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Chapter 1
Introduction

WHILE ASTRONOMY is one of the oldest sciences in existence, the radio sky was not
discovered before 1931, the year when Karl Jansky first detected the radio signals

from our Galaxy (Jansky, 1933). This discovery revealed a mysterious new part of our
Universe that had been hidden ever before. A lot of exciting discoveries followed, many

of which had a large impact on the field of astronomy and our knowledge of the Universe, such
as the detection of the hydrogen spectral line at a wavelength of 21 cm (Ewen and Purcell, 1951),
the detection of radiation of the cosmological microwave background (CMB) (Dicke et al., 1965)
and the discovery of an entirely new class of sources: the pulsar (Hewish et al., 1968), a class of
neutron stars that sends radio wave pulses that are similar to the beam of a lighthouse. The field
of radio astronomy has been flourishing for decades, and scientists continue to stretch the limits
on the possibilities of observing in the radio domain. With better telescopes, faster computers and
more knowledge, the future of radio astronomy is (radio) bright.

Modern telescopes in radio astronomy, such as the Expanded Very Large Array (EVLA) in
New Mexico, the Low-Frequency Array (LOFAR) in the Netherlands and the Murchison Wide-
field Array (MWA) in Australia, are incredible sensitive devices that observe the sky with enor-
mous depth and detail. The observed bandwidth of telescopes has dramatically increased over the
last decades, and often overlaps with parts of the radio spectrum that have not been reserved for
radio astronomy. Simultaneously, the radio spectrum is becoming more crowded because of tech-
nological advancement. Therefore, radio observations are affected by man-made radio transmit-
ters, which can be several orders of magnitude stronger than the weak celestial signals of interest.
This kind of interference, which seriously disturbs radio observations, is called radio-frequency
interference (RFI).

If the frequency at which is observed contains RFI, thus overlaps with the frequency at which
other devices transmit, the recorded data will be corrupted and can not be used directly. For ex-
ample, because RFI can be many orders of magnitude stronger than the signal of interest, it might
not be possible to calibrate contaminated data. Moreover, because of the difference in strength,
the signal of interest will be overshadowed by the RFI, and the signal can not be extracted.

Around 1980 when the radio spectrum was becoming more and more occupied as a result of
technical advancements (Pankonin and Price, 1981), radio observers started to notice RFI caused

1



2 Introduction

by electronic equipment (Thompson et al., 1991), and started to develop methods to mitigate
it. The first techniques to deal with contaminated data were performed by the data reducing
scientist, and consisted of manual selection of good data. Examples are to manually remove data
from particular antennae or time and frequency ranges at which the interference was received.
Although these techniques can be tedious, they have been sufficient in most situations during the
last few decades. Building telescopes at radio quiet sites would improve this situation, but this is
not always feasible.

Now that the radio telescopes of the next generation are coming into operation, the dawn of
software-driven telescopes producing terabyte sized data sets has begun. Because of that, data
reduction in radio astronomy is entering a new era in which more emphasis is put on automated
data processing and pipelining the various steps in the data reduction. Dealing with RFI is an
important step in the reduction process. As the volume of data and the required sensitivity of
observations increases significantly, and the contamination of RFI through an increased usage of
electronic equipment grows, more sophisticated automated flagging procedures are required for
the next generation of telescopes.

1.1 Radio astronomy & its instruments
Radio astronomy concerns the observation and analysis of extraterrestrial electromagnetic radia-
tion at radio frequency. Electromagnetic radiation is defined to be of radio frequency when it has a
frequency up to 300 GHz, which corresponds with a wavelength λ ≥ 1 mm. An impression of the
electromagnetic spectrum is given in Fig. 1.1. Frequencies between 30 MHz and 30 GHz can eas-
ily penetrate the atmosphere (including troposphere and ionosphere) of the Earth, and observing
the sky at these frequencies is therefore possible from the ground.

Buildings Humans Butterflies Needle Point Protozoans Molecules Atoms Atomic Nuclei

104 108 1012 1015 1016 1018 1020

Penetrates Earth's
atmosphere?

Radio Infrared Visible Ultraviolet X-ray Gamma ray

103 10−2 10−5  0.5×10−6 10−8 10−10 10−12
Radiation Type

Wavelength (m)

Objects of
comparable size

Frequency (Hz)

Figure 1.1: An impression of the electromagnetic spectrum and the wavelength scale, along with
whether a given frequency penetrates Earth’s atmosphere. (Source: derivation of a Wikipedia and
NASA image.)

Radio waves can be received with an antenna, that converts electromagnetic radiation into
an electric current. The same antenna can also work as a transmitter by feeding current into
the antenna. Since celestial objects are far away and its radiation is often faint, for many radio-
astronomical observations it is necessary to collect large amounts of radiation. Traditionally, this
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is performed with large dishes, which optics are optimized to reflect the radiation towards a feed.
The increased size of dishes not only increases the sensitivity of such a radio telescope, but simul-
taneously increases the resolution of the instrument, thereby revealing finer details of the celestial
objects that are observed. Large telescopes are therefore common in radio astronomy. Well known
examples are the 305-m dish of the Arecibo Observatory near the city of Arecibo (Puerto Rico),
the 100-m Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Ob-
servatory (NRAO) at Green Bank (USA), the Effelsberg 100-m Radio Telescope, named after
the nearby village of Effelsberg (Germany), the 76-m dish of the Jodrell Bank Observatory near
Goostrey (UK) and the 64-m dish of the Parkes Observatory in New South Wales (Australia).

Around 1946 it was discovered that interferometry could be used to perform radio aperture
synthesis. Initially this was performed with a sea cliff-based observatory that consisted of a single
antenna, called a sea interferometer, to analyse the sun (McCready et al., 1947). Many modern
observatories have multiple dishes to utilize interferometry and synthesis a large aperture to create
high resolution images. The best known instruments of this kind include the Karl G. Jansky
Very Large Array (VLA) near Socorro (New Mexico), the Westerbork Synthesis Radio Telescope
(WSRT) in Westerbork (the Netherlands), the Australia Telescope Compact Array (ATCA) near
Narrabri (Australia), the Giant Metrewave Radio Telescope (GMRT) near Pune (India) and the
Atacama Large Millimeter/sub-millimeter Array (ALMA) in the Atacama desert (Chile).

For low-frequency observations, e.g. around 150 MHz, dishes are not very cost effective. This
is because at low frequencies, large dishes do not provide as much sensitivity benefit as at higher
frequencies, because their gain is inverse proportional to λ2. However, advances in technology
caused the receiver chain of an antenna to become cheaper, and it was found that connecting
many small and cheap antennae together is a cost effective method to build a high resolution,
high sensitivity telescope. The Low-Frequency Array is such a next generation telescope, and
is currently the largest connected interferometer in the world. The Low-Frequency Array is the
key instrument in this thesis and will be briefly described in the next section. Other instruments
that consist of many small antennae include the Murchison Widefield Array (MWA) in Western
Australia, the Precision Array for Probing the Epoch of Reionization (PAPER) whose (primary)
location will be the Karoo Desert of South Africa, and the Long Wavelength Array (LWA) that is
build near the VLA in New Mexico. Finally, an important future instrument will be the Square
Kilometre Array (SKA), that is to be built in either Australia or South Africa. This telescope
is an international collaboration of many countries. Its planned sensitivity and spatial resolution
will outperform LOFAR by an order of magnitude at the same frequency. Its first operation is
scheduled to start around 2019.

1.2 The Low-Frequency Array

The Low-Frequency Array (LOFAR) is a new antenna array that observes the sky from 10–90
and 110–240 MHz. It consists currently of 41 (validated) stations, while 7 more are planned and
more might follow. Of the validated stations, 33 stations are located in the Netherlands and 5 in
Germany. Sweden, the UK and France contain one station each. A Dutch station consists of a field
of 96 dipole low-band antennae (LBA) that provide the 10–90 MHz range, and one or two fields of
in total 48 tiles of 4x4 dipole high-band antennae (HBA) for the 110–240 MHz. The international
stations have an equal amount of LBA antennae, but 96 HBA tiles. Deployed antennae of both
kinds are displayed in Fig. 1.2. For the latest information about LOFAR, we refer the reader to
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the LOFAR website1.

Figure 1.2: Antenna types of the Low-Frequency Array. Left image: A low-band antenna with a
cabin in the background. Right image: Part of a high-band antenna station, consisting of 24 tiles
of 4 × 4 high-band antennae.

The core area of LOFAR is located near the village of Exloo in the Netherlands, where the
density of the stations is higher. The six most densely packed stations are on the Superterp, an
elevated area surrounded by water. It is an artificial peninsula of about 350 m in diameter that
is situated about 3 km North of Exloo. A map of LOFAR’s surroundings is given in Fig. 1.3.
Exloo is a village in the municipality of Borger-Odoorn in the province of Drenthe. Drenthe
is mostly a rural area, and is, relative to the rest of the Netherlands, sparsely populated, with
an average density of 183 persons/km2 over 2,680 km2 in 20112. Nevertheless, the radio quiet
zone of 2 km around the Superterp is relatively small and households live within 1 km of the
Superterp. The distance from households to the other stations is even smaller in certain cases.
Therefore, contamination of the radio environment by man-made electromagnetic radiation was a
major concern for LOFAR (Bregman, 2000; Bentum et al., 2008). Because this radiation interferes
with the celestial signal of interest, it is referred to as radio-frequency interference (RFI). Such
radiation can originate from equipment that radiates deliberately, such as citizens’ band (CB)
radio devices and digital video or audio broadcasting (DVB or DAB), but can also be due to
unintentionally radiating devices such as cars, electrical fences, power lines or wind turbines
(Bentum et al., 2010).

While RFI mitigation methods in this work are generic methods that can be applied to any
interferometer — and some also on single dish receivers — they were largely developed for and

1The website of LOFAR is http://www.lofar.org/
2From the website of the province of Drenthe,

http://www.provincie.drenthe.nl/ .



1.2 The Low-Frequency Array 5

1 km

Figure 1.3: Map of the LOFAR core and its surroundings. The circular peninsula in the centre is
the Superterp. Several other stations are visible as well. (source: OpenStreetMap)

tested with the Low-Frequency Array. When this project started in 2008, some LOFAR test-
stations were ready. However, the final stations were not ready, and consequently no representable
data was yet available. Over the course of the project, more and more stations became available,
and the required representable data became available as well. Fortunately, the low-frequency
front-end (LFFE) of the Westerbork Synthesis Radio Telescope provides the frequency range 115–
180 MHz, and since it is situated near LOFAR, its radio environment is similar. Therefore, data
from the WSRT LFFE was also used in this work to analyse RFI methods and the low-frequency
radio environment. For details about the WSRT LFFE system we refer to van der Marel et al.
(2005).



6 Introduction

1.2.1 LOFAR’s key science projects
When the LOFAR project started, four projects were formulated that would drive its design. Later,
two more projects were added, led by German groups. These projects are called the key science
projects (KSPs) of LOFAR. The following key projects have been formed:

• The Epoch of Reionisation project — This project tries to achieve the first statistical detec-
tion of the highly redshifted 21-cm signal from neutral hydrogen, from a pivotal period of
our Universe named the Epoch of Reionisation. During this era after the Big Bang, the first
stars were formed. These stars heated the surrounding gas, which went from neutral into
ionized state. An introduction of the Epoch of Reionization will be given in §1.3.

• Deep extragalactic surveys — Because of LOFAR’s wide field-of-view and very wide fre-
quency coverage, it will be an excellent instrument to survey the low-frequency sky. It
is expected that these surveys will find high redshift (z ≥ 6) galaxies that might provide
the missing information on the forming of the first objects, such as galaxies, clusters and
black holes. Moreover, the surveys will target clusters, galaxies and early star formation
processes.

• Searching for transient sources — LOFAR’s wide field-of-view also allows to periodically
observe large parts of the sky to search for explosive events or other variability. Hereby, one
hopes to discover new phenomena, that will be quickly followed up with observations from
other instruments. An important class of transient sources are pulsars, and their discovery
and analysis will also be one of the targets in this project (Stappers et al., 2011).

• Detection of ultra-high energy cosmic rays — Cosmic rays are mysterious pulses from
space of which both the origin and cause are mostly unknown. In this project, LOFAR
will be used to detect the radio emission that is caused when ultra-high energy cosmic rays
(UHECRs) hit Earth’s atmosphere. Ones hopes to gain more information from this and
explain some of these events.

• Solar science and space weather — Although the Sun is a relative close neighbour, still a
lot can be learned from it. In this project, the Sun will be studied to gain more information
about it, for example to provide forecasts of the space weather, i.e., the activity of the Sun
and its influence on devices on and around Earth.

• Cosmic magnetism — Magnetism is an important process in our Universe, and plays a role
in the evolution of galaxies and clusters. However, what this role is, is not yet very well
understood. In this project, LOFAR will be used to detect synchrotron radio waves, that are
caused by magnetic fields in our cosmos. This will provide important information about the
role of magnetism.

Although these key projects have been formed, LOFAR is a very generic instrument and will
explore many more fields. Because LOFAR is an instruments that will explore a large and mostly
unexplored parameter space, one can also expect some serendipitous discoveries.

1.3 The Epoch of Reionisation
More than thirteen billion years ago, the Universe as we know it was created during the Big Bang.
After this starting point of our Universe, the Universe underwent several stages. Fig. 1.4 shows
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Figure 1.4: The path of the signal of the Epoch of Reionisation. The RFI generating towers are
actually further from the core of LOFAR. Figure by Vibor Jelić.



8 Introduction

the emitted light during the various stages, which will now be explained one by one.
Following the Big Bang, the resulting hot Universe went through a process called inflation, a

quick and exponential expansion of the Universe. Not more than 10−3 s after the Big Bang, the
Universe consisted of expanding matter that gradually started to cool down. Matter in the Universe
evolved, and about 380 000 years after the Big Bang, the Universe recombined allowing radiation
to travel freely. The following era is referred to as the Dark Ages, because very little radiation
was emitted during this period. However, the radiation that was emitted before this era can travel
through this transparent Universe, allowing us to observe radiation from before the Dark Ages.
Because of the expansion of the Universe, this early radiation has been redshifted. Although the
emitted wavelength of this light dominates in the ultraviolet region, it will be redshifted towards
mm scale, which is referred to as microwave radiation. The observable radiation is therefore called
the cosmological microwave background (CMB) radiation, and has first been observed in 1964
(Dicke et al., 1965). After that, new experiments followed that measured the CMB radiation to
an extreme precision, such as the Cosmic Background Explorer (COBE) satellite project (Mather
et al., 1990). This directly observed relic radiation is consequently one of the best proves for the
Big Bang theory.

About 400 million years after the Big Bang, objects started to form because of the effects of
gravity. The objects, including stars and black holes, started to heat their surroundings. As a result,
the warmed matter around these objects — consisting mainly of hydrogen — started to ionize.
Initially, only spherical “bubbles” around these objects were ionized, but these bubbles expanded
until finally the Universe would have been fully ionized. This important era of our Universe is
called the Epoch of Reionisation (EoR). It is that era that we try to detect in the LOFAR EoR
project. It is detectable because the neutral hydrogen will emit photons as a result of its spin-flip
transition. Ionized hydrogen, however, will not emit such photons, and this therefore allows us to
detect the transition of the epoch. These Epoch-of-Reionisation photons will be redshifted from
their original 21 cm wavelength or 1420 MHz to frequencies of around 150 MHz, thus can be
observed with LOFAR.

As shown in Fig. 1.4, this signal is contaminated by several foregrounds, which makes detec-
tion very challenging. In fact, in Jelić (2010) it is compared with finding a needle in a haystack. A
first step will be to simulate the involved processes, which includes both the reionisation (Thomas
et al., 2009) and the extra-galactic and Galactic foregrounds (Jelić et al., 2008). These need to be
simulated together with the instrumental response of LOFAR (Labropoulos, 2010). From there,
one can test whether the signal will be detectable. To this end, various detection strategies have
been proposed, and as it turns out, perhaps the first detection of the Epoch of Reionisation with
LOFAR will be a statistical detection (Harker et al., 2009b). Many different techniques have been
proposed for this task (Santos et al., 2005; McQuinn et al., 2006; Harker et al., 2009a, 2010;
Chapman et al., 2012).

To explore the low-frequency sky and the foregrounds, and to select appropriate fields in the
sky to observe the signal with LOFAR, initial experiments at the relevant frequencies have already
been performed with the WSRT (Bernardi et al., 2009, 2010; de Bruyn and Bernardi, 2009). Quite
recently, the first few LOFAR observations on the road to EoR detection have started (de Bruyn
et al., 2011), and at the time of writing, regular LOFAR EoR observations to accumulate the
required 100 nights of 6 hour observations are planned to start late 2012. An important step in the
extraction of the signal from the data, is the removal of man-made interference. This step will be
the main focus of this thesis.

The LOFAR EoR project is not the only project that is trying to achieve detection of the
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Figure 1.5: A typical example of RFI in a sub-band of a LOFAR observation. While most of the
time-frequency diagram is noise-like, the repetitive higher (red) values at constant frequencies are
due to narrow-band RFI.

EoR using the 21-cm radiation. Other projects use instruments such as the GMRT (Paciga et al.,
2011), the MWA (Ord et al., 2010), PAPER (Jacobs et al., 2011) and the Experiment to Detect the
Global EoR Step (EDGES) (Bowman and Rogers, 2010). Nevertheless, LOFAR is progressing
very quickly, and it may well be that LOFAR will be the first instrument to detect signals from the
EoR.

1.4 RFI mitigation techniques
Numerous techniques have been suggested to perform the challenging task of the excision or
mitigation of radio-frequency interference from the data. They include using spatial information to
null directions, provided in interferometers or multi-feed systems (Leshem et al., 2000; Ellingson
and Hampson, 2002; Smolders and Hampson, 2002; Kocz et al., 2010); removing the RFI by using
reference antennae (Barnbaum and Bradley, 1998); and blanking out unlikely high values at high
time resolutions with the CUSUM method (Baan et al., 2004) or other thresholding techniques
(Weber et al., 1997; Leshem et al., 2000; Niamsuwan et al., 2005). The following subsections
will elaborate on some of the methods that are regularly used in the field of radio-astronomical
interference mitigation.

RFI comes in many forms (Lemmon, 1997; Fridman and Baan, 2001). The strong RFI that
is problematic is often either local in frequency or in time. An example of RFI that is local in
frequency is shown in Figure 1.5. Such RFI can for example be caused by television stations,
aeroplanes and radar (at low frequency resolution), while for example broadband RFI caused by
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phenomena such as lightning, high-voltage power cables and sparking electrical fences are often
local in time. Sometimes, the frequency of RFI drifts with time. This can be caused by Doppler
shifting of a satellite signal, by imperfect transmitters or because the transmitter is intrinsically
changing its frequency, such as with certain radar signals when observed at high frequency reso-
lution. A different class of RFI is caused by weakly transmitting but stationary — and therefore
systematic — devices on site. This class of RFI is hard to recognize, as it might contaminate all
the channels in a spectral band. In fringe stopping interferometers, the fringe rotation causes this
type of RFI to have a sinusoidal response in the time-frequency domain (Thompson, 1982). It
can be recognized and subtracted in various ways, as for example described recently by Athreya
(2009).

1.4.1 RFI excision during off-line processing

Despite the numerous possible techniques, during the off-line processing phase — i.e., after the
data has been recorded to disk — almost any observation requires additional processing steps
because of RFI contamination. In the post-correlation phase, the use of an independent RFI refer-
ence signal to subtract the RFI (Briggs, Bell, and Kesteven, 2000), fringe fitting (Athreya, 2009)
and post-correlation spatial filtering are possible. However, none of the above are applicable or
sufficient in all cases or for all types of RFI. Therefore, the most used technique in the final pro-
cessing step consists of detecting the RFI in time, frequency and antenna space, and ignoring the
contaminated data in further data processing. This step is often referred to as “data flagging”.

Historically, this step was performed by the astronomer. However, in modern observatories
that operate at low frequencies, such as the Westerbork Synthesis Radio Telescope (WSRT), the
Giant Metrewave Radio Telescope (GMRT), the Low Frequency Array (LOFAR), and the Ex-
panded Very Large Array (EVLA), RFI mitigation is an essential component in the signal pro-
cessing. In the case of LOFAR, there are high sensitivity requirements, especially for the Epoch
of Reionisation project (Jelić et al., 2008; Thomas et al., 2009), with data sets up to a petabyte in
size. RFI mitigation before correlation remains important (Boonstra et al., 2005), yet the amount
of data will be too large for manual post-correlation flagging, implying the need for automated
flagging strategies.

1.4.2 Detection

Probably the easiest and most used method to deal with RFI is by detecting its presence. After
all, if a signal is clean of interference, doing nothing is the best an RFI excising method can do.
Detection involves standard methods from signal processing theory, such as methods to detect
changes in a signal feed, e.g. Basseville and Nikiforov (1993). However, the generic methods
often need to be adapted to perform well in the context of radio astronomy. This is mainly because
of the large data rates and/or their application in combination with data correcting methods that
are described in the next subsections.

Detection almost always involves thresholding (Leshem et al., 2000; Niamsuwan et al., 2005;
Weber et al., 1997). This means that a sample, channel, timestep or other region is marked as
RFI if a specific quantity, such as the signal strength, exceeds some either pre-determined or
variable limit. If this limit is adaptively determined, the technique is often referred to as adaptive
thresholding. Thresholding will be a recurring concept in this work.
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Detection can be performed at several stages and its results can be used in several ways. It
might for example be applied at high time resolution, and if interference is detected, the affected
samples are set to zero, e.g.,, as in Weber et al. (1997). This is often referred to as (time) blanking
or nulling. When detection is applied later in the path, for example after correlation and/or time
integration, the real-time requirements are relaxed and detection methods can be evaluated and
selected after observing. If the data is integrated over time, the interference-to-noise ratio will
normally be higher and allow more accurate detection. On the down-side, more data might be lost
because of the lower resolution.

If RFI contaminates large parts of the data, simple detection might not be sufficient, and one
needs to refer to data correcting techniques that try to subtract the RFI from the data. A few of
those are described in the following subsections. Nevertheless, detection might be a valuable tool
to determine which parts to subtract the RFI from, thereby making sure not to alter unaffected
data.

In the case of LOFAR, detection needs to be both very fast and very accurate, and the possible
effects of leaked interference need to be well understood for projects such as the LOFAR Epoch
of Reionisation project. To this end, several existing detection methods will be analysed and new
high-speed algorithms will be introduced and tested in Chapter 2.

1.4.3 Using reference antennae

Another way of dealing with RFI during observations, is by using antennae that are dedicated to
observe the RFI source(s) with maximum sensitivity. The technique relates to many other adap-
tive cancellation techniques, such as the recent advances that allow noise cancelling headphones
to cancel out the interfering environment. For this to work for radio observations, at least one
extra antenna — one that is often much smaller than the main dish(es) — needs to be set up that
provides a high gain towards the source of interference. Simultaneously, this antenna needs to
have a low gain towards the signal of interest, so that the RFI signal can be subtracted from the
observation without modifying the signal of interest. This kind of cancellation was first applied
in contexts other than radio astronomy, such as radar and interference excision in communica-
tion systems (Ghose, 1996). Later, it was also successfully introduced in the context of radio
astronomy (Barnbaum and Bradley, 1998).

The first adaptive cancellation results as presented by Barnbaum and Bradley were laboratory
based, but later experiments were conducted with a reference antenna at the single dish Parkes
Observatory (Briggs et al., 2000) and the Australia Telescope Compact Array (Mitchell et al.,
2005). In the latter, it was found that the use of two reference antennae can provide even better
results, with complete removal of the RFI source, although the system temperature is somewhat
increased. At the Westerbork Synthesis Telescope Array, it was not possible to install reference
antennae near the focal region due to space constraints. A scheme that used the array neighbours
of a particular dish together with spatial filtering and adaptive nulling was implemented instead
(Baan et al., 2004). Although the resulting WSRT RFI mitigation system (RFIMS) proved to be
an effective way of reducing RFI, the system was not very popular amongst astronomers due to
concerns about its impact on the signal. Another reason for its low popularity was the lack of
strong incentives, as at that time the need to observe RFI contaminated bands was not as pressing
(Baan et al., 2010).

Since its introduction the usage of reference antennae has evolved, and other successes include
its usage to excise moving objects. Examples are the removal of the GLONASS satellites from
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observations at the Parkes observatory (Mitchell and Robertson, 2005) and Green Bank Telescope
(Poulsen et al., 2005).

1.4.4 Spatial filtering

Spatial filtering is a technique that makes use of multiple cross-correlated sensors to disentangle
sources that are received with different power levels and with different delays. Signals from
different geometrical locations are received with different power levels because of the different
distance between the transmitter and the receiver, different propagation paths and/or different
antenna response towards the source. Sensors that are at an increased distance from the transmitter
receive the signal with a longer delay, causing the signal to be phase shifted. Together, the change
in power and phase will cause each transmitter to have a specific spatial signature at each sensor.

The technique then forms a correlation matrix consisting of the cross-correlated sensor values;
matrix element i, j consists of sensor value i times sensor value j. The diagonal elements contain
the auto-correlated values. Normally, these matrices are constructed for small time periods of the
order of milliseconds, but it is possible to integrate over longer time spans as long as the power and
direction of the signals remain reasonably constant over the time interval. By decomposing the
correlation matrix with an eigenvalue decomposition, several new correlation matrices are formed
that represent the contribution from individual directions. The use of the eigenvalue decompo-
sition to separate the different contributions assumes that the contributions produce orthogonal
additions to the matrix. In practice, the addition of noise and the possibility that the correlation
matrices of the RFI sources and the signal of interest are not completely orthogonal complicate
things slightly, but these can be corrected for as well.

Spatial filtering had been a generic signal processing technique in the literature for some time
(e.g., Widrow and Stearns (1985)). Around 2000, it was realized this method might be useful in
the context of radio-astronomical interference mitigation (e.g., Fisher (2001)). The first radio as-
tronomical simulations with spatial filters were performed by Leshem and van der Veen (2000a,b).
The first observatory which was used to test the method (and was found in the literature) was the
Westerbork Synthesis Radio Telescope (Raza et al., 2002). Later, it was combined with several
other techniques in the WSRT RFIMS system (Baan et al., 2004), including adaptive cancellation
as discussed in §1.4.3. To get good results, the deconvolution method that is used during imaging
needs to be adapted for this. An extensive analysis of spatial filtering and the required imaging
steps was performed by Boonstra (2005).

So far, it was assumed that the dishes observe the same target of interest, and RFI signals
produce a different spatial signature at each telescope. The situation is slightly different for multi-
beam systems, as in multi-beam observations each beam aims at a different target. Spatial filtering
was shown to be very useful for the multi-feed system of the single dish Parkes observatory (Kocz
et al., 2010), where it was very recently also successfully used to distinguish RFI from temporal
signals with celestial origin (Kocz et al., 2012).

As a side note, one can argue that the use of reference antennae is a special case of spatial
filtering, as the additional spatial information provided by the extra antenna is used to remove the
interference. In my opinion, this is just a matter of definition. If the signal of a — often dedi-
cated — reference antennae is normalized (adapted) and subtracted from the feed, it is common to
refer to the technique as being an adaptive noise cancelling (ANC) filter, as it was initially intro-
duced. The term spatial filtering on the other hand is most commonly referring to techniques that
involve subspace projection and do not have dedicated reference antennae to increase the spatial
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information. Therefore, in this work we will use this terminology as well.

1.5 Scope and aim of the thesis
In this project we will try to answer a few questions that are key to observing with LOFAR in its
populated environment:

• What are the observational consequences of building LOFAR in a populated area?
A populated environment is an unusual choice for building a radio telescope. Although care
has been taken to make sure that LOFAR will perform well, an instrument like LOFAR
is extremely complex. The harmful effects of interfering noise from urban areas are hard
to accurately predict beforehand, especially when different RFI mitigation strategies are
to be combined. Therefore, an important goal of this work is to extensively analyse and
evaluate the effects of interference on LOFAR. Quantizing the interference occupancy over
frequency and hour of the day will provide information that is very relevant for the key
science projects of LOFAR and their observing strategy, as well as for dynamic scheduling
purposes.

• What existing methods can one use to excise radio-frequency interference in LOFAR obser-
vations?
In §1.4, we have summarized a few existing methods that are currently being used for RFI
excision. Many of these methods were originally developed at GHz frequencies and higher.
Because LOFAR is a low-frequency instrument, some of these methods might work well,
while others might not. Moreover, some of these methods require special hardware in the
field, e.g. reference antennae, or they might require on-line computing power. It is to be
seen whether LOFAR can provide this.

• Can the accuracy and performance of currently available interference excision methods be
improved?
LOFAR is going to be among the first interferometers that will cross-correlate over 50 sta-
tions. Each station will provide 0.76 kHz of spectral resolution over 48 MHz of bandwidth
with two linear polarizations, and 96 and 192 MHz modes are planned. This yields enor-
mous data rates, and to cope with these rates the RFI algorithms need to be extremely fast.
On the other hand, the high spectral and temporal resolution might improve RFI mitigation
techniques due to the higher amount of information that is available to distinguish RFI from
the signal of interest. In this project, we will investigate the performance requirements for
RFI algorithms, and try to improve existing techniques to work as accurately as possible for
the LOFAR case.

• Will RFI cause a limit on the sensitivity with which LOFAR can observe?
Observations from an interferometer are fundamentally noise limited because of noise from
the sky and receiver electronics. Nevertheless, it is expected that the noise in a LOFAR
observation is inversely proportional to the square root of the integrated time, and therefore
it is theoretically possible to reach any noise level, as long as the duration of integration is
long enough. This is an assumption in LOFAR’s Epoch of Reionisation project, in which
100 nights of 6 hour observations will be integrated to achieve enough signal-to-noise to
statistically detect the extremely feeble signals from this era of our Universe.
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However, radio interference from stationary sources might break this assumption. Unlike
Gaussian noise, such sources could add up coherently. This could mean that, even when
all detected RFI is successfully excised in observations of a few nights, RFI might exist
under the noise that only shows up after longer integration. In this project we will analyse
this possibility and investigate possible measures to prevent low-level RFI from causing a
sensitivity limit or false detection.

While these questions are asked specifically for the LOFAR case, their answers will be very
useful for both existing and future radio-astronomical instruments. To this end, care will be taken
to provide analysis and algorithms that are as generic as possible, with the ultimate goal of de-
veloping RFI techniques that are useful for any radio observatory. Moreover, the astronomers
that use the instruments and try to reduce astronomical data will also benefit from improved post-
processing algorithms and understanding of interference.

A major future endeavour will be the Square Kilometre Array (SKA). Its planned observing
bandwidth will partly overlap with LOFAR’s frequency range. Although LOFAR’s collecting area
is currently unprecedented, the SKA will be tens of times more sensitive compared to LOFAR,
and interference is therefore a large concern. It will therefore be located in an area with minimal
RFI in either South Africa or Australia (decision to be made on 4 April 2012). The knowledge
that will be gained from LOFAR’s RFI environment and RFI strategy will be highly relevant for
SKA’s design, implementation and operation.

Summa summarum, this thesis addresses the aspects of interference in radio astronomy, in
special for the LOFAR telescope and the LOFAR Epoch of Reionisation project.

1.6 Thesis layout
We will now briefly describe the layout of this thesis. In Chapter 2, we will start analysing exist-
ing and designing new methods that can be used for interference detection. The steps necessary
for accurate detection can be classified in (i) estimating the astronomical signal; (ii) adaptive
(combinatorial) thresholding; and (iii) applying morphological detection. For each of these steps,
methods will be compared and the best method for LOFAR will be picked. Next, in Chapter 3,
these methods will be combined to form a fully automated iterative pipeline, that is currently the
recommended way to remove RFI from LOFAR data. Chapter 4 will present filters that can re-
move interference from terrestrial sources and off-axis celestial sources. The fundamental concept
of fringe speed is discussed, and using this theory novel filters are constructed. The methods that
have been presented so far will then be used in the next chapter, Chapter 5, to analyse the radio
environment of LOFAR. Using RFI surveys, we present spectral occupancy statistics, determine
the difference between observing at day and night and analyse the effectiveness of the methods
and see if any leaked interference is visible. Then, in Chapter 6 the spatial distribution of inter-
fering sources is analysed using statistical derivations of the RFI surveys. From this, we try to
foresee what the interference effects might be for detection of the Epoch of Reionisation. Finally,
in Chapter 7, we will evaluate the current interference situation and methods to deal with it, and
look forward to possible related future developments.



Chapter 2
Detection of Radio-Frequency
Interference

Based on:
“Post-correlation radio frequency interference classification methods”

(Offringa et al., 2010, MNRAS, 405, 155–167)
“A morphological algorithm for improving radio-frequency interference detection”

(Offringa et al., 2012, A&A, 539, A95)

THE SITUATION for RFI flagging strategies in modern observatories such as the Westerbork
Synthesis Radio Telescope (WSRT), LOFAR and the Giant Metrewave Radio Telescope

(GMRT) has changed. On one hand, time and frequency resolutions have improved con-
siderably over the last decade. Because of this, the detection of RFI can also be performed

at higher resolutions, and the accuracy of flagging of contaminated samples improves, resulting
in smaller loss of data. On the other hand, radio quiet zones are harder to achieve, and all of the
above mentioned telescopes are situated in populated areas. Moreover, sensitivity requirements
for telescopes are growing. For example, one of the LOFAR key science projects is the LOFAR
Epoch of Reionization (EoR) project (Jelić et al., 2008; Thomas et al., 2009), a very ambitious
project with high demands on sensitivity and noise behaviour. These new constraints require new
techniques with different requirements for the excision of RFI.

In this chapter, we will introduce several fundamental automated detection methods. These
detection methods can be compared on accuracy, i.e., the true/false-positive ratio; the speed of
the algorithm; robustness; and technical requirements that they impose. Constructing a detection
mechanism that performs good on all aspects is challenging. During this chapter, existing methods
will be described and new methods will be introduced that are designed to take this challenge.
Some of these have been implemented in the LOFAR observatory pipeline, that will be described
in Chapter 3. This pipeline consists of scripted iterations in which the methods from this chapter
are taken as building blocks, and are combined in a way to optimize performance and accuracy.

We will evaluate the effectiveness of several automatic RFI mitigation methods. The methods

15
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will be compared with each other in order to be able to pick a general optimal RFI strategy for a
specific detection step. We will do this by testing the methods on both artificial data and data from
WSRT, most of which has been observed in the frequency range of LOFAR. Testing the methods
on WSRT data will also provide an indication of the effects of the RFI environment on future
LOFAR observations.

While most of the methods are tested post-correlation (off-line), the detection schemes are not
limited to application after correlation. Some of the methods are currently being tested before
correlation (on-line) at the LOFAR observatory.

The upcoming section will explain the difference between the pre-correlation and post-correlation
application of detection methods. In the sections that follow, we describe several new methods for
the detection of RFI. These methods are categorized in signal estimation methods, thresholding
methods and morphological methods. The signal estimation methods and thresholding methods
are depending on each other, and will therefore be described together in section 2.2. We present
our results on the signal estimation and thresholding methods, including the comparative study, in
section 2.3. The application of morphological operators will be discussed in section 2.4.

2.1 Detection stage

RFI mitigation can be applied at two different stages: a pre-correlation stage and a post-correlation
stage. The pre-correlation mitigation stage is very powerful as the observational data is still avail-
able at its highest time resolution. For example, there are methods that blank or subtract short
periodic radar RFI bursts on-line (Niamsuwan et al., 2005), leaving the astronomical signal intact
with only a very slightly increased signal to noise ratio. Any residual RFI has to be removed
during the data reduction or imaging stage, often manually, for example by finding appropriate
clipping levels for contaminated baselines until the reduced data is free of artefacts.

Pre-correlation methods have to handle large amounts of data in a very short time and, because
of hardware constraints, they can often only access limited dimensions of the data, such as the data
from a single dish or station, or the data from a small time range. Examples of pre-correlation
methods are based on thresholding (Weber et al., 1997; Leshem et al., 2000; Baan et al., 2004;
Niamsuwan et al., 2005); spatial filtering with eigenvalue decomposition (Leshem et al., 2000;
Smolders and Hampson, 2002; Ellingson and Hampson, 2002); and adaptive cancellation with a
reference antenna (Barnbaum and Bradley, 1998).

To deal with RFI, the post-correlation phase is the final resort. Demonstrated techniques
include the use of an independent RFI reference signal to subtract RFI (Briggs et al., 2000); an
approach using singular value decomposition (Offringa et al., 2010a; Pen et al., 2009); and fringe
fitting (Athreya, 2009). Since RFI comes in many forms (Fridman and Baan, 2001; Lemmon,
1997) not all contaminated samples can be recovered, despite the numerous existing techniques.
Therefore, flagging remains an important final step (Offringa et al., 2010a; Winkel et al., 2006,
2009).

Pre-correlation and post-correlation techniques are mostly complimentary: they find or re-
move different kinds of RFI. Hence, the implementation of one does not make the other obsolete.
However, a huge advantage of off-line detection, is that it allows one to easily experiment with
different settings of the detection method parameters.
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2.2 Thresholding & signal estimation methods

Radio astronomers have developed their own ways of dealing with RFI during data reduction using
numerous astronomical software packages. In many cases, this implies flagging by hand – a te-
dious and time consuming job. Many toolkits, such as AIPS1, AIPS++2, MIRIAD3 and NEWSTAR4,
provide specific features to perform flagging, such as the FLAGR task in AIPS++. Astronomers
have automated the process further by designing scripts in which common signal processing tech-
niques such as thresholding, smoothing, line detection and curve fitting are combined (Winkel
et al., 2006; Bhat et al., 2005). Another common signal processing technique known as Singu-
lar Value Decomposition has recently been used for the automatic removal of broadband RFI in
GMRT observations (Pen et al., 2009). In this section we will describe some of the techniques
available that relate to a new method of interference mitigation that we will introduce, and finally
we will explain the new method itself.

2.2.1 Post-correlation thresholding

Since RFI increases the measured absolute amplitude of a signal, thresholding is an effective
method that is often used to remove strong RFI. The threshold level is often globally determined,
or sometimes set relative to the variance or mode distribution parameters per baseline. These can
be stably estimated using, for example, the Winsorized variance or mode (Fridman, 2008). All
values that are outside a certain range around the mean or median are flagged as bad data and not
used in subsequent data reduction. Sometimes a number of samples around a bad data sample
are flagged as well. Most astronomical reduction toolkits provide options to threshold part of a
data cube, allowing different thresholds at the cost of an increased effort for the astronomer. An
important consequence of thresholding is that good data is selected with a bias. When many non-
contaminated samples are above the threshold, they will be flagged and not used in subsequent
data reduction. As a result, artefacts such as incorrect flux densities might be caused in the image
plane. It is therefore important to have a low false-probability rate of RFI detection.

2.2.2 Surface fitting and smoothing

A surface fit to the correlated visibilities V (ν, t) as a function of frequency ν and time t can
produce a surface V̂ (ν, t) that represents the astronomical information in the signal. Requiring
V̂ (ν, t) to be a smooth surface is a good assumption for most astronomical continuum sources, as
their observed amplitudes tend not to change rapidly with time and frequency, whereas specific
types of RFI can create sharp edges in the time-frequency domain. Because of the smoothing in
both time and frequency direction, this method is not directly usable when observing strong line
sources or strong pulsars. The residuals between the fit and the data contain the system noise
Nnoise(ν, t) and the RFI, NRFi(ν, t), which can then be thresholded without the chance of flagging
astronomical sources that have visibilities with high amplitude.

1AIPS: Astronomical Image Processing System, http://aips.nrao.edu/.
2AIPS++, http://aips2.nrao.edu/.
3MIRIAD, a data reduction package tailored for the Australia Telescope Compact Array (ATCA),

http://www.atnf.csiro.au/computing/software/miriad/.
4NEWSTAR, a data reduction package tailored for the Westerbork Synthesis Radio Telescope (Noordam, 1994).

http://aips.nrao.edu/
http://aips2.nrao.edu/
http://www.atnf.csiro.au/computing/software/miriad/
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Several suitable surface fitting methods exist. As an example, in Winkel et al. (2006) a pipeline
is described in which a two-dimensional, low order, dimensional independent polynomial is iter-
atively fitted to time-frequency tiles in the data using a least square fit:

V̂k(ν, t) =
Nν∑
i=1

ak,iν
i +

Nt∑
i=1

bk,it
i + ck, (2.1)

where V̂k is the fitted surface that represents the astronomical information in the k-th tile, Nν , Nt
are the polynomial order for the frequency and the time, respectively, and ak,i, bk,i, ck are the
coefficients of the fit for tile k.

The fit is performed iteratively, and values which have been flagged in previous iterations
are excluded from the fit. This can be done by introducing a weight function WF (ν, t), where
WF (ν, t) = 0 indicates that the value is flagged or outside the boundaries of the measured time
or frequency range, and WF (ν, t) = 1 means the value is accepted. The fit is performed by
minimizing an error function Ek for each tile:

Ek =
∑
ν

∑
t

WF (ν, t)f(V̂k(ν, t), V (ν, t)) (2.2)

where f(a, b) = (a−b)2 for a least squares fit or f(a, b) = |a−b| for a fit with a minimal absolute
error.

An example of this approach after a few iterations can be seen in Figure 2.1. In simple cases,
the surfaces that are created with this approach represent the astronomical information reasonably
well, and the method is also quite fast. However, as polynomial fits tend to show deviations near
boundaries, the method is inaccurate near the boundaries of each tile.

Compared with tile-based approaches, sliding window methods tend to be more accurate. A
simple example of a sliding window approach is to calculate the average of a window of size
N ×M around each data value:

V̂ (ν, t) =
1

count

1
2N∑

i=− 1
2N

1
2M∑

j=− 1
2M

WF · V (ν + i∆ν, t+ j∆t), (2.3)

with

count =

1
2N∑

i=− 1
2N

1
2M∑

j=− 1
2M

WF (ν + i∆ν, t+ j∆t) (2.4)

This method is still fast and creates a surface without tile edges. However, the sliding window
average represents the astronomical signal less well. For example, peaks in the original function
cause square-shaped edges in the fit, which in the end cause detection inaccuracies.

One way to overcome this problem is to calculate the local median instead of the local average.
Values that have been flagged in a previous iteration should be ignored by the median calculation.
The median is insensitive to peaks and the surface created by the local median remains smooth
when the window is slid over the data. The median however is not always a good estimate of the
sliding window centre sample specifically, as all samples have equal weight.

Another way to overcome the problem is to calculate a weighted average. Consider a weight
function Wd(i, j) that depends on the two components i, j that represent the distances from the
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(a) V̂ (ν, t) (b) V̂ (ν, t)− V (ν, t) (c) Thresholded

Figure 2.1: Tile-based polynomial fitting applied to the raw visibilities from an observation of
3C196 at 140 MHz using a 144m WSRT baseline (see §2.3.3). Panel (a) shows the tiled fit of the
astronomical signal. Panel (b) shows the difference between the fitted astronomical signal and
the observed signal used for thresholding. Panel (c) shows the flags on top of the original signal.
The flags established by single pixel thresholding cover the RFI when verified by eye, although
many false-positives can be seen which are caused by (“normal”) noise. The tile size used for this
image is 30 frequency channels with 10 kHz width × 50 time scans with 10s integration time.

centre of the window in time and frequency respectively. Then

V̂ (ν, t) =

∑ 1
2N

i=− 1
2N

∑ 1
2M

j=− 1
2M

Wd(i, j) (WF � V ) (νi, tj)

weight
(2.5)

where

weight =

1
2N∑

i=− 1
2N

1
2M∑

j=− 1
2M

Wd(i, j)WF (ν + i∆ν, t+ j∆t) (2.6)

This can be calculated very fast, since (2.5) is the convolution operation Wd ∗ (WF � V ) and
(2.6) is another convolution Wd ∗WF , giving:

V̂ = ((WF � V ) ∗Wd)� (WF ∗Wd) (2.7)

where � and � are the elementwise multiplication and division operators. A good choice for Wd

is the two-dimensional (dimensional independent) Gaussian function:

Wd(i, j) = exp
(
− i2

2σ2
ν

− j2

2σ2
t

)
(2.8)

Together, equations (2.7) and (2.8) essentially describe a weighted Gaussian smoothing operation,
or more specifically, a Gaussian smoothing operation with missing data. The parameters σν and
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(a) Original (b) Local average

(c) Tile-based least-squares polynomial fit (d) Sliding window least-squares polynomial fit

(e) Sliding window absolute polynomial fit (f) Gaussian low-pass filter

Figure 2.2: Overview of various fitting methods
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σt can be used to specify the level of smoothing in frequency and time respectively. Since the
weight function is dimensionally separable, the convolutions can be dimensionally separated:

V̂ =
(WF � V ) ∗ Uν ∗ Ut

WF ∗ Uν ∗ Ut
(2.9)

with Uν(i) = Wd(i, 0) and Ut(j) = Wd(0, j). Each of the convolutions in (2.9) is a one dimen-
sional convolution, and this is therefore a fast operation.

