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Chapter 1

Introduction

The study of astroparticle physics has an exciting history of more than one
century of scientific discoveries. However, there are still many mysteries to be
revealed. This chapter gives an introduction to cosmic rays, air showers and
radio detection of these air showers. Additionally, some historical background
is provided and the main topic of this thesis is introduced.

1.1 Cosmic Rays
Human beings have looked at the stars and planets for thousands of years by
observing them with the naked eye. It was only at the beginning of the seven-
teenth century that the first telescopes were built, allowing mankind to look
even deeper into the details and shapes of these celestial objects. More re-
cently, at the beginning of the twentieth century, it became possible to glimpse
outside the visible spectrum. Radio telescopes allowed us to look at very dif-
ferent wave-lengths. Infra-red, ultra-violet, X-rays and γ-rays from outer space
were converted into visible images by the ever advancing possibilities of our
technological age. Soon, virtually the whole electromagnetic spectrum became
available for scientific scrutiny; from the cosmic microwave background to the
hard γ-ray bursts in distant galaxies.

It was also at the beginning of the twentieth century that another important
discovery was made: not only photons but also particles are messengers from
outer space. In those days it was generally assumed that the earth was the
only source of ionizing radiation. It was therefore believed that the radiation
levels would decrease at increasing distance from the surface of the earth. In
order to test this hypothesis Victor Hess undertook a series of balloon exper-
iments between 1911 and 1913. This led to the discovery of extraterrestrial
particles, for which he received the nobel prize in 1936. These particles were
later dubbed cosmic rays by Robert Andrews Millikan (who confirmed the work
of Hess in 1925). Initially, it was believed that the observed particles were γ-
rays. However, later experiments revealed a variation in intensity with latitude.

9



10 CHAPTER 1. INTRODUCTION

This variation indicated that (the primary constituents of) the cosmic rays were
deflected by the geomagnetic field, which is only possible for (charged) particles.

The measurements on these balloon flights (some as high as 5300 m) were
performed using a barometer and three enhanced-accuracy Wulf electrome-
ters [1] to determine whether the radiation levels would indeed drop at increasing
altitudes. Hess did observe a small decrease in intensity at a few hundred meters
above the ground. However, as he gained more altitude, the radiation increased
again (see figure 1.1.1 and 1.1.2), which led to the conclusion that there must
be some other source of radiation.

Figure 1.1.2 hints at why Hess took his balloon flights up to such daring
heights. The first two air-tight electrometers Q1 and Q2, with thick glass walls,
were meant to be sensitive to γ-rays and show only moderate evidence of an
increase for altitudes lower than 4000 m. The third electrometer was meant to
measure β-radiation. It had thinner glass walls, was not air-tight and shows
an increase only after compensation for the air-pressure. Only the two highest
data-points between 4000 and 5200 m leave absolutely no doubt that radiation
levels increase with height. Hess concluded [1]:

Meine Ballonbeobachtungen scheinen darauf hinzuweisen, daß noch
eine [...] Komponente der Gesammtstrahlung existiert, welche in
der Höhe zunimmt und auch am Boden merkwürdige Intentsitäts-
schwankungen aufweist.1

This conclusion may very well have heralded the beginning of a century of
cosmic-ray physics.

Hess was the first to irrefutably show that the radiation intensity increased
with altitude. He left little doubt that the additional radiation source was
of extra-terrestrial origin. However, this spectacular result was not the first
‘smoking gun’ that hinted at a source of radiation other than the earth. Earlier
measurements on the Eiffel Tower were performed by Theodor Wulf in 1910
[2, 3]. Although these experiments did not show an increase as a function of al-
titude (as is wrongly stated in [4]), the measurements did show a less dramatic
decrease than expected. Thus, Wulf concluded that there had to be another
source of radiation, based on the fact that no significant drop in intensity was
measured. In addition, two earlier independent balloon experiments were per-
formed by Albert Gockel and Karl Bergwitz. Bergwitz obtained inconsistent
results and was unfortunately dissuaded to take further measurements by an
older university professor who told him that he would loose his scientific repu-
tation if he continued to pursue the idea of extra-terrestrial radiation [3]. Gockel
however took three balloon flights, in 1909, 1910 and 1911, and measured a sim-
ilar insufficient decrease of radiation such that it was unlikely to originate from
the earth’s surface alone [5, 6].

Nowadays we have obtained a detailed measurement of the cosmic-ray flux
spectrum through manifold methods, by direct and indirect observations. The

1My balloon observations seem to indicate that there exists an additional component to the
total radiation which increases with height and which, in addition, exhibits strange fluctuations
in intensity at ground level.
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Figure 1.1.1: The balloon experiments by Hess – Top: the results of the flight on Aug.
7, 1912 [1]. Middle: a photo after the landing in Pieskow, in the east of Germany,
close to the border with Poland [7]. Bottom: the average results of seven such flights
[1]. The values between the parentheses are the number of measurements that were
used to determine the average.
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Figure 1.1.2: Intensity as a function of altitude – The results show the mean values
of the observed ions per cubic centimeter per second. The measurements Q1, Q2,
Q3R, and Q3 correspond to the four columns at the bottom of figure 1.1.1. The label
Q3R stands for the reduced (reduziert) values which were compensated for the variable
air-pressure in the third non-sealed electrometer.

spectrum in figure 1.1.3 shows that cosmic rays manifest themselves in an aston-
ishing range of energies running over no less than eleven orders of magnitude.
The flux of these particles drops approximately with an inverse-power law of
E−γ where γ ≈ 3 and consequently spans an even larger range of approximately
thirty orders of magnitude. Cosmic rays with energies above 2 · 1019 eV are ex-
tremely rare and thus occur only about once per century per square kilometer.
That is why ground-based detectors such as the Pierre Auger Observatory, which
probe the far end of the spectrum, cover a very large surface area.

We may observe four important features in the shape of the cosmic-ray
spectrum. As can be seen in figure 1.1.3 there is a ‘knee-like’ structure at
5 · 1015 eV where the power law goes from γ = 2.7 to γ = 3.1. A second knee-
like structure appears at 4·1017 eV and a so-called ‘ankle’ structure at 4·1018 eV.
This ankle structure is more clearly visible in figure 1.1.4 which focuses on the
highest energies. The flux in this figure has been multiplied with E3 in order to
make the sub-structure in the inverse power law more prominent. Finally, figure
1.1.4 also shows that there seems to be a cut-off at energies around 2 · 1019 to
2 · 1020 eV.

Understanding the origin of the knee in the spectrum is vital to the under-
standing of the creation and the origin of cosmic rays. A popular explanation
of the knee is related to the upper limit of acceleration by galactic supernova
remnants [10]. These supernova remnants might ‘run out of steam’ at 5 ·1015 eV
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Figure 1.1.3: The cosmic-ray flux spectrum – A modified version from [8].

Figure 1.1.4: Far end of the cosmic-ray flux spectrum – Source: ref. [9].
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and the spectrum would then acquire a larger value for γ at energies above this
point. Another explanation may be found in possible ‘leakage’ of particles from
the galaxy, i.e. it is expected that cosmic rays are not contained by the magnetic
field of the galaxy at higher energies. This can be understood by examining the
Larmor radius rL, where

rL =
E/PeV · 1.08 pc

Z ·B/µG
,

which gives us the radius of the orbit of a particle with atomic number Z with
energy E in a constant magnetic field B. Naturally it is an oversimplification
to assume that the galactic magnetic field is constant. Dedicated software sim-
ulations have been developed to model the magnetic field of the galaxy and the
orbitals of these particles (see for instance [11]). However, the general princi-
ple may be readily explained by this formula: if the energy increases and the
radius exceeds the width of the galactic disk one may expect protons (Z = 1)
to ‘leak’ out of our local galaxy. The second knee-like structure may similarly
be explained by iron and heavier nuclei leaving our galaxy. The ankle may be
explained by an extra-galactic component which is less intense but has a harder
spectrum [12].

The drop-off at the far end of the spectrum is expected to be due to the
Geisen-Zatsepin-Kuz’min (GZK) mechanism [13, 14]. The threshold energy for
pion production by protons colliding with the CMB photons is approximately
5 · 1019 eV. These reactions effectively slow down the proton, creating the final
cut-off. Data from HiRes [15] and the Pierre Auger Observatory [16] provide
evidence of flux suppression (see figure 1.1.4) with a significance of at least 5 σ.

The final verdict about all these structures in the spectrum is far from com-
pleted. An excellent review about this topic may be found in [12].

Another important question arises about the nature of these particles. Be-
cause cosmic rays at low energies can be measured directly, it is relatively easy
to determine their nature. Balloon-borne experiments or measurements from
space have allowed us to determine the composition at lower energies. How-
ever, the questions about composition remain uncertain at increasing energies
above 1016 eV when direct measurements are no longer feasible. To study the
composition at these energies, one has to mainly rely on the statistical results
involving the shower maximum (the point at which the number of particles in
the air-shower is highest) [17].

1.2 Air Showers
Pierre Auger discovered in 1939 that cosmic radiation events at different loca-
tions coincided in time [18]. Among other experiments, Auger placed two parti-
cle counters at progressively increasing distances from each other and measured
the number of coincidences as shown in figure 1.2.1. He measured many more
coincidences than the expected random ones at distances larger than 10 m. This
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Figure 1.2.1: Auger’s coincidence experiment – The logarithm of the rate N (number
of coincidences per hour) is plotted against the separation distance. The dashed line
is the expected curve when the possibility of cosmic-ray events is excluded. The rate
of purely random coincidences was estimated at logN = 0. This figure is taken from
[18].

led to the conclusion that these coincidences were not random but associated
with single events on a larger scale: air showers.

Air showers are cascades of particles which are produced by cosmic rays,
when the primary particle interacts with an atom high in the earth’s atmo-
sphere (see figure 1.2.2a). This primary interaction creates several secondary
particles which contain a significant fraction of the energy of the primary. If
these secondaries still contain sufficient energy then they may generate more
secondaries by colliding with other atoms in the atmosphere which leads to a
particle cascade. The particle density in the air shower is generally described
by the Gaiser-Hillas function [19]. The number of particles increases rapidly
as the cascade moves through the atmosphere. As the cascade continues, the
particles loose energy through collisions and new interactions. Particles with
lower energies will not generate new particles upon collision and at a certain
point the shower maximum is reached when more particles are stopped than
created. Usually, only a small fraction of the particles reach the earth’s surface.
The number of generated particles scales linearly with the energy of the primary
particle such that billions of particles are generated at the highest energies of
more than 1019 eV. The particles travel together close to the speed of light
in a shower front which has a typical thickness of several meters at the center
and more than a hundred meters at its outer edges. This shower front, shown
schematically in figure 1.2.2a, is sometimes called the pancake because its flat
circular shape can be likened to a pancake, which moves through the atmo-
sphere. The radius of the pancake may be up to ten kilometers at the highest
energies.

An air shower contains a mixture of electromagnetic, muonic and hadronic
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components as illustrated in figure 1.2.2b. The hadronic part consists mainly of
protons, neutrons and pions. The muonic part is easily detected by ground-
based arrays because the interactions of muons with atmospheric atoms or
molecules have small cross-sections and therefore, muons will often reach the
surface of the earth. The electronic part is mainly created by pair production
and bremsstrahlung. It is apparent that a large number of creation and de-
cay channels play a role in the process. Nowadays, air showers are generally
simulated using Monte Carlo codes such as CORSIKA [20].

The flux at energies of 1015 eV and above quickly becomes too low for
direct measurements making an indirect measurement of the emissions caused
by the primary particle more feasible. There are several techniques to indirectly
measure cosmic rays at higher energies. One of these techniques, employed by
the H.E.S.S. [21] and MAGIC [22] γ-ray telescopes is to register the optical
Cherenkov emissions. The secondary particles travel faster than the speed of
light in air and this gives rise to Cherenkov light which can generally be detected
on clear and dark nights. The arrival direction of the original particle can be
traced back when an array of such telescopes registers the Cherenkov light in
more than one location. The Cherenkov cone in air is very sharp because the
index of refraction is close to unity and this means that the radiation is emitted
almost parallel to the arrival direction of the cosmic ray such that the light is
tightly beamed onto a small surface area with a radius of only about 250 m.
The tightly beamed radiation and the necessary nocturnal conditions require a
relatively high flux and make these methods sensitive at relatively low energies
between 1012 and 1015 eV.

A second technique involves the measurement of the particle footprint of the
shower. The efficiency of such a detector can be greatly enhanced by placing
only few detectors over very large areas. This can be done because the detectable
muons are dispersed over a much larger area than the Cherenkov light such that
the particle detectors may be placed at larger distances from each other than
the Cherenkov telescopes. The surface detector of the Pierre Auger Observatory
is such an array; it consists of 1600 particle detectors spread out in a triangular
pattern over a surface area of no less than 3000 km2. The surface detectors have
a separation distance of 1.5 km. A downside of this method is that information
about the primary particle is obtained in a very indirect manner. Using only
this technique makes it difficult to estimate the height of the shower maximum
or the point of first interaction.

A third method involves the fluorescence detection of the shower. Nitrogen
molecules in the air are excited by the secondary particles and emit a small
amount of ultra-violet light when these molecular excitations fall back into their
ground state. This light may be collected by optical telescopes with which the
Pierre Auger Observatory is also equipped. It is not necessary that the telescope
looks directly parallel to the arrival direction of the cosmic ray, because the
fluorescence light is emitted almost isotropically. Thus, the air shower may be
observed over a wider area than the Cherenkov technique. The particle flux for
such an observation may, therefore, be much lower and this method is especially
useful for measuring cosmic rays of the highest energies. The Pierre Auger
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Figure 1.2.2: Shower Development – Panel a) shows the geometry and development of
the air shower. Panel b) gives a schematic impression of the involved interactions.

Observatory advantageously combines the results from the surface detector and
its fluorescence detectors into one hybrid detection such that the information
about the footprint of the shower, the arrival direction and the core position
from the surface detectors, is supplemented with the information about the
shower profile from the fluorescence detectors.

A fourth method which is currently regaining more and more interest is the
detection of air showers using radio antennas. Currently a detector array of radio
detection (RD) stations, the Auger Engineering Radio Array (AERA)[23, 24]
is being deployed at the Pierre Auger Observatory. It is largely this detection
technique to which the contents of this thesis is devoted.

1.3 Radio Detection of Air Showers
The emission of coherent radio pulses from air showers in the 30 to 80 MHz
region is primarily sensitive to the thickness of the shower front. The bulk of the
particles in the air shower is highly concentrated around the shower axis. This
is the essential part of the shower that gives rise to the electromagnetic pulses.
Hence, the thickness of the shower front along the axis, or in other words the
pancake thickness L, is an important parameter which is approximately 4 m at
energies of 1017 to 1018 eV [27]. This thickness has considerable implications on
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Figure 1.3.1: The dipole array at Jodrell Bank – Source: ref. [25].

Figure 1.3.2: Schematic of the experiment at Jodrell Bank – Source: ref. [26].
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Figure 1.3.3: Incoherent versus coherent emission

the wavelength above which (or the frequency below which) the radio emissions
from air showers become coherent.The coherence effect is illustrated in figure
1.3.3 where E is the energy of the recorded pulse andN is the number of particles
in the shower front. One may thus conclude that effects due to coherent emission
are satisfied at frequencies below c/L = 75 MHz. The energy of the pulse is then
proportional to N2 for the coherent case, and because N scales linearly with
the energy of the primary particle we may conclude that the energy of the radio
pulse is proportional to the squared energy of the primary particle, improving
the chances of detection at higher energies.

This coherence effect was well understood by J.V. Jelley et al. and in 1964
they conducted an experiment (see photo in figure 1.3.1) at the Jodrell Bank
observatory which was successful at the first detection of radio pulses from
extensive air showers [26] at radio frequencies around 45 MHz.

A schematic of the experiment is shown in figure 1.3.2. The experiment con-
sisted of a triplet of Geiger-Müller counters G, which operated in coincidence
and which triggered the read-out of a small radio array A, equipped with 72
dipole antennas oriented in the east-west direction. A pulse transmitter T , con-
nected to a dipole and driven by one of the counters was used in a separate test
to exclude the possibility that the observed pulses were due to radio emissions
from the electronics. The whole experiment was run on batteries to avoid any
radio interference.

The article by Jelley et al. [26] suggests that it is most likely that the pulses
were generated due to the Askaryan effect [28, 29], the “fractional negative
charge-excess ε arising from the annihilation of positrons in flight”, although it
does discuss other possibilities. We have since learnt that this mechanism does
play an important role in the emission process but that the leading emission
mechanism is of geomagnetic origin and the charge-excess effect is secondary.
A substantial part of this thesis treats the disentangling of these processes. An
important quantity in studying these emission mechanisms is the polarization
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Figure 1.3.4: Photograph capturing a cosmic-ray-induced radio pulse displayed on os-
cilloscopes – Source ref. [25]. This figure serves to illustrate the process used in [26]
but is not from the same experiment.

of the pulse. The polarization can be determined by the use of bipolar an-
tennas which can then be used to reconstruct the (polarization signature) and
(ultimately) the full three-dimensional electric field. Later radio experiments
during the sixties [30] showed that the leading emission mechanism is primarily
of geomagnetic origin and recently confirmed by modern experiments [31].

The scientific instruments in the 1960 were of course much more limited
than the technological gadgets that are available now. It is therefore almost
unbelievable that the pioneers of the sixties were successful at measuring the
extremely short pulses (of several nanoseconds) which barely registered above
the (galactic) radio background. To quote D.J. Fegan from [25]:

[H]ighly imaginative and innovative low-cost solutions had to be
found in order to solve many of the technological problems that reg-
ularly surfaced. Much of the signal processing electronics, the par-
ticle detectors, radio antenna[s] and hardware infrastructure, had to
be constructed by a combination of graduate students and machine
shop technical staff. In terms of electronics, this was very much an
era of transition, from power consuming vacuum tubes to solid state
devices such as transistors and diodes. It was only towards the close
of the 1960’s, that digital logic chips and primitive hybrid analog
linear chips became available, often at very considerable cost. This
meant that much of the detector and electronic system development
had to be designed and assembled using discrete components man-
ually fabricated onto copper-strip circuit boards. Building a 2 ns
risetime analogue pulse amplifier was not for the feint-of-heart!

Those were indeed very different times in which, for instance, a delay line of
2.2 µs literally meant a 1 km length rolled up coax cable with a couple of
amplifiers in-between. Nowadays we would simply use a digital buffer of some
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Figure 1.3.5: Paper density versus time – The number of papers on radio detection of
cosmic-ray-induced air showers and neutrinos presented at the International Cosmic
Ray Conference from 1965 until 2013. Source: ref. [41].

sort. In fact, to read out the waveform it was necessary to make a photograph of
the scopes for every coincidence. This meant that rather efficient pulse rejection
criteria were needed, lest one runs out of film immediately.

The only small advantage may have been the relative radio-quietness of those
days, when less electrical equipment was interfering with the measurements and
less radio stations contaminated the background. In fact, the measurements
were performed during night-shifts on a wavelength which was reserved for the
new video signal from the BBC which was not in use from midnight until nine
o’clock in the morning.

The excitement about this new detection technique in the sixties was followed
by a quick decline in the seventies. This initial interest decreased as it became
apparent that the pulses were rather tightly beamed and not easily detectable
at large impact parameters (distance to the shower axis). In addition, the
increasing man-made transient (pulsed) noise became (and still is) a source of
considerable nuisance. Radio astronomy also focused more on the GHz regime
with the discovery of the 21 cm hydrogen line.

It was only at the beginning of this century, with the development of radio
arrays such as LOPES [32, 31, 33], CODALEMA [34, 35], LOFAR[36, 32] and
many others, that a renewed interest was taken in this detection technique (see
figure 1.3.5). Some pilot radio projects such as MAXIMA[37], RAuger[38] and
EASIER[39, 40] also appeared at the Pierre Auger Observatory which resulted
in the deployment of AERA, the Auger Engineering Radio Array; a joint venture
of several institutes in Germany, the Netherlands and France. This radio array is
currently taking data with 124 antennas and it is undergoing further expansion.
This thesis discusses the period in which only 24 stations were active.
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1.4 Contents of this Thesis
The recent revival of the detection of cosmic-ray-induced radio pulses led to a
renewed interest in the emission processes of these pulses. Experiments in the
nineteen-sixties showed evidence that the leading emission process was due to
the interaction of the charged particles in the air shower with the geomagnetic
field. Evidence for the Askaryan effect [28, 29] in air showers was reported in
1971 as a secondary mechanism which showed up with a relative contribution
of 14 ± 6% in the experiment [42]. The emission mechanisms were generally
understood at that time but no detailed description of the air-shower develop-
ment or the exact shape of the electromagnetic pulse was available. Today the
theory has advanced substantially and a large number of software packages is
available, such as COREAS [43], EVA [44], MGMR [45, 46, 47, 48, 27], REAS
[49, 50, 51], SELFAS [52] and ZHAireS [53] which model the emission process in
detail. Furthermore, the recent advances in digital-signal-processing hardware
and the ever-advancing communication speeds have enabled the direct sampling
(at hundreds of MHz) of the electric field in the relevant frequency range. It has
therefore become possible to perform a detailed analysis in which the measured
pulses may be compared with theory on an event-by-event basis. The particle
detectors and fluorescence telescopes of the Pierre Auger Observatory play an
important role in this comparison because these provide accurate and precise
data about the shower parameters, such as the arrival direction, core position
and energy. These data can subsequently be fed into the emission models and
can be compared with the recently performed radio measurements from MAX-
IMA (the Multi Antenna eXperiment in Malargüe, Argentina) and AERA (the
Auger Engineering Radio Array).

A substantial part of this thesis is devoted to a detailed comparison of the
here mentioned models with measurements involving polarization and amplitude
using the radio data from MAXIMA and AERA. However, it has already been
discussed that the successful detection of these minute pulses is hampered by
narrow-band as well as transient radio-frequency interference (RFI). Chapter 4
discusses a new technique to suppress periodic RFI using a method based on
linear prediction.

Additionally, the amplitude of the remaining background – after the periodic
RFI has been removed as much as possible – is dominated by the galactic back-
ground but is not free of (anthropogenic as well as natural) transient pulses. The
cosmic-ray-induced pulses that are to be detected have amplitudes of the same
order of magnitude as the galactic background and can not be distinguished
easily from the interfering transient pulses. Apart from the fact that these
background conditions have serious implications on the detection and successful
triggering on cosmic-ray-induced pulses there are some issues to be dealt with on
the level of analysis and interpretation. Measuring so close to the background
introduces selection biases and the question of how to extract the information
from the pulse as efficiently as possible becomes important. Chapter 5 and 6
are devoted to these technical issues using toy models and realistic simulations.

In addition, chapter 6 also serves as a validation of the methods that are
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to be used in the final analysis presented in chapter 7. The reader who is
only interested in the analysis of these final results may very well only read the
relevant parts about polarization and signal extraction in section 6.1 and then
focus all attention on chapter 7, keeping in mind however that details of the
analysis have been treated elsewhere.

To conclude this chapter we give a short introduction to the main topic of
this thesis: the study of the polarization signatures of the geomagnetic emission
process and the additional Askaryan effect in the context of the radio measure-
ments from MAXIMA and AERA, and the comparison of these data with the
data from the Pierre Auger Observatory.

Figure 1.4.1a illustrates how the lateral deflection of charges due to the
Lorenz force produces a particle drift in the shower front. The opposite charges
move in opposite directions to each other inducing a net transverse current
~J [30] in the shower front. The change of the particle density in the shower
produces a variation in this current leading to a bipolar-shaped electromagnetic
pulse. As illustrated in figure 1.4.1b this field has a unidirectional polarization
pattern which is perpendicular to the shower axis. This leading geomagnetic
component is known to scale with the sine of the opening angle α between
the shower velocity ~v along the axis and the geomagnetic field ~B, and can be
described as

~Egeo(~p, t) ∝ −~v × ~B ∝ sinα, (1.4.1)

where ~p is the observer position and t is time. The polarization of this geomag-
netic component is given by the direction of the Lorenz force.

There is an additional second contribution to the electric field from charge-
excess in the shower front: the Askaryan effect [28, 29]. The mechanism has a
different polarization pattern than the geomagnetic effect and is not influenced
by the geomagnetic field ~B. The excess charge is caused by the knockout of
electrons from the atmosphere and annihilation of positrons; creating a net
negative charge at the shower front that moves towards the surface of the earth
and a positive trail that is left behind. This process is shown in figure 1.4.1c.
The polarization signature of this effect is radial with respect to the shower axis
and is illustrated in figure 1.4.1d.

The full electric field may be represented by a vectorial sum of both mecha-
nisms,

~E(~p, t) = ~Egeo(~p, t) + ~Ecxx(~p, t), (1.4.2)

where ~Ecxx(~p, t) represents this secondary component due to the Askaryan effect.
If we want to observe the effect of the charge-excess component it is necessary
to disentangle both emission mechanisms. We define an observable which obeys
the following conditions:

1. the observable can be measured with a bipolar antenna,

2. the observable indicates a deviation from the unidirectional polarization
as a function of the observer position and
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a)

c)

b)

d)

Figure 1.4.1: The emission mechanisms and the resulting polarization patterns – The
(for this example vertical) shower front is depicted in panel a) as a blue disk and the
charged particles (for brevity e+ and e−) are deflected by the magnetic field ~B which
is perpendicular to the shower axis. Panel b) shows the unidirectional polarization
pattern that is produced by the current ~J (the shower axis is at the origin). The
charge-excess effect is shown in panel c) and d) where in c) the down-going shower
front is represented by a blue circle. The radial polarization of the charge-excess
component is shown in panel d).
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Figure 1.4.2: Observer-angle dependence of the ratio R – Panel a) shows the geometry
for a vertical shower. The shower core is described by the ‘explosion’ at the center of
the coordinate frame. Panel b) shows the observable R as a function of the observer
angle for a vertical shower. Source: ref. [54]. Panel 1b) was provided by Krijn de
Vries.

3. the observable indicates a radial polarization pattern as a function of the
observer position.

The coordinate system (x, y) is rotated with the x-direction pointing into the
~v × ~B direction, such that the geomagnetic component is not present in the y
direction, as shown in figure 1.4.2a). In other words, if some signal is observed
in the y-direction then it must be of non-geomagnetic origin.

We define the observable as

R(ψ) =
2
∑
i Re(ExiE∗yi)∑

i(|Exi|2 + |Eyi|2)
∝̃ sinψ, (1.4.3)

where we dropped the ~p, and the most relevant information about the observer
is now described by the observer-angle ψ, as can be seen in figures 1.4.2a) and
1.4.2b). The ratio R is related to the Stokes parameters discussed in section 3.2
and 6.1.3.

The enumerator in equation (1.4.3) is a pairwise multiplication of the samples
(measured voltages) in the trace and the denominator serves as a normalization
factor, such that a sinusoidal pattern as a function ψ is expected. The sinusoidal
pattern can be explained by the fact that at ψ = 0 the vectorial components of
the Askaryan and the geomagnetic effect both lie on the x-axis. As ψ increases
from 0 towards π/2 we expect the radial component to emerge in the y-direction
and consequently we expect R to deviate from zero. At ψ = π we should have
R = 0 again and in the third and the fourth quadrant we expect to see the
opposite pattern of what was described for the first and the second quadrant.
This radial pattern is indeed present in the simulation of figure 1.4.2b).

We conclude with an example of a measured and reconstructed pulse from
the AERA setup. Its time-development, shape and geometry are schematically
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Figure 1.4.3: Schematic view of the reconstruction of a single pulse – The two plots
at the top show a reconstructed measured pulse in time and in the (x, y)-plane. The
geometry producing the (x, y)-plane is shown at the bottom. The vectors only indicate
directions; the magnitudes are not to scale. The geometry is discussed in more detail
in chapter 6.

shown in figure 1.4.3. The samples have been interpolated (upsampled) for visu-
alization purposes only. The data are presented and analyzed at their original
sampling frequency in the rest of this thesis. The relevant measurements in
this thesis were performed at a sampling frequency of 200 MHz. The geome-
try is based on the arrival direction and the geomagnetic field. The value for
R = −0.83± 0.03. This suggests a deviation from a purely geomagnetic pulse.

Further examination of the pulse shows that there is an additional circular
component. In chapter 7 we will see that this deviation from zero in the circular
polarization is indeed significant as well. Thus, the circular polarization pattern
can be used as an additional observable to further understand and determine
the emission processes.



Chapter 2

The Pierre Auger
Observatory and AERA

The Pierre Auger Observatory is located in the province of Mendoza, Argentina
and studies the ultra high-energy regime of the cosmic-ray flux spectrum (mostly
at energies of 1018 eV and above). It was built by an international collaboration
of over 450 scientists and 18 countries and completed in December 2008. The
observatory is a very large particle detector which covers an area of 3000 km2.
It is surrounded by four fluorescence detectors (FD) each of which consist of
six fluorescence telescopes. These look inwards into the atmosphere above the
surface area of the observatory. The surface area is covered with 1600 surface
detectors (SD) in a triangular grid. This chapter describes the observatory and
its current radio enhancement: the Auger Engineering Radio Array (AERA).

2.1 The Surface Detector
Each particle detector in the surface array (see figure 2.1.1) is a large polyethy-
lene tank filled with purified water and coated with a reflective liner on the
inside. A schematic view of such a tank is shown in figure 2.1.2. The charged
particles (mostly muons) from an air-shower travel with almost the speed of
light in vacuum. Therefore, a small amount of Cherenkov light is generated
when these particles pass through the water. The light is detected by three
photo multiplier tubes (PMTs), and the signal is digitized, and analyzed by
the front end triggering mechanism. A triggered event is created and its time-
stamp is sent via wireless communication to the Central Data-Acquisition Sys-
tem (CDAS) when the signal meets certain trigger criteria (which happens at
about 20 Hz, see [55]). These triggered events are not necessarily produced by
a single high-energy air shower but may be random events due to the muonic
background from low-energy cosmic rays. A second set of more stringent trigger
criteria, based on the incoming time stamps from all detectors is implemented
by CDAS. A signal is sent back to the surface detectors in order to retrieve the

27
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Figure 2.1.1: Map of the observatory – The four fluorescence telescopes, Los Leones,
Coihueco, Loma Amarilla and Los Morados are situated around the array of surface
detectors, represented by the grey dots. The radio array, AERA, is located inside the
infill array where the concentration of tanks is higher. The infill array and AERA are
located close to an additional telescope building, HEAT (see section 2.3).

full read-out of the PMTs if conditions such as coincidence in time and correct
spatial distribution are met. The information is then stored to disk for further
offline analysis in which even further quality cuts may be performed.

