad lib on medium fat food (45% fat diet: Arie Blok 

Diervoeding B.V., Woerden, The Netherlands). Water was available ad lib 
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throughout the study. Food intake and body weights were measured daily. 

Experiments were approved by the Institutional Animal Care and Use Committee 

of the University of Groningen. 

Surgery

All rats underwent surgery to place two bilateral jugular vein catheters (Steffens, 

1969). This allowed stress free glucose infusion and frequent blood sampling. 

Surgery was carried out under general isoflurane (2%) anesthesia. Rats were 

allowed to recover for at least 10 days prior the start of the experiments. 

Cannulas were checked and flushed at least once a week.

Shift work and Control work protocol

The rats were divided over two groups (Figure 1): a shift work group (n=7) and 

a control work group (n=8). Shift work rats were forced to be active for 8 hours 

during the light phase, i.e., their normal circadian resting phase. Control rats 

were forced to be active for 8h during the dark phase, i.e. the normal activity 

phase. Forced activity was accomplished by placing the rats in slowly 

rotating drums (diameter 40 cm), rotating at a constant speed of 0.4 m/min. 

Both experimental groups were subjected to this protocol for 14 consecutive days. 

Rats were habituated to the experimental conditions by placing them in the drums 

for 1-2h on 3 consecutive days before the onset of the experiments. 

Body weight and food intake

During the experimental period, body weight and food intake were measured daily. 

Food intake was measured both in the rotating drums (8h) and in the regular 

home cage (16h). In addition, on the baseline day and on day 13 of the experiment, 

food intake was measured during the 12h light and 12h dark phase.

Figure 1: The experimental protocol for the control work and shift work rats. Dark grey bars represent the 12h 

dark phase of the 24h light-dark cycle. The hatched light grey boxes with indicate the 8 hours when rats are 

placed into the slowly rotating drums and forced to be active.
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Intravenous glucose tolerance test and chemical analyses

To assess the effects of shift work on glucose regulation, rats were subjected 

to an intravenous glucose tolerance test (IVGTT) before (pre-experiment) and 

immediately after the experimental 14 day period (experiment). We decided 

to standardize the timing of the IVGTT at the end of the experiment relative to 

the work schedule and performed the test 17h after the last session of forced 

activity in the rotating drum for both the control work and shift work group. 

This means that the IVGTTs in the two treatment groups were performed 

at different circadian times. For shift work rats, IVGTTs were performed during 

the third and fourth hour of the light phase, whereas for control work rats 

IVGTTs were performed during the third and fourth hour of the dark phase. These 

circadian times were used for both the pre-experimental and experimental IVGTT. 

Food was removed 3 hours before the start of the IVGTT and 1 hour 

before the test rats were connected to the tubings for blood sampling and 

glucose infusion. During the IVGTT, a 15% glucose solution was infused for 

30 minutes at a rate of 0.1 ml/min. Blood samples for determination of blood 

glucose and plasma insulin levels were taken before, during and after the 

infusion of glucose at time points t = -10, -1, 5, 10, 15, 20, 25, 30, 35, 40 

and 50 min (t=0 was the start of the glucose infusion). All blood samples had 

a volume of 200 μl and were collected in EDTA (20 μL/ml blood) containing 

tubes on ice. The samples were centrifuged at 2600 g for 10 min and the 

plasma was stored at − 20 °C until analysis. Blood glucose levels were 

measured by Hoffman’s ferrocyanide method. Plasma levels of insulin were 

measured by Millipore Rat Insulin Radioimmunoassay and plasma levels 

of leptin were measured by Millipore Rat Leptin Radioimmunoassay 

(Linco Research, St. Charles, MO, USA). Plasma levels of corticosterone 

were measured by ImmuChem 125I Corticosterone Radioimmoassay 

(MP Biomedicals, Orangeburg, NY, USA).

Data analysis

All data in results section and figures are expressed as averages ± SEM. 

The effect of shift work on food intake and body weight was assessed by 

repeated measures analyses of variance (ANOVA). An effect of treatment on the 

percentage of food intake during the light and dark phase at baseline day (day 

0) and experimental day 13 was analyzed with one way ANOVA. To test for an 

effect of shift work on glucose homeostasis, we compared the glucose and insulin 

profiles during the pre-experimental IVGTT with the profiles after the 2-week 

experiment by repeated measures ANOVA. Since circadian time per se might 

affect insulin regulation and glucose clearance, glucose and insulin responses 

to an IVGTT were also tested by comparing shift work with control rats. For all 

tests, P<0.05 was considered statistically significant.
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Results

Changes in body weight in the course of the experiment are shown in Figure 2. 

On average, during the 2-week work protocol from day 0 to 14, both the control 

work and shift work rats continued to gain weight (Repeated measures ANOVA; 

time effect: F(14,182)= 14.67, P<0.001). Although the shift work rats on average 

gained less weight than control work rats, this difference did not reach statistical 

significance (time * group interaction: F(14,182)= 1.52, P=0.11; group effect: 

F(1,13)= 1.62, P=0.23). However, at the end of the recovery week (day 21), 

the shift work rats had gained significantly less weight than control animals 

(One Way ANOVA: F(1,13)= 9.20, P<0.05). 

 Figure 3A represents total 24h food intake at baseline (day 0), during the 

experimental period (day 13) and after recovery (day 21). We specifically tested 

for group differences in overall food intake on day 13 and 21 to be at the end of 

the experimental protocol and recovery phase, when all rats presumably were 

adapted to the protocol and food intake was not confounded by the IVGTT on 

day 14. Overall, shift work rats ate slightly less than control work rats (Repeated 

measures ANOVA: group effect (F(1.13)= 6.29, P<0.05). However, there was no 

significant time effect or time x group interaction, suggesting these effects were 

independent of the shift work protocol per se. 

 Figure 3B shows the intake of food during the 8h sessions in the rotating drum 

for the same 3 days (day 0, 13 and 21). On all 3 days, shift work rats ate significant 

less compared to control rats (Repeated measures ANOVA: group effect (F(1,13)= 

67.36,P<0.001), but there was no time x group interaction. ANOVA also revealed 

an overall time effect (F(2,26)= 42.10, P<0.001) and posthoc tests showed a 

significant increase in food intake at experimental day 13 compared to baseline. 

At recovery day 21, food intake had returned to baseline. 

Figure 2:  Body weight gain in rats subjected to shift work (n=7) or control work (n=8). Data are shown for a 

baseline day (day 0), 14 experimental days and at the end of the recovery phase (day 21). Data are average 

values ± SEM. Asterisks indicate a significant difference between both groups (* P<0.05). 
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Figure 4 shows depicts food intake during the 8h in the rotating drums in more 

detail. In control rats, food intake during the daily 8h forced activity period did 

not change during the experimental days (nonlinear regression: R=0.16, One 

Way ANOVA: F(1,11)= 0.30, P>0.5). However, in shift work rats, food intake 

during the 8 hours in the drums gradually increased in the course of the 

14 experimental days (nonlinear regression: R=0.90, One WayANOVA: F(1,11)= 

47.40, P<0.0001).

Figure 3: Effects of shift work on food intake. (A) Total 24h food intake for control work and shift work rats 

on baseline day 0, experimental day 13, and recovery day 21. (B) Food intake during the forced activity 

phase in the rotating drum (8h) at the same days. Data are averages ± SEM. Asterisks indicate a significant 

different between both groups, a: significant difference in comparison to baseline; b:  significant difference in 

comparison to recovery day 21 (* P<0.05). 
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Percentage of food consumed during the total 12h light and 12h dark phase 

was calculated for baseline day 0 and experimental day 13 (Figure 5). 

During the baseline day, there was no difference between both groups. However, 

during the experimental day shift work rats had significantly higher food intake 

during the light phase (which included their 8h work phase), compared to 

control rats (One Way ANOVA: F(1,13)= 32.93, P<0.001) and compared to their 

own baseline (F(1,12)= 15.80, P<0.01). Control work rats on average showed 

a small increase in food intake during the dark phase of the experimental day 

(which included their 8h work phase) compared  to the dark phase of their own 

baseline day, but this did not reach statistical significance (F(1,14)= 3.99, P=0.07).

 Figure 6 depicts the glucose and insulin levels in response to an intravenous 

infusion of glucose, under pre-experimental baseline conditions and after 14 days 

of shift work or control work conditions. Intravenous infusion of glucose led to 

an increase in blood glucose and plasma insulin levels. After termination of the 

30-min glucose infusion, both glucose and insulin returned to pre-infusion levels. 

Fourteen days of shift work or control work conditions did not change the glucose 

and insulin responses to an IVGTT within each group. Shift work seems to lead 

to a small decrease in insulin response, but this effect did not reach statistical 

significance (Area under the curve: One Way ANOVA: F(1,12)= 2.20, P=0.16).

Figure 4: Food intake during the daily 8h of forced activity in the rotating drum for the shift work group (during 

light phase) and the control work group (during dark phase). Data are shown for a baseline day (day 0) and 

14 experimental days. Data are average ± SEM. See text for details on statistics. 
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As explained in the methods section, the time of day when the IVGTT 

was performed was different for shift work and control work rats. This difference 

in time of day is associated with different glucose and insulin profiles. 

Even under baseline conditions, the two experimental groups differed in 

their glucose and insulin responses (Repeated measures ANOVA: time x 

group interaction effect for the pre-experimental glucose profile: F(10,120)= 

10.37, P<0.001; pre-experimental insulin profile: F(10,120)= 6.73, P<0.001). 

This difference persisted during the experimental phase of the protocol 

(time x group interaction effect for the experimental glucose profile: 

F(10,120)= 5.49, P<0.01; experimental insulin profile: F(10,120)= 3.79, P<0.01).  

 Figure 7 depicts the area under the curve (AUC) of blood glucose and plasma 

insulin levels in response to the IVGTT. The AUC of blood glucose levels 

were significantly lower in shift work rats compared to control work rats during 

both the pre-experimental (One Way ANOVA: F(1,12)=22.43, P<0.001) and 

the experimental IVGTT (F(1,12)= 10.26, P<0.01). The AUC of plasma insulin 

levels were significantly higher in shift work rats compared to control work rats 

during the pre-experimental IVGTT (F(1,12)= 15.85, P<0.01) but this did not reach 

significance during the experimental IVGTT (F(1,12)= 3.54, P=0.08).

Figure 5: Percentage of food consumed during the light and dark phase on baseline day 0 and experimental 

day 13. For shift work rats, the 8h of activity was in the light phase, and for control work rats, the 8h of 

activity was in the dark phase. Data are averages ± SEM. a: significant difference in comparison to 

control rats, b: significant difference in comparison to baseline (P<0.05); # indicates a trend in comparison 

to baseline (P=0.07). 
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Discussion
In this study we assessed the effects of a shift work protocol on food intake, body 

weight and glucose homeostasis in rats. Rats subjected to a 14-day shift work 

protocol with 8h of forced activity during their circadian resting phase displayed a 

gradual shift in food intake from their normal activity phase to their forced activity 

phase. Overall, total daily food intake did not differ between shift work rats and 

control work rats that were subjected to 8h of forced locomotion during their 

activity phase. We also investigated whether circadian disorganization affected 

glucose homeostasis during an IVGTT test, but no effect of shift work was found. 

In contrast to an earlier study on shift work (Salgado-Delgado et al., 2008), 

we did not find increased weight gain in shift work rats compared to control work 

rats. One explanation may be a difference in the protocol used. Although 

the amount and the timing of forced locomotion was similar in both studies, 

we used a continuous shift work protocol for 2 weeks, whereas Salgado-Delgado 

and colleagues alternated 5 days of shift work with undisturbed weekends 

and continued this protocol for 5 weeks. Thus, it might be that the length 

Figure 6: Blood glucose and plasma insulin levels in response to a 30-min intravenous glucose infusion under 

baseline conditions or after 14 days of shift work (graphs A and C, n=7) or control work (graphs B and D, n=8). 

Each graph presents the glucose or insulin profiles under pre-experimental baseline conditions (open circles) 

and after 14 days of shift work or control work (closed circles). The horizontal grey bars at the bottom of each 

graph represent the 30 min of 15% glucose infusion. Data are average values ± SEM. 
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of the protocol and the alternation between shift work and periods of rest are 

important factors to induce the body weight changes the authors found. 

Indeed, we recently found that the alternation between weeks of sleep restriction 

and weekends of sleep allowance prevents the attenuation of weight gain as 

seen during a continuous sleep restriction protocol (Barf et al., 2012).

Also, our finding of unaltered glucose tolerance in rats subjected to shift work 

may seem at odds with the loss of glucose rhythmicity reported in the study by 

Salgado-Delgado and colleagues (Salgado-Delgado et al., 2008). However, one 

should keep in mind that glucose rhythmicity and glucose homeostasis are not 

necessarily linked. 

 Importantly, while glucose tolerance was not affected by two weeks of shift work, 

in an earlier study we reported glucose intolerance after 8 days of restricted or 

disrupted sleep (Barf et al., 2010). It thus appears that the consequences of sleep 

disruption reported earlier are not mediated by circadian disruption but, rather, by 

changes in sleep per se (i.e., the amount of sleep or architecture of sleep).While 

rats on a shift work protocol may have an altered sleep-wake rhythm, total sleep 

time and sleep quality are not necessarily affected. Indeed, it has been shown 

in a human laboratory experiment that one week of shift work did not affect total 

sleep time or sleep quality afterwards (Lamond et al., 2003). Therefore it may be 

that changes in food intake patterns and changes in glucose homeostasis have 

independent underlying mechanisms, which are differently affected by shift work 

or sleep disruption.

 Insulin and glucose responses to the IVGTT in this experiment were quite 

different for shift work and control work rats. This difference was already present 

under baseline conditions before the start of the experimental protocol and is a 

consequence of the fact that the IVGTTs were performed at different times of day. 

Figure 7: Area under the curve (AUC) of blood glucose (A) and plasma insulin (B) levels in response to 

a 30-min intravenous glucose infusion under pre-experimental conditions or after 14 experimental days. 

Data are average values ± SEM. Asterisks indicate a significant difference between both groups (* P<0.01); 

# indicates a trend towards a difference between the groups (P=0.08).
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The IVGTT was performed 17h after the last forced activity period in the rotating 

drum for both groups. For shift rats, the IVGTT took place in the 4th hour of the 

light phase, whereas for control rats the IVGTT took place in the 4th hour of the 

dark phase. Literature has reported that glucose homeostasis varies across the 

24h cycle (Kalsbeek et al., 2010;La Fleur et al., 2001). During the inactive phase, 

the body is less glucose tolerant and less insulin sensitive, resulting in increased 

insulin levels in response to an IVGTT. During the active phase, more glucose 

is needed for daily activities, leading to increased glucose levels and decreased 

insulin levels. This is indeed also visible in our data.

 In conclusion, our current data do not support the hypothesis that shift work leads 

to disturbed metabolic regulation and glucose intolerance. Since our previous data 

demonstrated clear effects of sleep restriction on glucose homeostasis (Barf et 

al., 2010), it might be that the circadian organization is not the crucial factor, but 

disturbed sleep is.
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Abstract
Rodent models for sleep restriction have good face validity when examining 

food intake and related regulatory metabolic hormones. However, in contrast to 

epidemiological studies where sleep restriction is associated with body weight 

gain, sleep restricted rats show a decrease in body weight. This difference 

with the human situation might be caused by the alternation between periods 

of sleep restriction and sleep allowance that often occurs in real life. 

Therefore we assessed the metabolic consequences of a chronic sleep 

restriction protocol that modeled working weeks with restricted sleep time 

alternated by weekends with sleep allowance. We hypothesized that this 

protocol could lead to body weight gain. Male Wistar rats were divided over three 

groups: sleep restriction (SR), forced activity control (FA) and home cage control 

(HC). SR rats were subjected to chronic sleep restriction by keeping them 

awake for 20h per day in slowly rotating drums. To model the human condition, 

rats were subjected to a 4-week protocol with each week consisting of a 5-day 

period of sleep restriction followed by a 2-day period of sleep allowance. 

During the first experimental week, SR caused a clear attenuation of growth. 