An overview of various fitting methods is given in Figure 2.2.

2.2.3 The cumulative sum method

The cumulative sum (CUSUM) method is a well known analysis method used to detect changes in
distribution parameters (Page, 1954; Basseville and Nikiforov, 1993), such as in quality control
in production environments. If the cumulative sum of sequential samples exceeds an adaptive
threshold, the system enters an alarmed state and changes can be made to correct the quality. In
its common form, the likelihood for two distribution parameters is used to compute the threshold.

To turn this method into an RFI mitigation strategy, the total observed power or power received
at a certain frequency by a single dish can be used as the sequential input values to the CUSUM
method. The likelihoods of either variance or mean of RFI can be estimated using the variance
of the signal (Friedman, 1996; Baan et al., 2004). Observing can be stopped as soon as RFI is
detected, and can continue when reception has returned to normal. This method can be easily
implemented for on-line RFI detection, as it is simple and fast. However, the CUSUM method does
not estimate the start time of the change, it only detects the change quickly, which nevertheless
may cost time and thus some bad data may leak through before the method detects faint RFI.
Hence, the method is more applicable to a first check on the data than to actually perform flagging.
The subsequent sections will describe a method that combines the detection strength of the CUSUM
method with the possibility of performing flagging off-line.

2.2.4 Combinatorial thresholding

RFI bursts often affect multiple samples which are connected either in frequency or time. We
will now introduce a new threshold mechanism that makes use of this knowledge: we will flag
a combination of samples when a property of this combination exceeds some limit. Assume that
A and B are neighbouring samples. In normal thresholding, we will look at each of the samples
A and B individually and flag one of them if it exceeds some “single sample” threshold χ1. For
combinatorial thresholding, a new flagging criterion is added: if A and B do not exceed the single
sample threshold χ1 individually, they can still be flagged whenA andB both exceed a somewhat
lower threshold χ2. If not, they can be combined with a third neighbour, C, and thresholded at
χ3, etc. The more connected samples are combined, the lower the sample threshold.

2.2.5 The VarThreshold method

Given a set of strictly decreasing thresholds, {χi}Ni=1, a value will be classified as RFI if it belongs
to a combination of i values in either the time or frequency direction in which all absolute values
are above the threshold χi. To determine whether a single sample R(ν, t) should be flagged
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because of an RFI sequence in the frequency direction, the following rule is applied:

flagνM (ν, t) = ∃i ∈ {0 . . .M − 1} : ∀j ∈ {0 . . .M − 1} :
|R (ν + (i− j) ∆ν, t)| > χM (2.10)

where M is the number of samples in a combination. The flagging rules for the time direction are
correspondingly determined. Finally, a sample is flagged if any of the two rules is satisfied. We
will call this method the VarThreshold method.

We will show a simple example to demonstrate the method. Consider the following values:

R =

1 2 1 4
4 1 1 4
2 2 1 4

 (2.11)

Each row represents a frequency channel and each column represents a time scan. Assume the
high values in the fourth column were caused by broadband RFI. When using a normal threshold
χ = 3, all samples with value 4 would be thresholded, including one false-positive. However, if
we used combinatorial thresholding, with χ1 = 5 and χ2 = 3, we would threshold only the three
broadband RFI samples.

The above text suggests an implementation of this method by a procedure which iterates over
all samples and, for each sample, checks if it and its M ∈ M neighbours form an RFI sequence
in one of the directions. Alternatively, an implementation can start by marking all samples above
a certain χM as candidates. Subsequently, only the marked candidates that form a connected
segment with more than M connected samples in an orthogonal line in one of the directions are
flagged. This procedure is repeated for all M ∈ M. From this perspective, it is easy to add
other morphological constraints. Instead of looking for straight lines in the time and frequency
direction, an enhanced version might flag connected shapes covering a specific area, or shapes
that form a line or curve in the plane, possibly not connected, that are likely to be caused by RFI.

VarThreshold parameters

The following list of parameters need to be optimised to make efficient use of this approach:

• The false-positive rate on uncontaminated samples. The lower the value, the more RFI
remains. The higher the value, the more uncontaminated samples will be flagged. We will
discuss this in §2.2.5.

• A set that defines which samples are combined. For this we define M, a set containing
the number of samples that will be combined in each of the four directions. Ideally, each
sample will be combined with all samples of either the same frequency or the same time,
i.e.,M = {i ∈ Z : 1 ≤ i ≤ max(Nν , Nt)}, with Z the set of integers. Empirically, a small
subsetM = {1, 2, 4, 8, 16, 32, 64}works almost as well and saves summing and comparing
many samples.

• The set of thresholds {χM : M ∈M} for the different number of combinations M . The
total set of thresholds is expressed by two parameters, χ1 (the threshold on a single sample)
and ρ, using the following formula:

χi =
χ1

ρlog2 i
(2.12)
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A value of ρ = 1.5 empirically seems to work well for the VarThreshold and the below
defined SumThreshold method. To find χ1 for a desired false probability rate, ρ is kept
constant and the χ1 value is binary searched by performing mitigation on data selected from
the distribution of the noise, with the values {χi}i∈M computed as in (2.12), until the false
probability rate is close to the desired rate.

Since the method is combined with a surface fitting strategy, the following parameters are added:

• The number of iterations to be performed. The resulting accuracies are good with about 5
iterations.

• The iteration sensitivity as a function of the iteration number, η(i). In each iteration, the
threshold sensitivity is increased (more samples are flagged). To accomplish this, all the
thresholds {χi}i∈M are decreased by dividing them by a factor of η(i). Only during the
last iteration will a sensitivity of 100% be used. By slowly increasing the sensitivity a
first bad fit to the background won’t have much effect, since only the very strongly RFI
contaminated samples are removed. Using an exponential function for η(i) was found to
work well.

The VarThreshold false-positive ratio

Assume that R ∼ D(σNs), where R is the residual of the complex correlated visibilities V and
the surface fit V̂ , and D is a distribution with parameter σ. The probability that a non-RFI conta-
minated sample from the residual is larger than χ can be determined with:

∀ν∀t : P (|R(ν, t)| ≥ χ) =

−χ∫
−∞

ϕσ(x)dx+

∞∫
χ

ϕσ(x)dx, (2.13)

where ϕ(x) is the probability density function of the distribution D(σN∫ ). Note that the term∫ −χ
−∞ ϕσ(x)dx is only relevant when the distribution contains negative values – unlike the Rayleigh

distribution – and the values are thresholded above χ as well as below −χ.
The combined threshold false-positive rates can best be calculated numerically, since an an-

alytical calculation is rather complex, even for M with a single combined threshold χM . This
analytical calculation will be demonstrated for M = 2. First it is assumed that any two samples,
R(ν1, t1) and R(ν2, t2), are independent when they are not RFI contaminated. This is the case if
the fit represents the astronomical data and system noise is uncorrelated. With this assumption,
the probability Pfalse for a single non-contaminated sample R1 with M = 2 to be flagged in one
of the four combinations with its neighbours R2...5 can be calculated with:

Pfalse(ν, t)

= P
(
flagνM=2(ν, t) ∨ flagtM=2(ν, t)

)
= P (|R1| > χ ∧ ∃i ∈ [2 . . . 5] : |Ri| > χ)

= P (|R| > χ)− P (|R| > χ) (1− P (|R| > χ))4 . (2.14)

The corresponding formulae for larger M are more complex. When M contains more than
one element, the false-positive ratios for the elements Mi can not be simply added to obtain
the combined false-positive ratio, as P (flagνMi(ν, t)) and P (flagνMj (ν, t)) are not statistically
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Figure 2.3: The false-positives of the VarThreshold method when flagging with a single com-
binationM = {M} without surface fitting. Samples were selected from a Rayleigh distribution,
which is the distribution of the visibility amplitudes. χ is relative to the mode of the distribution.

independent: both will at least make use of sample R(ν, t). Given this, the analytical expression
becomes rather complex and the probability is evaluated numerically.

Figure 2.3 shows the result of calculating the total false-positive ratio numerically, for several
values of M .

2.2.6 The SumThreshold method

Now we will present a variation on the VarThreshold method that improves the detection per-
formance. This method, named the SumThresholdmethod, is a flagging method that combines
samples as in the VarThreshold method. In this alternative case, the sum of a combination of
one or more other samples is used as a threshold criterion. As in the VarThreshold method,
the threshold χM is variable and depends on M , the number of samples that are summed.

Unlike the VarThreshold method, this approach allows the flagging of a sequence of sam-
ples when it contains samples with values below the sequence threshold value. However, with-
out an additional rule, there are situations in which this method might flag too many samples.
For example, consider the sequence [0, 0, 5, 6, 0, 0] that represents a strong RFI contamination in
two samples. When the SumThreshold method without a second rule is applied with average
threshold values χ1 = 7, χ2 = 5, χ3 = 4, . . . , χ6 = 1.8, all six values would be thresholded, as
their average exceeds 6χ6. The following rule is therefore added: the values are thresholded in
the increasing order χ1, χ2, . . . , χM . When a lower threshold has already classified samples as
RFI contaminated, the samples will be left out of the sum and replaced by the average threshold
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level. In the example case, the values 5 and 6 will be classified as RFI by the second threshold,
and therefore will be replaced by χ6 when combining all the six samples. The average of the
sequence for the sixth threshold is therefore calculated as (0 + 0 + χ6 + χ6 + 0 + 0) /6 = 2

6χ6.
As a consequence, only the samples with values 5 and 6 are flagged.

Implementation details of the SumThreshold method are given in Appendix A, which in-
cludes a vectorized algorithm that uses the SSE instruction set.

The SumThreshold false-positive ratio

We calculate the theoretical false-positive ratio for M = 2 as for the VarThreshold method.
The probability P (Tχ,1,2) that the sum of two independent random samples exceeds a certain
value χ is given by:

∀ν1ν2t1t2 : P (Tχ,1,2) = P [R(ν1, t1) +R(ν2, t2) ≥ χ]

= P (D(2σNs) ≥ χ)

=

∞∫
χ

ϕ2σ(x)dx (2.15)

When thresholding the average of a combination of two samples, each sample will occur four
times in a hypothesis test, once with each of its neighbours. On uncontaminated samples, the
probability of a false-positive for each of these tests is given by (2.15). The probability for a
false-positive with the four tests applied on each sample becomes:

P (Tχ,1×4) = P (Tχ,1,2 ∨ Tχ,1,3 ∨ Tχ,1,4 ∨ Tχ,1,5)

Because the tests {Tχ,1,i}5i=2 are dependent on each other, it is much easier to calculate the
false-positive rates numerically. This can be performed by applying the SumThreshold on
a large amount of data selected from the distribution D. The result of such a simulation is in
Figure 2.4.

2.2.7 The Singular Value Decomposition
Singular value decomposition (SVD) is a mathematical tool for finding the singular values of a
matrix, which can exhibit certain properties of the matrix.

A singular value decomposition consists of finding the complex unitary M ×M and N ×N
dimensional matrices U and V containing respectively a left and right singular vector in each row,
and the diagonal, M ×N dimensional real matrix Σ containing the singular values, such that:

A = UΣV T (2.16)

RFI is mitigated from the data set by performing this decomposition on a matrix A. Each element
Aij represents the measured flux, where i is a baseline-frequency index and j a time index. Each
given matrix A has a unique solution for the singular values Σ, if the singular values are sorted,
but there is no unique solution for U and V (for example, A remains equal when all values in U
and V are negated). It is assumed that the highest singular values represent the singular values
of the RFI data. To mitigate the RFI, the highest singular values in Σ are set to zero and the new
matrix Â is recomposed from U , Σ and V .



26 Detection of Radio-Frequency Interference

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

F
al

se
 r

at
io

χ

M=1
M=2
M=4
M=8

M=16

Figure 2.4: The probability of a false-positive when thresholding with a single combinationM =
{M} using the SumThreshold method without surface fitting. The Rayleigh distribution was
used for the simulation. χ is the average threshold relative to the distribution mode. Thus a
combination of samples was thresholded when their sum exceeds χ×M × σ. The false ratio for
M ≥ 2 is different from the VarThreshold method (Figure 2.3). Because of this difference,
the parameter ρ used to calculate the set of thresholds as in (2.12) needs to be optimised for
the methods individually. Although the false ratio is not smaller than the VarThreshold false
positive method, the true ratio is often increased (Figure 2.9).

The number of singular values to be removed or set to zero has to be chosen in such a way
that only the RFI is removed. The singular values that correspond to RFI are often strong outliers,
whereas the singular values of Gaussian noise form a smooth curve. The position of the abrupt
change in the curve of the singular values is used as the number of singular values to be removed,
as is shown in Figure 2.5.

Properties

Let L = min(M,N), then:

Aij =
L∑
k=1

UikΣkkVjk. (2.17)
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Figure 2.5: The distribution of the singular values of two artificial measurements: one containing
Gaussian noise only, the other containing Gaussian noise poluted by broadband RFI. In this
example, the first five singular values are affected by the broadband RFI. In general, the number
of singular values that are affected by RFI and the possibility to recognize them varies depending
on the orthogonality properties of the RFI.

U and V are unitary, UU = I with U the Hermitian transpose, and the rows and columns of the
matrices form by definition a complex orthonormal basis. This implies:

∀i ∈ [1..M ] :
L∑
j=1

U2
ij = 1. (2.18)

Hence there is at least one non-zero value in each row and column of the matrices U and V , and
setting a non-zero singular value to zero changesA. IfA contains real values only, equation (2.18)
implies that all values in U and V are between −1 and 1, and removing a singular value Σii can
alter each value in A by at most Σii. In the complex case, removing a singular value can alter the
absolute value of each value in A at most by Σii. In general, setting Σii to zero subtracts a matrix
Γi with rank 1 from A, as (Γi)jk = UjiΣiiVki, and thus all columns are linearly dependent.

The orthogonality properties imply that the order of the rows and columns in the original
matrix A do not change the singular values: the order of the rows and columns is irrelevant
for the SVD method to detect RFI. Intuitively, the SVD method does not “distinguish” between
a smoothly increasing amplitude, caused by astronomical sources, and RFI, and might fail to
correctly subtract or detect RFI because of the astronomical signal.

If RFI is to be separated from the signal, the RFI and the signal have to adhere to the following
properties:
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• All columns containing RFI (and consequently all rows) have to be orthogonal to the astro-
nomical signal. In other words, for any column or row a in the matrix, aRFI · asignal = 0,
with aRFI the RFI component and asignal the signal component in the data.

• The singular values of the RFI are substantially higher than the singular values of the astro-
nomical signal. This requires the RFI to be strong.

• The individual RFI columns are either fully linearly dependent on or fully orthogonal to
each other. If the individual RFI components are partially dependent, the largest part of the
RFI is removed and the singular value of what is left of the RFI might not have enough
’gain’ to be removed or flagged.

Iteratively fitting a surface and subtracting the surface, as in §2.2.2, might improve the com-
pliance to the first requirement, although it increases the execution time of the method. Another
way to improve compliance to the requirement is to remove the astronomical signal by subtracting
a good model beforehand.

It is useful to note that unitary transformations do not change the singular values of a ma-
trix, although they might change the singular vectors. Since the Fourier transform is a unitary
transformation according to Parseval’s theorem, the following equation holds:

A = USV ⇔ F(A) = U ′SV ′ (2.19)

The consequence of this is that it does not matter whether the SVD method is executed in the
time-frequency domain, the time-lag domain, or another Fourier domain, since setting singular
values to zero in the Fourier domain would set the singular value to zero in the original domain.

2.2.8 Input data types

The combined thresholding methods described in this paper can be applied to several types of
data: auto-correlated or cross-correlated, to the cross-correlations of specific polarized feeds, to
Stokes parameters, to amplitude or to phase, etc.

We have compared flagging on cross-correlations and auto-correlations. The cross-correlations
of each baseline can be processed with one of the flagging methods, resulting in N(N −1)/2 cor-
relations to be processed. Alternatively, every antenna can be individually flagged by processing
the auto-correlations, and samples in a baseline might be flagged if either of the corresponding
samples in the individual antenna auto-correlations have been flagged. Only N correlations need
to be searched for RFI in this case. In addition to the benefit of speed, RFI is strongest in auto-
correlations and the data contain no fringes from astronomical sources, as auto-correlations do
not have interference patterns, thus offering an improved accuracy in RFI detection. On the down
side, some RFI might be present in auto-correlations that would have been mitigated by cross-
correlation, and detecting RFI in auto-correlations potentially throws away some usable data in
the cross-correlations.

In cases where the polarization of the observed electromagnetic waves is measured, the po-
larization might contain valuable information for RFI detection. For now, we have processed the
cross-correlations from differently polarized feeds individually, without exploiting relationships
between these cross-correlations.



2.3 Thresholding & smoothing results 29

2.3 Thresholding & smoothing results

2.3.1 Smoothing results

In §2.2.2 we described several surface fitting methods to estimate the astronomical signal in the
frequency-time domain. We found that the surface fitting methods when combined with one of the
detection methods do not differ much in accuracy. A sliding window approach was found to be
more stable compared with a tile based approach. The Gaussian weighted average, a polynomial
fit and the window median for the subtracted surface were found to be approximately equal in
their accuracies after optimising their parameters such as the window size, the Gaussian kernel
size and the order of the polynomial, although their parameters do influence the accuracy.

Finding global parameters that always work well (or automatic procedures to find the param-
eters) is not trivial. The algorithm can handle data with very different characteristics: it can be
applied to XX, XY, YX or YY cross-correlations, to auto-correlations, to either long or short base-
lines, to LOFAR or for WSRT data, before or after calibration, etc. To use the same surface fitting
parameters in all these different situations, the window size, and if applicable the Gaussian kernel
size, needs to be rather small. The expected amplitude changes of celestial signals are usually
much less in the frequency direction, and setting the window size larger in the frequency direction
improves stability. We used a typical size of the sliding window of 40 frequency channels × 20
time scans and Gaussian kernel parameters of σν = 15 and σt = 7.5. The numbers are based on
trials using different observed and artificial data sets. The parameters are relative to the number
of channels and number of time steps. For WSRT data, a channel is 10 kHz wide and a time scan
is 10 seconds long. LOFAR will have a 1 kHz × 1 second correlation output resolution. For best
results, the length and width of the window should be about three times the Gaussian kernel size
or larger.

2.3.2 RFI detection results

Both the SVD and threshold methods show accurate results on removing line RFI and broadband
RFI. The SVD method is not suitable for removing frequency-varying RFI, as demonstrated in
Figure 2.6, and thus has to be complemented with other techniques to remove all RFI. However,
the SVD method can be used to subtract and remove the RFI from the image, leaving the astro-
nomical signal intact. For this to be succesful, considerable assumptions about the mathematical
properties of RFI and the astronomical signal have to be true: the time-frequency matrix with the
RFI components has to be orthogonal to the time-frequency matrix of the astronomical signal, and
the different RFI components have to be either orthogonal to each other or linearly dependent on
each other. Figure 2.7 shows the SVD decomposition of test set A that consists of uncorrelated
noise and linear RFI.

As it is hard to quantitatively compare RFI mitigation methods based on data sets of which
the characteristics of the RFI cannot be known for certain, several artificial test sets were created.
These sets are shown in Figure 2.8 and contain broadband RFI only. Since the RFI was added
artificially, the location of the RFI in the time-frequency domain is known, and the accuracy of
the methods can be tested quantitatively. The results are drawn as receiver operating characteristic
(ROC) curves in Figure 2.9. ROC curves show the true probability rate against the false probability
rate. The different accuracies and characteristics of the methods can easily be compared in ROC
graphs.
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(a) Original observation

(b) After removing the highest singular values from the image (note the different flux
scale).

Figure 2.6: The auto-correlated data in this image demonstrate the inability of the SVD method to
remove sources that slowly change frequency over time (e.g., because the source has a changing
velocity in the direction of the antenna). This type of RFI seems to be relatively common in low-
frequency WSRT data. The RFI in this particular example is so strong that it can be easily removed
by thresholding, but this plot is to illustrate the effects of such RFI. When the frequency-changing
signal is faint and cannot be removed by thresholding, applying SVD will, as in this example,
change the astronomical information in the data in an unpredictable way.
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(a) Recomposed image from the low singular values.

(b) Recomposed image from the high singular values.

Figure 2.7: SV decomposition of test set A (Figure 2.8a): noise with broad band RFI covering
all channels homogeneously. The recomposed image from the low singular values (top panel)
looks very promising: none of the RFI is left and the noise seems to be untouched. However,
a recomposition of the matrix with only high singular values (bottom panel), i.e., the part that
has been subtracted from the image, shows that the noise is affected in an unpredictable way by
the decomposition. This is the best case for the SVD method; in more realistic scenario’s, the
data should include a residual astronomical signal and broadband RFI that might not be linearly
dependent.

The SumThreshold method shows a considerably better accuracy in all the test sets. Test
sets A and B contain RFI that is completely linear dependent, and the SVD method also works
very well in these sets. The SVD method could actually be used to subtract the RFI instead of
flagging and not using the data. However, to mitigate the RFI in test set C, the methods have to
deal with RFI that is neither orthogonal nor completely dependent on each other, and thus the
accuracy of the SVD method decreases.

A normal thresholding strategy was also tested to compare the results. When performing
normal thresholding with a surface fit as in the SumThreshold method, the accuracy for thresh-
olding actually decreases in the test cases without an astronomical signal (see the curves labelled
“Fit + simple threshold” in Figure 2.9). This is partially because the surface fit was optimised
for the SumThreshold method. Furthermore, since the accuracy of the thresholding is not very
good, the fit is influenced by the undetected RFI, causing more errors.

When astronomical information is added as in test set E and a more complex background is
added as in test set F, the SVD method shows a decreased accuracy in mitigating the RFI, as can
also be seen in Figure 2.10. However, in test set G, the background of test set F is Gaussian
smoothed and subtracted, as is done before thresholding. The SVD method now shows an im-
proved accuracy, though still not as good as the SumThreshold method. Test set H shows that
the linear dependency of the RFI is not the only requirement for succesful mitigation with the
SVD method: the added RFI is completely linearly dependent in this test set, but the background
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(a) Test set A: noise with broadband RFI contaminating all channels, ordered from strong
(left) to weak (right).

(b) Test set B: broadband RFI contaminating a part of the channels

(c) Test set C: broadband RFI contaminating different channels

(d) Test set D: a simulated observation of the cross-correlation of three point sources being
close together added to test set C

Figure 2.8: (continued on next page)
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(e) Test set E: a simulated observation of the cross-correlation of five distant sources added
to test set A

(f) Test set F: as E, but RFI as in test set C

(g) Test set G: as F, but Gaussian smoothed before adding RFI

(h) Test set H: a high frequency background signal added to test set C

Figure 2.8: The artificial test sets containing broad band RFI, used for testing and parameter
optimisation. In all images, time is along the horizontal and frequency along the vertical axis. All
test sets simulate a similar baseline.
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Figure 2.9: The ROC curves produced by applying various RFI detection methods to the test
sets. The closer an ROC curve passes the top-left of the graph at 100% true-positives with 0%
false-positives, the more accurate the method is.
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(a) SVD performed on test set H (71.0% recognized, 0.6% false).

(b) SumThreshold performed on test set H (99.4% recognized, 0% false).

Figure 2.10: The results of two mitigation methods applied to test set H.

is still causing low accuracies in the SVD method.
It should be noted that some of these test sets are measuring the theoretical accuracy of non-

orthogonal, but not completely independent RFI contamination. As shown in §2.2.7, this was
the hardest case for the SVD method. When in practice the RFI does behave in an orthogonal
or dependent manner, the results might be quite different. Nevertheless, it is unlikely that all
RFI contaminations that are measured by different antennae at different times are always either
linearly dependent or orthogonal.

The presented test sets simulate a single baseline, whereas in a real measurement, the SVD
method will exploit the correlation of RFI between different antennae. This will, however, also
decrease the probability that all RFI is either orthogonal or linearly dependent.

2.3.3 Automatic flagging of WSRT data

To test the various RFI flagging algorithms we have used WSRT data in the low-frequency front-
end (LFFE) band from 138-157 MHz obtained in November and December 2007. The obser-
vations have been described and analysed by Bernardi et al. (2009, 2010) to which we refer for
details of the astrophysical motivation and calibration. For our analysis, however, we used the raw
uncalibrated visibilities. The correlator integration time for the data was 10s. A total of 8 bands
of 2.5 MHz width were available. The central frequencies of these bands were located at 139.3,
141.5, 143.7, 145.9, 148.1, 150.3, 152.5 and 154.7 MHz. Each band was divided into 512 spectral
channels. The data were Hann tapered, yielding an effective spectral resolution of 9.8 kHz. There-
fore, adjacent spectral channels are highly correlated. A total of 13 telescopes participated in the
observations providing a total of 78 interferometers with baselines from 36 to 2736 meters. All
four cross-correlations between the orthogonal, linearly polarized feeds were used in the analysis.

We have tested the various methods on several data sets. The SumThreshold method in
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(a) Original (b) Automated flagging result

(c) Smoothed (d) Difference

Figure 2.11: Time (horizontal) vs. frequency (vertical) plots of uncalibrated WSRT data, cross-
correlations of antenna C vs. D. and the application of the SumThreshold automated flagging
procedure. Panel (a) shows one hour of the amplitude of a 3C196 observation, panel (b) shows
the result of the flagger, panel (c) shows the fitted surface after 5 iterations, and panel (d) shows
the difference between panel (a) and panel (c).
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combination with Gaussian smoothing shows especially excellent results. Figure 2.11 shows a
typical time-frequency diagram of WSRT data at ∼140 MHz and the application of the Sum-
Threshold method. Although the smoothed surface is slightly affected by the RFI after five
iterations, as faint artefacts are visible in the smoothed surface around places where RFI used to
be, the effect is so small that it does not pose a problem for the SumThresholding method.
However, it makes the calculated false probability rate inaccurate, as the false probability calcu-
lations assume independence between the residual samples. When validating the results by visual
inspection, we see far less false detections than the calculated false probability rate.

We were able to use the same parameters for WSRT data from different baseline configurations
and different target fields, and therefore were able to completely automate the flagging process.
Even at baselines and frequencies with dramatic RFI contamination of up to 50%, the Sum-
Threshold flagging method remained stable and accurate. Figure 2.12 shows, for example, a
badly contaminated band of WSRT data that is almost perfectly RFI flagged.

2.3.4 Conclusion and discussion

In this chapter we have shown several approaches to deal with RFI that is left after correlation. The
results show that automated flagging with the SumThresholdmethod works well for broadband
and peak RFI. In all cases, the default parameters for the method work well, although parameter
tweaking might in some cases improve the detection. In the artificial broadband RFI situations,
it detects 80% of the artificially inserted RFI with less than 0.1% error, and often approaches a
99% recognition almost without error. The accuracy of this method is therefore as good as can
be expected from manual flagging. In the case of WSRT, the new method does not improve the
dynamic range of the data compared with manual flagging, but the method saves a considerable
amount of work.

New telescopes such as LOFAR and SKA require robust automatic procedures, as these tele-
scopes will produce data sets that exceed current measurements in volume by orders of magnitude.
The ability to flag or check baselines or subbands individually will be lost.

The ROC analysis shows that the SumThreshold method is to be preferred above the
VarThreshold and SVD methods. The SVD method can be used in some respects to de-
tect RFI, but is less accurate. It can either be used to detect the RFI or to correct samples. If
it is used to correct samples by filtering the RFI out, rather than only detecting and flagging it,
artefacts with unknown characteristics could remain in the data. For WSRT data, these artefacts
look as bad as the broadband RFI itself.

All methods have been tested without assuming a data model. Subtracting the model before
RFI detection might improve the detection further. Nevertheless, the detection accuracy with and
without a model do not differ much. As such, going back and forth between flagging data and
creating a model is not necessary in most cases.

2.3.5 Further work

RFI with a moderate strength that can be detected by eye was found to be of no concern for
automatic flagging methods in sensitive telescopes such as WSRT. However, a different kind of
RFI might still pose problems. Certain weak RFI, such as radiation that leaks from cabins in situ,
might be present in many channels for a substantial duration of the observation. This might pose
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(a) Original

(b) Automated flagging result

Figure 2.12: Time (horizontal) vs. frequency (vertical) plots of WSRT data, cross-correlations of
antenna 1 vs. 2: a particular bad band at 121.3 MHz - 123.7 MHz of an observation of 3C147,
showing that the method remains robust in one of the worst cases at the WSRT.
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problems for observations that require long integration times to achieve their required signal-to-
noise ratios, such as the LOFAR-EoR project. If the RFI is persistent in time, systematic errors
could result. There are some interesting ways to remove these, and one of them is the fringe-
fitting RFI mitigation method described by Athreya (2009). Although this technique works at
the GMRT, preliminary tests with the fringe-fitting RFI mitigation method on WSRT and LOFAR
data do not show a strong presence of this type of RFI, and removing very weak RFI with a similar
method requires more work. Therefore, to determine whether this type of RFI is really present,
and whether it might be removable is yet to be seen.

An important next step is to consider practical issues in RFI mitigation techniques. For ex-
ample, the effects of many RFI mitigation methods, post-correlation as well as pre-correlation,
need to be simulated, since we never know what the image plane ought to look like. Also, which
post-correlation and pre-correlation methods can be combined? Under which practical circum-
stances do RFI mitigation methods fail? How can we be sure that astronomical detections are
not caused by RFI, or by the methods that try to reduce RFI? Answering these questions is im-
portant for establishing the reliability of new RFI mitigation methods and for their regular use by
astronomers.
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Figure 2.13: Typical histogram of the phase in a short baseline of a WSRT observation. The
RFI was detected by using the SumThreshold method. The plot implies that RFI-contaminated
samples have a much higher probability to have a phase deviating from zero, and the phase thus
contains valuable information for RFI detection.

Although, at this point, it seems to be of little concern to improve the SumThreshold au-
tomatic flagging method any further, it might be interesting to improve it by combining more
information for detection and by using fuzzy logic to decide the sample classification. An inter-
esting example would be to include phase information in the recognition, as only the amplitude
information has been used so far by the threshold methods. For example, Figure 2.13 shows that
the phase contains valuable information about a sample: in uncontaminated samples, the phase
is likely to be near zero rotation, whereas many contaminated samples do have a phase deviating
from zero. Other distinguishing information could be contained in the polarization information
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per sample and in the combination of different baselines.
Based on the low-frequency observations with the WSRT, it can be expected that the radio

environment of LOFAR is sufficiently clean for sensitive astronomical experiments. In upcoming
chapters we will fully analyse and describe the LOFAR environment and the effectiveness of the
RFI strategies.

Finally, we would like to emphasise that the methodology of RFI flagging, or any kind of
error detection, needs to change because of the introduction of telescopes such as LOFAR, that
generate so much data that it is not possible for astronomers to browse through the data for “the
baseline that was producing this artefact” or “the timestep that corresponds to these stripes in my
image”. Therefore, another important next step is to be able to automatically detect errors that are
caused by RFI, calibration issues, broken hardware, faulty software or any step in the complicated
pipeline of a radio observatory.
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2.4 Morphological detection

In the previous sections, we have seen that RFI detection often involves thresholding. Often,
detection is based on amplitude thresholding (Winkel et al., 2006; Offringa et al., 2010a), although
also higher order statistics such as the kurtosis have been used (Gary et al., 2010). The latter
requires storing both the mean powers and the squared powers, thereby doubling the data rate, and
hence is not always usable. Most interfering sources radiate either in a constant small frequency
range, or produce a broadband peak over a short time interval. Examples of such interferences are
respectively air traffic communication and lightning. Consequently, an interfering source tends to
affect multiple neighbouring samples in the time-frequency domain. These samples form straight
lines, parallel to the time and frequency axes. An example is given in Fig. 2.14(a), which shows
data from the Westerbork Synthesis Radio Telescope (WSRT). This line-shaped behaviour of RFI
can be used to improve the accuracy of detection algorithms. In §2.2.6 thresholding algorithms
were described that use this information, such as the SumThreshold method, which shows a
very high detection accuracy compared to other methods (Offringa et al., 2010a). This method
is used in one of the steps in the AOFlagger pipeline (Offringa et al., 2010b). An important
consideration for succesful application of automated feature detection algorithms such as these,
is that the signal of interest should not contain significant line-shaped features, as is the case with
spectral line observations. Also, methods that assume straight, one-dimensional features in the
time-frequency domain, might not work well in situations where the features are curved. This
can occur when both the frequency and the time resolutions are high enough to resolve frequency
variation in sources, for example when sources are Doppler shifted or vary intrinsically, such as
with certain radar signals. With LOFAR, we see very few such sources.

Typically, the received power of interfering sources varies over time and frequency. This
happens because of several effects, such as intrinsic variation of the source; changing ionosphere;
and because of instrumental effects. A typical example of the latter, which is present in almost
every observation, is the change of the telescope’s gain towards a terrestrial source as the telescope
tracks a field in the sky. Like time variation, frequency variation can be caused intrinsically by
the source. The instrument also adds frequency-dependent gain, for example due to imperfect
band-pass filters. Even though radiation from a source might be continuously received by the
telescope, thresholding detection methods might fail to detect the interferer over its full range due
to the variation in received power. Figure 2.14(b) shows an example where this is likely the case.
Increasing the sensitivity of the thresholding method might help somewhat, but will also cause an
increase of false positives. While some falsely detected samples are tolerable, they should be kept
minimal in order to avoid data bias and insufficient uv-coverage.

In the following section we will use the mathematical morphology of RFI for increasing de-
tection accuracy. Using mathematical morphology for this purpose is not a new idea; a dilation is
often used during RFI processing to flag areas near high values in the time-frequency domain. An
example of this can be found in Winkel et al. (2006), where windows of 5 time steps× 5 frequency
channels around detected samples are flagged. However, standard morphological techniques are
not scale invariant. An operator is called scale invariant if scaling its input results in the same
scaling of its output. An ordinary dilation will cause sharp RFI features to create a high amount of
false positives, while flagging smooth RFI features requires a very large dilation kernel. Another
scale-dependent technique used for RFI detection is to consider the statistics of time steps and
frequency channels. In the upcoming sections, we will show that scale invariance is a desirable
property of RFI detection algorithms. In these sections we will provide:
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Figure 2.14: Typical spectral line RFI received in a short period of WSRT data around 117 MHz.
It is likely that such RFI sources transmit continuously within a small bandwidth. Panel (a) shows
the original observation, while panel (b) shows what the AOFlagger with default settings would
flag without morphology-based flagging. Detection is quite accurate, but some of the detected
lines in panel (b) are not continuous. It is likely that those RFI sources were active in the gaps as
well. Morphology-based detection will help in such cases. The plot shows Stokes I amplitudes of
the cross-correlation of antennas RT0 × RT1, which is a 144m East-West baseline. A single pixel
is 10 seconds × 10 kHz of data.

• A detailed description of a morphological technique for RFI detection introduced in Of-
fringa et al. (2010b);

• Analysis of the technique and a comparison with an ordinary dilation, using simulations
and real data from two different radio-observatories;

• A novel fast algorithm with linear time complexity to implement the technique.

The method that will be discussed flags additional samples that are likely to be contaminated
with RFI, based on the morphology of the flag mask output of a thresholding stage in the pipeline.
In sect. 2.4.1 we describe the technique and show a fast algorithm to implement it. We present
some results of the method on simulated data and real data in Sect. 2.4.2. Finally, we summarize
and discuss the results in Sect. 2.4.3.

2.4.1 The scale-invariant rank operator
RFI features such as in Fig. 2.15(a) are common in radio observations, and can occur at different
scales. However, a morphological dilation is not scale invariant, and will thus necessarily work
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better for some RFI features than others. To overcome this problem, we will describe and analyse
a morphological rank operator that is scale invariant5. Scale invariance is a desirable property of
RFI detection algorithms, because (a) it implies the method can be applied on data with different
resolutions without changing parameters and (b) the time and frequency scale of RFI itself can
be arbitrary, so any method to detect RFI should work equally well for RFI at different scales. In
practice, RFI seems to behave in a more or less scale-invariant manner at the resolution of LOFAR,
as for example can be seen in Fig. 2.14, so we should also use a scale-invariant method to detect
it. This scale-invariant behaviour of RFI breaks down at high time and frequency resolutions, at
which many features become diagonal in the time-frequency plane.

The proposed technique was first mentioned in Offringa et al. (2010b), as it is part of the
AOFlagger, which is the default LOFAR RFI detection pipeline. In that article the operation was
referred to as a dilation, however, it does not strictly adhere to all the properties of a morphological
dilation. For example, we will see that the operator ρ is not distributive over the union set operator:
ρ(X ∪ Y ) 6= ρ(X)∪ ρ(Y ) for some X and Y . Because a rank operator flags points for which the
number of flagged points in a neighbourhood exceeds a threshold (Goutsias and Heijmans, 2000,
§3.4, Soille, 2002), we will refer to the operator ρ as the scale-invariant rank (SIR) operator.

We will now describe the method in-depth and analyse its effectiveness. In Offringa et al.
(2010b), it was mentioned that the full algorithm has a time complexity of O(N2), N being the
input size of the SIR operator, but by making the algorithm less accurate, an implementation of
O(N × logN) was mentioned to be possible. Here, we will introduce a faster algorithm with
linear time complexity, which is also an exact implementation of the SIR operator.

Description

Consider F , a set of positions in the time-frequency domain, such that a sample at time t and
frequency ν has been flagged when (t, ν) ∈ F . Assume F is the result of a statistical detection
algorithm, such as the SumThreshold algorithm. We will apply the SIR operator in time and
frequency directions separately, and define the sets Θt and Φν to contain the flags of a slice in
time and frequency direction:

Θt ≡{(s, ν) ∈ F | s = t} , (2.20)
Φν ≡{(t, µ) ∈ F | µ = ν} . (2.21)

A single one-dimensional set Θt or Φν is the input for the SIR operator. The operator considers
a sample to be contaminated with RFI when the sample is in a subsequence of mostly flagged
samples. To be more precise, it will flag a subsequence when more than (1− η)N of its samples
are flagged, withN the number of samples in the subsequence and η a constant, 0 ≤ η ≤ 1. Using
ρ to denote the operator, the output ρ(X) can be formally defined as

ρ(X) ≡
⋃
{[Y 1, Y 2) | (2.22)

# (X ∩ [Y 1, Y 2)) ≥ (1− η)(Y 2− Y 1)} ,

with [Y1, Y2) a half-open interval of Θt or Φν , and the hash symbol # denoting the count-operator
that returns the number of elements in the set. In words, Equation 2.22 defines ρ(X) to consist

5The mathematical properties of this technique will be analysed in more detail in van de Gronde et al., 2012, in
preparation.
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Figure 2.15: Simulation of a typical broadband RFI feature with Gaussian frequency profile as
used in the ROC analysis. Panel (a): isolated RFI feature; panel (b): when noise is added, a part
of the feature becomes undetectable; panel (c): flagged with the SumThreshold method; panel
(d): with SIR operator applied, parameter η = 0.2.
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of all the samples that are in an interval [Y 1, Y 2), in which the ratio of samples in the input X
is greater or equal than (1 − η). Parameter η represents the aggressiveness of the method: with
η = 0, no additional samples are flagged and ρ(X) = X . On the other hand, η = 1 implies all
samples will be flagged. Figure 2.15 shows an example of a simulated Gaussian broadband RFI
feature, and the input and output of the SIR-operator.

Accepted sample Flagged sample Horizontal
operator

Vertical
operator

Both

(a) Input (b) Union

(c) Horizontal
first

(d) Vertical first

Figure 2.16: Example outputs of the SIR operator in which the one-dimensional output has been
combined in three different ways. Panel (a) is the input, panel (b) shows the result of performing a
union on the outputs of both directions, and in panels (c) and (d), the SIR operator was first applied
in, respectively, the horizontal and vertical direction. Parameter η was 0.5 in this example.

The one-dimensional outputs can be remapped to the original two-dimensional domain in
various ways. A simple and useful way is to perform a logical union of Θ′t = ρ(Θt) and Φ′ν =
ρ(Φν), the flags on respectively the time and frequency outputs:

F ′ =

(⋃
t

Θ′t

)
∪

(⋃
ν

Φ′ν

)
. (2.23)

An alternative is to initially apply the SIR operator only in one direction, i.e., on the sets that
correspond with either the time or frequency direction, and subsequently applying the SIR opera-
tor on the outputs of the first in the other direction. The latter is more aggressive than the former.
The result also depends on which direction is processed first. The difference is demonstrated in
Fig. 2.16, and an example of how that would work out on actual data is given in Fig. 2.17. Option-
ally, the operator can be applied in frequency and time directions with different η, if one suspects
that RFI acts differently in either direction.
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(a) Original data
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Figure 2.17: Example of the SIR operator applied on a LOFAR observation, displaying five differ-
ent methods to make the SIR operator two-dimensional. The visibilities shown are from baseline
CS003 × CS007 of a LOFAR low-band-antenna (LBA) observation with 3s × 0.8 kHz resolution.
This observation part was selected as an example because it has a two-dimensional RFI structure.
Such RFI is less common, hence this is not a typical case. With the exception of the intersection,
there is no difference between the different methods on the thin lines below 32.1 MHz. Applying
the operator sequentially (panels d, e and f) is more aggressive for the two-dimensional struc-
tures, as it will flag samples that have diagonal neighbours that are flagged. Intersecting the two
methods (panel b) will only flag concave samples. Pink is pre-flagged by the SumThreshold
method, yellow is added by the SIR operator. A value of η = 0.2 was used in this example.
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Properties & parameters

Consider the case in Equation (2.22) when a subsequence of arbitrary length is flagged. Since
the fraction of flagged samples within the subsequence is explicitly used to define its output, the
operator is scale invariant. Formally, an operator ρ is scale invariant if and only if ρ(λX) =
λρ(X), i.e., scaling the input X with λ followed by ρ is equal to scaling the output ρ(X) with λ.
We will now give a formal proof of the scale invariance of the SIR operator.

Proof. With ρ the SIR operator, we will scale the input X with factor λ. If λ = 0 we trivially
have that ρ(λX) = λρ(X). Also, if ρ(λX) = λρ(X) for λ > 0, it is not difficult to see that we
also have ρ(−λX) = −λρ(X), as mirroring the input will mirror the output. Therefore, assume
without loss of generality that λ > 0. Now, substituting X with λX in Equation (2.22) results in

ρ(λX) =
⋃
{[Y 1, Y 2) |

# (λX ∩ [Y 1, Y 2)) ≥ (1− η)(Y 2− Y 1)} .

By using Z1=Y1/λ and Z2=Y2/λ, this can be rewritten to

ρ(λX) =
⋃
{[λZ1, λZ2) |

# (λX ∩ [λZ1, λZ2)) ≥ (1− η)(λZ2− λZ1)} .

If we assume continuous positions, both the left side and the right side of the comparison can be
scaled by 1/λ:

ρ(λX) =
⋃
{[λZ1, λZ2) |

# (X ∩ [Z1, Z2)) ≥ (1− η)(Z2− Z1)} ,

and by using [λZ1, λZ2) = λ[Z1, Z2) and the definition in Equation (2.22), this is equivalent to
ρ(λX) = λρ(X).