2.2 The Fluorescence Detector
The FD-telescopes measure the ultra-violet light that is emitted as the particles
of the air shower pass through the atmosphere. The amount of florescence light
is proportional to the number of particles in the air shower and this number is
linearly related to the energy of the incoming cosmic ray. The FD detector is
therefore especially accurate at determining the energy of the primary particle.
Because the fluorescence detector essentially measures the shower profile it can
also measure the shower maximum Xmax quite accurately by fitting the Gaiser-
Hillas function [19] to the measured intensities.

Every fluorescence building has six telescopes. Each telescope covers 30◦

in both azimuth and elevation and all six telescopes together cover 180◦, a
semicircle which is directed towards the center of the surface array. A schematic
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Figure 2.1.2: One of the Surface Detectors at the Pierre Auger Observatory – This is
a modified version of the figure from [56].

of the inside of one of these FD-telescopes is shown in figure 2.2.1a. The UV
light comes in through a UV filter at the aperture and the mirror focusses the
light into a ‘camera’ which is a grid of 20x22 PMTs. The signals are digitized
and an image is created such as can be seen in figure 2.2.1b.

The quality of the atmosphere above the detector is an important factor.
The UV signal may be attenuated by aerosols such as dust or ash and it needs
to be monitored carefully. The central laser facility (CLF) sends out a laser
pulse from the center of the array and the detection of the scattered light by
FD provides information about the atmospheric conditions. Clouds obviously
affect the measurement as well and therefore the sky is constantly monitored by
a cloud camera. The height of the clouds is determined using a LIDAR (Light
Detection and Ranging) system. A weather balloon can be launched when a
particularly energetic event is measured in order to gain even more information
about the atmospheric conditions.

A single fluorescence detector is good at providing a two-dimensional image
of the shower. However, the radial distance with respect to a single telescope
can not be determined easily. Relative timing differences only give limited infor-
mation about the arrival direction. The angular accuracy of the arrival direction
and the determination of the core position is improved by triangulation when
multiple FD-buildings measure the same event. The combined FD buildings
can supplement and cross-check the measurement from the SD with important
extra parameters.
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a) b)

Figure 2.2.1: Fluorescence telescope – Panel a) shows the setup for one of these tele-
scopes. Source: ref. [57]. Panel b) shows the image that is created from the lumi-
nescent track of an air shower as registered by such a telescope. The colors represent
timing information.

2.3 Enhancements
The infill array shown in figure 2.1.1 is an area where the surface detector
has been made more dense by placing extra detectors in-between the regular
grid. This area is located close to the FD-building Coihueco. The infill array
is meant to measure showers of lower energy, starting at 1017 eV, where the
transition from galactic to extra-galactic cosmic rays is believed to happen. This
infill detection is meant to occur in conjunction with the High Elevation Auger
Telescopes (HEAT) which are located very close to the Coihueco building. The
telescopes of HEAT may be tilted by 30◦ such that the closer and higher shower
maxima of these lower energy rays can be more efficiently detected. Together
with Coihueco, a range in elevation of 0◦ – 60◦ is covered.

The design of the observatory allows the detection of cosmic rays by two
complementary techniques. Such a hybrid detection (as shown in figure 2.3.1)
improves the accuracy with which the properties of the shower (the shower
parameters) can be determined. As explained earlier, the footprint of the shower
detected by SD allows the accurate determination of the arrival direction (zenith
and azimuth) and the core position. The FD detection sheds more light on the
shower development and the energy of the primary particle. Unfortunately
the uptime of FD is only 12% and it would be beneficial if another technique
could be used that has an uptime of 100% and that supplements SD with extra
information. The Auger Engineering Radio Array is an enhancement that, if
successful, will be able to increase the accuracy of the surface detector and
provide extra information about the air-showers.
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Event 12018427 06/27/2011 05:10:23 UTC
E = 47± 1 EeV

Figure 2.3.1: Hybrid detection – The colors indicate timing information.

2.4 Radio Setups and AERA
As discussed earlier, there exists a wide range of radio-detection systems both
within the Pierre Auger Observatory as well as outside of it. This diverse group
of detection devices shows that – in the context of radio detection of cosmic rays
– some choices can be made regarding the type and implementation of the setup.
Features such as the detector’s frequency range, the choice of antenna type, the
spacing between the stations and the type and method of data acquisition are
all free parameters that can be adjusted or changed. Even within the Pierre
Auger Observatory numerous radio-detection techniques have been proposed
and implemented [58, 39, 40, 38, 23].

The two radio setups that are most relevant for this thesis are the MAXIMA
pilot setup near the Balloon Launching Station (BLS, indicated by ‘balloon’ in
figure 2.1.1) and AERA (also shown in figure 2.1.1). A more detailed aerial
overview of both setups is given in figure 2.4.2. A photo of an AERA station is
shown in figure 2.4.1. The MAXIMA stations are of very similar design. The
data sets obtained from these two setups consist of 35 cosmic-ray events for the
present analysis. Some of these events have been measured by multiple stations
such that 49 radio pulses can be analyzed. The details about the quality cuts
and periods of data taking can be found in appendix A.

The triggering scheme is an important design choice in the operation of
the arrays (see figure 2.4.3). At typical sampling frequencies of hundreds of
MHz it is very expensive to create a setup that allows for a continuous un-
interrupted read-out of data from multiple stations. Therefore, some kind of
triggering scheme is implemented. One can design a data-acquisition system
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Figure 2.4.1: A photo of an AERA station – The log-periodic dipole antenna (LPDA)
can be seen above the horizon. The electronic system where the signal is amplified
and digitized is situated below the solar panels to the right of the antenna.

that is entirely autonomous which means that it would be ‘self triggered’ on
the radio data only. On the other hand it is possible to design a system that
is triggered by some external device. This choice is important and has serious
implications on the algorithms that are used in the online signal processing.
This chapter discusses these methods in the context of online algorithms for
systems that exclusively rely on radio data in the triggering stage. However,
some of these algorithms are also used for offline processing (see section 4.4).

The most autonomous type of detector would be one that processes only
the radio data from its antenna(s) in order to obtain the desired signal. The
RAuger setup[38] as well as the AERA setup [59, 24] have operated in this so
called ‘self-triggered’ mode.

An alternative to this purely autonomous detection method is to add a sec-
ondary device to the station (such as a scintillator) which serves as an external
trigger on the accompanying muons. Such scintillator-triggered stations were
implemented at the MAXIMA setups.

Finally, one can choose to rely on the surface detectors of the Pierre Auger
Observatory as an external trigger. The EASIER setup [39, 40] as well as later
stages of the AERA setup employ such an external trigger. The former achieves
this by integrating the antenna virtually directly into the SD-tank for an almost
immediate trigger whereas the latter requires a trigger from CDAS. This last
triggering scheme requires at least five seconds of data buffering within the
field-programmable gate arrays (FPGA’s) in the digitizers of the radio stations.

Self-triggered detection of cosmic-ray-induced radio pulses is difficult. It
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Figure 2.4.2: Aerial overview of the most relevant setups for this thesis – The stations
of the MAXIMA setup in panel a) and of the AERA setup in panel b) are represented
by triangles. SD tanks are represented by dots and SD-infill tanks are represented by
squares.
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Figure 2.4.3: Operation of the radio arrays – The stations of the array are represented
by rectangles (RD). The first of these rectangles is enlarged to show the details of the
workings of such a station. The stations are connected to a data-acquisition system
(Radio DAQ) via fiber-optics or WiFi. Either a detector in or close to the station, or
SD and/or FD may function as an external trigger.
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is hindered by anthropogenic [60] (see figure 2.4.4) and natural [61, 62, 63]
transient pulses as well as RFI lines from neighboring radio emitters (figure
2.4.5). Anthropogenic transient pulses are the main cause of false positives
whereas nearby radio stations increase the background levels and blot out the
minute radio pulses of genuine cosmic rays which, at the lower energies around
1017 EeV, barely register above the galactic background noise. In order to
overcome these obstacles various pulse-rejection and background noise-reducing
techniques can be employed.

In order to discuss the difference between a self-triggered setup and an ex-
ternally triggered one, we discuss the AERA setup which can operate in both
modes. Half of the AERA stations are equipped with Nikhef digitizers [65, 66]
which operate in self-trigger mode. The other half of the array is equipped with
KIT-BUW digitizers [65, 67] which are equipped with a buffer of approximately
seven seconds and yield large traces. These digitizers can operate also in an
externally triggered mode: triggered by SD and/or FD. The traces from the
KIT-BUW digitizers provide ample background noise to determine the experi-
mental error and to perform diagnostics of the quality of the data.

With the self-triggered mode it is possible to determine only in an offline
search whether there is a coincidence with the Auger surface detectors (SD). It
is, therefore, necessary that the stations send the data of all candidate pulses to
the central data acquisition (DAQ). At the central DAQ it is determined whether
a multiplet of three or more stations has triggered within the same short time
interval in order to limit the amount of data that is stored to disk. In addition,
an online direction reconstruction can be done to reject events that come from
the horizon or from well-known sources of transient RFI. These cuts can limit
the amount of data that needs to be stored. The data rate is approximately
10 radio events per second – even with the applied cuts – and all these events
need to be stored to disk in order to determine later which ones of those can
be identified as cosmic-ray events. The final rate of events that is confirmed by
simultaneous detection with SD amounts to approximately one per day.

The trigger rate of the self-triggered stations needs to be much higher than
10 Hz because the rejection of pulses can only be done at the level of the central
DAQ. The maximum trigger rate of the stations is approximately 700 Hz and the
typical rate for the stations to work properly lies around 200 Hz. After the RFI
line(s) are removed some instrumental and numerical noise remains. However,
the majority of the remaining noise originates from the galactic background. In
order to accommodate to this varying noise level a dynamic threshold trigger is
required. The threshold must be chosen several times higher than the variance
of the background noise to ensure an acceptable trigger rate.

Reconstruction of the arrival direction is virtually impossible on the station
level because no triangulation can be done at this stage. Other possible selection
criteria do present themselves, such as cuts that are based on pulse shape analy-
sis (e.g. the number of threshold crossings) or by looking for telltale after pulses
which are produced by pulse trains indicative of transient RFI. In addition, the
information about the polarization can be used to some extent in order to dis-
tinguish cosmic-ray-induced pulses [68]. Using these additional methods on the



2.4. RADIO SETUPS AND AERA 35

xcoordinate[km]
-32 -30 -28 -26 -24 -22 -20

y
co
or
di
na
te
[k
m
]

10

12

14

16

18

20

E
nt
ri
es

10

210

SpotNorth

SpotWest

El Sosneado

AERAPhase1

Powerline(incl.positionofpoles)

TransformersEl Sosneado

Transformer

CoihuecoFD

a) b)

Figure 2.4.4: An example of human made transient interference – Panel a) shows a
two-dimensional histogram of the reconstructed origin of transient events that were
measured at the AERA setup. Source: ref. [64]. The positions of the transformer
houses and power line indicate that the pulses which are picked up by the detector are
mostly anthropogenic. One of the culprits at El Sosneado is shown in panel b).

Figure 2.4.5: An example of human made narrow band interference – The figure shows
an example of the frequency spectra of recorded traces in the E/W polarization of
one of the AERA stations. This figure was copied from ref. [24]. The RFI line at
approximately 67 MHz is strong enough to cause a significant rise in the amplitude of
the background noise, even in the time domain. Another feature that can be observed
is the periodic drop and rise in the overall noise level as the galactic center passes over
the antenna every sidereal day.
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station level it is possible to reduce the amount of false positives by 70% to 95%
[69]. However (at least in the environment of the AERA site), the amount of
false positives at the station level remains several orders of magnitudes larger
than the number of real cosmic-ray pulses, unless some drastic measures are
taken to remove or fix the human made devices (see figure 2.4.4b) that cause
transient noise. Furthermore, some of these cuts – if not performed carefully –
may cause selection biases which undermine the validity of a subsequent physics
analysis.

A chain of digital infinite impulse response (IIR) notch filters has been used
at the self-triggered setup in order to remove the narrow band RFI lines from
the spectrum [70]. There are however some other online methods to be consid-
ered, including one that is based on the application of a median filter [71] in
the frequency domain. Another method is based on a procedure in the time do-
main with a finite impulse response (FIR) filter using linear prediction [72, 73].
Both methods have been tested and compared in field programmable gate ar-
rays (FPGA’s) [74] and can be used for real-time filtering applications. The
FIR approach is explained in detail in chapter 4 and the differences between
the methods are discussed in the context of online processing as well as offline
analysis.

In conclusion, a self-triggered setup in the configuration of AERA is possible
but it requires a system that allows high trigger rates and the efficiency is
strongly influenced by human made (especially transient) RFI sources. These
background conditions can be rather unpredictable as shown by surveys at the
MAXIMA and AERA stations [75, 69] and are highly dependent on place and
time. In order to achieve a successful self-triggered setup one needs a very radio-
quiet environment, especially with respect to transient pulses, and a setup that
can handle high trigger rates. An externally triggered setup is much more easily
accomplished but of course at the cost of having to rely on the sensitivity of an
external system (in this case SD).

It is the author’s opinion that a self triggered setup is not feasible, nor worth
the effort as a low cost solution. Taking the noise conditions at the AERA site
into consideration it would be the author’s recommendation to use an external
trigger scheme, either assisted by SD and/or FD. It would also be possible to
use auxiliary devices at the radio stations, such as scintillators.



Chapter 3

Software

To reconstruct the radio data from AERA and to study and compare the the-
oretical emission models with the measurements, radio functionality has been
built into the existing Offline analysis and reconstruction framework of the
Pierre Auger Observatory. An overview of the software framework is given.
In addition, the polarization analysis, which is fully integrated in Offline, is
discussed.

3.1 Reconstruction Software
One of the strengths of the Pierre Auger Observatory is that the combination of
fluorescence detectors and surface detectors allows integrated analysis and cross
calibration. This calls for a fully integrated software package. For this purpose
the new radio functionality has been implemented into the existing software.

The Pierre Auger Collaboration uses two software packages for reconstruc-
tion. The software package CDAS (Central Data Acquisition System) is a light-
weight reconstruction package. The reconstruction of the SD data of this thesis
has been performed with CDAS for historical reasons. However all radio func-
tionality has been implemented in the more modular package in Offline which
allows for a more streamlined collaboration between groups. Most of this thesis
revolves around analysis using this software package. Newer SD, FD, RD and
hybrid analyses should preferably be done using Offline only.

3.1.1 Philosophy of Offline
Offline is a modular software package [76, 77, 78] with a simple and transparent
interface that can be configured using xml-files. The complete analysis pipeline is
configured with a single xml-file that encapsulates the desired module-sequence.
Additional xml-files are available for the configuration of every separate module.
The design structure ensures that the modules do not communicate directly
with each other but share information through the underlying data structures.
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Removing, rearranging, reusing and/or adding new modules is therefore an easy
and transparent procedure. Essentially, the encapsulating xml-file is a small
algorithm that executes the appropriate modules as functions on the underlying
data structures.

An important design choice of the radio-Offline functionality is that a clear
separation between raw measured data and physical quantities is made. The
raw data acquired by the detectors are treated on the channel level where low-
level detector effects such as the influence of cables and filters are taken into
account. On the station level, however, the physical electric field (E-field) and
the geometry of the shower can be reconstructed or simulated.

Offline can be configured for different types of experimental as well as simu-
lated data. The appropriate xml-files for the radio detector contain configurable
antenna patterns (see figure 3.1.1) and detector behaviors, while a separate
module incorporates the read-in of many different data files. At this moment,
measured data from two prototype systems for AERA near the Auger Balloon
Launching Station, and data from AERA itself can be read in and analyzed by
the Offline package. Supported theoretical simulations include COREAS [43],
EVA [44], MGMR [45, 46, 47, 48, 27], REAS [49, 50, 51], SELFAS [52] and
ZHAireS [53].

Transparent FFT handling (based on the FFTW3 library [79]) provides the
user with a simultaneous description of the data in the time and frequency
domains, while both descriptions are kept up to date without the necessity of
manual updates.

Many standard radio analysis modules have already been completed such as
bandpass filters, upsampling, downsampling, noise suppression, noise simulation
and enveloping, facilitating a detailed detector simulation and reconstruction of
the vectorial E-field.

3.1.2 Reconstruction Pipeline
Table 3.1 shows an example of the reconstruction pipeline for a measured event
that was in coincidence with the Auger surface detector. This table/algorithm
is in essence the same as the earlier mentioned xml-file that configures the de-
sired module sequence. The analysis pipeline that is shown here is an example
of many possible configurations. For instance, the package allows FD or SD
reconstruction with an entirely different set of modules. In addition a hybrid
reconstruction can be performed by combining SD, FD and RD.

The actual analysis in this thesis uses a somewhat different pipeline but the
basic principles are the same as presented here. One of the most important
differences is that all analyzed data in this thesis are treated at the sampling
frequency of the detector. This means that the experimental radio traces have
not been upsampled. However, the simulations are downsampled in order to be
analyzed at the same sampling frequency as the experimental data. In the next
chapters the reader may therefore always expect that the radio to be sampled
at 200 MHz, which is the actual sampling frequency of all setups considered in
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Figure 3.1.1: Antenna response – Left: the vertical gain. Right: the horizontal gain.
Source: ref. [80].

this thesis. Upsampling is never performed as part of an analysis and is merely
used, in a few cases, for visualization, such as in the examples presented here.

Figure 3.1.2 shows a pulse measured by a station at a test setup and the
reconstruction of the E-field at that station. It can be seen in panel 3.1.2b
that the response of the analogue components has been deconvolved and the
pulse has shifted to earlier times mainly due to the correction for cable delays.
Three-dimensional data are shown in figure 3.1.2c. Although the initial data are
only two-dimensional, the three-dimensional electric field has been reconstructed
using the arrival direction. It is also worth observing that the pulse has become
more symmetrical because all phase shifts of the antenna response [80] (see
figure 3.1.1) have been removed.

The first four modules ensure that the data are read properly and converted
to voltages. After that the backward detector response is calculated with the
RdChannelResponseIncorporator, taking the attenuation, amplification and
phase delays due to the analogue components (i.e. cables, filters and amplifiers)
into account. After these low-level detector effects have been removed, the
internal data structures contain the voltages at the foot-point of the antenna.

Subsequently the shower parameters are reconstructed with an iterative pro-
cess. The RdAntennaChannelToStationConverter plays a central role in the
reconstruction by converting the voltages to an E-field using the antenna pattern
and the arrival direction as input. Because the arrival direction is determined by
the RdPlaneFit (using the arrival times of at least three stations) several itera-
tions are necessary for the direction reconstruction to converge. The conditions
for convergence, set by the RdDirectionConvergenceChecker, are generally
fulfilled within a few iterations.
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Figure 3.1.2: Reconstruction of an event – On the left the signal is shown in the
time domain and on the right one can see the corresponding spectra in the frequency
domain. Panel a) shows the voltages that were measured at the analogue to digital
converter. Pane b) displays the voltages after the RdChannelResponseIncorporator,
at the foot-point of the antenna. Panel c) shows the result at the end of the pipeline.
The amplitudes of the spectrum in panel c) have been averaged (downsampled) for
the purpose of visualization. Source: ref. [78].
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EventFileReaderOG Reads measured data
RdEventPreSelector Preselects events for analysis
RdChannelADCToVoltageConverter Converts analogue digital converter units

(ADCU) back to voltages (Figure 3.1.2a)
RdChannelPedestalRemover Removes the pedestal (DC-offset)
RdChannelResponseIncorporator Incorporates the backward response of the

analogue components (Figure 3.1.2b)
RdChannelRFISuppressor Suppresses narrow band noise
RdChannelUpsampler Upsamples the data
RdChannelBandpassFilter Applies a user-configurable

bandpass filter
LOOP

RdAntennaChannelToStation-
Converter

Reconstructs the E-field using the antenna
response patterns and the arrival direction

RdStationSignalReconstructor Reconstructs the pulse properties
RdDirectionConvergence-

Checker
Checks whether the direction reconstruction
has converged and then breaks the loop

RdPlaneFit Performs a directional (planar) fit
END LOOP
RdPolarizationReconstructor Reconstructs the relevant observables

related to the polarization of the signal
RdStationWindowSetter Clips the Station time series to a 500 ns

window
RdStationTimeSeriesWindower Applies a windowing function
RecDataWriter Writes the data to disk (Figure 3.1.2c)

Table 3.1: Reconstruction example pipeline

3.1.3 Simulation Pipeline
The software package Offline can just as easily be configured for simulations
instead of measurements. Table 3.2 shows how the electric fields from any of
the theoretical models are translated to the expected measurement in ADCU.
The flexibility and reusability of the software becomes apparent from the fact
that the second part of table 3.2 is the same as the second part of table 3.1.

The simulated E-fields are read in and noise is added. Various kinds of noise
– man-made or natural – can be simulated and added to the signal [75, 81].

The RdAntennaStationToChannelConverter folds in the antenna response
and the first call to the RdChannelResponseIncorporator is now configured to
incorporate the forward response of the analogue components. The rest of the
process is then exactly the same as described in the previous section. Some of
the steps in the simulation process and the final results for such a reconstruction
are shown in figure 3.1.3. As can be seen in panel 3.1.3c, the electric field has
been reconstructed for the sensitive region only.

For a third type of analysis one could consider to end the module sequence
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EventFileReaderOG Reads simulated data (Figure 3.1.3a)
RdStationAssociator Associates the simulated pulses to the

appropriate antenna
RdStationNoiseGenerator Simulates the noise environment
RdAntennaStationToChannel-

Converter
Folds in the antenna pattern: translates the
E-field to voltages (Figure 3.1.3b) using the
arrival direction

RdChannelResponse-
Incorporator

Incorporates the forward response of the
analogue components

RdChannelResampler Resamples to the desired time binning
RdChannelTimeSeriesClipper Clips data to the desired number of samples
RdChannelVoltageToADC-

Converter
Translates voltages to ADCU

Same as second rectangular frame of table 3.1

Table 3.2: Simulation example pipeline

after the RdChannelVoltageToADCConverter. The data at that point is a sim-
ulation at the detector level that could e.g. be used for noise and triggering
studies.

3.2 The Polarization Module
The RdPolarizationReconstructor is a module which is written to determine
the polarization signature of the radio pulses. As mentioned earlier in section
1.3 and 1.4, it has become apparent that there are multiple processes which
play an important role in the understanding of these air-shower-induced radio
pulses. The RdPolarizationReconstructor determines the polarization of the
pulses based on Stokes Parameters.

The RdPolarizationReconstructor reconstructs the most relevant observ-
ables related to polarization. These include the Stokes parameter I, Q, U, and
V as well as the ratios Q/I, U/I, V/I and the polarization angle φ.

Stokes parameters are commonly used in radio astronomy [82, 83] and de-
scribe the polarization state of electromagnetic radiation. The first parameter
I describes the intensity of the signal, the parameters Q and U describe the
horizontal and vertical linear polarizations, and the parameter V describes the
circular component. The Stokes parameters can only be obtained if two per-
pendicular channels x and y are available. A common definition of the Stokes
parameters is:
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Figure 3.1.3: Simulation of an event – On the left the signal is shown in the time
domain and on the right one can see the corresponding spectra in the frequency do-
main. Panel a) shows electric field from a theoretical model after the EventFile-
ReaderOG. Panel b) shows the simulated voltages at the foot-point of the antenna after
the RdAntennaStationToChannelConverter. Panel c) shows the result at the end of
the pipeline. Source: ref. [78]. The amplitudes of the spectrum in panel c) have been
averaged (downsampled) for the purpose of visualization.
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Figure 3.2.1: The Poincaré sphere
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(3.2.1)

The triangular brackets denote averaging over time. We define x and y as the
coordinate perpendicular to the Poynting vector and E = E(t) as the analytic
signal where the real component contains the electric field and the imaginary
component represents the magnetic field. One difference with radio astronomy
is that the integration time to determine the polarization is orders of magnitudes
shorter. Typically, the integration time is around 125 ns, or just 25 samples at
a sampling frequency of 200 MHz.

The advantage of the Stokes parameters is that these parameters describe
completely polarized light as well as partially or non-polarized light. This can be
elegantly visualized using the Poincaré sphere (see figure 3.2.1) which is defined
as a sphere with radius I and contains the Stokes vector,

~S =

 Q
U
V

 . (3.2.2)

The black and white blocked sphere has a radius I and by geographic analogy
a north pole at the top and a south pole at the bottom. The Stokes vector ~S =
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(Q,U, V )T can be found on the surface of this sphere if the light is completely
polarized, within the sphere if it is partially polarized and at the center of
the sphere if it is not polarized. The corresponding polarization ellipses for
monochromatic light are drawn on the surface of the sphere. The colors are used
to indicate the direction of the circular component, which is counterclockwise
for the northern hemisphere and clockwise for the southern hemisphere. Thus
the circular orientation flips from counterclockwise to clockwise as we cross
the equator from the north. On the equator we can find all completely linear
polarizations, which are defined by Q2 +U2 = I2 (and V = 0). The completely
circular polarizations can be found on the north and south pole, such that
V = ±I (and Q = U = 0).





Chapter 4

Mitigation of RFI Using
Linear Prediction

A method for the removal of periodic noise is presented in this chapter. This is
done in the context of the removal of radio-frequency interference (RFI) from
radio measurements in the 30 to 80 MHz range both in online processing and
in offline analysis. This method implements an adaptive finite impulse response
(FIR) filter which can automatically adjust to changing online noise conditions.
In addition a comparison is made between this method and two other noise-
cleaning methods which were employed at the Auger Engineering Radio Array
(AERA) [24, 59]. Parts of this chapter are published in [72, 73, 74].

4.1 Introduction
Various radio setups [58, 39, 40, 38, 23] have been implemented at the Pierre
Auger Observatory to measure cosmic-ray-induced radio pulses in the frequency
band from 30 to 80 MHz. The successful detection of these pulses relies on a
background that contains as little human-made RFI as possible. Neverthe-
less, the environments of these setups are not ideal and various strategies are
employed to mitigate and remove the nuisances created by human-made RFI.
We have already seen examples of radio data with significant amounts of an-
thropogenic RFI in section 2.4, both highly concentrated in the time domain
(transients) as well as in the frequency domain (narrow-band emitters).

This chapter is devoted to techniques that remove narrow-band RFI both in
an online environment, where triggering is concerned, as well as in offline appli-
cations where physical analysis requires a minimal loss of significant data and
the avoidance of any bias. The focus lies on a method using linear prediction.

Linear prediction [84] is a method widely used in real-time audio processing
such as the CELP algorithm [85, 86] in mobile phones. With the advent of
faster signal processing techniques in field-programmable gate arrays (FPGA’s)
it is now possible to apply similar techniques to the real-time processing of
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radio signals sampled at frequencies around 200 MHz [87]. The here described
method can be employed without strongly affecting the amplitude of transient
signals, which is essential for the successful detection of cosmic-ray-induced radio
pulses. In addition, the method is both adaptive and efficient in terms of energy
consumption [72, 73].

A comparison is made with other strategies such as median-filtering of the
amplitudes in the frequency domain [71] and digital notch filters [70]. These
strategies have been briefly introduced in the context of online processing in
chapter 2.4. A comprehensive study of the combat with narrow-band RFI within
the radio group of the Pierre Auger Collaboration is provided. We outline the
advantages and disadvantages of all employed strategies, both in online and
offline processing. A figure of merit, C, is used to assess and compare the
effectiveness of the methods both by using Monte Carlo simulations and actual
measurements from the AERA setup.

4.2 Problem, Description and Method
The method based on linear prediction may be applied to time-dependent data
containing periodic noise and transient pulses. Some of these transient pulses
are the sought-after air-shower-induced radio signals that we wish to detect. The
method only removes the periodic components. For instance, pulses repeated
at 50 Hz due to nearby power lines (such as shown in figure 2.4.4 in section 2.4)
must be regarded as transient RFI and are not removed. Although these pulses
appear periodically, the time scale on which they occur is much too large for
this method, which treats the data on a µs scale.

The periodic noise is removed by applying an adaptive FIR filter to the
data, leaving the transient signals unaffected and improving the likelihood of
their detection. The data must be provided as time sampled traces and only
short time intervals – the regions of interest (ROIs) of these data – may contain
the desired transient signals. In addition these data may consist of one channel
or multiple channels that are read out in parallel. The channels (such as e.g.
the North-South (NS) and East-West (EW) polarizations of the setups) can be
correlated. Any apparatus that fulfills the here mentioned conditions may be
considered for this method. The method may be used in offline analysis, where
the traces are assumed to have a background noise with a constant behavior
(periodic over the short period in which these are recorded), as well as during
online use, where the background noise may change over the course of larger
periods of time. In the latter case the parameters are dynamically recalculated
such that they adapt to the changing environment. This dynamic adaptation is
one of the advantages of the method.

A number of coefficients, p, is multiplied with a section of the trace in order
to predict the periodic components of said trace. This is done in such a way
that a delay line of D samples is incorporated in this prediction. The predicted
values are then subtracted from the original values. The process of prediction
and subtraction is illustrated in figure 4.2.1.
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↑ i− p−D ↑ i−D − 1 ↑ i

Figure 4.2.1: An illustration of the method based on linear prediction − The sine
wave represents the periodic part of the background noise that is ‘fitted’ (although in
actuality no sinusoidal fit is performed like this) where sample number i is predicted
by using the samples i− p−D up to and including i−D − 1.

Figure 4.2.2 shows some examples of the filter for a simulated trace with a
single channel. Panel 4.2.2a shows a short transient pulse – a crude simulation
of the desired cosmic-ray-induced radio pulse – without any background noise
or RFI present. Panel 4.2.2b shows a trace containing Gaussian background
noise as well as three RFI-lines. Panels 4.2.2c and d involve the filter using
linear prediction. From panel 4.2.2c it becomes apparent that the trace is not
fully cleaned with p = 16 filter coefficients. However panel 4.2.2d, with p = 128,
where no RFI lines are detectable by eye, shows improved results. This chapter
focuses, among other things, on finding an optimal choice for the number of
coefficients p.

It is important to apply a FIR-filter that removes any periodic background
but that leaves the superimposed short transient signal unaltered. This is ac-
complished by incorporating the delay line D into the filter. For this analysis a
region of interest (ROI) where the transient signal must be found, with a length
of 96 samples, is considered. It is considered certain that the signal is contained
within this ROI. Thus one can choose the delay line D = 96 samples (480 ns
at a sampling frequency of 200 MHz). After this amount of time the transient
pulse is expected to have died out. The choice of these values is determined by
the conditions and properties of the setup or simulation. In general the value
of D may vary and will depend on the sampling frequency and the maximum
length of the transient signal.