In subsequent weeks, two important processes occurred: 1) a remarkable 

increase in food intake during SR days, 2) an increase in weight gain during 

the weekends of sleep allowance, even though food intake during those 

days was comparable to controls. In conclusion, our data revealed that the 

alternation between periods of sleep restriction and sleep allowance lead to 

complex changes in food intake and body weight, that prevented the weight 

loss normally seen in continuous sleep restricted rats. Therefore this 

“week-weekend” protocol may be a better model to study the metabolic 

consequences of restricted sleep.
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Introduction
Sleep loss is a common problem in our modern society. Both epidemiological and 

clinical data suggest that disturbed sleep may contribute to the development of 

various diseases, e.g. obesity and type 2 diabetes (Cappuccio et al., 2008;Chaput 

et al., 2006;Chaput et al., 2007;Gottlieb et al., 2005;Spiegel, 2008;Spiegel et al., 

2009). Restricted sleep also leads to alterations in food intake and its regulatory 

hormones, particularly an increased appetite and preference for fat, together 

with increased levels of ghrelin and decreased levels of leptin (Spiegel et al., 

2004;Taheri et al., 2004).

 There are several rodent models for sleep deprivation; for example, the disk-over-

water method (Everson and Crowley, 2004;Rechtschaffen and Bergmann, 1995), 

the inverted flowerpot (or platform) paradigm (Hipolide et al., 2006;Mendelson et 

al., 1974), and the slowly rotating drum paradigm (Barf et al., 2010;Novati et al., 

2008;Roman et al., 2005). In general, the changes in blood hormone levels and 

food intake in these models are similar to the findings in humans. Sleep deprivation 

decreased plasma insulin (Hipolide et al., 2006) and leptin levels (Everson and 

Crowley, 2004) and increased food intake was observed in some (Everson and 

Crowley, 2004;Hipolide et al., 2006;Koban and Stewart, 2006;Koban et al., 

2008;Rechtschaffen and Bergmann, 2002;Rechtschaffen and Bergmann, 1995) 

but not all studies (Barf et al., 2010). However, the most consistent finding among 

these studies is that sleep deprived rats lose weight (Barf et al., 2010;Everson 

and Crowley, 2004;Hipolide et al., 2006;Koban and Stewart, 2006;Koban et al., 

2008;Rechtschaffen and Bergmann, 2002;Rechtschaffen and Bergmann, 1995), 

which is in contrast to the human finding where a lack of sleep generally is 

associated with weight gain (Chaput et al., 2006;Knutson and Van Cauter, 2008). 

 The reason for this difference between rats and humans is unknown. There is 

some indirect evidence that the differences in weight gain vs. weight loss might 

be related to the nature of the sleep restriction protocol. Sleep loss in humans is 

in general an alternation between sleep restriction during the week and 

recuperation from sleep loss in the weekend (Valdez et al., 1996). In contrast, 

experimental studies in rats often consist of a continuous period of sleep restriction 

without periods of recovery. Indirect evidence comes from a shiftwork study by 

Salgado-Delgado and colleagues who subjected rats to a protocol consisting of 

alternating 5-day periods of shift work and 2-day period of undisturbed sleep-wake 

rhythms, and indeed they found a clear increase in body weight (Salgado-Delgado 

et al., 2008;Salgado-Delgado et al., 2010). 

 Based on these studies, we hypothesized that an alternation between periods of 

sleep restriction and periods of sleep allowance is critical for the induction of body 

weight gain in a sleep restriction paradigm. Therefore we evaluated the behavioral 

and metabolic consequences of a sleep restriction protocol consisting of 5 days 

of sleep restriction alternated by 2 days in which the rats were allowed to recover. 

This protocol was continued for four weeks. We hypothesize that the 2 days of 

sleep allowance per week will prevent the weight loss normally seen in chronically 

sleep restricted rats.
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Methods

Animals and housing

Male Wistar rats (weight 302.1 ± 1.2 g at start of the experiment, derived from 

Harlan Netherlands BV, Horst, The Netherlands) were individually housed in 

Plexiglas cages in a climate-controlled room (21 °C ± 1) under a 12h: 12h light-dark 

cycle (lights on at 1:00 PM). Animals were maintained ad lib on medium fat food 

(45 % fat: Arie Blok Diervoeding B.V., Woerden, The Netherlands), which mimics 

the human diet and is the standard diet in our previous studies on metabolism 

(Barf et al., 2010). Water was available ad lib throughout the study. Food intake 

and body weights were measured daily. Experiments were approved by the Ethical 

Committee of Animal Experiments of the University of Groningen. 

Chronic sleep restriction and forced activity 

The rats were assigned to one of three groups. The first group was subjected to 

chronic sleep restriction (SR, n-12). SR was achieved by placing the rats in slowly 

rotating drums, according to previously described methods (Meerlo et al., 2002). 

Briefly, rats were allowed to sleep in their home cage for only 4 hours per day at 

the beginning of the light phase. During the remaining 20 hours, the rats were 

kept awake by placing them in slowly rotating drums (diameter 40cm), rotating 

at a constant speed of 0.4 m/min (Barf et al., 2010;Novati et al., 2008;Roman 

et al., 2005). To model the human condition with alternating working weeks and 

weekends of rest, rats were subjected to a 4-week schedule with each week 

consisting of a 5-day “working week” (5 consecutive days with SR or FA) followed 

by a 2-day “weekend” (2 days of uninterrupted sleep allowance in the home cage). 

The second group was a forced activity control group (FA: n=7). The FA rats 

served as controls for the amount of exercise and walked the same distance as the 

SR rats in 2 hours at the end of the dark phase (wheels by TSE, Bad Homburg, 

Germany). Thus, the FA group walked the same distance but was not sleep 

restricted. Both the SR and FA groups were forced to walk 480m/day during 

the “working week”, which is approximately 10-20% of the distance rats cover 

voluntarily (Scheurink et al., 1999). The rats of the SR and FA groups had unlimited 

access to food and water inside the drums. The third group of rats consisted 

of home cage controls (HC, n=5) which remained in their home cage throughout 

the experiment.

Blood samples and chemical analysis

To assess the effects of sleep restriction on metabolic hormones, blood samples 

were taken in week 1 and week 4 of the experiment for analysis of glucose, 

insulin, leptin and corticosterone. Samples were taken immediately after the 5-day 

working week (working week: day 5 and day 26) at the beginning of the lights 

phase (ZT0) and after four hours of rest (ZT4). Another blood sample was taken 

after two days of rest (weekend: day 7 and day 28) during the 4th hour of the 

light phase (ZT4). Blood samples of approximately 0.5 ml were drawn from the 

tail (Fluttert et al., 2000;Meerlo et al., 2002) and collected in pre-cooled cups 
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containing EDTA. Afterwards, the samples were centrifuged at 4 °C for 10 min at 

2600 g, and the plasma was stored at −20 °C until further analysis. Blood glucose 

was measured by Hoffman’s ferrocyanide method and plasma levels of insulin, 

leptin and corticosterone were measured by Millipore Rat Radioimmunoassays 

(Linco Research, St Charles, MO, USA).

Indirect calorimetry

At the first day of the final weekend of sleep allowance (day 26), immediately 

after the last SR/FA period, rats were transferred to respirometric chambers 

(45×25×30 cm) to determine oxygen consumption (V·O2, l/h) and carbon dioxide 

production (V·CO2, l/h). Oxygen and carbon dioxide concentration of dried inlet 

and outlet air (drier: molecular sieve 3 Å, Merck) from each chamber was measured 

with a paramagnetic oxygen analyzer (Servomex Xentra 4100) and carbon 

dioxide by an infrared gas analyzer (Servomex 1440). The system recorded the 

differentials in oxygen and carbon dioxide between dried reference air and dried 

air from the metabolic chambers. Flow rate of inlet air (60 l/h) was measured 

with a mass-flow controller (Type 5850 Brooks). Samples were collected every 

10 min (allowing optimal air mixing) for each animal and automatically stored 

on a computer. Behavioural activity of the animals was recorded with calibrated 

passive infrared detectors (PIR: Optex Wonderex FX-35; OPTEX (Europe) LTD., 

Berkshire, UK). Animals were measured at an ambient temperature of 21 °C and 

food and water were provided ad libitum over the whole period. Energy expenditure 

(kJ) was calculated using the following equation of Ferrannini (Ferrannini, 1988):

EE=(16.18×VO2×0.001) + (5.02×VCO2×0.001). 

During the 24 hours in the indirect calorimetry, fecal pellets were collected. 

The rotating drum system to sleep restrict rats could not be combined with 

the respirometry system and therefore it was not possible to measure oxygen 

consumption during the working weeks of SR/FA.

Statistical analysis

The data in the figures and text are expressed as averages ± SEM. The effects 

of the sleep restriction and forced activity protocols on food intake, body weight 

and blood hormone levels were tested by repeated measures analysis of variance 

(ANOVA) with between-subjects factor ‘treatment’ (SR, FA, or HC) and within-

subjects factor ‘time’ (day of the experimental protocol). Indirect calorimetry data, 

body weight gain, average daily food intake and feces weight was tested by One 

Way ANOVA with factor ‘treatment’ (SR, FA, or HC). When appropriate, a posthoc 

Tukey test was applied to establish differences between the three groups (controls, 

SR and FA). P<0.05 was considered statistically significant.
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Results

Daily body weight and food intake are shown in Figure 1. Both body weight and 

food intake differed significantly over time (Repeated Measures ANOVA effect of 

time for body weight: F(32,672)= 411.73, P<0.001; food intake: F(30,600)= 7.57, 

P<0.001). The increase in body weight was significantly attenuated in SR rats 

compared to home cage controls (Repeated Measures ANOVA treatment x time 

interaction: F(64,672)= 3.26, P< 0.001; posthoc Tukey test: SR vs. HC: P<0.05). 

Food intake of SR rats increased after the first recovery weekend compared to 

both FA and HC rats (Repeated Measures ANOVA treatment x time interaction: 

F(60,600)= 6.48, P<0.001; posthoc Tukey test: experimental week 2-4: SR vs. 

FA and SR vs. HC: P<0.05). 

 In Figure 2, data are averaged for week 2-4, when the effects of sleep restriction 

and patterns of body weight and daily food intake had stabilized (average body 

weight gain or food intake divided by the amount of days (7, 5 or 2 days)). SR rats 

had a slight reduction in weight gain during the 5-day working weeks (F(2,21)=3.48, 

P<0.05, posthoc Tukey test: SR vs. HC: P<0.05). Both SR and FA rats showed 

an increase in their body weight gain during the weekends of rest (F(2,21)= 8.38, 

P<0.01, posthoc Tukey test: SR vs. HC and FA vs. HC: P<0.05). The total body 

weight gain was not different between groups.

 During week 2-4, average daily food intake was significantly increased during 

the 5-day sleep restriction periods (One Way ANOVA: F(2,21)= 43.26, P<0.001, 

posthoc Tukey test: SR vs. FA and SR vs. HC: P<0.001) but returned to control 

levels during the 2-day weekends of rest (F(2,21)= 1.65, P>0.1). For the week 

totals, including both the working week and recovery weekend, average daily food 

intake remained significantly increased for SR rats (F(2,21)= 23.38, P<0.001, 

posthoc Tukey test: SR vs. HC and SR vs. FA: P<0.001).

 Glucose, insulin, leptin and corticosterone levels (Table 1) were measured 

at the end of the first and fourth working week, immediately after the rats had 

returned to their home cage at the beginning of the light phase (ZT0), after 4 

hours of rest (ZT4) and after 2 days rest (weekend: ZT4). No changes over time 

or between groups were found in glucose levels. For insulin levels, Repeated 

Measures ANOVA revealed a significant time effect (F(5,105)= 2.60, P<0.05) 

and a significant treatment x time interaction (F(10,105)= 2.26, P<0.05). Posthoc 

Tukey revealed decreased insulin levels in SR and FA rats as compared to HC rats 

at the end of working week 1 and 4. Insulin levels returned to control values after 

2 days of rest. 

 Leptin levels showed a similar pattern. Repeated Measures ANOVA revealed a 

significant time effect (F(5,105)= 6.48, P<0.001) and a nearly significant treatment 

x time interaction (F(10,105)= 1.74, P=0.08). Posthoc Tukey revealed decreased 

leptin levels after both 1 and 4 weeks of SR but not FA, which are back to control 

levels after 2 days of rest. 

 Corticosterone levels showed a significant time effect (F(5,105)= 26.00, P<0.001) 

and a significant treatment x time interaction (F(10,105)= 10.77, P<0.001). At the 

end of the first 5-day working week, immediately after the last 2h forced locomotion 
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session, FA rats had significantly increased corticosterone levels (posthoc 

Tukey test, FA vs. HC and FA vs. SR: P<0.05), which had returned to control 

levels after 4 hours of rest. The same pattern was visible after 4 weeks of FA  

(Posthoc Tukey test, FA vs. HC and FA vs. SR: P<0.05), although the increase 

in corticosterone levels after FA was less pronounced compared to week 1 

(Paired t-test: t=4.11, P<0.01). 

Figure 1: Daily food intake (A) and body weight (B) during baseline, 4 experimental weeks and 4 weekends 

of sleep allowance for SR (n=12), FA (n=7) and HC (n=5) rats. The grey bars represent the 5-day weeks of 

SR or FA. Data are average values ± SEM. Significant differences (P<0.05): * SR vs. both control groups; # 

SR vs. HC; † FA vs. HC.
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Figure 2: Average food intake and body weight gain per day during experimental week 2-4 for SR (n=12), 

FA (n=7) and HC (n=5) rats. Averages are shown per total 7 days, per experimental week (5 days) and per 

weekend of sleep allowance (2 days). Data are average values ± SEM. * P<0.05. 
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Data derived from indirect calorimetry on the first recovery day after the fourth 

working week is shown in Figure 3. Daily energy expenditure did not differ between 

groups during the light phase, dark phase and total 24 hours. The respiratory 

quotient (RQ: CO2 production/O2 consumption) during the 24h respirometry 

measurement was significantly lower in SR rats as compared to control rats 

(SR: 0.92 ± 0.01; FA: 0.95 ± 0.01; HC: 0.95 ± 0.01; F(2,21)= 3.85, P<0.05; 

Posthoc Tukey test: SR vs. FA and SR vs. HC: P<0.05). Levels of activity were 

significantly decreased for SR rats during the light phase (F(2,15)= 7.47, P<0.01, 

posthoc Tukey test, SR vs. FA: P<0.05). Total 24h activity levels tended to 

be lower but this did not reach statistical significance (F(2,15)= 3.11, P=0.07). 

Furthermore, feces were weighed for all rats. SR rats had significantly less feces 

during the first day of sleep allowance in the indirect calorimetry (SR: 3.8 ± 0.2g; 

FA: 4.8 ± 0.3g; HC: 4.7 ± 0.3g; One Way ANOVA: F(2,20)= 4.79, P<0.05, posthoc 

Tukey test, SR vs. FA: P<0.05).

Working week 1 Weekend 1 Working week 4 Weekend 4

ZT0 ZT4 ZT4 ZT0 ZT4 ZT4

Glucose (mM)

HC 5.9 ± 0.2 6.1 ± 0.1 6.2 ± 0.2 5.9 ± 0.1 6.1 ± 0.1 6.2 ± 0.3

FA 6.0 ± 0.1 5.8 ± 0.1 6.1 ± 0.1 6.0 ± 0.2 5.8 ± 0.2 6.0 ± 0.1

SR 5.9 ± 0.1 5.7 ± 0.1 6.0 ± 0.1 6.1 ± 0.2 5.9 ± 0.1 6.1 ± 0.1

Insulin (ng/ml)

HC 4.8 ± 1.1 4.5 ± 0.5 4.4 ± 0.9 4.9 ± 0.9 5.2 ± 0.7 3.7 ± 0.5

FA 2.3 ± 0.2* 3.4 ± 0.5 3.8 ± 0.5 2.6 ± 0.6* 3.1 ± 0.4* 3.4 ± 0.4

SR 2.7 ± 0.3* 2.6 ± 0.3* 3.7 ± 0.4 2.9 ± 0.2* 3.9 ± 0.4 3.3 ± 0.3

Leptin (ng/ml)

HC 16.3 ± 3.7 11.9 ± 1.1 11.6 ± 1.7 17.6 ± 2.7 15.3 ± 2.8 13.5 ± 2.4

FA 10.7 ± 3.1 8.3 ± 2.0 10.8 ± 2.3 10.7 ± 2.7 10.0 ± 3.2 12.3 ± 4.5

SR 8.3 ± 0.9* 6.3 ± 0.6* 8.7 ± 0.8 10.2 ± 0.7* 9.3 ± 0.9 10.3 ± 1.3

CORT (ng/ml)

HC 19.2 ± 2.1 16.2 ± 5.0 31.7 ± 9.7 11.3 ± 2.5 7.7 ± 2.3 26.8 ± 14.1

FA 376.6 ± 71.9* 11.7 ± 1.3 18.0 ± 2.2 158.9 ± 27.5* 4.9 ± 1.3 14.4 ± 1.7

SR 132.4 ± 38.7† 11.2 ± 0.7 21.3 ± 2.3 77.8 ± 20.5† 10.3 ± 1.4 27.8 ± 5.3

Blood samples were taken during the 1st and 4th week of the experiment. For both weeks, samples were 

taken immediately after 5 experimental days (working week) at the beginning of the light phase (ZT0) and 

after 4 hours of rest (ZT4); another sample was taken after 2 days of rest (weekend) during the 4th hour of 

the light phase (ZT4). Data are average values ± SEM (SR: n=12, FA n=7 and HC n=5). Values are means ± 

SEM. Significant differences (P<0.05): * compared to HC, † compared to FA.