Because the time and frequency dimensions are obviously discrete and finite when applied on
radio observations, in practice the scale invariance is limited by the resolution and size of the data.

The aggressiveness of the SIR operator can be controlled with the η parameter, which can be
chosen differently for the time and frequency directions. Because the method is scale invariant, the
choice of η can be made independent of the time and frequency resolutions of the input. The de-
fault η parameter in the LOFAR pipeline is currently η = 0.2 and is equal in both directions. This
value has been determined by tweaking of the parameter and data inspection, e.g. by looking at the
resulting time-frequency diagram and projections of the data variances. The results were checked
for many observations. Higher values seem to remove too much data without much benefit, while
some RFI is left undetected with lower values. The value works well for various telescopes and
on different time and frequency resolutions. We will evaluate this setting in Section 2.4.2.

Since most telescopes observe with two linear or circular polarized feeds, RFI detection can
consider each cross-correlated polarization individually, and the operator can be applied on each
produced mask independently. However, the flag masks are often kept equal between the different
cross-correlated polarizations, because calibration might become unstable when, for a particular
sample, part of the polarization information is missing. Moreover, if one of the polarization feeds
of the telescope has been affected by RFI, it is likely that the others also have been affected. For
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these reasons, the approach taken in the LOFAR pipeline is to use the SumThreshold method
on all cross-correlated polarizations (XX, XY, YX and YY) individually, then flag any sample for
which at least one cross-correlation has been flagged, and finally apply the SIR operator once on
the combined mask.

The algorithm

A straightforward implementation of the operator in Equation (2.22) is to test each possible con-
tiguous subsequence. In this case, ifN is the number of samples in the sequence Θt or Φν ,O(N2)
sums of subsequences have to be tested. Since the sums of all subsets can also be constructed
in quadratic time complexity, the total time complexity of a straightforward implementation is
O(N2). We will now show an algorithm that solves the problem with linear time complexity. The
algorithm is somewhat similar to the maximum contiguous subsequence sum algorithm.

Listing 1: Linear time complexity algorithm for the scale-invariant rank operator

function ScaleInvariantRankOperator

Input:
N : Size
Ω : Input array of size N

(Ω[i] = 1 =⇒ i is flagged,
Ω[i] = 0 otherwise)

η : Aggressiveness parameter
Output:

Ω′ : Output flag array of size N

1:begin
// Initialize Ψ

2: for x = 0 . . . N − 1 do Ψ[x] ← η - 1 + Ω[x]

// Construct an array M such that:
// M(x) =

∑
j ∈ {0 . . . x− 1}: Ψ[j]

3: M[0]← 0
4: for x = 0 . . . N − 1 do M[x+ 1] ← M[x] + Ψ[x]

// Construct array P such that:
// M[P[x]] = min M[j]: 0 ≤ j ≤ x

5: P[0]← 0
6: for x = 1 . . . N − 1 do
7: P[x]← P[x− 1]
8: if M[P[x]] > M[x] then P[x]← x
9: end for

// Construct array Q such that:
// M[Q[x]] = max M[j]: x < j < N

10: Q[N − 1]← N
11: for x = N − 2 . . . 0 do
12: Q[x]← Q[x+ 1]
13: if M[Q[x]] < M[x+ 1] then Q[x]← x+ 1
14: end for
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// Flag sample x if M[Q[x]] − M[P[x]] ≥ 0
15: for x = 0 . . . N − 1 do
16: if M[Q[x]]-M[P[x]]≥ 0 then
17: Ω′[x]← 1
18: else
19: Ω′[x]← 0
20: end if
21: end for

22: return Ω′;
23:end

Listing 1 shows a direct algorithm to solve the SIR operator problem.

Proof. Using the definition of Ω(x) and Ω′(x), such that 1 indicates that x is flagged and 0 that it
is not, we can rewrite Equation (2.22) as

Ω′(x) =


1 if ∃Y1 ≤ x, Y2 > x, such that

Y2−1∑
y=Y1

Ω(y) ≥ (1− η)(Y2 − Y1)

0 otherwise.

(2.24)

In line 2, the array Ψ(y) is initialized such that Ψ(y) = η in case y is flagged, and Ψ(y) = η − 1
otherwise. Equation (2.24) can now be rewritten to the following test:

Ω′(x) =

1 if ∃Y1 ≤ x, ∃Y2 > x :
Y2−1∑
y=Y1

Ψ(y) ≥ 0

0 otherwise.
(2.25)

Line 3-4 initialize M(x) for 0 ≤ x ≤ N to

M(x) =
x−1∑
j=0

Ψ(j),

so that Equation (2.25) can be rewritten as

Ω′(x) =


1 if ∃Y1 ≤ x, ∃Y2 > x :

M(Y2)−M(Y1) ≥ 0
0 otherwise.

(2.26)

Because we are only interested in Ω′(x) in the range 0 ≤ x < N , we can limit the search
for Y1 and Y2 to 0 ≤ Y1 ≤ x < Y2 ≤ N . There exists Y1 and Y2 in this range such that
M(Y2)−M(Y1) ≥ 0, if and only if

max
y:x<y≤N

M(y)− min
y:0≤y≤x

M(y) ≥ 0.
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Lines 5-14 make sure that P and Q are initialized for 0 ≤ x < N , such that

P (x) = argmin
y∈0...x

M(y),

Q(x) = argmax
y∈x+1...N

M(y).

Finally, this allows Equation (2.26) to be rewritten as

Ω′(x) =

{
1 if M(Q(x))−M(P (x)) ≥ 0
0 otherwise,

(2.27)

which is performed and returned in lines 15-23.

The algorithm is Θ(N), and performs 3N additions or subtractions and 3N − 2 comparisons
on floating point numbers. The algorithm uses the temporary arrays Ψ, M , P and Q, each of size
N , with the exception of M which is of size N + 1. Array Ψ can be optimized away and the
input Ω can be reused for output by assigning directly to it in lines 17 and 19. The total amount
of temporary storage required is thus about N floating point values and 2N index values, thus
O(N). When the function is applied on a two-dimensional image, as in the case of RFI detection,
the temporary storage is negligible, as the number of processed slices is usually much larger than
one or two. If η is expressed as a ratio of two integer values, it is possible to scale all values and
only use integer math.

The algorithm has been implemented in C++ and takes around 40 lines of code6.
Because the problem is somewhat similar to the maximum contiguous subsequence sum

(Bentley, 1984) and the all maximal contiguous subsequence sum problems, it might be possi-
ble to parallelize the algorithm by similar means, e.g. as in Alves et al. (2005). Moreover, parallel
algorithms exist for the prefix sum/min/max calculations. For the specific application of RFI de-
tection for LOFAR, the pipeline has already been maximally parallelized by flagging different
baselines and/or sub-bands concurrently. Unlike parallelizing on the algorithm level, this requires
no communication between the different processes.

2.4.2 Analysis & results
In the following sections, the performance and the accuracy will be analyzed.

Performance

Figure 2.18 displays the performance of the C++ implementations and compares the linear algo-
rithm with the approximate O(N logN) algorithm and the full quadratic algorithm. The mea-
surements have been performed on a regular desktop with a 3.07 GHz Intel Core i7 CPU, using
only one of its cores. The time complexities of the three algorithms for increasing N behave as
expected. The linear algorithm is faster in all cases, even for small N . The O(N logN) time
complexity algorithm is more than one order of magnitude slower at both small and large N . The
linear algorithm has been executed with different values for η. Except for some slight variations
— especially for η = 0 — the algorithm’s speed is independent of η.

6The implementation is part of the AOFlagger and can be downloaded from http://www.astro.rug.nl/
rfi-software.

http://www.astro.rug.nl/rfi-software
http://www.astro.rug.nl/rfi-software
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Figure 2.18: Computation time versus input size with the different algorithms and fixed η = 0.2.
The average over 1000 runs was taken for each different configuration.

In the LOFAR pipeline, it takes 3.8 seconds to process a single sub-band for a single baseline,
assuming 100,000 time steps and 256 channels (which is common). Of these 3.8 seconds, only 49
milliseconds (1.3%) are spent applying the SIR operator. In common applications, an observation
contains on the order of a 1,000 baselines and 250 sub-bands. The pipeline is heavily parallelized
by concurrently flagging baselines over multiple cores and sub-bands over multiple cluster nodes.
In this case, the pipeline’s performance is dominated by disk access, and the relative contribution
of the SIR operator is even smaller.

Accuracy analysis

The performance of the SIR operator was tested by using receiver operating characteristics (ROC)
analysis. To do so, a ground truth needs to be available, which can only be accurately acquired in
a simulated environment. As discussed previously, a very large fraction of RFI is line-like. The
samples on such a line are not uniform due to intrinsic effects or instrumental gain variations.
Therefore, we have used simulations of four line-shaped RFI features as displayed in Fig. 2.19:
(a) a single Gaussian that reaches its 3σ point at both borders and is 1 in the centre; (b) three
periods of a sinusoidal function which is scaled between zero and one; (c) the Gaussian feature,
but slanted by 1/50 fraction; and (d) a burst-like signal in which the amplitude levels are drawn
from a Rayleigh distribution with mode σ = 0.6. All features are three samples wide. Complex
Gaussian distributed noise with σ = 1 was added to the image, such that the amplitudes are
Rayleigh distributed. The created two dimensional image of size 180 × 1024 was subsequently
flagged by the SumThreshold method with settings as in the LOFAR AOFlagger pipeline, and
the created flag mask was used as input.

To estimate the performances, the true and false positives ratios (TP and FP ratios respec-
tively) were calculated after detection. We created a fuzzy ground truth mask in which a value
of one corresponds with maximal RFI, zero corresponds with samples not contaminated by RFI,
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Figure 2.19: The features used for the accuracy analysis. Panel (a): Feature with Gaussian slope;
panel (b): Sinusoidal feature; panel (c): Slanted feature with Gaussian slope; panel (d): Burst
feature with samples drawn from a Rayleigh distribution.
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Figure 2.20: Analysis of the receiver operating characteristics of the SIR operator and a standard
dilation on simulated data. Marks (a)–(d) correspond with the features shown in Fig. 2.19, re-
spectively a Gaussian broadband feature, a sinusoidal feature, a slightly slanted Gaussian feature
and a burst-like feature. The shadowed areas show 1σ levels over 100 runs.

and values in between correspond with lower levels of RFI contamination. Fig. 2.15(a) shows for
example the ground-truth mask of the Gaussian feature. Given a sample with ground truth value
β, if the corresponding sample was flagged by the method, it would be counted with ratio β as a
true positive and 1−β as a false positive. The total TP and FP ratios are the sum of all the TP and
FP values, divided by the total sum of positives and negatives in the test set, respectively.

The SIR operator and a standard morphological dilation have been applied in the direction of
the feature, i.e., vertical/frequency direction. The true and false positives were varied by changing
the parameter η or the dilation size for respectively the SIR operator and the dilation. Different
runs gave slightly different results because of the introduced Gaussian noise, hence the simulation
was repeated 100 times and the results were averaged.

Figure 2.20 shows the average results. The shadowed areas in panels (b) and (c) show the
standard deviation over the 100 runs. In the case of the Gaussian RFI feature, the SumThresh-



54 Detection of Radio-Frequency Interference

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

V
is

ib
ili

ty
 (

Jy
)

115.6

115.8

116

116.2

116.4

116.6

116.8

117

117.2

117.4

117.6

117.8

Fr
e
q
u
e
n
cy

 (
M

H
z)

8:15 8:20 8:25
Time

(a) Horizontal SIR operator
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(b) Vertical SIR operator
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(c) SIR operator in both directions
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(d) Horizontal dilation
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(e) Vertical dilation
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(f) Dilation with a square kernel

Figure 2.21: Gray-scale plots showing examples of the effectiveness of two morphological tech-
niques on the data from Fig. 2.14. The pink samples have been set by the SumThreshold
algorithm and the yellow samples have additionally been detected with the morphological tech-
niques. Panels a–c show results of the SIR operator with η = 0.2 in the time direction and/or
η = 0.3 in frequency direction. Panels d–f show an ordinary dilation with a horizontal kernel of
five pixels and/or a vertical kernel of three pixels.
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old pre-detection removes on average 91.3% RFI power, while simultaneously falsely flagging
a ratio of 0.38%. Hence, if the methods do not flag any additional samples, they have a TP/FP
ratio of 91.3%/0.38%, and this is therefore the start of both ROC curves for this RFI feature. With
η = 0.48, the SIR operator flags all the RFI features with 100% TP with a FP ratio of 1.36%, with
the exception of the slanted feature. The SumThreshold pre-detection, dilation and SIR-operator
work less well on the slanted feature, and fail to detect it with 100% even at very high sensitivity.
The dilation operator needs a size of 32.8% of the height of the image to detect the vertical RFI
features. Since it will dilate any falsely detected input sample equally, its FP ratio is 46% with this
setting. Changing the signal-to-noise ratio (SNR) of the features changes the scaling of the ROC
curves, but the relative difference between the two methods remains the same.

Given the various types of RFI, Fig. 2.20 shows that (I) the SIR operator is extremely accurate,
by detecting all previously undetected samples with only a very slight increase in false positives;
(II) the SIR operator is superior to the dilation in all tested situations; and (III) a setting of η ∼ 0.2–
0.4 seems to be a good compromise between FP and TP ratios.

These tests have been performed by applying the operators in one dimension. When applied in
two dimensions by using the output of the first dimension as input for the second, the comparison
between the dilation and the SIR operator will diverge even more, because the false positives
created by the first dimension will be multiplied by the repeated application towards the second
dimension. An example of a two-dimensional application is shown in Fig. 2.21. Certain RFI
sources create more complex shapes in the time-frequency domain, and contaminate larger non-
line like areas. These RFI sources cause higher values in the output of the Gaussian smoothing,
which is commonly part of the earlier RFI detection stage, and consequently some of the lower
RFI levels of the RFI feature are not flagged. We have seen that the SIR operator will work very
well on such features, because it fills the feature and slightly extends the flags in all directions.

It should be noted that one of the assumptions made for the SIR operator to improve detection
accuracy, is that parts of the RFI features are not detectable by amplitude thresholding. In practice,
however, a small subset of received RFI sources does contribute to an observation with sufficient
strength to detect the entire feature with amplitude thresholding. Such transmitters are the worst-
case situation for the SIR operator, as the operator will enlarge the flag mask relative to its length,
but any samples it flags extra are false positives. Note that it is not useful to perform ROC analysis
of such a situation, as the true positives will be constant. The number of false positives can easily
be calculated, and scales linearly with η and the duration of the transmitter. For example, when
applying the SIR operator with η = 0.2 on a strong RFI transmitter that occupies ten minutes of
data in one channel, the operator will falsely flag two minutes of the channel before and after it.
An example of a band that contains intermittent transmitters is the air traffic communication band
of 118–137 MHz. Nevertheless, while some of these transmitters are indeed strong, e.g., when
they fly through a beam sidelobe, there are also many transmitters at this frequency that are too
weakly received to be detected all of the time. Consequently, some of them are only partially
detected with amplitude thresholding. This is why we expect better results using the SIR operator
even in these bands, compared to using a dilation.

Figure 2.22 shows a WSRT example that contains many different RFI kinds. The initial Sum-
Threshold method detects the RFI quite accurately, but it leaves some parts of the last 1.5
hours unflagged. This is solved by the SIR operator, although, because of the sudden start of the
RFI, it falsely flags about 20 minutes of data before the start of the RFI. The strong RFI produced
by the sporadic transmitter around 140 MHz is flagged by the SumThreshold method, but in
this case it is likely that these channels have been occupied all of the time. Therefore, the SIR
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(a) Original data
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(b) Flagged with SumThreshold (pink) followed by the SIR
operator (yellow)

Figure 2.22: An interesting but uncommon WSRT case: part of a baseline of an observation at
140 MHz that suffered unusually strong broadband RFI during the last 1.5 hrs. It also contains
many different kinds of transmitters that mostly occupy constant channels. The vertical stripes
are fringes of celestial sources, hence contain the information of interest. The image shown is
2000× 250 samples in size.
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operator gives the desired result by increasing the flags in those channels. All in all, the baseline
might be somewhat overflagged. Nevertheless, it does allow further data reduction without manual
intervention, and without thresholding part of the noise. Moreover, this case is exceptional, and
the sudden start of very strong broadband RFI is (fortunately) seldomly seen, while the sporadic
transmitters such as the one at 140 MHz are seen very often.

A final remark on the ROC analysis performed here is that the given absolute true/false positive
ratios are not an accurate representation of actual RFI detection, because our two models are very
simplistic and based on the assumption that RFI behaves in a well defined manner. Establishing
absolute true/false positive ratios would require a detailed statistical model of the behaviour of
RFI. A realistic estimate for the number of samples occupied by RFI with LOFAR is in the order
of a few percent (Offringa and de Bruyn, 2011).

2.4.3 Conclusions and discussion
From panel 2.20(a) it is clear that the SIR operator is much more suitable to detect the tested
kinds of RFI than an ordinary morphological dilation. A value of η = 0.2 was determined by
tweaking and validating the results to be a reasonable setting for the LOFAR RFI pipeline, and
has been used in the default LOFAR pipeline for over a year. Panel 2.20(b) shows that this value
of η agrees approximately with what is found in the simulations: at η = 0.2, the vertical features
have almost been completely detected by the SIR operator (Gaussian: 98.9%, a 7.6% increase,
sinusoidal: 99.9%, 5.8% increase, burst: 100%, 6.7% increase) with a minor increase in the false
positive ratio (Gaussian: 0.69%, an 0.31% increase, sinusoidal: 0.95%, 0.42% increase, burst:
1.3%, 0.08% increase). The slanted feature is not as accurately detected (86%, 6.1% increase),
but the method does enhance the detection. It is hard to give a similar optimal value for the dilation
operation, since the false positives scale linearly with the size of the dilation kernel. Therefore, it
depends on what is an acceptable loss in terms of the false positives.

In the case of simulated Gaussian broadband features, only 8.7% of the RFI power was not de-
tected by the SumThreshold method. For the sinusoidal and burst features, the SumThresh-
old method performs even better. Therefore, the total benefit of the SIR operator might seem
small. However, we think that there are strong reasons to use the method:

• The added false positives are almost negligible, and the chances of biasing your data are
much smaller compared to using amplitude thresholding exclusively. For example, thresh-
olding biases the final distribution of uncorrelated white noise, while morphologically ex-
tending a flag mask does not. For these reasons, it is preferable to use morphology to find
the final few RFI samples, compared to lowering the threshold.

• The method is extremely fast and simple, and its processing time is almost negligible in a
full RFI pipeline.

• We have seen situations in which even the low ratio of false negatives that are leaked through
an amplitude-based RFI detection pipeline can cause calibration to fail. Empirically, we
have seen an improvement of the calibratability of LOFAR observations by using the mor-
phological method.

Section 2.4.2 describes that strong intermittent (on ∼minute scale) RFI transmitters are prob-
ably the worst case for the SIR operator, as in these cases the application of the operator with
η = 0.2 could in theory yield 40% false positives. However, because of LOFAR’s high resolution,
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in combination with the SumThreshold’s unprecedented detection accuracy, the total percent-
age of flagged data in the case of LOFAR is only a few percent. This implies that even if a large
ratio of these were strong intermittent transmitters – which is unlikely – the benefits of not having
to manually consider data quality in cases where the technique does help, probably outweigh the
∼1% added false positives. If it turns out that some bands do have mostly strong transient trans-
mitters, the η parameter could become a function of frequency. At the moment, application of the
SIR operator seems to be helpful at any frequency.

In this paper we have assumed scale-invariant behaviour for RFI. In reality this might not
be entirely accurate, so instead of using a threshold that grows linearly with the scale, as in our
definition of the SIR operator, it might be better to have a threshold that depends on the scale
in a non-linear fashion. Also, when looking at the problem from a statistical point of view, RFI
might not be equally likely to occur on all scales. For example, RFI might be less likely to
occur on a scale of days than on a scale of seconds. When it does occur on large scales, it
is doubtful that we actually need to extend the detected intervals in a scale-invariant manner,
because the signal would likely already be detected at a smaller scales and gaps would likely be
filled. Such considerations would suggest that it might be better to have a threshold that grows less
than linearly for large scales. Better RFI statistics and RFI modelling might provide the required
information for assessing such considerations.

Several options are available to apply the SIR operator on a two-dimensional input. As shown
in Fig. 2.17, the intersection of the results in both directions does not extend line RFI, thus is not
useful in this context. A union does extend such RFI, but does not extend the flags diagonally.
Processing the directions sequentially might therefore be beneficial for RFI that has structure in
both frequency and time, as this kind of RFI does likely also slightly contribute in the diagonal
direction. The difference between processing time first, frequency first or taking the union of
both, is small. Taking the union overcomes the somewhat arbitrary decision of which direction
to process first. In the case of LOFAR, we decided to only perform filtering time first, because
taking the union of both time and frequency first is more expensive.

Morphology can be used in several image processing tasks, for example in feature detection.
Often, generic morphological operations need to be applied on different resolutions. In such cases,
the scale-invariant operation to extend binary masks as presented here might be generally useful.

So far, we have considered combinations of one-dimensional application of the SIR oper-
ator in order to use it for our two-dimensional application in the time-frequency domain. For
this application, but also for more generic applications, it might be interesting to consider a true
two-dimensional version of the SIR operator. While the one-dimensional operator selects all sub-
sequences (lines) with a ratio ≥ η of flagged values, a two-dimensional operator would select all
rectangles that have a ratio ≥ η of flagged values. It is however likely that such an operator can
not be implemented with a linear time complexity, which makes it less attractive for the large data
rate of LOFAR.

We have shown that even slightly slanted features are harder to detect accurately. Fortunately,
in the case of LOFAR, such features are very rare. If the features to be detected have a known
orientation that is not parallel to one of the axes, it might be an option to apply the operator in the
direction of the features. While a trivial implementation can apply the operator along fixed lines,
some work might be necessary to maintain translation invariance (Soille and Talbot, 2001).



Chapter 3
The LOFAR RFI pipeline

Based on:
“A LOFAR RFI detection pipeline and its first results”

(Offringa et al., 2010, Proc. of RFI2010)
“Interference detection results with LOFAR”

(Offringa and de Bruyn, 2011, Proc. of URSI General Assembly 2011)

MANUAL flagging by the data reducing astronomer used to be sufficient for dealing with
RFI. However, because of the major increase in resolution and bandwidth of modern
observatories, such as LOFAR, the GMRT, the EVLA and the MWA, that generate
observations of tens of terabytes, this is no longer feasible. The tendency is therefore

to implement automated RFI flagging pipelines in the observatory’s pipeline. Examples of these
are the RFI mitigation pipeline used for the Effelsberg Bonn HI Survey (Flöer et al., 2010) and
the AOFlagger pipeline (Offringa et al., 2010b).

The LOFAR imaging pipeline (Heald et al., 2010) consists of automated steps to (1) flag
interference contaminated data; (2) reduce the size of the observation by averaging in time or
frequency; (3) calibrate the data; (4) deconvolve the data data with the point spread function; and
(5) image the observation. Since flagging is the first step after correlation, flagging is normally
performed on the highest resolution, and its performance is an important issue. Moreover, the
pipeline needs to be robust and accurate.

One of the LOFAR key science project depending on a robust and accurate pipeline is the
LOFAR epoch of reionization (EoR) project (Labropoulos, 2010; Jelić, 2010), a very ambitious
project with high demands on calibration, sensitivity and noise behaviour. At the time of writing,
the first EoR LOFAR data has been acquired (de Bruyn et al., 2011) and will be be used to test the
EoR pipeline. Because this project observes the same fields in the sky repeatedly, it simultaneously
allows effective analyses of the radio environment and its variability.

In this chapter we will explain how the automated LOFAR pipeline is formed from the methods
discussed in Chapter 2.
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Figure 3.1: Overview of the RFI flagging strategy

3.1 Input data

For LOFAR, a typical resolution is one second time integration and 0.8 kHz frequency resolution.
LOFAR can observe in two bands: the 10-80 MHz low band and the 110-240 MHz high band,
which are observed by physically different antennae. It allows observing of 48 MHz of bandwidth
concurrently. This bandwidth is currently limited by the transfer of the data from stations to cor-
relator. At a later time, LOFAR will allow different quantization modes on station level, allowing
even higher bandwidths. The 48 MHz is split into 244 sub-bands of 256 channels. Therefore, in
this common mode of operation, the total output of the correlator when using 50 stations is 244
sub-bands × 256 channels × 4 polarizations × 1 Hz ×

(
1
2 × 51× 50

)
baselines ≈ 319 million

visibilities per second. Since a visibility consists of a real and imaginary floating point number
of four bytes each, the total output rate of the correlator can reach 2.5 GiB/s. Although the data
processing will be done on large off-line clusters, this data rate imposes high constraints on the
efficiency of the flagger.

The flagger is executed on the amplitude information of one polarization of a single sub-
band of a baseline. If speed is essential, the algorithm can be executed once on the Stokes-I
values. Otherwise, if accuracy is more important than speed, the algorithm can be executed on the
individual XX and YY or LL and RR polarizations, or on all polarizations individually. We do
see some RFI that manifests in only one of the polarizations, or rotates through the polarizations,
and some advantage is therefore seen when flagging all polarizations individually.

3.2 Processing steps

An overview of the flow of execution is given in Figure 3.1. We will describe each step in the
following subsections.
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3.2.1 Iterative approach

A part of the pipeline is iterated a few times, depicted in Figure 3.1 by the “Continue iterating”
block. This is necessary for finding low-level RFI, as will be explained in the thresholding para-
graph, §3.2.2. Iterations, however, are costly in terms of speed, and should be kept to a minimum.
To do so, the fit should converge quickly. We do this by entirely ignoring channels and time
steps in the first surface fit that superficially look bad, yet might only have been partially uncon-
taminated. The extra information that might have been added if the uncontaminated part of the
channel or time step was added does not change the fit much, and therefore is not slowing down
the convergence.

It was determined that performing the fit two times is enough for a stable, accurate fit. This
is true for all data that was tested, in special for both WSRT and LOFAR data, and for both clean
bands and strongly contaminated bands.

3.2.2 The SumThreshold method

The SumThreshold method detects series of samples with higher values than expected. In the
previous study of Offringa et al. (2010a), the SumThreshold was introduced and was shown
to produce the highest accuracy of current post-correlation RFI detection algorithms. We refer to
§2.2.6 for detailed information about the SumThreshold method.

SumThreshold is performed in each iteration once, before the surface fit, in order to ignore
RFI when fitting. It is performed one last time when the surface fit is expected to have been
converged, to establish the actual flags. To increase the stability of the strategy, the sensitivity of
the SumThreshold method starts low, i.e., it finds only the strongest RFI, and is exponentially
increased each time it is executed.

3.2.3 Channel and time selection

After SumThreshold has found the contaminated samples, we observe especially after the first
iteration, that some channels and time scans have not been flagged, even though they are mostly
contaminated. As explained in §3.2.1, this might slow down convergence, which is why a second
step was implemented in order to completely — hence inaccurately and quickly — flag these
channels and time steps before smoothing.

In order to detect problematic channels and time steps, the values are compared based on their
root mean square (RMS) values. The RMS series are Gaussian smoothed and if the difference ex-
ceeds 3.5 times the standard deviation of the sequence of differences, they are flagged completely.
Optionally, this selection can be executed again as the last step in the algorithm.

3.2.4 Smoothing / sharpening

The signal of interest is assumed to be smooth, and a sharpening operation is executed to sub-
tract fringes caused by strong sources. This is done to increase the accuracy. Several sharpening
strategies and surface fitting methods have been tested, and all sliding window methods show
similarly good results in terms of accuracy. In non-sliding window approaches such as the tiled
dimensional-independent polynomial fit described in Winkel et al. (2006), we have observed in-
stability near the borders of the fixed windows.
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A Gaussian kernel was found to produce the best average between speed, accuracy and sta-
bility. Because the signal is estimated and subtracted by convolution with a Gaussian kernel, this
is essentially a Gaussian high-pass filter. The accuracy is not significantly different from other
sliding window fitting strategies, such as a dimensional-independent polynomial fit applied on a
sliding window.

Since the fit is, relative to the other operations, a time-consuming operation, the input time-
frequency matrix is rescaled before fitting. The time dimension and frequency dimensions are
three times reduced before fitting, and the fitted Gaussians are interpolated to restore the original
scale. No significant change in accuracy was observed, which underlines that the quality of the fit
is, up to some point, not a crucial aspect of accurate detection.

We have implemented the Gaussian filter with a direct convolution of a truncated inverted
Gaussian. Because the width of the Gaussian is in our case generally small — the σ parameter
is on the order of 5–10 samples — a direct convolution is faster than a multiplication in the
Fourier domain. A recursive Gaussian filter can however increase the performance somewhat.
Two different methods for designing recursive Gaussian filters are described by Deriche (1992)
and van Vliet et al. (1998). While the direct convolution with a finite impulse response filter is
faster for Gaussians with σ < 3, for the ranges 3 ≤ σ < 32 and 32 ≤ σ, the recursive filters of
Deriche and van Vliet are recommended respectively (Halen, 2006).

3.2.5 The scale-invariant rank operator

It may be desirable to flag samples that are up to a few channels away from strong, continuous
RFI. Thresholding does not flag these samples, if they are not significantly different in amplitude.
Likewise, it may be desirable to flag more of a partially flagged channel, because a continuous
transmitter might be recorded at different amplitudes, either because of different propagation of
the signal, because of the transmitter moving in respect with the beam or because of a transmitter’s
intrinsically changing strength, and this might cause the received RFI not to trigger the threshold
in some samples. To overcome this problem, we enlarge the flag mask after the apparent RFI has
been flagged by the iterative procedure.

A typical approach in this problem is to perform a morphological dilation operation on the
flag mask. For example, a dilation with a square mask of size N × N would enlarge each flag
to a square of N × N . Every sample, that has an orthogonal distance smaller than N samples
from a flagged sample, would be flagged in this case. Although this technique is advantageous
for its simplicity and establishment in the field of mathematical morphology, using this technique
for the described purpose has the disadvantage of being inaccurate: it will typically flag too many
samples when only a few samples are flagged in some area, while too few samples will be flagged
when a channel or time step is almost completely flagged.

To correct for these problems, we have used the morphological scale-invariant rank (SIR)
operator which mask size is related to the one dimensional flag density: the dilation mask is larger
in dense areas and smaller in sparse areas, in respect to either the one dimensional time domain or
frequency domain.

Consider an orthogonal slice Ωd(x) through the flag mask as defined in §3.2.2. The following
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(a) Time-frequency plot without the SIR operator

(b) Time-frequency plot after the SIR operator

Figure 3.2: The result of the SIR operator with η = 0.1: the flags in panel (a) are established
by the SumThreshold method and dilated based on the flag density. The result is shown in
panel (b). Noticeable differences are the small gaps in orthogonal lines that have been filled by
the dilation, such as the area within the red ellipse. While this diagram displays over 6000 time
steps, the algorithm also fills many invisible small holes: its behaviour is scale invariant.

decision rule is introduced:

Ω′d(x) =

0 if ∃Y1 ≤ x, ∃Y2 > x :
Y2−1∑
y=Y1

Ωd(y) ≤ η (Y2 − Y1)

1 otherwise,
(3.1)

where η ∈ [0, 1] is the density ratio threshold. In words, this rule flags the samples that are in
any constructable area [Y1;Y2〉 with an unflagged sample ratio less or equal than η. Specifically,
Ω′(x) = 0 for all x if η = 1, while Ω′(x) = Ω(x) for η = 0. Furthermore, since any element x
with Ω(x) = 0 will be in the single element area containing only itself, Ω(x) = 0 =⇒ Ω′(x) =
0. Consequently, the number of flags is increasing. Although a strict implementation of (3.1) will
take O

(
n2
)

operations for n samples in the orthogonal slice Ωd(x), by putting extra constraints
on Y1 and Y2, an O (n log n) implementation is possible without much loss of its accuracy. After
having used theO (n log n) implementation for half a year, an exact and fast algorithm was found
with O (n) time complexity (Offringa et al., 2012b), as described in Section 2.4. This was used
thereafter. The remainder of this chapter assumes the O (n log n) algorithm is used. Figure 3.2
shows the result of the operator on actual data.
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Table 3.1: Computational requirements of the RFI pipeline

Step F/smp1 Count Total F/smp1

Calculating amplitudes 4 1 4
SumThreshold 20 3 60
Time/frequency selection 2 3 6
Change resolution 4 2 8
Surface fit 50 2 100
SIR operator (O(N logN) version) 1002 1 100
Total 278

3.3 Computational requirements
Table 3.1 shows an estimate of the required floating point operations per sample for each individ-
ual step. The total number of operations required is on the order of 300 floating point operations
(FLOP) per sample. In a typical full LOFAR observation, the correlator will output 4 polar-
izations × 256 channels/sub-band × 248 sub-bands × 502

2 baselines × 1 sample/second ≈ 0.3
gigasamples per second, yielding a computational requirement of ∼0.1 TFLOP/s in the best flag-
ging mode.

Although this is only a small fraction of the required computations for correlation, some sim-
plifications can be made to lower the computational requirements. Techniques to improve the
computational performance include: flagging on Stokes-I values; using a larger resizing factor be-
fore fitting; using a smaller window size; and determining the cross-correlation flag masks using
auto-correlations.

The LOFAR flagging pipeline will be run on an off-line computing cluster. The flagging
pipeline is parallellized by running each sub-band on a different computational node, and the
flagging of the individual sub-bands is executed by a multi-threaded implementation. Concluding
from the interpolation of the performance of the current implementation of the pipeline, which
achieves processing 27 stations in a quarter of the observing time with its most computational
expensive flagging strategy, real-time performance can be realised in a full 50 station LOFAR.

3.4 Input/output requirements
Processing baseline by baseline in a pipeline has implications for the software architecture of the
observatory: since baselines are correlated simultaneously, the observed visibilities have to be
written to disk before running the RFI pipeline, which is inefficient. After finishing observing, the
flagging pipeline can read the data in the required order. However, flagging is normally followed
by tasks such as calibration and source subtraction. These tasks expect time-sorted data, thereby
requiring a second read of the data in its previously observed order. Since the architecture of
LOFAR allows this flow of processing, and because of the advantages of baseline by baseline
flagging in terms of accuracy and computational speed, the input/output-overhead caused by this

1Floating point operations per sample
2These are actually integer operations, since this step uses the masks.
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deficiency is ignorable. This however might become a serious issue in even larger telescopes such
as the SKA.

3.5 Flagging results
The implementation3 of the algorithm was tested on several LOFAR observations. At the time
of writing, 27 of the approximately 50 total LOFAR stations are ready. Flagging a single sub-
band of a 6 hour observation with the 27 stations takes 90 minutes on a single cluster node. This
implies real-time flagging speed for the full 50 station LOFAR that will produce four times more
data. All RFI that can be found by visual inspection is typically flagged, thereby outperforming
simpler methods such as a median absolute deviating (MAD) thresholding filter in both accuracy
and speed. An example result can be found in Figure 3.3.

3.5.1 The flagging strategy
The AOFlagger is the recommended way of flagging LOFAR data (Pizzo, 2012), because it was
found to be both the most accurate and the fastest flagging algorithm available. Figure 3.4 shows
a comparison between the AOFlagger and the median absolute deviation (MAD) flagger. Many
flaggers implement a method that is similar to the MAD flagger, i.e., a strategy that is based on the
median of a sliding window and single sample thresholds. Examples are the AIPS FLGIT task and
the PIEFLAG program (Middelberg, 2006). An important difference with these and the iterative
AOFlagger algorithm is the combinatorial threshold SumThreshold step of the AOFlagger.

In some cases, the algorithms finds RFI which is invisible by eye on full scale time-frequency
diagrams, but becomes only apparent when zooming in on the data and integrating certain cuts
of the data cube. In the band shown in figure 3.3 an interferer is visible at approximately 156.03
MHz. Although it is visible as a small bump in the time integrated spectrum in Figure 3.3e, it is not
apparent in the time frequency plot of Figure 3.3a. Nevertheless, the algorithm finds the samples
that are contaminated by the interferer, and the particular bump at 156.03 MHz in Figure 3.3e is
flattened.

On the other hand, if an interferer has a smooth time-frequency profile, it will be mistaken
for astronomical data and will not be flagged. In these situations it might help to subtract a rough
model for the celestial signal and increase the flagger’s sensitivity.

3.6 LOFAR RFI environment: preliminary results
LOFAR breaks the tradition of building telescopes in sparsely populated areas, with its core being
installed in the North-East of the Netherlands. Although the core is in a nature reserve, and
therefore in a sparser populated part of the Netherlands, all the stations are relatively close to
farms, roads and some nearby municipalities. Now that LOFAR is half-way ready and performing
representable observations, we can start to evaluate the dynamic radio environment.

The first results of RFI mitigation show several promising characteristics of the LOFAR site.
First of all, hardly any broadband RFI is observed. If observed, it is typically caused by electrical

3The software implementation of the presented RFI pipeline has been made publicly available and can be downloaded
from the following location: http://www.astro.rug.nl/rfi-software/

http://www.astro.rug.nl/rfi-software/
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(a) Time-frequency plot before flagging (b) Time-frequency plot after flagging
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(c) Amplitude plot before flagging
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(d) Amplitude plot after flagging
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Figure 3.3: Flagging results of the 6 hour LOFAR observation L2010 07096 of April 24, 2010.
All plots show the same randomly chosen sub-band around 156 MHz for a 1.5-km baseline
(CS302 HBA1 × CS005 HBA0) with three second integration time. The flagging pipeline was
run with its default settings, and 1.8% of the data is flagged. As can be seen from panels (a),
(c) and (e), this sub-band contains relatively many interfering transmitters, yet all of them are
relatively weak. The panels (b), (d) and (e) show the cleaned band after flagging.
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(a) Result of the AOFlagger

(b) Result of the MAD flagger

Figure 3.4: Comparison of the AOFlagger and the median absolute deviation (MAD) flagger on
a badly contaminated LOFAR sub-band around 172 MHz. The plots show two hours of data. Both
methods have been optimized to flag this particular baseline as accurate as possible. Evidently,
the MAD flagger misses a lot of the RFI. Increasing its sensitivity helps very little, while this would
increase the false positives considerably.
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fences, lightning, power cables, hardware in situ, cars and trains. It can be concluded that the site
is sufficiently remote and hardware on site is sufficiently shielded to prevent these interferences.
Only one of the stations is close to an electrical fence that surrounds a farming meadow, causing
broadband spikes every two or three seconds. The flagging pipeline flags 40% of the data in
this station, and this station is therefore currently not useful. Options include negotiation with
the farmer to switch off the electrical fence during observations or implementing an RFI nulling
method in the station that nulls spikes on a high time resolution.

A second class of interferers are constant transmitters at a fixed frequency, such as FM radio.
The FM range lies between the physically separated low and high bands. Transmitters in this
range are therefore effectively blocked by the bandpass filters. Other constant sources that do
transmit within the observing frequency often occupy only one or a few 0.8-kHz channels, which,
after the pipeline has flagged these transmitters, cause only a minimal amount of data loss. While
many of the sub-bands of 256-channels are completely clean of such constant transmitters, others
have a few of such transmitters, such as the one shown in Figure 3.3.

A third class of interferers are transient sources with variable frequency. These occur mostly at
random and their exact origin is often unknown. Some of these can be caused by moving objects,
such as meteors or aeroplanes, that reflect a distant signal for a short period.

Both the high-band antennae (HBA) and the low-band antennae (LBA) observations of the
EoR project show a very promising radio environment for LOFAR. Considering all classes of
interferers, typical observations with representable stations show only a few percent of data loss
due to interference. We have not encountered problematic RFI in observations after flagging,
which confirms the performance and stability of the flagger.

In some observations it is, at this point, still required to do some manual flagging due to other
reasons than RFI. The most common reasons are issues with a whole station which cause them to
produce erroneous data, e.g., because the station was not tracking correctly. Validating stations
will be performed fully automatic in the future. Some false flagging is seen in short periods of
strong atmospheric scintillation. During such periods, the amplitude can change very rapidly in
time, such that the flagger marks these periods as broadband RFI. This occurs however very rarely
(<1%). Such periods are very interesting to investigate ionospheric phase stability, however these
are unfortunately lost after further averaging, which is done by default to reduce the size of the
observation and make room for further observations. A solution is to change the default flagger
parameters to be insensitive for broadband RFI.

Work is being done on improving calibration, sky models and beam models, which are cur-
rently the limiting factors in getting to high dynamic ranges. The RFI monitoring observations
(Chapter 5 and 6) will provide further knowledge on the spatial distribution of RFI and the differ-
ence between day and night. We might also be able to estimate how much RFI is being missed
by the flagger, and estimate the influence of missed RFI on further data extraction. In the end,
we might be able to inject such artefacts in the EoR testing pipeline, to be able to test our signal
extraction in the presence of RFI.

3.7 Conclusion and discussion

Radio astronomy is entering a new era with futuristic observatories such as LOFAR and the SKA.
In this article we have presented a flagging technique that has shown the ability to operate accu-
rately and efficiently on the LOFAR observations. Therefore, this technique is also a good basis
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for future observatories.
Because the computational costs of the RFI pipeline are only a fraction of the correlation costs,

efficiently ordering the data before presentation to an RFI algorithm is the largest challenge, rather
than optimising the computational costs. The pipeline also stipulates the importance of flexibility
in an observatories’ architecture, which adds freedom to design decisions. The LOFAR archi-
tecture allows more sophisticated variations of interference stratagies that include RFI mitigation
at station level and different pipelines based on the observation mode. With the example of a
complicated pipeline as described in this paper, it can be concluded that other algorithms such
as transient detection and other pattern recognition techniques can be implemented in a similar
manner in the pipeline.

Both the software and hardware of LOFAR are still under construction at the time of writing.
The first observations of LOFAR nevertheless show very good prospects for the telescope, with
only a few percent lost data due to interferers and, highly important, neither broadband nor in situ
interference is commonly seen. The next step in RFI mitigation is to produce and analyse images
on a maximum dynamic range, in order to analyse the effects of possible weak RFI that is unde-
tectable in post-correlated time frequency domains. Prevention of new transmitters remains very
important, and establishment of a radio-quiet zone, especially around the core, is recommended.

In order to improve data quality further, pre-correlation techniques might be added at station
level or during correlation. An interesting improvement to the robustness of a correlator might be
to execute the SumThreshold method prior to correlation. Considering the accuracy gain of
the SumThreshold compared to normal thresholding, and considering the correspondence of
RFI on small and large timescales, implementing this pre-correlation method on the highest time
resolution data might improve blanking accuracy further.
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Chapter 4
Filter techniques

Based on:
“Post-correlation filtering techniques for off-axis source and RFI removal”

(Offringa et al., 2012, MNRAS, 422, 563–580)

FOR SEVERAL decades, it has been a challenge to increase the dynamic range of images
produced by interferometric radio telescopes. The raw sensitivity improvements and

advanced understanding of calibration errors have pushed the limits on the dynamic range
of modern telescopes to unprecedented levels (Smirnov, 2011). The final dynamic range

is constrained by the celestial field being observed, the efficiency of the telescope’s hardware and
the time spent observing. However, this theoretical dynamic range is limited further by imprecise
models of instrumental effects and celestial sources used in the data reduction process, as well as
by the quality of the radio environment.

The noise level in the final result of an observation can be set by several phenomena. In the
ideal case, the noise level equals the thermal sky noise level, and the detection of sources or other
features is limited by this noise level only. An image can also be limited by confusion noise when
it does not provide enough resolution to distinguish sources. Sidelobes provide a third type of
noise. This noise is generated by the point spread function (PSF) of the instrument, that convolves
strong sources that are in or outside the field of interest. Finally, radio-frequency interference
(RFI) can add additional noise to the final result of an observation. In this paper, we will aim
at suppressing noise coming from RFI and sidelobe noise coming from off-axis sources, using
similar techniques based on fringe theory.