4.2.1 Mathematical Background
The traces may be described by the samples sc(i) where c enumerates the chan-
nels (such as e.g. the NS and EW polarizations of the AERA antennas) and
the integer i indicates the position in time. In this section i is taken to be
unbounded such that we may look at the theoretical limit as N →∞.

It is our aim to remove as much RFI as possible by making a prediction ŝc(i)
of the original raw traces sc(i). This prediction can then be used to create the
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Figure 4.2.2: Simulation examples − The plots on the left show simulated traces in
the time domain. The plots on the right show the corresponding power spectrum.
Panel a) shows the impulse response of an elliptic infinite impulse response (IIR) filter
for a delta pulse of with an amplitude of 300 mV (before filtering) placed in the
ROI (denoted by two the dash-dotted lines). The noise in the frequency spectrum
outside the passband is numerical. Panel b) shows a simulated trace with noise and
contaminating RFI lines added. Panel c) and d) show the cleaned trace using p = 16
and p = 128 filter coefficients respectively.
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cleaned trace by subtracting the prediction from the original: s(i)− ŝc(i). The
predictive filter is defined to be a linear FIR filter such that

ŝc(i) =
M∑
d=1

p∑
n=1

acdnsd(i−D − n), (4.2.1)

where acdn represents the coefficients of the filter. The values acdn can be
interpreted both as a vector and as a matrix: the first two coefficients c and d
run from 1 to M and these indices enumerate the channels and constitute the
M×M matrix an, whereM is the number of channels. The last index n of acdn
runs from 1 to p. This index constitutes the p-dimensional vector ~acd where p
is a suitable number of coefficients to be optimized. Finally D represents the
delay line. The delay line represents the ‘gap’ between the sample that needs
to be predicted (i.e. ŝc(i)) and the preceding samples (i.e. sd(i−D − n)) that
are to be used for the prediction.

After the predicted periodic noise ŝc(i) is subtracted from the original signal
sc(i) one is left with the prediction errors

ec(i) = sc(i)− ŝc(i) = sc(i)−
M∑
d=1

p−1∑
n=1

acdnsd(i−D − n). (4.2.2)

An optimally efficient filter is created by minimizing these prediction errors.
An effective way of optimizing the filter coefficients is to assume a normal

distribution of the prediction error and then minimize the expected mean square
error,

E = lim
N→∞

1

M(2N + 1)

N∑
i=−N

M∑
c=1

e2
c(i). (4.2.3)

In order to minimize the prediction error it is required that,

∂

∂acdn
E = 0, (4.2.4)

and by expanding (4.2.4) using (4.2.1) and (4.2.3) the following system of equa-
tions is obtained,

lim
N→∞

1

M(2N + 1)

N∑
i=−N

sd(i)sc(i+D + n) =

lim
N→∞

1

M(2N + 1)

N∑
i=−N

p∑
m=1

acem

M∑
e=1

se(i)sd(i+m− n), (4.2.5)

where the index n runs from 1 to p. The non-degenerate case gives us M2p
equations which would be enough to determine all acdn. However, in practice
we will see that a degeneracy is introduced when the background noise is band-
pass limited.
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The equations in (4.2.5) may be more easily described by the covariances,

rcd(k) = lim
N→∞

1

M(2N + 1)

N∑
i=−N

sc(i)sd(i+ k), (4.2.6)

where |k| ≤ D + p. These covariances can be written in the alternate form

Rcd(n,m) = rcd(m− n), (4.2.7)
r?cd(n) = rcd(n+D), (4.2.8)

(with n and m running from 1 to p) such that equations (4.2.5) can be written
as:

r?cd(n) =

p∑
m=1

M∑
e=1

acemRed(n,m), (4.2.9)

It is possible to write r?cd(n) and acem as p-dimensional vectors ~r?cd and
~ace respectively. Furthermore, Red(m,n) can be written as the p-dimensional
Toeplitz (band-diagonal) matrix Red. Equation (4.2.9) can be rewritten in
vectorial form as,

~r?cd =

M∑
e=1

Red~ace. (4.2.10)

Finally, one only needs to solve for ~ace in order to obtain the coefficients of the
desired RFI-filter. The next section shows how the coefficients can be calculated
numerically.

4.2.2 Numerical Considerations
The covariances, in a real world scenario, can only be approximated from a finite
length of background noise. Naturally no unlimited data are available (typical
traces in this thesis, for instance, do not provide more background noise than
approximately 1500 samples1). Another important limiting factor is the fact
that the background noise may change over time. Thus it is necessary to settle
for a number of samples, L, of acceptable size, such that enough precision is
obtained. We will mainly consider values of 1000 < L < 2000 unless stated
otherwise. Let sc(i) represent a ‘chunk’ of such background with i running from
1 up to and including L, then equation (4.2.6) is approximated by

rcd(k) =



L−D−p∑
i=1

sc(i)sd(i+ k) for k ≥ 0

L−D−p∑
i=1

sc(i− k)sd(i) for k < 0

(4.2.11)

1To obtain more background one might use a number of traces which were collected around
the same time. Such a procedure is not considered here.
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We have also removed the factor 1/(M(2N + 1)) because it cancels out when
solving for ~ade in equation (4.2.10).

The solution to (4.2.10) can be found using Gauss elimination with a time
complexity of O(p3) (used in offline analysis) or – by exploiting the band-
diagonal symmetry of the covariance matrix – using Levinson recursion with
a lower time complexity of O(p2) (used in online filtering). Appendix E de-
scribes the online implementation of the algorithm within the FPGA’s [72] for
M = 1. The use of double precision (64 bit) floating point values ensures that
neither of these methods incur significant numerical rounding errors.

Nevertheless, an uncertainty is introduced due to the limited amount of avail-
able background, and because the background may be band-width limited this
uncertainty may produce (close to) degenerate eigenvalues λi which fluctuate
dangerously close to zero. The degeneracy in turn causes the coefficients ~acd
to become very large and this results in an unstable filter. One mathematical
solution would be to reduce the rank of the covariance matrix. However, a more
dynamic and computationally tractable solution with these (near) degeneracies
is to introduce a fudge factor into the mean square error which stabilizes the
result:

Ẽ = E + f

M∑
e=1

M∑
f=1

M∑
g=1

p∑
m=1

a2
efmrfg(n). (4.2.12)

The minimization of Ẽ now essentially includes the additional requirement that
the amplitudes of the coefficients remain low. The solution to ∂

∂acdn
Ẽ = 0 can

then be written as

~r?cd =

M∑
e=1

R̃ec~ade, (4.2.13)

which is very similar to (4.2.10), with the only difference that Rcd(m,n) is
replaced with R̃cd(m,n) where R̃cd(n, n) = (1 + f)Rcd(n, n) and R̃cd(m,n) =
Rcd(m,n). This procedure increases the diagonal matrix elements and thus
stabilizes the inverse.

We illustrate the effects for various values of f with three simulated scenarios.
The first scenario assumes a passband which is chosen to approximate the RFI
and the passband of the AERA setup in section 4.4 (see also appendix B) and
has a width of approximately 57 MHz (with high-pass edge frequencies2 of 20
and 30 MHz and low-pass edge frequencies of 77 and 87 MHz). This is the most
usual configuration of the data in this thesis. The second scenario considers a
narrower passband of only 30 MHz (high-pass edge frequencies 30 and 40 MHz
and low-pass edge frequencies 60 and 70 MHz). The third scenario assumes no
band-pass filtering at all. Figure 4.2.3 shows the effects of the fudge factor on
the coefficients for the usual scenario. The stability of the coefficients can be

2The outer edge frequencies, in the simulations considered here, are constrained by an
attenuation in power of at least 60 dB and the inner edge frequencies are limited by a loss of
not more than 2 dB.
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Figure 4.2.3: Effect of the fudge factor on the coefficients − Panel a) shows an example
of the calculation for 64 coefficients for various starting points in a continuous stream
of samples for the usual band-pass-limited data when no fudge factor is applied. Panel
b) shows the coefficients for a fudge factor of f = 0.1. Panel c) shows f = 1.0.
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seen to improve as the fudge factor goes from f = 0.0 (panel 4.2.3a) to f = 1.0
(panel 4.2.3c).

The results in figure 4.2.3 and 4.2.4 are created from a noisy environment
simulated withM = 1 and L = 1024. The two plots in figure 4.2.4 illustrate the
effect of the fudge factor by examining the eigenvalues λi, the magnitude of the
coefficients ‖~a‖2 and the determinant |R|. If the signal has low amplitudes in a
certain fraction of the Nyquist band then one should expect the same fraction
of eigenvalues to be close to zero. One can observe this from panel 4.2.4a where
it can be seen that the number of low eigenvalues is proportional to the amount
of unused bandwidth. This figure displays the eigenvalues for the usual wide-
band-width scenario (represented by solid lines), the more narrow-band-width
scenario (dash-dotted lines) and for the scenario with no filter at all (dotted
lines). These dotted lines, for a trace that is defined in the full Nyquist band,
show that no low magnitudes of λi occur and hence the fudge factor, for this
scenario, would not be necessary.

In panel 4.2.4b one can see that the values ‖~a‖2 incur the ‘risk’ of becoming
very large when the determinant of R is low, causing an unstable filter. The
values of ‖~a‖2 and (det R̃)(2/p) are determined repeatedly for 10000 simulations
and we can see that these are all fully constrained when f = 1. Yet even a
small fudge factor of 0.1 already solves most of the stability problem. We have
chosen to use f = 1 for all following applications and analysis. We have not
encountered any stability problems with this setting nor have we observed any
reduction in effectiveness of the filtering.

4.2.3 Other Methods to Remove Narrow-Band RFI
A median filter is a nonlinear filter which is used in many applications such as
e.g. in image processing to remove background noise. Such a filter is designed
to run through a trace, or a piece of higher dimensional data, sample by sample,
replacing each sample with the median of the neighboring samples. The number
of neighboring samples that are taken into account is a free parameter of this
filter. The filter can be used both in the time domain as well as in the frequency
domain.

The median filter is applied to the frequency domain in the method discussed
here. Thus the number of neighboring samples can be represented by a frequency
range that sweeps the spectrum. The complex values Aieωi in the frequency
domain are represented as two arrays of values Ai and ωi where i labels each
frequency bin. The phases in the array ωi are left unchanged and the median
filter is applied only to the amplitudes Ai. In order to sharpen the RFI peaks
a raised cosine window is applied to the edges of the trace before filtering. The
chosen parameters related to this method are documented in appendix A.

Another method to remove narrow-band RFI is the application of a digital
notch filter. The notch filter can be implemented using an IIR filter in online
applications [70]. In case of offline analysis, however, it is more suitable to im-
plement the notch filter in the frequency domain. The procedure that is applied
here is simple but needs human supervision. The RFI lines are pinpointed by
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Figure 4.2.4: Stabilization of the coefficients using the fudge factor f − Panel a) shows
the eigenvalues λi of R̃ ordered by magnitude. The solid lines represent the wide
passband of 57 MHz for different values of f . The dash-dotted lines show the same for
the narrower passband of 20 MHz. The dotted lines show the case for no band-pass
filtering at all (N.B. The dotted lines for f = 0.0 and f = 0.1 almost overlap). Panel
b) shows the values ‖~a‖2 as a function of the determinant of R for the usual passband
of 57 MHz.
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Figure 4.2.5: Noise cleaning method using a digital notch filter in the time domain −
The peaks (indicated by “With RFI” in the legend) are pinpointed by hand and the
samples around these peaks are set to zero (indicated by “RFI Rem.” in the legend)
in order to remove at least 99% of the power. The line ideal signal, i.e. the signal that
would be observed if no RFI were present, is indicated by “Ideal” in the legend.

averaging the amplitudes of the frequency spectra for multiple traces. Subse-
quently one can set a number of samples centered around these peaks to zero.
By simulation, in this analysis, we have chosen the number of samples that
are set to zero such that at least 99% of the energy due to such narrow-band
transmitters is removed. The relevant parameters can be found in appendix A.
Figure 4.2.5 shows an example of this procedure. The procedure, as employed
here, can only be applied to a set of measurements and it tacitly assumes that
the background noise conditions have remained the same during the period of
data-taking. This is a possible weakness of this method because the noise en-
vironment may change over the course of time. Thus a single occurrence of an
RFI line may go unnoticed and in some cases the RFI lines may not be present,
which could cause us to cut away more frequency bins than necessary. These
eventualities have not been taken into account in the simulations that include
this method but we do examine this method when applied to real data in section
4.4.4. The small data sets in this thesis have been painstakingly examined by
eye by various colleagues which gives us reasonable confidence that the method
works well for this particular dataset but this labor becomes quickly impossible
for larger data sets. In addition one runs the risk of being biased by the human
eye.

It needs to be mentioned here that a more intricate system of notch filtering
could be envisioned. One could, e.g. by monitoring the background noise con-
ditions around a certain measurement, implement an adaptive RFI suppressor
by determining the positions of the RFI lines in an updating average frequency
spectrum. Such a method could be implemented for online as well as offline
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Figure 4.3.1: Data-flow of the process inside the FPGA − The raw stream of samples
is processed inside the FPGA logic-blocks to calculate the covariances. The coefficients
are calculated in the NIOSR© processor. At the same time the existing coefficients are
used to predict the RFI lines using the raw trace and this prediction is subtracted
from the raw trace to obtain the cleaned trace.

use. This possible method, however, lies beyond the scope of this chapter (and
thesis) but may be interesting for further research. Furthermore, recently, a new
method has been implemented in Offline. This method, which automatically
pinpoints the offending frequencies and subtracts those using sine waves [88],
seems very promising.

4.3 Simulation for an Online Implementation
For an online implementation of the method based on linear prediction we con-
sider a system with a single channel that takes a continuous stream of data.
The proposed online method has been successfully tested for feasibility and per-
formance in the Altera R© development kits with the EP4CE115F29C7 from the
Altera R© Cyclone R© IV family and the EP3C120F780C7 from the Cyclone R© III
family at a 170 MHz sampling rate, a 12-bit I/O resolution, and an internal
30-bit dynamic range [72]. The modern FPGA chips used for this type of data
processing allow, in addition to parallel calculations, an implementation of a
local micro-controller section, the NIOS R© processor, which can be used to per-
form the more complex tasks of the filtering procedure. Figure 4.3.1 shows the
data-flow of this procedure and outlines how the NIOS R© processor is used to
solve the eigenvalue problem (4.2.13) which is necessary to calculate the filter
coefficients.

An optimization to quickly find a numerical solution to the eigenvalue prob-
lem is possible. Because of the diagonal-constant form of the matrix R̃ one can
replace the conventional algorithm using Gauss elimination by Levinson recur-
sion [89], reducing the time complexity from O(p3) to O(p2). The algorithm
using Levinson recursion is outlined in appendix E.

In order to ascertain the effectiveness of the method in an environment with
changing background noise an analysis on a PC with a relatively large simulated
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radio trace consisting of 2048000 samples is done. This is equivalent to 0.01 s of
data taken at a hypothetical sampling frequency of 200 MHz. The recalculation
of the 128 coefficients is done every 1024 samples and these are used to filter
the next block of 1024 samples. Thus, this recalculation is done at a much
higher refresh rate than can ever be accomplished in the real implementation
in the FPGA. However, in order to keep a simulation like this feasible, down-
scaling with approximately two or three orders of magnitude different from a
real implementation is necessary.

The simulated trace is created by applying a digital rectangular band-pass
filter (of 30 to 80 MHz) to white noise obtained from a Gaussian random num-
ber generator. RFI lines including some amplitude and frequency modulation
are added with the use of sine functions. In addition one frequency is added
that turns abruptly on and off. Finally the values are ‘digitized’ by convert-
ing the floating point numbers to integers in a range of 4096 ADCU (12 bit
samples). The amount of energy in the periodic noise is chosen such that it is
approximately the same as the amount of energy in the Gaussian part of the
background.

Panel a) of figure 4.3.2 shows a spectrogram of this simulated noisy environ-
ment. Panel b) of the same figure shows the predicted periodic noise and panel
c) shows the cleaned trace. One can see, qualitatively, that a substantial part
of the RFI is removed and that the method does not have problems with fre-
quency modulation, amplitude modulation or even a signal that abruptly turns
on and off. Some more quantitative results on a background with amplitude
and frequency modulation in a real-time environment may be found in [73].

4.4 Offline Analysis
It is important to know how (the parameters of) the linear prediction method
can be optimized. In addition, it is necessary to determine how the method
behaves under differing RFI conditions. Finally a comparison with other noise
cleaning methods should be made. This is achieved using simulations and real
measurements from the AERA setup. Section 4.4.1 describes how the sim-
ulations are done and section 4.4.2 investigates the effects of different noisy
environments and optimizes the parameters. The measured data are examined
in 4.4.4 using the full Offline [90, 77, 91, 78] pipeline and a comparison is made
with other RFI suppression techniques.

4.4.1 Method of Simulation
To gain a better understanding of the method we partially rely on simulations.
The advantage of these simulations is that it is easy to consider different envi-
ronments with varying RFI conditions. It is also possible to examine the results
when no RFI is present to determine how well the method performs relative to
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Figure 4.3.2: Spectrograms of a simulated online environment − Panel a) contains the
spectrogram of the original noise. Panel b) contains the spectrogram of the predicted
periodic noise and panel c) represents the cleaned trace which is essentially panel a)
minus panel b) using the online method as described in section 4.3.
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a completely clean environment. A single trace of 2048 samples3 with binning
of 5 ns (and a Nyquist frequency of 100 MHz) is simulated. In order to generate
realistic traces for these simulations the following steps are performed:

1. An impulse (a ‘delta pulse’ where only one sample is non-zero) between 0
and 350 mV is placed within the ROI to serve as the desired signal.

2. White noise with a variance of 5 mV is added as the background noise to
roughly simulate the realistic background conditions.

3. RFI lines are added using sine waves with randomized phases.

4. An elliptic infinite impulse response (IIR) digital band-pass filter (men-
tioned earlier in figure 4.2.2) is applied to simulate the detector response.

5. White noise with an amplitude 0.25 mV is added to simulate instrumental
noise, which covers the full Nyquist band and extends outside the sensitive
region of the detector.

6. The floating point values are digitized and clipped for 12 bit sampling
within a range between −180 and 180 mV.

This type of simulation is sufficient to assess the general requirements of a
realistic scenario yet it does not exactly describe the conditions of the real data
from AERA. Some important differences are the following: the real data have
a more intricate spectral shape due to the color of the background noise and
the antenna characteristics. In addition the real data consist of two correlated4

channels. Finally, the transient signal of interest, a cosmic-ray-induced pulse,
can not be considered to be generated by a delta pulse. Yet, in the next sections,
we will see that the here discussed simulations are sufficient to describe the
general behavior of the method.

One aspect of realism that should not be weakened, however, is the use
of a realistic causal filter to model the detector response. A simple digital
rectangular filter that sets the suppressed frequencies to zero is not sufficient
in this offline analysis. This simple filter could cause ‘leakage’ of the transient
signal backwards in time, making the delay-line of D = 96 insufficient. Thus
such a simple filter would enable the predictor to partially predict the signal
which would reduce its amplitude. It is, therefore, important to note that this
technique should be preferably applied on the raw data and that one needs to
be careful with the pre-processing of the data and the choice of the delay line.

The elliptic IIR band-pass filter is used with high-pass edge frequencies of 20
and 30 MHz and low-pass edge frequencies of 77 and 87 MHz and an attenuation
of at least 60 dB outside the passband. However, apart from the requirements
that this filter is causal and that the major part of the impulse response is well

3This is the typical length of a trace produced by the RU/NIKHEF digitizers [66]. This
thesis mostly uses the data from these digitizers.

4The RFI lines introduce most of these correlations. Cross-talk between the polarizations
of the antennas is minimized by their design, which means that the channels would be non-
correlated in the ideal case.
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Figure 4.4.1: The slope parameter C − The plots show how the slope parameter C is
fitted for RFI conditions similar to the NS polarization of the antennas of the AERA
setup. The scattered points show the S/N -ratios for the raw trace on the horizontal
axis and the cleaned trace on the vertical axis. The parameter C is fitted to the points
that pass the signal-to-noise cut of S/N > 5. The dashed line indicates the ideal
case (the points for the ideal fit are not shown). The dash-dotted line is the line for
equality. In panel a) the fit for p = 16 coefficients is shown, clearly not enough to
reach the ideal value. Panel b) shows the situation for p = 64 coefficients.

within the ROI, the choice of this filter is rather arbitrary. Some extra samples
before the beginning of the simulated trace are calculated because the IIR filter
needs to reach a stable state.

4.4.2 Simulation
As described in section 4.4.1 a range of pulses is simulated starting with an
impulse between 0 and 350 mV with an increment of 0.1 mV. Subsequently the
noise cleaning method is applied to the full trace. The coefficients of the filter
are calculated by using a section of the trace that contains only noise.

The signal-to-noise ratio is then calculated as

S/N = max
i

(|x(i)|)/RMSj(n(j)),

where x(i) are the samples in the ROI of the trace, n(j) are the samples in the
background noise of the trace. The root mean square (RMS) is defined as the
square root of the estimated variance. The ROI is denoted in figure 4.2.2 by
the two dash-dotted lines and consists of 256 samples. A training set of 1024
samples (unless mentioned otherwise) is chosen to determine the covariances
and a test set of 384 samples is chosen to determine the final background noise
level. The relevant regions are shown in appendix A.

We can now consider the signal-to-noise ratio for three different traces: the
raw trace which is contaminated with RFI, the cleaned trace after the noise
cleaning method is applied and the ‘ideal’ trace which results if no RFI would
be present. In figure 4.4.1a and 4.4.1b the S/N -ratios are plotted for 16 and 64
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coefficients respectively, for a noisy environment similar to the NS polarization
of the antennas of the AERA setup of which we have already shown a simulated
example in figure 4.2.2b. The scattered points show the S/N for the raw trace
compared to the cleaned trace. It can be seen that there is an average linear
correspondence for high S/N -ratios. For low S/N -ratios this linear correspon-
dence breaks down due to the selection bias inherent in taking the maximum
max |x(i)|. Thus a cut is made on the raw S/N such that it is five times higher
than the RMS (S/N > 5). A linear fit (without an offset) is then made to these
data to produce a slope parameter C. We tested that the slight asymmetry due
to this signal-to-noise cut has no significant effect on the result.

The parameter C can serve as a figure of merit. The value of the parameter
in the ideal case is CIdeal, i.e., the case in which the transient signal is completely
unaffected by the filter and all periodic background noise is removed successfully.
This ideal case can only be simulated but never reached in reality. The ideal
value is determined by fitting the points between the raw trace and the ideal
trace such that the ordinary least squares estimator may be approximated by

CIdeal = E

[
(S/N)Ideal

(S/N)Raw

]
≈ E

[
SIdeal

SRaw

]
NRaw

N Ideal
(4.4.1)

≈ 1
NRaw

N Ideal
≈
√
PG + PRFI√

PG

where PG = E[s2
G] is the power, i.e. the expected value5 of the square of the

amplitudes of the Gaussian noise and PRFI = E[s2
RFI] is the power of the RFI

lines. It is possible to add PG and PRFI because these are uncorrelated. The ap-
proximation is done for the assumption that the noise level can be approximated
with sufficient statistics, that S � N and that the amplitude of the signal is
not affected by the ‘ideal’ filter. The actual values of CIdeal are calculated using
the full Monte Carlo simulations.

The slope parameter can be used to find optimum values for the filter. The
most important parameter is the number of coefficients p as shown on the hori-
zontal axis of figure 4.4.2b. It may be observed that the slope parameter asymp-
totes to the ideal environment for increasing values of p and N . Thus under
the assumption that the background only changes over much larger periods of
time, we conclude that the effectiveness of the filter is limited by the length of
the available traces which results in a maximum number of coefficients, p, and
a maximum number of available samples in the background, L.

We also find that omitting the digitization step 6 from section 4.4.1 does not
result in a significant improvement of the slope parameter, although it can be
expected that the incoming information will be degraded at some point if the
digitization becomes even more coarse. In addition, numerical rounding errors
will occur if other quantities, such as the coefficients are rounded to integer
numbers with limited precision.

5In statistics, the expected value of a random variable is defined as the weighted average
of all possible values of samples from this random variable.
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Figure 4.4.2: Performance for a situation similar to AERA − Panel a) shows the fit
for the slope parameter C with the p = 128 coefficients. The slope parameters are
shown in panel b) for different choices of p in a range of 1 to 128. The length of the
region with background noise, L, is varied and this is shown by the dotted lines with
L = 512 for the lowest line. As L increases from L = 512 to 768 to 3072 to 7168,
so does the height of the lines. The solid blue line shows the result for L = 1024.
The dashed line shows the ideal situation as calculated using equation (4.4.1) and the
dash-dotted line shows the result for the notch filter.

In addition to this noisy environment that is chosen to resemble the situation
at AERA we investigated some additional hypothetical noisy environments in
figure 4.4.3. Panel 4.4.3a and b show that the digital notch filter performs
somewhat better in case of a constant environment even for p = 128. In addition
it can be seen that the LP method obtains optimal performance before p = 128
is reached for the environment in panel 4.4.3b. Panel 4.4.3c can not show the
performance of the static notch filter because the RFI lines are chosen at random
positions. In 4.4.3d it can be seen that, obviously, the LP method does nothing,
and even slightly worsens the background conditions, if there is no RFI in the
background at all. Overall, the differences between the method based on linear
prediction and the digital notch filter is small as we can see from the fact that
the line of the linear predictor approaches the line of the notch filter for large p.

Finally figure 4.4.4 shows an environment in which the method based on
linear prediction performs better than the notch filter. The RFI lines in this
environment are at specific locations but are present only with a probability of
50%. The method based on linear prediction benefits from its adaptability in
this environment.

All the additional parameters relating to the here discussed environments
can be found in appendix B.

4.4.3 A Brief Analysis of the Median Filter
An alternative method to remove RFI is the application of a median filter to the
frequency spectrum of the trace. This method has been implemented for online
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Figure 4.4.3: Performance and comparison for different kinds of environments − The
dashed line represents the ideal value as calculated using eq. (4.4.1). The dash-dotted
line represents the notch filter (if possible) and the solid blue line represents the linear
predictor. Panel a) shows the performance for a situation with a higher amount of RFI
than in figure 4.4.2. Panel b) shows the performance for a single RFI line, panel c)
shows the performance for RFI lines that are randomly positioned and panel d) shows
the performance if no RFI is present at all. The results are shown for L = 1024.
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Figure 4.4.4: Performance and comparison for a random environment – Lines are the
same as in 4.4.3.

use [71]. In addition an offline module which is based on the same principle,
is available in the software package Offline. We focus on the behavior of this
module.

Briefly described, the median filter determines the median of a sliding win-
dow, with a chosen width of 1 MHz for this analysis. The original amplitudes
of the frequency spectrum are then replaced by this median value. In this sec-
tion we show that the application of the median filter yields a ‘too optimistic’
over-estimation of the signal-to-noise ratio and hence an under-estimation of the
actual error in the signal. Thus accurate physics analysis (which e.g. requires
an accurate estimation of the error) becomes problematic after the median filter
has been applied.

A first indication of the over-estimation of the signal-to-noise ratio emerges
from the fact that applying the median filter to a trace of 2048 samples with
Gaussian white noise with a standard deviation σ yields a trace with a back-
ground noise level of 0.72σ. Clearly, no information is present in this white
noise, and no reduction of this pure noise should be expected.

We define the estimation of the amplitude A (i.e. the amplitude if no back-
ground noise would be present) and the estimation of the error on that amplitude
as,

Est(A) =
√
S2 −N2,

EstErr(A) = N,

respectively, where S and N are the signal and the background noise as defined
in the previous section.

To determine the error that exists factually we investigate the mean square
error (MSE). The MSE can be defined in terms of bias and variance:
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Method Estimated Values Actual Values
Est(A) EstErr(A) S/N Bias(A)

√
Var(A)

√
MSE(A)

Predictor 100.1 3.4 29.6 0.1 3.3 3.3
Median 96.9 2.7 35.5 3.1 3.7 4.9

Table 4.1: Comparison of the linear prediction filter and the median filter for a quiet
environment (no RFI-lines, only Gaussian noise) – The length of the examined traces
is N = 2048.

Method Estimated Values Actual Values
Est(A) EstErr(A) S/N Bias(A)

√
Var(A)

√
MSE(A)

Predictor 100.1 3.5 28.7 0.1 3.4 3.4
Median 95.7 2.9 33.5 4.3 3.9 5.8

Table 4.2: Comparison of the linear prediction filter and the median filter for an
environment similar to AERA – The length of the examined traces is N = 2048.

MSE(A) = Bia(A)2 + Var(A),

Bias(A) = Est(A)−A,

Var(A) = (Est(A)− Est(A))2,

where for brevity we have chosen the horizontal bar to indicate the expected
value. These values are obtained with a Monte Carlo simulation by repeating
the methods 10000 times. See also section 5.3 for more information on the mean
square error, bias and variance.

Let us consider a delta pulse with an amplitude of 345.7 mV. The resulting
peak amplitude B after filtering this pulse with the IIR-filter is 100.0 mV. The
results for two conditions are shown in table 4.1 and 4.2. From these tables we
can conclude that the median filter causes a ‘too optimistic’ under-estimation
of the error, EstErr, by comparing it with the actual variance. In addition, one
can see that there is a considerable bias for the median filter whereas the values
for the linear prediction method are acceptable. The signal-to-noise ratio S/N
is consistently over-estimated due to these discrepancies in the median filter.

One of the problems lies in the fact that the method based on median filtering
provides no clear distinction between a train and a test set, i.e. data that are
used to determine the re-ordering of the amplitudes also contain the pulse itself.

4.4.4 Measurements
The real measurements from AERA are analyzed using the software pack-
age Offline[90, 78, 77, 91] allowing for a comparison with other existing noise
suppression modules. The RdChannelLinearPredictorRFISuppressor-module
implements the here discussed linear prediction method. As an alternative the
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RdChannelMedianFilter is a module that implements the method for RFI sup-
pression using a median filter in the frequency domain. As a third possible
method the RdStationFrequencyRemover together with the RdStationTime-
SeriesWindower implements a supervised method that allows us to cut out the
offending frequencies that are identified by hand.