Table 1:  Effect of chronic sleep restriction on plasma levels of glucose, insulin, leptin and 

corticosterone.
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Discussion
The most striking result of the present study is the significant increase in food 

intake, which appeared after the first weekend of sleep allowance. The first period 

of sleep restriction was similar to our previously published data, in which 8 days 

of sleep restriction led to unchanged food intake, but a clear weight loss (Barf et 

al., 2010). After the first weekend of sleep allowance, rats become hyperphagic, 

preventing further weight loss. A second interesting finding is that the rats have 

normal food intake during the weekends of sleep allowance, but significant weight 

gain in this period. Together, these data support the hypothesis that an alternation 

between periods of sleep restriction and sleep allowance can prevent the weight 

loss normally seen in sleep restricted rats. Therefore this “week-weekend” protocol 

has increased face validity in comparison to our earlier sleep restriction protocol 

that did not include the intervening periods of sleep allowance.

 It is important to note that our experimental rats had increase body weight gain 

only during the weekends of sleep allowance as compared to the home cage 

controls, but not during the working weeks. Overall, even at the end of the 4-week 

protocol, the SR rats were still slightly lighter than controls. Even though our 

current protocol of sleep restriction alternated with weekends of sleep allowance 

attenuates the weight loss seen with continuous sleep restriction in literature, rats 

still do not become overweight or obese. This suggests that sleep restriction per 

se is not sufficient to produce obesity in rats.

 The present experiment was indirectly based on a study by Salgado-Delgado 

and colleagues, who showed that subjecting rats to a shift work protocol with 

forced locomotion during the normal rest phase led to a significant increase in body 

weight as compared to controls (Salgado-Delgado et al., 2008;Salgado-Delgado 

et al., 2010). In their study, shift working weeks were alternated with weekends of 

undisturbed rest, which may have been a crucial factor in the reported body weight 

increase. The reason why their shift work protocol resulted in a net increase 

in body weight above control levels while our current protocol only attenuated 

the body weight loss seen in previous studies may lie in the methodological 

differences. While both models interfered with sleep by subjecting rats to forced 

activity, the Salgado-Delgado shift work protocol specifically disrupted circadian 

organization whereas our model only aimed to shorten sleep. It may thus be that 

disrupting circadian organization has additional effects beyond sleep disruption 

that contribute to the body weight increase. 

 In our present study, SR rats lost only weight during the first week of the 

protocol, similar to what was reported before (Barf et al., 2010). This decrease in 

weight may be a result of increased energy expenditure associated with prolonged 

wakefulness and increased activity. Indeed several studies have shown increased 

energy expenditure during sleep deprivation (Bergmann et al., 1989;Caron and 

Stephenson, 2010;Hipolide et al., 2006;Koban and Swinson, 2005) and one 

explanation for this change in energy expenditure, and in turn the attenuation 

of body weight gain, could be an increase in the gene expression of uncoupling 

protein-1 (UCP-1) in the brown adipose tissue (BAT). BAT is known for its 
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regulatory non-shivering thermogenesis in rodents and heat production is 

mediated by UCP-1 (Cannon and Nedergaard, 2004). Indeed, Koban and Swinson 

have demonstrated that during sleep deprivation UCP-1 is increased over time, 

together with an increase in O2 consumption (Koban and Swinson, 2005). 

Thus, in our study it might be that the 5 days of sleep restriction leads to increased 

energy expenditure and increased UCP-1, whereas during the weekends of 

sleep allowance both return to baseline. 

 During the second week of the protocol, rats started compensating for the 

presumed increased energy expenditure associated with sleep restriction 

by increasing their food intake. These changes in food intake may be related 

to changes in hypothalamic neuropeptides such as orexin and neuropeptide Y. 

Figure 3: Total energy expenditure and average cage activity (PIR) measured with indirect calorimetry during 

the first day of sleep allowance after week 4 for SR (n=12), FA (n=7) and HC (n=5) rats. Data are average 

values ± SEM. * P<0.05.
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Orexin is involved in the regulation of both the sleep/wake cycle and food intake 

regulation (Sakurai, 1999;Sakurai, 2002). Some studies have demonstrated 

that REM sleep deprivation increases orexin levels in the CSF and orexin 

immunoreactivity in the lateral hypothalamic area (Galvao et al., 2009;Pedrazzoli 

et al., 2004). Furthermore, orexin neurons project densely to the arcuate nucleus, 

which is known for its involvement in food intake regulation (Nambu et al., 1999). 

Indeed, REM sleep deprivation leads to significant increases in neuropeptide Y 

mRNA levels (Koban et al., 2006;Koban et al., 2008). Recently, it has also been 

demonstrated that sleep deprivation increases orexin mRNA levels which in turn 

activate the arcuate neuropeptide Y neurons that could lead to hyperphagia 

(Martins et al., 2010). Thus, it might be that in our experiment, sleep restriction after 

the first weekend of sleep allowance leads to increased orexin and neuropeptide 

Y levels in the brain, causing the rats to increase their food intake only during 

periods of sleep restriction. During the weekends rats are allowed to sleep, which 

might lead to a decrease in central orexin levels, and in turn cause food intake to 

return to baseline values. Future experiments should be performed to verify this.

 The data in figure 2 reveal that the sleep restricted rats are only hyperphagic 

during the periods of sleep restriction, whereas the weight gain only occurs 

during the periods of sleep allowance when the rats are not hyperphagic. 

Why the rats do not gain weight when they are hyperphagic during the periods of 

sleep restriction may be due to a number of factors. One may argue that the exercise 

protocol of 480 m/day may have increased the energy expenditure of the rats. 

However, the FA control rats walked the same distance per day, did not increase 

their food intake during these periods of forced locomotion and did not lose 

body weight. Nevertheless, it might be that the sleep restriction protocol itself 

has effects on the energy expenditure beyond the increase in locomotor activity. 

Due to methodological limitations we were not able to measure energy expenditure 

during the 5-day periods of SR, therefore we can only speculate that energy 

expenditure most probably is increased during SR, similar to what has been 

published before (Bergmann et al., 1989;Caron and Stephenson, 2010;Hipolide et 

al., 2006;Koban and Swinson, 2005). 

 The finding that SR rats gain weight when they are not hyperphagic during 

the periods of sleep allowance can be interpreted in relationship to the effects 

of sleep restriction on sleep time and intensity. It is tenable to assume that 

recovery from sleep restriction is associated with increased sleep time and sleep 

intensity, as others have demonstrated that rats do sleep longer and deeper 

after sleep acute sleep deprivation and chronic sleep restriction (Leemburg et 

al., 2010;Machado et al., 2005). However, the data in figure 4 demonstrate that 

energy expenditure is not different between groups during these periods of sleep 

allowance, even though total activity is decreased. The question of how SR 

rats grow faster during the fourth weekend of sleep allowance, despite similar 

food intake and overall energy expenditure in the different groups, remains. 

One explanation might be increased food efficiency. One may argue that increased 

energy absorption in the intestinal tract can be used for recovery, storage and 
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thus weight gain. This is indirectly supported by the fact that the feces weight 

of SR rats is decreased during weekends of sleep allowance compared to the 

control groups. This decrease indicates that, even though energy intake and 

energy expenditure are similar compared to controls, the food efficiency might be 

higher in SR rats during a period of sleep allowance, leading to increased body 

weight gain. 

 Although SR rats increase their food intake from week 2 onwards, leptin 

and insulin levels were still decreased at the end of the fourth working week, 

which is in agreement with the fact that these rats still had a slightly lower 

weight than control rats. These hormones reflect the nutritional status of the rat. 

However, both leptin and insulin are also satiety hormones, which could also be 

another explanation for the increase in food intake during the periods of sleep 

restriction. The corticosterone levels of FA rats, immediately after the experimental 

period, were strongly increased. For SR rats this did not reach significance. 

This increase in corticosterone for FA rats is in agreement with the notion that 

corticosterone may in part reflect and support behavioral activity (Koolhaas et al., 

2011). For instance, Koolhaas and colleagues have demonstrated that stressful 

events but also pleasurable events, such as a sexual experience, can lead to similar 

increases in corticosterone. Therefore, an increase in corticosterone is associated 

with behavior and in our case, forced locomotion. The fact that corticosterone 

levels rapidly returned to baseline during 4 hours of sleep allowance suggests 

that our sleep restriction protocol is not a chronic stressor.

Perspectives and Significance

Our data revealed that the alternation between periods of sleep restriction and 

periods of sleep allowance lead to complex changes in food intake and body 

weight that prevented the negative energy balance normally seen during 

continuous sleep restriction in rat studies. Although the discrepancy between 

epidemiological studies and rat studies remains, the alternation between 

periods of sleep loss and periods of sleep allowance seems to be a crucial factor 

and an important addition to the sleep deprivation literature. 
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Abstract
The serotonergic system plays an important role in the regulation of mood. 

Experimental studies in rats show that chronic sleep restriction leads to altered 

serotonergic function, including a desensitization of the serotonin 1A receptor 

system. Such changes may in part be an indirect consequence of changes 

in body weight. To determine whether a medium fat (MF) diet could protect 

against these effects of sleep restriction by preventing the decrease in body weight, 

we subjected rats to a schedule of chronic sleep restriction during which half 

of the sleep restricted rats were maintained on a MF diet. To study the serotonin 

1A receptor sensitivity, we measured body temperature and endocrine 

responses to injections with the serotonin 1A agonist 8-OHDPAT after 8 days 

of sleep restriction. We found that a MF diet strongly attenuated the drop in 

body weight normally seen in sleep restricted rats on Chow. However, this did 

not prevent desensitization of the serotonin 1A system. Sleep restricted rats on 

both diets showed a similarly blunted body temperature response and pituitary 

ACTH response upon serotonin 1A stimulation. Insulin and leptin levels were 

equally decreased in both sleep restricted groups despite differences in body 

weight. These results indicate that changes in serotonin 1A receptor sensitivity 

following sleep restriction are not dependent on diet and body weight changes. 

The desensitization might be the result of altered regulation of physiological 

and endocrine factors and it may in part be the consequence of a cumulative effect 

of sleep loss directly acting on the brain. 
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Introduction
Restricted and disrupted sleep is a common problem in our Western society. 

Epidemiological and clinical studies suggest that chronically disrupted sleep may 

contribute to the development of various diseases, including mood disorders such 

as depression (Breslau et al., 1996;Chang et al., 1997;Ford and Kamerow, 1989). 

Impairment of serotonergic neurotransmission might be one of the pathways 

through which insufficient sleep contributes to the onset of depressive symptoms. 

This idea is supported by experimental studies in laboratory rats showing that 

chronic sleep restriction causes a gradually developing desensitization of the 

serotonin 1A receptor system and an attenuation of 1A-mediated functions 

(Novati et al., 2008;Roman et al., 2005;Roman et al., 2006). Yet, it remains an 

important question what aspect of sleep disturbance is causing these alterations 

in serotonergic function. 

 One factor that deserves attention in this context is metabolism. Controlled 

studies in humans have shown that sleep restriction is associated with changes 

in metabolic regulation, alterations in glucose homeostasis, and increases 

in appetite (Donga et al., 2010;Spiegel et al., 2002;Spiegel et al., 2004). 

Also, numerous studies on prolonged sleep deprivation in rodents have reported 

increased food intake and reduced body weight (e.g. Everson, 1995;Hipolide et 

al., 2006;Rechtschaffen and Bergmann, 1995). In recent studies, we focused on 

the metabolic consequences of sleep restriction in our rat model. Sleep restriction 

for 8 days resulted in weight loss and reduced insulin responses, accompanied 

with glucose intolerance and hyperglycemia (Barf et al., 2010).  

 Based on the data above, one could argue that changes in serotonergic 

neurotransmission resulting from chronically restricted sleep might be secondary 

to the effects on energy metabolism and body weight. Indeed, literature shows 

that weight loss affects serotonin levels (Bailer et al., 2005;Brewerton, 

1995;Haleem, 2009;Kaye et al., 2005) and a decrease in body weight due to food 

restriction is associated with a desensitization of the serotonin 1A receptor in rats 

(Li and France, 2008;Li et al., 2009). Furthermore, partially preventing a decrease 

in body weight in socially stressed rats by providing them with a fat food diet also 

prevents the stress-induced serononin-1A desensitization (Buwalda et al., 2001). 

 In the present study we investigated whether sleep restriction-induced changes 

in serotonergic signaling might be a consequence of changes in metabolism 

and body weight and we assessed if a fat food diet could protect against these 

effects of insufficient sleep. A study was performed in which half of the sleep 

restricted rats received a medium fat (MF) diet with a higher caloric density 

compared to standard Chow food. We hypothesized that the MF diet during 

the sleep restriction protocol would prevent at least partly the decrease in body 

weight compared to rats on standard Chow. To assess whether this would also 

prevent the changes in serotonin 1A receptor sensitivity, we measured body 

temperature and endocrine responses to injections with the serotonin 1A receptor 

agonist (±)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OHDPAT) 

(Novati et al., 2008;Roman et al., 2005).
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Methods

Animals and housing

Male Wistar rats (weight ± 320g; Harlan Netherlands BV, Horst, The Netherlands) 

were individually housed in Plexiglas cages in a climate-controlled room (21 °C 

± 1) under a 12h:12h light-dark cycle (lights on at 10:00h). Water and food were 

available ad libitum throughout the study. Different experimental groups were fed 

with standard Chow food or MF food (respectively, 14% vs. 45.0% fat, 63% vs. 30% 

carbohydrates and 23% vs. 25% proteins; Arie Blok Diervoeding B.V., Woerden, 

The Netherlands). Ten days prior to the onset of the experiments animals were 

introduced to the MF diet. Body weight and food intake were measured daily. 

Energy intake was calculated on the basis of the caloric density for both food 

types (Chow: 3.7 kCal/g; MF: 4.8 kCal/g). Experiments were approved by the 

Ethical Committee of Animal Experiments of the University of Groningen. 

Chronic sleep restriction

Rats were subjected to chronic sleep restriction according to a previously published 

method (Barf et al., 2010;Novati et al., 2008;Roman et al., 2005). Sleep restriction 

groups were allowed to sleep in their home cage for 4 hours per day at the 

beginning of the light phase, i.e., their normal resting phase. During the remaining 

20 hours, rats were kept awake by placing them in drums rotating at a constant 

speed of 0.4 m/min. Rats were subjected to this schedule of sleep restriction 

for 8 days during which they had free access to food and water inside the drums. 

All rats were habituated to the experimental conditions by placing them in the 

drums for 1-2h on 3 consecutive days before the onset of the sleep restriction 

protocol. Control rats were left undisturbed in their home cage throughout the 

experiment.