4.1 Introduction
Because we address two problems at once, we will introduce both problems individually. In the
following subsection, we will introduce the problem of RFI and describe current techniques to
deal with it. Thereafter, we will introduce the concerns of off-axis sources and approaches to deal
with those as well.

71



72 Filter techniques

4.1.1 Radio-frequency interference

While technical advances gave rise to better telescopes, different technical advances have iron-
ically decreased the quality of the radio environment for radio astronomy. A potential problem
that limits the effective dynamic range of modern telescopes such as LOFAR, the WSRT, the
Giant Metrewave Radio Telescope (GMRT), the Australia Telescope Compact Array (ATCA)
and the EVLA, is radio-frequency interference (RFI). Fortunately, practically all RFI interferes
within a limited amount of time or frequency channels, and can be flagged automatically in post-
correlation. In Offringa et al. (2010a), the SumThreshold algorithm is described and is proven to
be very accurate for that purpose. Further implementation of the method into the LOFAR pipeline
has shown excellent results (Offringa et al., 2010b).

Although reasonably strong temporal and spectral RFI can successfully be removed by flag-
ging, it is not always a satisfactory solution. Sporadic continuous broad-band RFI for example
poses a potential problem, since this type of RFI can not be removed by flagging. Doing so might
affect considerable parts of the observation, potentially throwing away too much of the data.
Athreya (2009) has shown that the GMRT suffers from this type of RFI at low frequencies, for
example caused by high-voltage power lines. Athreya (2009) describes a method to remove this
kind of RFI based on fringe fitting of RFI. This approach has been recently implemented in AIPS1

(Kogan and Owen, 2010). This method will be analysed in §4.2. Most other telescopes do not
report such severe broad-band RFI: LOFAR, although build in a populated area, shows very little
of this kind of RFI in the currently finished stations (Offringa and de Bruyn, 2011) and (E)VLA
interference reports also mention spectral RFI affecting a few channels, but no broad-band RFI,
although low frequency causes more problems (Chandler and Perley, 2010, §4.6). Nevertheless,
when approaching the thermal noise on low frequencies, such as LOFAR will do in the future,
faint RFI might show up. The fringe fitting method is not so well applicable in these cases, be-
cause such RFI will be below the noise. By removing a spatial frequency component from (white)
noise dominated data, a component from the noise will be removed instead of removing actual
RFI. Work has been done to apply post-correlation RFI removal techniques for the (E)VLA, by
ways of calibrating and removing the RFI source (Lane et al., 2005), but this method is tedious
and requires the RFI to be reasonably stable.

Another solution for removing continuous RFI is spatial filtering by eigenvalue decomposi-
tion (Leshem et al., 2000; Smolders and Hampson, 2002; Ellingson and Hampson, 2002), which
disentangles the contribution of sources from different directions, and subsequently removes the
contributions from the direction of interference. Recently, this was implemented for the Parkes
multibeam receiver (Kocz et al., 2010). However, the requirement of specialized hardware and/or
having to configure the filter before correlation is a major disadvantage of spatial filtering tech-
niques, in the context of interferometers. The latter requires the configuration to be fixed before
the observation in most cases. This makes it hard to react to unanticipated RFI, and impossible
to change the filter after observing if the filter has not worked correctly. RFI is often not stable
enough to be removed during post-correlation processing.

Another technique for removing sporadic continuous RFI has been introduced in Pen et al.
(2009), which decomposes the time frequency data with a singular value decomposition (SVD).
This method however was shown in Offringa et al. (2010a) to potentially alter the astronomical
data, making the method less attractive to use for data reduction without further research. In

1AIPS is the Astronomical Image Processing System
(http://aips.nrao.edu/)

http://aips.nrao.edu/
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Briggs et al. (2000), the RFI is subtracted from the data after correlation by the use of a reference
signal. Unfortunately, such a reference signal is not always available or practical to implement.

4.1.2 Off-axis sources

Signals from off-axis sources received in the sidelobes, like RFI, decrease the dynamic range of
observations, or might even cause calibration to fail. New wide-field telescopes such as LOFAR
see a large area of the full sky, and always have a few strong sources in their sidelobes. Examples
of such sources are Cassiopeia A, Cygnus A and the Sun. These sources are often not of interest,
but have to be removed accurately.

A common method to deal with off-axis sources is peeling (Noordam, 2004; Intema et al.,
2009). Peeling is iterative, and changes the phase centre towards the source, optionally averages
in time and frequency to suppress other sources, and self-calibrates and subtracts the source. This
method has shown good results, but is very computational intensive — too intensive to use by
default on high-resolution telescopes such as LOFAR. Demixed peeling is a variation on normal
peeling, that is currently being tested for LOFAR observations. However, early results show
similar computational requirements when the same removal quality is required (Jeffs et al., 2006).

Finally, in Parsons and Backer (2009) a delay-delay rate (DDR) filter is proposed that disen-
tangles the flux contribution into the different sky facets they originate from. The DDR-filter was
used by Parsons & Backer for first order calibration, but the idea of such a filter is also attractive
for application in a later stage and over longer timescales, because the filter can be applied on
post-correlated data without additional hardware. It is however unclear how accurate the filter
will be for off-axis source removal. We will propose related filters, while trying to increase its
application and accuracy.

4.1.3 Outline

In this paper we will describe and analyse new methods for filtering both RFI and off-axis sources,
with the ultimate goal of reaching lower noise levels. We will start by analysing Athreya’s fringe
fitting method in §4.2 and describe why it is insufficient for e.g. LOFAR observations. In §4.3,
several new methods will be introduced and analysed with the help of simulations. We will test
our filtering approaches in §4.4 on a WSRT dataset at a frequency of about 140 MHz of the
field centred on the radio galaxy B1834+62 (Schoenmakers et al., 2000). At this low frequency,
the WSRT is sensitive to very bright sources like Cygnus A and Cassiopeia A (de Bruyn and
Bernardi, 2009), which despite their large angular distance are not sufficiently attenuated by the
primary beam. They therefore generate intense spurious sidelobes across the target field of view.
We will discuss the results in §4.5, where we will also discuss how time or frequency averaging
and gridding may effect off-axis sources or RFI. Finally, we will draw conclusions based on our
findings in §4.6.

4.2 Analysis of the fringe filtering method
Athreya (2009) describes how geometrically stationary RFI can be removed from an observation
by fitting out a sinusoid with a frequency opposite to the natural fringe rate. A stationary earth-
bound RFI source receives a fringe rate opposite to the applied fringe stopping rate. Therefore,
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(b) Using fringe count, amplitude found = 14.7

Figure 4.1: Comparison of fitting methods using simulated data: the original amplitude of the
source is 16. Only the shown data is used for the fit. Using a constant fringe speed (left panel)
over this range produces a somewhat less accurate fit compared to using the fringe count for each
sample in the fit (right panel). The x-axis is in time steps of 15 seconds from the start of the (simu-
lated) observation. At time step 1570, the simulated baseline is orthogonal to the direction linking
the target source and the phase centre and νF=0. Hence, the fringe speed changes significantly
over the displayed time range, which can be seen by the somewhat elongated fringes near the
right.

one can estimate its contribution. The natural fringe rate is given by:

νF (t) =
dw(t)
dt

= −ωEu(t) cos δ, (4.1)

with t the sidereal time, ωE = 1 rotation/day, the rotation speed of the earth, u(t) the compo-
nent representing the standard u position of the baseline in the uv-plane, w(t) the standard w-
component representing the applied phase delay and δ the declination of the phase centre. When
a baseline is orthogonal to the direction of the phase centre, νF (t) is zero. A stationary source of
RFI contributes to a correlation in the form of the complex function

RFI(t) = Ae−iνF t, (4.2)

with A the complex amplitude of the RFI at time t. The 2π term is absorbed in νF , such that its
value is in radians/time unit. This amplitude is initially assumed to be constant over some period
[t0, tE ], and νF is assumed not to change over this time interval. It is then possible to estimate A
by performing a least-squares fit between the complex function V (t), representing the observed
visibilities, and the RFI signal by minimizing the error function

ε(A) =

tE∫
t0

(
Ae−iνF t − V (t)

)2
dt. (4.3)
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Minimization of ε(A) results in

A =

tE∫
t0

V (t)eiνF tdt, (4.4)

which corresponds to A = F(νF ), the frequency component νF of the Fourier transform F of V
over the time interval. Therefore, removing a Fourier component of a signal can be implemented
as a standard frequency filter. Equation (4.2) corresponds to a single component of the delay-
rate (DR) transform, creating a symmetry with the DDR filter proposed in Parsons and Backer
(2009). An example of the application of Equation (4.4) on simulated data is given in Fig. 4.1a.
The two plots show the result of fitting a sinusoidal function to simulated data. We simulated a
WSRT interferometer, correlating antennae RT0 and RT5: a 720m baseline. A single channel is
simulated with a frequency of 147 MHz. The simulated observation has eight sources, seven of
which are faint and in the primary beam, while the last source simulates an interfering source that
is four times stronger. This off-axis source generates a visibility amplitude of 16 and is a 40◦ from
the phase centre, hence far from the other sources.

Since νF changes slowly with time, Equation (4.4) will become inaccurate when increasing
the time interval. Additionally, it can not be calculated near νF = 0. By observing that the number
of wavelengths of delay caused by the geometrical delay corresponds to the number of rotations
applied on the visibilities, we can replace νF t byw(t)−w(t0), wherew is the applied phase delay
in radians/time unit as function of time. As w(t0) causes a constant phase shift, it can be absorbed
in A. By substituting νF t with w(t) in Equation (4.4), we get a more accurate solution for A:

A =

tE∫
t0

V (t)eiw(t)dt. (4.5)

An example of such a fit is given in Fig. 4.1b. As long as the amplitude of the RFI source remains
constant, this allows successful removal of the source when νF � 0. As is visualized by Fig. 4.2,
it removes the strong source in the example without unwanted side effects on the area of interest.

4.2.1 Removing variable RFI
With the algorithm presented by Athreya, the received strength of the RFI source is not only
assumed to be different for different baselines, but also in time. Since the beam rarely follows the
RFI source, it is likely that the gain towards the RFI source will change. Athreya proposes tiling
of the data, making separate fits on each tile, where each tile is approximately the size of a fringe.
However, tiling the data and performing fits on each tile causes instability near the borders of the
tiles.

A more accurate way is to perform individual fits for each sample, sliding a kernel of weights
over the data that are used to perform the fit. Two trivial suggestions for a weighting function
are the rectangular function and the Gaussian function. A rectangular function would result in a
sliding window method, which has implementational advantages. However, a rectangular function
produces a sinc response in delay space. Therefore, the fit will be affected by any other frequency
in the data set that corresponds to non-zero values in the sinc function, which undesirably would
remove part of the signal of interest. A Gaussian kernel would localize the frequency response
somewhat better. A larger kernel or tile size would decrease the frequency response to other
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Figure 4.2: These images show the application of a fringe filter that takes out a hypothetical
source with a constant amplitude (Equation (4.5)). The same 720m WSRT baseline and set-up as
in Fig. 4.1 was simulated and imaged without deconvolving. The image in the left panel is the
result of imaging without any filtering. The middle panel shows the result after application of the
filter, while the right image shows the difference. The filter removes the source up to the sidelobe
confusion noise of the other sources, which is over three orders of magnitude. The residual shows
that it does not affect the sources of interest, again up to at least three orders of magnitude. This
simulated situation is only hypothetical, since it is unlikely that the received power of distant
sources remains constant.
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(b) Fit visualization of the individual complex components
over time

Figure 4.3: Visualization of the sliding window fringe filter applied on data of a simulated base-
line. In the complex plane (top panel), such a fit produces spirals. Since the mean of the sliding
window was added to the fit in this figure, the difference between the fit and the moving centre of
the ellipses is the actual value that will be subtracted from the data by the filter. A window size of
two fringes was used. Only a small part of the baseline track is shown here.

frequencies, but in order to remove the RFI it would be required that the received gain of the RFI
changes less quickly.

Allowing the amplitude to change in time creates spirals in the complex plane, as is visualized
in Fig. 4.3a. This kind of fitting has recently been implemented in the AIPS astronomical package
as described by Kogan and Owen (2010).

4.2.2 Generalization of the fringe fitting method
Up to now, the use of the method has been limited to the removal of a single (RFI) source that
behaves like a point source at the celestial pole. It is common practice to peel and/or calibrate for
sources that are outside the area of interest, because they need to be taken out carefully in order
to avoid additional sidelobe confusion noise. In such a case, the off-axis source is similar to static
RFI: the source itself is not of interest, but has to be taken out for calibration and imaging the field
accurately. For this purpose, the fringe fitting method can be generalized to remove any point
source. This requires a small change to Equation (4.5), which now becomes:

A =

tE∫
t0

V (t)ei(w(t)−wS(t))dt. (4.6)

Here, w(t) is the standard w-component in the uvw domain as before, while wS(t) is the w-
component for an observation phase centred on S, the source to be removed. While the process
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Figure 4.4: Results of performing a sliding window fringe filter. The configuration for the first
and second panels are equal to Fig. 4.2, except that a sliding window fit is used. The window
size was 128 time steps of 15 seconds integration, which corresponds to at most six fringes in one
window. Most of the source has successfully been taken out. However, the middle panel shows
two artefacts: The sidelobes of the removed source have not been taken out completely. The error
is about 10 per cent at maximum, but the effectivity of the removal varies with direction. Second,
artefacts are caused near the position of other sources, with errors up to 20 per cent of the sources
at that position. This is the result of fitting the RFI on smaller parts of the data, causing the fit
to respond as a sinc to other positions (as described in the text). The last panel shows the result
that white noise with the same baseline settings would produce. The maximum error of the fit
is about equal to the RMS of the noise, 0.4 in the image. Altogether, these simulations, with
reasonable practical settings, show that a sliding window fit might be too inaccurate for practical
applications.
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is easier and faster than normal off-axis source calibration or peeling, in practice it will be of lit-
tle use: it neglects information present in polarizations, as defined by the measurement equation
(Hamaker et al., 1996), and neglects the relations between baselines. Advanced calibration al-
gorithms such as the space alternating generalized expectation-maximization (SAGE) calibration
technique (Yatawatta et al., 2009; Kazemi et al., 2011) solve for source parameters by combining
this information at once, and will in general be more accurate, as long as the source is (coherently)
seen in multiple polarizations or antennas.

4.3 Novel filtering techniques
For high dynamic range, the source removal techniques as analysed in the previous section might
not always suffice: the fringe fitting procedure can only remove a single unresolved source at a
time. Also, since the fitting window has to be reasonably small, the fit will be slightly affected by
the contribution of other sources. Therefore, the source has to be strong to be able to remove it,
although the absolute error made will not depend on the strength of the source.

In the following sections, we will present several filters that are aimed to work when the
fringe filter does not suffice. The key issues that these filter techniques share, are that they do
not perform fitting on windows, but use the full data at once. They also remove high-frequency
Fourier components that do not correspond with the fringe frequencies of sources of interest.

4.3.1 A low-pass filter in time domain
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Track of single
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Figure 4.5: Cartoon showing how a source in the image plane contributes fringes in the uv-plane.
The further the source is from the phase centre (origin), the faster the fringe. Function αS(t) is
the angle between the direction of the source and the direction of a specific point in the uv-track
as a function of time. The smaller αS , the faster the fringe speed in the track at that point.

The visibility of a single point source with strength Ilm and coordinates (l,m) is given by

V (u, v, w) = Ilme
i2π(ul+vm+wn). (4.7)

Define d = (u, v, w) and l = (l,m, n). Since the source Ilm is real, the phase φ of V is given by

φ(d) = 2πd · l. (4.8)
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Figure 4.6: Applying the low-pass filter on several baselines will filter parts of sources that exceed
the frequency limit. For a particular source, this corresponds with multiplying the source with a
hourglass shape in the uv-plane (left panel). Because of this multiplication, the sidelobes of the
source in image plane (right panel) will be, relative to the phase centre, filtered in tangential
direction. Sidelobes in radial direction will remain.

The property that will be used in the filtering technique, is the implication of this formula that
sources with large |l|, i.e., that are far away from the phase centre, have a high fringe speed in the
uv-plane.

Without loss of generality, we assume that our interferometer has a configuration such that
its corresponding uv-track is a circle that is centred on the uvw-origin. This only occurs for an
East-West Interferometer such as the WSRT. However, the technique can be straight forwardly
extended to other interferometers that create possible elliptic tracks that might not be centred on
the origin. In the assumed case, the uv-plane position d will be a function of time but have a
constant size. If a time-sorted sequence of observed samples of a single correlation is considered,
its fringe frequency is given by

νS(t) =
dφ

dt
= |d| |lS | cosαS(t), (4.9)

where νS(t) is the fringe speed in fringes per second at time t for source S, |d| is the radius of the
uv-track, |lS | is the distance of S to the phase centre and αS(t) is the angle between the uv-track
and the line through S and the phase centre as drawn in Fig. 4.5. The fringe speed will be maximal
at points where the corresponding uv-track is parallel to the direction of the source, and zero when
the source direction and uv-track are orthogonal. The maximal fringe speed produced by a source
is proportional to the distance between the source and the phase centre: νS(t) ∝ |lS |.

We will now consider low-pass filtering of the time-sorted visibility data with a filter frequency
νF , specified in fringes per wavelength. Such a filter will have the following two properties: First,
sources with ∀t : νS(t)/|d| < νF , will never be filtered. In image plane, the area corresponding
to νS(t)/|d| < νF is a circle that is centred on the phase centre. The fringe speed in the uv-track
is translation independent, hence it is not necessary for the track to be centred on the origin. In
case the uv-track is an ellipse, the filtering area will be an ellipse as well, but we will continue to
assume circularity. Second, sources outside the circle will be filtered during the periods in which
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Figure 4.7: Application of a low-pass filter in the time domain (§4.3.1). The source has been
attenuated by filtering (first panel), but some of the sidelobes have not been removed. This is
because the fringe rate of the source does not always exceed the filtering frequency. The second
panel shows what has been removed and confirms that the sources of interest have not been atten-
uated (up to the 100 times lower noise level), the third panel shows with high contrast what has
not been removed from the source. Note the different intensity scales.
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νS(t)/|d| ≥ νF . The differential start and end angle, respectively αsS and αeS , at which a source
will enter the filtered area are given by

αsS = arccos
νF
|lS |

,

αeS = π − arccos
νF
|lS |

. (4.10)

The area filtered is independent of the baseline length because νF is specified in fringes per wave-
length. For a single baseline, the filter ratio can be calculated with (αeS − αsS) /π. Consequently,
in an array with N baselines with different sizes, the fraction of samples in which the source is
filtered is given by

ρs =
1
N

N−1∑
i=0

αeS − αsS
π

= 1− 2
π

arccos
νF
|lS |

, (4.11)

which is therefore the total attenuation of the source by the filter.
Although we have shown with Equation (4.11) that the total attenuation of a source is known,

the shape of the area that is filtered is important as well, as that defines the shape of the sidelobes.
The effect of low-pass filtering is sketched in Fig. 4.6: the filter removes the source fringes at
two symmetric radial areas in the uv-plane. Subsequently, the application of this filter can be
seen as an additional multiplication of the source in the uv-plane. Instead of a convolution with
the nominal point spread function (PSF), sources in the image plane are convolved with a partly
attenuated PSF. The side lobes that the source would normally have are not filtered in the direction
of the phase centre, and can still increase the noise in the area of interest. This effect can be seen
in Fig. 4.7.

Although this filter does not directly suppress confusion noise, it does filter high frequencies
that can increase aliasing effects during averaging or gridding (§4.5.2). A more sophisticated filter
will be presented in the next section, which utilizes the same theory about the fringe speed of
sources.

4.3.2 A projected fringe low-pass filter in time domain

As was shown in Section 4.3.1, in order to remove the side lobes of an interfering source from
the area of interest successfully, the interferer has to be filtered over the entire length of the ob-
servation. We will now introduce a filter with the purpose of filtering out all sources in a certain
direction beyond a minimum distance from the phase centre.

The first step of the filter is to make the speed of fringes, coming from any source from
a specific direction αD, constant in the time direction. This is done by rotating the uv-plane
such that the fringes are parallel to the v-axis, and subsequently projecting the samples from the
track onto the v-axis, thereby stretching the high-frequency fringes and pushing together the low-
frequency fringes from sources from direction αD. Fig. 4.8 visualizes the transformation. At each
point on the uv-track given by an angle α(t), the fringe frequency νS(t) of a source at time t is
multiplied by a factor due to the projection, resulting in a new fringe frequency νprojected at angle
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Figure 4.8: Creating a constant fringe rate towards a single direction. Panel (a): A source
with a certain direction from the origin in the image plane will cause a fringe in the uv-plane
corresponding to that direction. Panel (b): Rotating the direction of the source onto the v-axis
will align its fringe with that axis. Panel (c): Projection of the sample track onto the v-axis will
make any source in the direction of rotation have a constant fringe rate.
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Figure 4.9: Fourier transform of a uv-track that was rotated and projected, such that sources
in a certain direction have a constant fringe speed. The model of Fig. 4.7 was used. Most of
the contribution of sources near the centre collect near Fourier component index zero, while the
contribution of the off-axis source shows up as a peak at an index away from zero.
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Figure 4.10: Application of the projected fringe low-pass filter (§4.3.2) on simulated data. The
projected fringe low-pass filter nulls a single direction starting at a certain distance, but does not
preserve the phase centre well. In this simulation, the off-axis source has been removed completely
up to the noise, two orders of magnitude lower. In (a), the filter is applied and the top source is
removed. Panel (b) shows what has been removed from the image, while (c) shows what has been
removed from the area of interest.
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α(t) on the circle, given by

νprojected =
νS(t)

cos (α(t)− αD)
. (4.12)

By substituting the definition of νS(t) from Equation (4.9) into this equation for a single source
in the direction of the filter, i.e., αS(t) = α(t) − αD, the result is νprojected = |d| |lS |. Hence,
the fringe speed becomes independent of time. Sources from other directions, however, will not
become constant.

An example of this effect is shown in Fig. 4.9, which shows the Fourier transform of a pro-
jected uv-track. The model of Fig. 4.2a was used as input. The projection is towards the direction
of the strong source in the bottom. This source shows up as an isolated feature away from Fourier
component index zero, because this source lies furthest away from the phase centre. Although the
power of this source peaks in one component, it is distributed over several Fourier components,
because the time series is finite. Therefore, the point is convolved with the Fourier transform of a
windowing function. The sources near the phase centre collect at component indices around zero.

By performing a low-pass filter with frequency νF on the projected samples, we will remove
fringes from sources at time t ∈ [t0; te] for which

|lS |
∣∣∣∣ cosαS(t)
cos (α(t)− αD)

∣∣∣∣ > νF (4.13)

holds.
Fig. 4.10 visualizes the application of the filter. Its effect can be summarized by these three

characteristics: (A) any sources at direction αD that are further away than the limiting distance
corresponding to νF will completely be removed; (B) sources at direction αD within the limiting
distance will not be removed at all; and (C) any sources from directions other than αD will neither
be removed completely nor stay untouched completely. The latter is because the denominator and
the numerator in Equation (4.13) will have zero crossings at different t. Consequently, the left
term in Equation (4.13) will become large when the denominator is near zero.

While incomplete filtering of sources in some directions that are not of interest is not very
problematic, it is impractical that the only sources for which absolute preservation can be guaran-
teed, are sources that lie on the line going through the phase centre in the direction of the applied
rotation. In the next subsection, we will present modifications that will solve this issue.

Despite this complication, this method might still be usable in practice. According to Equa-
tion (4.13), the fringes of sources will all be filtered around the same angle α(t) in the uv plane.
This direction is known, and the area in the uv plane that is affected is therefore known. Samples
in this area can be removed from the data, causing a small loss of data. However, the source will
successfully be removed without side effects.

4.3.3 The iterative projected fringe filter in time domain
The projected fringe frequency of an on-axis source can exceed the filtering frequency when
αS(t) ≈ αD, i.e., when the uv-track is near parallel to the applied direction of the filter. To create
an area of unfiltered sources in the image plane, one can leave this range out of the filter. This
however, would create artefacts similar to the low-pass filter of §4.3.1, and would still not improve
the dynamic range in the area of interest.

A solution is to perform a Fourier transform only on the part of the projected samples at which
|αS(t)− αD| > ηF , for some small angle ηF , and use a deconvolution method to extrapolate
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Figure 4.11: Visualization of the first component in a one-dimensional CLEAN of the plot in
Fig. 4.9.
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Figure 4.12: In red, showing the sum of the first hundred components removed by the deconvo-
lution and in green, showing the residuals that contain the data for the area of interest. In the
Fourier transform similar to Fig. 4.9, ηfilter part of the data around αS(t) ≈ αD was left out to
make sure no sources in the area of interest map to higher components.
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Figure 4.13: Application of the iterative projected fringe filter (§4.3.3) on a single simulated
baseline of 720 m as in Fig. 4.2. The filter was aimed at the source in the bottom and iteratively
removes fringes with high frequency. A value of ηfilter = 0.2 was used to preserve all of the
centre sources, and 100 one-dimensional CLEAN iterations were performed in the projected fringe
spectrum domain. Although this has attenuated the source without needing a model of the source,
the sidelobes in the direction of the phase centre still remain.
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the found frequencies to the area that has been left out. A one-dimensional CLEAN on the fringe
spectrum can be used to remove and extrapolate fringes, taking fringes out one by one. Altogether,
such a filter removes sources from a single direction αD at a distance corresponding to νF and
create a rectangular area around the phase centre which will be preserved. The width of this area
is given by

κ(νF , ηF ) =
νF
|d|
|sin ηF | . (4.14)

Off-axis sources from directions other than αD will be partially removed and sources of interest
will be fully preserved. We will discuss the results of practical application of this filter in §4.4.

Fig. 4.11 visualizes the Fourier transform of the first component that will be removed by a
one-dimensional CLEAN on the plot in Fig. 4.9. In the Fourier transform, ηfilter part of the data
was left out. Because of the finite time domain, the power in a single component is convolved
with a function formed by the windowing function, which also depends on the angle between the
source and the filter direction. Intuitively, one can think of this as the shape of the PSF in the
projected fringe spectrum domain of a single baseline. 75 per cent of the power in the highest
component are selected for subtraction in each iteration. Figs. 4.12 and 4.13 show the resulting
projected fringe domain and image domain respectively, after applying the iterative fringe filter
with 100 iterations.

4.3.4 Filtering in frequency direction
The filters that have been presented so far, have been applied in the time domain of correlations
from a single baseline. If an interferometer observes several frequency channels over some limited
bandwidth, a logical extension is to filter in frequency direction. The samples from different
frequencies in the same baseline at the same time form a straight line in the uv-plane. A source S
produces a fringe speed µS in frequency direction given by

µS(t, λ) = |d(λ)||lS | sinαS(t), (4.15)

and |d(λ)| ∼ 1
λ .

A low-pass filter in the frequency direction removes fringes of off-axis sources at which
µs(t, λ) < µf . In contrast to filtering in time, the situation differs on some points:

• The use of the sin function in Equation (4.15) implies that sources produce a high fringe
rate in frequency direction when the uv-track is orthogonal to the source direction in the
image plane. The result is that the source sidelobes in direction of the phase centre, which
is the area of interest, will be removed. Therefore, a low-pass filter in frequency direction
would complement a filter in time direction, which depends on the cosine of the source
angle and the uv-track (Equation (4.9)). Therefore, the part that is not filtered by the latter
can be further attenuated with a frequency direction low-pass filter.

• While most radio sources are constant over the observation time, they vary over frequency.
Low-pass filtering in frequency would low-pass filter the variation of the source over fre-
quency. Because the primary beam is smaller at higher frequencies, an off-axis source can
have a steep apparent spectral index.

• In the frequency direction, the number of fringes is limited by the observing bandwidth,
and the bandwidth might be limited such that the fringes of a source rotate too little for
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filtering. For example, if a bandwidth-frequency ratio of 2.5 MHz/100 MHz is assumed for
a 100 m baseline (approximately the shortest WSRT baseline observing with a single band),
a source needs to be at a distance of about 8◦ from the phase centre to create a single fringe
within the bandwidth.

Due to these characteristics, the use of a frequency filter can complement a low-pass filter
in time, but might be limited to the longer baselines or large filter radii. To be effective, suffi-
cient bandwidth is required. The available bandwidth for filtering might be further limited if the
apparent spectral indices of the off-sources are steep.

4.4 Practical applications

Several filters for off-axis sources were described in the previous chapters. Fig. 4.14 shows an
overview of all the filters, applied on several classes of simulated off-axis sources. The fringe
filter works well, as long as an accurate model of the source exists, and the received strength
of the source does not change much in time. The low-pass filters in time and frequency direction
together remove the off-axis source quite well. The projected iterative fringe filter in time direction
can only attenuate the off-axis source moderately, even though it requires an accurate estimate of
the source location. Application of the method on real data shows comparable results.

4.4.1 Attenuation efficiency

To test the level to which sources can be removed, we have simulated a single 40 degrees off-axis
source in an otherwise empty field, i.e., without any on-axis sources, and also without noise. We
simulated a single 2.5 MHz band at 130 MHz with a standard WSRT configuration and compared
the level of the sidelobes before and after source filtering. The single fringe filter shows 40 dB
of sidelobe attenuation on a constant source, but only attenuates up to 3 dB of a varying source,
which provides a more realistic setting.

The frequency direction low-pass filter can remove 10 dB of a source, which can be varying.
Because the low-pass filters are less effective near the borders of the band and the start and end
of the observation, we have tried flagging 5 per cent of the border channels in the time frequency
plane after filtering. This leads to 20 dB of attenuation. The low-pass filter in time direction
does in theory not remove sidelobe noise in the direction of the source. However, in practice, it
attenuates the RMS in areas around the phase centre by zero to 3 dB. This is because of a property
of gridders: high fringe frequencies are mapped back to the area of interest, i.e., resampling
causes aliasing effects. Therefore, removing the high frequencies before imaging lowers the noise
as well. The RMS decrease in the radial direction due to low-pass filtering in time is around 25
dB. The large difference between attenuation of the tangential direction of time low-pass filtering
versus the radial direction of frequency low-pass filtering is due to the limited bandwidth: in time,
the observation contains lots of fringes which can be accurately filtered, but only a few fringes
appear in frequency direction.

In the same test, the projected fringe low-pass filter shows 25 dB of attenuation around the
phase centre. Finally, the projected iterative fringe filter attenuates only up to 3 dB.

Obviously, these results are highly dependent on many parameters, including the distance of
the source to the phase centre, the amount of available bandwidth and its central frequency, the
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Figure 4.14: Simulated test sets with various types of off-axis sources that need to be removed. On
its own, the single fringe filter removes the largest part of the source and its sidelobes, and only
becomes inaccurate when the source changes in time or when the the model is inaccurate. The
time and frequency low-pass filter complement each other, and together can remove everything
outside a certain radius, if bandwidth allows. The projected fringe filter seems not to work very
well – it removes a part of the source, but leaves artefacts in the image in every test case.
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Figure 4.15: Position in the sky of B1834 relative to other strong sources.

time and frequency resolutions and, for the single fringe filter, the speed of change of the source
due to instrumental effects and the number and size of the interferometers.

4.4.2 Low-pass filtering a WSRT observation

We will now apply the filtering approaches on a WSRT dataset of the field centred on the radio
galaxy B1834+62. This field was observed to search for polarized emission in this double double
radio galaxy (Schoenmakers et al., 2000) at very low frequencies. The observations were done
in August 2008 and lasted for 12 h. The backend was configured to observe 8 frequency bands,
each 2.5 MHz wide and covered in 512 spectral channels, at frequencies ranging from 115 to 163
MHz. Here we will only use data from the band at 139 MHz. The integration time was 10 s, the
spectral resolution, after Hann tapering, was 10 kHz. At this time and spectral resolution even
sources more than 1 radian from the phase tracking centre were not significantly smeared. The
field was affected by sidelobes from Cygnus A, Cassiopeia A and the Sun (for about 8 hours). An
image of the locations of these sources, in the North Celestial Pole (NCP) projection of the whole
sky suitable for the WSRT — an East-West array — is shown in Fig. 4.15.

Although each of these three sources is not in the primary beam, each of them is strong enough
to lower the dynamic range of the observation considerably because of their sidelobes in the image
plane. It is hard to remove these sources from the observation, because they are in the sidelobes
of the beam and, especially in the case of the Sun, they are complex and their apparent strength
varies over time. Because we do not have accurate models of the sources in our observation, the
low-pass filters are a good choice, and we will show that the low-pass filters prove to be quite
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Table 4.1: Fringe speed in time and frequency directions as a function of scale, looking at zenith
with a 1 km baseline.

1 km λ =21 cm
Scale Time Freq Time

λ/h MHz−1 h−1

45◦ 2.9 2.4 140
10◦ 0.72 0.58 34

1◦ 0.073 0.058 3.5
λ/d GHz−1 d−1

10 arcmin 0.29 87 14
1 arcmin 0.029 8.7 1.4

effective for attenuating the three sources.
Fig. 4.16 shows a single baseline of the B1834 observation. The baseline used is RT0 × RTA,

a 1.3 km East-West baseline, and only data from a single 2.5 MHz band at 140 MHz was used.
The displayed images correspond to several tens of degrees of the sky. The observation is limited
by confusion noise of the Sun (right top corner, also aliased to the bottom), Cassiopeia A (left
top) and Cygnus A (left bottom). The observation takes 12 hours and the (resolved) contribution
of the Sun moves through the image and sets halfway. Consequently, the Sun and its sidelobes
would be very hard to remove with traditional methods. The two low-pass filters together remove
the Sun down to the noise: in the filtered image, its peak value is 1 per cent of the original value.
It is hard to remove more, i.e., make the filter circle smaller, since only a small bandwidth is
available. Because of this, the edge of the filter border is blurred in the frequency filtering cases.
For the same reason, Cassiopeia A should have been filtered but is removed only 95 per cent, and
Cygnus A should not have been filtered, but is attenuated 25 per cent. These errors occur because
these sources are too close to the filter border. Other sources within the filter radius have been
attenuated less than 1 per cent.

The application of the low-pass filters on this baseline shows the practical effectiveness of
the filters: filtering in time direction removes the tangential components of the sources, while the
frequency direction removes the radial components. The frequency filter is not as accurate as the
time filter, because of the limited 2.5 MHz bandwidth available. This causes the circular “filtered”
area not to have a sharp edge that a perfect sinc function would produce. Instead, the edge is
somewhat blurred. As a consequence, a part of Cassiopeia A has been removed, although it did
not exceed the theoretical cutting frequency.

In Fig. 4.17, a shorter baseline was processed with the filtering techniques. Baseline RT0×RT2
was used, which is only 288 meters long. Because of the combination of a short baseline and the
small available frequency bandwidth, the frequency filter is only able to filter out 80 per cent of
Cassiopeia A on this baseline. The Sun is still successfully attenuated over 99 per cent, up to the
noise. Cygnus A is 10 per cent attenuated. No other sources in the area of interest have been
visibly attenuated. Because the off-axis sidelobe noise RMS is around 10 per cent of the peak
of strong on-axis sources in the area of interest, one can conclude from this image only that the
on-axis sources have been preserved for at least 90 per cent.

As discussed, the filter frequency scales linearly with the baseline size: on long baselines,
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(b) Low-pass filter in frequency direction
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(c) Low-pass filter in time direction

Figure 4.16: (continued on right side)
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(e) Low-pass filter in both directions (difference)

Figure 4.16: Application of the low-pass filters on a single 1.3 km baseline of an actual WSRT
observation of the B1834 area, observed partially in daytime. Frequency filtering removes the Sun
down to the noise, including its sidelobes in the area of interest. The filter is less effective near the
circular filter edge. The rings are aliasing effects.
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Figure 4.17: Application of low-pass filters in both directions as in Fig. 4.16, but on a shorter
baseline of 288 meters. The Sun is successfully attenuated, but the filter has been less effective on
Cygnus A and Cassiopeia A.
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the fringe speed of sources is fast in both the frequency direction and the time direction. On
short baselines, a source might cause only a few fringes or less in the frequency direction. It is
therefore more difficult to filter short baselines, and Fig. 4.17 visualizes this problem. While the
tangential contribution of Cygnus A has been removed effectively in the figure, only a small part
of its radial contribution has been removed. The filter was able to remove the Sun because it is
further away. On very short baselines, the real and imaginary components produced by a source
are almost constant, and applying a low-pass filter in frequency direction on such a baseline will
perform similar to averaging the frequency channels. In such cases, the filter will not affect
the astronomical data, but only average the noise out. If the fringe speed does not exceed the
filtering frequency sufficiently on all baselines, the source will appear in the shorter baselines,
hence the large scale structures of the source sidelobes will remain. In general, the combination
of bandwidth, filter area and baseline length define the success of the frequency filter. Table 4.1
shows a few configurations and their corresponding fringe speed for a particular baseline size and
distance to the phase centre.

In Fig. 4.18, all baselines were imaged together. The unfiltered Stokes I image is quite severely
affected by sidelobes coming from off-axis sources. Moreover, because the off-axis sources come
in through the far side of the primary beam, they appear in the polarized images as well. After
filtering, the confusion noise is reduced significantly. Depending on the empty region over which
the RMS has to be calculated, the noise goes down by a factor of 1.5–2 in Stokes I, while the
polarized images show a factor of 2–3 decrease in noise. Because the short baselines could not
be filtered correctly in the frequency direction due to the limited bandwidth, the low-frequency
components of the sidelobes remain. With sufficient bandwidth, such as for LOFAR, the results
will be even more significant. CLEANing the images of Fig. 4.18 removes some of the bright
sources in the centre, but the strong sources in the sidelobes can not be removed by CLEANing.
As one can expect, the CLEAN algorithm is able to CLEAN deeper and find more sources in the
filtered image.

Another less obvious effect of the filter is suppression of ghost sources that are caused by
aliasing of the off-axis sources. When looking at Fig. 4.18, it appears that there is one strong
polarized source near the centre of the field. However, when performing the low-pass filters, the
source disappears. The reason for this is that the source is not a real source, but a low frequency
projection of an off-axis source: a ghost. Zooming in on this ghost as in Fig. 4.19 shows that
the ghost is also present in Stokes I. This ghost is an aliasing artefact caused by the gridding
in the imager. It appears as a normal source and contains regular sidelobes, as can be seen in
Fig. 4.18. Low-pass filtering in time and frequency attenuates the ghost, as will any other method
that attenuates the original off-axis source. The aliased ghost is caused by baselines which are
gridded just below the Nyquist rate of the source. If the source is sampled correctly, its ghost will
not appear at all. On the other hand, if the source is badly undersampled, its contribution will
average out.

4.4.3 Dealing with flagged samples

A complicating factor for low-pass filtering the time-frequency domain is the fact that the time-
frequency plane contains flagged data due to RFI contamination. This has to be taken into account
before convolving the data with a sinc function. To solve the problem, we will mimic how flags
are handled during other stages of reduction. Two techniques for solving flagged samples are
commonly used. The first is to set flagged samples to zero and account for the missing samples
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Unfiltered Stokes I
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Unfiltered Stokes Q
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Figure 4.18: A WSRT observation of field B1834 at 140 MHz containing three strong off-axis
sources (see Fig. 4.15). WSRT can observe eight bands with 2.5 MHz bandwidth at this frequency,
however, for this image, only one of the eight bands is used. The first and second figures show
Stokes I and Stokes Q respectively. The first two images are from the raw data, the next two show
the same data after low-pass filtering the set in both time and frequency directions. Even though
the filter is limited by the small bandwidth, the suppression of the confusion noise of off-axis is
significant. The effect is more detectable in the polarized images. Depending on which area
is used for RMS calculation, the Stokes I and Q images show a noise reduction by a factor of
1.5–2 and 2–3 respectively. Moreover, a ghost of one of the off-axis sources (Cyg A) is strongly
attenuated (see Fig. 4.19).
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(a) Original (Stokes I) (b) Filtered (Stokes I)

(c) Original (Stokes Q) (d) Filtered (Stokes Q)

Figure 4.19: Enlargement of the central area of Fig. 4.18: Aliasing of off-axis source causes a
ghost in the primary field, which is attenuated by the low-pass filter.
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(c) After interpolation of flagged areas
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(d) After low-pass filtering in time and frequency directions

Figure 4.20: A baseline for which the flags have been interpolated and filtered. Note that in
panel (c), the RFI is still visible in the interpolated time-frequency plot by eye, because the inter-
polated area has a lower variance compared to the original.
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when deconvolving. The second is, if the samples are flagged before either correlation, further
averaging or gridding, to only average over unflagged samples. The latter is similar to linear
interpolation of the flagged samples, albeit the uv-position should be changed slightly because of
the change of the centroid, to prevent bandwidth or time smearing. Before correlation or at high
time and frequency resolutions, the difference between neighbouring samples is small enough that
the error due to linear interpolation is small.

Since these methods have shown sufficient accuracy in practice, we have used a similar linear
interpolation scheme: the data is indexinterpolating data interpolated by performing a Gaussian
convolution on the unflagged data. The flagged samples in the original image are subsequently
replaced with values from the convolved image. The result of this procedure on one of the WSRT
B1834 set is given in Fig. 4.20. Normally, only data that are not flagged are used for imaging.
These are the data from panel (b) in Fig. 4.20. To be able to filter the set, the flagged samples
are interpolated as in panel (c). Tests using all baselines of the WSRT B1834 set show that the
difference between imaging of the flagged set and the interpolated set in which all samples are
used are small, as sources in the area of interest are changed less than 1 per cent. After low-pass
filtering, we reapply the old flags. The rationale for this is to make sure that ranges that contain
RFI are not used during further reduction, and the interpolated data is only used for filtering.

4.4.4 Computational requirements
For filtering the observation of B1834, we have used a regular desktop with a dual core Intel
Core2 CPU running at 2.13 GHz and 2 GB of memory. Filtering the measurement set to create
Fig. 4.18 in time and frequency direction, including interpolating the RFI samples, takes on the
order of an hour on this machine, while we have been performing the filtering step with a non-
optimized proof-of-concept script. This time is comparable with the time it takes to image the data
set with the lwimager2 that was used to create the images. The measurement set contains 91
baselines with 4 polarizations, 4300 time steps and 512 channels, and is 8 gigabytes in size. The
IO takes about 15 per cent of the time. Hence, the computational requirements for filtering are
not excessive. The method performs around an order of magnitude faster than demixed peeling as
implemented in the LOFAR pipeline.

One complicating factor is that observations with a large number of frequency channels are
often split up in many (sub-)bands. This is for example the case for LOFAR observations. Since
the total data can become large, the sub-sequences are divided over several nodes on a cluster.
Efficient synchronisation of the data between the nodes is not trivial, but by using a few nodes
concurrently, we have been able to successfully filter a high resolution LOFAR observation within
a few hours.

4.5 Discussion

4.5.1 Comparison of filter methods
The filters discussed were the single fringe filter (§4.2), the low-pass filter (§4.3.1 and §4.3.4) and
the projected fringe filters (§4.3.2 and §4.3.3).

2The lwimager or Light Weight Imager is part of the casarest program, a subpackage of the Common Astronomy
Software Applications package (http://casa.nrao.edu/)

http://casa.nrao.edu/
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The single fringe filter as proposed by Athreya and the introduced projected fringe filter can
be applied before ionospheric calibration. We have shown that the single fringe filter is acceptable
accurate for removing stable RFI sources, as long as the source to be removed is strong and
reasonably constant. The filter should include the change in fringe frequency within the window
as in Eq (4.5) for maximum accuracy. We do not observe stable, broadband RFI in LOFAR or
WSRT that can be dealt with this method. To remove off-axis sources with the single fringe filter,
an accurate model of the source is needed. In practical situations with non-constant sources, the
fitting error exceeds 10 per cent and is therefore highly inaccurate in comparison to common ways
to remove sources. It is therefore too inaccurate to be useful for off-axis source fitting.