In order to test these three RFI suppression methods a reconstruction of
the RD event is done using the SD (CDAS infill) parameters for the arrival
direction. The Offline reconstruction allows us to use the arrival direction to re-
construct the three-dimensional electric field. Thus the final analysis is done on
the three-dimensional Station-level traces. However, some modules, such as the
RdChannelLinearPredictorRFISuppressor and the RdChannelMedianFilter
act on the two-dimensional voltages at the so-called Channel-level. Appendix B
contains the full module sequence of this reconstruction including the suitable
positions of the RFI suppression modules and all relevant module configura-
tions. Figure 4.4.5 shows the NS polarization of a single station for such a
reconstructed event as an example. The figure was made for event 11535629,
AERA station 17 with a signal to noise ratio S/N = 4.1, zenith angle θ = 30.1◦,
azimuth angle φ = 67.0◦, opening angle of the shower axis with the geomag-
netic field α = 117.6◦, impact parameter (shortest distance from the station
to the shower axis) d = 8.3 m. These parameters were determined from the
measurements from the SD.

The signal S is extracted as a short window of 125 ns within the ROI by
using the RdStationSignalReconstructor-module. The power of the trace is
computed by taking the Hilbert envelope of the three ~E-field polarizations and
then averaging the squared sum of the channels. The square root of the power
can then be defined as the combined amplitude of the trace. The window with
maximum amplitude is then chosen from the ROI as the signal. The amplitude
of the background noise is computed in the same way from a fixed window
containing the background. All relevant settings are shown in appendix B.

As shown in figure 4.4.6, in order to get an overall impression of the am-
plitudes for every part of the trace, the amplitudes of the Hilbert envelopes
are added quadratically for all traces. For the blue line of the linear predic-
tor we see five features. 1) At the beginning the trace is close to zero because
no prediction can be made for the first few samples. 2) Shortly after that the
cosmic-ray-induced pulse follows. 3) Following the pulse we see a short region
(at around 2000 ns) of increased intensity where some of the energy of the pulse
is dissipated through the filter. 4) Subsequently there is pure background noise
which is only slightly higher than the background noise from the notch filter.
5) Finally we see a slightly lower region that is used for determining the co-
variances: the training set. The red line indicates the constant noise level if no
RFI suppression is performed. The blue dotted line shows the noise levels of the
median filter. The blue and the green lines are very close together, indicating
that the linear predictor and the notch filter have very similar performance.

The results of these three methods are compared in figure 4.4.7. Panel
4.4.7a shows how the pulses from the setup are fitted, which is far less than the
approximately 3000 pulses that are available for the Monte Carlo simulations.
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Figure 4.4.5: Example traces − The plots on the left show the measured traces in the
time domain for a single pulse in the EW polarization of the station. The plots on
the right show the corresponding power spectrum. The traces have been cleaned with
the three different modules. Panel a) shows the traces if no RFI is removed. Panel
b) shows the situation for the RdChannelLinearPredictorRFISuppressor. Panel c)
shows the situation for the RdStationFrequencyRemover. Finally, panel d) shows the
situation for the RdChannelMedianFilter.
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Figure 4.4.6: Sum of all amplitudes − The amplitude A of all traces containing cosmic
rays from AERA are summed quadratically and smoothed using a Gaussian kernel
with σ=30 ns.
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Figure 4.4.7: Results for the measured data − Panel a shows the fit for the slope
parameter C using the linear prediction method for p = 128. The other methods are
fitted in the same fashion. In panel b we see the main result of the measured data. The
red line simply indicates the situation when no RFI suppression is performed. The
blue dotted line (Median) seems to perform better than both methods but as shown
in section 4.4.3, this is an over-estimation.
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Consequently there is a non-negligible error in these fits. A different definition of
signal-to-noise and a different signal extraction method was used in the analysis
of these measured traces from AERA resulting in a different signal to noise cut
of S/N > 2. This type of signal extraction is optimized for minimum bias and
minimum error and is discussed in more detail in chapters 5 and 6.

In addition the ‘ideal’ conditions (which can only be created with a simula-
tion) are not available and can only be estimated to be larger than the figure of
merit for the notch filter CIdeal > 1.71. This means that the methods can only
be compared with each other and not with an absolute benchmark. The error
bars compare the fit for the linear predictor with the fit for the notch filter in
panel 4.4.7b. The intercorrelations are accounted for by using bootstrapping.
The results are summarized in section 4.5.

A first glance at figure 4.4.7b would seem to indicate that the median filter
performs better than the linear prediction method and the notch filter. However,
the results of the median filter are an over-estimation due to the biases that are
inherent in the method. There is a bias (as explained and shown in the previous
section) because the data that are used to select the median frequency bins
are the same data that are used to determine the noise level. If we were to
abandon such precautions in the linear-prediction case we would also get an
overestimation of the efficiency of the method. Thus the same can be concluded
as in section 4.4.3: that the resulting noise level of the median filter does not
reflect the actual uncertainty on the signal. This makes the error estimation of
a signal that has been cleaned in such a way very difficult.

4.5 Summary, Conclusions and Discussion
Table 4.3 summarizes the results of sections 4.4.2 and 4.4.4. We can see that
the notch filter in a constant environment performs a bit better than the LP
method but we also see that the notch filter can not always be applied. The
LP method performs a bit better than the notch filter when random factors
are introduced in the environment and also works if the RFI lines change their
position randomly. Finally we can see that the performance of the LP method
can be improved further, not only by increasing the number of coefficients but
also by increasing the number of samples, L, of background noise that are used
to calculate the coefficients more accurately.

We conclude that the linear prediction method and the digital notch filter
are both viable methods for removing RFI. The digital notch filter is simple, has
a good performance and can be easily implemented for on- and offline use. A
disadvantage is the fact that the frequencies have to be set by hand and thus it
is not flexible for a changing noisy environment. One could, of course, envision
an algorithm that pinpoints the offending frequencies by examining the noise
conditions and then adapts the frequencies that are to be removed to the current
environment.

The linear prediction method is rather complex in its use but it does have the
advantage that it automatically filters out the RFI and adapts to a changing
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Name LP @ p = 128 Notch Ideal
Like AERA NS 1.40 1.43 1.49

” L = 512 1.36 ” ”
” L = 768 1.39 ” ”
” L = 3072 1.42 ” ”
” L = 7168 1.42 ” ”

More RFI 2.15 2.21 2.40
Single RFI-line 1.11 1.14 1.15
No RFIa) 0.97 – 1.0
Random Ab,c) 1.89 – 2.23
Random Bc) 1.79 1.76 1.89
Real AERA NS & EWc,d) 1.67 1.72 –

a) The notch filter is not applied because there are no RFI lines to be cut away in this
noise-free environment
b) The notch filter can not be applied because the RFI lines are located at random
positions
c) These environments are not constant. The numbers represent averages.
d) The error on CLP − CNotch is 0.02. The value of CIdeal can not be determined for
the real measurement.

Table 4.3: Summary of the results – The first column shows the environment. More
details about the simulated environments may be found in appendix B. The second
row shows the performance using the figure of merit C for the linear predictor with
p = 128 coefficients. The third column shows the performance for the notch filter and
the rightmost column shows the ideal performance, CIdeal (see eq. (4.4.1)).
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noisy environment. In addition, the linear prediction method can be imple-
mented efficiently for online use entirely within the FPGA of the digitizers [72].
A publication is forthcoming [73] in which it is shown that the method also
works for amplitude as well as frequency modulated signals in an online envi-
ronment. An additional analysis and comparison of the FFT technique and the
FIR filter is to be published in ref. [74].

The RU/NIKHEF[66] digitizers produce traces of 2048 samples. For the
case of offline analysis, both the linear prediction method as well as the notch
filter would benefit from traces containing more than 2048 samples, which would
make it possible excise the very narrow peaks more precisely. For instance, the
KIT/BUW digitizers provide much larger traces.

Finally we conclude that the median filter can be used for online filtering in
the digitizers[71]. However, the median filter has to be applied very carefully,
compensating for bias, when physics analysis is concerned. For triggering it is
useful but it may have a power problem because of its Fourier transformations
[67].





Chapter 5

Signal Extraction, Bias and
Error

Measured radio pulses are contaminated by the background and, inevitably,
an uncertainty as well as a bias is introduced in the observed quantities. These
uncertainties and systematic errors depend on the signal-extraction method and
on the treatment of the data. It is shown in this chapter that the experimental
error in the extracted signal can be reduced by extracting the signal as a finite
number of samples rather than as the pulse maximum only.

5.1 Introduction
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Figure 5.1.1: Illustration of the meaning of signal and extracted signal − This figure
illustrates what a theoretical clean signal, xi (upper panel), can look like and how
it can be extracted after Gaussian noise has been added (a crude simulation of the
environmental noise) and after it has been band pass filtered, yi (lower panel).
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A toy model is used to get a handle on the effects that play a role in the
uncertainties of the observables. Using a toy model, many parameters that are
out of human control in nature (such as the amplitude and shape of the signal)
can be changed easily. Subsequently, the results that are produced by these
parameters (such as the bias and variance of the observed quantities) can be
obtained using Monte Carlo simulations. The toy model allows us to introduce
more realism as a step-by-step process, such that the effects of each individual
step towards a more realistic case can be determined. It is not our aim to end up
with a completely realistic simulation in this chapter, but we do try to address
all factors that play a significant role in the signal-extraction process.

An important factor in this analysis is the behavior of the pulse finding
algorithm (PFA) (which is defined in the next section) and the length of (or the
number of samples in) the extracted signal. Furthermore, it is necessary to make
a distinction between the ‘clean’ signal that is obtained from simulations and
the signal that is extracted from the experimental data (see figure 5.1.1). It is
shown that the bias of the signal strength due to the PFA as well as its variance
can be reduced by choosing a signal length that exceeds a single sample. In
addition, it is shown that the relative error, after reaching a minimum value,
only increases very slowly as the length of this extracted signal increases.

The bias and variance are strongest in the situation when the amplitude of
the signal is close to the noise level. Thus the focus of this chapter lies on this
specific situation. We purposefully do not define a signal-to-noise ratio in this
analysis because a quantity like this invariably depends on the way the signal is
extracted. In other words, the exact nature of the extracted signal is undefined
as long as the extraction method has not been chosen. It is thus impossible to
define a signal-to-noise level, as long as the extraction method is not determined.
Instead the focus lies on a situation where the noise is kept constant and where
the total energy of the pulse is varied to ascertain the effectiveness of the pulse
extraction. An additional purpose for this toy model is to explain the signal-
extraction method that is subsequently used in the rest of this thesis.

5.2 The Pulse Finding Algorithm
The simulated traces that are generated for the purpose of this analysis have a
length of 1000 samples. This length is enough to account for the pulse dropping
off to zero at infinity because the pulses that are used in this analysis have a
width of much less than 100 samples. The traces are enhanced by adding the
Hilbert transform as a complex component. This enhancement is called the
analytic signal. Unless otherwise stated, we only do analysis on the analytic
signal. Omitting this enhancement leads to no significant differences except
for more unwanted ‘jitter’ in the results. The positive effects of the Hilbert
transform on the signal have been shown in refs. [92, 93].

Pulses are placed with their maximum in the center of the traces. A region
of interest (ROI) of NROI = 120 samples (600 ns) is defined around the pulses.
The PFA is active within this region of interest.
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Figure 5.2.1: The pulse finding algorithm − The figure illustrates how the PFA finds
the window that contains the highest energy. The red dot indicates the left offset of
the window for which the energy in the window is maximal. For this example the
length of the sliding window was taken to be 11 samples.

The PFA applies a sliding window of length M to the ROI and determines
the total energy of the samples in that window, as illustrated in figure 5.2.1.
The extracted signal is then chosen to be in the window with the highest energy.
In mathematical terms the algorithm can be described as:

c = argmaxd

d+M−1∑
i=d

|zi|2, (5.2.1)

where argmaxd(f(d)) is defined as the value of d where f(d) is maximal. Thus
c is the offset of the signal region and d ∈ {0, 1, ..., NROI −M − 1}. The zi
are the samples of the trace in the ROI starting with i = 0 at the beginning of
this region. The extracted signal then runs from zc up to but excluding zc+M .
The algorithm reduces to the trivial case of finding the sample with maximum
amplitude in the ROI for the choice M = 1. Here a distinction needs to be
made between the extracted noisy signal and its ‘clean’ value. As a convention
zi and the offset c are replaced with xi and a for a clean (but filtered) trace.
Similarly, zi and c are replaced with yi and b for a noisy trace (see figure 5.2.1).

One of the aims in this chapter is to show that using only the maximum
of the pulse (the case where M = 1) is not an optimal choice for the signal
extraction, especially when minimizing the error in the extracted signal is the
objective. It is also shown in this chapter that it is favorable to extract a high
percentage of the total energy of the pulse.

An important subject is to study the effect of the pulse shape on the resulting
error. Therefore, delta pulses (approximated by traces where only one sample is
non-zero) are generated. In addition, we generated Gaussian pulses of various
widths. Examples of a Gaussian and a delta pulse are shown in figure 5.2.2a.
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Figure 5.2.2: Effects of filtering on a delta pulse or a Gaussian pulse − This figure
shows the effects of filtering on a delta pulse (left) and a Gaussian pulse (right). The
Gaussian pulse has a width of W = 4 samples (20 ns). Panel a) shows the unfiltered
pulses. Panel b) shows the spectrum of these pulses where the vertical lines indicate
the filtered region. Panel c) shows the pulses after filtering. Finally, panel d) shows
the result when noise is added.
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The values for the vertical axes in this figure are essentially unit-less but can
be related to the noise level which is kept constant. The traces are taken to be
real valued in this figure for the sake of the simplicity.

The width W of the Gaussian pulses such as shown in figure 5.2.2 is defined
as twice the standard normal. All pulses in this figure have the same energy,
i.e, the squared sum of all the samples that define the signal is the same inside
the frequency window. N.B. this Gaussian pulse is not to be interpreted as a
probability density function (PDF) but only as a simple but non-trivial pulse
shape. Additionally, it is not implied that this is a good approximation of a real
pulse (which e.g. may have its maximum between two neighboring samples)
and especially not of a pulse as generated by an air shower (which has a less
trivial shape). The motivation to choose delta pulses and Gaussian pulses lies in
their relative simplicity. The Gaussian pulses are symmetric and easily defined
by their standard normals, but their non-trivial shape and frequency response
allow us to study the most relevant effects that play a role in more realistic
situations which are described in the next chapter.

As stated earlier, some definitions are important in order to make clear
distinctions. First of all, there are three parts of the trace: 1) the ROI (also
known as the signal search window) which has a length of NROI = 120 samples
in this analysis, 2) the window that contains the extracted signal (within the
ROI) which has a length of M � NROI samples and finally 3) the regions
outside the ROI which contain no signal. Secondly, we use a notation for clean
traces which are denoted with xi (figure 5.2.2a and 5.2.2c), noisy traces which
are denoted with yi (figure 5.2.2d), and traces in general which are denoted
with zi. The values of xi, yi and zi are taken to be complex unless otherwise
stated. The index i indicates the sample number in the discrete time series of
a trace. Because this toy model allows us to work with unit-less parameters,
xi, yi and zi can be interpreted as any desired quantity such as a voltage or
an electric field strength. When it becomes necessary to express one of these
unit-less parameters then standard deviation of the noise σ = σNoise is used as
the unit of measure because this value is chosen to be constant throughout this
chapter.

To approximate a realistic situation the effects of a rectangular filter with
a passband between 30 and 80 MHz (see figure 5.2.2b) are studied for a time-
binning of 5 ns per sample.

The PFA is the key element of this analysis. Although it is a simple algorithm
in itself, it has a considerable effect on the extracted signal, specifically when
the amplitude of the signal is close to that of the noise. It is also an essential
part of the analysis that can not be omitted in a realistic situation, when the
exact location of the original signal is unknown. In this analysis we allow the
PFA to yield an extracted signal of length M . The value of M can then be
varied such that the effect of this variation on the qualities (such as the bias
and the variance) of the extracted signal can be determined.
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Figure 5.3.1: Qclean as a function of the window width − One can see the effect of
filtering on a Gaussian pulse with different widths W = 2, W = 4 and W = 6 but
with the same energy Qfull = 100σ2 as a function of the length of the extracted signal
M . It can be seen that the original width of the pulse only increases two samples at
the time but the filtered pulse (and thus its energy) is spread out considerably more.
Because the energy is unit-less it is normalized with σ2.

5.3 Description of the Model
The energy of the pulse is the main quantity of interest. Many other quan-
tities, such as Stokes parameters which are discussed in the next chapter, are
derivatives thereof. In this model we investigate the energy of a pulse in a single
channel (which can be interpreted as a single polarization of the antenna or a
single dimension in the electric field).

The quantity Qfull is defined as the total energy of the filtered but clean
signal. The quantity Qclean is defined as the amount of energy that is extracted
from the same clean signal (i.e. a signal without any background noise such as a
simulation). It is clear that Qclean is smaller than or equal to Qfull because Qclean

is taken from a window of finite length, which does not include the complete
energy of the pulse. However, as the window size increases, Qclean converges to
Qfull (see figure 5.3.1) and our aim is to ‘catch’ as much of the energy of the
pulse as possible. Thus we have the following two quantities that can only be
obtained through a simulation:

Qfull =

∞∑
i=−∞

x2
i ,

Qclean =

M∑
i=0

x2
a+i,

where xa+i is the clean signal and a is the offset that centers the summed region
around the maximum of the pulse. Thus the value of a is determined with prior
knowledge of the exact location of the original signal. N.B. in this chapter (and
only in this chapter) the letter Q is used to denote the energy, and it is not a
Stokes parameter.

Apart from these quantities, which can only be obtained from simulations,
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Figure 5.3.2: Illustration of bias and variance − A histogram obtained from one of the
Monte Carlo simulations.

Qraw is defined as the raw energy of the extracted signal, after Gaussian noise
(with a variance of σ2) has been added to the trace. Furthermore, Q = Qraw −
Mσ2 is defined as the energy of the extracted signal, after the noise level (within
the window of lengthM) has been quadratically subtracted from the raw energy.

Consequently there are two quantities that can be obtained from simulations
which can also be obtained from experimental data:

Qraw =

M∑
i=0

y2
b+i,

Q =

M∑
i=0

y2
b+i −Mσ2,

where yb+i is the noisy signal and b is the offset that is determined by the
PFA. Hence the offset b which is determined by the PFA may be different from
a because under experimental conditions a can only be approximated by b.
In other words, if the simulation is realistic, then prior knowledge about the
location of the signal is unavailable. Hence, for a realistic simulation, the offset
b needs to be determined from the noisy signal. Thus the values a and b are
different from each other in a realistic situation.

It is necessary to define the following quantities in order to get a handle on
the errors involved:

MSE(Q) = E[Q−Qclean]2

= E[Q− E[Q]]2 + [E[Q]−Qclean]2 (5.3.1)
= Var(Q) + (Bias(Q))2,
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Property Trivial Condition Realistic Condition
Pulse Shape: Delta pulse Gaussian pulse
Filter: None Rectangular Band-pass
Pulse Location: Known beforehand Determined afterwards by PFA

Table 5.1: Conditions that affect the realism of the model. The toy model allows us
to select eight different configurations by choosing combinations from the middle and
the right column.

where the expected value1 (E) is approximated with Monte Carlo simulations
(all simulations are repeated 10 000 times). In the first line of equation (5.3.1)
we have defined the mean square error (MSE) of the extracted signal. This line
can be split up into two terms containing the variance (Var) and the bias (Bias).
Figure 5.3.2 illustrates how the total error can be split into a variance and a bias
part, using the histogram obtained from one of the Monte Carlo simulations. It
can be seen that there is a bias in Q due to the PFA and this can be visualized
as the distance between E[Q] and Qclean. The square root of the variance has
been approximated by calculating the RMS and can be visualized as the distance
between E[Q] and the vertical lines. The total MSE(Q) is the sum of the squared
bias and the variance. The MSE(Q) can also be interpreted as the mean square
of the distances of the entries in the histogram with respect to Qclean. This
particular histogram was created for a simulation of a Gaussian pulse with a
pulse width of W = 4, a sliding window of length M = 5 and a pulse energy of
200σ2 before filtering (after filtering the energy is ∼ 60σ2). It is also clear, due
to its asymmetry, that the PDF is not Gaussian. For a further discussion on
this we refer to sections 5.4 and 7.3.

As can be seen in table 5.1, the configuration of the model can be switched
for three different properties, allowing for a total of eight configurations. First
of all the pulse shape can be chosen to be either a delta pulse (non-zero in only
one sample) or Gaussian pulse (see figure 5.2.2). A Gaussian pulse may still
be an oversimplification but, having a well-defined width and shape, it is much
more realistic than a delta pulse. Secondly it is possible to switch between a
non-filtered signal and a filtered signal. The filtering accounts for the design-
frequency window of the detector. As a third choice, one can either provide
the simulation with prior knowledge about the exact location of the clean pulse
or one can let it be determined a posteriori by the PFA from the noisy trace.
Clearly, allowing the exact position of the pulse to be known is highly unrealistic,
whereas the PFA employs a method that can be used for a real signal.

5.4 Results
We start with the simplest and least realistic situation available. The variance
of delta pulses is approximated with different energies as shown in figure 5.4.1.

1In statistics, the expected value of a random variable is defined as the weighted average
of all possible values of samples from this random variable.
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Figure 5.4.1: The most trivial simulation of a delta pulse at different energies − The
left plot reflects the absolute error for this trivial case. The right plot reflects the
relative error. As can be seen from the left figure the simulation closely follows the
predicted uncertainty as defined in (5.4.1) and shown as the dotted line (which is
of course non physical for negative M). The solid line is based on a Monte Carlo
simulation starting at M = 1.

No filter is applied and no analytic signal is computed (thus for this simple
example the traces are taken to be real-valued) and it is assumed that the
knowledge of the position of the pulse is available. We have Qfull = Qclean and
Var(Q) = MSE(Q) for this trivial example.

Although this is a highly unrealistic situation, this simulation already points
at some of the results that will be presented later in this chapter. In figure 5.4.1
it can be seen that the calculated error closely approximates the formula that
can be derived for this situation:

Var(Q) = MSE(Q) ≈
(
∂(x2

d)

∂x

)2

σ2 + k

M∑
i=0, i 6=d

E[(x2
i )

2 − E[x2
i ]

2]

= 4a2σ2 + 2(M − 1)σ4, (5.4.1)

where a is the amplitude of the delta pulse and d is the sample that contains the
delta pulse. The first term accounts for the noise in the sample that contains
the delta pulse. This term can be obtained by the usual error propagation.
The second term contains a higher order effect which accounts for the extra
uncertainty that is introduced by the samples that contain only noise, which
reduces to 2(M − 1)σ4 if normality is assumed2. Clearly, for this situation it
would be best to extract the signal with only a single sample, as is shown by the
increase of the variance with the sample size M . It can be observed, however,
that the optimum choice of the window width shifts to a larger number of
samples as the realism of the simulation increases. Figure 5.4.1 shows that the
curve flattens out considerably, already at low energies of (Qfull = 25σ2) and
as this example is extended into a more realistic situation in figure 5.4.2 one

2The calculation requires solving
´∞
−∞ dx

(
x2e−x

2
)
and

´∞
−∞ dx

(
x4e−x

2
)
.
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Figure 5.4.2: Effects on the variance of the energy when increasing the realism − The
eight curves (N.B. The curves in the plots at the top overlap) correspond to the eight
possible choices that can be created by table 5.1 at an energy of Qfull = 200σ2. The
star in the legend indicates the most realistic simulation, where all choices were taken
from the rightmost column in table 5.1. The curve for PFA∗ is therfore drawn in a
different style for emphasis. From left to right the band-pass filtering (30 to 80 MHz
at a Nyquist frequency of 100 MHz) is switched on. From top to bottom we go from
a delta pulse to a more realistic Gaussian pulse (with a width of W = 6 samples).

can see that the relative error decreases as M increases. Naturally this decrease
does not go on forever. At some point the relative error will start to rise again
as M increases even further.

One issue of key importance here is that the energy at which a more realistic
pulse becomes detectable is roughly 100σ2. This can be understood by realizing
that on the one hand, for a delta spike the amplitude is 10σ but, on the other
hand, for a pulse that is contained in more than one sample the amplitude is
much lower. This effect is illustrated in fig 5.2.2c and 5.2.2d on the right, where
it can be clearly seen how a pulse of this energy relates to the noise. Thus this
energy is low relative to the noise level, but high in a sense that the curve in
figure 5.4.1 has flattened out considerably. If the data is filtered as well then the
curve flattens out even more. Naturally equation (5.4.1) is incorrect for more
realistic pulses, especially for low values of M . However, for higher values of
M this trend in the relative error, which rises slowly, is in accordance with the
more realistic results.

Figure 5.4.2 illustrates the effects that can be observed when we – step by
step – switch to the more realistic simulations as outlined in table 5.1. By
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Figure 5.4.3: The total error of the energy without and with a sliding window − The
total error (

√
MSE(Q)) is plotted on the left for a pulse with an energy ofQfull = 200σ2

and a pulse width of W = 6 samples. On the right the situation is shown with the
PFA in action. Panel a) shows the total error and panel b) shows the relative error.
(The word “Error” on the vertical axis may every time be replaced with what is shown
in the legend.)
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Figure 5.4.4: Effects of signal length, energy and pulse shape on the variance, bias and
the total error − As we go from left to right the pulse width W is varied. As we go
from top to bottom the energy E is increased.
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Figure 5.4.5: Anderson-Darling test statistic as a function of the window width − A
lower A2 corresponds to a higher probability that the samples are drawn from a normal
distribution. It can be seen that the A2 goes down as the window width increases,
indicating convergence to normality. This particular set of simulations was done for
an energy of Qfull = 200σ2 and a pulse width of W = 4 samples.

comparing the points denoted by ‘?’ with the points denoted by ‘×’ one can see
that the variance decreases when the PFA is used. This does not imply however
that the total error becomes lower. In fact, this decrease in the variance implies
that a bias is introduced. Figure 5.4.3 demonstrates that the total error is
increased by the bias created by the PFA. When the PFA is applied then, due
to lack of knowledge about the exact location of the pulse, the total error can
be separated into the selection bias and the variance, as described in formula
(5.3.1). This separation is illustrated in the plots on the right in figure 5.4.3. In
5.4.3a one can see the absolute error on the energy. Although the error becomes
larger in absolute terms, it does not become larger with respect to Qclean. Thus
in 5.4.3b it can be seen that the relative error decreases as the window width
increases (see also figure 5.3.1 for the behavior of Qclean). It can be concluded
that the bias as well as the variance are reduced by increasing the window size
and from 5.4.3b it can be clearly seen that the relative error is minimized as the
window size increases.

From the previous discussion we conclude that the selection bias due to
the PFA needs to be considered. Figure 5.4.3 shows the selection bias that
is created when we switch from a pulse with a known position to a situation
where the PFA is used to determine its location. Additional effects are shown
in figure 5.4.4 where it can be seen that the bias and variance are different
for various combinations of energy and pulse width. This figure shows that
the selection bias varies, not only with the length of the extracted signal, but
also with the energy and the shape of the pulse. Hence, the selection bias can
only be approximated by Monte Carlo simulations and is not available in a real
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Figure 5.4.6: Error in the positioning of the window as a function of the window width
− This particular set of simulations was done for an energy of Qfull = 200σ2 and a
pulse width of W = 4 samples. The MSE(b) decreases with a minimum at 11 samples
for these parameters. After this point, due to the fact that the noise dominates at the
edges, the error increases again.

situation. Although this bias can not be determined in a realistic situation3, we
can determine a limit at which the energy of the signal (in combination with an
optimal signal length) yields a bias that becomes acceptably negligible.

5.5 Additional Results
There are, some other quantities that can be beneficial for further analysis. It
turns out that these quantities also improve for a signal that is larger than a
single sample.

Because uncertainty is calculated for a quantity that is the square of ampli-
tudes, it is not to be expected that the resulting PDF is Gaussian. However,
as the sum of many non-Gaussian samples converges to normality, due to the
central-limit theorem, it may be expected that the PDF becomes more Gaussian
as the window size increases. This convergence is indeed the case as can be seen
from figure 5.4.5 where we used the A2 test statistic from the Anderson-Darling
Normality test [94]. The fact that the PDF becomes ‘more Gaussian’ implies
that it becomes more acceptable to assume approximate normality (e.g. for
the purpose of an easier analysis) as the window size increases. The Anderson-

3It is not entirely accurate to state that it is completely impossible to determine the
selection bias and indeed estimations of this bias were made for the LOPES setup [92, 93].
However this was done for a different situation where the timing was more accurately known
due to beam-forming and only the pulse maximum was investigated. In the case presented
here however, it would be necessary to have precise knowledge about the original signal which
can only be partially reconstructed from the measurement.
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Darling test is further explored in chapter 7.
A second quantity is the error in the offset of the window b. This error

indicates how well the window can be positioned around the pulse. Figure 5.4.6
shows the error in the window position. It can be observed that there exists a
window widthM > 1 for which the error in the offset is minimized. Because the
error does increase again for larger window sizes it may be favorable to enhance
the PFA as described in formula (5.2.1) with weight factors wi. This weight
factor would then be lower at the extremities such that the outer edges of the
window have less influence on the positioning:

c = argmaxd

d+M−1∑
i=d

wi |zi|2,

a strategy that can be compared with methods such as described in refs. [95, 96].
We conclude that further improvement in signal extraction may be obtained by
pursuing a similar method using weight factors.

5.6 Conclusions
The main aim of this chapter was to show that the error in the observables
can be reduced by choosing a suitable window width. We conclude that it is
always better to extract a signal that contains more than a single sample, if
one wants to minimize the error. The error in the energy of a pulse can be
reduced by extracting the signal as a short trace of samples rather than as a
single sample. In addition, other quantities such as the normality of the error
and the positioning of the signal can be improved at the same time.

The method of separating the error into a part determined by the variance
(which can be estimated in an experiment) and a part determined by the bias
(which can be obtained from Monte Carlo simulations) allows us to set the
appropriate signal-to-noise cut at which the bias becomes negligible. It can
be concluded that it is not trivial to determine the bias under experimental
conditions, because prior knowledge of the pulse shape is required.

The very slow increase in the absolute error as a function of the window size
M allows us to extract the signal in such a way that the relative error decreases.
In other words, as M increases from 1 to a suitable value the fraction of energy
due to the background decreases. This improves the relative uncertainty. There
exists only an exact optimum value for a specific pulse shape. A reasonable
choice for the over-all pulse shapes of this specific toy model is M = 12.