Experiment 1: Radio telemetry and serotonin 1A mediated temperature 

responses 

In the first experiment we assessed the effects of MF food during the sleep restriction 

protocol on the sensitivity of the serotonin 1A receptor by measuring the acute 

hypothermic response to an 8-OHDPAT challenge (Roman et al., 2005;Roman et 

al., 2006). All rats were equipped with radio telemetry transmitters in the abdominal 

cavity to measure body temperature (model TA10TA-F40; Data Sciences, St. Paul, 

MN, USA). Surgeries were carried out under general 2% isoflurane inhalation 

anesthesia. The transmitters measured core body temperature and transformed 

temperature values into frequency coded radio signals. These radio signals 

were relayed to a PC by receivers placed underneath the home cages (model 

RPC-1; Data Sciences, St. Paul, MN, USA). Body temperature was sampled 

for 10 seconds every 10 minutes and processed with Dataquest LabproTM 

(Data Sciences). After 10 days of recovery from surgery, rats were divided over 

three groups (n=8 in each group): home cage control on standard Chow food 

(Control-Chow), sleep restriction on standard Chow food (SR-Chow), and sleep 

restriction on medium fat food (SR-MF). In this first experiment we did not include 
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a control group on MF food since previous studies indicated that fat food per se 

does not affect serotonin 1A mediated body temperature responses (Buwalda et 

al., 2001). After the last sleep restriction session on day 8, during the fourth hour 

of the light phase, all rats received a subcutaneous injection of the serotonin 1A 

receptor agonist 8-OHDPAT (Sigma, St. Louis, MO, USA) at a concentration of 

0.25 mg/kg body weight (Roman et al., 2005;Roman et al., 2006).  

Experiment 2: Blood sampling and serotonin 1A mediated pituitary ACTH 

response

In the second experiment we studied the effects of MF food and sleep restriction 

on the sensitivity of the serotonin 1A system by measuring the pituitary ACTH 

response to an 8-OHDPAT challenge (Novati et al., 2008). Serotonin 1A receptors 

at the level of both the hypothalamic paraventricular nucleus and the pituitary play 

an important role in regulating ACTH release (Dinan, 1996;Fuller, 1992). All rats 

were equipped with a chronic heart catheter in the jugular vein allowing repeated 

and stress free blood sampling according to a previously described method 

(Steffens, 1969). Under 2% isoflurane inhalation anesthesia, a silicon heart 

catheter (0.95 mm OD, 0.50 mm ID) was inserted into the right jugular vein and 

kept in place with a ligament. The other end of the catheter was subcutaneously 

directed to the top of the head were it was fixed with dental cement and could 

be used to connect the rats to sampling tubes. After 10 days of recovery from 

surgery, rats were divided over four groups (n=8 in each group): home cage 

control on standard Chow food (Control-Chow) or medium fat food (Control-

MF), and sleep restriction on standard Chow food (SR-Chow) or medium fat food 

(SR-MF). After 8 days of sleep restriction, rats were prepared for blood sampling 

by connecting them to sampling tubes. After 1h, when any handling effect should 

have disappeared, rats received an intravenous injection of 8-OHDPAT stress 

free through the catheter at a concentration of 0.1 mg/kg body weight (Novati et 

al., 2008). To measure plasma levels of ACTH and corticosterone in response 

to serotonin 1A receptor stimulation, blood samples were taken shortly before 

as well as 10, 20, 30 and 60 min after the 8-OHDPAT injection. All samples had 

a volume of 250 μl, except the first one, which had a volume of 500 μl to allow 

analysis of plasma levels of insulin and leptin. The blood samples were collected 

in pre-cooled tubes containing EDTA (20 μL/ml blood). The samples were 

centrifuged at 2600g for 10 min and plasma was stored at −20 °C until analysis. 

Plasma ACTH levels were measured by ImmuChem 125l ACTH Radioimmunoassay 

and plasma corticosterone levels were measured by ImmuChem 125I Corticosterone 

Radioimmoassay (MP Biomedicals, Orangeburg, NY, USA). Plasma insulin levels 

were measured by Linco Research Rat Insulin Radioimmoassay and plasma 

leptin levels were measured by Linco Research Rat leptin Radioimmoassay (Linco 

Research, St Charles, MO, USA).
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Statistical analysis

Body weight and energy intake data was subjected to an analysis of variance 

(ANOVA) with repeated measures. Effects of sleep restriction and diet on the 

8-OHDPAT induced temperature response in experiment 1 and endocrine 

responses in experiment 2 were assessed with repeated measures ANOVA as 

well. Effects of the treatments on plasma insulin and leptin levels were analyzed 

with two way ANOVA. When appropriate, posthoc Tukey test was applied to 

establish differences between specific groups. P<0.05 was considered statistically 

significant. All data in text and figures are expressed as averages ± SEM.

Results

Experiment 1: serotonin 1A induced temperature responses

During the 8-day experiment, sleep restricted rats on standard Chow food 

significantly decreased in body weight compared to control rats on Chow 

(Repeated Measures ANOVA, sleep restriction x time: F(11,154)=33.58, P<0.001) 

(Figure 1A). Sleep restricted rats on Chow also lost significantly more weight 

than sleep restricted rats on MF food (Repeated Measures ANOVA, diet x time: 

F(11,154)=7.19, P<0.001). Despite the gradually developing differences in body 

weight, all groups maintained a stable and similar energy intake (average energy 

intake per day: Control-Chow: 88.6 ± 2.1 kCal; SR-Chow: 85.4 ± 2.7 kCal; SR-MF: 

85.2 ± 1.8 kCal).

 The subcutaneous injection of the serotonin 1A agonist caused an immediate 

hypothermia that reached lowest levels around 20-30 min post-injection (Figure 

1B). Body temperature returned to control values after 80 min. Sleep restricted 

rats on the standard Chow diet displayed a significantly attenuated temperature 

response compared to control rats on Chow (Repeated Measures ANOVA, sleep 

restriction x time: F(12,144)=3.60, P<0.001). Sleep restricted rats on MF showed 

the same attenuated response and did not differ from the sleep restricted rats on 

Chow (Repeated Measures ANOVA, diet x time: F(12,144)=0.70, P>0.5).  

Experiment 2: serotonin 1A induced endocrine responses 

Similar to experiment 1, both sleep restriction and diet affected body weight 

(Figure 2A).  Two Way Repeated Measures ANOVA revealed a significant effect 

of diet (diet x time: F(11,308)= 4.07, P<0.001), sleep restriction (sleep restriction 

x time: F(11,308)= 58.97, P<0.001), and an interaction between the two (sleep 

restriction x diet x time: F(11,308)=3.00, P<0.01). The home cage control groups 

on the two different diets did not differ from each other. Sleep restriction caused 

a decrease in body weight but, as in the first experiment, this effect was strongly 

attenuated in the rats on MF food. Again, energy intake was not different between 

groups (average energy intake per day: Control-Chow: 88.6 ± 2.1 kCal; Control-

MF: 87.6 ± 1.9 kCal; SR-Chow: 89.4 ± 2.0 kCal; SR-MF: 88.9 ± 2.0 kCal). 

 The injection of 8-OHDPAT induced a clear activation of the hypothalamic-

pituitary-adrenal axis in all treatment groups (ACTH: Figure 2B, corticosterone: 

Figure 2C). The ACTH response was not affected by diet but ANOVA revealed a 



106 107

Changes in serotonin 1A receptor sensitivity following sleep restriction are not 
dependent on diet and body weight changes

significant overall effect of the 8 days sleep restriction (F(1,26)=4.70, P<0.05). 

On average sleep restricted rats had a slightly attenuated ACTH response as 

compared to the control rats. In contrast, the corticosterone response to 8-OHDPAT 

was not affected by prior sleep restriction but, instead, was significantly affected 

by diet (diet x time: F(4,108)=12.07, P<0.001). The MF diet caused a significantly 

stronger corticosterone response compared to the standard Chow diet. 

 Eight days of sleep restriction decreased both leptin and insulin levels 

compared to control rats (Two Way ANOVA: Leptin: F(1,27)= 21.32, P<0.01; 

Insulin: F(1,27)=14.63, P<0.001), while a MF diet increased both leptin and 

insulin levels compared to rats on a Chow diet (Two Way ANOVA: Leptin: F(1,27)= 

12.19, P<0.001; Insulin: F(1,27)=4.58, P<0.05), but no interaction effects were 

found (Figure 3).

Figure 1: The effects of 8 days of sleep restriction on body weight and serotonin 1A sensitivity in rats 

receiving a standard Chow diet or a MF diet: (A) body weight changes in the course of the experiment; 

(B) body temperature responses to an injection with the serotonin 1A agonist 8-OHDPAT (0.25 mg/kg) 

after 8 days of restricted sleep. The horizontal grey bar at the bottom of graph 1A represents the 8-day 

period of sleep restriction. N=8 in each group. Data are presented as average values ± SEM. See text 

for details on statistics.
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Figure 2: The effects of 8 days of sleep restriction on body weight and serotonin 1A sensitivity in rats 

receiving a standard Chow diet or a MF diet: (A) body weight changes in the course of the experiment; (B) 

ACTH and (C) corticosterone responses to an injection with the serotonin 1A agonist 8-OHDPAT (0.1 mg/

kg) after 8 days of restricted sleep. The horizontal grey bar at the bottom of graph 2A represents the 8-day 

period of sleep restriction. N=8 in each group. Data are presented as average values ± SEM. See text for 

details on statistics.
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Discussion
In the present study we aimed to assess whether SR induced changes on serotonin 

1A sensitivity are a secondary consequence of changes in metabolism and body 

weight. Providing sleep restricted rats with a MF diet strongly attenuated the drop 

in body weight that is normally seen in sleep restricted rats on a standard Chow 

diet. However, this did not prevent the desensitization of the serotonin 1A system. 

Sleep restricted rats on both MF and standard Chow showed a similarly blunted 

body temperature response and pituitary ACTH response upon stimulation of the 

serotonin 1A receptor system by an injection of the agonist 8-OHDPAT. 

 Interestingly, the MF diet caused a significant increase in the adrenal 

corticosterone response, independent of sleep restriction, suggesting that fat food 

per se may increase adrenal sensitivity. This finding appears to be in line with 

other published studies on the consequences of a chronic high fat diet. Indeed, 

rats on a high fat diet have enlarged adrenals, increased basal corticosterone 

levels, and increased adrenal responses to challenges during the first months on 

the diet (Tannenbaum et al., 1997). Even though in our study basal corticosterone 

levels were not affected, the corticosterone response to the 8-OHDPAT challenge 

was. Perhaps the MF food used in this experiment had the same effect on the 

adrenals compared to a high fat diet. Future experiments should therefore take 

adrenal size into account.

 The MF diet in the present study was administered to prevent the decrease in 

body weight that is normally seen during sleep restriction. As expected, rats on the 

MF diet did not lose as much weight as rats on regular Chow did. Nevertheless, 

the MF diet did not prevent the changes in serotonin 1A sensitivity seen after 

sleep restriction. Since the MF diet did not prevent the decrease in body weight 

completely, an effect of body weight loss during sleep restriction on the 5-HT1a 

desensitization cannot be fully excluded. One might argue that even the smaller drop 

in weight in the MF rats could be sufficient to cause a maximal 1A desensitization 

that could not worsen by the additional weight loss in the Chow rats. However, 

this possibility does not seem likely in light of other published studies. Particularly, 

a study on the consequences of social stress showed that a high fat diet was 

able to partially prevent the stress-induced drop in body weight and at the same 

time completely prevented the stress-induced desensitization of the serotonin 1A 

receptor (Buwalda et al., 2001). Thus, whereas fat food ameliorates the effects of 

stress on the serotonergic system, it does not seem to protect against the effects 

of sleep restriction. Apparently, the mechanisms through which stress and sleep 

disturbance affect the serotonin 1A sensitivity are different.
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Although the sleep restricted groups on control and MF diet differed in body weight, 

they had a similar energy intake as calculated from their food intake and the caloric 

content of their respective diets. Possible explanations for this discrepancy are that 

rats on a fat diet increase the actual absorption of energy in the intestinal system 

or a fat diet somehow lowers energy expenditure (Buwalda et al., 2001;Koolman 

et al., 2010;Morens et al., 2006). Literature shows that sleep restriction increases 

energy expenditure (Everson, 1995;Rechtschaffen and Bergmann, 1995) and a 

MF diet might influence this in such a way that it attenuates weight loss compared 

to rats on a standard Chow diet.

 Both sleep restriction and diet had specific and independent effects on basal 

levels of insulin and leptin. Sleep restriction decreased the levels of these 

hormones whereas a MF diet increased them. These changes may in part reflect 

the changes in body weight and fat content in the different groups (Picarel-Blanchot 

et al., 1995;Redman and Ravussin, 2009). It remains unclear though why sleep 

restricted rats on a MF diet did not have significantly higher insulin and leptin 

levels compared to the sleep restricted rats on a standard Chow diet. Yet, the 

changes in the levels of these metabolic hormones may be relevant in the context 

of the changes in serotonin 1A sensitivity that we found. Particularly changes in the 

Figure 3: The effects of 8 days of sleep restriction on plasma levels of leptin (A) and insulin (B) in rats 

receiving a standard Chow diet or a MF diet. N=8 in each group. Data are presented as average values ± 

SEM. See text for details on statistics.
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regulation of insulin may be associated with altered serotonin receptor sensitivity 

(Li et al., 2009). Rats receiving an intraperitoneal injection with streptozotocin, 

which is extremely toxic for the −-cells in the pancreas, have a decreased insulin 

production similar to what is seen in diabetic patients (Rerup, 1970). After the 

injection, rats become hyperglycemic and hyperphagic but have decreased body 

weights, which is all normalized after insulin treatment (Friedman, 1977;Friedman, 

1978;Friedman and Ramirez, 1994). Li and colleagues (Li et al., 2009) showed 

that the body temperature response to an 8-OHDPAT challenge was decreased 

7 days after a streptozotocin injection, indicating reduced serotonin 1A sensitivity 

very much like in our sleep restricted rats. Again, the effect was reversible after 

10 days of insulin treatment. It might thus be that an altered insulin regulation 

contributes to a desensitization of the serotonin 1A system in sleep restricted rats.

 Clearly, the exact mechanism through which chronically restricted sleep gradually 

desensitizes the serotonin 1A system may be complex and multifactorial. It may in 

part be the result of altered regulation of physiological and endocrine factors such 

as insulin and it may in part be the consequence of a cumulative effect of sleep 

loss directly acting on the brain. 

 In conclusion, a MF food diet partially prevents the drop in body weight but not 

the desensitization of the serotonin 1A receptor system in sleep restricted rats. 

Chronically sleep restricted rats on both a standard Chow or MF diet showed 

a similarly blunted temperature response and blunted pituitary ACTH response 

to stimulation of the 1A receptors with the agonist 8-OHDPAT. The physiological 

and molecular mechanism through which sleep restriction gradually alters the 

serotonin 1A sensitivity remains to be established.
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Abstract
Sleep disturbances, induced by either life style, shift work or sleeping disorders, 

have become more prevalent in our Western 24/7 society. Sleep disturbances 

are associated with impaired health including metabolic diseases such as obesity 

and type 2 Diabetes. The question remains whether there is a direct effect of 

disturbed sleep on glucose homeostasis. Experimental studies under controlled 

laboratory conditions in both humans and experimental animals revealed that there 

are differences between the effects of acute or chronic sleep disturbance. 

Acute sleep restriction clearly leads to glucose intolerance often combined 

with insulin resistance. Glucose intolerance does also occur after chronic sleep 

disturbance but the changes in insulin may vary, dependent on the body weight 

changes in the various studies. The underlying mechanism that may cause the 

changes in glucose homeostasis after sleep disturbance remain unclear but 

both the biological clock located in the nucleus suprachiasmaticus as well as 

orexinergic mechanisms in brain and periphery seem to be involved.
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Introduction
Over the past 50 years, average sleep duration in Western societies has decreased 

by 2 hours per night (Van Cauter et al., 2005). Initially, this decrease is sleep 

has been mainly observed in adulthood, but recent epidemiological studies have 

shown a similar decrease in children and adolescents (for reviews see: Horne, 

2008;Van and Knutson, 2008). A decrease in sleep includes not only the 

duration but also the quality of sleep. Quality of sleep is generally defined in 

terms of changes in sleep architecture, the content of dreaming and the amount 

of awakenings (for a review see: Vandekerckhove and Cluydts, 2010). 

 A decrease in sleep length or quality of sleep has important consequences 

on an individual’s well-being. Sleeping problems are linked to many health and 

lifestyle problems such as increased errors, loss of productivity, sleepiness 

during the day, impaired social activities and an elevated risk for accidents 

(for a review see: Banks and Dinges, 2007;Horne and Reyner, 1999). 