One of the reasons for a projected fringe filter to be useful is that it requires no model, except
for a direction to filter towards. However, the iterative projected fringe filter was shown not to
be accurate enough and will in general remove little more than 50 per cent of the source’s power.
Hence, the iterative projected fringe filter provides little benefit when removing (celestial) off-
axis sources. The projected fringe low-pass filter can remove a source completely, but has the
unwanted effect of filtering part of the area of interest. However, this unwanted effect only occurs
on a small part of the data; the further the source that is to be removed is from the area of interest,
the smaller the area. A possible approach might therefore be to exclude the part of the data on
which the fringe speed of the area of interest exceeds the filter speed. Subsequently, the data
can be calibrated to first order, and the calibration solutions can be extrapolated to the excluded
data. The method is about an order of magnitude faster than peeling and demixed peeling. This
approach needs further research.

In contrast to the single and projected fringe filters, the use of the introduced low-pass filter
lies mainly in removing off-axis sources. The low-pass filter in frequency will low-pass filter
any structure in frequency direction, thus is probably only useful for multi-frequency synthesized
imaging. In this situation, the frequency low-pass filter is an ideal tool to improve the signal to
noise ratio of the area of interest after all calibration and subtraction of modelled sources has taken
place, because it attenuates radial sidelobes. When structure in frequency direction is important,
e.g., when performing spectrography, the method can not be applied. The frequency low-pass
filter is not necessarily limited to application after calibration. Because the phases and amplitudes
are reasonably stable in frequency direction, it can be assumed that filtering in frequency direction
will not remove information essential for calibration – as long as all modelled sources are within
the unfiltered area in image plane.

The low-pass filter in time might be less applicable for uncalibrated data, because it removes
the high-frequency components introduced by quick phase or amplitude changes such as iono-
spheric changes. This problem is less relevant on longer baselines, because of the faster fringe
speed: at λ=21 cm, a single degree off-axis source has a fringe duration of 17 min on a one
kilometre baseline. The low-pass filter in time removes tangential sidelobes of off-axis sources,
which implies that the sidelobe confusion noise in the area of interest is not directly attenuated.
Nevertheless, this filter can be useful to reduce aliasing effects, such as removing an aliased ghost,
where it is complementary to the frequency low-pass filter.

In case the low-pass filter in the time or frequency direction is applied before calibration, one
should make sure that the filter does not introduce baseline-specific errors (closure errors), because
these might cause self-calibration to fail. Since all presented filters are applied on individual
baselines, this holds for all the filters. Although Athreya (2009) argues that fringe fitting does
not introduce closure errors, that only holds if the fit is perfectly accurate. It is unclear if this
is generally true, because the accuracy of the fit is dependent on the fringe rate, and therefore
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baseline dependent. However, as long as the baseline-dependent error is small, self-calibration
will benefit from the removal of the RFI source. We have not yet looked at calibrating filtered
data, and this requires further research.

For low-pass filtering we have only looked at applying a rectangular windowed sinc convolu-
tion (truncated sinc), naturally imposed due to the finite time/frequency range. Especially when
the window is small in comparison to the size of a fringe rotation, non-rectangular windows might
improve efficiency. Different window functions can provide different trade-offs between the side-
lobes and the steepness of the filter edge in the image plane: functions with a small resolution
bandwidth, such as the rectangular function, will create a sharp edge that has ripples. On the
other hand, functions with high sidelobe fall-off will create a smoother edge and will suppress the
ripples better. An example of such a function is the Hann function (Harris, 1978).

It is harder to distinguish off-axis sources from on-axis sources in data that corresponds to
specific areas in the uv-plane. The uv-areas for which this is the case, are areas at which the rota-
tion angle of the uv-track is near the rotation angle of the off-axis source in the image plane. The
reason for this is that the fringes of off-axis sources are slow in time direction in these uv-areas,
and cannot be distinguished from the slow fringes of sources near the phase centre. Any method
that tries to separate off-axis sources from on-axis sources, will consequently be less accurate in
these areas. Unfortunately, off-axis sources cause sidelobes that interfere with the phase centre
in these same areas, hence it is important to accurately remove the off-axis sources from these
areas in order to achieve high dynamic ranges. Using frequency bandwidth to distinguish sources
is necessary in these ranges. Many algorithms look at small bandwidths at a time. For example,
most algorithms currently applied for LOFAR, such as demixed peeling or self-calibration, cur-
rently only use information from one or a few subbands at a time, while a LOFAR subband is only
200 kHz. To accurately separate off-axis sources with these algorithms, multiple subbands have
to be combined together.

Low-pass filtering is an implicit effect of integrating and averaging that occurs in the standard
pipeline of interferometers. The implications of that will be discussed in the next section.

4.5.2 Adverse effects of time and frequency averaging

To reduce the data volume, the correlation coefficients are integrated over time directly after cor-
relation, and are sometimes further time averaged, for example after a RFI flagging procedure has
detected corrupted samples, as is the default for LOFAR. When imaging, the visibilities are once
more averaged for gridding, to be able to apply a fast Fourier transform (FFT). Nyquist’s theory
states that the original signal can be reconstructed as long as the sampling frequency is at least
two times the highest frequency. Hence, in order not to lose information, the sampling frequency
in time and frequency should be twice the fringe frequency of the source given by respectively
Equation (4.9) and (4.15). In this section we will discuss two side effects of averaging: (1) the
effect of low-pass filtering and (2) the effect due to aliasing.

When data is averaged, the highest frequency components can no longer be presented, and
high frequencies are therefore removed from the data. The corresponding side effects of time
and frequency averaging can be deducted from the low-pass filtering results. Since the amount
of averaging is normally independent of the baseline size, i.e., all baselines will be averaged
equally, an off-axis source will only be filtered on long baselines. This has been sketched in
Fig. 4.21 for over-averaging in time direction. Over-averaging in frequency is similar, but in radial
direction. For these reasons, the effect of time and frequency averaging is baseline dependent and
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Figure 4.21: The effect of over-averaging an observation in time direction, causing off-axis
sources to be partly filtered on the long baselines. The left and right panel show respectively
the uv-plane and the image domain.

will contribute to closure errors. It is also a direction-dependent effect (DDE), since the distance
of the source to the phase centre defines its fringe speed, and therefore the amount of attenuation.
Therefore, different positions on the sky will be differently attenuated. Finally, averaging in time
and frequency directions only complement each other partly: even by over-averaging the time and
frequency directions significantly, the shorter baselines will still contain the source.

In an over-averaged set, a source will appear at its original location, but the source is fully
present only in a subset of the baselines, which will cause it to have irregular sidelobes. Therefore,
the source can not perfectly be removed with CLEAN, unless CLEAN is performed baseline by
baseline or on smaller ranges of baselines, which is harder due to the low signal-to-noise ratio
and dirtier point spread function of fewer baselines. Direction-dependent calibration might help,
but directions that have been attenuated might still cause problems, e.g., in some antennas they
will generate high gain solutions and therefore introduce noise. For these reasons, it is important
to remove strong sources with fast fringe rates before time or frequency averaging in order to
avoid their side lobes or added noise in the area of interest. This effect is most prominent in
interferometric elements with a large field of view — a small element beam will naturally attenuate
off-axis sources.

A second side effect of averaging comes from the fact that averaging is not a perfect low-pass
filter, and will cause aliasing effects of high frequencies in the lower fringe frequencies. This
will increase the noise generated by off-axis sources because they will not be filtered as much as
possible. Time averaging can also distort sources of interest and can even generate ghost sources
if off-axis sources have not been removed beforehand, as was seen in Fig. 4.19. To remove these
effects, a low-pass filter can be used before down sampling the visibilities.

Fig. 4.22 shows the difference on a simulated observation between these two methods of
changing the time resolution: (A) averaging the data; and (B) low-pass filtering the data followed
by nearest neighbour interpolation. The down sampling factor was 3 and 25 for respectively the
top and the bottom lines. The source is 30◦ from the phase centre and the simulated WSRT base-
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Figure 4.22: Simulated effect of decreasing the time resolution with a factor of 3 and 25, on one
single baseline with a single source, using two different methods: (A) averaging the data; and (B)
low-pass filtering the data followed by nearest neighbour interpolation.

line is 720 m, observing at 140 MHz and 62◦ declination. The maximum fringe speed is 30 Hz
and the correlator integration time was 5 seconds. The figure demonstrates the non-ideal effect
of averaging: sources which fringes beat with half the (new) Nyquist speed are attenuated up to
25 per cent, which does not occur in the filtered case. Moreover, a source that beats faster than
the Nyquist speed (bottom lines) is better attenuated with less aliased sidelobes by the filtering
compared to averaging. The attenuation effect of averaging quickly decreases when the source is
closer to the phase centre, but is still on the order of one percent at one degree when three times
averaged.

Time averaging has been used to average out RFI or other sources that have a high fringe rate.
Athreya (2009) describes that RFI can be attenuated because of fringe stopping, although it is said
that this is less effective at low frequencies. In Kogan and Owen (2010), the authors also describe
averaging out RFI. As this article has shown, although the source itself is attenuated by averaging,
and therefore helps calibration, we have shown it is better to perform an explicit low-pass filter
before downsampling. The fringe frequency expressed in fringes/sample is almost always higher
in time direction compared to frequency direction. Hence, if one relies on fringe stopping and
correlator averaging to suppress RFI or off-axis sources, the noise in the area of interest is still
affected by the source, since time averaging does not remove sidelobes in the direction of the
phase centre (Fig. 4.7).

Time and frequency averaging are also part of the peeling algorithm, where it is used to filter
off-axis sources. From the perspective of maximum attenuation, the baselines should be filtered
with a filter size relative to the baseline length, instead of the de facto method of uniform averag-
ing. This would suppress off-axis sources as much as possible, and all baselines would be filtered
equally. However, care should be taken not to remove small temporal changes due to the iono-
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sphere, that are needed for calibration. Fortunately, the ionosphere is typically stable in timescales
of several minutes.

It is well known that data averaging can cause tangential and radial smearing when averaging
respectively the time and frequency dimension (Bridle and Schwab, 1999). The symptoms of
bandwidth and time smearing can be intuitively explained with the results of this paper. As we
have seen, the tangential and radial smearing happens because the longer baselines attenuate the
source in a particular area of the uv-plane.

By using appropriate resampling techniques such as described in the paper, instead of time or
frequency averaging which is used de facto, it is possible to reduce a data set to a smaller size with
fewer artefacts. This might especially become important for arrays with a large field of view, long
baselines and high data rates, such as LOFAR and the Square Kilometre Array (SKA), or high
frequency interferometers such as the Atacama Large Millimeter Array (ALMA). In the future, it
might be interesting to resample short baselines to lower resolutions, as these baselines contain
the slowest fringe rates. This could further reduce the size of a measurement. However, operations
such as calibration currently can not handle irregularly sampled data.

4.5.3 Relation to gridding
To perform the two-dimensional FFT transform used for imaging the data, the uv-tracks are nor-
mally gridded onto a uniform grid. Like averaging, this has the side effect of low-pass filtering
the data: the maximal fringe speed in any direction is defined by the grid resolution. In contrast to
time or frequency averaging, the filter size is relative to the length of the baseline: long baselines
are gridded with a finer resolution compared to short baselines. The filtering effect of gridding
is therefore equal to low-pass filtering in time and frequency: off-axis sources will be attenuated
equally in all baselines. The somewhat counter-intuitive fact is that coarsely gridding the uv-
plane will suppress sidelobes of off-axis (RFI) sources in the image plane, and might increase the
signal-to-noise in the area of interest. Furthermore, frequencies that can not be represented in the
UV-plane, correspond with sources that fall outside the image plane. Therefore, imaging only the
area of interest is an efficient way of filtering off-axis sources not of interest.

Analogues to time and frequency averaging, the down-sampling before gridding is performed
in a non-ideal way, for example by averaging3. From the conclusions in this work, we think
aliasing effects are the reason why off-axis source that are not visible in the image plane, still
produce sidelobes when performing regular gridding. The side effects are similar to the effects
presented in Fig. 4.22, which shows that sources both faster and slower than the Nyquist frequency
are not effectively attenuated. To solve this, the high fringe frequencies should be removed before
gridding the data on the uv-plane. Again, the best way to do this is to low-pass filter the time and
frequency directions before gridding.

4.5.4 Relation to other techniques
Although we have not tried combining this method with techniques such as (demixed) peeling, it
is likely that the presented low-pass filters can complement these. There are two reasons for this:

• During calibration, the solutions are constrained by solving for antenna gains and by using
the measurement equation. Calibration normally assumes solution constantness over short

3Most software packages do use more elaborate ways of sampling the data on the grid, for example by using prolate
spheroidals.
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time intervals and small bandwidths, and does not assume relations over the full time or
frequency range. The low-pass filter uses the full time-frequency domain of a single base-
line to disentangle sources. Therefore, it uses information that is complementary to the
information used in standard removal techniques.

• The low-pass filtering techniques are not model-based. On the one hand, this allows direct
and unbiased removal with less chance of inadvertently biasing towards an incorrect model,
but on the other hand implies that there might not be enough data to separate sources in
certain cases. Another difference with model based fitting, is that model based fitting can
fail to converge due to an insufficient signal to noise level. Low-pass filtering is not limited
by the signal to noise: due to the linearity of the Fourier transform, the result of low-pass
filtering two time or frequency streams separately followed by averaging is equal to filtering
the average of the two streams.

Because the low-pass filtering techniques do not involve non-linear fitting, they are much
faster. If the filter techniques can be used for first order removal of off-axis sources, they might
save a considerable amount of processing time. Investigation of the relation between the filter
methods and other techniques will be the focus of further research. The LOFAR telescope pro-
vides a good test case for further research. Because of its large data volumes, its processing power
is a considerable limitation, and it could potentially benefit a lot from faster source subtraction
algorithms.

4.6 Conclusions & Outlook
We have shown that several filters can be used on individual baseline correlations to attenuate
both off-axis sources and RFI sources in radio observations, thereby increasing the dynamic range
of the observation. Because of the high performance of the filters, they are suitable for modern
high-resolution observatories and can offer a complementary or alternative way to remove the
sources. Especially the low-pass filter in the time and frequency directions are attractive, as they
effectively attenuate all sources and their sidelobes outside a certain radius from the phase centre.
However, they work less well on shorter baselines, and need a considerable bandwidth to remove
sources effectively.

The next step is to further test the methods on other data, preferably with larger bandwidths,
to see if the methods work in practice as well as in theory in other cases as well. Applying the
filter on LOFAR data is attractive, because the off-axis source removal methods currently used are
computationally intensive. With the large bandwidth of LOFAR, it would in theory be possible to,
e.g., filter all sources outside 10 degrees even on baselines as short as 100 meters.



Chapter 5
The LOFAR radio environment

Based on:
“The LOFAR radio environment”

(Offringa et al., in preparation)

THE LOW-FREQUENCY ARRAY (LOFAR) is a new antenna array that observes the sky
from 10–90 and 110–240 MHz. It consists currently of 41 (validated) stations, while 7

more are planned and more might follow. Of the validated stations, 33 stations are located
in the Netherlands and 5 in Germany. Sweden, the UK and France contain one station each.

A Dutch station consists of a field of 96 dipole low-band antennae (LBA) that provide the 10–90
MHz range, and one or two fields of in total 48 tiles of 4x4 dipole high-band antennae (HBA)
for the frequency range 110-270 MHz. The international stations have an equal amount of LBA
antennae, but 96 HBA tiles. For the latest information about LOFAR, we refer the reader to the
LOFAR website1.

The core area of LOFAR is located near the village of Exloo in the Netherlands, where the
density of the stations is higher. The six most densely packed stations are on the Superterp, an
elevated area surrounded by water. It is an artificial peninsula of about 350 m in diameter that
is situated about 3 km North of Exloo. A map of LOFAR’s surroundings is given in Fig. 5.1.
Exloo is a village in the municipality of Borger-Odoorn in the province of Drenthe. Drenthe
is mostly a rural area, and is, relative to the rest of the Netherlands, sparsely populated, with
an average density of 183 persons/km2 over 2,680 km2 in 20112. Nevertheless, the radio-quiet
zone of 2 km around the Superterp is relatively small and households live within 1 km of the
Superterp. The distance from households to the other stations is even smaller in certain cases.
Therefore, contamination of the radio environment by man-made electromagnetic radiation was a
major concern for LOFAR (Bregman, 2000; Bentum et al., 2008). Because this radiation interferes
with the celestial signal of interest, it is referred to as radio-frequency interference (RFI). Such
radiation can originate from equipment that radiates deliberately, such as citizens’ band (CB)

1The website of LOFAR is http://www.lofar.org/ .
2From the website of the province of Drenthe, http://www.provincie.drenthe.nl/ .
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radio devices and digital video or audio broadcasting (DVB or DAB), but can also be due to
unintentionally radiating devices such as cars, electrical fences, power lines or wind turbines
(Bentum et al., 2010).

1 km

Figure 5.1: Map of the LOFAR core and its surroundings. The circular peninsula in the centre is
the Superterp. Several other stations are visible as well. (source: OpenStreetMap)

During the hardware design phase of LOFAR, care was taken to make sure the signal would be
dominated by the sky noise (Bentum et al., 2008). This included making sure that RFI would not
drive the analogue-digital converters (ADCs) into the non-linear regime; applying steep analogue
filters to suppress the FM bands and frequencies below 10 MHz; and applying strong digital sub-
band filters to localize RFI in frequency. Optionally, an additional analogue filter can be turned
on to filter frequencies below 30 MHz.

Now that LOFAR is largely finished, commissioning observations have started and preliminary
results show that the LOFAR RFI strategy has worked out very well. For example, both the
LOFAR EoR project (de Bruyn et al., 2011) and the LOFAR project on pulsars and fast transients
(Stappers et al., 2011) report an excellent data quality. Moreover, new algorithms and a pipeline
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have been implemented to automatically detect RFI with unprecedented accuracy (Offringa et al.,
2010b,a). Preliminary results have shown that using these algorithms, only a few percent of the
data is lost due to RFI (Offringa et al., 2010b).

In this chapter, we will study two 24 hr RFI surveys: one for the 30–78 MHz low-band regime
and one for the 115–163 MHz high-band regime. We describe our general methods for analysing
LOFAR data, and perform an extensive analysis of the two RFI observations. In Sect. 5.1, we
start by describing the relevant technical details of the LOFAR observatory. In Sect. 5.2, we will
describe the methods that are used to process and analyse the two sets. Sect. 5.3 describes the
details of the RFI observations that are used in this chapter. In Sect. 5.4, a brief analysis of the
spectrum allocation situation that is relevant for LOFAR follows. In Sect. 5.5 we will describe
the observational results of the two RFI surveys. Those will be compared to other observations to
assess whether they are representative in Sect. 5.6. In Sect. 5.7, we finish by discussing the results
and making conclusions about the LOFAR RFI environment.

5.1 LOFAR

In this section, we will briefly describe the design details of LOFAR that are relevant for the impact
of RFI. For further technical details, we refer the reader to van Haarlem et al., in preparation.

LOFAR consists of stations of clustered low-band and high-band antennae (LBA and HBA).
Inside a station, the signal from dual polarization LBA antennae are amplified with a low-noise
amplifier (LNA), and are subsequently transported over a coax cable to cabinet, which contains
the receiver electronics. Here, the signal is band-pass filtered, digitized with a 12-bit ADC and one
or more station beams are formed. The HBA antennae are processed by an analogue beamformer,
which form the beams for a tile of four times four antennae. At the cabinet, digitized HBA station
beams are subsequently formed from the analogue tile beams.

After beams have been formed, the HBA or LBA signals are split into 244 sub-bands of
195 kHz of bandwidth in standard imaging mode. Other modes can optionally be processed
through different signal paths. The sub-bands are formed by using a poly-phase filter (PPF) that is
implemented inside the station cabinet by using field-programmable gate array’s (FPGA’s). This
allows for very flexible observing configurations (Romein et al., 2011). The 244 sub-bands are
transported over a dedicated wide-area network (WAN) to a Blue Gene/P supercomputer in the
city of Groningen. Currently, the samples are send in 16 bits. However, because the transfer rate
is limited to about 3 Gbit/s, the transport limits the total observed bandwidth to 48 MHz. An eight
and four bit mode are scheduled to be implemented in late 2012, which would allow the transfer
of 96-MHz beams.

Once in Groningen, the BG/P supercomputer applies a second PPF that increases the fre-
quency resolution with a factor of 256, yielding a resolution of 0.76 KHz. During this stage,
the first of the 256 channels is lost for each sub-band, due to the way the PPF is implemented.
Next, the BG/P supercomputer correlates each pair of stations, integrates the signal over time and
a preliminary pass-band correction is applied (Romein, 2008), that corrects for the first (station
level) poly-phase filter. Finally, the correlation coefficients are written to the disks of the LOFAR
Central Processing II (CEP2) cluster.

The separation in sub-bands is used to distribute observations over the hard disks of the com-
puting nodes on the CEP2 cluster. For storage of observations in imaging mode, LOFAR uses
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the CASA3 measurement set (MS) format. The first step of post-processing once the observation
has been stored, is the RFI detection step. This step is performed by the AOFlagger pipeline that
flags detected RFI, so that further processing steps such as the calibration step, will ignore RFI
contaminated data. This step will be described in the next section. Following RFI mitigation, the
steps that normally follow are (i) further averaging of the correlations to reduce the data volume;
(ii) calibration; and (iii) finally the imaging.

5.2 Processing strategy

Processing an observation and acquiring an overview of the radio environment requires the de-
tection of the RFI; collecting of the RFI statistics; and assessment of the quality of the remaining
data. In the following subsection, we will address the detection strategy and the tools that we
use for the detection. This will be followed by a description of the methods used to collect the
statistics of the RFI and the data.

5.2.1 Detection strategy

For RFI detection, LOFAR uses the LOFAR AOFlagger pipeline that was described in Offringa
et al. (2010b). At the time of writing, no changes were found necessary to alter the accuracy or
sensitivity of the pipeline, but several optimizations were made to increase the speed of the flagger
further. One of the changes was to use a more stable and faster algorithm for the morphological
scale-invariant rank (SIR) operator (Offringa et al., 2012b), that finds samples that are likely con-
taminated by looking at their neighbouring samples. Another change was to implement several
algorithms using the “streaming single-instruction-multiple-data extensions” (SSE) instruction set
extension. The combined optimizations led to a decrease in the computational requirements of ap-
proximately a factor of 3, and the pipeline is now highly input-output (IO) dominated. To decrease
the IO requirements, the pipeline was embedded in the next default processing step: the averag-
ing step. Averaging is performed by the “New default pre-processing pipeline” (NDPPP) (Pizzo,
2012, §5), which can also carry out a few other steps, such as changing data alignment and chang-
ing the phase centre. The integration of the AOFlagger pipeline in NDPPP allows to read the raw
data from disk only once.

The AOFlagger package4 consists of three parts: (i) the library that implements the detection
pipeline, to allow its integration in pipelines of other observatories and NDPPP; (ii) a stand-
alone executable that runs the standard pipeline or a customized version; and (iii) a graphical user
interface (GUI) that can be used to analyse the flagging results on a baseline-by-baseline basis
and optimize the various parameters of the pipeline. The GUI was used intensively to optimize
the accuracy of the pipeline. The GUI is also useful for adapting the strategy for data from other
observatories. Once a strategy has been derived that works well on several individual baselines,
the strategy can be exported and used with the library or the stand-alone flagger. This has led to
the successful flagging of data from at least the Westerbork Synthesized Radio Telescope (WSRT)

3CASA is the Common Astronomy Software Applications package, developed by an international consortium of sci-
entists under the guidance of NRAO.
Website: http://casa.nrao.edu/

4The AOFlagger package is distributed under the GNU General Public License version 3.0, and can be downloaded
from http://www.astro.rug.nl/rfisoftware.
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Figure 5.2: The rfigui that can be used to optimize the pipeline steps and their parameters.
The right window is the main window showing the spectrum of the selected baseline (in this case
a WSRT S-band data set). The left bottom window shows the uv track that this baseline covers.
The upper left window holds the script with the actions that are performed, which can be edited
interactively.

(Offringa et al., 2010a), the Giant Metrewave Radio Telescope (GMRT) (A. D. Biggs, personal
communication, Sept. 2011) and the Australia Telescope Compact Array (ATCA).

For the data processing in this paper, we have not used NDPPP to average and/or process the
data, but used the original full resolution sets and applied the stand-alone flagger.

5.2.2 RFI and quality statistics

Assessing the quality of observations that have a volume of tens of terabyte is not a trivial task.
For example, if one wants to calculate the root mean square (RMS) of the data, all data has to be
read from disk, and although this task can be distributed over the nodes, it still takes on the order
of a few hours for large observations.

Our first effort to assess the RFI environment, was to produce a single informative sheet for
each observation that summarizes the observation. This sheet contains a description of settings of
the observation and four plots: (i) the amount of detected RFI over frequency; (ii) the amount of
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Figure 5.3: An example of the RFI sheet as it was initially used to assess the RFI environment.
The sheet describes a random observation.
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detected RFI over time; (iii) the amount of detected RFI as a function of the baseline length in
which the RFI was found; and (iv) histograms of the flagged data, the non-flagged data and the
sum of the two with logarithmic scales for both axes. A typical sheet of a random observation is
given in Fig. 5.3. The information that is required to produce the plots is collected in the stand-
alone flagger by adding an optional step to the detection pipeline. This allows to both flag the set
and produce the plots with a single pass over the data.

The sheet provides a lot of useful data to assess the quality of the observation. The total
percentage of RFI is a first indicator for a successful observation: percentages away from 2-5%
denote some problem with the system during the observation. Faulty stations can be recognized
from the baseline-length plot, while faulty sub-bands are displayed in the frequency plot. RFI
can produce outlying sub-band statistics, though a failing cluster node can also produce this. If
something significantly changes during the observation, the time plot will show this. Finally, the
data histograms should show a Rayleigh distribution as long as the noise dominates the signal.
Moreover, there should be a distinction between the RFI curves and the data curves. If something
unexpected is seen, it might need to be followed up by looking at the full data sets to determine
the cause.

The RFI sheet contains enough information to assess the RFI environment to first order —
which was its purpose — but it holds no information about, e.g., the achieved signal to noise ratio
and station or system temperature. These types of information are however closely related to the
RFI statistics, and together they define the overall quality of the observation. The implementation
of the sheet required manually gathering of the files produced by the RFI pipeline that hold the
statistics. Because the observation statistics consists of information from 244 measurement sets,
each measurement set was described in a few files. These files are subsequently fed to a script that
combines them and produces the sheet.

Although the creation of the sheets can in principal be automated, a more generic solution
was desired, that (i) combines the RFI statistics with other system statistics; and (ii) allows a
standardized solution to read and display the statistics. Our solution consists of the following three
parts: (1) a standardized storage format for the statistics; (2) software to collect the statistics; and
(3) software to interpret the statistics. We will briefly describe each of these.

1. The standardized storage format: the format description of the so-called “quality tables”
extension to the measurement set format (Offringa, 2011). The CASA measurement set
format allows adding custom tables, and we used this possibility to add the statistics to the
set. These statistics can be retrieved quickly without having to read the main data.

Three statistics tables and one meta table are added to the measurement set. These tables
contain the statistics as a function of frequency, time and baseline index. For LOFAR, the
default is to add the total number of samples, the number of samples in which RFI has been
detected, the sum of the samples and the sum of the squares of the samples. Together, these
allow calculating the RFI ratio, the mean (signal strength) and the standard deviation as a
function of time, frequency and baseline parameter. There are also statistics that describe
the standard deviation of the noise, by subtracting adjacent channels. Since channels are
only 0.76 kHz wide, the difference between adjacent channels should contain no signifi-
cant contribution of the celestial signal, and this noise thereefore is a good measure of the
celestial and receiver noise.

2. Software to collect the statistics: We have implemented software that collects the statistics
and writes them in the described format to the measurement set. Since December 2011,



118 The LOFAR radio environment

Figure 5.4: The aoqplot tool that displays the statistics interactively. In this case it shows the
standard deviation over frequency for a LBA observation.

a statistics collector was added to the NDPPP averaging step. Because NDPPP performs
various tasks that are required before further processing, NDPPP will be performed on most
LOFAR imaging observations, and all observations will thereafter have these quality tables.
NDPPP is slowed down by a few per cent because the statistics have to be calculated, which
is acceptable. A stand-alone tool (“aoquality”) is available in the AOFlagger package
that can collect the statistics without having to run NDPPP.

3. Software to interpret the statistics: Finally, once the statistics are in the described format
in the tables, tools are required to read and display the quality tables. Inside the AOFlag-
ger package is an executable (“aoqplot”) that performs this task: it takes either a single
measurement set or an observation file that specifies where the measurement sets are lo-
cated, and opens a window in which various plots can be shown and the selection can be
interactively changed. An example of the plotting tool is shown in Fig. 5.4.
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Table 5.1: Survey data set specifications

LBA set HBA set
Observation date 2011-10-09 2010-12-27
Start time 06:50 UTC 0:00 UTC
Length 24 hr 24 hr
Time resolution 1 s 1 s
Frequency range 30.1–77.5 MHz 115.0–163.3 MHz
Frequency resolution 0.76 kHz 0.76 kHz
Number of stations 33 13

Core 24 8
Remote 9 6

Total size 96.3 TiB 18.6 TiB
Field NCP NCP

5.3 Description of survey data

Table 5.1 lists the specifications of the two 24-h RFI surveys. The number of stations that were
used in the HBA observation was limited to reduce the volume of the data. More stations were in-
cluded in the LBA observation. The sets were observed at 0.76 kHz / 1 s resolution. Although this
is the standard resolution at which LOFAR will observe in the future, the current commissioning
observations are typically performed at a four times lower frequency resolution and two or three
times lower time resolution to reduce their size. The observed field was the North Celestial Pole
(NCP) in both sets. This field does not have a radio bright source and is therefore relatively easy
to flag due to the absence of strong rapidly oscillating fringes.

Fig. 5.5 shows the locations of the stations that have been used in the two surveys. For the
HBA set, the stations were selected to make sure that various baseline lengths were covered and
the stations had geometrically a representative coverage. Due to the inclusion of additional core
stations in the LBA set, the LBA set includes more baselines that are shorter.

We have used the LOFAR Epoch of Reionization (EoR) cluster (see Labropoulos et al., in
prep.) to perform the data analysis. The first-time transfer of such large sets was challenging
and helped us to develop the infrastructure further. In the LBA set, 6 sub-bands were corrupted
due to two nodes on the LOFAR CEP2 cluster that failed during observing, causing six gaps of
0.2 MHz in the 48-MHz frequency span of the observation. At the time of these observations, the
LOFAR CEP2 cluster was fairly new, and work is under way to fix its stability. Consequently, it
is expected that such losses will be less common in future observations.

5.4 Spectrum management

In the Netherlands, the use of the radio spectrum is regulated by the government agency “Agent-
schap Telecom”, that falls under the Dutch Ministry of Economic Affairs, Agriculture and Inno-
vation. This body maintains the registry of the Dutch spectrum users, which can be obtained from
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Figure 5.5: Overview of the geometric distribution of the stations used for the RFI survey. Num-
bers next to the station symbols denote the station numbers.

their website.5

The other countries that participate in the International LOFAR Telescope have similar bodies,
and the Electronic Communications Committee6 (ECC), a component of the European Conference
of Postal and Telecommunications Administrations (CEPT), registers the use of the spectrum on
European level. Most of the strong and harmful transmitters are allocated in fixed bands for all
European countries, such as the FM radio bands, satellite communication, weather radars and
air traffic communication. However, even though the allocations of the countries are equivalent,
the usage of the allocated bands can differ. For example, several ranges of 1.792 MHz in the
range 174–195 MHz are registered as terrestrial digital audio broadcasting (T-DAB) bands by the
ECC. This range is correspondingly allocated to T-DAB both in the Netherlands and in Germany.
However, these bands are currently used in Germany, yet not in the Netherlands. The range of
216–230 MHz is however actively used for T-DAB in the Netherlands. This range corresponds
with T-DAB bands 11A–11D and 12A–12D, each of which is 1.792 MHz. These transmitters
are extremely harmful for radio astronomy. Because they are wideband and have a 100% duty
cycle and band usage, they do not permit radio observations. Digital video broadcasts (DVB) are
similar, but occupy the range 482–834 MHz (UHF channels 21–66). They are therefore outside
the observing frequency range of LOFAR.

A short list of services with their corresponding frequencies is given in Table 5.2. Only two
small ranges are protected for radio-astronomy. The first range is the 37.5–38.25 MHz range. This

5The website of the Agentschap Telecom from which the spectrum registry can be obtained is
http://www.agentschaptelecom.nl/.

6The website of the Electronic Communications Committee, which registers spectrum usage on European level, is
http://www.cept.org/ecc, office: http://www.ero.dk/.

http://www.agentschaptelecom.nl/
http://www.cept.org/ecc
http://www.ero.dk/
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Table 5.2: Short list of allocated frequencies in the Netherlands in the range 10–250 MHz (source:
Agentschap Telecom)

Service type Frequency range(s) in MHz
Time signal 10, 15, 20
Air traffic 10–22, 118–137, 138–144
Short-wave radio broadcasting 11–26
Military, maritime, mobile 12–26, 27–61, 68–88, 138–179
Amateur 14, 50–52, 144–146
CB radio 27-28
Modelling control 27–30, 35, 40–41
Microphones 36–38, 173–175
Radio astronomy 38, 150–153
Baby monitor (portophone) 39–40
Broadcasting 61–88
Emergency 74, 169–170
Air navigation 75, 108–118
FM radio 87–108
Satellites 137–138, 148–150
Navigation 150
Remote control 154
T-DAB 174–230
Intercom 202–209

range is e.g. useful for observing the Sun and the Jupiter atmosphere. The second range is the
150–153 MHz range. Although the 10–200 MHz range is mostly allocated to other services, many
of these — such as baby monitors — are used for short distance communication, and are therefore
of low-power. In addition, services such as the Citizens’ Band (CB) radio transmitters have a low
duty cycle (especially during the night) and individual transmissions are of limited bandwidth.
The most problematic services for radio astronomy are therefore the FM radio (87.5–108 MHz),
T-DAB (174–230 MHz) and the emergency pager (169.475–169.4875 and 169.5875–169.6 MHz)
services. The FM radio range is excised by analogue filters. The emergency pager was found to
be the strongest source in the spectrum, and the LOFAR signal path was designed to be able to
digitize its signals correctly.

Around the LOFAR core, a radio-quiet zone has been established that is enforced by the
province of Drenthe. The area is split into two zones. The inner zone of 2 km diameter around the
core enforces full radio quietness. A “negotiation zone” with a diameter of about 10 km around
the core requires negotiation before transmitters can be placed.7

7The radio quiet zones are marked on “Kaart 12 — overige aanduidingen” of the environment plan of Drenthe.
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5.5 Results

In this section, we will discuss the achieved performance of the flagger, look at the RFI implica-
tions of the surveys individually and analyse their common results.

5.5.1 Performance

The EoR cluster that was used for flagging consists of 80 nodes with two hyperthreaded quatro-
core cpu’s, 12 GB memory per node and 2 or 3 disks of approximately 2 TB size each. The
cluster is optimized for computational intensive (GPU) tasks, such as advanced calibration and
data inversion. Because it has relatively slow disks that are not in a redundant configuration (such
as RAID), the cluster is not ideal for flagging, as flagging is computationally conservative but IO
dominating. To make sure the flagging would not interfere with computational tasks that were
running on the cluster at that time, we chose to use only 3 cpu cores, thus a ratio of 3/16 of the
entire computational power of the cluster. Flagging the 96 TiB observation took 40 hours, of which
32 hours were spend on reordering the observation, which consists only of reading and writing to
the hard disks necessary for flagging, and the remaining 8 hours were the actual flagging.

5.5.2 LBA survey
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Figure 5.6: The detected RFI occupancy spectra for both RFI surveys. Each data sample in the
plot contains 48 kHz of data.

The default flagging pipeline found a total RFI occupancy of 2.24% in the LBA survey. How-
ever, we found the flagger had a small bias. Because the sky temperature changes due to the
setting of the Milky Way, the standard deviation of the data changes over time. The flagger ap-
plies a fixed sensitivity per sub-band and per baseline, and therefore does not take into account
changes over time. This is not an issue for short observations of less than two hours, because
then the sky temperature does not significantly change. However, on long observations in which
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Figure 5.7: The detected RFI percentages and the data variances per station.
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average shows the trend of the points.
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the sky temperature dominates the noise level, the flagger produces more false positives when sky
temperature is higher and more false negatives when the sky temperature is lower.

Unfortunately, correcting for this effect requires an accurate estimate of the sky temperature,
which in turn requires the interference to be flagged. Therefore, after the first flagging run, we
have applied a second run of the flagger on normalized data. In the normalized data, each time step
was divided by the standard deviation of the median timestep in a window of 15 minutes of data,
thereby assuming that the first run has removed the RFI. The calculation of the standard deviation
per timestep was performed on the data from all cross-correlations. Therefore, this procedure
results in a very stable estimate. It is also possible to calculate the standard deviation or median
of differences over a sliding window during the first run and base the detection thresholds on this
quantity, but this does not match well with the SumThreshold method, which is crucial for the
accuracy of the flagger.

After having corrected for the changing sky temperature, the detected RFI occupancy is 1.77%.
The RFI occupancy over frequency is plotted in Fig. 5.6, while Fig. 5.7 shows the percentages of
flagged data per station. The stations with higher station numbers are generally further away from
the core, and therefore provide longer baselines. The remote stations (RS) are furthest away and
additionally have more high-band antennae. Fig. 5.7 shows that the stations closer to the core
generally have a lower amount of RFI, and by plotting the RFI as a function of baseline length as
in Fig. 5.8, it can be seen that the RFI decreases as a function of baseline length for lengths > 300
m, and closely follows a power law that asymptotically reaches ∼1.0%.
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Figure 5.9: The dynamic spectrum of RFI occupancy during the LBA survey

The LBA set contains many broadband spikes between 18:00–0.00 hr. These are detected by
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Figure 5.10: Data from the LBA 4 km baseline CS001 × RS503 at high frequency resolution,
showing strong fluctuations of 1–10 s. The flagger detects these as RFI.

the flagger as RFI, and therefore visible in the dynamic RFI occupancy spectrum of Fig. 5.9. An
example of the spikes at high resolution on a 4 km baseline is shown in Fig. 5.10. Individual
spikes affect all samples for 1–10 seconds. Despite the already relative long baseline of 4 km,
these spikes have evidently not yet become incoherent. On the 56 km baseline CS001 × RS509,
the spikes can not be seen in the time-frequency plot, but some of them are still detected by the
flagger because of an increase in signal to noise in these time steps. It is assumed that they are
strong ionospheric scintillations of signals from Cassiopeia A, because they correlate with its
apparent position. Cas. A is 32◦ away from the NCP, which is the phase centre. Cygnus A might
also cause such artefacts, but is 50◦ from the phase centre.

At the very low frequencies, around 30 MHz and 17:00–18:00 hrs, a source is visible that
shows many harmonics. A high resolution dynamic spectrum is shown in Fig. 5.11. It is likely
that this source has saturated the ADC. Nevertheless, its harmonics are flagged accurately, and it
causes no visible effects in the cleaned data.

5.5.3 HBA survey
The analysis of the HBA survey shows a slightly higher RFI ratio with a total detected amount of
3.18%. The noisier RFI occupancy spectrum of the HBA in Figs. 5.6 and 5.12 also confirms that
the RFI is more contaminated by interference than the LBA. However, as can be seen in Fig. 5.7,
almost all stations have less than 2.5% RFI. Stations CS101HBA0 and CS401HBA0 are the only
two exceptions, with respectively 3.9% and 7.5% RFI, and are also a cause of the higher level of
RFI compared to the LBA survey. Despite the larger fraction of RFI in stations CS101HBA0 and
CS401HBA0, the data variances of these are similar to the other stations. This suggests therefore
the presence of local RFI sources near these two stations, which have successfully been taken out
by the flagger. This is incidental: recent observations show normal detected RFI ratios of less than
3%. Fig. 5.7 also shows that the variances of the remote stations is higher. This is because the
data is not calibrated, and these stations contain twice as many antennae.

As in the LBA case, the HBA RFI detected ratios are similarly affected by the changing sky
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Figure 5.11: A dynamic spectrum of data from one sub-band of the LBA survey, formed by the
correlation coefficients of baseline CS001 × CS002 at the original frequency resolution of 0.76
kHz. The displayed sub-band is one of the worst sub-bands in terms of the detected level of RFI.
The top image shows the original spectrum, while the bottom image shows with purple what has
been detected as interference.
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Figure 5.12: The dynamic spectrum of RFI occupancy during the HBA survey

temperature. Because of the computational costs involved with flagging a set of this size, we
have not corrected the bias with a second run. Flagging an individual sub-band shows a similar
decrease of about 0.5% in detected RFI.

It is harder to assess whether the level of RFI decreases significantly on longer baselines, as
the fewer number of baselines cause a rather noisy estimate of the curve in Fig. 5.8, but the general
trend of the average curve follows the trend of the LBA reasonably.

5.5.4 Overall results
After the automated RFI detection, there are generally no harmful interference artefacts left in the
data. The variance over frequency and time are displayed in respectively Fig. 5.13 and Fig. 5.14.
While the HBA variances look clean in most frequencies, there are a few spikes of RFI that
evidently have not been detected. These look like sharp features in the full spectrum, but are in
fact smooth features when looking at full resolution. Because they are smooth at the raw sub-
band resolution, the flagger does not detect them as RFI. Although there are interference artefacts
visible in the HBA spectrum, after detection the data can be successfully calibrated and imaged.
Nevertheless, a possible second stage flagger to remove any residual artefacts will be discussed in
§5.7. The LBA variances over frequency contain no visible RFI artefacts at all.

The HBA spectrum contains a clearly visible ripple of about 1 MHz. This has been identified
as the result of reflection over the cables, resulting from an impedance mismatch in the receiver
unit. In fact, a similar phenomenon occurs in LBA observations, but because of the steeper fre-
quency response and because not all LBA cables are of the same length, it is less apparent. The
reflection is also less strong in the LBA, due to the better receiver design. Nevertheless, a Fourier
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Figure 5.13: The post-flagging spectra of data variances for both RFI surveys. The dominating
effects are the antenna frequency response and sky noise.
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Figure 5.14: RFI levels and variances as function of the time of the day. The RFI percentages
are smoothed in both figures. In the figure on the right, the difference between day and night is
enhanced: An estimate of the contribution of the sky noise is subtracted from the first runs. The
LBA second pass is centred on the zero axis.
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transform of the LBA variance over frequency shows slight peaks at twice the delays of the cables.

5.5.5 Day and night differences
Fig. 5.14 shows variance and RFI occupancy as a function of the hour of the day in UTC. Local
time is UTC+1. One might expect a lower RFI occupancy during the night, thus during 11.00–
6.00 hrs UTC. However, after one flagging pass the data is highly dominated by the changing of
the sky. Moreover, the LBA data contains artefacts of Cassiopeia A, which causes some peaks
in the data due to strong ionospheric scintillation between 18.00–0.00 hrs. The second pass LBA
data shows a small RFI occupancy decrease at night, especially between 2.00–8.00 hrs UTC of
about 0.5%.

The right plot in Fig. 5.14 shows RFI occupancies in which the effect of the changed variance
on the first-pass statistics has been estimated and taken out. This plot is derived by subtracting a
linearly scaled version of the variance curve from the RFI occupancies, such that the mean and
variance of the residual are minimized. If the interference occupancy increases during daytime,
the effect should be enhanced by this method. However, the biasing effect of the sky temperature
is not removed completely, because the detection rate is not completely linearly dependent on the
variance of the data. After applying this method, the first pass residuals are relatively small with
a total range of variation of about 2%, and this variation is likely the result of the changing of
the sky that has not been subtracted out correctly. There is no obvious other relation visible. This
implies that there is no significant relation between the hour of the day and the RFI occupancy due
to less activity at night. This is also evident in the dynamic spectra of RFI in Figs. 5.9 and 5.12,
which show no obvious increase or decrease of transmitters during some part of the day, although
some transmitters start and end at random times. In a few cases, the starting of a transmitter
at a certain frequency coincides with the termination of a transmitter at a different frequency,
suggesting that some transmitters hop to another frequency. An example can be seen in Fig. 5.12,
where several transmissions between 140–145 MHz end at 9 AM UTC, while at the same time
several transmissions around 135–140 MHz start.