Chapter 6

Polarization and Method
Validation

This chapter serves to describe the details of the (polarization) reconstruc-
tion and provides a description and a validation of the experimental error es-
timation methods. The aim is a comparison of models for radio emission from
extensive air showers [49, 27, 44, 51, 53, 97, 43] with actual measured radio
traces. A description of the propagated error from the theory is necessary be-
cause the simulations are based on measured shower parameters from the surface
detectors (SD). A method for this error propagation is described in this chapter.
In addition, the measured radio traces have uncertainties due to the background
noise. Two possible error estimation methods and three possible signal extrac-
tion methods are explored. The methods are described in the first part of this
chapter. In the second part these methods are compared and validated using
Monte Carlo simulations. An optimal choice from these methods is made in
order to perform further analysis on actual data with this choice.

6.1 Description of the Methods
The analysis presented here essentially validates the consistency of the com-
parative analysis of two measurements: the radio data from AERA and the
coincident SD data. The theoretical models for radio emissions link these two
measurements by predicting the electric fields that are expected from theory.
Thus the analysis is based on two separate analysis branches as shown in figure
6.1.1; one branch for SD and one for the radio detection (RD), both based on
one initial observation. The branch for SD on the left of this figure is based on
a CDAS reconstruction and an Offline [76, 90] simulation. The branch on the
right is an Offline-reconstruction, aided by the SD parameters from CDAS.

In this chapter we use the COREAS model [43] to validate the analysis
method. We assume that the COREAS simulations represent the ‘true’ model

91
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Figure 6.1.1: The two pipelines of the analysis

and we validate the analysis method using Monte Carlo simulations. If later
a discrepancy between a real measurement and the predicted measurement is
found, with the knowledge that the analysis is validated, then we know that
either the theory needs to be adapted or that the measurement is not fully
understood or calibrated yet.

6.1.1 Propagation of the Error from the Surface Detector
The error from SD can be propagated through the radio models by varying
parameters that were reconstructed within their uncertainties. This must be
done while taking the correlations between the parameters into account. The
primary shower parameters reconstructed by CDAS are:

• T0: the arrival time

• v̂x, v̂y: the projection of the (normalized) shower axis (the shower axis
points parallel but opposite to the arrival direction) on the x, y-plane

• x, y: the position of the shower core on the ground plane

• S1000: the signal in VEM units (Vertical Equivalent Muon units) at 1000
m from the core

• Xmax: the maximum of the shower (vertical)

• R: the curvature radius of the shower front
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Together these parameters can be represented as a vector ~Y :

~Y =



T0

v̂x
v̂y
x
y

S1000

Xmax

R


.

The covariances for this vector are represented by an an 8×8 symmetric positive
definite matrix Cij . The probability distribution function of the randomly varied
variable Y should satisfy

E[(Yi − E[Yi])(Yj − E[Yj ])] = Cij , (6.1.1)

where E is the expected value1.
To generate a set of these random variables one can write Y as:

~Y = E[~Y ] +
√

C · ~Z,

where for every i, Zi is a random independent Gaussian variable with E[Zi] = 0
and σZi

= 1. The square root of the matrix can be calculated because it is
positive definite. It is calculated by diagonalizing the matrix and then taking
the square root of the diagonals. In some cases the error in R or Xmax are not
available. It then suffices to reduce the problem to a lower dimensional matrix
equation ignoring those rows and columns in the correlation matrix that are
not available. It has been verified, by generating many (10 000) instances of ~Y ,
that the original covariance matrix is accurately reproduced by this stochastic
method.

There are some secondary parameters that are not part of the fitting pro-
cedure but that are needed for the simulations. These are the zenith angle of
the shower axis (opening angle of the z-axis with the arrival direction), θ, the
azimuth angle (counter-clockwise angle with respect to the east) of the axis φ
and the energy of the shower E. These parameters have a nonlinear dependence
on the fitting parameters. E.g., as the zenith angle θ approaches zero the error
in the azimuth angle φ becomes very large. This is illustrated in figure 6.1.2.

Some fitting parameters have a certain maximum and/or minimum value:

S1000 > 0, (6.1.2)

v̂2
x + v̂2

y < 1. (6.1.3)

Clearly, the error for these parameters can only be approximately Gaussian:
if the error is large or the value is close to one of the boundaries and if we assume

1In statistics, the expected value of a random variable is defined as the weighted average
of all possible values of samples from this random variable.
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Figure 6.1.2: Error propagation of the shower parameters − The figure shows (some
of) the shower parameters for 100 randomized showers for event 3526870. Panel a)
shows the projections of the shower axis (v̂x, v̂y) on the ground plane, panel b) shows
the core positions (x, y) on the ground plane, panel c) shows the zenith and azimuth
angle (θ, φ) with a clear non-linear dependence on (v̂x, v̂y) and a histogram of the
energy is shown in panel d). The short lines in panel a), b) and c) represent one, two
and three standard deviations.
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a Gaussian distribution for the error, we may obtain non-physical values. For
instance it may happen that S̄1000 + ε < 0, where ε is one of the random values.
For other parameters such as x, y, Xmax and R this problem does not occur. For
the whole dataset any non-physical value of the shower parameters occurred in
less than 0.5% of the cases. The problem was circumvented by excluding these
non-physical values. Naturally this induces a small bias, which is, however,
expected to be very low because only a very small percentage of the cases are
affected.

6.1.2 Signal Extraction and Signal-to-Noise Definition
As a first step, in order to facilitate the mathematical computations, the analytic
representation of the signal is used. The analytic signal is computed as

Etrace = Etrace + iH(Etrace) (6.1.4)

for every spatial dimension of the electric field Etrace. The electric field, Etrace,
is represented as a sequence of amplitudes and is reconstructed with the software
package Offline. The signal extraction is performed analogous to the previous
chapter. The only difference with the previous chapter is the number of channels
in the trace. The combined envelope is defined as

Wi =
√
|Etrace,xi|2 + |Etrace,yi|2 + |Etrace,zi|2, (6.1.5)

where i is the index referring to the i’th time-sample and x, y and z represent
the three spatial dimensions of the electric field.

The pulse finding algorithm (PFA) is defined as

c = argmaxd

(
d+M−1∑
i=d

W 2
i

)
, (6.1.6)

in close analogy with the Pulse Finding Algorithm (PFA) which is employed
as described in the previous chapter, cf. formula (5.2.1). Subsequently, Ei is
defined as that part of the trace that starts at d and ends at d+M −1. Thus Ei
is a small window with i ∈ {1, 2, ...,M} which contains the (extracted) signal.

Another method of extracting the signal, which is briefly discussed in this
chapter, is using the full width half max (FWHM) procedure. The first step
in this procedure is to determine the index with maximum amplitude of the
envelope. Subsequently, a window is extended to the left and to the right of
this maximum until the amplitude of the envelope has dropped below half of
the maximum amplitude. Thus, this signal extraction technique yields windows
of varying lengths determined by the observed pulse width.

The signal amplitude for both the PFA as well as the FWHM is defined as

S =

√√√√ M∑
i=1

(|Exi|2 + |Eyi|2 + |Ezi|2) /M. (6.1.7)
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The background N is extracted from an unbiased part of the trace that
contains only noise. This background noise region N helps us to define the
signal-to-noise amplitude ratio (or short signal-to-noise ratio)

(
S

N

)
M

=

√∑M
i=1 (|Exi|2 + |Eyi|2 + |Ezi|2) /M√∑Mnoise

j=1 (|Nxj |2 + |Nyj |2 + |Nzj |2) /Mnoise

, (6.1.8)

where Mnoise is the number of samples in the extracted noise. In the present
analysis, we require Mnoise � M such that the error on the noise level can
be neglected. The signal-to-noise ratio is essentially the amplitude of the sig-
nal divided by the amplitude of the noise, where all three channels are added
quadratically and interpreted as a single amplitude. Because the definition de-
pends on the length of the extracted signal, the subscript M is used. The need
for and the height of an appropriate S/N cut is an issue that is discussed in this
chapter.

6.1.3 Determination of the Observables
The choice of the coordinate frame has been arbitrary up to this point, because
of the symmetry in the formulas of section 6.1.2. However, when the Stokes
parameters are to be calculated, it is necessary to define a reference frame. In
light of the leading emission mechanism, which is of geomagnetic origin, it is
the most natural choice to use a reference frame that is related to the direction
of the Lorentz force −~v × ~B, where ~v is the velocity of the particles along the
shower axis and ~B is the geomagnetic field. We investigate two choices for the
coordinate frame. The first choice, as depicted in figure 6.1.3a, is the most
natural one and assigns the direction of ~v × ~B to x̂ such that

x̂ =
v̂ × B̂
|v̂ × B̂|

, ŷ = v̂ × x̂, ẑ = x̂× ŷ. (6.1.9)

The values Ez are not used any further because, barring errors, near field
effects, and uncertainties in the reconstruction or incompleteness of the theory2,
no electric field from the air shower should be present in that direction.

The second choice (see figure b) is a little less natural and is mostly consid-
ered here for historical reasons. For this choice the projection −~v × ~B onto the
horizontal plane is used such that,

x̂ =
(~v × ~B)proj

|(~v × ~B)proj|
. (6.1.10)

The ŷ direction is chosen right-handed along the ground plane, perpendicular
to x̂, and again ẑ = x̂ × ŷ is not considered, although, in this case, the spatial
direction ẑ may contain some of the electric field produced by the air shower.

2Inconsistencies in the reconstruction or incompleteness of the theory could weaken this
assertion. Although some cross-checks have been made, this remains a possible point of further
investigation.
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a)

b)

Figure 6.1.3: Two different definitions of the reconstruction geometries − Panel a)
shows the definition of the geometry in the v̂ × B̂/|v̂ × B̂| frame. Panel b) shows the
definition of the projected geometry.
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Now that a frame of reference is well defined, we can begin to extract the
Stokes parameters. Hence we define

Iraw =

M∑
i=1

|Exi|2 +

M∑
i=1

|Eyi|2,

Qraw =
M∑
i=1

|Exi|2 −
M∑
i=1

|Eyi|2,

Uraw = 2

M∑
i=1

Re(ExiE∗yi),

Vraw = 2

M∑
i=1

Im(ExiE∗yi). (6.1.11)

The subscript ‘raw’ is used to indicate that these parameters have not yet been
corrected for the background noise.

In order to simplify the calculations we define Pu =
∑M
i=1 |Eui|2, where u ∈

{x, y, a, b, l, r} denotes different basis vectors. The change of basis constitutes a
π/4 rotation for a and b such that Ea = (Ex + Ey)/

√
2 and Eb = (Ex − Ey)/

√
2.

A transformation to a circular basis for r and l results in Er = (Ex + iEy)/
√

2
and El = (Ex − iEy)/

√
2. Using these coordinate bases, the Stokes parameters

can be rewritten as

Iraw =

M∑
i=1

|Exi|2 +

M∑
i=1

|Eyi|2 = Px + Py,

Qraw =
M∑
i=1

|Exi|2 −
M∑
i=1

|Eyi|2 = Px − Py,

Uraw =

M∑
i=1

|Eai|2 −
M∑
i=1

|Ebi|2 = Pa − Pb,

Vraw =

M∑
i=1

|Eli|2 −
M∑
i=1

|Eri|2 = Pl − Pr. (6.1.12)

We can now easily correct for the systematic error due to the noise level. The
corrected intensity I becomes,

I = Iraw − (

Mnoise∑
i=1

|Nxi|2 +

Mnoise∑
i=1

|Nyi|2), (6.1.13)
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and the other Stokes parameters,

Q = Qraw − (

Mnoise∑
i=1

|Nxi|2 −
Mnoise∑
i=1

|Nyi|2),

U = Uraw − (

Mnoise∑
i=1

|Nai|2 −
Mnoise∑
i=1

|Nbi|2),

V = Vraw − (

Mnoise∑
i=1

|Nli|2 −
Mnoise∑
i=1

|Nri|2), (6.1.14)

have been corrected for the noise level in a similar manner, essentially by sub-
tracting the polarization of the noise from the raw signal. These corrected
quantities replace the general definition 3.2.1 and it needs to be noted that, due
to this correction, sometimes it may occur that Q2 +U2 +V 2 may become larger
than the Poincaré sphere. Yet, these strictly speaking, non-physical values are
to be preferred above no correction at all, because tests showed that the results
without this correction give unacceptable biases.

We only use the corrected quantities in this analysis. Despite this correction
an additional bias is created, not directly due to the noise, but due to the effect
of the noise on the signal-extraction procedure. It is shown in this chapter that
this bias can be minimized by using an appropriate length of the signal.

To be able to make intensity-independent observations about the polariza-
tion, we investigate the ratios Q/I, U/I and V/I and the polarization angle
φ = 1

2 arctan(UQ ) as well.

6.1.4 Analytical Approach for the Error Estimation
In this section an analytical approach to determine the uncertainty on the Stokes
parameters is discussed. Let us start by calculating the uncertainty in the square
of a single real valued sample s with a first-order approximation:

σ2
s2 = (

∂

∂s
(s2))2σ2

s = 4s2σ2
s , (6.1.15)

where σs can be approximated by taking the RMS of the noise. The expression
for the uncertainty in the square of a single sample (σs2) can now be extended
to the uncertainty in an average of squares of multiple samples, i.e. the intensity
of the signal p2 with p2 =

∑M
i=1 s

2
i /M , where M is the number of samples in

the signal.
The naïve extension to the uncertainty in the intensity of the signal would

then be

σ2
p2 =

M∑
i=1

4s2
iσ

2
s/M

2. (6.1.16)

The only caveat is that we are not dealing with white noise but with bandwidth-
limited colored noise. This means that the neighboring samples can not be seen
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as independent from each other, which means that the covariances between the
neighboring samples need to be taken into account, such that,

σ2
p2 =

(
M∑
i=1

∂

∂si

(
s2
i /M

)
∆si

)2

=

 M∑
j=1

2si∆si

2

/M2

=

M∑
i=1

M∑
j=1

4sisj∆si∆sj/M
2

=

M∑
i=1

M∑
j=1

4sisjcovi−j/M
2, (6.1.17)

where covk is the covariance between one sample and its k’th neighbor, and cov0

reduces to the variance of the noise Vari(ni). The covariances can be found by
averaging over a large number of points in time which amounts to a convolution
(denoted with “◦”) of the noise ni with its time reverse T (n)i = n−i such that
the symmetric covariances (covi−j = ∆si∆sj) are

covi = lim
K→∞

1

K

K∑
k=0

nk+ink = lim
K→∞

1

K

K∑
k=0

nkT (n)i−k = lim
K→∞

1

K
(n ◦ T (n))i.

(6.1.18)
The result from equation (6.1.17) can be generalized for the complex case

for the power in the x direction such that

σ2
Px

=

∣∣∣∣∣
M∑
i=1

(
∂

∂Exi
(ExiE∗xi/M) ∆Exi +

∂

∂E∗xi
(ExiE∗xi/M) ∆E∗xi

)∣∣∣∣∣
2

=

∣∣∣∣∣
M∑
i=1

(E∗xi∆Exi + Exi∆E∗xi)

∣∣∣∣∣
2

/M2

=

M∑
j=1

M∑
i=1

(
E∗xiExj∆Exi∆E∗xj + ExiExj∆E∗xi∆E∗xj+

E∗xiE∗xj∆Exi∆Exj + ExiE∗xj∆E∗xi∆Exj
)
/M2

=

M∑
j=1

M∑
i=1

(
2E∗xiExj∆Exi∆E∗xj

)
/M2

=

M∑
i=1

M∑
j=1

(
2ExiE∗xjcovxx,i−j

)
/M2, (6.1.19)
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where the fact that ∆E∗xi∆E∗xj = ∆Exi∆Exj = 0 was used as is shown in appendix
D. Similarly,

σ2
Py

=

M∑
i=1

M∑
j=1

(
2EyiE∗yjcovyy,i−j

)
/M2. (6.1.20)

The hermitian (covuv,i−j = ∆Exi∆E∗xj) (cross-)covariances can be deter-
mined from the convolution Nu ◦ T (N ∗v ) and can be estimated for a finite piece
of noise by

covuv,i = lim
K→∞

1

K
N ∗v,k+iNu,k ≈

Mnoise−M∑
k=1

N ∗v,k+iNu,k
Mnoise −M

, (6.1.21)

for M > i ≥ 0. The rectangular filtering in the frequency domain of the full
trace has effectively removed the baseline, simplifying the equation.

Figure 6.1.4a shows the typical covariances for a simulation obtained with
Offline. If there are no cross-covariances then we may assume that

σ2
I ≈ σ2

Px
+ σ2

Py
. (6.1.22)

However, the three-dimensional reconstruction, as is evidenced by figure
6.1.4b, does show some amount of cross-covariances. These cross-covariances
are due to the ‘lifting’3 of the two-dimensional voltages to a three-dimensional
electric field. For the projected reconstructiongeometry, shown in figure 6.1.5,
there appear to be no cross-covariances. We need not worry much about this,
because the three-dimensional reconstruction method in combination with the
analytical method is a special choice which will not be applied in the analysis of
the real data. The noise-addition method together with the three-dimensional
reconstruction is used instead. Thus we need not be concerned with any prob-
lems arising from the incomplete treatment of the cross-covariances for this
special choice. Furthermore, we would like to mention that this particular trace
used to produce figure 6.1.5 is chosen as an example that has some of the more
prominent intercorrelations. Despite the fact that we do not advise to make this
special choice of 1), a three-dimensional reconstruction in combination with 2),
the analytical method, most cases show lower intercorrelations.

The other three Stokes parameters have exactly the same uncertainty as I,

σ2
Q = σ2

U = σ2
V = σ2

I . (6.1.23)

However, to calculate the error on the ratio Q
I we have to propagate the uncer-

tainties. Here we use the convenient notation of equation (6.1.12)

(σQ
I

)2 ≈ (∂Px

Q

I
)2σ2

Px
+ (∂Py

Q

I
)2σ2

Py
. (6.1.24)

3With ‘lifting’ we mean converting the signal from a two-dimensional pair of voltages to a
three-dimensional electric field by means of the arrival direction of the pulse.
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The partial derivatives can be found to be

∂Px

Q

I
= (I −Q)/I2, (6.1.25)

∂Py

Q

I
= −(I +Q)/I2, (6.1.26)

such that

(σQ
I

)2 ≈ (I −Q)2

I4
σ2
Px

+
(I +Q)2

I4
σ2
Py
. (6.1.27)

The expressions for σU
I
and σV

I
can be obtained by changing the corresponding

coordinate system, substituting (x, y) for (a, b) and (l, r) respectively. N.B.: for
these quantities there is no equality as presented in equation (6.1.23) and

σQ
I
6= σU

I
, σU

I
6= σV

I
, σV

I
6= σQ

I
. (6.1.28)

The uncertainty in the polarization angle is,

σφ =
(σ2
Px

+ σ2
Py

)

4Q2(1 + U2/Q2)
.

6.1.5 Double-Noise Method for Error Estimation
A different error estimation is achieved by noise addition. Essentially, this ap-
proach is similar to a Monte Carlo simulation in the sense that it estimates
the uncertainty by taking the variance of a large number of varied values. The
method differs from a proper Monte Carlo simulation because it does not in-
corporate a simulation of the pulse-finding algorithm. However, this is the best
one can do in a realistic situation, without knowledge of the clean signal. An
additional difference from a proper Monte Carlo simulation is the fact that a
double noise level needs to be subtracted from the signal to correct for the noise
that is already present. Although the second method may seem mathematically
less rigorous than the analytical method, it does yield very accurate results, as
can be seen in the next section.

Let us apply the method to the arbitrary observable X and define X ′a as the
same observable but with extra noise (taken from the background in the same
trace of the pulse) added

X ′a = X ′(Ex +Nxa, Ey +Nya) a ∈ 1, 2, ...,Mnoise −M, (6.1.29)

where Nxa and Nya are sliding windows of noise, of the same length as the
signal, that are obtained from the full noise traces Nx and Ny. Furthermore,
Mnoise is the number of samples in the extracted noise4 and M is the number of

4For this analysis the number of samples of the noise trace is 1000. Typically this method
can be applied as long as Mnoise �M .
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Figure 6.1.4: (Cross-)covariances of the background noise for a simulation in the 3-
dimensional geometry − The (cross-)covariances for AERA station 14, event 11614136,
are shown. Panel a) shows the covariances for the channel x. Panel b) shows the cross-
covariances between channel x and y. The indices have a bin size of 5 ns.
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Figure 6.1.5: Cross-covariances of the background noise for a simulation in the pro-
jected geometry − The cross-covariances for AERA station 14, event 11614136, are
shown. This figure shows the cross-covariances between channel x and y in the pro-
jected geometry.
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samples in the signal. The noise is subtracted in the usual way as in eq. (6.1.13,
6.1.14) but |N ′xi|2 ≡ 2|Nxi|2 because noise was added a second time.

The careful reader may remark that the background noise has intercorrela-
tions between the samples. Would these intercorrelations not give an incorrect
answer if they are not taken into account? It turns out that the intercorrela-
tions only have an effect on the number of samples that are necessary to reach
a certain accuracy. For instance, if the background is not defined in the full
Nyquist band but only in half of the Nyquist band then one may need double
as many samples to reach a desired accuracy.

The values of X ′1, X ′2, . . . X ′P now provide us with a histogram that approx-
imates the PDF of the observable. From this histogram the variance can be
simply approximated as:

σ2
X = RMS[X ′] =

1

P

P∑
i=1

X ′i − 1

P

P∑
j=1

X ′j

2

. (6.1.30)

There is one case in which it is necessary to be careful with this method. If
the observable is circular, such as the polarization angle φ, then it is important
to take this into account. Firstly, the distribution for this observable is, by its
definition, not Gaussian which implies that the estimation becomes incorrect
for large values of σφ. Secondly, if the variance is calculated close to −π/2
and π/2 then the wrapping of this value may lead to inaccurate results. A
completely accurate solution to this would be to fit the values φ′i to a suitable
distribution. The Von Mises-Fisher distribution [98] comes to mind. However,
it is also possible to calculate the variance after rotating the polarization angle
such that the central value φ is at zero. Then at least the problem due to the
possible wrapping of the values is reduced and the estimation of σφ is accurate
for small values σφ � π. In the software package Offline the latter choice was
made. The histograms from this double-noise method do, however, provide more
information than the variance alone and invite the application of a non-Gaussian
analysis.

6.2 Validation
It is important to verify whether the discussed techniques to estimate the ob-
servables and uncertainties are correct. This can be done by Monte Carlo sim-
ulations which allow us to calculate the expected uncertainty by repeating a
simulated measurement many times. The Monte Carlo simulations in this sec-
tion are done by using the COREAS[43] pulses that were generated from the
reconstructed SD parameters for the MAXIMA and AERA setup. In this way
we can show that computationally the error estimation is performed correctly.

The COREAS simulations are used because these were simulated for all
stations without signal-to-noise criteria. Not all data sets that were mentioned
in 6.1.1 are suitable for this type of analysis which requires many pulses that
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are close to the noise floor; in many of the other data sets only those stations
that passed a prior signal-to-noise cut on the measured data were simulated.

6.2.1 Investigating the Individual Pulses
As described in section 5.4.4 of the previous chapter, there is an increased ac-
curacy when extracting the signal defined by multiple samples, rather than by
a single sample (N.B. the quantity Q in the previous chapter has a different
meaning than in this section). This issue, related to accuracy, is investigated
further in this section. In addition, it is interesting to know whether the ex-
tracted observables such as the polarization are stable as a function of the width
of the extracted signal. In this section we examine these quantities on the basis
of single pulses.

The mean square error (MSE) of the observable X can (in the same way as
in the previous chapter) be written as a combination of bias and variance:

MSE[X] ≡ E[X −Xclean]2

= E[X − E[X]]2 + (E[X]−Xclean)2

= Var[X] + (Bias[X])2. (6.2.1)

These three quantities can be approximated using Monte Carlo simulations.
The value of Xclean is determined from an Offline pipeline where no noise is
added to the simulations. The MSE[X], Var[X] and Bias[X] are determined by
generating fake measurements, repeatedly running a simulation while adding
Gaussian noise5, using the Offline module RdChannelNoiseGenerator [75, 81].

The figures 6.2.1, 6.2.2 and 6.2.3 show the results for such a simulation.
More figures like these were generated and investigated. A drop in variance as
well as bias as a function of the extracted window width is observed, as can be
seen in figure 6.2.1e and 6.2.2f, although this drop is not always as spectacular
as in figure 6.2.2e. The drop in variance and bias is not always present as can
be seen from figure 6.2.3e and 6.2.3f, where the bias and variance remain almost
constant. This figure can be explained from the rather narrow pulse width which
can be observed in 6.2.3a (compare with figure 5.3.2).

The intensity I is not a stable quantity as a function of the extracted window
width. Therefore, the error is scaled with Iclean, the intensity that is extracted
for a clean simulated signal. This scaling is not necessary for the quantities
Q/I, U/I and V/I which show to be rather stable as a function of the window
width in this frequency band of 30 to 80 MHz.

Based on these figures we have chosen to use a window of 125 ns as the
extracted signal. This choice is further motivated in section 6.2.3.

5This artificial noise is chosen to have an amplitude of 7.5 mV and is spectrally colored to
give an accurate general likeness to the expected measured background.
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Figure 6.2.1: Pulse shape, spectrum and the effect of the extracted window width on the
MSE, Var, and Bias for an individual COREAS pulse, event id 11638937, AERA sta-
tion 5 − The related quantities to this pulse are (S/N)125 ns = 3.9, impact parameter
(shortest distance from the station to the shower axis) d = 35 m, zenith angle θ = 42◦,
azimuth angle φ = 100.0◦, opening angle of the shower axis with the geomagnetic field
α = 80.0◦, and energy of the primary particle E = 0.7 EeV. Panel a), b) and c) show
information about the pulse shape and its spectrum. Panel a) and b) show the pulse
shape and spectrum respectively, before the simulated Offlinereconstruction. Panel c)
shows the pulse shape after simulation and reconstruction. Panel d) shows the ex-
pected value for the quantities Q/I, U/I and V/I. The MSE and its constituents are
shown in panel e) for I/Iclean and in panel f) for Q/I.
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Figure 6.2.2: Pulse shape, spectrum and the effect of the extracted window width on the
MSE, Var, and Bias for an individual COREAS pulse, event id 11528374, AERA sta-
tion 19 − The related quantities to this pulse are (S/N)125 ns = 37, impact parameter
d = 28 m, zenith angle θ = 5◦, azimuth angle φ = 152.7◦, opening angle α = 27.3◦

and energy E = 0.3 EeV. See caption of figure 6.2.1 for more details.
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Figure 6.2.3: Pulse shape, spectrum and the effect of the extracted window width on the
MSE, Var, and Bias for an individual COREAS pulse, event id 11638937, AERA sta-
tion 2 − The related quantities to this pulse are (S/N)125 ns = 3.2, impact parameter
d = 123 m, zenith angle θ = 42◦, azimuth angle φ = 100.0◦, opening angleα = 80.0◦,
and energy E = 0.7 EeV. See caption of figure 6.2.1 for more details. This pulse is
generated by the same event as figure 6.2.1 but in a different station.
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6.2.2 Accuracy of the Estimated Uncertainties
Apart from optimizing the accuracy of the extracted signal it is also neces-
sary to know whether the estimated uncertainty (σX) is estimated correctly.
A comparison is made for σI , σU and σU/I , using the analytical method and
the double-noise method, both for the reconstruction in a projected coordinate
frame. The estimated uncertainties are compared with Monte Carlo simulations
which determine the MSE. This comparison is done for three groups of signal-
to-noise ratios of (S/N)125 ns < 2, 2 ≤ (S/N)125 ns < 3 and 3 ≤ (S/N)125 ns.
For a time binning of 5 ns we have now written (S/N)T = (S/N)125 ns; equiv-
alent to (S/N)M = (S/N)25) for the projected geometry. Figure 6.2.4 shows
the comparison for both error estimation techniques for the quantities σI , σU
and σU/I . There is clearly some scatter which indicates an inaccuracy in the
determination of the errors but, as we see in the next section, the χ2

red still
gives acceptable results. The quantities σQ, σV , σQ/I , σV/I and σφ were also
examined and show no ‘worrisome’ features either.

6.2.3 Accuracy of the Estimated χ2
red

In this section, a Monte Carlo simulation is performed to determine the shape of
the expected χ2

red-distribution under the assumption that the data completely
fit the theory. For this purpose, the dataset of varied shower parameters (as
measured with the SD) and simulated pulses is used. The theoretical values
XSD and σXSD are compared with fake measurements. The fake measurements
are generated by adding Gaussian noise to the same set of 25 pulses per station
and per event, which yields the quantities X ′RD and σ′2XRD

. Subsequently the
χ′2red are calculated by repeatedly choosing a random fake measurement for every
station. The χ′2red are calculated in the same way as for a normal measurement:

χ′2red =
(XSD −X ′RD)2

σ2
XSD

+ σ′2XRD

.

This χ′2red is calculated 10 000 times. If all is well then this procedure should
yield a histogram which is very similar to the PDF of the expected χ2

red, with
its mean at 1 and with a width that reflects its degrees of freedom.

Because the actual value of the signal-to-noise depends on the definition of
the signal (whether it is only a single sample, a window of a certain length or
the FWHM) it is not a good criterion to use when comparing different signal
extraction techniques, each of which has its own definition of what the signal
actually is. Thus it is best not to use a signal-to-noise cut when comparing
different techniques. Nevertheless, a cut needs to be made such that signals
with high amplitudes are selected and signals with amplitudes too close to the
noise floor are discarded. For this reason we decided to order the pulses by their
respective signal-to-noise ratios and select the highest fraction of those. This
gives us an effective signal-to-noise cut. Of the total number of pulses, which
are 752, we selected 267 with the highest signal-to-noise ratios (the reason for
this specific number will become apparent). This selection yields a rather low
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Figure 6.2.4: Estimated errors compared with the MSE − The panels on the left a),
c) and e) show the estimated errors σI , σU , and σU/I respectively for the analytical
method. The panels on the right in panels b), d) and f) show the same for the noise-
addition method. The small gray dots represent a signal-to-noise of (S/N)125 ns < 2,
the crosses represent a signal-to-noise of 2 ≤ (S/N)125 ns < 3 and the large black dots
represent a signal-to-noise 3 ≤ (S/N)125 ns.
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Figure 6.2.5: Selection of the pulses giving an effective signal-to-noise cut – The se-
lected pulses (in the area to the right of the vertical lines) are chosen such as to yield
effective signal-to-noise cuts of (S/N)125 ns of 2 and 3 (in the area above the sodid and
dashed horizontal lines respectively). The red shaded curve is in actuality an overlay
of 100 (of the 10 000) curves that were yielded by the Monte Carlo simulations.

effective signal-to-noise cut. In addition, we selected a second lower amount;
177 pulses in order to generate a higher effective signal-to-noise cut. As shown
in figure 6.2.5 for the sliding window method, these selections give us effective
signal-to-noise cuts of (S/N)125 ns > 2.0 ± 0.02 and (S/N)125 ns > 3.0 ± 0.2
respectively. It can be seen in this figure that there are some signal-to-noise
ratios in these simulations which are as as high as S/N ≈ 1000. Such signal
to noise ratios were not observed in the measured data. The highest S/N ratio
that was recorded in the measured radio data is 12.4. However, removing these
pulses from the analysis had no considerable effect on the results. We therefore
decided to leave them in the analysis.