Disturbed sleep has also been identified as risk factors for various diseases 

including psychiatric disorders such as depression (Breslau et al., 1996;Ford 

and Kamerow, 1989;Neckelmann et al., 2007) and immune system dysfunctions 

(Imeri and Opp, 2009;Irwin, 2002;Opp and Toth, 2003). These health problems 

are increasing since sleep loss and decreased sleep quality are becoming 

more and more prevalent in our current 24/7 Western society, 

Metabolic consequences of sleep disturbances

Sleep disturbances are also linked to metabolic dysfunctioning. Studies in 

shift workers provided the first (indirect) evidence for a relation between sleep 

disturbances and impaired metabolism. Shift work has become more prevalent 

in the last decades and shows clear negative effects on sleep timing, length and 

quality (Dumont et al., 1997). Shift workers are active during the night and they 

sleep and eat at abnormal hours. They fall asleep in the morning, but are awakened 

ahead of time due to their circadian rhythm, causing them to exhibit sleepiness 

and reduced performance (Akerstedt, 1990). The shift work - induced changes, 

in particular sleep loss and disturbed circadian rhythmicity in eating and energy 

expenditure, are associated with an increased susceptibility to develop obesity, 

type 2 diabetes and cardiovascular disorders (Akerstedt et al., 2004;Knutsson, 

2003).

 There is also a direct correlation between disturbed sleep and obesity, the 

main risk factor for developing cardiovascular diseases and type 2 diabetes. 

Evidence for this comes from several epidemiological studies, among others 

described by Caput and Van Cauter (Chaput et al., 2007;Van Cauter et al., 2007). 

In addition, the group of Gottlieb and co-workers (Gottlieb et al., 2005) provided 

evidence for a direct correlation between disturbed sleep and the increased 

prevalence of type 2 diabetes, independent of changes in body weight.

 Another striking example for the relation between disturbed sleep and increased 

risk on metabolic disorders derives from studies on patients with obstructive sleep 

apnea (OSA). OSA is characterized by the recurrent collapse of the airway during 
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sleep, which usually leads to arousals to resume breathing. The patients suffer 

from sleep fragmentation and hypoxemia, causing disturbed sleep architecture 

and increased amount of awakenings (Bandla and Gozal, 2000;Svanborg and 

Guilleminault, 1996). OSA primarily changes the quality of sleep while total sleep 

time is not dramatically altered. Vgontzas and colleagues (Vgontzas et al., 2003) 

were the first to show that there is a relation between OSA and obesity, type 2 

diabetes and cardiovascular disease. In fact, there is bidirectional relationship: 

OSA leads to obesity but obesity does also directly affect OSA: weight gain or 

weight loss leads to a significant worsening or improvement, respectively, of sleep 

apnea in adults (Peppard et al., 2000;Pillar and Shehadeh, 2008). OSA is also 

directly associated with insulin resistance and glucose intolerance, independent 

of changes in weight (Punjabi et al., 2002). 

Human studies on sleep and glucose homeostasis

The main point of the above is that disturbed sleep is clearly associated with an 

increased risk on type 2 diabetes, even when corrected for BMI or fat content of 

the body (Chaput et al., 2009;Gottlieb et al., 2005). This leads to the question: 

is there a direct effect of (disturbed) sleep on glucose and insulin regulation? 

To answer this question, experimental studies under controlled laboratory 

conditions are required. These studies, both in humans and experimental animals, 

are recently performed in different labs.

 In experimental studies in humans, most experimenters standardize the 

experimental protocol by providing standard meals at fixed time points of the day 

and by requiring the subjects to stay in bed during the sleep restriction hours to 

minimize activity. Unfortunately, there is still a large variation in the experimental 

set up of the sleep restriction protocols, in particular in the length of the sleep 

restriction period which may vary from acute one night total sleep deprivation up 

to periods of 6 nights of partial sleep deprivation. These differences in length of 

the sleep restriction protocols markedly influenced the outcomes of the different 

studies.

 The first experimental study in humans was published in 1993, when VanHelder 

and colleagues showed that sixty hours of sleep deprivation led to an increased 

plasma insulin response without changes in blood glucose during an oral glucose 

tolerance test (OGTT) (VanHelder et al., 1993). Similar data after one night of 

sleep restriction have been found in a recent study by Donga et al (Donga et al., 

2010) in which insulin sensitivity was measured with the gold standard method 

for measuring insulin sensitivity: a hyperinsulineamic euglycemic clamp. In this 

study, one night of sleep restriction (four hours in bed) was sufficient to develop 

moderate insulin resistance, reflected by a decreased glucose infusion rate, 

a reduced glucose disposal rate and increased endogenous glucose production. 

In this study, the baseline glucose and insulin levels were not different from 

controls. 

 In 1999, Spiegel and colleagues showed that six days of partial sleep restriction 

(subjects were allowed to sleep only four hours per night) led to glucose intolerance 
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reflected by a significant elevation of blood glucose levels during an intravenous 

glucose tolerance test (IVGTT) (Spiegel et al., 1999). Surprisingly, there was no 

reduction in insulin sensitivity. Instead, it was observed that plasma insulin levels 

were decreased after six days of sleep disturbance which is, of course, in sharp 

contrast with the data from VanHelder and Donga (Donga et al., 2010;VanHelder 

et al., 1993). However, in a follow up study from the same lab (Tasali et al., 2008), 

they found that sleep disturbance could indeed lead to reduced insulin sensitivity 

and glucose intolerance. In this particular study, the subjects were submitted to 

an IVGTT and sleep disturbance was defined as three nights of experimentally 

suppressed slow wave sleep without changes in total sleep time. This also allows 

the conclusion that it is not only the quantity of sleep but also the quality of sleep 

that is important. 

 Although many of these human data are seemingly in conflict with each other, 

one may still conclude that sleep disturbance has a marked impact on glucose 

and insulin homeostasis. When searching for a common denominator, it seems 

that acute sleep disturbances may to lead to insulin resistance and in some cases 

glucose intolerance, whereas longer periods of disturbed sleep has no direct effect 

on insulin sensitivity but the glucose intolerance remains. One may speculate 

that the insulin resistance after acute total sleep deprivation is secondary to the 

(stress-induced) activation of the HPA-axis elevation reflected by the elevated 

cortisol levels in the evening after a night without sleep (Leproult et al., 1997). 

This acute stress response may be less pronounced in the longer sleep restriction 

studies where the subjects are still allowed to sleep for a few hours per night. 

However, Spiegel and colleagues (Spiegel et al., 1999) still found increased 

cortisol levels after the six days of sleep restriction although this increase was less 

pronounced when compared to the acute response after one night without sleep.

Animal studies on sleep and glucose homeostasis - rat studies

As mentioned before, human studies may vary in length between acute sleep 

deprivation to a maximum of up to six days of sleep restriction. Animal studies are 

required for studies on chronic sleep disturbance for investigation of the underlying 

mechanisms. Most animal studies in (chronic) sleep research are performed in 

rodents and experimental methods to prevent the animals from sleeping may vary 

from gentle handling to small balance platforms and forced activity. The different 

methods are discussed below.

 The gentle handling method (Van Der Borght et al., 2006) is comparable to the 

sleep restriction protocol in human experiments. The animals, mostly rats, are kept 

awake by a protocol that includes tapping on the cage, shaking the cage gently 

or, if required, disturbing the nest. This method is mainly used in acute or short 

time sleep deprivation experiments, since the experimenter is required to be 

present continuously during the experiments. In our laboratory, 12h of sleep 

deprivation by means of gentle handling had no effect at all on baseline levels of 

blood glucose, plasma insulin and plasma corticosterone. 

 The balance platform method is more commonly used in chronic sleep restriction 
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experiments. Two methods are described in literature the flower pot and the single 

platform method. Both methods are used to deprive rats of REM sleep only and 

the principle is as follows: to induce REM sleep deprivation, rats are placed inside 

a water chamber onto a flower pot or a platform of about 7.0cm in diameter. 

The platform is in the water up to 1.0cm of the platform upper surface. The method 

is based on the loss of muscle tonus that occurs during REM sleep. This means 

that if the rat enters the REM sleep stage, it loses muscle tonus and will touch 

the water after which the rat will wake up (Cohen and Dement, 1965). When this 

method is used to deprive rats of REM sleep for 4 days, it leads to a decrease in 

plasma insulin levels which is secondary to a significant reduction in body weight 

(Hipolide et al., 2006). 

 Another commonly used method in animal sleep restriction research is the 

disk over water method, extensively described by Rechtschaffen and colleagues 

(Rechtschaffen and Bergmann, 1995;Rechtschaffen and Bergmann, 2002) 

In short, the experimental animal is housed on a horizontal disk above water. 

The electromyograph (EMG) and the electroencephalograph (EEG) are 

continuously recorded to detect sleep states. When the experimental rat starts 

to sleep or enters a certain sleep stage, the disk starts to rotate at a low speed. 

This causes the awakening of the rat and forces it to walk to avoid being 

carried into the water. There is only one study in which this method was used 

to investigate glucose homeostasis after a longer period of sleep deprivation. 

In this study by Everson and colleagues, they measured glucose disappearance 

after a dextrose injection. The data revealed that there was a tendency towards 

somewhat lowered glucose levels after sleep deprivation (Everson et al., 1989).

 In our laboratory, we use a forced activity paradigm known as the slowly rotating 

drum to sleep deprive the rats. This method was originally described in 1984 by 

Borbely and colleagues (Borbely et al., 1984). In our studies, the experimental 

animals are placed for twenty hours per day in a rotating drum (Figure 1) that 

is rotating at a constant speed of 0.4cm/min (Barf et al., 2010;Novati et al., 

2008;Roman et al., 2005). In this way the animals are allowed to sleep only for 

(the remaining) four hours per days.  We generally include a control group that 

walks twice the speed (0.8cm/min) but half the time to control for the forced activity 

in this protocol. Our latest studies focused on the difference between acute and 

chronic sleep deprivation on glucose homeostasis and insulin levels. To this end, 

we performed an intravenous glucose tolerance test (IVGTT) after 1 day and 8 

days of sleep restriction. The data revealed that a reduction in sleep markedly 

interfered with glucose metabolism (Barf et al., 2010). Acute sleep restriction 

was accompanied with elevated blood glucose profiles without any changes in 

plasma insulin levels during an IVGTT. The effects of chronic sleep reduction are 

presented in Figure 2. The observed glucose intolerance is still present after 8 days 

of sleep restriction which is similar to the data obtained in most human studies. 

Baseline insulin levels and glucose-stimulated insulin responses were lower after 

chronic sleep reduction. This effect on insulin was, similar to the data in humans 

obtained by Spiegel et al in 1999, secondary to the weight loss after chronic sleep 
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Figure 1: Slowly rotating drum

Figure 2: Blood glucose and plasma insulin levels in response to a 30-min intravenous glucose infusion after 

one (graphs A and C) and 8 (graphs B and D) days of restricted sleep (RS) or controls. The horizontal grey 

bars at the bottom of each graph represent the 30 min of 15% glucose infusion. Data are average values 

± SEM (Barf et al., 2010). 
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reduction. Based on the data above, we may conclude that the effects of sleep 

restriction on glucose homeostasis in experimental animals are remarkably similar in 

rats and humans. Acute sleep restriction leads to glucose intolerance in combination 

with unchanged insulin levels (all rat models and some human studies) or insulin 

resistance (other human studies). The glucose intolerance remains prevalent after 

chronic sleep restriction, both in humans and rats. Chronic sleep restriction may 

also lead to a reduction in plasma insulin levels but this effect seems secondary 

to a reduction in body weight. The reduction in body weight is typical for 

experimental studies under controlled conditions and in sharp contrast with 

epidemiological data that suggest that long term sleep disturbances are 

associated with weight gain and the development of obesity and, consequently, 

the development of insulin resistance and type 2 Diabetes. The insulin resistance 

that occurs after one night of total sleep deprivation in the (human) experimental 

studies seems primarily caused by a (stress-induced) activation of the HPA-axis, 

reflected by the elevated cortisol levels under these circumstances.

Possible mechanisms underlying glucose intolerance

The data above raises the question: what is the cause of the glucose intolerance 

that occurs after both acute and chronic sleep deprivation? Is it mainly a 

behavioral effect, related to changes in food intake, physical activity and 

energy expenditure? Or is it caused by (circadian) disturbances in hormonal 

outflow and/or the activation of the autonomic nervous system? Or is hyperglycemia 

mainly secondary to changes at the level of the central nervous system, 

in particular at orexinergic neurons in the lateral hypothalamus? Some of these 

options will be discussed below. 

 The biological clock, located in the suprachiasmatic nucleus (SCN), has a 

marked effect on glucose homeostasis. There are clear differences in the glucose 

and insulin responses to an IVGTT in both rats and humans at different times 

of the circadian clock (for review see: Kalsbeek et al., 2010). This circadian 

rhythmicity in glucose regulation disappears when the SCN is lesioned (La Fleur 

et al., 2001). One may state that the biological clock does not only influence the 

sleep-wake cycle, but also prepares the glucose regulatory mechanisms for the 

changes in energy uptake and expenditure at different time points of the day/

night cycle. These circadian systems are tightly integrated and problems may 

occur when our daily activities are not in synchrony with our sleep-wake cycle, 

for example during shift work and  periods of disturbed sleep (Knutsson, 2003). 

For example, when rats are forced to be active in their non-active phase, they 

will eat at the wrong time of the day and consequently increase in body weight 

compared to controls (Salgado-Delgado et al., 2008). This weight gain can be 

prevented when the animals are only allowed to eat in the (normal) active phase 

and not in the shift work period (Salgado-Delgado et al., 2010).
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Hormonal influences also seem to be involved in the effects of disturbed and 

restricted sleep in glucose metabolism. In humans, sleep deprivation has been 

shown to decrease plasma leptin and to increase plasma ghrelin levels, leading to 

increased hunger and appetite (Spiegel et al., 2004).  At a central level, orexinergic 

system in the brain seems to play a role as well. Orexin is involved in both food 

intake, energy expenditure and the sleep-wake cycle and could therefore be an 

interesting link between sleep disturbances and the increased prevalence of obesity 

and type 2 diabetes (Sakurai, 2002;Sakurai, 2007). For example, narcolepsia is 

a disease that is characterized by reduced orexin levels in the central nervous 

system causing less consolidated wake periods, leading to a sudden appearance 

of sleep periods. Narcolepsia is associated with an increased frequency of type 

2 diabetes (Honda et al., 1986). Peripheral orexin seems to be involved as well 

since orexin receptors have been found on the pancreas and other peripheral 

organs (Adeghate et al., 2010). It is also known that orexin plays a direct role 

in the regulation of glucose homeostasis. Tsuneki and colleagues showed that 

Figure 3: Overview of the connections between sleep, sleep loss, orexin and metabolic hormones.
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orexin neurons directly respond to the nutritional status of an individual and is 

modulated by metabolic signals such as glucose, leptin and ghrelin (Tsuneki et 

al., 2010;Yi et al., 2009). Studies in orexin knockout mice point to a contribution of 

orexin in the age-related development of impaired glucose tolerance, independent 

of obesity (Tsuneki et al., 2008). Finally, it is known that orexin is directly involved 

in the regulation of energy expenditure. Increased orexin levels correspond with 

increased physical activity and increased non-exercise thermogenesis (NEAT) 

and, consequently, glucose utilization. Taken together, these data show that orexin 

may serve as a crucial factor in the relation between sleep loss, circadian rhythms, 

physical activity and the effects on glucose metabolism (Figure 3).