To further explore the possibility of increased RFI during daytime of the HBA set, we have
performed the same analysis on a 123–137 MHz subset of the HBA observation. There are two
reasons that the difference between day and night might be better visible in this frequency band-
width: (i) the visual peaks of detected RFI that correspond to the Sun all have a frequency higher
than 145 MHz; and (ii) this band corresponds to air traffic communication, which is less used
during the night. Nevertheless, we still do not see an increase of RFI in this subset of the data,
apart from the rise of detected RFI due to the fact that the flagger finds more RFI during time steps
with higher variance.

In summary, any effect of increased activity during the day is not significant enough to be
identifiable in the detected occupancies of either the LBA or the HBA data set. The post-flagging
data variances are dominated by celestial effects, i.e., the Sun, the Milky Way or Cassiopeia A,
and contain no clear signs of a relation between day and night time either.

5.5.6 Resolution & flagging accuracy
The frequency and time resolution of observations affect the accuracy of the interference detec-
tion. What the size of this effect is, is however not known. To quantify this, we have decreased
the frequency resolution of the HBA RFI survey and reflagged the set. Subsequently, the resulting
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Figure 5.15: The effect of frequency resolution on detection accuracy

flags were compared with the flags that were found at high resolution. The original high resolution
flags were used as ground truth.

We found that the level of false positives is approximately linearly correlated with the resolu-
tion decrease factor. Unfortunately, false positives in our ground truth will likely show up as false
negatives in the lower resolution detections. Therefore, the false positives for the ground truth data
were determined by extrapolating the false-positives curve of the sets with decreased resolution.
This yields a false-positives rate of 0.3%, which subsequently has been subtracted from the false
negatives. The resulting curves after these corrections are plotted in Fig. 5.15.

Because the test is very computationally expensive, we have not performed the same test on
the LBA survey or for the time direction. Tests on small parts of the data show that decreasing the
time resolution results in similar false-negatives curves compared with decreasing the frequency
resolution, although it causes about 20% less false positives. Therefore, from the RFI detection
perspective, it is slightly better to have higher frequency resolution compared to higher time res-
olution at LOFAR resolutions. It should be further investigated whether the small amount of data
was representative enough to draw generic conclusions.

5.5.7 False-positives ratio

If we assume that the least contaminated sub-bands in Figs. 5.9 and 5.12 are completely free of RFI
on the long baselines, they can be used to determine the false-positive ratio of the flagger. For the
LBA set, we selected the 4 km baseline CS001× RS503 and the 56 km baseline CS001× RS509
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Figure 5.16: The variance over time and frequency during the surveys. In the LBA set, no residual
RFI is visible, also not when inspection the data at higher resolutions. A few purple dots can be
seen in the data, which denotes missing data. The HBA set does show a few weak RFI residuals.

of one the best centre sub-bands at 55 MHz. In the 4 km baseline a total RFI ratio of 0.75% was
detected, while the 56 km baseline shows 0.73% RFI. However, the 4 km baseline contains some
broadband spikes around 18:40 hrs, as shown in Fig. 5.10. On the 56 km baseline CS001×RS509,
the spikes can not be seen in the time-frequency plot, but some of them are still detected by the
flagger because of an increase in signal to noise in these time steps.

In the next step, we used only the last 50 minutes of the sub-bands to calculate the false-
positives ratio. Visual inspection of this data shows indeed no RFI, except for two time steps in
the 4 km baseline that might have been affected, but these can not be assessed with certainty. The
flagger does flag those time steps, hence we ignore them in the analysis. When flagging only the
50 minutes of 4 km baseline data, thereby making sure that the threshold is based only on this 50
minutes of data, a fraction of 0.6% was flagged. If one assumes that the selected data contains no
other RFI, then this value is the ratio of falsely flagged samples. In the 56 km baseline, the same
analysis leads to a slightly lower ratio of false-positives of 0.5%.

The 0.6 and 0.5% detection rates are the result of flagging on all four cross-correlations (XX,
XY, YX and YY). In the samples that have been detected as RFI, we observe that there are zero
samples flagged in more than one cross-correlation, thus they are completely uncorrelated. Each
cross-correlation adds about 0.13–0.15% of falsely detected samples.
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5.6 Comparison with other observations
Although we have analysed a substantial amount of survey time, it is useful to validate whether the
two observations are representable samples for determining the LOFAR interference environment.
Unfortunately, comparing the surveys with other observations is hard at this point, because LO-
FAR is commissioning with lower frequency and time resolutions, and the analysed 24 hr surveys
are the only substantial observations performed at the targeted LOFAR resolution. Also, there are
no strong sources in the targeted NCP field, but fields that do have strong sources might trigger
the flagger more easily, yielding higher detection rates.

Table 5.3: Observations and their RFI occupancy as reported by automated detection.

Date Start (UTC) Duration Id Target ∆ν (kHz) RFI[1]

LBA observations (frequency range ≈ 30 – 78 MHz)
2010-11-20 19.33 5 min L21478 Moon 3.0 4.6%
2010-11-20 19.43 6 h L21479 Moon 3.0 10.3%
2011-04-14 19.00 8 h L25455 Moon 0.76 4.3%
2011-10-09 6.50 24 h L31614 NCP 0.76 1.8%

HBA observations (frequency range ≈ 115 – 163 MHz)
2010-11-21 20.26 5 min L21480 Moon 3.0 5.6%
2010-12-27 0.00 24 h L22174 NCP 0.76 3.2%
2011-03-27 20.00 6 h L24560 NCP 3.0 1.5%
2011-04-01 16.08 6 h L24837 3C196 3.0 2.6%
2011-06-11 11.30 1.30 h[2] L28322 3C196 3.0 6.5%
2011-11-17 18.00 12 h L35008 NCP 3.0 3.6%
2011-12-06 2.36 25 min[3] L36691 3C196 3.0 5.5%
2011-12-06 8.34 25 min[3] L36692 3C295 3.0 8.0%
2011-12-20 7.39 30 min L39562 3C295 3.0 2.5%
2012-01-26 2.00 5.30 h L43786 3C295 3.0 3.6%

Notes:
[1] RFI occupancy as found by automated detection. For some targets, this is too high because

of the band-edge issues that are discussed in the text, leading to approximately a 1–2% in-
crease in 3-kHz channel observations.

[2] This observation was originally 6 hrs, but failed after 1.30 h.
[3] These observations were originally 30 min, but the first 5 min failed.

To assess the differences between different observations, we have performed detection ratio
analysis of several other observations. For this purpose, we collected several LOFAR Epoch
of Reionisation test observations and a few observations that were used for quality assessment.
These were subsequently processed similar to how we processed the surveys. The observations
were selected independent of their quality, thus they sample the RFI situation randomly. Important
to note is however, that in our experience the data quality is quite independent of the detected RFI
occupancy. Much more relevant is the position of the Sun in the sky, the state of the ionosphere
and the stability of the station beam. These have very little effect on the detected RFI occupancy.

Table 5.3 lists the observations and shows their statistics. The number of involved stations
varies between the observations, but as many as possible core stations were used in all observa-
tions.
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Currently, there is an issue with some LOFAR observations that causes a higher RFI detection
rates in fields with strong sources. This is caused by the edges of sub-bands in some cross-
correlated baselines. These edges are flagged because they show time-variable changes that are
very steep in the frequency direction. This effect is only observed in cross-correlations that in-
volve exactly one superterp station, so it is assumed that this is a bug in the station beamformer
or correlator, but this has not been fixed or attributed at the time of writing. In 64 channel obser-
vations that show this issue, the highest and lowest sub-band channels get flagged in about half of
the baselines, leading to about a 1–2% higher detected RFI occupancy. The issue only arises in
fields that contain strong sources, and is consequently not affecting the 24 hr RFI surveys, because
there are no such sources in the NCP field. All 3C196, 3C295 and Moon observations do show
the issue.

The average detected RFI ratios are 5.4 and 4.3% with standard deviations 3.5 and 2.0% for
the LBA and HBA observations respectively. Therefore, it appears that the analysed 24 hr RFI
surveys, with 2.4 and 3.3% RFI occupancy in the low and high bands respectively, are of better
quality than the average observation. If one however assumes that the observations with lower
time and frequency resolutions have an approximately 1.0% RFI increase, which seems to be a
reasonable estimate according to Fig. 5.15, and taking into account that the subband-edge issue
causes in the fields with strong sources another 1.5% RFI increase on average, the averages after
correction for these effects become 3.7% and 2.4%. Therefore, the RFI occupancies of the 24
hr surveys seem to be reasonably representative for the RFI occupancy of LOFAR at its nominal
resolution of 0.76 kHz with 1 s integration time. On the other hand, it also shows that 3 kHz
channels may well suffice for regular LOFAR observations.

Manual inspection of the same data agreed with this observation: the RFI environment is
not significantly different between different observations. The only exception was the Moon ob-
servation of 2010-11-20, which seems to contain unusual broadband interference over the entire
duration of the observation. The shape and frequency at which the interference occurred is not like
in any other observation. Therefore, we suspect that either something went wrong during this par-
ticular observation or ionospheric conditions were exceptional. According to weather reports, it
was observed at the day of the year with highest humidity, although we have no direct explanation
why this would influence the RFI detection.

5.7 Discussion & conclusions

We have analysed 24 hour RFI surveys for both the high-band and low-band frequency range of
LOFAR. Both sets show a very low contamination of detectable interference of 1.8 and 3.2% for
the LBA and HBA respectively. These are predicted to be representative quantities for what can be
expected when LOFAR starts its regular observing with resolutions of 1 kHz and 1 s. Therefore,
the LOFAR radio environment is relatively benign, and is not expected to be the limiting factor
for deep field observing.

Almost all interference is detected after the single flagging step at highest resolution, and RFI
that leaks through is very weak. This agrees with the first imaging results, which are thought
to be limited by ionospheric calibration issues and system temperature, but not by interference.
However, whether this will be the case for long integration times of tens of night, as will be done
in the Epoch of Reionization project, is still to be seen. In that case, one might find that weak,
stationary RFI sources add up coherently, and might at one point become the limiting factor.
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Nevertheless, the situation looks promising: our first-order flagging routines use only per-baseline
information, but remove in most cases all RFI that is visible. The resulting integrated statistics
of 24 hours show very few artefacts of interference, which are causing no apparent issues when
calibrating and imaging the data.

Once RFI does becomes a problem, there are many methods at hand to further excise it. The
interference artefacts that are currently present can be flagged in a second stage flagger. In such
a stage, the flagger could use the information from the full observation at once, and such a strat-
egy would have a higher sensitive towards the weak stationary sources. Moreover, the involved
Fourier transform is a natural filter of stationary interference, that would place the contribution
of the stationary sources near the North Pole. With sufficient uv-coverage, their sidelobes will
be benign, and if necessary, can even be further attenuated with techniques such as the low-pass
filters presented in Offringa et al. (2012a).

An unexpected result was to find that the RFI occupancy is not significantly different between
day and night. The setting of the Galaxy and the Sun are dominating the fluctuations in both the
system temperature of the instrument and the RFI detection ratio, and this is the only structured
variation over time that is apparent in the data. Therefore, we think that RFI is not an argument for
deciding whether to observe at day or night. Of course, there are other arguments to conduct low-
frequency observations at night, especially because of the stronger effect of the ionosphere and
the presence of the Sun during the day, which both make successful calibration more challenging.

An estimate of the false-positives ratio of the AOFlagger pipeline of 0.5–0.6% was given based
on the amount of falsely detected samples in clean-appearing data. We have seen that during
long observations, in which the system temperature changes due to the setting of the Galaxy
and the Sun, time ranges with increased variance result in higher amounts of false detections.
Therefore, it would be a good practice to apply the correction method that was used for the LBA
set: by (temporarily) dividing the samples by an accurate estimate of the standard deviation before
flagging the data, the ratio of false-positives remains constant. This requires two runs of the
flagger: one run to be able to estimate the variance on clean data, and one more to flag the data
with normalized standard deviation. This decreases the amount of false-positives with about 0.5%.
However, it is also computationally expensive, and is not necessary for short observations that do
not show a significant change in sky temperature.

Up to now, interference detection was often performed manually and ad-hoc by the observer.
Consequently, few statistics are available in the literature that describe the amount of data loss in
cross-correlated data due to interference for a particular observatory and frequency range. How-
ever, when compared with losses achieved with common strategies, the amount of data loss in
LOFAR is very low. This is especially impressive considering the fact that LOFAR is build in a
populated area and operating at low frequency. Several reasons can be given for the small impact
of RFI on LOFAR:

• Many interfering sources contaminate a narrow frequency range or short duration. LO-
FAR’s high time and frequency resolutions, of 1 s and 0.76 kHz respectively, minimize the
amount of data loss caused by such interfering sources. Since the current loss of data is tiny,
it seems not necessary to go to even higher resolutions.

• LOFAR is the first telescope to use many novel post-correlation detection methods, such
as the scale-invariant rank operator and the SumThreshold techniques. The AOFlagger
interference detection pipeline shows an unprecedented accuracy (Offringa et al., 2010a,
2012b).
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• LOFAR’s hardware is designed to deal with the strong interfering sources that are found
in its environment. The receiver units remain in linear state in the neighbourhood of such
sources, and the strong band-pass filters spectrally localize the sources. Consequently, al-
most no interfering source will cause ramifications in bands that are adjacent to their trans-
mitting frequency. The only exception is at very low frequencies, where we do see a very
strong source saturate the ADCs when ionospheric conditions are bad. This source and its
harmonics are successfully removed during flagging.

• Propagation models for Earth-bound signals show a strong dependence on the height of the
receiver (e.g., Hata (1980)). In contrast to dishes with feeds in the focal point, the receiving
elements of LOFAR are close to the ground.

• LOFAR is remotely controlled, and the in situ cabins with electronics are shielded. We
have found no post-correlation contamination that is caused by self-generated interference.
This is in contrast with for example the WSRT, where the dishes close to the control room
(which contains the correlator, but it is operated from elsewhere) are known to observe more
interference. In the LOFAR auto-correlations, every now and then we do see some artefacts
that suggest local interference, but these do not visibly contaminate cross-correlations.
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Chapter 6
The brightness and spatial
distributions of RFI

Based on:
“The brightness and spatial distributions of terrestrial radio sources”

(Offringa et al., in preparation)

RADIO ASTRONOMY concerns itself with the observation of radiation from celestial sources
at radio wavelengths. However, astronomical radio observations can be affected by
radio-frequency interference (RFI), which makes it difficult to calibrate the instrument
and achieve high sensitivities. Many techniques have been designed to mitigate its ef-

fect, such as detection and flagging of the data, spatial filtering or adaptive cancellation techniques.
In most cases, these methods excise enough of the interference to calibrate and image the data.

Regular radio observations record one or a few dayparts and the results are combined. In these
cases, it often suffices to only excise interference that is apparent and thus above the noise to reach
the thermal noise limit of the instrument. A new challenge arises when one desires much deeper
observations, and a large number of observations need to be averaged. In such a case, feeble
interference caused by stationary sources might not manifest itself above the noise in individual
observations, but is coherently present in the data. Subsequently, when averaging these data, the
interference might become apparent and occlude the signal of interest. One experiment involving
long integration times is the Epoch of Reionisation experiment using the Low-Frequency Array
(de Bruyn et al., 2011). For this experiment, it is important to know the possible effect of low-level
interferences on the data, as these might overshadow or alter the signal of interest.

In this chapter, we will explore the information that is present in interference distributions, in
order to analyse possible low-level interference that is not detectable by standard detection meth-
ods. Our approach will be similar to the radio source count analysis that is used in cosmology
(von Hoerner, 1973), also named logN – logS analysis, where N and S refer to the celestial
source count and brightness respectively. The slope in such a plot contains information about
source populations, their luminosity functions and the geometry of the Universe. We will analyse
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such a double-logarithmic plot for the case of terrestrial sources, with the ultimate goal of predict-
ing their full spatial and brightness distributions. This will give a better insight in the effects of
low-level interference and allows one to simulate the effects of interference more accurately. A
distribution function can be differential or cumulative. This work uses differential distributions,
because they are better suited for visualizing the parameters we are interested in, although the two
basically convey the same information.

In Sect. 6.1, we will predict the terrestrial interfering source count based on various assump-
tions. Sect. 6.2 presents the methods that we use to generate and analyse the histograms. This is
followed in Sect. 6.3 by a short description of the two LOFAR data sets that have been used to
perform the experiment. The results of analysing the sets will be presented in Sect. 6.4. Finally,
in Sect. 6.5 the results will be discussed and conclusions will be drawn.

6.1 Prediction of the brightness distribution
Interference is generated by many different kind of transmitters, and these will have different
spatial and brightness distributions (“spatial” refers here to the distribution on the Earth). For
example, aeroplanes and satellites have widely different heights, while other sources are ground-
based. Even ground-based sources might be spread differently. For example, it can be expected
that citizens’ band (CB) devices, that are often used in cars, are differently distributed from broad-
casting transmitters. The frequencies of deliberately transmitting sources of a particular class of
devices are constrained by the bands that have been allocated for the given class, which might
allow one to distinguish different sources to some extent.

In a time-frequency plot, interfering sources can have complex structures. They can also be
intermittent and different sources might overlap in time-frequency space. An example of interfer-
ing sources can be seen in Fig. 6.1, which shows raw visibility data of one baseline of a LOFAR
observation in a time-frequency diagram (also called a dynamic spectrum). Because many sources
change over time, are repetitive or affect multiple channels, many sources produce multiple un-
connected features in the time-frequency diagram. It is often not clear what constitutes a single
interfering source, hence it is hard to count individual sources. Instead, we will count the number
of times a given brightness occurs in time-frequency space. This — as well as many other ef-
fects — will of course influence the distribution. First we will derive the expected intrinsic source
distribution. After that, we will analyse the issues that arise when measuring the distribution by
counting samples.

In every dynamic spectrum we can measure the number of times that the flux density is within
a particular range. Dividing this quantity by the total number of samples yields the relative num-
ber of events as a function of intensity. We will refer to this quantity with the statistical term
“frequency density” (not to be confused with the physical radiation frequency). We will now start
by deriving a prediction of the frequency density function of ground-based interfering sources.
Consider an interfering source of strength I . This source is observed by an interferometer that
consists of two antennae or stations with gains g1, g2, which include all instrumental effects. The
antennae are located at distances r1, r2 from the source. The interferometer will record an appar-
ent instantaneous strength S of

S(r1, r2) = I
g1g2
r1r2

, (6.1)

with 0 < g1, g2 and 0 < r1, r2 < rmax. rmax is a maximum distance, which is practically limited
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Figure 6.1: A small part of an observation displayed in a time-frequency plot. The features with
significantly higher values are caused by interference. Some of these have a constant frequency,
while others are more erratic.

to distances well below the diameter of the Earth. We will limit our analysis to cross-correlated
antennae; the auto-correlations will be ignored.

Here we assume that the source is observed fully coherent, but a possible decoherence fac-
tor can be absorbed in the gains. Due to the small bandwidth of most interfering sources, most
RFI will be received coherently, because of the narrow-band condition. For example, if the band-
width of the signal ∆ν = 1 kHz, the narrow-band condition ∆ν � (2πτ)−1 with correlation
delay τ will hold for baselines up to a few km, because it holds as long as the baseline length is
significantly less than ∆x = c/2π∆ν ≈ 50 km.

Now, we can treat the interferometer geometrically as a single point, as both antennae will see
the same distribution. Then, we can express the received amplitude S for a given distance r and
gain g as

S(r) =
Ig

r2
. (6.2)

Next, we assume that all sources have equal constant strength I . Moreover, we assume that
the sources have a uniform spatial distribution in a two-dimensional plane. This is obviously a
simplification, as the sources are actually distributed on the surface of a sphere. Beyond some
distance, the Earth will also partly block the path between transmitter and receiver. Therefore, the
assumption of uniformly distributed sources on a two-dimensional plane is only valid for a limited
distance. Using these assumptions, we can express the expected cumulative frequency density of
sources fI(r) at distance r as

Fdistance≤r(r) = cπr2, (6.3)

for some constant c that represents the number of sources per unit area. In other words, we will
observe F sources that are at most a distance of r away.

We need the reverse of Eq. (6.3) to predict the amplitude distribution, because sources with
an amplitude of at most a given strength will have a distance of at least some distance. Sources
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with at least a distance of r are given by Fdistance≥r(r) = N − cπr2, with N the total number of
sources.

The cumulative number of sources Famplitude≤S that have an amplitude of at most S can now
be calculated with

Famplitude≤S(S) =Fdistance≥r(S−1(S)) (6.4)

=Fdistance≥r(±
√
Ig

S
)

=N − cπIg

S

where S−1 refers to the inverse of S(r), i.e., the function that returns the distance r for a given
amplitude S. Finally, the differential frequency density can be calculated by taking the derivative,

fS(S) =
dFamplitude≤r

dS
(6.5)

=
cπIg

S2
.

Therefore, if we plot the histogram of the RFI amplitudes in a log-log plot, we predict to see
a slope of −2 over the interval in which the RFI sources are spread like uniform sources on a
two-dimensional plane.

6.1.1 Spherical case
If we do take into account the fact that the sources lie on a sphere, Eq. (6.3) needs to be adapted.
In this case, the number of sources corresponds with the surface area of a hemisphere. By using
the formula for the surface area of a hemisphere and some basic geometry, one finds that

Fdistance≤r = c2πR2
(

1− cos(2 arcsin
r

2R
)
)
. (with r ≤ 2R) , (6.6)

with R the radius of the Earth. By following the same reasoning as above, one finds that f̃S(S),
the frequency density function in the spherical case, can be calculated with

f̃S(S) =
d

dS

N − c2πR2

1− cos(2 arcsin

√
Ig
S

2R
)

 . (
with

Ig

S
≤ 4R2

)
(6.7)

This can be easily calculated with a computer algebra system. The resulting function itself has
many terms, but we calculated what the slope of f̃S(S) would be in a log-log plot, and found that
the spherical case also has a constant slope of -2. In fact, Eqs. (6.6) and (6.3) have the same value
over the range they can be evaluated. Therefore, the spherical case equals the two-dimensional
case in this respect. Note that f̃S(S) can not be evaluated for values of S for which Ig

S > 4R2.
This corresponds with sources that are at a distance beyond the diameter of the Earth. There are no
such sources, since we only modelled sources on Earth, and f̃S(S) = 0 in this case. In practice,
the lowest amplitude of observed sources is further constrained because of the curvature of the
Earth, causing distant sources to settle below the horizon. Nevertheless, some of those sources
might still be visible due to reflection of the ionosphere and other (semi-)spherical propagation
effects.
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6.1.2 Propagation effects
So far, we have assumed that the electromagnetic radiation propagates through free space, result-
ing in a r−2 fall-off. In reality, the radiation will be affected by complicated propagational effects.
Because of the irregular surface of the Earth (including urban areas) and the absence of a direct
line of sight between transmitter and receiver, the propagation mode might be indirect. Multiple
indirect paths might be formed by reflection, refraction or diffraction of the electromagnetic wave.

A commonly used propagation model is the empirical model determined by Okumura et al.
(1968), which was further developed by Hata (1980). Hata gives the following analytical estimate
for Lp, the electromagnetic propagation loss over land:

Lp = 69.55 + 26.16 log10 fc − 13.82 log10 hb − a(hm) + (44.9− 6.55 log10 hb) log10 r, (6.8)

where Lp the loss in dB; fc the radiation frequency in MHz; hb the height of the transmitting
antenna in m; hm the height of the receiving antenna in m; r the distance between the antennae
in m; and a(hm) a correction factor in dB that corrects for the height of the receiving antenna
and the urban density. Hata found this model to be representative for frequencies fc ∼ 150–
1500 MHz, with transmitter heights hb ∼ 30–200 m, receiver heights hm ∼ 1–10 m and over
distances r ∼ 1–20 km.

Collecting the terms of Eq. (6.8) that are not depending on r in a single variable ζ, and con-
verting from a subtrahend in decibels to a flux density factor LS , results in

LS = ζr4.49−0.655 log10 hb , (6.9)

with

ζ =
f2.616
c

h1.382
b

− 106.955− 1
10a(hm). (6.10)

The model is based on urban areas, but corrections are given by Hata for sub-urban areas with a
lower population density and for open areas. These corrections are independent of r, thus would
only change ζ. Note that according to Hata’s model, the exponent of the power law in Eq. (6.9)
depends only on the height of the transmitting antenna, that is, the exponent is independent of
frequency, receiver height and urban density. Now, if in Eqs. (6.4) and (6.5) one replaces the
definition of S(r) from Eq. (6.2) with one that includes the propagation effects,

S(r) =
ζIg

rη
, (6.11)

with η = 0.655 log10 hb − 4.49, one finds the frequency density function fp that considers propa-
gation effects,

fp(S) =
d

dS
cπ

(
ζIg

S

)2/η

=
c2π
ηS

(
ζIg

S

)2/η

. (6.12)

Consequently, due to non-free space propagation effects, the observed log-log histogram is pre-
dicted to have a 2

η − 1 slope. By substituting η, one finds

slope(hb) =
1

0.3275 log10 hb − 2.245
− 1. (6.13)
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Figure 6.2: Effect of transmitter height on the slope of a log-log histogram.

This is valid for transmitters that have a height of 30–200 m, the range over which Hata’s model
was defined. This yields distribution slopes of approximately −1.57 and −1.67 for 30 m and
200 m high transmitters respectively. In Figure 6.2, the slope value is plotted as a function of the
transmitter height, including extrapolated values for transmitter heights down to 1 m.

6.1.3 Inclusion of noise

The full measured distribution will consist of the power-law distribution combined with that of
the noise and the celestial signal. For now, we will ignore the contribution of the celestial signal,
as its contribution to the amplitude distribution will be minimal when observing fields without
strong sources. Noise, however, will have a contribution. The real and imaginary components of
receiver noise are independent and identically Gaussian distributed. Consequently, an amplitude
x will be Rayleigh distributed:

fnoise(x) =

{
x
σ2 e

−x2
2σ2 x > 0,

0 otherwise.
(6.14)

Because most of the samples will be unaffected by RFI, this will be the dominating distribution.
The Rayleigh distribution is plotted together with the -2 power-law distribution of Eq. (6.5) in
Fig. 6.3.

So far, this is the expectation for histograms of pure noise and pure RFI that propagates through
free space. However, the measured distribution is a mixture of the two. A perfect RFI detector
would separate the samples in two distributions; one that is not affected by RFI, and therefore
contains noise only, and one that is the sum of RFI and noise. Real RFI detectors can separate
these distributions to some extent, but due to false positives and false negatives, the histograms
will get mixed nevertheless. Even more, we still need to take into account that the RFI classified
samples are also affected by noise. Although this effect is moderate, because ’most’ RFI samples
are of much higher amplitude than what is added because of the noise, it is the low-level RFI
samples which we are interested in, and the relative effect of noise on those samples is large.

The real and imaginary components of samples that are affected by RFI, will follow a bivariate
distribution: each complex component is the sum of the complex component of RFI and of a noise
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Figure 6.3: The Rayleigh and power-law distributions in a log-log plot. The power-law distribu-
tion (Eq. (6.5)) has a constant slope of -2. The slope of the Rayleigh distribution in the limit of the
origin is 1. Its maximum occurs where the amplitude value equals its mode σ, which is 1 in this
example. For higher amplitudes, its slope decreases exponentially.

sample. The noise comes from a Gaussian distribution with zero mean,

fGaussian(x) =
1

σ
√

2π
e
−x2
2σ2 , (6.15)

To calculate the corresponding distribution of the amplitudes, it is easier to perform numerical
simulations, as algebraic calculation is not trivial. The histogram can be numerically estimated
by drawing complex real and imaginary samples from the two distributions and calculating and
counting the amplitudes. A sample can be drawn from the RFI distribution by normalizing and in-
verting the cumulative frequency function in Eq. (6.4) and evaluating it for a uniformly distributed
variable. Note however that Famplitude≤S(S) is not limited; when decreasing the amplitude S to-
wards zero, the number of sources will go to infinity. Therefore, to draw a sample by using the
inversion method, this would require a uniformly distributed variable ∼ U(0,∞). By assuming
that there are no samples beyond some limiting distance rl, then Famplitude≤S(S) = N − cπr2l
for S < Ig/r2l . Consequently, by sampling a uniform value xu with 0 ≤ xu ≤ N − cπr2l and
applying the inverse of Eq. (6.4), we will sample amplitudes S with S ≥ Ig/r2l , and S ∼ the
power-law distribution.

A single real or imaginary RFI contaminated amplitude SR can then be sampled with

SR =
Ig

xur2l
, (6.16)

and the corresponding formula for drawing a sample S that is contaminated by both RFI and noise
is

S = xn +
Ig

xur2l
, (6.17)
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Figure 6.4: Histograms of simulated samples that all have a contribution of noise and RFI. Var-
ious settings of the parameters were used, and samples were drawn as described in Eq. (6.18).
Solid lines: the combined distributions, dashed lines: the original distributions before mixing.

with xn ∼ N(µ = 0;σ = 1) and xu ∼ U(0, 1). The final amplitude sample SA can then be
calculated with

SA =
√
S2

1 + S2
2 , (6.18)

where S1 and S2 have been independently drawn in accordance with Eq. (6.17). An example of
distribution curves for various settings of Ig/r2l is given in Fig. 6.4.

If we assume that I , the average source strength; g, the average instrumental gain; and rl, the
distance over which those sources are visible, are all unknown, it can be seen from Eq. (6.17) that
given the histogram we can solve neither rl, I or g, as they all have the same effect of scaling
the -2 power-law part of the histogram. Although calibration could in theory solve g, almost all
sources will come in through the edges of the beam, and finding the expected values for the gains
is therefore hard. The effects of these parameters on the histogram will be further discussed in
§6.1.4.

Fig. 6.4 shows that the left side of the graph corresponds with the original Rayleigh distribu-
tion. From the right side of the histogram, we are able to estimate Ig/r2l , as the placing of the
power-law curve is independent of the Rayleigh distribution for large S. Methods to constrain the
parameters of the RFI distribution will be discussed in §6.2.3. The curves in Fig. 6.4 are from
histograms of samples that are all contaminated by both noise and RFI. In practice, we can not
make this distinction 100% accurately, as RFI detectors have a limited accuracy. Consequently,
the observed histogram will be the sum of two types of histograms: the first histogram being
contaminated by both noise and RFI, the second one only by noise.



6.2 Methods 145

6.1.4 Parameter variability

In reality, the parameters c, I and g, which are the source density per unit area, source strength and
instrumental gain respectively, will not be constant over time and frequency but have a stochastic
nature. However, since each specific value for these parameters produces a power law, the com-
bined distribution will still show a power law, as long as the parameters follow a distribution that
is steep at high amplitudes, such as a Gaussian or uniform distribution.

One instrumental effect that is absorbed in g is the frequency response of the instrument, i.e.,
the antenna response in combination with the passband of the analogue and digital filters. Because
the data that are analysed in Sect. 6.4 has initially not been band-pass calibrated, the instrumental
response is not uniform over frequency. We determined that the variation due to the band-pass is
about one order of magnitude in the LBA and about a factor of two in the HBA.

The effect of the band-pass on the data distribution is consequently limited to one order of
magnitude or less. If the RFI sources have an apparent power-law distribution with a certain
exponent, the distribution will have a feature at low amplitudes due to the frequency response, but
a power law with equal exponent will still appear when the distribution is observed over a wide
enough range.

Another effect that is absorbed in g, is the beam of the instrument. At the point of writing,
LOFAR beam models are still being developed and are not yet well parametrized. However, since
it is likely that most RFI sources are observed at the edges of the beam, it can be expected that the
beam will have a benign effect on the histogram of an observation, comparable with the effect of
the frequency response.

6.2 Methods

In this section we will briefly discuss how the histograms are created, how the slope of the underly-
ing RFI distribution is estimated and show how to constrain some of the intrinsic RFI parameters.

6.2.1 Creating a histogram

While creating a histogram is trivial, it is important to note that it is necessary to have a variable
bin size. This is mandated by the large dynamic range of the histogram that we are interested
in. Therefore, we chose to have a bin size that increases linearly with the amplitude S, and the
frequency distribution is normalized by the bin size after counting. Consequently, in parts of the
histogram that have a sparse number of samples, the outlying samples will follow a 1/S curve,
or a -1 slope in a log-log plot. This can be seen in the tails of the distributions of Fig. 6.4. This,
however, is not an intrinsic feature of the data but a consequence of the binning method.

6.2.2 Estimating the slope

An automated procedure is used to calculate the slope of the observed log-log histogram. First,
the mode σ̂ of the Rayleigh distribution is estimated by finding the amplitude with the maximum
occurrences, i.e., the amplitude corresponding to the peak of the histogram. Then, the maximum
amplitude Smax is calculated, i.e., the sample with highest amplitude. Finally, the slope is esti-
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mated using linear regression over the interval R,

R =
[
20σ̂; 10

1
2 (log10 20σ̂+log10 Smax)

]
. (6.19)

In terms of the log-log histogram, the start of the interval corresponds with the point that is 1.3
units to the right of the peak in the histogram, and the interval end corresponds with the point
halfway between the start point and the maximum amplitude. This interval starts near the start of
the RFI slope but past where the Rayleigh curve dominates. It also does not include the noisy data
at the end of the curve.

One should note that fitting straight lines to the distribution curve in a log-log plot is not the
most accurate way of estimating the exponent of a power-law distribution (Clauset et al., 2009).
However, because of our enormous sample size, which allows fitting the line over a large interval,
the estimator will be sufficiently accurate for our purpose. Nevertheless, we will additionally
calculate a maximum likelihood estimator for comparison. The maximum-likelihood estimator
for the exponent in a power-law distribution is given by the Hill estimator (Hill, 1975; Clauset
et al., 2009), defined as:

αH = 1 +N

(
N∑
i=1

ln
xi
xmax

)−1

. (6.20)

However, this estimator assumes the distribution is not cut-off at a high point. In our case, the
distribution is cut-off, for example because of the limit of the analogue-digital converter (see
§6.2.3). Therefore, using this estimator will result in an estimate that is steeper (i.e., more nega-
tive) than the actual distribution. Moreover, the estimator requires an iteration over all data points,
and because of the size of the data sets this is somewhat impractical. However, we can calculate
Eq. (6.20) by adding the bin centre values N times to the calculation, where N the bin frequency.
Because the bin size is rather small, the resulting estimation will be close to the normal Hill
estimator and one does not have to iterate over all data.

6.2.3 Determining RFI distribution limits
In this section we will show methods to find SU and SL, the upper and lower flux limits of the
power-law distribution at which the power law breaks down. Once the exponent of the power-law
part of the distribution is estimated with the previously discussed techniques, the distribution can
be extrapolated to find a lower flux limit. Assume that we have found a power law with exponent
α and factor β over an amplitude region [S1;S2], resulting in the following frequency density
function g:

g(S) = βSα. (6.21)

Assume also that the histogram containsNpart (RFI) samples with amplitude> S1, as sketched
in Fig. 6.5. The hypothetical upper limit SU of the distribution can now be found, i.e., the highest
amplitude that would be observed when the distribution follows the power law up to that point, by
solving

SU∫
S1

g(S)dS = Npart. (6.22)
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Figure 6.5: Cartoon of how a constraint on the lower fall-off point of the power-law distribution
can be determined. Note that the labelled areas are areas as occupied in a linear plot, i.e., the
integration of the density function. Areas in a log-log plot are not linearly related to the integral.
There are two ways to estimate the lower constraint SL: (i) the areas Na and Ntotal − Npart are
equal if Ig/r2 is constant during the observation, and (ii) if one assumes Ig/r2 ∼ uniform, then
Na +Nb = Ntotal −Npart.

In practice, the observed histogram will break down beyond some amplitude because of several
reasons. First and most importantly, the samples itself are digitized with an analogue-to-digital
converter (ADC) with limited range. Second, we observe for a limited time and the frequency
count is discrete. Because the chance of finding a sample with a very high intensity is low, it
is unlikely to observe samples beyond some amplitude within the finite observing time. Finally,
under the assumption of a uniform spatial distribution of RFI transmitters, samples with very
high amplitude would have to be produced by transmitters that are very close to the telescope.
However, it is likely that the uniform spatial distribution of transmitters will break down at closer
distances.

Solving Eq. (6.22) results in

SU = α+1

√
α+ 1
β

Npart + Sα+1
1 . (6.23)

In some cases there will be no solution for SU . The reason for this is that the integral of the
distribution function converges, and the total number of samples is finite even when S → ∞. If
Npart exceeds the integrated value of the fitted distribution function, there is no solution. This can
happen when the empirical distribution is not limited at the high end, or when it contains features
that are not in the model.

Similar to the calculation of SU and by using Ntotal as an upper limit to the total number of
samples that are affected by the power-law distribution, one can estimate the lower limit SL. For
Fig. 6.5 this means that the areas labelled Na and Ntotal −Npart are equal. Solving this equation,
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one finds that

SL = α+1

√
α+ 1
β

(Npart −Ntotal) + Sα+1
1 . (6.24)

With the assumption that Ig/r2l ∼ a uniform distribution, the area labelled in Fig. 6.5 as Nb
is also part of the RFI distribution, and a stronger constraint S̃L can be found by solving

SU∫
S̃L

g(S)dS + S̃Lg(S̃L) = Ntotal −Npart, (6.25)

which yields

S̃L = α+1

√
− 1
α

(
α+ 1
β

(Npart −Ntotal) + Sα+1
1

)
. (6.26)

With estimates of α, β, SL and SU , one has obtained a parametrization of the RFI distribution.
As was shown in §6.1.3, the left-most point where the power-law distribution falls off is Ig/r2

– assuming free space propagation for the moment – and therefore SL = Ig/r2. For Hata’s
propagation model, the more generic solution SL = ζIg/rα is found. This value represents the
apparent brightness of the sources that are the furthest away from the telescope. With a fully
parametrized distribution of the effect of RFI sources, an empirical model for RFI effects can be
made. Moreover, one can calculate E(SR), the expected apparent strength of RFI:

E(SR) =
1

NLU

SU∫
SL

βSαSdS =
β

NLU

[
1

α+ 2
Sα+2

]SU
SL

=
β
(
Sα+2
U − Sα+2

L

)
NLU (α+ 2)

(6.27)

Here, NLU is the number of samples between SL and SU after normalizing for the bin size:

NLU =

SU∫
SL

βSαdS. (6.28)

Substitution and simplification of these two results in

E(SR) =

(
Sα+2
U − Sα+2

L

)
(α+ 1)(

Sα+1
U − Sα+1

L

)
(α+ 2)

. (6.29)

This is essentially the flux density that is caused by RFI without using RFI detection or excision
algorithms. E(SR) has the same units as SL and SU , thus for example in Jy after calibration (see
§6.2.4). In practice, the increase of system noise after correlation is much less severe because
of RFI flagging, which excises a part of the RFI. One can assume that all RFI above a certain
power level is found by the detector. Since modern RFI detection algorithms can find all RFI
that is detectable “by eye” (Offringa et al., 2010a), this power level will be near the level of the
noise mode. In Chapter 5, the false-positives rate for the AOFlagger is estimated to be 0.5%. An
estimate of Sd, the average lower limit of detected RFI, can be calculated by finding the point on
the distribution where the area under the distribution to the right of Sd equals the “real number”
(true positives) of RFI samples. Therefore, the limit is calculated similar to Eq. (6.24), where
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the term Npart −Ntotal needs to be replaced with NRFI, which equals the total number of samples
detected as RFI minus the 0.5% false positives.

Finally, E(Sleak), which is the expected value of leaked RFI not detected by the flagger, can
be calculated by replacing SU with Sd in the numerator of Eq. (6.29) and subtracting the removed
number of samples from the total of number of samples. Assume that a fraction of 1− η samples
have been detected as RFI, then

E(Sleak) =
1

ηNLU

Sd∫
SL

βSαSdS =

(
Sα+2
d − Sα+2

L

)
(α+ 1)

η
(
Sα+1
U − Sα+1

L

)
(α+ 2)

. (6.30)

This is the average contribution that leaked RFI will have on a single sample. It has the same units
as the parameters SL, SU and Sd. Typical values for η are 0.95–0.99.

6.2.4 Calibration
We can assign flux densities to the horizontal axis of the histogram by using the system equivalent
flux density (SEFD) of a single station. The current LOFAR SEFD is found to be approximately
3000 Jy for the HBA core stations and 1500 Jy for the remote stations in the frequency range from
125–175 MHz. The SEFD is approximately 30000 Jy for all Dutch LBA stations in the frequency
range 40–70 MHz. The standard deviation σ in the real and imaginary values is related to the
SEFD with

σ =
SEFD√
2∆ν∆t

, (6.31)

where ∆ν is the bandwidth and ∆t is the correlator integration time. The standard deviation
will appear as the mode of the Rayleigh distribution. By fitting a Rayleigh function with fitting
parameter σ to the distribution, one finds the corresponding flux density scale.

RFI sources will enter through the distant sidelobes of the station beams from many unknown
directions. Moreover, models for the full beam are often hard to construct. Therefore, we will not
try to calibrate the beam, and the flux densities in the histogram are apparent quantities. Conse-
quently, we will not be able to say something about the true intrinsic power levels of RFI sources.

6.2.5 Error analysis
An estimate for the standard deviation of the slope estimator α̂ can be found by calculating SE(α̂),
the standard error of α̂. The standard error of the slope of a straight line (Acton, 1966, pp. 32–35)
is given by

SE(α̂) =

√
SSyy − α̂SSxy
(n− 2)SSxx

, (6.32)

where SSxx, SSxy and SSyy are the sums of squares, e.g., SSxy =
∑n
i=1(xi − x̄)(yi − ȳ)

and n is the number of samples. However, we found that this is not a representable error in our
case, because the errors in the slope are not normally distributed. The noise in the part of the
histogram over which the slope is calculated, is very small due to the large amount of samples.
Consequently, the estimated standard deviation of α̂ is very low. Nevertheless, when the slope is
calculated over subsections of the original range over which the slope is calculated, one finds the
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line is not completely straight and the slope is changing more than is predicted by the standard
error. Therefore, we introduce an error estimate εα that quantifies a normalized standard deviation
of the slope over the range. This error is formed by calculating the slope over nα smaller subranges
in the histogram, creating nα estimates αi. If the errors in αi are normally distributed with mean
zero, the standard deviation over the full range will be

√
nα times smaller. Therefore, an estimate

of the variance of α̂ can be calculated with

εα̂ =

√∑
(αi − α̂)2

n2
α − nα

. (6.33)

This estimate is slightly depending on the number of subranges that is used, nα, but we found that
εα̂ is more representative than the standard error of α̂.

The Hill estimator of Eq. (6.20) is a different estimation method for the exponent in the power-
law distribution, and yields therefore also a different standard error. The standard error of the Hill
estimator is (Clauset et al., 2009)

SE(α̂H) =
−α− 1√

n
+O(

1
n

). (6.34)

Because the number of samples is very large (> 1011), the O-term will be very small. Therefore,
we will calculate the quantity without the term. As with the standard error for the slope of a
straight line in Eq. (6.32), the standard error for the Hill estimator yields very small quantities.
Again, this is because it assumes the underlying power law has a fixed exponential, while in our
case the power law seems to vary. Therefore, this value is given only for completeness.

Because our distributions are huge, we decided not to do goodness-of-fit tests, because these
require many similar distributions to be simulated in order to reach accurate decision. Instead, we
will try to evaluate the distributions visually.

6.3 Data description
We have analysed the distributions of two data sets. Both data sets are 24 h LOFAR RFI surveys
and are extensively analysed in Chapter 5. In one set, the low-band antennae (LBA) were used
and the frequency range 30.1–77.5 MHz was recorded, while in the other the high-band antennae
(HBA) were used to record the frequency range 115.0–163.3 MHz. More stations were used in
the LBA set. The specifications of the two sets are listed in Table 6.1. The stations that have been
used are geometrically spread over an area of about 80 km and 30 km in diameter at maximum
for the LBA and HBA sets respectively.