The fact that no pulses with higher S/N ratios, as described by the COREAS
model, were detected by the setup, possibly has interesting implications on the
detection method. It may be that the theory is predicting these pulses wrongly
but it is also possible that certain effects in the FPGA, which was equipped
with a non trivial trigger (see section 2.4) caused the rejection of these pulses.

This effective signal-to-noise cut can be repeated for other signal extraction
methods, such as the extraction of only a single sample FWHM method. In ad-
dition, it is possible to use either the analytical error estimation method or the
double-noise method. Finally the two possible coordinate frames for the recon-
struction of the observables from formulas (6.1.9) and (6.1.10) are considered.
This leads to 3 (signal extraction methods) × 2 (error estimation methods) ×
2 (coordinate frames) = 12 possible methods. Figures 6.2.6, 6.2.7 and 6.2.8
contain the results for a single sample, a window of 125 ns and the FWHM, as
the signal extraction technique respectively. The other combinations are shown
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in the horizontal rows of these groups of plots.
At this point we can conclude that the most accurate results are obtained

by both the signal extraction method using a sliding window and the noise-
addition method to estimate the uncertainties. The observable which gives the
least accurate results for all methods is Q/I. This may be explained by the fact
that this polarization is often close to 1: the point for which the fraction Q/I
has a rather non-linear error propagation.

The method and observable denoted with the ‘?’ in figure 6.2.8 is considered
in the article on charge excess [99] using a projection onto the ground plane as
the geometry. Because the paper is already at an advanced stage it is decided
not to change the analysis at this point in time. However, in this thesis the
method and observables denoted with ‘•’ are considered, because a fully three-
dimensional reconstruction of the polarization is now available6, and because
there is more space in this thesis for additional analysis. In the next chapter
we investigate not only the linear polarization U/I, but also the circular po-
larization V/I and (somewhat outside the topic of a polarization analysis) the
amplitude A =

√
I. Due to the limited amount of data available, we have de-

cided to use a (S/N)125 ns > 2 which is rather low, but acceptable. For data
with more statistics we would advise to use higher signal to noise cuts such as
(S/N)125 ns > 3.

6The three-dimensional reconstruction method can be applied with consistent error esti-
mation as long as the analytical method is not used, and the noise-addition method is chosen
instead. The cross-correlations between the x and the y channel only cause inconsistencies for
the analytical case and are correctly treated by the double-noise method.
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6.3 An Additional Cross-check on the Background
Noise

The procedure described in the previous section does not only take the uncer-
tainties due to the background noise in the radio detection into account, but also
accounts for the uncertainties in the shower parameters due to the SD recon-
struction. We perform an additional cross-check with a less complicated analysis
for the error due to the background noise only so that we can determine any
biases on the calculation of the observables and estimation of the error of the
background noise. The following two reduced chi-squared values are calculated:

χ2
red =

1

Npulses

Npulses∑
i=1

(Xi,SD,orig −Xi,RD)2

σi,XRD
2

and

χ2
red,fit =

1

Npulses − 2

(aXi,SD,orig + b−Xi,RD)2

σi,XRD
2

,

where XSD,orig is the observable X calculated from the simulation with the
original shower parameters and XRD is a single simulated measurement. The
χ2

red,fit is minimized for a and b by simple linear regression. If values that deviate
far from unity are found for χ2

red or for χ2
red,fit then we know that there is an

inconsistency. In addition, if a deviates far from unity or if b deviates far from
zero then we know that there are signifiant biases. The results are shown for
U/I for the noise-addition method in table 6.1 for various cuts on the signal-
to-noise ratio. The results are shown graphically in figure 6.3.1. The errorbars
on the vertical axis are omitted from the graphics for visual reasons but are, of
course, taken into account in the calculations. We conclude that there are no
significant biases and that the results are consistent.
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Figure 6.3.1: Additional cross-check for U/I − Table 6.1 serves as a legend to this
figure.

Cut Npulses χ2
red χ2

red,fit a b · 10−3

2 ≥ S/N < 10 190 1.22 1.23 1.03± 0.05 3.35± 18.1
× 2 ≤ S/N < 3 82 1.47 1.48 0.83± 0.16 6.91± 52.0
• 3 ≤ S/N < 4 28 1.01 1.08 0.96± 0.17 −6.94± 51.5
? 4 ≤ S/N < 10 80 1.05 1.06 1.06± 0.05 0.62± 19.7

Table 6.1: Additional cross-check for U/I

6.4 Conclusions and Discussion
Three different signal extraction techniques, two error estimation methods and
reconstruction geometries have been discussed in this chapter. These have all
been implemented in the software package Offline. We conclude that in order
to increase the accuracy of the signal extraction it is best to extract a window,
larger than a single sample, as the signal. In this present case a window width
of 125 ns is chosen to be used in further analysis. The method based on noise
addition is the most reliable and always yields a χ2

red closest to unity for every
signal extraction method. Therefore, it is used in the rest of this thesis as the
preferred method. A signal-to-noise cut of (S/N)125 ns > 2 is acceptable using
these methods.

Cross-correlations (or cross-covariances) are introduced, among other things,
when RFI lines are present in the signal. It has been shown on the voltage level
[100] that for the current setups these cross-covariances become negligible if the
signal has been sufficiently cleaned of narrow band RFI; there are little cross-
correlations of any other origin between the NS and EW channels of the detector
stations because the LPDAs are built perpendicular to each other. Thus, on
the voltage level, it can be safely assumed that there are no cross-correlations if
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the signal is cleaned. The analytical method, described here, relies on this as-
sumption. The Offline-reconstruction, however, uses the arrival direction of the
pulse to create a three-dimensional electric field from two-dimensional recorded
voltages. This lifting of a two-dimensional quantity to a three-dimensional field
implies that some mixing and copying of the channels is necessary and this
results in some cross-covariances being observed in the two polarization direc-
tions, as was shown in figure 6.1.4b. The reconstruction geometry where the
xy-plane is kept parallel to the surface does not exhibit such cross-covariances
as is shown in 6.1.4c. The analytical method, even in the three-dimensional
geometry, still performs rather well and this may be explained by the fact that
these cross-covariances are generally small in comparison to the covariances and
it may be possible that opposing signs of these cross-covariances cancel each
other in aggregate quantities such as the χ2

red-values. This problem related to
the cross-covariances may be considered in future work but it does not hinder
a successful analysis because another error estimation technique, i.e. the one
based on noise addition is available.

Apart from this incompleteness for the three-dimensional reconstruction the
results show that the noise-addition method performs better, even for the pro-
jected geometry. This is likely to be due to the non-normality of the expected
distributions when propagating the error through quotients such as Q/I, U/I
and V/I or through φ = 1

2 arctan(UQ ). The double-noise method seems to be
able to propagate the higher-order moments more accurately than the classical
analytical method: it can be seen by eye that the histogram in figure 6.4.1a)
approximates a Gaussian distribution whereas in figure 6.4.1b) it is clearly asym-
metric. These histograms – approximations of the underlying PDFs of the ob-
servables – are obtained from the double-noise method and invite an analysis
based on log-likelihoods instead of classical analysis using χ2 distributions (see
next chapter).

Another related issue, which has not been considered until this point, is cre-
ated by the fact that the background is plagued with transient signals, mostly
(but not all) [60] of human made origin. These signals may coincide with a mea-
surement and may severely degrade the χ2 value as is evidenced by figure 6.4.2.
Proper quality cuts and verifications of the reconstruction may allow the exper-
imenter to discard some of these spurious signals but it remains a possibility
that these transients distort the final outcome of the analysis unfavorably. This
observation again invites the application of log-likelihood methods that take
non-Gaussian tails into account. Such methods are considered in refs [75, 81]
for a description of the noise background and in [102] on the observation of
charge-excess. In this reference, some suggestions for a likelihood analysis are
made by adding a small tail to the distributions in order to account for any
outliers caused by transients. In the next chapter, similar methods will be
investigated.
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Figure 6.4.1: Probability densities obtained from the double-noise method − In this
figure we see the probability densities for event 9658857 station 3 from the MAXIMA
setup. Panel a) shows the PDF for Q/I, panel b) shows the PDF for U/I. This figure
was obtained from an earlier analysis on the voltage level for a coordinate frame where
X is along the EW polarization and Y is along the NS polarization [101].
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Figure 6.4.2: PDF for a χ2
red when non-Gaussian noise (from recorded background

traces) is added to a simulation − A heavy tail is developed due to the non-Gaussian
transients in the noise. The outliers are shown in the rightmost overflow bin. This
figure was obtained from an earlier analysis on the voltage level [101].





Chapter 7

Analysis of the Measured
Radio Data

The cosmic-ray events from the radio setups MAXIMA and AERA are analyzed
and compared with various models for radio emissions from extensive air show-
ers. This comparison is done by using the shower parameters from the surface
detector (SD) as input for these radio models. Subsequently, a comparison of
various observables is made. These observables include the amplitude of the
signals and the linear and circular polarization components. A similar polariza-
tion analysis will be published in [99]. The data from these first measurements
are scarce. The focus lies not only on what can be demonstrated using this
particular data set but also on which techniques may be used in the future. An
outlook is given in which the newest data are briefly presented.

7.1 Introduction
This chapter is devoted to the comparison of the measured data from the
MAXIMA and AERA setups (see appendix A for a detailed description of
the data, setups and the quality cuts on these data) with various models for
radio emissions from extensive air showers; COREAS [43], EVA [44], MGMR
[45, 46, 47, 48, 27], REAS [49, 50, 51], SELFAS [52] and ZHAireS [53]. The
reconstruction of the measured data, the treatment of these models and the
propagation of the uncertainties from the SD through these models have been
discussed in 6.1.1. An outline of the process is shown in figure 6.1.1.

The questions that are to be answered are discussed and the statistical inter-
pretation of the data is given in section 7.2. Subsequently, the intercorrelations
and the non-Gaussianity of the observables (for the measured and simulated
data) are investigated in section 7.3. Many of the measured observables as
well as the observables from the simulations are shown not to have a Gaussian
distribution. In addition, for a single event, there are intercorrelations in the
simulations. These intercorrelations are caused by the propagated error from SD

121
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in combination with the multiplicity of the Radio Detector (RD) stations. The
issues due to the non-Gaussianity and intercorrelations are discussed in section
7.3. The techniques of bootstrapping and resampling that are used in the anal-
yses are discussed in section 7.4. Finally, comparative analyses are performed
is sections 7.5 to 7.7.

The data and simulations that are analyzed and many techniques described
in this thesis are identical to those from the paper to be published by the Pierre
Auger Collaboration[99]. However, there are some differences with respect to
the reconstruction and the statistical analysis. The Offline-package is in con-
stant development and a fully three-dimensional reconstruction of the Stokes
parameters is now used instead of the projection onto the ground plane in the
paper. Furthermore, for most of the models, not 25 but 100 simulated events
are used in this analysis (except for REAS and COREAS which, due to the fact
that these are time-consuming, provide only 25 simulations).

7.2 Statistical Questions
It is possible to answer some relevant questions by comparing the simulations
with the actual radio data. Do the radio data support these models? If the
data do not support these models, what parameters can be tweaked to improve
our understanding? Is the calibration of our instrument correct? In addition
to these questions, it is necessary to compare the models with each other to
ascertain which models perform better. These questions are dealt with both
by using frequentist methods and by using Bayesian statistics. Background on
both methods is provided in this section, for the reader’s convenience.

A statistical frequentist hypothesis test is usually performed by applying a
test statistic, which is a function of the relevant data. It is a numerical summary
of a data set which reduces the data to a single value on which a hypothesis
test can be performed. Given a null hypothesis and a test statistic T , one can
specify a central value E[T ]. Values of T that lie close to E[T ] provide the
strongest evidence in favor of the null hypothesis, while values of T that lie far
away from E[T ] show evidence to reject the zero hypothesis. It is important that
the test statistic is defined such that the sampling distribution under the null
hypothesis can be determined: if the sampling distribution is known, or if it can
be approximated to an acceptable degree, then one can calculate the p-values.
A p-value is the probability (under the assumption that the null hypothesis is
true) of observing a test statistic that is larger or at least as large as the one
that was actually observed.

The most ubiquitous example of a hypothesis test may very well be the test
based on the chi-squared distribution, χ2

k, or the reduced chi-squared distribu-
tion, χ2

k,red, where k is the number of degrees of freedom. Let X be values which
are drawn from the χ2

k,red distribution: X ∼ χ2
k,red, then measured values X

that lie close to the expected value of this distribution

E[X] =

ˆ
xχ2

k,red(x)dx = 1,



7.3. GAUSSIANITY, SHAPE AND INTERCORRELATIONS 123

provide evidence in favor of the null hypothesis, whereas values that are much
larger than unity provide evidence to reject this hypothesis.

A probability, the p-value, can be computed by integrating the tail of this
distribution, i.e. the survival function

p(X) =

ˆ ∞
X

χ2
k,red(x)dx. (7.2.1)

This probability p is thus defined as the chance that a value equal to or larger
than X is drawn from the χ2

k,red distribution. For instance, let us assume that
five (k = 5) independent measurements xi are taken which yield the statistic
X = 1

5

∑5
i=1(xi − µi)2/σ2

i = 3.05 under the hypothesis that xi ∼ N(µi, σ
2
i ), i.e.

it is assumed that xi are drawn from a normal distribution with mean µi and
and variance σ2

i . It then follows by calculating (7.2.1) that the p-value is 0.93%,
which is just enough to reject the hypothesis with a confidence level of 1%.

The analyses in section 7.5 and 7.6 are aimed at formulating a hypothesis
test by defining a statistic T to determine the p-values. The analysis in section
7.5 involves a comparison of the amplitudes A of the measured data with those
of the models. The amplitudes of the simulated and the measured electric fields
are compared. Section 7.6 is a polarization analysis where the observables U/I
and V/I are explored in the context of the Askaryan effect.

Bayesian methods provide another approach to answer statistical questions.
These methods are based on principles with a different interpretation of prob-
ability where the “ ‘degree of belief’ in a certain model or the likelihood of a
model is an important quantity. One can, e.g., compare models with each other
by using the Bayes factor: the ratio of two likelihoods.

Section 7.7 contains an alternative Bayesian polarization analysis using a
multivariate approach which compares points on the Poincaré-sphere [83, 82]
using the Kent distribution [103].

However, it is necessary to obtain a deeper understanding of the data before
performing these analyses. The next section uses the Anderson-Darling to as-
certain the Gaussianity of the observables. In addition the intercorrelations of
the theoretical pulses, based on the parameters from SD, are investigated.

7.3 Gaussianity, Shape and Intercorrelations
We have already seen in chapters 5 and 6 that many observables significantly
deviate from the normal distribution. This deviation from normality has mul-
tiple causes and, as far as measured data are concerned, even a basic quantity,
such as the amplitudes of the background noise shows non-Gaussian tails due
to transients, when sufficiently large amounts of traces are examined [75]. In
addition, the models through which the SD reconstruction is propagated contain
many non-linearities, causing deformations. Finally, most of the observables are
non-Gaussian by construction.

It is important to choose the observables of any analysis carefully such that
the effects of non-Gaussian nuisances, such as tails and deformations, are miti-



124 CHAPTER 7. ANALYSIS OF THE MEASURED RADIO DATA

gated. The Anderson-Darling test [94] provides a very good tool to get a handle
on these nuisances such that one can examine and select the best parameters
for the problems at hand.

Let us repeat briefly the nature of the data to be analyzed. The full notation
for an observable X from the measured radio data is

XRD,ij ,

where i is the event-number and j is the station number. The varied values are

X ′RD,ija,

where a enumerates the varied values obtained from the double-noise method
(see section 6.1.5). The error σXRD,ij may be estimated from the RMS of these
values such that

σXRD,ij
= RMSa[X ′RD,ija], (7.3.1)

under the assumption of Gaussianity. In other cases we have chosen to fit a
probability density function (PDF) of a different type to the values of X ′RD,ija

instead.
The shower parameters from the SD are propagated through the radio mod-

els and yield the quantities

X ′SD,ijb,

where again i and j enumerate the events and the stations. The index b enu-
merates the randomly varied values which are due to shower parameters from
the error margins of SD and the shower-to-shower fluctuations of the models.
The standarddeviation and the mean may be estimated from these varied values

σXSD,ij
= RMSb[X

′
SD,ijb] and XSD,ij = meanb[X

′
SD,ijb].

The original value from SD was also computed and simulated but it is not used.
It is useful to ascertain the ‘degree of Gaussianity’ of the observables such

that simplifying assumptions may or may not be made in the subsequent ana-
lysis. The Anderson-Darling (AD) test is performed for a given PDF (which is
taken to be the normal distribution here) and a given sample of data. The AD
test provides a test statistic1 A2

AD from which significance levels can be obtained.
The sample of data in this particular context is a set of values enumerated by a
or b for an observable X ′RD,ija or X ′SD,ijb for a single event i and a single station
j. Thus, the values for the sample are either obtained from the double-noise
method or from the varied values from the simulations. A histogram of all these
samples can be made, and if the samples are normally distributed then one may
expect the experimental PDFs, represented by the histograms, to approach the
theoretical shape of the test statistic under the null hypothesis fAD.

1The test statistic for the AD test is usually represented by A2, but in order to avoid
confusion with the amplitude of the signal A we use A2

AD instead.
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Figure 7.3.1: Histograms of the A2
AD-statistic – Panels a) to e) show histograms of

the A2
AD-statistic for the measured data for various observables. Panel f) shows the

same but for the amplitude A of the EVA simulations. The vertical lines correspond
to the edges of the confidence intervals with p-values of 15, 5 and 1% respectively. The
dash-dotted line shows fA2

AD
: the expected PDF of the AD-statistic under the zero

hypothesis of Gaussianity.
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Many observables2 were examined in this manner, six of which are shown
in figure 7.3.1. The first five histograms in panels a) to e) concern measured
data A, I, ψ, U and U/I. These quantities were all introduced in chapter 6
except for A =

√
I. The last histogram in panel 7.3.1f) shows the results of the

AD-test for A, for the EVA simulations.
It is known from [75] that even the measured background noise is not purely

Gaussian. Thus it is not expected that the amplitude of the signal is purely
Gaussian either. However, for this dataset, the amplitude A does conform very
well to the normal distribution, such that it is hard to demonstrate, considering
only these data, that A does not have a Gaussian distribution. Visually, the
degree of Gaussianity can be determined by looking at how well the histogram
fits to the expected distribution fAAD

, but in order to support this visual obser-
vation we give some quantitative statements. Consider figure 7.3.1a. The value
of A2

AD is larger than the first confidence level of p = 15% for 13/75=17% of the
75 pulses that were considered. This percentage is within one standard devia-
tion of statistical fluctuations. These percentages are significantly higher for all
other quantities. For example, the amplitude A of the EVA simulations (figure
7.3.1f) has a significant fraction of samples outside the confidence interval of
5%, namely 16/75=21%.

A second issue that needs to be addressed here concerns the intercorrelations
between the stations. All observables from SD derived from the radio traces for a
single event show intercorrelations due to the multiplicity of the stations. If, e.g,
the energy of one air shower i is increased then the observed radio amplitudes
Aij for all stations j are expected to increase as well. This joint increase of
amplitude for all stations together implies a positive correlation between the
stations. Furthermore, other shower parameters such as the core position, the
impact parameter or the arrival direction may produce positive or negative
correlations between the stations for any type of observable.

Figure 7.3.2 shows such intercorrelations for the amplitude A for several
pairs of stations from the same event. The figure does not only reveal the
intercorrelations of the stations but it also shows us, again, that there is consid-
erable deviation from Gaussianity and symmetry. Similar or even more irregular
shapes were observed for other observables such as I, U/I or ψ. Not all scatter
plots show such blatant disregard for symmetry or proper Gaussian behavior,
but the amount of structures like these is substantial and requires caution in
any analysis based on these observables.

The structures observed in panels 7.3.2a, c and d for MGMR and the struc-
tures for ZHaires in panels 7.3.2b, d and e look similar but the contours of the
shapes of the macroscopic parametrized model MGMR seem to be more sharply
defined than the contours of the microscopic model ZHAireS. There is a clearly
observable ‘fuzziness’ to these structures for ZHAireS. This fuzziness could very
well be explained by shower-to shower fluctuations which are not part of the
MGMR model. It is, however, also possible that there is some numerical error

2To be precise: I, Q, U , V , Q/I, U/I, V/I, ψ, A and log10(A) for all measured data and
simulations were examined both for the data from RD and SD.
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Figure 7.3.2: Intercorrelation of the observable A – These plots show examples of the
varied values of A from MGMR and ZHAireS simulations, where different stations of
the same event are plotted against each other.
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in the ZHAireS simulations. If this is the case then the numerical error may
influence the error-estimation methods. We do not wish to imply here that
numerical errors are the cause of this observed fuzziness, nor that these errors
spuriously affect the final results. We merely want to state that further investi-
gation on the possible effects of numerical errors in the microscopic models such
as ZHAires, REAS and COREAS is advisable.

It is now clear that it is virtually impossible to determine a set of functions
that fully describe the underlying PDFs. One could consider to generate empiri-
cal PDFs from these scattered data-points. However, the curse of dimensionality
works against us. This means that it is difficult to generate multidimensional
histograms of adequate resolution. The histograms would have the dimension-
ality of the multiplicity of the event, i.e., the number of stations per event.
This dimensionality may be as high as 6 (which is the number of stations with
data that passes all quality cuts for a single event) for the current data-set and
even higher for future data-sets. An inordinate amount of simulations would be
necessary to obtain a sufficient density.

Sections 7.5 and 7.6 consider a test statistic T which, by its definition, does
not take these intercorrelations into account. However, the sampling distri-
bution of the statistic under the zero hypothesis can be approximated by us-
ing methods based on bootstrapping. The procedure of generating these boot-
strapped values does take the intercorrelations into account. Thus correct p-
values for T may still be obtained.

Section 7.7 considers a wholly different approach where the full likelihood is
approximated and the Bayes-factor is calculated.

In subsequent analysis it is important to make a distinction between what
is considered to be the model, and what is considered to be the data. The data
are considered to be the measured values from RD. Our model(s) are essentially
the error-estimation from SD, the error estimations and calibrations from RD
and the theoretical models for radio emission. These can all be proven to be
false but in previous chapters we did take special care to validate as many steps
of all these (sub)-models as possible.

7.4 On Bootstrapping and Resampling
Bootstrapping is a very useful statistical technique which allows the estima-
tion of the accuracy of sample estimates such as the mean, variance, or a test-
statistic. It is part of a broader class of methods based on re-sampling. This
technique as well as other techniques based on re-sampling are used throughout
this chapter.

Bootstrapping is a method of making an estimate by sampling from an ap-
proximate distribution. This is usually implemented by random sampling with
replacement from the original data set. The data discussed in section 7.3 may
be bootstrapped using the following algorithm:
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DO many times
FOR i = 1 to IE (run through the events)

FOR c = 1 to ADN

FOR j = 1 to Ji (run through the stations for RD)
a ← draw a random value from {1, 2, ..., ADN}
X ′•RD,ijc ← X ′RD,ija

ENDFOR (j)
ENDFOR (c)
FOR d = 1 to B
b ← draw a random value from {1, 2, ..., B}
FOR j = 1 to Ji (run through the stations for SD)

X ′•SD,ijd ← X ′SD,ijb

ENDFOR (j)
ENDFOR (d)

ENDFOR (i)
yield the newly generated data-set X•

ENDDO

The DO-loop is repeated as many times as necessary to reach a precise estimate.
Usually a few thousand times is more than adequate. The outer FOR-loop (over
i) runs through the number of events, IE. The two for loops over c and d
run through ADN and B which are the number of varied values obtained from
the double noise method and the number of varied values obtained from the
simulations, respectively. The two most inner nested FOR-loops (over j) run
through the number of stations per event, Ji.

Note the difference in the location where the random values are drawn. The
values of a are drawn inside the most inner loop over j, because there are no
intercorrelations for RD. However, the values for b are drawn outside the loop
over j because there are correlations between the stations for SD. The effects
due to the intercorrelations are correctly included in this manner, by drawing
the same b for all stations that belong to the same event.

The DO-loop yields new ‘bootstrapped’ data sets X• which can then be used
to determine the bias and variance of sample estimates. Bootstrapping is used
to estimate the variance and bias of the likelihoods presented in section 7.6.
Other methods based on re-sampling of the data are used throughout this chap-
ter. These methods are presented, each time, as small algorithms which work
according to similar principles. For further details on bootstrapping and re-
sampling we refer to the relevant literature [104].

7.5 Comparison of the Amplitudes
The strength of the recorded signal is an important feature to be analyzed and
it enables us to compare the accuracy of the models with the data. As has
been shown in the previous section, it is best to choose the amplitude A =

√
I

instead of I because, at least for the measured data, the PDF is most closely
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approximated by the normal distribution N(ARD,ij , σ
2
ARD,ij

). Thus, for the
measured data, we consider ARD,ij and it is assumed that it has a Gaussian
PDF with a standard deviation of σARD,ij

. Unfortunately we are not favored
in this way by the behavior of the amplitudes of the simulations based on the
shower parameters from SD, ASD,ij , which, as is determined in the previous
section, show significant deviation from normality. Instead, a different approach
is adopted for this quantity.

The PDF of ASD,ij is represented with the function fASD,ij
(x) where x runs

over all possible values of A. For brevity in this section fASD,ij
and σXRD,ij

are
abbreviated by fij and σij respectively. The likelihood function of a value x
(for instance x = ARD,ij), given the assumptions of the previous paragraph, has
the model parameters σij , fij for a single event and a single station and may be
written as

L(σij , fij |x) = {fij ◦N(0, σ2
ij)}(x) (7.5.1)

=

ˆ ∞
−∞

fij(y)
1

2σij
√

2π
e−

1
2 (x−y)2/σ2

ijdy.

The only numerical data which is at our disposal to approximate p(x) and
the integral of the likelihood function are the varied values from SD. Let us
discuss three possible estimations L̂ij(x) of the likelihood function. These three
estimations all ensure that

L(σij , fij |x) = lim
B→∞

L̂ij(x), (7.5.2)

where B is the number of varied values that are available from the simulations,
(typically 100). Two of these estimations are more suitable to be used in actual
calculations.

The first most simple approximation, is to represent fij(x) as a sum of
δ-distributions. After computing the integral from (7.5.1) this approximation
yields

L̂ij(x) =
1

B

B∑
b=1

1

2σij
√

2π
e−

1
2 (x−ASD,ijb)2/σ2

ij . (7.5.3)

The approximation does not produce very stable results. The second, more
stable approximation, is obtained by adding a little bit of bias such that,

L̂ij(x) =
1/(B + 1)

2σij
√

2π
+

1

B + 1

B∑
b=1

1

2σij
√

2π
e−

1
2 (x−ASD,ijb)2/σ2

ij . (7.5.4)

The addition of this extra factor stabilizes (reduces the variance of) the es-
timation in exchange for a little bit of bias. The motivation for this typical
bias-variance trade-off is further explained in appendix C.

Another approximation may be obtained by first estimating fij(x) with some
empirical density function f̂ij(x) such that
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L̂ij(x) =

ˆ ∞
−∞

f̂ij(y)
1

2σij
√

2π
e−

1
2 (x−y)2/σ2

ijdy. (7.5.5)

The estimated density function can be constructed using a normalized histogram
of the values of ASD,ijb:

f̂ij(x) = Histb(Nbins, ASD,ijb).

The histogram is chosen to span the range [minb(ASD,ijb)− s,maxb(ASD,ijb) +
s] where s = 1

2 (maxb(ASD,ijb) − minb(ASD,ijb))/(Nbins − 1) and the number
of bins in the histogram is chosen as the rounded square root of B, Nbins =
round(

√
B). As in the previous approximation, a little bit of bias is added to

the approximated density such that

f̂ij(x) =
1/(B + 1)

2σij
√

2π
+

B

B + 1
Histb(round(

√
B), ASD,ijb). (7.5.6)

The first term is again added to increase the stability of the estimation in
exchange for a little bit of bias. The reason for adding this small term can
be justified by considering the real density of fij(x) for the points x outside the
range of the histogram. This region can not be approximated due to lack of
statistics yet it is certainly not zero. Thus the term is included such that f̂ij(x)
is small but non-zero outside the range of the histogram, yet inside the range of
the histogram this small value has very little effect.

One can say that the strength of model rejection (based on a single mea-
surement) is slightly decreased due to this extra term and the lack of infinite
statistics. However, there is much less effect due to this term if the model
can not be rejected. This integration method and these statements are further
discussed and motivated in appendix C.

Another choice in determining (7.5.6) is the number of bins of the histogram
which is chosen to be the rounded square root of B (typically 10). Although
the second approximation in (7.5.4) is much more easily formulated, calculated
and more aesthetically pleasing it is more difficult to obtain a stable maximum
using regression. Thus we will continue the approximation from (7.5.5) with
L̂ij(x).