 In summary, sleep disturbances are directly associated changes in glucose 

homeostasis. Experimental studies under controlled laboratory conditions in 

both humans and experimental animals revealed that there are differences 

between the effects of acute or chronic sleep disturbance. Acute sleep 

restriction clearly leads to glucose intolerance often combined with insulin 

resistance. Glucose intolerance does also occur after chronic sleep 

disturbance but the changes in insulin may vary, dependent on the body weight 

changes in the various studies. The underlying mechanisms that may 

cause the changes in glucose homeostasis after sleep disturbance remain 

unclear but both the biological clock located in the nucleus suprachiasmaticus 

as well as orexinergic mechanisms in brain and periphery seem to be involved.
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Summary
This thesis aimed to study restricted or disrupted sleep in rats in a controlled 

laboratory setting to allow a detailed assessment of the metabolic consequences 

of sleep loss and its underlying mechanisms. Based on the human epidemiology, 

we expected that chronic sleep restriction would lead to increased food intake, 

weight gain and insulin resistance. However, we found that chronic sleep restriction 

attenuates weight gain with no change in food intake or insulin resistance. In 

addition, we observed that sleep restriction leads to hyperglycemia, both acutely 

and after 8 days of sleep restriction (chapter 3). Furthermore, chronic sleep 

restriction led to increased energy expenditure, which may explain the attenuated 

weight gain (chapter 2). Changing the sleep restriction model by including 2 days 

of undisturbed sleep per week did lead to increased food intake and weight gain in 

comparison to continuously sleep restricted rats although the weight gain was still 

lower than in home cage controls (chapter 6). The hyperglycemia and attenuated 

weight gain appears to be a direct consequence of disturbed or insufficient 

sleep and not a non-specific byproduct of our sleep deprivation model, since 

hyperglycemia was not observed in control studies in which rats were exposed 

to forced running (chapter 4) or a circadian disruption protocol in which rats were 

forced to be active for 8 hours during the light (inactive) phase (chapter 5). 

Sleep quantity vs. sleep quality

An important question is whether the metabolic consequences of sleep restriction 

are due to a change in the sleep quantity or sleep quality. In chapter 3 we 

demonstrated that chronically disturbed sleep led to an attenuation of weight 

gain, despite the fact that rats were allowed to sleep for 14h per day. In addition, 

intravenous glucose tolerance test (IVGTT) data demonstrated a hyperglycemia 

together with a decrease in insulin response, similar to sleep restricted rats. To 

compare total sleep time between both groups we measured sleep EEG also in 

our sleep disturbed rats (Figure 1). During a baseline day, rats slept approximately 

11h. In chapter 2 we demonstrated that our sleep restriction protocol led to a 

60% decrease of total sleep time. Although sleep disturbed rats had 14h of sleep 

allowance per day, the protocol still led to a 20-30% decrease in total sleep time. 

Thus, sleep disturbed rats slept more than sleep restricted rats, but considerably 

less compared to their own baseline day. We cannot exclude that this reduction in 

total sleep time was responsible for the changes in glucose tolerance and weight 

gain. However, since the consequences were not more pronounced in the sleep 

restricted rats, we can conclude that a more severe sleep restriction protocol does 

not necessarily lead to more extreme consequences. 

 Interestingly, when we only disturbed the circadian aspect of sleep, by means of 

a shift work protocol that forced rats to be active during their normal sleep phase, 

a small attenuation of weight gain was found but no effect on glucose tolerance 

(chapter 6). We did not perform EEG measurements in these shift work rats, but it 

may be that this protocol only affected the timing of sleep and not sleep quantity 

and sleep quality per se. Clearly, while shift work under real life conditions is 
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often associated with disturbed sleep (Akerstedt, 2003), such disturbances may 

not occur under optimal laboratory conditions. Indeed, it has been shown in at 

least one human laboratory experiment that, under optimal conditions, one week 

of shift work did not affect total sleep time or sleep architecture (Lamond et al., 

2003). Similarly, our shift work rats may have had shifted, but normal amounts of 

consolidated sleep, thereby preventing the metabolic consequences seen in our 

sleep restricted and sleep disturbed rats. 

 To conclude, our data suggest that shifting sleep allowance to the subjective day 

per se does not affect glucose homeostasis, whereas disturbed and/or reduced 

sleep induces glucose intolerance. Therefore, our rat data regarding sleep quantity 

vs. sleep quality  are comparable to the human literature, since both restricted 

sleep (Spiegel et al., 1999) as well as decreased sleep quality (Tasali et al., 2008), 

by means of suppressed deep sleep without changes in total sleep time, lead to 

reduced glucose tolerance.

Sleep restriction and the orexinergic system

The neuropeptides orexin A and orexin B (also known as hypocretin 1 and 

hypocretin 2) may play an important role in the metabolic consequences of chronic 

sleep restriction. Orexin neurons were independently discovered by two different 

groups (de Lecea et al., 1998;Sakurai et al., 1998;Peyron et al., 1998). Both found 

that orexin neurons are localized to the lateral hypothalamus (LH). Since the 

Figure 1: Time spent asleep or wakefulness during baseline, day 1 and day 8 of sleep disturbance and a 

recovery day (n=5). Time spent asleep is divided into NREM and REM sleep. Data are average values ± 

SEM. Statistics are done on total sleep time and total wake time. Asterisks indicate a significant difference in 

comparison to baseline (* P<0.05). 
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LH area is known as the feeding center, it was thought that orexin was involved 

in food intake. Indeed, ICV injections of orexins during the light period induced 

feeding behavior in both rats and mice (Haynes et al., 2000;Sakurai et al., 1998). 

In addition to the effects of orexin on feeding behavior, orexin knockout mice also 

show a remarkably similar phenotype to human narcolepsy patients. Narcolepsy 

is a disease that is characterized by severe sleep disturbance, less consolidated 

wake periods and sudden appearances of sleep bouts. Studies in patients indeed 

confirmed that narcolepsy is associated with a pronounced orexin deficiency 

(Peyron et al., 2000;Thannickal et al., 2000). Importantly, narcolepsy patients 

often suffer from metabolic disorders such as obesity and type 2 diabetes (Honda 

et al., 1986). Likewise, studies in orexin knockout mice point to a contribution of 

orexin in the age related development of impaired glucose tolerance independent 

of obesity (Tsuneki et al., 2008). In addition, it has been found that orexin neurons 

directly respond to metabolic signals such as glucose, insulin, leptin and ghrelin 

that reflect the nutritional status of the body (Tsuneki et al., 2010;Yi et al., 2009). 

Finally, it is known that orexin is directly involved in the regulation of energy 

expenditure. An increase in orexin levels increases physical activity, non-exercise 

thermogenesis and, consequently, glucose utilization (for review: Ganjavi and 

Shapiro, 2007). Taken together, the literature suggests that orexin may be a 

crucial factor in the relationship between sleep loss, physical activity, food intake 

and glucose metabolism.

 Other research has focused on the effects of sleep deprivation on orexins and its 

receptors. However, there are still many inconsistencies. REM sleep deprivation 

using the flower pot method leads to increased orexin A levels in the CSF 

(Pedrazzoli et al., 2004)  and  an increased number of immune-reactive orexin A 

neurons in the LH (Galvao et al., 2009), but has no effect on the mRNA levels of 

prepro-orexin, the precursor of both orexin A and B (D’Almeida et al., 2005). After 

24h of recovery sleep, orexin A levels in the CSF were reduced (Pedrazzoli et 

al., 2004), whereas another study showed a significant increase in prepro-orexin 

mRNA expression in the LH as well as a pronounced increase in orexin receptor 

1 mRNA expression in multiple brain areas after sleep rebound (D’Almeida et al., 

2005). Total sleep deprivation for 24 hours increases the concentration of orexin 

A in CSF of dogs (Wu et al., 2002), and 6 hours of sleep deprivation increases 

orexin A in the LH as measured by micro-dialysis in rats (Yoshida et al., 2001). 

In contrast, the same amount of sleep deprivation did not affect orexin A mRNA 

expression in rats (Terao et al., 2000). Thus, it seems that variations in sleep 

deprivation differentially affect orexin at the mRNA and protein level. Nonetheless, 

sleep deprivation leads to increased orexin A expression independent of method 

or length of the protocol.

 If, along the same lines, orexin A expression is increased in our sleep restriction 

protocol as well, one might expect that sleep restriction leads to changes at the 

receptor level in certain brain areas. Abundant amounts of orexin may lead to 

desensitization and, in turn, to down-regulation of the receptors (Freedman and 

Lefkowitz, 1996;Jackson, 1991). To test this hypothesis, we performed western 
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blot analyses for measurements of orexin receptor 1 in both the prefrontal cortex 

and the thalamus (including hypothalamus) after 8 days of sleep restriction. 

The results in Figure 2 show no differences between sleep restricted rats and 

home cage controls, thus we can conclude that the orexin receptor 1 is not down 

regulated. These data do not support the idea that the metabolic consequences 

of chronic sleep restriction are mediated by changes in the orexinergic system. 

However, to completely understand the effect of sleep restriction on orexins and 

its receptors, future studies should focus on all aspects of the neuropeptides as 

opposed to focusing only on mRNA levels, proteins, or its receptors. 

Sleep restriction and obesity

In our studies, chronic sleep restriction led to an attenuation of weight gain in rats, 

whereas the literature reports a clear association between short sleep and the 

development of obesity in humans (Chaput et al., 2006;Chaput et al., 2008;Knutson 

and Van Cauter, 2008;Snell et al., 2007). The question remains what the reason 

for this discrepancy between human epidemiology and animal experiments is. 

One explanation is that exposure to chronic sleep restriction differently affects 

energy expenditure in rats and humans. In rats, we demonstrated that the 

attenuation of weight gain in sleep restricted rats is a consequence of increased 

energy expenditure (chapter 2). In humans, however, energy expenditure is not 

affected during sleep restriction (Buxton et al., 2010;Penev, 2007). In fact, it might 

be that chronic sleep restriction in humans, by causing fatigue, is associated 

with reduced day-time activity and thereby a decrease in overall daily energy 

expenditure. In contrast, sleep restricted rats in our forced activity model are 

not able to reduce their activity and thereby maintain an increased energy 

expenditure. This difference in energy expenditure may explain the assumed 

difference in weight changes between human and rat studies. 

 Alternatively, differences in energy intake may explain the discrepancy between 

Figure 2: Orexin receptor 1 expression measured by western blotting in both the prefrontal cortex and 

the thalamus-hypothalamus divided by HPRT data, which is intended for use as a positive control (n=8). 

Data are average values ± SEM. 
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weight changes in sleep restricted laboratory rats and humans as well. In chapters 

2 and 3 we demonstrated that rats did not increase their food intake despite the 

attenuation of weight gain during sleep restriction. Research has shown that total 

sleep deprivation as well as REM sleep deprivation leads to hyperphagia, yet 

rats lose weight (Everson and Crowley, 2004;Hipolide et al., 2006;Koban and 

Stewart, 2006;Koban et al., 2008). In humans, several days of sleep restriction 

did not affect normal food intake but did significantly increase snacking behavior 

in the evening (Nedeltcheva et al., 2009). Although body weights were unchanged 

during the experimental period, authors concluded that the increase in snacking 

behavior, and thus an increase in caloric intake, could be obesity-promoting. 

In our experiments, rats do not have the availability of high caloric snacks or 

choice between different types of food, which may be another explanation for the 

assumed difference in weight changes between human and rat studies.   

  Interestingly, alternating sleep restriction with periods of rest is more common in 

real life. Sleep loss in humans is generally an alternation between sleep restriction 

during the week and recuperation from sleep loss on the weekend (Valdez et 

al., 1996). In contrast, experimental studies in rats often consist of a continuous 

period of sleep restriction without periods of recovery. Therefore, we assessed 

the metabolic consequences of a chronic sleep restriction protocol that modeled 

working weeks with restricted sleep time alternated by weekends with unrestricted 

sleep allowance (chapter 6). We showed that the alternation between periods of 

sleep restriction and sleep allowance led to complex changes in food intake and 

body weight thus preventing weight loss that is normally seen during continuous 

sleep restriction. Yet, even though this protocol of sleep restriction alternated with 

weekends of sleep allowance prevented the attenuation of weight gain, rats did 

not become overweight or obese.

 Perhaps, the duration of sleep restriction is important as well. Experimental 

studies in rats are rarely longer than a few days or weeks. Even in our own lab, 

rats were never sleep restricted for more than a month. It may be that insufficient 

sleep only contributes to obesity when sleep restriction truly becomes a chronic 

condition.

 To summarize, epidemiological studies in humans demonstrate clear 

associations between short sleep and obesity, which has led to the hypothesis 

that insufficient sleep may be a causal factor in the development of obesity. 

Unfortunately, the finding that, in rats, sleep restriction attenuates weight gain 

does not support this hypothesis. There may be several complicating factors that 

could result in different effects of sleep restriction in laboratory rats and humans in 

real life, particularly differences in the way sleep restriction affects overall energy 

expenditure and energy intake. Furthermore, it may be that sleep restriction is a 

risk factor for developing obesity only for certain personality types or people with 

a certain lifestyle. Personality differences may therefore be an important factor 

in the metabolic consequences of sleep restriction as well, which we will further 

address in the next section. 
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Sleep restriction and personality differences

The negative consequences of sleep restriction can differ between individuals (Van 

Dongen et al., 2005). Personality differences may play a major role in sensitivity to 

the development of metabolic disorders. To investigate this, we performed a pilot 

study in which we subjected two selection lines of rats with different coping styles 

to our chronic sleep restriction protocol. For this purpose we studied the Roman 

high avoidance (RHA) and Roman low avoidance (RLA) rats. These selection lines 

were founded by Bignami in 1965 (Bignami, 1965). The rats originate from the 

Wistar strain and were selectively bred on the basis of their performance in a two-

way active avoidance test. RHA rats were bred to rapidly learn shock avoidance, 

whereas RLA rats were bred for non-acquisition of avoidance. Subsequent studies 

showed that these rats not only differ in their shock-avoidance performance but, 

in fact, differ in a wide range of behaviors, such as emotional reactivity and coping 

style. RLA rats are highly emotional individuals with a passive coping style, 

whereas RHA rats are (pro)active rats with low emotional reactivity (Steimer and 

Driscoll, 2005).

 Research demonstrated that sleep architecture is different between both lines 

as well (Steimer et al., 1999). Total sleep time was not different, but RHA rats did 

have an overall increase in REM sleep time, with a concomitant decrease in NREM 

sleep time. However, it is not known whether they respond differently to sleep 

restriction. In our pilot experiment rats of both lines underwent 8 days of sleep 

restriction (n=4 per group). Food intake and body weight was measured daily. 

We hypothesized that, since RLA rats are more emotional and therefore sensitive 

to changes in the environment, they will lose more weight in comparison to RHA 

rats. Interestingly, both RLA and RHA rats had an attenuated weight gain, but 

there were no differences between the lines. Furthermore, we did not detect any 

differences when compared to Wistar rats in our previous experiments (chapters 

2 and 3).

 In chapter 4, we demonstrated that both forced and voluntary running decreases 

the insulin response to an IVGTT in RLA and RHA rats, but this effect is most 

prominent in the RLA rats, since these rats are already insulin insensitive under 

sedentary conditions. The same decrease in insulin response to an IVGTT is seen 

in our Wistar rats during sleep restriction (chapter 3). The question that remains 

is whether RLA and RHA rats differ in their glucose response to an IVGTT after 

sleep restriction, since we found a clear hyperglycemia in Wistar rats after 8 days 

of sleep restriction. It might be that, although both lines of rats have attenuated 

weight gain, they do have a difference in glucose clearance during an IVGTT. This 

would support the notion that personality differences are an important aspect in 

the metabolic consequences of sleep restriction and perhaps the sensitivity to 

metabolic disorders. 

Concluding remarks

Our data demonstrated that chronic, as well as acute, sleep restriction in rats has 

profound effects on glucose homeostasis and energy balance. In addition, we 
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found that alternating sleep restriction with periods of unrestricted sleep prevented 

the attenuated weight gain as seen during continuous sleep restriction. For that 

reason, this week-weekend protocol is interesting, both in the context of glucose 

homeostasis and weight gain. The attenuation of weight gain during continuous 

sleep restriction has always been an important, but unwanted, confounding factor 

when looking at the development of insulin resistance and glucose intolerance, 

since decreased body weight has effects on insulin sensitivity in itself. Therefore, 

this week-weekend protocol is a significant addition to existing research. Future 

experiments should emphasize the effects of chronic sleep restriction, alternated 

with periods of sleep allowance, on glucose homeostasis and insulin sensitivity. 

 Based on our data, future research should also focus on the underlying 

mechanisms of the sleep restriction induced glucose intolerance, especially at the 

central level. The neuropeptides orexin A and orexin B are assumed to be involved 

in the effects of sleep restriction on glucose homeostasis and energy balance, but 

it is not clear to what extent. Once the involvement of these peptides is elucidated 

it might be that the negative consequences of sleep restriction can be controlled 

by therapies targeting the orexinergic system.