Although we have used Hata’s model to estimate the RFI log-log histogram slope, our fre-
quency range falls partly outside the frequency range over which Hata’s model has been verified.
However, according to Hata’s model the observing frequency does not influence the power-law
exponent in the frequency range 150–1500 MHz, thus it can be assumed the exponent will at least
not significantly differ over the HBA range.

To detect RFI, the AOFlagger (Offringa et al., 2010a,b) was used. However, since this flagger
is partly amplitude-based, it is likely that low-level RFI will leak through the detector. Since it
is also low-level RFI we are interested in, we will analyse unflagged data and the RFI classified
data.
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Table 6.1: Data set specifications

LBA set HBA set
Observation date 2011-10-09 2010-12-27
Start time 06:50 UTC 0:00 UTC
Length 24 h 24 h
Time resolution 1 s 1 s
Frequency range 30.1–77.5 MHz 115.0–163.3 MHz
Frequency resolution 0.76 kHz 0.76 kHz
Number of stations 33 13
Total size 96.3 TiB 18.6 TiB
Field NCP NCP
Amount RFI detected 1.77% 3.18%
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Figure 6.6: The histograms of the two data sets before pass-band correction and flux calibration.
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6.4 Results
In this section we present the histograms of the LBA and HBA sets and the results that were
obtained by applying the methodology discussed in Sect. 6.2.
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Figure 6.7: Histograms for 5 different 0.2 MHz LBA sub-bands without pass-band correction and
flux calibration. The continuous lines represent the data before RFI flagging. The dashes lines are
the histograms of the samples that have been classified as RFI.

6.4.1 Histogram analysis

Fig. 6.6 shows the histograms with logarithmic axes for the LBA and HBA sets. In both sets, it
is clear that at least one variate with a Rayleigh and one with a power-law distribution have been
observed. The left part of the histogram matches the Rayleigh distribution well up to the mode of
the distribution. The bulge around the mode of the LBA histogram is wider due to the larger effect
of the antenna response as discussed in §6.1.4. As can be seen in Fig. 6.7, the Rayleigh-bulges
of individual sub-bands are not that wide, but they are not aligned because of the differing noise
levels. This effect is not so strong in histograms of the HBA sub-bands in Fig. 6.8, because the
HBA antenna response changes less over frequency.

It is to be expected that the RFI-dominated part of the distributions at different frequencies
will reflect the underlying source populations. Both Figs. 6.7 and 6.8 show that the power-law
part of the distributions are very different for different sub-bands. Nevertheless, combining the
data of all the sub-bands results in reasonably-stable power-law distributions. This indicates that
the individual sub-bands have an approximately similar underlying power-law distribution, that
is not yet apparent because not enough samples are combined in the histograms of individual
sub-bands.
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To make sure that the antenna response does not influence the result of the slope, we have
also analysed the curves after a simple band-pass calibration. This was performed by dividing
each sub-band by its standard deviation after RFI excision. Because the standard deviation of the
distribution might be affected by the RFI tail of the distribution, we compare the two histograms
to make sure the power-law distribution is not significantly changed. The resulting histograms
are shown in Fig. 6.9. This procedure makes the bulge of the LBA histogram similar to the
bulge of a Rayleigh curve and extends the power-law part. Nevertheless, it does not change the
log-log slope of the power law in either histograms. This validates that the variable gain that is
caused by the antenna response does not change the observed power law. Consequently, it can be
expected that other stochastic effects, such as the intrinsic source strength and the beam gain due
to a differing direction of arrival, will similarly not effect the power law. Because the pass-band
corrected histograms provide a more representative analysis, we will use the corrected histograms
for further analysis.
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Figure 6.10: Least-squares fits of Rayleigh distributions to the LBA and HBA histograms, after
pass-band correction but without flux calibration.

The Rayleigh parts of the distributions are plotted in Fig. 6.10, along with a least-squares
fit and its residuals. Both histograms follow the Rayleigh distribution for about five orders of
magnitude, which is validated by the residuals that show only noise. It breaks down about one
order of magnitude before the mode of the distributions. This is because of the multi-variate nature
of the distributions, as was described in §6.1.3.

If we go back to Fig. 6.9, we see that in the LBA the power law is stable for about three orders
of magnitude, and one order more in the HBA. Fig. 6.11 shows the slope of the log-log plot as a
function of amplitude, which was constructed by performing linear regression in a sliding window,
with a window size of 1 decade. The HBA shows very little structure in the slope, but the HBA is
less stable and shows some features in its power-law part. Linear regression on the power-law part
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Figure 6.11: The slope of the band-pass corrected log-log histogram as a function of the bright-
ness. The horizontal lines indicate the fitted slope over the full (semi-) stable region. The horizon-
tal axis is not calibrated.

of the log-log plot results in a slope of −1.62 for the LBA and −1.53 for the HBA. These and the
other derived quantities have been summarized in Table 6.2. Although the HBA slope does not
show any other significant features besides the Rayleigh and power-law curves, the LBA power
law ends with a bulge around an amplitude of 106. This bulge is caused by a very strong source
affecting lots of samples, and is an apparent single outlier in the spatial distribution. We found
this is caused by RFI observed for about an hour in the late afternoon in the lower LBA frequency
regime, around 30–40 MHz. Leaving this frequency range out flattens the bulge significantly,
but does not completely eliminate it, because the source turned the receivers in non-linear state,
causing leakage at lower intensity levels in the other sub-bands. Unlike linear regression, the
fitting region of the Hill estimator is not limited at the high end. Consequently, because of the
bulge, the Hill estimator evaluates for the LBA into a slope that is less steep, with a value of
−1.53. For the HBA set, the Hill estimator is equal to the−1.53 value found by linear regression.

On the assumption that the histogram is zero below amplitude SL, we find that SL = 21 mJy
for the LBA and SL = 6.2 mJy for the HBA (see Table 6.2). If instead it is assumed that the his-
togram has a uniform distribution below some amplitude S̃L, we find that the amplitude at which
the power-law distribution breaks down is approximately a factor two higher. The two different
assumptions on how the power-law distribution breaks down have a small effect on E(Sleak), the
expected value of the leaked RFI. By using S̃L instead of SL, it is a few percent lower. By assum-
ing a 100% RFI occupancy, we find that the expected value of leaked RFI is 484–496 mJy for the
LBA and 167–171 mJy. With 10% occupancy, the value for E(Sleak) is about 25% reduced. The
RFI occupancy only starts to have a significant effect on E(Sleak) if it is well below 10%.

6.5 Conclusions and discussion

We have analysed the histogram of visibility amplitudes of LOFAR observations and found that,
within a significant range of the histogram, the contribution of RFI sources follows a power-law
distribution. The found power-law exponents of −1.62 and −1.53 for the 30–78 MHz LBA and
115–163 MHz HBA observations respectively, can be explained by a uniform spatial distribution
of RFI sources, affected by propagation described surprisingly well by Hata’s electromagnetic
propagation model. Taken at face value these exponents imply in Hata’s model that the average
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Table 6.2: Estimated distribution quantities per data set.

Symbol Name LBA set HBA set
Ntotal Total number of samples in histogram 8.0× 1011 5.4× 1011

σ Rayleigh mode (assumed to be SEFD/
√

2∆t∆ν) 770 Jy 77 Jy
Estimators for power-law distribution parameters
α Exponent of power law in RFI distribution −1.62 −1.53
SE(α) Standard error of α 2.8× 10−3 6.9× 10−4

αH Hill estimator for power-law exponent −1.53 −1.53
SE(αH) Standard error of αH 8.9× 10−6 1.0× 10−5

εα Sampled estimate of standard deviation of α 6.1× 10−2 1.2× 10−2

β Scaling factor of power law with exponent α 4.0× 1017 3.4× 1015

Limits
SL Constraint on lower fall-off point of power law 21 mJy 6.2 mJy
S̃L As SL, but assuming Ig/r2 ∼ uniform 47 mJy 14 mJy
Sd Expected lowest apparent level of RFI detected 26 Jy 5.7 Jy
E(SR) Apparent RFI flux density 2700 Jy 140 Jy
E(Sleak) Residual apparent RFI flux density after excision 484–496 mJy 167–171 mJy

Same as above, but by assuming 10% occupancy 384 mJy 120 mJy
REFD RFI equivalent flux density 18.9–19.3 Jy 6.5–6.7 Jy

transmitting heights for sources affecting the LBA and HBA are 79 and 13 m respectively. Hata’s
model only goes down to 150 MHz, and it is possible that the electromagnetic fall-off due to
propagation will be different for lower frequencies, e.g. because the effect of the ionosphere
becomes stronger. Intervals for the exponents with representative 3σ confidence boundaries are
[−1.80;−1.44] for the LBA and [−1.53;−1.49] for the HBA. The estimate of the HBA is thus
more accurate, because its histogram deviates less from the power law.

On the assumption that the power-law distribution for RFI sources will continue down into
the noise, we have constructed a full parametrization of the RFI apparent flux distribution. By
assuming that all samples contain some contribution of RFI, we find that the average flux density
of RFI that leaks through the detector is 484–496 mJy for the LBA and 167–171 mJy for the HBA
(depending on the used method). These values should be compared to the noise in individual
samples of 770 Jy (LBA) and 77 Jy (HBA) (see Table 6.2), and are upper limits for what can be
expected. If in fact not all samples are affected by RFI, the leaked RFI flux will be smaller, and
will of course be zero in the extreme case that the detector has found and removed all RFI.

In experiments such as the LOFAR EoR project, a simulation pipeline is used to create a
realistic estimate of the signal that can be expected. Currently, these simulations do not include
the effects of RFI. With the construction of empirical models for the RFI source distributions,
we are one step closer to including these effects in the simulation. Using Eq. (6.16), one can
sample the strength of a single RFI source, add the feature to the data and run the AOFlagger.
What is still needed for accurate simulation, is to obtain a likely distribution for the duration
that one such source affects the data. For example, it is neither realistic that all RFI sources
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are continuously transmitting nor that they affect only one sample. The RFI detector is highly
depending on the morphology of the feature in the time-frequency domain. Finally, the coherency
properties of the RFI might be even more important to simulate correctly, but these have been not
been explored. However, these have large implications for observations with high sensitivity. This
will be discussed in the next section.

The derived values for the average lower level of detected RFI, Sd, show that the AOFlagger
has detected a large part of the RFI that is well below the sample noise. In both sets, Sd is more
than one order of magnitude below the Rayleigh mode. This can be explained with two of the
algorithms it implements. The first one is the SumThreshold method (Offringa et al., 2010a),
that thresholds on combinations of samples, and is thus able to detect RFI that is weaker than the
sample noise. The second one is the scale-invariant rank (SIR) operator (Offringa et al., 2012b).
This operator is not dependent on the sample amplitude, but flags based on morphology.

6.5.1 Implications for very long integrations

In theory, faint RFI could impose a fundamental limit on the attainable noise limit of long integra-
tions. As an example, we will analyse the situation for the LOFAR EoR project. This project will
use the LOFAR high-band antennae to collect on the order of 50–100 night-time observations of
6 h for a few target fields. The final resolution required for signal extraction will be about 1 MHz.
The project will use about 60 stations, each of which provides two polarized feeds. This will bring
the noise level in a single 6 h observation in 1 MHz bandwidth to

σeor-night = SEFD (2∆t∆νNfeedNinterferometers)
− 1

2 ≈ 250 µJy. (6.35)

Therefore, after 100 nights the thermal noise level will be 25 µJy.
Because some RFI sources might be stationary, the signals from these sources will add co-

herently over time. Therefore, the amount that time integration can lower the flux density of RFI
might be limited. Additionally, some RFI sources will be received by multiple stations of the
array, and by multiple feeds of the individual antennae. Therefore, integrating data from different
interferometers and data from the two polarized feeds might also not bring the noise level that
is caused by RFI down. In summary, unlike normal noise, the RFI might be coherent over time,
interferometer and feed.

On the other hand, many RFI signals observed in the LOFAR bands have a limited bandwidth.
Indeed, the majority of the detected RFI sources affect only one or a few LOFAR channels of
0.76 kHz. Therefore, frequency averaging will lower the flux density of the RFI signal. If the
frequency range contains only one stationary RFI source, the strength of this RFI source will go
down linearly with the total bandwidth. If we assume that all channels are affected by RFI sources
and all transmit in approximately one channel, then the noise addition that is produced by RFI
will go down with the square root of the number of averaged channels. This is a consequence of
the random phase that different RFI sources have.

In summary, some class of stationary RFI sources are expected to be coherent over time,
polarization and interferometer, but not over frequency. Therefore, in this case the noise level at
which RFI leakage approximately becomes relevant is given by

σRFI =
REFD√

2∆ν
, (6.36)
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where REFD is the RFI equivalent flux density at 1 Hz and 1 s resolution for a single station,
in analogue to how the SEFD is defined. This only holds when the observational integrated
bandwidth ∆ν is substantially higher than the average bandwidth of a single RFI source. Oth-
erwise, if the ∆ν is small relative to the average bandwidth of RFI sources, some RFI might show
up earlier. The empirically found upper limits in this work are REFDLBA = 18.9–19.3 Jy and
REFDHBA = 6.5–6.7 Jy (see Table 6.2).

For the EoR project with 1 MHz resolution, Eq. 6.36 results in σRFI ≈ 4.7 mJy. However,
the first EoR results of observations of one day have approximately reached the thermal noise of
about 1.7 mJy per subband (Yatawatta et al., in preparation), and the resulting images show no
signs of RFI. Clearly, Eq. 6.36 is therefore not applicable to most of the RFI that is observed with
LOFAR. In the following section we will discuss effects that could cause a reduced contribution
of RFI.

6.5.2 Interference-reducing effects
When integrating data, it is likely that the actual noise limit will be significantly lower than the
given upper limit, which was determined on high resolution. There are several reasons for this,
which we will summarize one by one.

• Many RFI sources have a variable geometric phase, because they move or because their path
of propagation changes. This would cause them to sum (partly) incoherently over time, and
thus go approximately down with the noise.

• Many RFI sources will be seen by only a few stations. This would make the histogram go
down more quickly at lower amplitudes.

• For the shortest baselines at 150 MHz, the far fields starts around 1 km. Some RFI sources
will therefore be in the near field, especially in the longer baselines. In that case, a source
will not add up coherently over the interferometers that see the particular source, as the
interferometers see them with different phases.

• Many stationary sources are not constant over time, thus will be attenuated somewhat by
averaging.

• We have assumed 100% of the spectrum is occupied by RFI. If, say, only 10% of the spec-
trum is occupied, the expected value of the leaked RFI level decreases with about 25%, and
if the detected 2.68% true-positives contain all RFI, there is no leaked RFI at all. With cur-
rent data, one can only speculate how much the electromagnetic spectrum is truly occupied.

• Stationary RFI sources in a uniform spatial distribution will interfere both constructively
and destructively with each other. Individually, the sources will have fixed geometric
phases, but because the baselines are much longer than the wavelength, their phases will
become uniformly spread. Therefore, they will add incoherently.

Two other effects can improve the RFI situation as well:

• Fringe stopping interferometers can partly average out RFI sources. Nevertheless, station-
ary RFI that is averaged out by fringe stopping will leave artefacts behind in the field centre
(Offringa et al., 2012a). This is not relevant when observing the North Celestial Pole —
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which is one of the LOFAR EoR fields — because no fringe stopping is applied when
observing the NCP.

• The Fourier transform that is involved in data imaging will localize the contribution from
stationary RFI near the NCP. If RFI artefacts would show in the image of the NCP field,
they can be easily detected and possibly be removed, or processing could ignore data near
the pole.

Because of the above two arguments, when considering RFI it is a risk to use the NCP as
one of the EoR target fields. At the same time, this field is useful for analysing the RFI coherency
properties. It is also a simple field to observe with LOFAR, because it is always at high declination
in the Netherlands and it does not contain bright foreground sources. Preliminary analysis of
EoR NCP observations of a single night have reached the thermal noise (Yatawatta et al., in
preparation), but do not show leaked RFI at the pole.

Finally, future RFI excision strategies will further enhance detection accuracy. Currently, RFI
excision is applied only on the raw data from single interferometers at high resolution. Once data
from a large number of nights are collected, it will be possible to detect and excise RFI more ac-
curately, by looking at the averaged data from multiple nights and/or multiple interferometers. We
have shown that the current detection algorithms can detect RFI well below the noise. Therefore,
if data from different nights or interferometers are summed, and there is stationary RFI in the set,
it will become detectable. All RFI that is below the noise but is not stationary, will act like normal
noise and will therefore be harmless.

With the current strategy, it is likely that the LOFAR EoR project will encounter some RFI on
some frequencies when averaging lots of observing nights, although this still has to be seen. To
mitigate this leaked RFI, the detection can be executed at higher signal-to-noise levels. The current
results indicate that a lot of RFI is not coherent, and the situation is promising. Considering the
current RFI results, and the availability of further mitigation steps, it is very likely to assume that
RFI will not be problematic for the detection Epoch of Reionisation.
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Chapter 7
Conclusions & outlook

TTHE RED LINE throughout this thesis is that the current situation of radio-frequency inter-
ference for LOFAR is well manageable. All chapters in this thesis provide a part in this

overall conclusion. In particular, we have seen that radio-astronomical observations at
low frequencies can be performed in urban areas without the loss of a significant amount

of sensitivity or bandwidth. This, however, is not possible without taking some measures during
the hardware design and processing of the data. It is also imperative to have a stable frequency
allocation, in order to avoid the strongest broadband transmitters. This chapter will briefly revisit
the chapters one by one, and combine their conclusions in order to get to the overall conclusions
of this work. During this discussion, the future developments and directions that relate to radio
astronomy and interference mitigation will be considered as well.

Most of the conclusions are generic conclusions. If a conclusion is LOFAR specific, this will
be stated.

7.1 Detection methods
Of all methods to deal with radio-frequency interference, post-correlation detection and mitigation
is probably the most important method. It is relatively simple, does not require special hardware,
it is used during almost all observations and it is often the only required RFI mitigating method
to get to high-quality radio images. Although a lot of research described in the literature deals
with generic detection methods, little research has been devoted to the specific purpose of radio-
frequency interference detection. In the context of interference, most effort has been put into
other methods, such as spatial filtering, adaptive cancellation and high-resolution blanking. These
techniques are of crucial importance when the channel that is observed is fully contaminated.
Nevertheless, these techniques are less demanding compared to the accurate detection methods
that are used in almost every observation. Generic methods, such as simple thresholding, have
been used regularly for the detection of interference. However, these methods are not very accurate
and do not take all known information about the interference to their advantage. Now that modern
interferometers start to provide much higher spectral and temporal resolution, accurate and fast
detection methods have become even more important. In Chapter 2, this gap in our knowledge of
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RFI detection methods is filled, and several novel detection methods are designed and compared,
resulting in an much improved accuracy and performance.

In Chapter 2, the detection problem is split in three parts: (i) signal estimation or fitting al-
gorithms; (ii) detection for statistical outliers; and (iii) morphological detection. In past work,
the most advanced methods that were used for these steps are polynomial fitting or median fil-
tering; amplitude thresholding; and a morphological dilation, respectively. In Chapter 2, the
SumThreshold and scale-invariant rank (SIR) operator were introduced. The SumThreshold
detects statistical outliers by performing combinatorial thresholding, while the SIR operator finds
samples that are likely contaminated based on the morphology of the flag mask. These two meth-
ods have been shown to significantly enhance the accuracy of the detection, up to a level that it
performs as good as manual selection “by eye”. For signal estimation, a simple Gaussian low-
pass filter is used. While this filter is as accurate as common methods, e.g. median filtering or
polynomial fitting, it is also very fast. All these methods are effective in the LOFAR frequency
range of 20–250 MHz, but have also shown to work well on higher frequencies.

A useful future direction is to make the signal estimation step robust for any LOFAR ob-
servation. Especially in observations with very strong off-axis sources (such as Cassiopeia A,
Cygnus A or the Sun at low frequencies in the Northern hemisphere), we sometimes see that
the default pipeline flags too much of the data. This is a problem that occurs only in a small
range of observations, and can be solved by manually tweaking some parameters of the pipeline.
Nevertheless, projects that survey a large part of the sky and thus target hundreds of directions
simultaneously, require a completely automated reduction process. An example of such a project
is the LOFAR MSSS project. Currently, the LOFAR flagger uses no prior knowledge about the
target field. To automate the process successfully in all cases, the flagger could use knowledge
about the field direction and the relative position of the strongest sources, and adopt the flagging
strategy accordingly. Alternatively, one can flag everything with the default strategy, and detect
observations with a relative high number of flags. Because the RFI occupancy is quite stable, a
high number of flags indicates most likely a problem due to off-axis sources. If this case is de-
tected, the set can be flagged again with a strategy that makes less assumptions about the temporal
variation of the visibilities.

The SIR operator that was introduced in Chapter 2, is a new generic morphological operator.
Other morphological operators, such as the morphological dilation, erosion, opening and closing
operators, have shown to be applicable in a wide range of applications. Therefore, the use of
the SIR operator might not be limited to an astronomical context. The SIR operator algorithm is
closely related to the all maximal sub-sequence sum algorithm, which is used in protein and DNA
sequence analysis (Karling and Brendel, 1992). The SIR operator might therefore also be relevant
in that application. Another application where the algorithm might be useful is image processing.

7.2 Pipeline efficiency

The individual algorithms that were introduced in Chapter 2 are important building blocks for
a fully automated pipeline. However, to let such a pipeline work robustly and successfully, the
individual algorithms need to work together. Some of the input parameter need to be tweaked,
while others need to be determined automatically. This is discussed in Chapter 3. The resulting
pipeline is optimized for the LOFAR case specifically. However, optimizing the pipeline for a
telescope with a different frequency range or different time and frequency resolution requires
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adjustments of only two or three of the parameters.
The culminating pipeline, named the “AOFlagger1”, that was formed from several previously-

introduced algorithms, consists of an iterative procedure. During a single iteration, the algorithms
starts by estimating the signal very roughly and subsequently finds the very strong outliers. This
is followed by two iterations that successively increase the detection sensitivity. Finally, the mor-
phological procedure is applied on the full flag mask. This procedure has been extensively tested,
and is now the recommended way to flag any LOFAR imaging observation.

The AOFlagger is integrated in the default LOFAR pipeline (NDPPP), to minimize the number
of times data needs to be reread from disk. By extensive profiling of the flagger code, the largest
computational bottlenecks were identified. After many optimizations (e.g., see Appendix A), a
point has been reached at which the pipeline can process observations faster than the data can be
read from disks. In other words, the pipeline is input-output (IO) dominated. This is important to
note, because it implies that further optimizations will not improve the speed of the flagger much
further. Nevertheless, a few of the processing steps still rely on initial “experimental” (and thus
unoptimized) code, such as the Gaussian smoothing algorithm. That step could be significantly
increased with the use of optimized code and single-instruction-multiple-data (SIMD) instruc-
tions. However, because profiling showed that it is a few times faster than the heavily optimized
SumThreshold method, improving it will only have a very slight repercussion — even when
the pipeline would not be IO-dominated.

Nowadays, graphical processing units (GPUs) are often used in computational tasks. They
are attractive, because they are relatively cheap for the amount of operations they can perform per
second. On the other hand, it takes a lot of work to implement algorithms on GPUs, and certain
algorithms are not efficiently convertible to GPU code. Currently, the AOFlagger can not make
use of GPUs. It would be a lot of work to implement algorithms such as the SumThreshold
to GPU code. At the same time, this will not improve the situation a lot, because the flagger is
IO-limited as was discussed above. Moreover, the AOFlagger code is run on many platforms and
different clusters, of which only a few provide GPUs that can be used for generic computations.
The usage of GPUs for RFI detection might become more relevant in observatories where flagging
has to be done on-line and in real-time.

The situation might of course change when faster hard disks become available in the future. A
significant increase in IO-speed can be achieved by using solid-state drives (SSD). This uprising
technology currently shows an increased speed of an order of magnitude over conventional hard
disk drives (HDD), and the technique is continuously further improved. However, SSDs are also
significantly more expensive per unit of storage size. Moreover, the AOFlagger step is only a small
step of the full processing step that is applied on observations, and the calibration and imaging
steps typically take an order of magnitude more time. All in all, instead of further optimizing the
pipeline, at present it is more useful to focus on improving the calibration and imaging algorithms.
Nevertheless, the importance of efficient IO should not be forgotten.

These conclusions are very important for future observatories that will deal with even higher
data volumes compared to LOFAR. The Square-Kilometre Array (SKA) will correlate more than
a thousand stations, while it will at the same time observe with more bandwidth and an order of
magnitude higher time resolution. This implies that, to maintain real-time flagging speed, the IO
should be accelerated by at least four orders of magnitude compared to LOFAR. Where LOFAR
reads the data from approximately 100 HDDs during flagging, the SKA should distribute its data

1This name was introduced by Ger van Diepen when the first version of the flagger code was committed to the LOFAR
software repository.
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over millions of HDDs of similar speed to be able to perform the same strategy. Of course, the
use of faster drives, such as SSDs, could lower this value. Providing an infrastructure that can
distribute and transport the data from millions of HDDs efficiently will be a major challenge, and
a lot of work on distributed computing for astronomical purposes is required before this can be
realized.

Focal-plane arrays, such as the Apertif receivers that will soon be installed on the WSRT
dishes, provide a different case where large volumes of data need to be flagged. Apertif will
provide 37 beams on the sky at once, with 16,384 frequency channels of 18 kHz2. On the other
hand, LOFAR provides 62,464 channels of 0.76 kHz, with an order of magnitude more baselines.
Therefore, to first order, the LOFAR flagging strategy has also sufficient performance for Apertif.
The AOFlagger will probably work as good on Apertif data as it does on LOFAR data, although
it does not use all information that multi-beam systems provide to differentiate RFI from signal.
An enhanced version of the SumThreshold method could take into account that a high signal
in only one feed is less likely to be RFI. Potentially, this can improve the detection accuracy
further. In Flöer et al. (2010), a RFI detection scheme for the multi-beam system of the Effelsberg
telescope is shown, that makes use of the information from the various feeds. However, it is
to be seen whether a detector can efficiently combine information from three dimensions (time,
frequency and beam or feed). Another possibility of multi-beam systems are the spatial filtering
techniques that have been successfully applied on the Parkes telescope (Kocz et al., 2012). This
technique can be applied on the focal-plane arrays of individual telescopes.

7.3 Filters
Processing power is a major concern for modern telescopes. Low-frequency telescopes such as
LOFAR have a wide field of view, which complicate the calibration process. An advanced calibra-
tion scheme is required to retrieve accurate parameters of celestial sources (such as flux density
and polarization). Once a source has been calibrated, it can be subtracted from the data to show
underlying emission. This is required to reach the full sensitivity of the instrument.

In Chapter 4, new techniques that help to improve the data quality of interferometric radio
observations are considered. Filters are used to attenuate radio-frequency interference and off-
axis sources without calibrating them. Several new filters are introduced and tested. A low-pass
filter in time and frequency direction on a single baseline data is successfully used to lower the
noise in the area of interest and to remove sidelobes coming from unmodeled off-axis sources
and RFI. Chapter 4 analyses related side effects of data integration, averaging and gridding, and
show that these can cause ghosts and an increase in noise, especially when using long baselines
or interferometric elements that have a large field of view. Initial tests show that the filters can
be several factors faster compared to common source separation techniques such as peeling and a
variant of peeling that is currently being tested on LOFAR observations called “demixed peeling”
(the LOFAR cookbook, Pizzo (2012, Chapter “Demixing”), Jeffs et al. (2006)).

The filter that is considered to be most attractive, is a low-pass filter applied on the visibilities
after regular calibration. Such a filter can subtract the residuals of sources that are not perfectly
modeled and subtracted. It is fast and uses information in the data that complements the informa-
tion that is used during calibration, and thus the filter complements calibration and subtraction.
Currently, this filter has only been used on WSRT data, where it shows good results. Applying the

2See http://www.astron.nl/general/apertif/apertif .

http://www.astron.nl/general/apertif/apertif
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filter on LOFAR data requires some work, because the process needs to be efficiently distributed
over the nodes. During most other tasks, each node processes a single subband. However, be-
cause the filter requires information from all sub-bands at once, the nodes need to communicate
efficiently. We will discuss this in §7.6.

Chapter 4 also discussed stationary RFI that is not flaggable, because it is too weak or broad-
band. Such RFI sources are very hard to subtract with techniques such as peeling, because they
can be very weak and time variable. When integrating these data, a stationary source might add
coherently. In such a case, the RFI source will mimic a celestial source near the North Celestial
Pole (NCP). This effect is not yet seen in LOFAR observations, but could appear when integrating
longer observations. When such RFI appears, the presented filters could be useful to excise the
RFI from the data.

7.4 LOFAR & RFI

In Chapter 5, the LOFAR radio environment is analyzed. These analyses are of high importance
for future observing strategies of LOFAR. Moreover, since LOFAR is build in an urban area and
operates at low frequencies, these results provide new insights in the general effects of an urban
radio environment on radio-astronomical observations.

The radio environment is mapped with the help of two RFI-surveying observations of 24 h.
One observation covers 30–78 MHz in the LBA frequency range, while the other observation cov-
ers 115–163 MHz in the HBA frequency range. Both surveys show a very small RFI occupancy
of 1.8% for the LBA and 3.2% for the HBA. Indeed, the LBA range shows less RFI sources in
observations, but even the HBA spectrum is largely unoccupied.

Several reasons are given for the small impact of RFI on LOFAR: (i) LOFAR’s high time and
frequency resolutions of 1 s and 0.76 kHz respectively, minimize the amount of data loss caused
by interfering sources; (ii) the AOFlagger interference detection pipeline has an unprecedented
accuracy; (iii) LOFAR’s hardware is designed to deal with the strongest interfering sources that
are found in its environment; (iv) in contrast to dishes with feeds in the focal point, the receiving
elements of LOFAR are close to the ground; and (v) there is no evident self-contamination, i.e.,
RFI that is generated by the hardware itself.

Below 163 MHz, there are no large (≥ 1 sub-band of 200 kHz) gaps in the VHF spectrum
caused by RFI, with the obvious exception of the FM broadband frequency around 87–108 MHz.
These frequencies are filtered in hardware. However, the frequency range of 216–230 MHz con-
tains terrestrial digital audio broadband (T-DAB) transmitters. These kind of transmitters are
highly problematic devices for radio astronomy, because they transmit continuously within their
full bandwidth. The frequency range of 174–216 MHz is also allocated for T-DAB services, but
the range is (still) mostly unused in the Netherlands. Consequently, for now this range can be
used in LOFAR radio observations. An upgraded service called DAB+ might be rolled-out at
some point. It is to be seen if and when DAB or DAB+ services will extend their frequency
coverage.

Another change in the radio environment might be caused by new wind turbines. Currently,
plans are formed to build wind turbines in the area of LOFAR. These turbines might themselves
generate harmful radiation, but the propellers might also reflect other RFI sources that are nor-
mally well below the horizon. It is not yet clear what kind of effects nearby wind turbines will
cause on radio astronomical observations.
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During the construction phase of new telescopes such as the SKA, the radio environment has
played a very important role in site selection. With the analysis of the LOFAR environment, we
have proved that the amount of RFI below 170 MHz is — with some pre-cautions and after proper
flagging — negligible, even in a country as populated as the Netherlands. Of course, this excludes
the FM broadcasts in the frequency range 87–108 MHz, which is filtered in hardware. The “price”
of building a telescope in a non-remote location, caused by radio-frequency interference, is there-
fore mostly limited to losing the 87–108 MHz FM bands and the DAB bands above 170 MHz
(currently 216–230 MHz, but in the future possibly 174–230 MHz). This loss should be com-
pared with the extra costs and logistics associated with remote locations, such as the necessity of
building new infrastructure. Whether the given frequency ranges are permanently lost is as of yet
unknown, as it might even be possible to excise FM and DAB signals from the data. Filters that
exploit the spatial or cyclo-stationary properties of the RFI signals are considered, and might be
able to recover the cosmic spectrum. Although the loss in frequency ranges that are not contami-
nated by broad-band broadcasts will also be somewhat reduced in remote locations, this loss is
already negligible. Moreover, even the most remote locations will have some RFI that is caused
by satellites and air-traffic. Therefore, it will remain necessary to deal with RFI during hardware
design and by applying flagging strategies, even in the case of SKA. Consequently, for future
observatories, the RFI environment should be checked for very strong and broadband sources, but
other kinds of RFI sources should not have a lot of weight in site selection.

7.5 RFI implications for reionisation experiments

Several projects are currently underway to detect redshifted neutral hydrogen from the Epoch of
Reionisation (EoR). One of those projects is the LOFAR EoR project. These experiments require
very high point-source sensitivities of a few tens of µJy. In the LOFAR case, this is to be achieved
by integrating 50–100 nights of LOFAR observations. The project is concerned about low-level
stationary RFI, that could coherently add over many nights. Such RFI could in theory place a
lower limit on the sensitivity, thereby making it impossible to detect the signal from the EoR.

In Chapter 6, the probability of stationary low-level RFI is explored. The RFI surveys from
Chapter 5 are used for the analysis. It is found that the amplitude distribution of the RFI sources
matches a uniform distribution of RFI sources on the surface of the Earth, affected by propagation
described surprisingly well by the electromagnetic propagation model of Hata (1980). With worst-
case assumptions, it is found that RFI that leaks through the detector has an average flux density
of approximately 490 mJy for the LBA and 170 mJy for the HBA in a 1 kHz / 1 s sample. These
values should be compared to the noise in individual visibility samples of 770 Jy (LBA) and 77 Jy
(HBA). This confirms that the AOFlagger RFI detector is very accurate.

To which extent RFI can add up coherently is yet unknown. An important argument in this
discussion, is that current observations are not showing any effects due to leaked RFI. This even
holds for the North Celestial Pole (NCP) field, that is one of the LOFAR EoR target fields. If
stationary RFI would leak through the detector and would add coherently, such RFI would gen-
erate a fake source near3 the NCP. The first NCP observations have reached the current thermal
noise limit of about 250 µJy in 1 MHz bandwidth after an integration time of 6 hours. No fake

3Radio observations are normally referenced in the sky frame of the year 2000 (J2000), but because of precession of the
Earth the pole has slightly moved since then. A stationary source on Earth shifts by 20 arcsec/year in the J2000 reference
frame.
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sources caused by RFI are found in the resulting images, thus most of the leaked RFI must add
incoherently. Currently, RFI flagging on the highest resolution is the only excision technique that
is performed. If a contribution from RFI sources appears at the NCP after longer integration, it
can be suppressed with more advanced RFI excision techniques. Consequently, it is unlikely that
stationary RFI will limit the detection of signals from the EoR.

7.6 Data distribution & file formats

Measurement sets are normally stored in the order polarization, channel, baseline, time step, and
finally these are distributed based on sub-band. The AOFlagger needs all data per baseline, thus
it needs the data in a different order than in which it is stored. It was found that for observations
with large data volumes, it is significantly more efficient (typically a factor 2–4, but depending
on size of observation and platform) to read the observation from start to end and simultaneously
rewrite the set to disk in a different order. This is caused by the physical properties of the hard
disks and the installed file system. The performance of a hard disk degrades considerably when
reading small chunks from many different locations.

Another related technical topic is the distribution of data. Currently, applications that need
data from different sub-bands at once, need to implement some way to transport the data efficiently
from several nodes to one (or multiple) locations. Efficient communication between cluster nodes
is something which is often needed when processing high-volume radio observations, and it will
be beneficial if more generic solutions become available. A solution that transparently implements
distributed node access, such as clustered file systems, is easy to implement because they already
exist. However, these generate an enormous amount of network traffic no matter how the data
is accessed. Therefore, the current standard way of processing, in which each node processes a
single sub-band, will be seriously slowed down by such a solution. Standardized communication
interfaces such as the Message Passing Interface (MPI) make the process easier as well, but im-
plement the communication on a rather low level. A program that performs a simple operation,
such as removing the flags from a full observation, and which implements this with MPI, will still
have a rather complex implementation (although, of course, MPI simplifies the implementation).
A software library that allows access to the data at the same level as the Casacore Measurement
Set library, but is aware that an observation can be distributed over several nodes, would make it
much easier to implement tools that can deal efficiently with these observations.

The HDF5 file format has been suggested as a possibility for the LOFAR data format (An-
derson et al., 2010), that could potentially improve the situation of data distribution. HDF5 adds
a layer between the file system and the application, such that data can be easily stored in a hier-
archical structure. Although efforts are made to standardize the way to store astronomical data
inside the HDF5 format, it is far from being as complete as the CASA measurement set format
for interferometric data, especially on the level of measurement units and their conversion and
tools to process astronomical data. In fact, HDF5 abstracts only the lowest level of data access,
but forces the data into a hierarchical structure. Consequently, by itself it does not yet provide a
solution for fast distributed access, and to a large end the responsibility remains on the side of the
applications to implement this.

During the course of this PhD project, I have been asked at least a dozen of times whether I
could make the AOFlagger work on a different file format – in particular to let it work with UV
FITS files and Miriad files. I started to work on some UV FITS file format support, but soon
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realized that support for all stored meta data would be too much work (especially for a format
that might become deprecated). Whatever the solution to fast distributed access to data will be,
a common interferometric file format that is adopted by all observatories and software packages
would be a major improvement. Each of the current file formats, i.e., the CASA MS, UV FITS and
the Miriad file formats, provide different advantages (and liabilities), and it might be impossible
to wrap every feature into one ultimate file format. Nevertheless, radio observatories should have
the same needs for a file format, and a common denominator (or most popular format) should be
just good enough.

A yet-unexplored area is the compression of radio data. Reducing the file size of interferomet-
ric data would not only decrease the required storage space, but also make the data much easier
to handle. Although interferometric data is often dominated by the noise, and noise is incom-
pressible, it might be possible to (partly) filter the irrelevant noise from the data. To this end, the
low-pass filters that were presented in Chapter 4 could be useful. This can be combined with a
different quantization or encoding scheme to optimize the required space. This approach would
be similar to popular compression schemes for audio, such as MP3 and the Free Lossless Audio
Codec (FLAC). If this would lead to a similar effective decrease of a few factors in size, it would
be a huge benefit to the radio astronomical community.

7.7 Main thesis questions
During the introduction in Chapter 1, the aims of this thesis were summarized in the form of four
questions. Now that all the conclusions of this work have been collected, we have reached the
point at which those four questions can be answered.

• What existing methods can one use to excise radio-frequency interference in LOFAR obser-
vations?
In §7.1, it is concluded that detection is the most important RFI excision technique for LO-
FAR. However, pre-existing techniques, in which median statistics or polynomial fits were
used to estimate the signal, and were followed by normal thresholding, were found to be
neither fast nor accurate. We have not yet seen stationary, broadband RFI in LOFAR data.
Therefore, the methods that are aimed to mitigate this kind of RFI are not (yet) relevant. In
particular, this concerns the singular value decomposition (SVD) mitigation method intro-
duced by Pen et al. (2009) (see §2.2.7) and the fringe fitting method introduced by Athreya
(2009) (see §4.2), both of which were useful for GMRT data.

For experiments that have to make use of the frequency ranges 87–108 MHz or 216–
230 MHz, which are permanently occupied by broadband transmissions from the FM and
DAB broadcasts respectively, detection might not be sufficient. Both these ranges are out-
side of the optimized frequency range of LOFAR. This especially holds for the FM fre-
quencies, which are attenuated by hardware filters. Nevertheless, they can be observed.
For observing in permanently occupied ranges, spatial or cyclo-stationary filters might be
useful. Applying such filters on real LOFAR data will require further research.

• Can the accuracy and performance of currently available interference excision methods be
improved?
Chapters 2, 3 and 4 test several new ways of excising RFI. Chapters 2 and 3 deal with
detection, while Chapter 4 deals with filtering.
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For detection, two important new methods were developed: the SumThreshold (§2.2.6)
and the scale-invariant rank (SIR) operator (§2.4.1). In combination with a signal estima-
tion algorithm, together these methods find all of the RFI that is apparent when data is visu-
ally inspected. Therefore, these methods are significantly more accurate than pre-existing
methods (e.g., see Fig. 3.4 on page 67 for comparison with the MAD flagger). For sig-
nal estimation, we suggest to replace polynomial fitting and median filtering with a trivial
Gaussian low-pass filter (§2.2.2). Such a filter is faster and shows the same accuracy. The
full pipeline that combines all these techniques, has been thoroughly optimized and, in fact,
is faster than hard disks can deliver the data. The implementation of this pipeline, named the
“AOFlagger”, is one of the results of this thesis. It is used by default on all LOFAR imaging
observations, and is being tried by several other astronomers for other observatories.

For filtering, the SVD and fringe filtering techniques were extended with a filter that can
remove from an observation any contribution that does not correspond with a source in the
field of interest (§4.3.1 and §4.3.4). This is not only useful for RFI removal, but might also
be useful for removing off-axis sources. So far, these filters have shown good result on real
WSRT data, but need to be tested more extensively to see whether they work in the LOFAR
case.

• What are the observational consequences of building LOFAR in a populated area?
In Sect. 7.4, it is concluded that the effect of the LOFAR radio environment is very benign.
Because LOFAR is in a populated area, some existing infrastructure could be used. This is
probably a stronger weighting argument compared to the small increase of RFI. The most
apparent down-side of building LOFAR in a populated area, is that observations in the fre-
quency ranges 87–108 MHz and 216–230 MHz are not possible without further mitigation
techniques, because of the FM and DAB broadcasts. However, even extremely remote areas
are not free of satellites, air-traffic and possibly the FM and DAB broadcasts.

Almost all observations that exclude the broadband broadcasting frequencies need no fur-
ther post-processing after running the AOFlagger.

The radio environment is not the only site condition that influences the data quality. Another
important parameter for low-frequency astronomy, is the ionospheric condition. Its effect
are much more pronounced in the calibration and imaging stages, and are often related to
the total electron content (TEC) value. Currently, it appears that the TEC quantity has a
significant impact on the quality of the data. In general, the ionospheric conditions are
better away from the equator. Therefore, at 53◦ latitude, the Netherlands is also in this
aspect a good place for low-frequency radio astronomy.

• Will RFI cause a limit on the sensitivity with which LOFAR can observe?
With the results so far, it is unlikely that RFI is going to be a major issue for experiments in-
volving long integrations, e.g., very deep extra-galactic surveys or the LOFAR EoR project.
Thus far, it appears that for RFI to present a fundamental limit, it has to be stationary (i.e.,
fixed to the Earth). Such RFI will end up near the North Celestial Pole (NCP). Current
observations are reaching the thermal noise limit, and are not showing any such effects.
This holds even near the NCP, where fringe rotation does not quench the RFI. At the same
time, it is possible to increase the RFI detection rate by applying the excision methods on
integrated data, if such RFI were to show up. Consequently, the prospects for LOFAR to
detect the epoch of reionisation are excellent.
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7.8 Looking forward
For now, the problem of RFI with LOFAR is largely solved. However, several open and interesting
questions have been posed during this thesis. Moreover, the RFI environment of LOFAR might
change because of a change in frequency occupancy and the installation of wind turbines near
the stations. We will briefly summarize the posed questions that are interesting future research
directions.

• Can the AOFlagger be generalized to make it work on data from any observatory?
There are many observatories, each having its own unique specifications. The flagging
accuracy is depending on these specifications, such as the observational frequency range,
frequency resolution, time resolution, antenna types and feed types. Often, simple methods
such as thresholding are used — sometimes combined with polynomial fitting or median
filtering — and are applied manually by the astronomer. For them, it would be significantly
easier and faster if a single pipeline could accurately flag the RFI, such as is now the case
for LOFAR. For certain observatories, such as the EVLA, the GMRT and the WSRT, it is
easy enough to optimize the flagging parameters with the rfigui platform (see §5.2.1).
However, for single dish, aperture arrays and for the SKA, that will produce significantly
larger data volumes, more fundamental changes might be required.