From here on we abandon the attempt of determining a likelihood for the
full measurement. The statistic T is defined as

T =
1

Npulses

I∑
i=1

Ji∑
j=1

ln L̂ij(ARD,ij)−Q+ 1,

where Npulses =
∑I
i=1 Ji and where Q is a normalization constant which is dis-

cussed later. I is the number of events and Ji is the multiplicity of the stations.
The statistic T is not a likelihood function as the often used χ2

k (where k is the
degrees of freedom). The resulting statistic T could be related to a likelihood
only if there were no intercorrelations between the stations. Furthermore, T
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would only be sampled from the χ2
Npulses,red under the null hypothesis if fij were

assumed to be Gaussian and if there were no intercorrelations.
Despite this complication, it is possible to estimate the sampling distribution

of the statistic under the null hypothesis by using re-sampling as a technique to
generate an ensemble of values T †. First a number of fake measurements A†RD,ij

are generated, which would agree with the zero hypothesis and from these the
values T † are computed. The algorithm for generating the values T † can be
described as:

DO 106 times
T † ← 0
FOR i = 1 to I (run through the events)
b ← draw a random value from [1, 2..., B]
FOR j = 1 to Ji (run through the stations)
A†σ,ij ← draw a random value from N(0, σ2

ij)

A†f,ij ← A′SD,ijb
A†RD,ij ← A†σ,ij +A†f,ij
T † ← T † + ln L̂ij(A†RD,ij)

ENDFOR
ENDFOR
yield T †

ENDDO

The valuesA†σ,ij are drawn from the normal distribution N(0, σ2
ij) because of the

previously made assumptions about the data. The process is slightly more com-
plicated for the values of A†f,ij because we have chosen not to use a parametrized
PDF due to the non-Gaussian shape. The DO-loop is repeated a million times
because it is computationally inexpensive and for visualization of a smooth his-
togram in figure 7.5.1. In principle a few thousand iterations would have been
acceptable as well.

Finally χ2
k,red-distribution is fitted to the 106 values of T † by choosing Q =

T † and the degrees of freedom k = 2/Var[T †] (obtained from the properties of
the reduced chi-squared distribution) such that p-values can be estimated.

An example of the reconstructed PDF of T is shown in figure 7.5.1 for the
data from the MAXIMA setup for COREAS and EVA. The vertical dash-dotted
lines in these figures denote the value of T calculated from the actual measured
data and T ∗, which is a result to which we will come later. The p-values can
be estimated from the tail of χ2

k,red using its survival function. The value of
k = 31.1 is still rather close to 25 (the number of pulses from the MAXIMA
data). This is the case for all data and from this we can conclude that effects
due to the intercorrelations and non-Gaussianity of the data are small.

The results of the amplitude comparison are shown in the plots from figure
7.5.2. The medians of ASD,ijb on the y-axes are plotted against the ARD,ij on the
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Figure 7.5.1: Shape of the test statistics – The estimated shape of the test statistics
for COREAS in panel a) is shown. The fitted χ2

red distribution is shown as the solid
curve. The vertical black and grey dash-dotted lines show the actual values of T and
T ∗ respectively when comparing with the data. Panel b) shows the statistic T ∗ as a
function of C and the associated probability p.

x-axes. The lower and upper vertical error bars are computed from the 16.7th

percentile and the 83.3d percentile of ASD,ijb respectively. The horizontal error
bars are determined by σij .

The method that was discussed can give a quantitative estimate of how well
or how badly the data fit the model H0. If the data do not fit the model well
then one may want to give a quantitative indication of how this deviation from
H0 is characterized.

It can be clearly seen by eye from figure 7.5.2 that there is a deviation from
the models and that this deviation is largely due to a multiplicative bias, such
that one may want to ‘correct’ the models by including an extra parameter.
Naturally this correction should not be interpreted as a physical result but it
may give us a quantitative statement about the observed bias. Thus one may
pose a new model H∗0 which states that

A∗SD,ijb =
1

C
ASD,ijb

where the value C is optimized by minimizing T . The non-corrected one to one
correspondence is indicated by a solid line in figure 7.5.2a. The corrections are
indicated by dotted, dash-dotted and dashed lines for MAXIMA, AERA and
both setups together, respectively. Figure 7.5.1b shows the relation between C,
T and the p-value. A unique minimum value of T yields a maximum probability
p. Figures like 7.5.1b were examined for all models. The only model that gives
unstable results with multiple local minima for T is EVA. Thus the value of C
for EVA is not very accurate. The problems with EVA are further discussed in
7.5.1.

The numerical results are shown in table 7.1. When looking at the values
of k it is useful to keep in mind that the number of pulses for the data from
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Figure 7.5.2: Comparison of the amplitudes A – The measured results on the horizontal
axis are compared to the simulations on the vertical axis for the MAXIMA setup
(triangles) and the AERA setup (dots). The solid diagonal line shows the 1:1 relation
expected forH0. The dotted, dash-dotted and dashed lines show the fits by minimizing
T ∗ for the H∗0 hypothesis for MAXIMA, AERA and both setups together, respectively.
The “← A” and the “← B” point at the outliers discussed in section 7.5.1.
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Simulation Setup k T p C T ∗ p∗

AERA 55.3 9.71 10−79.0 0.58 4.16 10−22.0

COREAS MAXIMA 34.1 1.70 10−2.0 0.79 1.26 0.15
Both 88.4 7.04 10−80.0 0.59 3.28 10−22.0

AERA 37.4 12.93 10−78.0 2.53 4.99 10−20.0

EVA MAXIMA 26.7 5.57 10−18.0 3.01 1.20 0.22
Both 62.4 10.47 10−99.0 2.56 3.92 10−22.0

AERA 38.7 5.77 10−27.0 1.00 5.77 10−26.0

MGMR MAXIMA 23.3 1.99 10−3.0 1.27 1.05 0.39
Both 61.4 4.51 10−28.0 1.02 4.50 10−28.0

AERA 52.7 7.52 10−53.0 1.46 4.94 10−28.0

REAS MAXIMA 32.9 3.10 10−8.0 2.46 1.21 0.20
Both 84.7 6.05 10−62.0 1.46 3.85 10−29.0

AERA 44.5 25.91 10−212.0 0.32 3.30 10−12.0

SELFAS MAXIMA 25.3 8.63 10−32.0 0.34 1.96 10−2.0

Both 69.6 20.15 10−246.0 0.32 2.85 10−13.0

AERA 40.5 9.97 10−61.0 0.60 4.32 10−17.0

ZHAireS MAXIMA 25.7 1.20 0.22 0.79 1.00 0.46
Both 65.3 7.05 10−60.0 0.61 3.32 10−17.0

Table 7.1: Numerical results for the amplitude comparison – The first two columns
show the models and the data-sets of interest. The next three columns show the
estimated k and the values for the test statistic T accompanied by the p-value. The
last three columns show the correction factor C, the statistic T ∗ optimized for this
correction and the accompanying p-value.

MAXIMA is 25 and the number of pulses from AERA is 50.

7.5.1 Conclusions of the Amplitude Analysis
The amplitude of the signal is an observable which depends on the absolute
calibration of the system which is not simple to determine accurately. Methods
for obtaining and verifying the calibration include using the Galactic background
[105] as a standard reference. In addition, measurements with a balloon [80]
or octocopter equipped with a small transmitter can be done to calibrate the
instrument. The calibration strongly depends on many factors such as the type
of antenna, its pattern, the used bandwidth, soil conditions and (the type of)
amplifier. Factors such as thermal and pulsed noise [60, 75, 81] may not be
disregarded.

Thus, not only an error in the theory but also an error in the absolute
calibration may cause a discrepancy between theory and measurement. We
can see, for instance from figure 7.5.2, that the measured amplitudes from the
MAXIMA setup are consistently estimated lower than those from the AERA
setup. This may be an indication that some aspects of the calibration need
improvement. Further work is necessary and is currently being performed.
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It is also worth mentioning that the amount of numerical noise in the simu-
lation packages, especially in those based on a microscopic approach, may influ-
ence the uncertainty on the theoretical results and may thus spuriously increase
the probability p. Although some comparisons between models have been made
[106] it is necessary to investigate this matter more thoroughly. Furthermore,
only proton showers were simulated, which may, again, not represent the actual
conditions and may introduce a bias.

Despite these issues it is possible to draw some conclusions from table 7.1.
First of all it can be observed that the probability p is generally very low and
simply rejects all models for the full data set. However, p is consistently higher
for MAXIMA than for AERA. This may be explained by the fact that MAXIMA
has fewer measurements and additionally those fewer measurements have, on
average, a larger error. We can, therefore, conclude that there remain some
clearly defined discrepancies between measurement and theory.

Secondly one can see that some models have a lower statistic T and, conse-
quently, higher probabilities. It can for instance be seen that MGMR fits best
with the measured data. It is, however, impossible to claim that MGMR is the
best model due to the earlier expressed considerations with respect to the abso-
lute calibration. It is also surprising to see that EVA, which could be called the
big brother of MGMR3, performs so poorly in comparison with MGMR. This
may be due to the following discrepancy, which is described in [46]:

The EVA model is based on the macroscopic charge and current
distributions in the air shower. One of the approximations done
for the simulations used in this thesis is that the currents are av-
eraged over the shower front. Nevertheless, it can be shown that
these currents vanish close to the shower axis and grow approxi-
mately linear as function of radial distance. It follows that too much
weight is given to the emission from small radial distances where the
particle distributions are very sharp leading to high amplitudes at
high frequencies. On the other hand, too little weight was given to
the more diffuse particle distributions giving rise to emission with
smaller pulse height at lower frequencies. The resulting pulse heights
were thus overestimated for the simulations used in this thesis.

This inconsistency in the model causes spurious amplitudes but the polarization
information, which is analyzed in the next section, is not influenced so strongly
by this error.

The correction parameter C in table 7.1 compensates the probabilities for
any multiplicative bias that may be present in either the measurement (due to
inaccuracies in the calibration) or in the theory (due to inconsistencies in the
underlying models). After applying this correction we can say something about
the relative inconsistencies between measurement and theory. It can be seen that

3Much of the macroscopic theory of MGMR and EVA is the same. EVA, however is a
more sophisticated simulation that, among other improvements, also includes the index of
refraction of air.
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C is closest to unity for MGMR. ZHAireS shows the least discrepancy between
measurement and theory after the correction factor is taken into account.

Another important observation that can be made from figure 7.5.2 is the fact
that outliers seem to be consistently shared by the models. There are about
three obvious outliers (in the AERA data) which are predicted by all models
to have lower amplitudes than what was actually measured. The “← A” and
the “← B” in figure 7.5.2b point at a pair of two outliers and a single outlier
respectively. The two outliers under “A” belong to the same event and there
are no other data-points for this event. The same applies to the single outlier
under “B”. Although not indicated by arrows, the same outliers can be seen in
all plots of figure 7.5.2 (except for SELFAS where outliers “B” fall just outside
the limits of the plot).

It is well know that lightning creates intense radio pulses [62, 63, 61] but the
electric fields during thunderstorm conditions also influence the amplitude and
polarization of the airshower induced radio pulses [107, 108]. It is not so much
the thunderstorm itself that affects the amplitudes, as much as the buildup of
electric fields in the atmosphere. The electric field monitor measured the condi-
tions at a few meters above the ground and events measured during significant
fluctuations of the field were excluded from the analysis. Clearly the possibility
exists that charge-buildup higher in the atmosphere is not accompanied by a
registration of an electric field close to the ground. This may be one explana-
tion of these consistent outliers. Other possible explanations may, of course, be
sought in discrepancies which are shared by all models or by problems with the
SD reconstruction.

It is important to be careful with some models which have parameters that
can be tuned. For instance, SELFAS contains a tunable parameter related to
the average magnetic deflection and also MGMR has some parameters which are
determined from Monte-Carlo air-shower simulations such as the drift velocity
and the pancake thickness. The advantage of having these as explicit input
parameters in the model calculation is that this allows for a better understanding
of the relation between shower physics and the structure of the observed radio
pulse.

It is also necessary to be careful with the conclusions based on these small
data sets but it is clear that, although there is no perfect fit, the current models
do agree rather well with each other and with the measurement: well within an
order of magnitude for an observable that is dependent on absolute calibration
and especially well if an allowance is made for a multiplicative bias. More
experimental data and more ongoing efforts from the experimental as well as
from the theoretical side will most certainly yield an even clearer and more
accurate picture.
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7.6 Polarization Analysis and the Askaryan Ef-
fect

As discussed in section 1.4 a sinusoidal pattern is expected in the linear po-
larization signature U/I as a function of the observer angle ψ. This effect can
be clearly seen in figure 7.6.1a. Interestingly, there is also a pattern to be ob-
served as a function of the circular polarization V/I as shown in figure 7.6.1b.
This pattern is created because the shape of the pulse due to the geomagnetic
contribution is not the same as the shape produced by the charge-excess con-
tribution. The phase difference between the geomagnetic and the charge-excess
component is expressed as a circular polarization. The vertical error bars in fig-
ure 7.6.1 were calculated using the double-noise method as described in section
6.1.5. The horizontal error bars are largely produced due to the uncertainty in
SD (see section 6.1.1) and a small perturbation of ∼ 1◦ is added due to un-
certainties in the antenna alignment and the direction of the geomagnetic field.
Because the uncertainties are significant and because ψ is circular one can not
take the conventional RMS as a good estimator. The uncertainty on ψ was
calculated by

σψ = arcsin

√√√√ 1

J

B∑
b=1

∣∣∣∣∣eiψb − 1

J

B∑
c=1

eiψc

∣∣∣∣∣
2

,

for b and c running through the total number, B, of simulations per event (not
to be confused with the letter “B” indicating the outlier in figure 7.5.2). This
estimation gives a good representation of the uncertainty up to ∼ 60◦. It is only
used here for visualization.

Although the signature of V/I is less pronounced than the one from U/I,
both observables invite us to make further comparisons with theoretical mod-
els. The results are shown in figure 7.6.2 for U/I and in figure 7.6.3 for V/I.
All models were available to generate simulations under hypothesis H0 which
includes charge excess. In addition, there are three software packages (EVA,
MGMR and SELFAS) which allow a calculation that excludes the effects due to
charge-excess, H1. As expected (see figure 7.6.4), most of the predicted values
of U/I and V/I lie close to zero in these simulations and give a rather bad
correlation with the measured data. This gives us an extra hypothesis test of
the effects due to charge excess.

Some of the results as shown here are to be published in a forthcoming
paper [99]. However, in this paper, only R/I is considered and only the Pearson
correlation coefficients are presented. Furthermore, there are some differences
in the reconstruction as discussed in section 6.1.3. In this chapter we explore
an additional goodness-of-fit test similar to the one discussed in section 7.5.

The likelihood of a single observed pulse is approximated by

lnLij(θij |x) ≈ ln L̂ij(θ̂ij |x) =
(XRD,ij −XSD,ij)

2

σ2
XSD,ij

+ σ2
XSD,ij

, (7.6.1)
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Figure 7.6.1: Sinusoidal pattern as a function of the observer angle – The values of
U/I and V/I are plotted against the observer angle in panel a) and b) respectively.
The same outlier as in the amplitude analysis indicated by “↙ B” may be noticed for
both observables. The two points “A” from the previous amplitude analysis are not
clearly outliers for U/I and V/I.
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where X represents either U/I or V/I and θij are the real model parameters
and θ̂ij are the estimated model parameters.

The model parameters consist of PDFs which are not easily determined
and here we have chosen to approximate them by Gaussians with parameters
(XSD,ij , σ

2
XSD,ij

, σ2
XSD,ij

). Due to this choice, unlike the previous section, there
is no limit, as the statistics go to infinity, that would produce an equality as in
(7.5.2). It is not a bad approximation despite the fact that section 7.3 shows
that these quantities are not Gaussian. The results from chapter 6 show that
the choice to assume Gaussianity still provides a reasonable approximation.

The full test statistic is defined as,

T =
1

Npulses

I∑
i=1

Ji∑
j=1

ln L̂ij(XSD,ij , σ
2
XSD,ij

, σ2
XSD,ij

|xij)−Q+ 1.

As in the previous section, a close relation to the χ2
red-distribution may still be

obtained. The distribution of T under the zero hypothesis is approximated in
the following way:

DO 106 times
T † ← 0
FOR i = 1 to I (run through the events)
b ← draw a random value from [1, 2..., B]
FOR j = 1 to Ji (run through the stations)
a ← draw a random value from [1, 2, ..., A]

X†RD,ij ← X ′RD,ija −XRD,ij +A′SD,ijb
T † ← T † + ln L̂ij(X†RD,ij)

ENDFOR
ENDFOR
yield T †

ENDDO

Again the values b are drawn outside the inner loop that runs over the stations
such that any correlations are taken into account. The error on X = U/I or
X = V/I is not Gaussian and the error on the measured amplitude is simulated
by drawing samples from A′SD,ijb where b runs from 1 to the number of samples
available for the double noise method, A.

The rest of this procedure is the same as in the previous section: p-values
may be obtained by calculating T for the measured data and by fitting a χ2

k,red

distribution to the generated random values.
The biases in figures 7.6.2 and 7.6.3 invite us to introduce a multiplicative

correction factor C analogous to the previous amplitude analysis:

X∗SD,ijb =
1

C
XSD,ijb.



7.6. POLARIZATION ANALYSIS AND THE ASKARYAN EFFECT 141

And again this factor is by no means intended as a serious correction of the
models. It only serves as an indicator of the bias. In addition to the models that
were examined in the previous section we also investigate some of the models
(EVA, MGMR and SELFAS) under the assumption that no charge-excess is
present. The numerical results are shown in table 7.2 for U/I and in table 7.3
for V/I.
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Figure 7.6.2: Comparison of measured U/I with the models – The measured results
on the horizontal axis are compared to the simulations on the vertical axis for the
MAXIMA setup (triangles) and the AERA setup (dots). The solid diagonal line
shows the 1:1 relation expected for H0. The dotted, dash-dotted and dashed lines
show the fits by minimizing T ∗ for the H∗0 hypothesis for MAXIMA, AERA and both
setups together, respectively. The same consistent outlier as in the amplitude analysis
is found in panel b) indicated with “↑ B” which is further discussed in section 7.6.1.
The two points “A” are not consistent outliers for the observable U/I.
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Figure 7.6.3: Comparison of measured V/I with the models – The measured results
on the horizontal axis are compared to the simulations on the vertical axis for the
MAXIMA setup (triangles) and the AERA setup (dots). The solid diagonal line
shows the 1:1 relation expected for H0. The dotted, dash-dotted and dashed lines
show the fits by minimizing T ∗ for the H∗0 hypothesis for MAXIMA, AERA and both
setups together, respectively. The same consistent outlier as in the amplitude analysis
is found in panel b) indicated with “↖ B” which is further discussed in section 7.6.1.
The two points “A” are not consistent outliers for the observable V/I.
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Figure 7.6.4: Polarization comparison without charge excess – The two plots show the
theoretical results plotted against the measured data for U/I in panel a) and for V/I in
panel b) for the EVA simulations which exclude the contribution due to charge-excess.
The results for all other models look very similar.

The Pearson correlation shown in tables 7.2 and 7.3 are calculated using the
following algorithm:

DO 104 times
FOR i = 1 to IE (run through the events)

FOR j = 1 to Ji (run through the stations for RD)
a ← draw a random value from {1, 2, ..., ADN}
X‡RD,ij ← X ′RD,ija

ENDFOR (j)
b ← draw a random value from {1, 2, ..., B}
FOR j = 1 to Ji (run through the stations for SD)

X‡SD,ij ← X ′SD,ijb

ENDFOR (j)
ENDFOR (i)

yield ρ(X‡RD, X
‡
SD)

ENDDO

where the Pearson coefficients ρ(X‡RD, X
‡
SD) are calculated as:

ρ =

∑
ij(X

‡
RD,ij −X

‡
RD)(X‡SD,ij −X

‡
SD)√∑

ij(X
‡
RD,ij −X

‡
RD)2

√∑
ij(X

‡
SD,ij −X

‡
SD)2

.

The “
∑
ij” is shorthand for “

∑IE
i

∑Ji
j ” and the horizontal bar denotes averaging

using the same sum. In tables 7.2 and 7.3 the 5th percentile, the median and
the 95th percentile are shown as ρL, ρP and ρH respectively.
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7.6.1 Conclusions of the Polarization Analysis
The polarization analysis considers observables which are independent of the
absolute calibration of the system. On the one hand it is an advantage that
only relative effects, such as cross talk between polarizations or inconsistencies
in the shape of the antenna pattern, may produce a bias from the experimental
side of the analysis. These relative effects have been studied and are currently
well under control. A consistent result in the polarization analysis, on the
other hand, would, naturally, not preclude a fully consistent outcome for all
the data. Clearly an ensemble of observables must be studied. The earlier
discussed amplitude A and the observables U/I, V/I and φ as well as timing
information, spectrum and pulse-shape analysis are other avenues that may lead
to the successful determination of the physical processes in air showers. Despite
the fact that the observables U/I and V/I only illuminate a very small part of
a bigger picture, it is a great advantage that these observables are independent
from absolute calibration.

The outlier indicated by “↑ B” is figure 7.6.2 panel b) is the same outlier as
the one in the amplitude analysis and occurs in all other panels as well. The
outliers “A” in this case have rather large error bars and do not lie far away from
the expected trend. The polarization U/I and V/I may also be affected by the
same natural effects as, possibly, the earlier discussed atmospheric electric fields
or any other unforeseen interference.

Table 7.2 and 7.3 show a considerable amount of numerical results. We first
focus on the observable U/I in 7.2 and the models with the hypothesis H0 that
include effects due to charge excess. Just like in the amplitude analysis, it is
clear from the start that the data and the models do not agree completely:
the hypothesis H0 must be rejected for all cases. The statistic T should be
close to the data if the models are in complete agreement, and furthermore,
the probabilities should be large if the data are to be fully in favor of H0.
Nevertheless, there are compelling indications that H0 for all models is a good,
but incomplete, candidate theory that needs further improvement and that the
data fit the models moderately well, barring some un-explained effects.

The first indication that there is a good, if not perfect, agreement may be
found by simple optical examination of figure 7.6.2 where a clear correlation
can be seen between measurement and theory. This optical observation is sup-
ported by the correlation coefficients in the corresponding table 7.2. In other
words, there is no perfect fit, but there is a significant correlation between the
measured data and the theory. Secondly, it is shown by regression of the correc-
tion parameter C that an improvement can be made by dividing out a simple
multiplicative bias. Thirdly, there is a very strong indicator that H0 is closer to
the right answer, considering the fact that H1 (the theory that excludes charge
excess) performs so much worse; visual inspection of figure 7.6.4 indicates that
there is no correlation between measurement and theory 7.6.4 and indeed no
significant correlations were computed for this case (and are not shown in the
table).

When comparing H0 (the models with charge excess) with H1 (the models
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without charge excess) one may say that the results are in favor of H0 when
compared with H1. This last statement hints at a Bayesian argument which will
be exploited in section 7.7. Finally, there is a second independent observable
V/I which strengthens our conclusions even further. An analysis based on
correlation was not performed for this observable but again the results show
1) a significant value for C and 2) a number of theories without charge excess
which perform considerably worse.

Interestingly, in contrast with the amplitude analysis we have C < 1 for
all cases. This may indicate that the amount of charge excess in the shower is
underestimated in all models. In addition, C is consistently lower for V/I than
for U/I, which may indicate that the pulse shapes of the charge-excess and the
geomagnetic components are more dissimilar than the current theories predict,
generating a larger circular polarization component than expected.

7.7 An Alternative Bivariate Bayesian Analysis
A signal may be partially or fully polarized and the amount of polarization is
determined by ‖~S‖/I =

√
Q2 + U2 + V 2/I (see also section 3.2 and chapter

6). If the value ‖~S‖/I lies close to unity then it may be said that the signal is
strongly polarized whereas if it is much smaller than unity then it may be said
that it is weakly polarized. Histograms of ‖~S‖/I are shown in figure 7.7.1 for
simulated and measured data.4

Figure 7.7.1a shows this histogram for the EVA simulations which exhibits
a strong polarization for almost all of the simulated pulses. Similar results are
shown by the other simulations. Figure 7.7.1b shows the results for the measured
data. It can be seen that there is considerable spread due to the background
but, also in the experimental data, a strong concentration at unity is observed
for pulses with S/N > 3. It may also be observed that some values for the
measured ‖~S‖/I are larger than unity, which is strictly speaking impossible.
This issue has been addressed earlier in 6.1.3 and it has been determined that
this has no harmful impact on the analysis. However, in conditions such as
these, when measuring amplitudes close to the noise level, and especially when
it is known that the noise exhibits non-Gaussian behavior [75], one needs to be
always wary.

In section 7.3 it was shown that the amplitude A of the measured radio data
is a good candidate for a Gaussian distribution. Thus it is advantageous if at
least some of the observables can be represented by a known distribution. In
addition, section 7.6 has shown that at least two observables may be used to
investigate the effects due to charge-excess. Finally, as explained in the previous
paragraph, it is shown in figure 7.7.1 that the values of Q, U , and V are mostly
confined to the Poincaré sphere (see section 3.2), such that – at least as far as
polarization is concerned – the surface of the Poincaré sphere contains the most

4 The spacings of the radii for the bins in this histogram are equal. This means that the
volume of the bins is different. Proper care was taken to normalize the histograms taking the
volumes of the bins into account.
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Figure 7.7.1: The amount of polarization – Panel a) shows the amount of polarization
‖~S‖/I for the EVA simulations. Panel b) shows the same quantity for the measured
data with S/N > 2 and S/N > 3.

relevant information. It may, therefore, be interesting to create a bi-variate
observable by projecting ~S = (Q,U, V )T onto the a sphere with unity radius
such that

Ŝ = ~S/‖~S‖

and fit a distribution on the sphere to it.
We have investigated the 3-parameter Von Mises-Fisher distribution on the

sphere and the 5-parameter Kent (or Fisher-Bingham) distribution FB5 [103].
Both distributions are analogues of Normal distributions in the plane. The Von
Mises-Fisher distribution [98] has rotation symmetry around its center whereas
the Kent distribution has an extra direction and ovalness parameter, such that
it may be related by analogy to a full bivariate normal distribution.

The Kent distribution is described by

f(~x) =
exp {κ~γ1 · ~x+ β(~γ2 · ~x− ~γ3 · ~x)}

c(κ, β)
,

where ~x is a point that lies on a sphere with unit radius, κ ≥ 0 is the con-
centration parameter and β ≥ 0 describes the ovalness. The 3 × 3 orthogonal
matrix Γ = (~γ1, ~γ2, ~γ3) determines the center and orientation of the density.
The exponential is normalized by

c(κ, β) = 2π

∞∑
j=0

Γ(j + 1
2 )

Γ(j + 1)
β2j(κ/2)−2j− 1

2 I2j+ 1
2
(κ),

where I is the modified Bessel function of the second kind. The distribution
reduces to a Von Mises-Fisher distribution as β → 0.

A python script was developed to fit this distribution to a given sample
of data because no suitable software was found within the numpy and scipy
frameworks. The code is available on github [109]. Data-points are fitted with
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moment estimates as a starting point, as described in [103], and a maximum
likelihood estimate using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) op-
timization method is used to further determine κ and β.

We investigated the measured radio traces and found that Ŝ was better fitted
by the Kent distribution than by the Von Mises-Fisher distribution because β
showed significant values larger than zero. Examples of the FB5 distribution
fitted to measured radio data are shown in figure 7.7.2.

We also investigated the varied values from SD and found that these were
not fitted well by either the Von Mises-Fisher distribution or the Kent distri-
bution. This ‘badness of fit’ becomes abundantly clear by eye from figure 7.7.3.
Consequently, these fits were not used in any further analysis.

The issue of finding a goodness-of-fit test for the data at hand has not been
completely addressed here because, e.g., the lack of a cumulative distribution
function on the sphere makes it difficult to find an analogue of the Anderson-
Darling or the Kolmogorov-Smirnov test. This issue may be eligible for future
investigations with possible starting points in [103] where it is suggested that
one tests against an even broader family of exponential distributions FB8.

The likelihood can be calculated as:

L =

I∏
i=1

ˆ ˆ
· · ·
ˆ
fSD,i(~x1, ~x2, . . . , ~xJi)

Ji∏
j=1

fRD,ij(~xj)d~xj ,

where the distribution fSD,ij of the simulation is approximated by the propa-
gated varied values from SD (represented by the dots in figure 7.7.4) and fRD,ij

is approximated by the Kent distribution that was obtained by the MLE (rep-
resented by the shaded area in figure 7.7.4). The approximated integration is
done by writing the log likelihood as a sum over the values xSD,ijk. Thus the
estimated log likelihood becomes

ln(L̂) =

1∑
i=1

ln
1

B

B∑
k=1

Ji∏
j=1

(
up((1, 0, 0)T , I, βij , κij) + vp(~xSD,ijk,Γij , βij , κij)

)
,

where u = 1/(B + 1) and v = B/(B + 1) such that, analogous to section 7.5, a
small bias is added as a trade-off to reduce the variance of the estimation of L
(see also appendix C).

Models may be compared with each other by calculating the Bayes factor

H01 =
L0

L1
,

where L0 is the likelihood under the assumption that model H0 is correct (with
effects due to charge excess included) and L1 is the likelihood that model H1 is
correct (under the assumption that there are no effects due to charge excess).
Table 7.7.5 shows the likelihoods and the Bayes factor for all models. The bias
and variance on these values have been estimated using bootstrapping and, as



7.7. AN ALTERNATIVE BIVARIATE BAYESIAN ANALYSIS 151

a) b)

Figure 7.7.2: The Kent distribution fitted to the experimental radio data – The dots
represent the values obtained from the double-noise method. The shaded area repre-
sents the density of the fitted Kent distribution. Panel a) shows the measurement for
event 11876907, AERA station 8. Panel b) shows event 11556714 station 10.

a) b)

Figure 7.7.3: The Kent distribution fitted to the theoretical data – The dots represent
the values obtained from propagation of the SD data. The shaded area represents
the density of the (badly fitting) Kent distribution. Panel a) shows MGMR, event
11876907, AERA station 8. Panel b) shows ZHAireS for the same event and station.
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Figure 7.7.4: Estimation of the likelihood – The shaded area represents the density
fRD,ij and the dots represent samples from fSD,ij .

expected from appendix C, the bias is generally positive for the values with
relatively high likelihoods (L0) which indicates that the actual likelihoods may
be a bit higher, whereas the bias for the values with very low likelihoods (L1) is
generally negative, indicating that the actual likelihoods for L1 might even be a
bit lower. This implies that the actual Bayes factor H01 is slightly higher. We
thus conclude that there is a bias in the estimation but that this bias ‘points in
the right direction’, in favor of H0.

In Bayesian terms we may say that multiple models exhibit evidence that
the hypothesis based on no charge excess, H1, may be rejected in favor of
the hypothesis that does include charge excess, H0. This conclusion does not,
however, imply that the models that include charge excess are true. First of
all, the goodness-of-fit tests in the previous sections showed enough evidence to
reject even the models that include charge excess. Secondly even if the models
that include charge excess could not be rejected, it would not imply that the
models are true, but it would only imply that the models could not be rejected
given the current data.