 Nevertheless, it is a well-known notion that preventing is better than curing. 

In addition to personality differences in sleep architecture (Steimer et al., 1999) 

it is known that there are individual differences in the amount of total sleep 

one requires. Sleeping 8 hours per night may be right for one, but not enough 

for another. In any case, data obtained from the current studies suggest that 

chronic sleep restriction in the rat is a useful model for determining mechanisms 

by which insufficient sleep may lead to metabolic diseases such as type 2 diabetes 

and obesity.



138

9

139

Reference List
•  Akerstedt T (2003) Shift work and disturbed sleep/wakefulness. Occup Med (Lond) 

53:89-94.

•  Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP (2010) Obesity and shift 

work: chronobiological aspects. Nutr Res Rev 23:155-168.

•  Bignami G (1965) Selection for high rates and low rates of avoidance conditioning in 

the rat. Anim Behav 13:221-227.

•  Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK (2010) Sleep 

restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 59:2126-

2133.

•  Chaput JP, Brunet M, Tremblay A (2006) Relationship between short sleeping hours 

and childhood overweight/obesity: results from the ‘Quebec en Forme’ Project. Int J 

Obes (Lond) 30:1080-1085.

•  Chaput JP, Despres JP, Bouchard C, Tremblay A (2008) The association between sleep 

duration and weight gain in adults: a 6-year prospective study from the Quebec Family 

Study. Sleep 31:517-523.

•  D’Almeida V, Hipolide DC, Raymond R, Barlow KB, Parkes JH, Pedrazzoli M, Tufik S, 

Nobrega JN (2005) Opposite effects of sleep rebound on orexin OX1 and OX2 receptor 

expression in rat brain. Brain Res Mol Brain Res 136:148-157.

•  de Lecea L., Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, 

Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, 

Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with 

neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322-327.

•  Everson CA, Crowley WR (2004) Reductions in circulating anabolic hormones 

induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab 

286:E1060-E1070.

•  Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. 

Recent Prog Horm Res 51:319-351.

•  Galvao MD, Sinigaglia-Coimbra R, Kawakami SE, Tufik S, Suchecki D (2009) 

Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake 

and stress response. Psychoneuroendocrinology.

•  Ganjavi H, Shapiro CM (2007) Hypocretin/Orexin: a molecular link between sleep, 

energy regulation, and pleasure. J Neuropsychiatry Clin Neurosci 19:413-419.

•  Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A, Porter RA, Arch JR (2000) 

A selective orexin-1 receptor antagonist reduces food consumption in male and female 

rats. Regul Pept 96:45-51.

•  Hipolide DC, Suchecki D, Pimentel de Carvalho PA, Chiconelli FE, Tufik S, Luz J 

(2006) Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-

pituitary-adrenal axis activity, energy balance and body composition of rats. J 

Neuroendocrinol 18:231-238.

•  Honda Y, Doi Y, Ninomiya R, Ninomiya C (1986) Increased frequency of non-insulin-

dependent diabetes mellitus among narcoleptic patients. Sleep 9:254-259.

•  Jackson T (1991) Structure and function of G protein coupled receptors. Pharmacol 

Ther 50:425-442.



138 139

General discussion

•  Knutson KL, Van Cauter E (2008) Associations between sleep loss and increased risk 

of obesity and diabetes. Ann N Y Acad Sci 1129:287-304.

•  Koban M, Stewart CV (2006) Effects of age on recovery of body weight following REM 

sleep deprivation of rats. Physiol Behav 87:1-6.

•  Koban M, Sita LV, Le WW, Hoffman GE (2008) Sleep deprivation of rats: the 

hyperphagic response is real. Sleep 31:927-933.

•  Lamond N, Dorrian J, Roach GD, McCulloch K, Holmes AL, Burgess HJ, Fletcher A, 

Dawson D (2003) The impact of a week of simulated night work on sleep, circadian 

phase, and performance. Occup Environ Med 60:e13.

•  Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD (2009) Sleep 

curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 

89:126-133.

•  Pedrazzoli M, D’Almeida V, Martins PJ, Machado RB, Ling L, Nishino S, Tufik S, 

Mignot E (2004) Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep 

deprivation. Brain Res 995:1-6.

•  Penev PD (2007) Sleep deprivation and energy metabolism: to sleep, perchance to 

eat? Curr Opin Endocrinol Diabetes Obes 14:374-381.

•  Peyron C, Tighe DK, van den Pol AN, de LL, Heller HC, Sutcliffe JG, Kilduff TS (1998) 

Neurons containing hypocretin (orexin) project to multiple neuronal systems. 

J Neurosci 18:9996-10015.

•  Peyron C, et al. (2000) A mutation in a case of early onset narcolepsy and a 

generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 

6:991-997.

•  Sakurai T, et al. (1998) Orexins and orexin receptors: a family of hypothalamic 

neuropeptides and G protein-coupled receptors that regulate feeding behavior. 

Cell 92:573-585.

•  Snell EK, Adam EK, Duncan GJ (2007) Sleep and the body mass index and overweight 

status of children and adolescents. Child Dev 78:309-323.

•  Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and 

endocrine function. Lancet 354:1435-1439.

•  Steimer T, Python A, Driscoll P, de Saint HZ (1999) Psychogenetically selected (Roman 

high- and low-avoidance) rats differ in 24-hour sleep organization. J Biol Rhythms 

14:221-226.

•  Steimer T, Driscoll P (2005) Inter-individual vs line/strain differences in 

psychogenetically selected Roman High-(RHA) and Low-(RLA) Avoidance rats: 

neuroendocrine and behavioural aspects. Neurosci Biobehav Rev 29:99-112.

•  Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008) Slow-wave sleep and the risk 

of type 2 diabetes in humans. Proc Natl Acad Sci U S A 105:1044-1049.

•  Terao A, Peyron C, Ding J, Wurts SW, Edgar DM, Heller HC, Kilduff TS (2000) Prepro-

hypocretin (prepro-orexin) expression is unaffected by short-term sleep deprivation in 

rats and mice. Sleep 23:867-874.



140

9

141

•  Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford 

M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. 

Neuron 27:469-474.

•  Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E, Wada T, Kimura I, Yanagisawa 

M, Sakurai T, Sasaoka T (2008) Age-related insulin resistance in hypothalamus and 

peripheral tissues of orexin knockout mice. Diabetologia 51:657-667.

•  Tsuneki H, Wada T, Sasaoka T (2010) Role of orexin in the regulation of glucose 

homeostasis. Acta Physiol (Oxf) 198:335-348.

•  Valdez P, Ramirez C, Garcia A (1996) Delaying and extending sleep during weekends: 

sleep recovery or circadian effect? Chronobiol Int 13:191-198.

•  Van Dongen HP, Vitellaro KM, Dinges DF (2005) Individual differences in adult human 

sleep and wakefulness: Leitmotif for a research agenda. Sleep 28:479-496.

•  Wu MF, John J, Maidment N, Lam HA, Siegel JM (2002) Hypocretin release in normal 

and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J 

Physiol Regul Integr Comp Physiol 283:R1079-R1086.

•  Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, Sauerwein HP, Fliers E, 

Kalsbeek A (2009) A major role for perifornical orexin neurons in the control of glucose 

metabolism in rats. Diabetes 58:1998-2005.

•  Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, Mignot E, Nishino 

S (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation 

to the light-dark cycle and sleep-wake activities. Eur J Neurosci 14:1075-1081.



140 141

General discussion





Nederlandse
samenvatting



144 145

De metabole gevolgen van slaapverstoringen in ratten

Metabole ziekten als overgewicht en type 2 diabetes komen steeds meer voor in 

de Westerse wereld. Deze toename kan niet alleen verklaard worden door een 

verhoogde voedselinname en/of verminderde fysieke activiteit. De hoeveelheid 

slaap is de laatste jaren ook sterk afgenomen. Recent onderzoek, ondermeer 

door de groep van Van Cauter in Chicago, heeft aangetoond dat ook een tekort 

aan slaap of een verstoring van de slaap kan leiden tot de ontwikkeling van deze 

metabole ziekten. Het is echter nog niet duidelijk of er daadwerkelijk sprake is 

van een oorzakelijk verband. Experimentele studies zijn nodig om een oorzaak-

gevolg relatie tussen slaaptekort en gezondheidsproblemen te kunnen bepalen. 

Om deze reden hebben wij in dit proefschrift in detail onderzocht wat het effect is 

van chronisch slaaptekort op de metabole regulatie in ratten. 

 Om ratten op een gecontroleerde manier bloot te stellen aan chronische 

slaaprestrictie werden ze 8 dagen gehuisvest in langzaam draaiende wielen voor 

20 uur per dag. De dieren mochten de eerste 4 uur van hun normale rustfase slapen, 

hetgeen niet voldoende was om te herstellen van de opgedane slaapschuld. Wij 

hebben hetzelfde schema aangehouden om chronisch slaaptekort te induceren 

en de metabole gevolgen te bestuderen. Om het slaaptekort te quantificeren 

werden de dieren in hoofdstuk 2 voorzien van electrodes voor het meten van 

hersenaktiviteit en het vaststellen van de slaap-waak patronen. De methode 

bleek zeer efficient in het verminderen van slaap tijdens de 20 uur per dag, wat 

leidde tot een toename in slaaptijd tijdens de 4 uur slaapmogelijkheid per dag 

en tijdens de 24 uur herstelperiode na 8 dagen met verminderde slaap. Tevens 

werd geconstateerd dat 8 dagen met verminderde slaap leidde tot een afname in 

lichaamsgewicht in vergelijking met controle dieren die onbeperkt konden slapen. 

De verklaring voor deze afname in lichaamsgewicht bleek een duidelijke toename 

in energie uitgave tijdens de periode van slaaprestrictie, vastgesteld met behulp 

van de dubbel gelabeld water methode.

 In een volgende studie werd op dag 1 en dag 8 van het slaaprestrictie protocol 

een intraveneuze glucosetolerantietest (IVGTT) uitgevoerd om de invloed van 

acuut en chronisch slaaptekort op de glucoseregulatie te bepalen (hoofdstuk 3). 

Tijdens deze test kregen de ratten een glucose-infuus en werden veranderingen 

in glucosewaarden en de insulinerespons gemeten. Ondanks dat de basale 

bloedglucose en plasma-insulinewaarden verlaagd waren was een toename 

in glucose zichtbaar tijdens de IVGTT, zowel op dag 1 als op dag 8 van het 

slaaprestrictie-protocol. Een tweede groep ratten onderging slaapverstoring 

in plaats van slaaptekort. Slaapverstoring werd geinduceerd door middel van 

meerdere kortdurende periodes geforceerde activiteit afgewisseld met periodes 

waarin de ratten vrij mochten slapen. Ondanks dit protocol hadden de ratten 

genoeg tijd per dag om te slapen (14 uur). Deze slaapverstoorde ratten lieten 

ook een hyperglycemie zien. Daarentegen was de insulinerespons tijdens de 

IVGTT juist verlaagd voor zowel ratten die blootgesteld waren aan slaaptekort als 

aan slaapverstoring. Hieruit concludeerden wij dat de glucosetolerantie van het 

lichaam verlaagd is na zowel acute als chronische slaapverstoring.
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Om te bepalen of de resultaten die we zien echt een gevolg waren van slaaptekort 

werden 2 controle experimenten uitgevoerd. In onze experimenten maakten wij 

gebruik van langzaam draaiende wielen om slaaprestrictie te induceren, wat 

inhoudt dat de ratten geforceerd werden om actief te zijn. In hoofdstuk 4 hebben 

we laten zien dat als ratten gedwongen werden om te lopen in een loopwiel, 

zonder slaaptekort te induceren, dit geen invloed had op de glucose homeostase. 

De veranderingen in glucoseregulatie in de dieren die blootgesteld werden aan 

slaaprestrictie lijken dus niet het gevolg te zijn van gedwongen activiteit. 

 Het slaaprestrictie model kan mogelijk ook een verstoring van de slaap-waak 

ritmiek teweeg brengen. Verstoring van de ritmiek kan een alternatieve verklaring 

zijn voor de veranderingen die wij zien op het metabolisme. Het is mogelijk 

dat het moment van de dag waarop de geforceerde activiteit plaatsvindt van 

belang is in het induceren van de metabole verandering. Om deze reden werd in 

hoofdstuk 5 een model voor ploegendienst opgezet om te meten wat de effecten 

van een veranderd dag-nacht ritme zijn op het metabolisme in vergelijking tot het 

slaaprestrictie model. De dieren in dit ploegendienst model hadden genoeg tijd 

om te slapen, maar de slaapfase en waakfase werden omgedraaid. Deze ratten 

werden geforceerd tot activiteit met behulp van de langzaam draaiende wielen 

voor 8 uur per dag tijdens de lichtfase, wat normaal hun slaapfase is. Een controle 

groep ratten werd geforceerd tot 8 uur activiteit tijdens de donkerfase, wat normaal 

ook de actieve fase is. Een duidelijk effect van ploegendienst op voedselinname 

was zichtbaar. De voedselinname verschoof geleidelijk naar de lichtfase waarin 

ze nu actief moesten zijn. Echter, de totale voedselinname per dag was niet 

veranderd. Aan het einde van het protocol, na 14 dagen ploegendienst, hebben 

we een IVGTT uitgevoerd om het effect van ploegendienst op de glucoseregulatie 

te bepalen. Er waren geen veranderingen zichtbaar in de respons op een IVGTT 

in vergelijking met controle ratten. We kunnen dus concluderen dat een verstoring 

in dag-nacht ritme niet leidt tot glucose intolerantie zoals zichtbaar was tijdens 

slaaprestrictie en slaapverstoring (hoofdstuk 3). 

 In al onze experimenten laten we zien dat ratten afvallen tijdens slaaptekort. 

Dit lijkt niet in overeenstemming te zijn met epidemiologische studies die 

suggereren dat slaaptekort kan leiden tot overgewicht. Een belangrijk verschil 

is dat slaaprestrictie in rattenexperimenten vaak ononderbroken zijn terwijl in 

de humane situatie het vaak een afwisseling is van periodes met slaaptekort 

(doordeweeks) en periodes van bijslapen (weekends). Het kan zijn dat deze 

continue afwisseling van slaaptekort en periodes van rust juist cruciaal zijn in 

de ontwikkeling van overgewicht. Om die reden hebben wij ratten op hetzelfde 

“week-weekend” protocol gezet. Dit houdt in dat ratten blootgesteld werden 

aan verminderde slaap voor 5 dagen per week, en vrij mochten slapen in de 

overige 2 dagen van de week. Dit protocol hebben we 4 weken aangehouden 

(hoofdstuk 6). Onze hypothese was dat dit “week-weekend” protocol de afname 

in lichaamsgewicht zou voorkomen, aangezien ratten nu tussendoor tijd hadden 

om te herstellen. Tijdens de eerste week van het protocol was een verlaging in 

lichaamsgewicht en geen verandering in voedselopname zichtbaar, vergelijkbaar 
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met de data in hoofdstuk 2 en 3. Echter, na het eerste weekend, waarin de ratten 

vrij mochten slapen, was er een extreme toename in voedselinname zichtbaar 

tijdens de slaaprestrictie dagen. Deze verhoging in voedselinname zorgde ervoor 

dat er geen verlaging in lichaamsgewicht meer plaats vond. Om precies te zijn, 

slaaprestrictie ratten bleven parallel lopen aan de controle dieren. Schijnbaar 

zorgde het weekend rust ervoor dat de dieren zich beter konden aanpassen aan 

het slaaprestrictie protocol, waardoor de voedselinname verhoogd werd en de 

ratten op deze manier konden voorkomen dat ze nog meer zouden afvallen. 