• Is it useful to apply compression schemes on observations?
Currently, compression of radio observations has not been addressed at all in the literature.

Nevertheless, the data volumes and the associated storage costs grow with the increasing
angular resolution of modern radio observatories. Consequently, if it would be possible to
compress radio observations without losing the required time and frequency resolutions, it
might significantly decrease the storage costs. Moreover, it makes it easier to handle the
data. The methods that are discussed in §7.6 are an attractive direction for further research.

• Will the visibility low-pass filters (§4.3.1) enhance LOFAR observations?
For now, the filters of §4.3.1 have only been applied to a WSRT observation. It is not yet
known how much these filters can help to remove artefacts in LOFAR observations. The
WSRT tests use only 2.5 MHz of bandwidth. LOFAR can already observe with 48 MHz
continuous bandwidth, and soon this might be extended to 96 MHz. Because the effective-
ness of these filters are largely depending on the bandwidth, a larger bandwidth will increase
the effectiveness of the filters. The filters are very fast when compared to current methods,
such as peeling and demixing. If they are effective, they are an attractive alternative (or
complementary method) for off-axis source subtraction.

• What are the coherency properties of RFI?
We have seen that RFI that leaks through the detector, does currently not add coherently.

In §6.5.2, several possible arguments are given for this apparent incoherent behaviour of
leaked RFI. Which of these arguments is the most dominating effect is not known. It is also
unclear whether there will be a sensitivity level at which the RFI does show up. The NCP
target field of the LOFAR EoR project will give an unprecedented opportunity to analyse
the RFI coherency properties. Potentially, this would give better insight in the behaviour of
RFI in astronomical observations. This might improve RFI excision and could enhance the
observing strategy of LOFAR. It could even have impact on the design parameters of future
telescopes.
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• What other applications could benefit from the SIR operator?
In this thesis, a new morphological operator was introduced, called the scale-invariant

rank (SIR) operator. For this operator, a very fast algorithm with linear time complexity
was developed. This operator is used for the specific case of RFI detection. However,
because it is a very generic method that relates to other widely-employed operators, such as
the morphological dilation and maximum sequential sum algorithm, it might be relevant in
other fields.

• What other signal processing techniques can enhance radio observations?
For this thesis, a lot of signal processing techniques were combined and improved. Signal
processing techniques are still improving, and future techniques might provide (better) so-
lutions for current problems. The filtering techniques for off-axis sources and compression
techniques have already been mentioned, but are only two of many possibilities. The signal
processing possibilities with the current state of technology are higher than ever, and im-
proving receivers, correlators and calibration and imaging techniques is utterly important
for the advance of radio astronomy.

Finally, in the closing words of this thesis, I would like to address the future prospects of LO-
FAR. LOFAR has only just started to explore the low-frequency Universe. As must be clear from
this thesis, this fantastic instrument is working and in an excellent position, both geographically
and symbolically speaking. Soon, LOFAR will engage into an unexplored parameter space of our
Universe. Without doubt, this is going to be an exciting time!
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Appendix A
Technical details of the
SumThreshold method

(The contents of this chapter are to
be published as a technical report)

IN THIS appendix, the SumThreshold method is briefly described, and implementation details
are given. The algorithm that is considered to be optimal will be given, and details of how to

vectorize it with the SSE instruction set will be discussed.

A.1 Problem statement
Consider a data set consisting of a sequence of samples. The samples contain noise sampled from
some distribution, and occasionally a feature of unknown intensity and length. The SumThresh-
old method is an algorithm for detecting such features, including its start and end position.

The method is introduced in Offringa et al. (2010a), where it is shown to be useful for detection
radio-frequency interference (RFI). For this case, it is applied separately in the time and frequency
directions at high resolution. A pipeline using the SumThreshold method was described in
Offringa et al. (2010b).

Paraphrasing Offringa et al. (2010a), the input of the SumThreshold method is a one di-
mensional sequence of values and its output is a binary mask of samples in which features are
detected. If the input contains a consecutive sub-sequence withM samples, for which the average
of the sub-sequence exceeds a threshold function χ(M), this sub-sequence will be selected in the
mask. However, an added requirement is that a sample that exceeds some threshold χ(M), should
not be used when testing larger sub-sequences. For example, if χ(1) = 1 and χ(2) = 0.7, then
the sequence [0, 3, 0] produces an output mask in which only the number 3 has been flagged, even
though the size 2 sub-sequence 0 + 3 > 2χ(2). Because the number 3 will be masked by the
threshold limit of χ(1), it will be replaced by the sub-sequence averages (which is 0 here), and
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the sub-sequences do not exceed the other thresholds. Table A.1 lists a few examples.

Table A.1: Example outputs with χ(1) = 1, χ(2) = 0.7 and χ(4) = 0.5

Input Output mask
0, 0, 3, 0, 0 _ _ X _ _
0, 0.9, 3, 0.9, 0 _ X X X _
0, 0.9, 0.9, 0.9, 0 _ X X X _

0.5, 0.9, 0.9, 0.9, 0.5 X X X X X

A.2 Algorithm
The method has some correspondence with the scale-invariant rank (SIR) operator. The SIR
operator can also be said to detect features, though in a binary mask. It detects sub-sequences
in which the ratio of masked values exceed the threshold. On the other hand, the SumThresh-
old method works on continuous values, but otherwise also detects sub-sequences in which the
average value exceeds the threshold. If we would assign the values ’0’ and ’1’ to the possible
binary values in the definition of the SIR operator, the SumThreshold seems to select the same
sub-sequences.

However, the two methods differ on one important point: the SIR operator is meant to extend
the mask beyond the original (binary) features. The purpose of the SumThreshold is to exactly
select the feature. This difference is expressed by the iterative definition of the SumThreshold
method: first, the least strict threshold is applied on single samples. Next, a slightly stricter (more
sensitive) threshold is applied on the sum of size-two sub-sequences, but individual samples that
were already detected in the first round, do not trigger the second iteration. In the third iteration,
samples that were detected in the first or second will not trigger size three sub-sequences, etc.

This difference has a major consequence on the algorithm. While the SIR operator can be
implemented by three passes over the data, we have not been able to find a similar fast algorithm
for the SumThreshold method. The SumThreshold’s inherent iterative definition requires
a pass over the data for each sub-sequence size. Therefore, if every sub-sequence size needs to
be tested, one has to test O(N2) sub-sequences, which requires the same time complexity. For
some applications, a O(N2) algorithm might be sufficient, but in the case of LOFAR, such an
algorithm would be too slow. To overcome this problem, we allow a slight decrease in accuracy
by constraining the number of sub-sequence lengths.

A.2.1 Constraining the tested sub-sequence lengths
We consider two relaxations in the the tested sub-sequence lengths, that increase the efficiency
of the algorithm. Both relaxations are constraints on the tested sub-sequence lengths. The
first constraint is to only consider exponentially increasing sub-sequence sizes, e.g. sizes of
[1, 2, 4, 8, 16, . . .]. This decreases the time complexity toO(N logN), while having only a benign
effect on the accuracy. This is because it is likely that features of non-tested sizes will be detected
by one of the tested sizes, e.g., a feature of size 3 is likely detected as two features of size 2 if the
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feature is strong enough. If it is not strong enough, it might still be detected as a feature of size
4. In this case, one falsely detected sample is included, but in the RFI detection case, it is more
important to flag possible features, than minimizing false-positives. Features whose total average
is larger than χ(3) and, together with their two neighbouring samples, are smaller than χ(4), are
not detected.

The second constraint is to not consider sub-sequence sizes larger than a given size limit. In
the LOFAR pipeline, we only consider features up to 1024 samples. Features larger than that are
probably detected by one of the smaller sub-sequence tests, but one should note that a class of very
extended and faint (but detectable) features are now ignored. This further optimizes the efficiency
of the algorithm such that it has linear time complexity. A linear time complexity is particularly
important in real-time environments.

All in all, by only considering exponentially increasing sub-sequence sizes up to 1024 samples
in size, we have to perform 11 iterations of the algorithm, and each iteration has linear time
complexity. We will now consider how to efficiently perform the individual iterations.

A.2.2 A single SumThreshold iteration
The following steps efficiently implement a single SumThreshold iteration:

• Slide a window over the data, with size equal to the sub-sequence size M to be tested in
this iteration.

• Maintain the sum and the number of unflagged samples in the window. In particular, when
moving the window one sample to the right:

– If the sample to the right was not flagged in previous iterations, add it to the sum and
increase the counter.

– If the sample to the left was not flagged in previous iterations, subtracted it from the
sum and decrease the counter.

• For each window position, the average can be calculated by dividing the sum with the
counter. If this average exceeds the threshold χ, flag all samples in the window.

Listing 1 performs a single iteration.

Listing 1: Calculate one iteration of the SumThreshold mask

Require: χ is the average value threshold for sub-sequences of size M ,
x(0 . . . N − 1) is the input sequence of N values,
y(0 . . . N − 1) is the mask generated by the previous iteration.

Ensure: y(0 . . . N − 1) contains the output mask
z ← 0, i← 0, count← 0
t(0 . . . N − 1)← y(0 . . . N − 1)
while i 6= M do

if NOT y(i) then
5: z ← z + x(i)

count← count +1
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end if
i← i+ 1

end while
10: while i 6= N do

if z > χ × count OR z < −χ × count then
t(i−M . . . i− 1)← set

end if
if NOT y(i) then

15: z ← z + x(i)
count← count +1

end if
if NOT y(i−M) then
z ← z − x(i−M)

20: count← count −1
end if
i← i+ 1

end while
y(0 . . . N − 1)← t(0 . . . N − 1)

We note that the algorithm is not as fast for all cases. In the case that many large sub-sequences
need to be flagged, the statement in line 12 (which will actually extend into a loop) will iterate
over all samples in the window to flag those, for each window position. To make the algorithm fast
even in such cases, an extra variable can be added to register the most recently flagged sample. If
this value is larger than the start of the window to be flagged, only samples after the most recently
flagged sample need to be set. Adding such a variable makes the speed of the algorithm less
dependent on the number of samples to be flagged, thus is probably recommended in most cases.
It proves to be more difficult to solve this in the vectorized algorithm however.

When optimizing and profiling the LOFAR RFI detection pipeline, it was found that this Sum-
Threshold algorithm was dominating the computation time of the RFI pipeline. Therefore, the
algorithm was vectorized, which will be discussed in the next section.

A.2.3 Using SSE instructions for vectorization
We have implemented a vectorized version of the algorithm that can compute the SumThresh-
old over multiple sequences at once. In the case of RFI detection, this is very useful, as the
algorithm needs to be applied on all time steps and frequency channels. The sizes of both these
dimensions are typically at least on the order of thousands. While using SSE instructions is a
very specific and less portable solution, the algorithms that we use are commonly executed on
Intel cluster machines that provide these instructions, and recent CPU’s all implement the SSE
instruction set. To implement the SSE algorithm, we have used gcc intrinsics. These intrinsics
are functions that map back to assembly instructions, but one does not need to think about registry
allocations, etc., as that is still performed by the compiler. Moreover, unlike literal assembly
code, the compiler is able to perform certain optimizations such as instruction pairing and loop
unrolling.

Because the algorithm contains multiple branched statements, some care need to be taken
when vectorizing the algorithm, as these need to be replaced by conditional moves. Another
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point of care is the use of booleans that are implemented with 1 byte and the use of floats of 4
bytes. This requires to combine both SSE instructions and ’regular’ instructions, but because the
SSE instructions have dedicated registers, efficiently sharing data between these requires some
work. Because the SSE instruction set contains instructions that perform 4 computations at once,
the vectorized algorithm can process 4 sequences at once. However, because of the overhead
created by avoiding branching, we see about a 2–3 times speed-up over the normal algorithm.
Newer processors also provide the Advanced Vector Extensions (AVX) instruction set, which can
simultaneously process 8 floating point computations. The algorithm can easily be extended to
AVX instructions, thereby further increasing its speed. However, this extension is only available
in recent processors, and because of scarce availability this is not yet used in our implementation.

Listing 2: Vectorized algorithm of a SumThreshold iteration

Require: χ is the average value threshold for sub-sequences of size M ,
x(0 . . . N − 1) are 4 input sequences of i < N values stored in a vector,
y(0 . . . N − 1) are 4 masks generated by the previous iteration, stored in a vector.

Ensure: y(0 . . . N − 1) contain the output masks
i← (0), z← (0, 0, 0, 0), count← (0, 0, 0, 0)
t(0 . . . N − 1)← y(0 . . . N − 1)

{calculate first window sum and count}
5: while i 6= M do

{add sample to the right}
isnflagged← (NOT y(i)) ? 0xFFFFFFFF : 0x0
z← z + ((x(i) & isnflagged) | (0.0 & ¬isnflagged))
count← count + (1 & isnflagged)

10: i← i+ 1
end while

{slide window over the data}
while i 6= N do

15: {if threshold exceeded, set mask}
exceedsThreshold←

((z > χ× count) OR (z < −χ× count)) ? 0xFFFFFFFF : 0x0
if exceedsThreshold 6= (0, 0, 0, 0) then

byteFlags← exceedsThreshold ? set : unset
20: for s ∈ t(i−M . . . i− 1) do

t(s)← (t(s) | byteFlags)
end for

end if

25: {add sample to the right}
isnflagged← (NOT y(i)) ? 0xFFFFFFFF : 0x0
z← z + ((x(i) & isnflagged) | (0.0 & ¬isnflagged))
count← count + (1 & isnflagged)
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30: {subtract sample to the left}
isnflagged← (NOT y(i−M)) ? 0xFFFFFFFF : 0x0
z← z− ((x(i) & isnflagged) | (0.0 & ¬isnflagged))
count← count− (1 & isnflagged)
i← i+ 1

35: end while
y(0 . . . N − 1)← t(0 . . . N − 1)

The vectorized version follows the presented scalar version of the algorithm and is given in
Listing 2. In the algorithm, some operators are applied on vectors. These operands and their cor-
responding symbols are add (+); subtract (-); bitwise or (|); bitwise and (&); and conditional move
(x← test ? a : b). When applied on vectors, these symbols denote the element-wise operations.
The following SSE intrinsics are used to implement the vectorized algorithm:

mm set ps : sets a vector to constant float values. Returns (a, b, c, d).

mm set epi32 : similar as mm set ps, but for constant integer values.

mm set1 ps : sets all values in a vector to one constant value. Returns (a, a, a, a).

mm load ps : loads a vector from (non-constant) values in memory. Returns (a, b, c, d).

mm cmpeq epi32 : element-wise compare of two integer vectors and return all bits set if equal,
or all bits unset otherwise. Returns:
(y = z) ? 0xFFFFFFFF : 0x0.

mm cmpgt ps and mm cmplt ps : element-wise compare of float vectors similar to mm cmpeq epi32,
but for “greater than” and “less than” comparisons.

mm and ps and mm or ps : bitwise and and bitwise or between two vectors. Return (x &
y) and (x | y) respectively.

mm andnot ps : bitwise and of a vector with the bitwise negation of another vector. Returns (x
& ¬y).

mm add ps, mm sub ps and mm div ps : element-wise add, subtract and divide two float
vectors.

mm cvtepi32 ps : convert integer vector to float vector.

mm movemask ps : creates a 4 bit mask from the most significant bits of a float vector. This
allows to store the result of a vector comparison into a single word, that can be used in
regular (non-SSE) instructions.

From the vectorized algorithm, we can extract three essential sub-operations: adding a sample
at the right of the window to the window (lines 7–9 and 25–27), subtracting a sample at the left
from the window (lines 30–32) and testing the current window and setting the corresponding mask
if necessary (lines 16–22). The other statements provide the loops and the initialization, and are
trivial to implement.

In listing 3, a SSE algorithm is given in the C++ language, that adds a sample to the window.
The subtraction can be implemented similarly.
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Listing 3: Adding samples to windows with SSE instructions

Requires:
rowFlagPtr: a const bool* pointer to an array of flags, such that rowFlagPtr[x] with
0 ≤ x < 4 is the flag for window x.
rowValPtr: a const float* pointer to an array of samples, similar to rowFlagPtr.
zero4i: a m128i vector containing zeros.
ones4: a m128i vector containing ones.
count4 : the number of samples in the windows (integer m128i vector).
sum4 : the sum of the unflagged samples in the windows (float m128 vector).

// Assign each integer in the vector to one bool in the mask
// Convert true to 0xFFFFFFFF and false to 0
__m128 conditionMask = _mm_castsi128_ps(

_mm_cmpeq_epi32(_mm_set_epi32(rowFlagPtr[3], rowFlagPtr[2],
rowFlagPtr[1], rowFlagPtr[0]),

zero4i));

// Conditionally increment counters
count4 = _mm_add_epi32(count4,

_mm_and_si128(_mm_castps_si128(conditionMask), ones4));

// Add values with conditional move
__m128 m = _mm_and_ps(_mm_load_ps(rowValPtr), conditionMask);
sum4 = _mm_add_ps(sum4, _mm_or_ps(m,

_mm_andnot_ps(conditionMask, zero4)));

The remaining algorithm to threshold the window and output the flags is given in Listing 4.
This part interchanges between using the C++ boolean type of 1 byte and SSE masks, and there-
fore applies some tricks to convert between the two, as well as to “or” 4 booleans at a time.

As discussed, due to the for loop that sets the flags and that might be executed for each
window position, the algorithm is optimized for a low number of positives. Nevertheless, the loop
is fast, as it consists of one statement that is not a floating point operations. Therefore, even in
cases where a lot of windows need to be flagged, the loop will not excessively slow down the
algorithm.

When calculating the average, the count4 variable is not tested for zero. Therefore, calculat-
ing the average might perform a division by zero. However, this can be ignored, since the outcome
is not important if all samples are already flagged.

Listing 4: Thresholding the windows with SSE instructions

Requires:
Function outputMask->RowFlagPtr(x, y): returns a bool* pointer to an array of flags,
such that RowFlagPtr(x, y) with 0 ≤ x < 4 is the y-th output flag for window x, ordered in x
direction.
threshold4Pos, threshold4Neg: positive and negative thresholds, χ and −χ.
count4 : the number of samples in the windows (integer m128i vector).
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sum4 : the sum of the unflagged samples in the windows (float m128 vector). M : tested sub-
sequence size, hence the number of samples in the window.

// if sum/count > threshold || sum/count < -threshold
__m128 avg4 = _mm_div_ps(sum4, _mm_cvtepi32_ps(count4));
const unsigned flagConditions =

_mm_movemask_ps(_mm_cmpgt_ps(avg, threshold4Pos)) |
_mm_movemask_ps(_mm_cmplt_ps(avg, threshold4Neg));

// The assumption is that most of the values are actually not
// thresholded. If this is the case, we circumvent the whole loop
// at the cost of one extra comparison:
if(flagConditions != 0)
{

union
{

bool theChars[4];
unsigned theInt;

} outputValues = { {
(flagConditions&1)!=0,
(flagConditions&2)!=0,
(flagConditions&4)!=0,
(flagConditions&8)!=0 } };

for(size_t i=0;i<M;++i)
{

unsigned *outputPtr = reinterpret_cast<unsigned*>(
outputMask->RowFlagPtr(x, yTop + i));

*outputPtr |= outputValues.theInt;
}

}

Our implementation is written in C++ and uses a template variable for M . By doing so, the
compiler creates a specialized version of the algorithm for each M value, and this allows the
compiler to fully unwrap the two loops with M limits. The gcc compiler will only do this if the
optimization parameter -funwrap-loops is specified on the command line. Specifying this
compiler option will also partially unwrap the main loop, which speeds up the implementation
considerably, because the compiler is now free to optimize between loop iterations and perform
an optimization technique called instruction pairing.

Different machine architectures give different speed ups, but we generally see a factor 2–
3 increase. Apart from the -funwrap-loops option, we also specify -march=native to
enable the compiler to use any instruction set which the host computer provides. Memory that is
used in the SumThreshold SSE implementation need to be aligned on 16 byte boundaries. On
certain architectures, notably Apple machines, memory return from malloc() is already aligned
correctly, but other architectures require the use of the posix memalign() function instead.
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A.3 Discussion & conclusions
We have shown how the feature detection accuracy of the SumThreshold method can be
slightly decreased to create a fast implementation. Using exponentially increasing tested sub-
sequence sizes decreases the time complexity from O(N2) to O(N logN), and limiting the sub-
sequence size decreases the time complexity to O(N). Our final implementation performs about
10 passes over the data — one for each tested subsequence size — and each pass requires a few
floating point calculations per sample.

Using SSE instructions gave another factor of 2–3 increase in speed, without compromising
the accuracy. However, such optimizations come at the expense of limiting its portability and
increasing its implementation complexity. It is therefore only useful for the most time-critical
parts of the software. Some algorithms might get an additional improvement from using GPUs.
The down-side of GPUs is, that they require stricter memory access patterns, are not good at
branched code and programming them is in my opinion somewhat more complex than using SSE
instrinsics. GPUs that are efficient at scientific calculations, such as the NVIDIA Tesla machines,
are also generally less available. In the LOFAR case, the central processing cluster does not
provide them, thus they were not an option. Also astronomers that run the software at home
probably have less benefit from GPU code. This in contrast to the SSE implementation, because in
the last few months this implementation has processed all LOFAR recorded imaging observations
on the LOFAR cluster, and has caused no issues. The SSE implementation is also shipped for
some time in the latest AOFlagger package, and no problems have been reported from its users.
Using AVX instructions is an attractive future improvement that might give another factor of 2
increase. However, this instruction set is very new and not yet generally available.
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L. Flöer, B. Winkel, and J. Kerp. RFI mitigation for
the Effelsberg Bonn HI Survey (EBHIS). In Proc.
of RFI2010, Mar. 2010.

P. A. Fridman. Estimates of variance in radio-
astronomy observations. AJ, 35:1810–1824, May
2008.

P. A. Fridman and W. A. Baan. RFI mitigation meth-
ods in radio astronomy. A&A, 378:327–344, Oct.
2001.

P. Friedman. A change point detection method for
elimination of industrial interference in radio as-
tronomy receivers. Proc. 8th IEEE Signal Pro-
cessing Workshop on Statistical Signal & Array
Processing, pages 264–266, June 1996.

D. E. Gary, Z. Liu, and G. M. Nita. Hardware im-
plementation of an SK spectrometer. In Proc. of
RFI2010, Mar. 2010.

R. N. Ghose. Interference Mitigation: Theory and
Application. New York: IEEE Press, 1996.

J. Goutsias and H. J. A. M. Heijmans. Fundamenta
morphologicae mathematicae. Fundam. Inf., 41:
1–31, January 2000. ISSN 0169-2968.

D. Halen. Recursive Gaussian filters, 2006. CWP
Report.

J. P. Hamaker, J. D. Bregman, and R. J. Sault. Under-
standing radio polarimetry. I. Mathematical foun-
dations. A&AS, 117:137–147, May 1996.

G. Harker, S. Zaroubi, G. Bernardi, M. A. Brentjens,
A. G. de Bruyn, B. Ciardi, V. Jelić, L. V. E. Koop-
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Nederlandse samenvatting

RADIOASTRONOMIE IS een uitdagende tak van de sterrenkunde, waarin dankzij voortdu-
rende technologische ontwikkelingen, vele verrassende en mysterieuze details van ons
Universum zijn gevonden. Ondanks dat sterrenkunde één van de oudste wetenschappen
in de geschiedenis is, werd pas in het jaar 1931 door Karl Jansky ontdekt dat de hemel

niet alleen zichtbaar licht afgeeft. Deze invloedrijke ontdekking leidde tot nieuwe fantastische
ontdekkingen, zoals in 1965 de ontdekking van radiostraling die is ontstaan vlak na de Oerknal,
genaamd ‘kosmologische achtergrondstraling’, en de ontdekking van roterende neutronensterren
(‘pulsars’) in 1967. Deze objecten gedragen zich als vuurtorens in de hemel.

Het verschil tussen radio- en optische sterrenkunde is, dat de hemel op een andere frequen-
tie wordt bekeken. Zichtbaar licht bestaat uit elektromagnetische straling met een golflengte van
ongeveer 400–800 nanometer, terwijl radiostraling een golflengte van enkele millimeters tot vele
kilometers heeft. Een overzicht van het elektromagnetisch spectrum is gegeven in Fig. 1. Door
ook op radiogolflengtes waar te nemen, kunnen we nieuwe fenomenen aanschouwen en ons Uni-
versum verder doorgronden. Echter, het radiospectrum wordt ook gebruikt door menselijke ap-
paratuur, zoals satellieten en tv- en radiozenders. Dit zorgt voor storing (‘interferentie’) tijdens
het waarnemen en deze signalen moet daarom gescheiden worden van het hemelsignaal. Dit
proefschrift behandelt methodes voor het onschadelijk maken van deze interferentie, die ook wel
radio-frequency interference (RFI) genoemd wordt.

Gebouwen Mensen Vlinders Speldenpunt
Micro-

organismen Moleculen Atomen Atoomkernen

104 108 1012 1015 1016 1018 1020

Kan door
atmosfeer heen?

Radio Infrarood Licht Ultraviolet Röntgen Gamma

103 10−2 10−5  0.5×10−6 10−8 10−10 10−12
Stralingstype

  Golflengte (meter)

Objecten met
zelfde schaal

Frequentie (Hertz)

Wel Niet Wel Niet

Figuur 1: Een overzicht van het elektromagnetische spectrum. De bovenste balk geeft aan of
straling met de corresponderende golflengte de atmosfeer van onze aarde kan penetreren. (Bron:
aangepaste afbeelding van Wikipedia en NASA.)
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Radioastronomie

Moderne radiosterrenwachten, zoals de sterrenwacht in Westerbork, kunnen de hemel met een
enorme gevoeligheid en resolutie in kaart brengen. Radiotelescopen bestaan vaak uit één of meer-
dere grote schotelantennes. De gevoeligheid waarmee een telescoop kan observeren, is voorna-
melijk afhankelijk van de grootte van de schotel: hoe groter, hoe gevoeliger. De resolutie van een
sterrenwacht kan worden verhoogd door het combineren van meerdere telescopen. Dit gebeurt
door middel van een techniek die interferometrie wordt genoemd. Wanneer de waarneemreso-
lutie door middel van het samenvoegen van meerdere telescopen wordt verhoogd, noemt men
dit radiosynthese. Om steeds diepere details van ons Universum te bekijken, zijn er door de
jaren heen grote sterrenwachten gebouwd. Naast de synthesetelescoop te Westerbork zijn een
aantal bekende sterrenwachten die radiosynthese toepassen de Very Large Array (VLA) te Socor-
ro (Nieuw-Mexico), de Australia Telescope Compact Array (ATCA) bij Narrabri (Australië), de
Giant Metrewave Radio Telescope (GMRT) te Pune (India) en de Atacama Large Millimeter/sub-
millimeter Array (ALMA) in de Atacamawoestijn (Chili).

Het gebruik van grote schotels is erg efficiënt voor golflengtes van centimeterschaal of kleiner.
Voor golflengtes van een meter en groter heeft een schotel anderzijds relatief weinig toegevoegde
waarde ten opzichte van een simpele antenne. Dankzij diverse technologische ontwikkelingen
is het nu mogelijk om een groot aantal simpele en goedkope antennes te combineren tot een
grote telescoop. Zulke antennes zijn dan esthetisch misschien niet zo aantrekkelijk als de tra-
ditionele schoteltelescoop, voor lange golflengtes zijn ze zeer goedkoop en efficiënt en bieden
vele nieuwe mogelijkheden. De Low-Frequency Array, ofwel laagfrequente telescoop, is een
nieuwe gedeeltelijk-Nederlandse radiosterrenwacht die als een van de eerste gebruik maakt van
dit principe. Deze telescoop staat centraal in dit proefschrift, dus ik zal beginnen met een korte
beschrijving van dit instrument.

De Low-Frequency Array

LOFAR, de Low-Frequency Array bestaat uit velden van antennes die elektromagnetische stra-
ling in het bereik 10–90 en 110–240 MHz kunnen ontvangen. De antennesignalen van een veld
worden digitaal gecombineerd, en dit geheel wordt een station genoemd. Op het moment be-
staat LOFAR uit 41 stations. Nog 7 stations worden gebouwd en mogelijk volgen er nog meer.
Van de 41 voltooide stations staan er 33 in Nederland en 5 in Duitsland. Ook in Zweden, het
Verenigd Koninkrijk en Frankrijk staat een LOFAR-station. Stations bevatten twee soorten anten-
nes: de lage-bandantennes (low-band antennae, LBA) die 10–90 MHz kunnen ontvangen; en de
hoge-bandantennes (high-band antennae, HBA) die gevoelig zijn voor 110–240 MHz. De HBA’s
worden samengevoegd in ’tegels’ die 4x4 antennes bevatten. Foto’s van de twee antennesoorten
zijn te zien in Fig. 2. De Nederlandse stations bevatten 96 LBA’s en één of twee velden van in
totaal 48 HBA tegels.

Het centrum van LOFAR, waar de meeste stations zich bevinden, is gevestigd nabij Exloo.
De hoogste dichtheid van stations bevindt zich op een kunstmatig schiereiland, waar zes stations
zijn geplaatst. Dit eiland wordt de “Superterp” genoemd, en is opgehoogd land omgeven door
water. Exloo bevindt zich in een landelijk gebied en heeft ten opzichte van de rest van Nederland
een lage populatiedichtheid. Desalniettemin bevinden de stations zich, ten opzichte van andere
sterrenwachten, erg dicht bij bewoond gebied, waardoor RFI van menselijke apparatuur grote
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Figuur 2: De twee soorten LOFAR-antennes. Afbeelding links: een lage-bandantenne met een
kabinet in de achtergrond. Afbeelding rechts: deel van een station met hoge-bandantennes. Deze
stations bestaan uit 24 tegels van 4 × 4 antennes.

problemen kan geven. Deze RFI kan afkomstig zijn van opzettelijk transmissies, zoals bij het
gebruik van walkietalkies en digitale video- en audiotransmissies, maar ook kunnen bijvoorbeeld
auto’s, schrikdraad, hoogspanningslijnen en windmolens onbedoeld radiostraling uitzenden.

In dit proefschrift wordt de schade geanalyseerd die RFI kan veroorzaken in LOFAR-obser-
vaties. Nieuwe technieken voor het meten en verwijderen van interferentie uit de data worden
geı̈ntroduceerd met als doel de schade te minimaliseren. Deze technieken kunnen vervolgens voor
zowel LOFAR als voor andere radiotelescopen gebruikt worden. Omdat LOFAR een nieuw soort
telescoop is, moeten deze technieken aan strenge eisen voldoen. Zo heeft LOFAR momenteel het
grootste aantal stations van alle radiosynthese-telescopen, en omdat LOFAR met zeer hoge tijd-
en frequentieresolutie zal waarnemen, zijn de gegenereerde datastromen van enorme omvang.
De algoritmes die gebruikt worden tegen RFI moeten derhalve zeer snel zijn. In telescopen met
slechts een klein aantal antennes of schotels kan een astronoom makkelijk één voor één de data van
de verschillende antennes langs lopen. Echter, omdat het volume van de data nu zo veel groter is,
zullen algoritmes volledig automatisch en robuust moeten zijn. Verder moet de hoeveelheid RFI
die in de data achterblijft tot een minimum beperkt blijven. Dit houdt in dat de methodes zeer
accuraat moeten zijn.

Detectiemethodes

Hoofdstuk 2 van dit proefschrift behandelt detectiemethodes. Bij de detectie van interferentie
wordt gezocht naar monsters (‘samples’) in tijd-frequentieruimte die zijn beı̈nvloed door RFI.
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Wanneer dit slechts een klein gedeelte van de data betreft, kan deze data genegeerd worden en
kan de rest van de data gebruikt worden voor de verdere astronomische analyse. Deze techniek
wordt aangeduid als het ‘vlaggen’ (flagging) van de data. In de literatuur was relatief weinig in-
formatie te vinden over RFI-detectiemethodes: de meeste artikelen richtten zich op het herstellen
van besmette data. Desalniettemin is detectie het belangrijkste wapen tegen RFI, aangezien voor
iedere radiosterrenwacht bijna altijd een vorm van detectie wordt gebruikt.

Dit gat in de ontwikkeling van detectiemethodes wordt met dit proefschrift gevuld. In hoofd-
stuk 2 introduceren we diverse nieuwe detectietechnieken, die een significant hogere accuraatheid
en snelheid hebben dan de methodes die voorheen gebruikt werden. Het probleem wordt opge-
splitst in drie stappen:

I. Het signaal van de hemel wordt geschat en tijdelijk afgetrokken van de data. Dit wordt
gedaan met een standaard Gaussisch filter. Het residu bevat voornamelijk RFI en normale
ruis.

II. In de tijd-frequentieruimte worden samples gezocht die, alleen of gezamenlijk met ande-
re samples, een buitensporige sterkte hebben. Hiervoor wordt het nieuw-ontworpen Sum-
Threshold algoritme gebruikt.

III. Om ook samples te vinden die geen buitensporige sterkte hebben maar tóch beı̈nvloed zijn
door RFI, wordt een morfologische operator toegepast. Deze operator, genaamd de schaal-
onafhankelijke rankoperator (scale-invariant rank (SIR) operator), kijkt naar de vorm van
de gevlagde samples in tijd-frequentieruimte om zo te zoeken naar nieuwe RFI samples.

Deze drie stappen worden in hoofdstuk 3 gecombineerd tot een iteratieve pipeline. Met behulp
van Westerbork- en LOFAR-data worden de parameters geoptimaliseerd. De resulterende pipeli-
ne vindt alle zichtbare interferentie in de data. Deze pipeline is vervolgens sterk geoptimaliseerd
voor snelheid, onder andere door het gebruik van speciale SSE processorinstructies en het ont-
wikkelen van een SIR-operator-algoritme met lineaire tijdscomplexiteit. De uiteindelijke pipeline
werkt sneller dan dat de harde schijven de data kunnen aanleveren. Dit betekent dat het LOFAR-
rekencluster met ongeveer 100 computers een observatie (iets) sneller dan realtime kan vlaggen.
De detectiemethodes komen weer terug in verdere hoofdstukken, waar ze verder worden getest en
worden gebruikt voor het analyseren van de LOFAR-radio-omgeving.

Filtertechnieken
Hoofdstuk 4 behandelt het herstellen van de data wanneer langdurige en breedbandige RFI een
observatie onbruikbaar heeft gemaakt. Ook behandelen we het filteren van hemelbronnen buiten
het kaartcentrum, dat een gerelateerd probleem blijkt te zijn. Breedbandige RFI ontstaat meestal
onbedoeld, bijvoorbeeld door schrikdraad dat regelmatig vonkjes genereert. Dit leidt er toe dat
een observatie niet correct gekalibreerd kan worden of dat de RFI de hemelbronnen overschaduwt.
Wanneer zulke RFI continu optreedt heeft het weinig zin om de samples die beı̈nvloed zijn te
detecteren en te vlaggen, aangezien er dan geen samples overblijven.

Doordat een RFI-zender die vast staat op de aarde altijd dezelfde oriëntatie heeft ten opzichte
van de antennes, gedraagt de zender zich als een bron aan de Noordelijke hemelpool. Dat is na-
melijk de enige plek aan de hemel waarvoor dit ook geldt. Doordat een interferometer bemonstert
in het Fourierdomein, zien we een stationaire bron terug in de ruwe data als een bron met een
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specifieke golfbeweging (fringe pattern). Aangezien we de plek weten van de bron in het reële
domein — namelijk de pool — kunnen we ook de golfbeweging voorspellen. Deze kennis is
gebruikt in een recent-ontwikkelde methode voor de GMRT radiosterrenwacht in India, waar erg
veel RFI van deze soort zich voordoet. De methode schat de sterkte en fase van de bron en trekt
vervolgens de golfbeweging van de data af. Dit proces wordt “fringe fitting” genoemd.

LOFAR ziet (gelukkig) geen sterke breedbandige bronnen. Zwakke bronnen zouden wel in de
data aanwezig kunnen zijn en de kwaliteit van de hemelkaart kunnen verlagen. Na het analyseren
van de fringe-fittingtechniek met simulaties, concluderen we dat eventuele zwakke bronnen niet
correct kunnen worden verwijderd. We introduceren daarom diverse nieuwe technieken, waar-
onder een specifieke toepassing van een low-pass filter. Dit filter heeft in tegenstelling tot fringe
fitting niet als doel om een bron op een specifieke locatie te filteren, maar filtert alle flux die
afkomstig is van bronnen buiten het centrum van de observatie (off-axis bronnen).

De techniek is niet alleen een mogelijkheid voor het verwijderen van zwakke RFI, maar kan
ook gebruikt worden voor het aftrekken van off-axis bronnen. Bij telescopen met een groot ge-
zichtsveld — zoals LOFAR — zijn off-axis bronnen een groot probleem: ze maken het kalibratie-
proces zeer ingewikkeld en traag, en kunnen de kwaliteit van de uiteindelijke hemelkaart verlagen.
We passen de techniek toe op een reële 150-MHz Westerborkobservatie met sterke off-axis bron-
nen en constateren dat de hemelkaart na toepassing van de techniek significant verbeterd is. De
sterkte van het filter is afhankelijk van de hoeveelheid beschikbare aaneengesloten bandbreedte.
In onze observatie is slechts 2,5 MHz bandbreedte gebruikt. Een volgende stap is het toepassen
van de techniek op LOFAR-observaties, waar 48 MHz aaneengesloten bandbreedte beschikbaar
is. De techniek is zeer snel, wat in de LOFAR-situatie ook een belangrijke eigenschap is.

De radio-omgeving van LOFAR

Door middel van de diverse besproken methodes, wordt in hoofdstuk 5 de radio-omgeving van
LOFAR geanalyseerd. Dit gebeurt door analyse van een HBA- en LBA-LOFAR-observatie van
beide 24 uur. We constateren dat, na het toepassing van de besproken automatische methodes, de
observaties schoon zijn en dat direct verder gegaan kan worden met de kalibratie- en karteerpro-
cedures.

De gevonden spectrale RFI bezetting in de 115–163-MHz HBA-meting is 3,2%, terwijl de
30–78 MHz LBA meting met 1,8% bezetting nog net iets minder storing bevat. Het verlies
tengevolge van RFI is dus nagenoeg verwaarloosbaar in LOFAR’s huidige situatie. Dit is een
verrassende conclusie, aangezien LOFAR zich in bewoonde gebieden bevindt, in tegenstelling
tot de meeste telescopen waar doorgaans meer RFI wordt gemeten. De redenen hiervoor zijn:
(I) LOFAR heeft een zeer hoge tijd- en frequentieresolutie, waardoor korte of kleinbandige RFI
slechts een miniem verlies van data veroorzaakt; (II) de AOFlagger detectiepipeline heeft een on-
geëvenaarde accuraatheid; (III) LOFAR’s hardware is ontworpen om met interferentie om te gaan;
(IV) LOFAR-antennes bevinden zich laag bij de grond, waardoor zenders op een kleine afstand
al geblokkeerd worden door de Aarde en haar bebouwing en begroeiing; en (V) er is geen noe-
menswaardige zelfbesmetting, dat wil zeggen, besmetting van RFI die gegenereerd wordt door
LOFAR’s eigen hardware.

Dit is een zeer belangrijke conclusie die laat zien dat radio-astronomie mogelijk is in een
bewoonde omgeving. Niet alleen heeft LOFAR hiermee een hemels vooruitzicht, ook is dit be-
langrijk voor toekomstige radiosterrenwachten. Zo wordt momenteel de locatie bepaald van de
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Square Kilometre Array (SKA). Dit is een toekomstige radiotelescoop met een nog grotere om-
vang dan LOFAR. RFI is bij deze keuze een belangrijk argument, en de overwogen opties zijn
daarom zéér afgelegen plaatsen in Australië en Zuid-Afrika.

Eén belangrijke kanttekening is hierbij wel nodig. LOFAR kan op dit moment niet observe-
ren op frequenties die bezet zijn door sterke, breedbandige zenders. Dit betekent dat het FM-
zenderbereik tussen 87–108 MHz en het DAB (digital audio broadcasting) zenderbereik tussen
216–230 MHz niet gebruikt kunnen worden voor radioastronomie. Dit is een relatief klein bereik
en met de verdere analyse van filtertechnieken zouden ook op deze frequenties nog observaties
mogelijk kunnen zijn. Echter, het is belangrijk dat de frequentietoewijzing niet sterk verandert.
Nieuwe, sterke en breedbandige zenders waar LOFAR niet op voorbereid is, kunnen zeer schade-
lijk zijn.

De spatiële- en helderheids-distributie van RFI bronnen

Als laatste onderwerp van dit proefschrift analyseren we diverse eigenschappen van RFI bronnen.
In hoofdstuk 6 kijken we specifiek naar de invloed die gelekte RFI zou kunnen hebben op de
meest gevoelige LOFAR-experimenten. Hoewel de AOFlagger zeer accuraat is, zou het kunnen
zijn dat coherente patronen gevormd worden door minuscule gelekte RFI wanneer er geı̈ntegreerd
wordt over een zeer lange observatietijd. Of en in welke mate RFI inderdaad coherent is, is nog
onduidelijk.

Een lange integratietijd is bijvoorbeeld nodig voor de detectie van signalen van de herionisa-
tieperiode (Epoch of Reionisation of EoR). Hiervoor moet een enorme gevoeligheid van slechts
tientallen µJy bereikt worden. In dit cruciale era in het ontstaan van ons Universum zijn de eer-
ste objecten gevormd, zoals sterren, sterrenstelsels en quasars. Verscheidene experimenten zijn
onderweg om roodverschoven signalen van neutrale waterstof uit deze periode te detecteren, en
het LOFAR-EoR project is er een van. Om de benodigde gevoeligheid te bereiken, zal voor dit
project over 100 nachten aan LOFAR-observaties worden geı̈ntegreerd.

We analyseren de helderheidsdistributie van RFI op een manier die vergelijkbaar is met de
logN − logS analyses die gebruikt worden in de kosmologie. We constateren een aantal opval-
lende en verrassende kenmerken, die we kunnen verklaren met een uniforme spatiële distributie
van RFI bronnen, waarbij de elektromagnetische propagatie van het signaal vrij exact beschreven
wordt door bestaande propagatiemodellen. Door extrapolatie van de distributie en met een aantal
aannames berekenen we de invloed die resterende RFI zou kunnen veroorzaken in zeer gevoelige
experimenten. Waar de systeemruis op 1 kHz en 1 s niveau 770 Jy in de LBA en 77 Jy in de HBA
is, wordt de maximale schade van gelekte RFI geschat op 490 mJy voor de LBA and 170 mJy voor
de HBA. Dit laat wederom zien dat de AOFlagger zeer accuraat is, aangezien er bronnen worden
gevonden die zich onder de ruis bevinden.

Desondanks zou dit RFI-niveau negatieve implicaties kunnen hebben. Wanneer namelijk RFI-
bronnen met dit niveau stationair en coherent zouden zijn, zou al binnen één observatienacht
duidelijke effecten te zien moeten zijn aan de hemelpool. Omdat de hemelpool één van de hemel-
velden is waar het LOFAR-EoR zich op richt, kunnen we deze mogelijkheid analyseren. Door de
eerste EoR observaties weten we nu dat zulke effecten nog niet zichtbaar zijn. We kunnen dus
concluderen dat, als er inderdaad RFI resteert, deze momenteel niet coherent genoeg is om schade
te veroorzaken.

Mochten er bij langere integraties tóch RFI effecten verschijnen, dan kan de AOFlagger op de
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geı̈ntegreerde data worden toegepast. Dit zou de gevoeligheid van de flagger aanzienlijk verho-
gen. Alles lijkt er dus op dat gelekte RFI zeer waarschijnlijk geen problemen gaat geven bij het
detecteren van de herionisatieperiode!

Nu LOFAR zelfs ondanks RFI haar werk kan doen, kan zij beginnen aan haar fantastische
wetenschappelijke doelen. Het staat in de sterren geschreven dat ons een opwindende tijd wacht!
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