 Een ander verschil tussen ratten experimenten en de humane situatie is 

het verschil in dieet. In het dagelijkse leven hebben mensen de keuze uit vele 

types eten met verschillende hoeveelheden vet. In tegenstelling tot vet voedsel 

krijgen ratten vaak automatisch een standaard type voer (chow) met een 

laag vetgehalte. Wij wilden onderzoeken of de effecten van slaaptekort op 

lichaamsgewicht, voedselinname en regulerende hormonen leptine en insuline 

beinvloed zou worden door een medium vet dieet in vergelijking met standaard 

chow dieet (hoofdstuk 7). Voedselinname was niet verschillend tussen de ratten 

op de verschillende diëten, maar tijdens slaaptekort was het lichaamsgewicht 

van de ratten op een medium vet dieet minder extreem gedaald vergeleken met 

ratten op een chow dieet. Deze minder extreme daling in lichaamsgewicht kan ook 

een beschermende invloed hebben op de neurobiologische gevolgen van 

slaaptekort die eerder in ons lab zijn geconstateerd. Om die reden hebben 

wij onderzocht of een verschil in dieet tijdens slaaptekort invloed heeft op de 

gevoeligheid van de serotonine 1A receptor. De afname in gevoeligheid van de 

serotonine 1A receptor tijdens slaaptekort, zoals die in eerder onderzoek was 

vastgesteld, bleef bestaan, ook bij dieren op een medium vet dieet. De minder 

extreme afname in lichaamsgewicht van ratten op een medium vet dieet tijdens 

slaaptekort had dus geen effect op de serotonine 1A receptor gevoeligheid. 

Hieruit kunnen we concluderen dat de veranderingen in serotonine 1A receptor 

gevoeligheid tijdens slaaptekort niet het gevolg zijn van veranderingen in dieet 

of lichaamsgewicht, maar waarschijnlijk het gevolg zijn van een direct effect van 

slaaptekort op de hersenen.
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Conclusie

In dit proefschrift hebben we onderzoek gedaan naar de invloed van slaaptekort op 

metabole processen in de rat. Onze data laten zien dat chronische slaapverstoring 

in de rat leidt tot veranderingen in de energiebalans (energie-inname en energie-

uitgave) en glucoseregulatie wat op de lange termijn zou kunnen leiden tot de 

ontwikkeling van type 2 diabetes en obesitas. Het is belangrijk om te onderzoeken 

wat de onderliggende mechanismen zijn van de metabole gevolgen van 

slaapverstoringen, in zowel de hersenen als in de periferie. De neuropeptide 

orexine zou hierin een belangrijke rol kunnen spelen. Het is bekend dat orexine 

betrokken is bij een aantal metabole processen zoals glucoseregulatie en de 

energie balans. Het is echter nog niet geheel duidelijk wat de precieze functie 

van orexine is in deze processen. Als dit eenmaal opgehelderd is, zou orexine 

een belangrijk doel kunnen zijn voor medicatie om de metabole gevolgen van 

slaaptekort te verbeteren.
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Het is zover! Het is klaar! Het is wonderbaarlijk hoe snel de tijd daadwerkelijk 
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weg gegaan! Ik wil dan ook beginnen met iedereen binnen CBN te bedanken voor 

de brede interesses, de wetenschappelijke input en natuurlijk de gezelligheid. Er 

stond altijd wel iemand voor me klaar als ik vragen had over het werk, maar ook 

om een geintje mee uit te halen. Ik kon altijd heerlijk mijn energie kwijt en dat zal 

ik nooit vergeten! Bedankt!

Natuurlijk wil ik beginnen met jou te bedanken, Anton, mijn promotor. Ik weet 

nog als de dag van gisteren dat ik bij jou kwam om te lobbyen voor een PhD 

positie, dat jij even weg liep en 10 min later weer terug kwam met de mededeling 

dat je wel een baan voor me had. Ik heb veel van jou geleerd in de afgelopen 

4 jaar. Jouw nuchtere en Tukkerse manier van doen heeft mij in veel situaties 

ontzettend geholpen; je stond altijd voor me klaar als ik dat nodig had en dat was 

een fijn gevoel! Ik weet dat je einddoel was dat ik speciaal en luxe eten zou gaan 

waarderen… Tja, het enige wat ik kan zeggen is; ik zal blijven oefenen in Seattle!

 Beste Peter, mijn co-promotor. Dankzij Anton kregen we de kans om onze 

samenwerking voort te zetten in dit PhD-project. We hebben zoveel meegemaakt 

in de afgelopen jaren dat ik het dan ook lastig vind om onder woorden te brengen 

waarvoor ik je allemaal wil bedanken. Onze wetenschappelijke discussies waren 

informatief, maar ook altijd erg gezellig (met koffie en/of chocola) en ik kon dan 

ook altijd bij je terecht met praktische problemen en vragen. Buiten dat om ben 

ik jou dankbaar voor de introductie in het “slaap-wereldje”. In Australië heb je me 

aan veel personen voorgesteld, waar ik nu in mijn nieuwe baan in Seattle nog 

altijd profijt van heb. Ik hoop dan ook dat we contact houden en af en toe kunnen 

bijkletsen (en whisky drinken) op de altijd gezellige slaap-bijeenkomsten!

 Verder wil ik de leescommissie bedanken voor het kritisch lezen van mijn 

proefschrift. Beste Domien en Dries, heel erg bedankt voor de tijd die jullie nu in 

mijn proefschrift hebben gestoken en natuurlijk ook voor de input in de afgelopen 

jaren tijdens groepsbesprekingen en congressen. Dear Kim, first of all thank you 

for carefully reading my thesis and for giving important feedback. I also want to 

thank you for your help with the writing and all other social aspects especially after 

work. Thanks for everything. 

 Dear Mark, already 2 years ago you asked me if I was interested in a postdoc 

position in the States. Thanks for keeping in contact through those years and 

offering me this position in Seattle. I am looking forward to working with you in the 

upcoming years.

Dan mijn paranimfjes! Lieve Marco, wat ben ik blij dat jij mijn paranimf wilt zijn! 

Het is wonderbaarlijk hoe wij op dezelfde manier denken en reageren. Jij snapt 

altijd hoe ik me voel (in welke situatie dan ook) en jouw steun is dan ook erg 

belangrijk voor me (geweest). Jij bent tenslotte de enige die mijn foute muziek 

smaak echt kan waarderen (Gasolinaaaa). Ik ga je ontzettend missen! Simon, mijn 

paranimf en kamergenoot die het al het langst met mij vol houdt! Onze kantoor-
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gesprekken heb ik altijd erg leuk gevonden. Of het nou ging over de details van 

een experiment, over wetenschap in het algemeen, over de toekomst of over 

buiten-werk-activiteiten; jij wist er altijd een komische draai aan te geven. Of dit 

nou ligt aan het feit dat jij ook Tukker bent weet ik niet, maar gezellig was het altijd. 

Dit heeft ook zeker geholpen in de “zware” zomer van 2010 waarin alles tegenzat. 

Heel erg bedankt dat jij mijn paranimf wilt zijn! 

Wetenschap is iets wat je samen doet en waarbij sociale interacties echt belangrijk 

zijn. Ik wil dan ook al mijn kamergenootjes door de tijd heen bedanken. Marcelo, 

although we only shared an office for a few months at the BC, we have always 

been close and good friends. You were always there for me; this meant a lot to me 

and it still does. Gretha, mijn grote voorbeeld! Vanaf het moment dat ik begon aan 

dit project ben jij er geweest om zowel praktisch als theoretisch te helpen. Jij hebt 

me veel technieken geleerd en zonder jou was het een stuk zwaarder geweest. 

Ik zal onze congresmomenten ook niet snel vergeten, vooral onze nachtelijke 

acties blijven spectaculair. Als jij sliep, begon ik te praten en te wandelen en als 

ik eindelijk rustig was en even mijn ogen open deed, keek ik recht in jouw (geheel 

wakkere en heldere) ogen en dan wist ik dat het alweer 6 uur was! Heel erg 

bedankt voor alles! Caroline (CC), jouw extreem nuchtere en zakelijke manier van 

denken was vaak zeer verhelderend. Super leuk om te zien hoe duidelijk je kunt 

zijn naar anderen; of dit nou gaat om mede AIOs of onze bazen, het maakt jou niet 

uit. Ondanks dat we vaak even moed moesten verzamelen om te gaan sporten, 

hebben we toch altijd doorgezet en was het achteraf een super gezellig sportuurtje 

(of kletsuurtje?). Heel erg bedankt hiervoor! (Klaar nu! Doeg!) Dear Stefano and 

Federica, it was a pleasure to share an office with you in the new building. Thanks 

for the ‘gezelligheid’! Grazie! Jan en Fiona, ik ken jullie beide al erg lang. Eerst als 

studenten en erna als mede AIOs. Ik kan me geen betere nieuwe AIO’s voorstellen 

in onze groep, zowel qua werk, maar ook qua gekheid. Iemand moet mijn rol toch 

een beetje gaan overnemen en ik weet zeker dat ik dit aan jullie kan overlaten! 

Bedankt voor alles, vooral jullie steun in de laatste maanden. 

 Dear Arianna, although we technically shared an office in the new building, I 

probably spent more time in your office at the BC. If I needed advice, talk about 

data, or just personal stuff, you were there. I am really happy that we worked 

together on some of our projects and will not forget the moments in the basement 

during the IVGTTs/challenges. Lots of fun! Grazie! Lieve Henriette, het is 

ongelooflijk hoeveel tijd wij samen doorgebracht hebben. In onze kantoren, samen 

werken in de kelder, basketbal, Buckshot, de bioscoop of gewoon hangend op de 

fiets bij het kruispunt waar we beide een andere kant op moesten. Het laatste jaar 

zagen we elkaar al minder, maar we hebben altijd mailcontact gehouden en het is 

mijn doel om dit ook zeker voort te zetten. We moeten elkaar toch een beetje op 

de hoogte blijven houden! En anders moet je maar zo denken; we hebben altijd 

Marco Borsato nog!

 Binnen Neuroendocrinologie wil ik ten eerste Jan Strubbe bedanken voor de 

input tijdens besprekingen en de grote hoeveelheid literatuur die altijd beschikbaar 
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(en geordend) was. Ik ben erg blij dat ik nog gebruik heb kunnen maken van jouw 

kennis in de afgelopen jaren! Ten tweede wil ik Gertjan bedanken. Ik ben erg blij 

dat we in mijn laatste jaar nog echt hebben kunnen samenwerken en gelukkig zijn 

de data die daaruit voort kwamen ook nog eens super mooi. Buiten dat om wil ik je 

ook bedanken voor het feit dat jij zag als er mij iets dwars zat en dat ik dan altijd 

mijn verhaal bij jou kwijt kon als ik die behoefte had. 

 Verder wil ik iedereen binnen de groep Gedragsfysiologie bedanken. Jaap, 

Sietse en Bauke, ontzettend bedankt voor alle wetenschappelijke input en buiten 

dat om ook voor jullie geintjes tijdens de pauzes, feestjes en groepsuitjes. Dit 

zorgde ervoor dat ik me altijd zeer goed vermaakte en me helemaal thuis voelde. 

 Beste Eddy, Menno en Roelof. Tijdens mijn eerste masterproject heb ik veel 

met jullie samengewerkt en heb toen ontdekt dat wetenschap te leuk is om niet in 

verder te gaan. Ik ben erg blij dat uit dat werk een mooie publicatie voortgekomen 

is. Verder vond ik de deelname aan jullie groepsbesprekingen erg leerzaam, door 

de input vanuit allerlei wetenschappelijke hoeken. Dank jullie wel. 

 Natuurlijk zijn er nog vele andere collega’s tegen wie ik een persoonlijk woord 

wil zeggen. Henk, kanjer! Ik mag dan één van jouw kanjers zijn; jij bent een 

kanjer voor mij. Jij maakte de geld- en andere zakelijke kanten van deze baan 

een stuk simpeler en leuker. Geweldig dat je mij altijd steunde om iemand er 

tussen te nemen, dat je mij vaak als eerste meldde dat je me miste als ik op 

congres of vakantie was en dat je zo heerlijk enthousiast was rondom groepsuitjes 

en dergelijke. Ontzettend bedankt voor de steun, de gezelligheid en de geintjes! 

Jan B, mijn operatiemaatje. Jij hebt mij op een heel gezellige manier de jugularis 

cannulatie geleerd. Ik geniet nog steeds van het feit dat ik die ene keer sneller 

was dan jij; al die andere keren vergeten we gewoon. Ondanks dat ik het er niet 

mee eens ben dat jij vaker op Ameland komt dan ik, hoop ik dat je mijn eilandje 

de komende jaren een beetje voor me in de gaten wilt houden! Heel erg bedankt 

voor alles! Wanda, ontzettend bedankt dat jij de orexine metingen voor me wilde 

uitvoeren. Verder natuurlijk ook bedankt voor je hulp en enthousiasme bij de 

organisatie van sinterklaasavonden. Pleunie, Marlies en Joke, heel erg bedankt 

voor jullie hulp bij de kleine, maar toch zeker niet onbelangrijke dingen waar we 

allemaal mee te maken krijgen. Organisatie en planning van uitjes, alles rondom 

de verhuizing naar het CvL, en gewoon de gezelligheid tijdens de pauzes. Verder 

wil ik de volgende personen bedanken voor hulp in de kelder of in het lab, voor de 

gezelligheid en de goede sfeer: Linda, Auke, Jaap B, Martijn S, Christa, Rick en 

Jan K. Bedankt voor alles! 

 Veel van het praktische werk had ik niet kunnen doen zonder hulp van mijn 

masterstudenten: Daan Middendorp, Maurien Pruis, Jantien Zandvoort, Vincenzo 

Terlizzo en Tifany Desprez. Thanks guys for helping me out practically, but also for 

making the experiments more fun.  

Buiten het werk om wil ik een aantal vrienden ontzettend bedanken voor hun 

luisterend oor en het zorgen voor afleiding. Gonda en Marije, wat hebben we veel 

meegemaakt tijdens de BCN master. Wij zijn de start geweest van de B-track, 
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waar we zonder (de helaas veel te vroeg overleden) Henk Visser waarschijnlijk 

niet aan begonnen waren. Ik vind het dan ook erg jammer dat Henk dit niet heeft 

mogen meemaken. Ik ben zeer blij dat wij na al die jaren nog altijd goed contact 

hebben en af en toe lekker bijkletsen. Karin, ik vind het super dat wij na het VWO 

altijd contact zijn blijven houden. Via msn hebben we elkaar de grootste verhalen 

verteld en ik kon altijd mijn verhaal bij jou kwijt, onafhankelijk van het onderwerp. 

Onze super vakantie naar Egypte zal ik dan ook niet snel vergeten! Bedankt voor 

alles! Esther, heel erg bedankt voor alle gezellige momenten in de afgelopen 

jaren. Altijd fijn als iemand net zo’n film- en cabaret-freak is als ikzelf! Ik ben dan 

ook erg blij dat je een aantal jaren geleden besloot in Groningen te gaan studeren 

zodat we nog vaker naar het theater en de bioscoop konden! Dit ga ik erg missen, 

maar ik weet ook zeker dat we (net als vroeger) gewoon weer ellenlange mailtjes 

gaan sturen om elkaar op de hoogte te houden van… alles!

 Natuurlijk moet ik mijn roomies/ceramchickies uitgebreid bedanken! Aan het 

begin van deze 4 jaar was ik van plan om een appartementje te zoeken, maar 

door de gezelligheid met jullie ben ik de hele 4 jaar blijven hangen! Carola, Yteke 

en Emma, zonder jullie was het totaal anders geweest en misschien gewoonweg 

niet te doen. We konden altijd onze verhalen bij elkaar kwijt, advies aan elkaar 

vragen of gewoon lekker samen op de kamer hangen. Het is nu al heel raar om 

jullie niet meer dagelijks om me heen te hebben. Ik weet zeker dat we contact 

zullen houden en ben zeer benieuwd waar wij allemaal staan over 10 jaar! Heel 

erg bedankt chicks!

Last but not least; pap en mam! Ik hoef jullie niet uit te leggen hoe belangrijk 

jullie voor mij zijn en hoe fijn ik het vind dat jullie mij altijd steunden en steunen 

in alles wat ik deed en doe. Het maakt niet uit of het nou gaat om werk, vakantie, 

gevaarlijke sporten of zelfs verhuizen naar de andere kant van de wereld! Ik ben 

super trots op alles wat jullie doen en weet ook dat jullie net zo trots op mij zijn! 

Ik ga jullie, opa en oma en natuurlijk alle kids ontzettend missen (op wie moet ik 

nu mijn energie kwijt als ik Karin niet elk weekend kan pesten?). Gelukkig is het 

tegenwoordig steeds gemakkelijker om contact te houden en vliegen de komende 

jaren vast net zo snel voorbij als de afgelopen jaren!
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