7.7.1 Discussion of the Bivariate Bayesian Approach
We have now seen three different analyses on the polarization data and it is
reassuring that the results do not contradict each other. The conclusions that
may be drawn by this Bayesian analysis are the same as the earlier drawn
conclusions but we may now state more precisely, based on the evidence from
the Bayes factor shown in table 7.7.5, that the model H0 is much more likely
than H1. In other words, our degree of belief in H0 is much higher than H1.

The second reason for performing this multivariate analysis is the observable
Ŝ = ~S/‖~S‖ that carries an extra resolving strength due to the fact that it incor-
porates both relevant polarization directions U and V into one quantity. This
quantity and possibly the accompanying Kent distribution may be interesting
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Simulation Setup lnL0 lnL1 H01

AERA −37±2 + 7 − −
COREAS MAXIMA −11±3 + 13 − −

Both −48±4 + 21 − −
AERA −22±3 + 9 −110±4− 6 87 ±5 + 16

EVA MAXIMA −30±2− 4 −96 ±3− 15 66 ±4 + 10
Both −53±4 + 5 −207±5− 22 153±6 + 27
AERA −17±3 + 7 −121±2− 3 103±3 + 10

MGMR MAXIMA −28±3− 3 −91 ±2− 11 63 ±3 + 8
Both −46±4 + 3 −212±3− 15 166±5 + 18
AERA −44±3 + 9 − −

REAS MAXIMA −35±3− 2 − −
Both −80±5 + 6 − −
AERA −33±2 + 15 −113±2− 2 79 ±3 + 17

SELFAS MAXIMA −12±3 + 13 −84 ±2− 7 71 ±3 + 21
Both −46±4 + 29 −198±4− 10 151±5 + 39
AERA −4 ±3 + 14 − −

ZHAireS MAXIMA −7 ±2 + 10 − −
Both −12±3 + 25 − −

Figure 7.7.5: Results of multivariate analysis – The first column shows the model, the
second column shows the data set, the third column shows the log likelihood lnL0 for
the models with charge excess, the fourth column shows the log likelihood lnL1 for
the models without charge excess and the fifth column shows the Bayes factor H01.
The estimated error on the calculation is shown by “±” and the estimated bias of the
calculation is shown with a minus or a plus sign.
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for future polarization analysis.

7.8 Conclusion
Several observables and several methods to test these observables have been
discussed in this chapter. The measured amplitudes in this section are in rea-
sonable agreement 7.5 with the simulations. The results can be adjusted by
adding an extra parameter which compensates for multiplicative bias. This
parameter may then give us an indication about possible biases in the models
and/or about the need for an improvement in the absolute calibration. Despite
the overall correspondence, there are significant deviations for every individual
measurement, even after the adjustment is done, and all theories must still be
rejected given the current data.

The polarization of the radio pulses has been investigated in sections 7.5 to
7.7. From these it can be concluded that the expected radial pattern due to
charge excess is observed, not only in the linear polarization U/I but also in
the circular polarization V/I. It can also be said that a significant linear corre-
spondence is observed between the measurement and the results from the radio
models. Again an extra multiplicative factor is introduced to gauge the bias in
the models. There seems to be some indication that the fraction of charge excess
is under-estimated for all models because the bias of all models points in the
same direction. However there may very well be other or multiple explanations
for this bias. Finally, it must again be stated that all of the models are rejected
by the current data, even when the charge excess effect is included and a deeper
understanding of the measurement as well as the theory is necessary.

In order to be able to do a more detailed comparison of the models and the
processes involved one needs to be able to look at various parts of the data. For
instance, it would be worthwhile to investigate the data for certain energies of
the primary particles, certain values of Xmax, certain impact parameters, zenith
angels, or for special geometries around the Cherenkov angle. This way it may
be possible to investigate in more detail where the remaining discrepancies are
and where the theory or measurement or Offline-reconstruction needs to be
refined. Unfortunately, the data that were discussed in this thesis are already
scarce as a whole and are definitely too scarce to be cut into even smaller pieces.

We have presented various methods to solve the complexities of the here
presented models. On the one hand it is possible to try and determine a likeli-
hood as accurately as possible by choosing the appropriate probability densities
and/or estimating the densities using histograms or integration with delta dis-
tributions. On the other hand it is possible to abandon the attempt to generate
a likelihood. but instead to determine a statistic which does not fully include
all details of the model, but which can still be used to determine p-values and
which can be optimized using regression. The methods based on resampling
can then be used to determine the PDF of the statistic. Finally it is possible to
choose between a Bayesian approach or a frequentist method. It is impossible
to provide an exhaustive analysis of all these possibilities but it is our hope that
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some elements of these analyses can be used again in the future.

7.9 Outlook
The AERA setup has entered a phase where it is continuously and successfully
taking data. Soon enough there will be data available of much higher quality
and much higher statistics than before. More detailed study will be possible and
the theory may be tested in more detail. It is an exciting time for the AERA
group and we are happy to share at least some preliminary results from the new
data.

The data that were examined are from the KIT/BUW digitizers taken from
the beginning of 2012 until the end of 2012. The figures demonstrate significant
outliers. These outliers are probably caused by thunderstorm events and/or
random coincidences but this is not certain. The reason that this is not certain
is because the E-field monitor was inactive for a substantial period. Thus a
large portion of these data are not suitable for any serious analysis. This is very
unfortunate because the data look very promising apart from this problem. The
E-field monitor is an essential tool to ensure reasonable quality.

Some shortcuts in the analysis were made in order to obtain these plots.
The quality cuts that were done are standard SD quality cuts. Furthermore,
we added the requirement that the core position is not farther away than 500
meters from the closest radio station that passed the signal to noise cut of
S/N > 2. This is a rather ad-hoc solution to a requirement of more quality cuts
on the radio data that would reject, e.g., random coincidences and spurious
reconstructions. We also threw away the pulses that have an error larger than
90◦ in the observer angle, for visualization reasons only. Of course, these two
radio cuts should be replaced by more rigorous radio cuts in a full analysis.

A hybrid radio reconstruction that uses the geometry (core, zenith, azimuth)
from SD to obtain these results was done in the same way as the fully analyzed
data but this time Offline was used for the SD reconstruction. Currently this
hybrid method seems the best way to obtain the polarization results. We have
not been able to obtain adequate results with a stand-alone radio reconstruction
but this must be possible when more data become available and when more
work is put into the radio reconstruction. Complicating factors involve the
accurate determination of the core position using radio only and substantially
less events may pass the necessary radio quality cuts than the SD cuts, because
reconstruction is difficult if the core is at the edge of the array. (Luckily the
array will be expanded further which will increase the surface area quadratically
with respect to the circumference, hopefully increasing the number of detected
events and decreasing the fraction of detected events on the edge of the radio
array.) Despite the here-mentioned challenges it is clear that promising results
may be obtained with the current setup.

Considering an optimistic future, suppose that it is possible to obtain a
perfect agreement between measurement and theory. If the resulting χ2

red values
(or the statistic T for this specific analysis) yield values close to unity and if the
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Figure 7.9.1: Newest results from the AERA setup – Panel a) shows the radial pattern
for the quantity U/I and panel b) shows the same for the quantity V/I.
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p-values can not reject the models then it can be said that there is no evidence
that the current models are wrong. But one assertion that, strictly speaking,
can never be made, is that the models are right. This, however, seems to be the
impossible assertion that all physicists have set out to prove. Yet, a large enough
data set will always show some discrepancy and, given enough data points, there
will always be significant p-values that reject any hypothesis. If for instance a
very large data set shows a χ2

red (or T ) of 1.01 then it may still be possible that
the accompanying p-value is very small, rejecting the hypothesis. One can then
allow for a small margin of error on the method which is determined after the
fact. A systematic mistake on the measurement error of 1% is very reasonable
in many cases. Thus one can then decide to add the tiniest bit of ‘unexplained’
error to the analysis in order to make the theory impossible to reject. It is the
task of the physicist to make these margins smaller and smaller and to remove
all major discrepancies. For the current data-set we see values of T that do
not approach unity. These values of T are rather more concentrated around 2
and 3. This means that there is still a considerable amount of at least 100% of
‘unexplained’ error. This error may be found in the process of refining the theory
further and further and by improving the calibration and understanding of the
measurement, improving the setup and the measurement conditions, quality-
cuts, etc. Finally one hopes to reach a point of convergence where no major
discrepancies can be found. The pilot setup MAXIMA gave encouraging results,
but with little statistics and large error bars. Subsequently, the first data from
AERA gave better results; higher statistics and lower error bars. And finally
the raw data from AERA shown in figure 7.9.1 are very promising for future
results. It can be said that we are on the right track to unravel the physics of
radio emission from air showers.

7.10 Closing Words
Considerable progress in the field of radio detection of cosmic rays has been
made in the last decade. Both the experimental improvements and theoretical
development have gone hand in hand. The emission processes that used to be
roughly understood in the past, can now be precisely and accurately modeled us-
ing recently developed software packages such that the results can be compared
on an event by event basis.

There are still some discrepancies between prediction and measurement. It
is interesting however that most theoretical models consistently deviate from
the measurements and predict a lower polarization signature for charge excess
effect that the one that was actually measured. This may indicate that the
excess charge in the shower front is larger than expected.

An interesting way to test the ‘ratio’ of charge excess with the geomagnetic
process would be to change the amplitude and direction of the geomagnetic
field. This can be easily achieved by using a detector at a different location
such as for instance LOFAR in western Europe, ARA on the South Pole or
the CODALEMA. The simulation software that predicts the electromagnetic
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pulses can, without too much effort, be adapted to different altitudes, geomag-
netic fields and detector geometries. Thus, the measurements performed at the
Pierre Auger Observatory can be cross-checked by different setups and possi-
bly different analysis software, with the additional benefit of varying physical
environments.

It remains to be seen whether a complete description of the emission pro-
cesses can be obtained. One possible issue to focus on, in order to get a better
understanding, is the possibility of hard-to-detect weak electric fields in the
atmosphere that may influence the amplitude and polarization of the signals.
Cross-checks with meteorological data may yield fruitful additional information.

An interesting time lies ahead where the newest developments in analogue
electronics, such as low noise amplifiers, digital systems such as very fast parallel
field programmable gate arrays, global positioning systems, solar cells, WiFi
communication and antenna design can be used to produce state-of-the-art radio
detection arrays, which can fulfill the wildest dreams of the pioneers from the
1960’s. The results presented in this thesis show that valuable information
can be extracted from such detectors and strengthen the case of building and
enhancing existing cosmic-ray observatories with new radio detection arrays.



Appendix A

Data, Quality Cuts and
Configuration

The information in this appendix is relevant for all chapters where the measured
radio traces are analyzed.

The Offline reconstruction of the AERA and MAXIMA data can be done
with revision 22292 of the trunk although some additional modules are required
that are not part of the standard package. The MAXIMA data were taken in
two separate periods: MAXIMA1 and MAXIMA2. The traces have a length of
2000 (MAXIMA1) and 2048 (MAXIMA2 and AERA) samples. The sampling
frequency is 200 MHz. The periods for the data sets, trace-lengths NT, number
of events IE and number of analyzed pulses J are shown in table A.1. The
signal-to noise cut is S/N > 2 unless stated otherwise.

Thunderstorms and buildup of electric fields in the atmosphere are known
to cause interference with the usual processes of radio emission from air show-
ers [108, 110, 107]. The electric field was continuously monitored at the sites
where the data was taken at a height of approximately 4 m in order to prevent
such interference. Deviations and fluctuations in the vertical electric field are
indicative of such conditions and a total of 15 events that were collected during
such conditions have been removed from the analysis.

An extra quality cut was performed to reduce the influence of transient
noise. Traces were thrown away if the magnitude of the electric field outside
the signal-search region in the trace exceeded 100 µV .

The SD reconstruction for MAXIMA is performed using the surface detector

DataSet Period NT [samples] IE J
MAXIMA1 May 6 2010 – Sep 9 2010 2000 5 5
MAXIMA2 Mar 13 2011 – Jun 29 2011 2048 13 20

AERA Apr 15 2011 – Sep 15 2011 2048 17 24

Table A.1: Periods of data-taking for MAXIMA and AERA
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Region Start Sample Stop Sample Analysis Level
ROI 200 (1000 ns) 320 (1600 ns) E-field
Noise 400 (2000 ns) 900 (4500 ns) E-field
Train 1000 (5000 ns) 2000 (10000 ns) Voltage

Table A.2: The regions in the traces of the MAXIMA1 data − The start samples are
inclusive and the stop samples are exclusive. The unused regions are omitted.

Region Start Sample Stop Sample Analysis Level
ROI 200 (5500 ns) 1220 (6100 ns) E-field
Noise 1400 (7000 ns) 1900 (9500 ns) E-field
Train 0 (0 ns) 1000 (5000 ns) Voltage

Table A.3: The regions in the traces of the MAXIMA2 data

Region Start Sample Stop Sample Analysis Level
ROI 220 (1100 ns) 320 (1600 ns) E-field
Noise 520 (2600 ns) 840 (5000 ns) E-field
Train 900 (4500 ns) 2048 (10240 ns) Voltage

Table A.4: The regions in the traces of the AERA data

stations including an extra infill station. This reconstruction is not accurate for
high zenith angles and requires a cut of θ < 40◦. The location of AERA, the
Auger infill array, allows for a less stringent cut of θ < 55◦. Both setups require
a cut on the primary energy of E < 0.2 EeV.

The data are treated on two levels: the voltage level where the linear pre-
diction method is involved and the E-field level after a reconstruction of the
electric field aided by the shower parameters from CDAS. The relevant regions
in the traces for the data-sets are shown in tables A.2, A.3 and A.4.

The general module-sequence used for the Offline analysis is shown in table
A.5. Some of these modules are non-standard (not part of the standard Offline
distribution). The RdHeraldCoincidenceChecker and the RdHeraldReader
will never become part of the framework because future analyses will rely on
a full Offline reconstruction instead of a CDAS reconstruction. The RdWrite-
RelevantData is used to simplify the analysis and does not need to be added
to the framework.

When examining the digital notch filter and the median filter a raised cosine
window is applied to the edges of the trace. The cosine has an amplitude of 0.46
and a mean of 0.54. The amplitude of the cosine is 384 samples. The names,
‘Hamming’ and ‘Hann’ are used in an incorrect way in the discussed version of
Offline so caution is advised when using this module.
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EventFileReaderOG Reads a file with recorded data
RdEventPreSelector Rejects random triggers and events with less

than a certain number of stations. (If e.g.
radio-reconstruction is required then the
minimum number of stations is 3. No
minimum was required for this analysis.)

RdEventInitializer Initializes the coordinate origin and other
such parameters

RdHeraldCoincidenceChecker Non-standard module, checks whether there
is a coincidence with SD

RdChannelADCToVoltage-
Converter

Converts ADC counts to voltages

RdChannelPedestalRemover Removes a possible DC offset
RdChannelMedianFilter1) FilterBandwidth = 1.0 MHz

RdChannelLinearPredictor-
RFISuppressor2)

SegmentLength = 5, 10, ..., 640 ns which
corresponds to 1, 2, ...128 filter coefficients,
and DelayLine = 635 ns which corresponds
to D = 128 samples

RdChannelResponse-
Incorporator

Removes the channel response from the data

RdHeraldReader Non-standard module, reads the CDAS
herald file to get the reconstructed shower
parameters

RdAntennaChannelToStation-
Converter

Uses the antenna pattern to reconstruct
e-field vector

RdStationFrequencyRemover3) Non-standard module, digital notch filter
RdStationSignalReconstructor Extracts the signal
RdStationQualityAssessor Determines the amplitude of the maximum

sample outside the signal search region
RdPolarizationReconstructor Computes the observables from the ~E-field

using the arrival direction and the
geomagnetic field

RdWritePolarizationData Non-standard module, writes the relevant
parameters to an ascii file

RecDataWriterNG Writes the relevant parameters to a file

Table A.5: The module sequence used for this analysis − Three different analyses can
be performed by enabling the modules labeled with 1), 2) and 3). Option 2) is the
standard option which is used in most of this thesis.





Appendix B

Simulation Parameters of
Chapter 4

Table B.1 shows the relevant regions in the analyzed simulated traces. The
region of interest (ROI) contains the signal. The ROI and the background form
the test set. The train region (Train) is used to obtain the filter coefficients
and is not used to determine the error or the S/N to prevent fitting bias. The
region before the ROI (Not used A) is (partially) undefined because the FIR
filter needs a number of samples to start and, therefore, it can not be used. The
region just after the ROI (Not used B) is not reliable because a small amount of
the energy of the pulse is dissipated through the LP FIR filter into that region.
The train region (Train) runs up to the end of the trace which usually is at
sample no. 2048, except when traces of different lengths (1792, 4096 and 8192
samples) are examined.

When examining the digital notch filter and the median filter a raised cosine
window is applied to the edges of the trace. The cosine has an amplitude of
0.46 and a mean of 0.54. The period of the raised cosine is 408 samples.

Region Start Sample Stop Sample
Not used A 0 256

ROI 256 351
Not used B 351 640

Noise 640 1024
Train 1024 end

Table B.1: The regions within the simulated trace − The start samples are inclusive
and the stop samples are exclusive.

We distinguish between six background environments, one without any RFI,
four with RFI at specific frequencies and one with RFI with completely random
frequencies. The details of environments 2 to 5, which have fixed frequencies,
are shown in table B.2. The frequencies are chosen as arbitrary fractions with
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2) Single RFI-line 3) Like AERA NS 4) More RFI 5) Random B
f [MHz] A [mV] f [MHz] A [mV] f [MHz] A [mV] f [MHz]
66.6660 3 40.9364 4 41.2172 4.1 42.1235

55.1637 4 54.4067 3.9 47.2567
70.7109 4 73.8721 4.4 61.2231

48.0694 4.6 66.3319
66.5330 4.1 71.1898
71.2118 6.3 73.5385

Table B.2: Simulation of the environment − The table shows the frequencies that are
used to generate the simulated traces. The amplitudes of the random frequencies are
chosen to be 0 with a chance of 50% and otherwise these are drawn from the normal
distribution with σ = 1 mV and µ = 5 mV.

four decimals in order to avoid any possible effects of them matching up with
multiples of each other or any of the frequency bins of the discrete Fourier trans-
form. The background is simulated as Gaussian white noise with an amplitude
of 5 mV. Instrumental noise is simulated by Gaussian noise with an amplitude
of 0.25 mV which is added after the filtering.

The completely random environment, number 6, which we call “Random A”,
generates 15 randomly chosen frequencies sampled from a uniform distribution
within the first Nyquist band (thus approximately half of these are suppressed
due to the band-pass filter). The amplitudes are chosen from a uniform distri-
bution with µ = 0 and σ = 7.

The phases of the sines are chosen randomly for all five cases.



Appendix C

Numerical Integration

We illustrate and discuss the effects of the numerical integration methods dis-
cussed in chapter 7. Let us investigate a (toy) model with two PDFs f(x) and
g(x). The model states that samples are drawn from (f◦g)(x). It is known to the
experimenter that f(x) is a normal distribution with µf = 0 and σf < 1. The
density g(x) is also a normal distribution with µg = 0 and σg = (1− σ2

f )1/2 but
this fact (for the sake of argument) is not known to the experimenter. However,
a set of samples gi with gi ∈ {0, 1, ...K}, drawn from g(x), is available.

Two possible integration methods for estimating the likelihood are discussed.
Method no. 1 is obtained by approximating the integral with a sum such that

L̂(1)(x) =
a

2σ
√

2π
+

b

K

K∑
k=1

1

2σ
√

2π
e−

1
2 (x−gi)2/σ2

ij ,

where we distinguish between method 1a for which a = 0 and b = 1 and method
1b where a = 1/(K + 1) and b = K/(K + 1).

Method no. 2 calculates the integral

L̂(x) =

ˆ ∞
−∞

ĝ(x)
1

2σf
√

2π
e−

1
2 (x−y)2/σ2

f dy,

where ĝ is approximated by making a histogram

ĝ(x) =
a

2σij
√

2π
+ bHistk(round(

√
K), gk),

where Histk(B, vk) with B bins and a range which is slightly larger than the
range of the values vk. Again in the same way as method no. 1 we distinguish
between method 2a where a = 0 and b = 1 and 2b where a = 1/(K + 1) and
b = K/(K + 1). If a 6= 0 then ĝ(x) is not a proper density because it can
not be normalized due to the fact that its integral goes to infinity. However,
results presented here show that this lack of normalization poses no problem in
estimating the likelihood.
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When we do include the knowledge about the fact that g = N(0, σ2
g) then it

is easy to calculate the log-likelihood

lnL(x) = −x2,

because f ◦g = N(0, σ2
f+σ2

g) = N(0, σ), where σ = 1. We know the value of this
likelihood but the hypothetical experimenter can only approximate it and we can
compare his approximation with the actual value. The results of this comparison
are shown in figures C.0.1 and C.0.2. The log-likelihoods lnL(∆) are plotted for
a range of values σ2

f ∈ {0.01, 0.03, 0.05, ...0.99} for lnL(∆σ) with ∆ ∈ {0, 1, 2, 3}
for method no. 1 and in figure C.0.1 for method no. 2 in figure C.0.2. Method
1 and 2 give very similar results. However, the presence of the extra factor a
has a significant effect on the calculation error. This large and unacceptable
amount of variance in the calculation error in methods 1a and 2a can only be
traded by an small but acceptable bias in the calculation for values where σ > 1
in methods 1b and 2b. This is an example of the classical bias/variance tradeoff
which is often exhibited by problems with limited statistics. It can be seen from
figure C.0.3, whereK = 1000 and n ∈ {0, 1, 2, 3, 4}, that the bias can be reduced
if more samples gi are available.

The bias implies that the procedure is more accurate for values that show a
close fit (e.g. for L(0) or L(σ)) but the likelihood is overestimated for values such
as L(5σ). This means that model rejection based on a single outlier becomes
less efficient than if the information about the full model is available. However,
if we consider repeated measurements (such as is done in this thesis for multiple
stations and, more importantly, for multiple non-correlated events) then very
high significance levels can easily be achieved (e.g. if one repeatedly measures
values around 2σ, then

∑
L(2σ) will be a very low likelihood with a very high

significance to reject the model).
Naturally the data presented here consider a toy model and in reality we

know that the analogue of g(x) is not Gaussian. The variance and bias that
are computed here to illustrate the process, are obtained using a Monte Carlo
simulation but for the real models such a Monte Carlo method is not available.
Instead one can estimate the bias and variance by bootstrapping (see sections
7.4 and 7.7) or a method can be used which re-samples the data to get a handle
on the expected distribution of a test statistic (as is done in section 7.6).

The factor a may also be useful to model cases where it is known that the
data have an almost Gaussian distribution but where there is a small possibility
of outliers. Another possibility would be to fit a SαS-distribution[75, 81]. In
any case, the value of a for K = 100 is more than sufficiently large to account
for the frequency of outliers in the measured data which were considered in this
thesis.
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Figure C.0.1: Integration method no. 1 – The results are shown for K = 100 method
no. 1a in panel a) and for method no. 1b in panel b). The lines without error bars
show the actual value of the likelihood. The lines with the error bars show the average
estimation of the likelihood using this method. The variance is indicated by the error
bars and the bias can be determined by the distance from the actual likelihoods.

0.0 0.2 0.4 0.6 0.8 1.0

σ 2
f

6

5

4

3

2

1

0

ln
L(

∆
)

a)

0.0 0.2 0.4 0.6 0.8 1.0

σ 2
f

6

5

4

3

2

1

0

ln
L(

∆
)

∆ =0

∆ =1σ

∆ =2σ

∆ =3σ

b)

Figure C.0.2: Integration method no. 2 – The results are shown for K = 100 method
no. 2a in panel a) and for method no. 2b in panel b). For the rest the figures are the
same as figure C.0.1.
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Figure C.0.3: Integration method no. 1 for higher statistics – The results are shown
for K = 1000 method no. 1a in panel a) and for method no. 1b in panel b).



Appendix D

Convolution Theorem

It is shown that ∆Vxi∆Vxj = 0 which is determined by the convolution N ◦
T (N ). One of the properties of the Hilbert transform is used which states that
for the arbitrary time series u we have

F [H(u)](ω) = −isgn(ω)F [u](ω), (D.0.1)

where H is the Hilbert transform, F is the Fourier transform and sgn(ω) is the
sign of the angular frequency ω. In addition we need the time reversal property

F [T (u)](ω) = F [u](−ω), (D.0.2)

where T [ui] = u−i indicates reversal in time. Furthermore, we use the convolu-
tion theorem for the time series u and v,

F [u ◦ v] = F [u] · F [v], (D.0.3)

where the dot is the point-wise product. The trace is defined in (6.1.4) such
that for the noise one can make essentially the same definition N = N + iH(N)
and as such we have

F [N ◦ T (N )](ω) = (F [N ] · F [T (N )])(ω)

= F [N ](ω) F [T (N )](ω)

= F [N ](ω) F [N ](−ω)

= F [N + iH(N)](ω) F [N + iH(N)](−ω)

= {F [N ](ω) + iF [H(N)](ω)}{F [N ](−ω) + iF [H(N)](−ω)}
= {F [N ](ω) + sgn(ω)F [N ](ω)}{F [N ](−ω) + sgn(−ω)F [N ](−ω)}
= {1 + sgn(ω)}{1 + sgn(−ω)}F [N ](ω)F [N ](−ω)

= 0. (D.0.4)
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Conversely ∆Vxi∆V∗xj is determined by N ◦ T (N ∗) and

F [N ◦ T (N ∗)](ω) = (F [N ] · F [T (N ∗)])(ω)

= F [N ](ω) F [T (N ∗)](ω)

= F [N ](ω) F [N ∗](−ω)

= F [N + iH(N)](ω) F [N − iH(N)](−ω)

= {F [N ](ω) + iF [H(N)](ω)}{F [N ](−ω)− iF [H(N)](−ω)}
= {F [N ](ω) + sgn(ω)F [N ](ω)}{F [N ](−ω)− sgn(−ω)F [N ](−ω)}
= {1 + sgn(ω)}{1 + sgn(ω)}F [N ](ω)F [N ](−ω)

= {1 + sgn(ω)}{1 + sgn(ω)}F [N ](ω)F∗[N ](ω)

6= 0. (D.0.5)



Appendix E

Levinson Recursion

Conventional Gauss elimination [111] to solve the eigenvalue problem for the
one dimensional case of formula 4.2.13,

~r∗ = R̃~a,

is a computationally expensive procedure which has a time complexity of O(p3)
where p is the dimensionality of the matrix equation. If however the matrix R̃
has some special properties then the complexity of the problem may be reduced.
If R̃ is a Toeplitz matrix, i.e. if R̃ is band diagonal such that R̃ij = ri−j , then the
complexity of the algorithm may be reduced to O(p2) using Levinson recursion1.
Additionally, in the problem that is considered here, R̃ is a covariance matrix
which implies that R̃ij = R̃ji such that R̃ij = r|i−j| which further simplifies the
algorithm and reduces its number of computations. Finally, it may be interesting
to note that in the environment of an FPGA it is possible to reduce the time
complexity even further to O(p log p) by parallelizing the inner loops. However
such an optimization was not necessary for the problem at hand in chapter 4.

The pseudocode on the next page outlines the algorithm to calculate the
coefficients ~a. The indices of the vectors run from 0 to p− 1, conforming to the
conventions of most modern programming languages.

1The term recursion is merely used in the context of mathematics. The algorithm may be
implemented iteratively.
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FUNCTION levinson(~r,~r∗,f):
INITIALIZE EMPTY VECTORS ~x, ~a
INITIALIZE EMPTY SCALARS e, l, ξ, t

– initialization step –
r0 ← (1 + f)r0

e← r0

a0 ← 1
x0 ← r∗0/e

– main loop –
FOR n = 1 TO p− 1 STEP 1

– update ξ –
ξ ← 0
FOR i = 0 TO n− 1 STEP 1

ξ ← ξ − (rn−i ∗ ai)
ENDFOR
ξ ← ξ/e

– update ~a –
an ← 0
FOR i = 0 TO truncate_to_integer((n− 1)/2) STEP 1

t← ai
ai ← t+ ξan−i
an−i ← an−i + ξt

ENDFOR
IF n % 2 = 0

ai ← ai + ξan−i
ENDIF

– update e –
e← (1− ξ2)e

– update l–
l← yn
FOR i = 0 TO n− 1 STEP 1

l← l − xirn−i
ENDFOR

– update x–
xn ← 0
FOR i = 0 TO n− 1 STEP 1

xi ← xi + an−il/e
ENDFOR

ENDFOR

– return the coefficients –
RETURN ~a

ENDFUNCTION
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Samenvatting

De vraag naar de betekenis van het heelal moet bestaan hebben sinds de eerste
mens opkeek naar de sterren en planeten, maar gedurende 200 000 jaar is de
observatiemethode dezelfde gebleven: het blote oog. Slechts 400 jaar geleden
is hier verandering in gekomen toen de eerste telescoop uitgevonden werd. De
mens, die altijd gereedschap heeft gebruikt, heeft pas in de laatste 0.2% van
zijn bestaan middelen ontwikkeld om dieper te kijken naar de mysteries van
het heelal. Inmiddels kunnen we de ruimte met talloze vormen van gereedschap
observeren. Er zijn telescopen die vele malen nauwkeuriger kunnen meten dan
het blote oog. Er zijn bovendien telescopen ontwikkeld die buiten het zichtbare
spectrum observeren. Ze registreren andere vormen van licht, zoals radiogolven,
infrarood, ultraviolet, röntgenstralen of zelfs gammastralen.

Het is nóg korter geleden, slechts 100 jaar (0,05% van het bestaan van de
mens), dat een heel ander soort boodschapper dan licht uit het heelal ontdekt
werd: deeltjes. Victor Hess was een van de eersten die het bestaan van deze
deeltjes aantoonde. Hij ondernam van 1911 tot 1913 een aantal ballonexperi-
menten waarbij hij een drietal elektrometers (instrumenten die gebruikt wor-
den voor het vaststellen van elektrische ladingen) meenam. Deze elektrometers
gaven aan dat de straling toenam met het stijgen van de ballon. Dit was de
eerste aanwijzing dat de ruimte ons niet alleen toespreekt met licht, maar ook
met deeltjes: kosmische deeltjes.

De ruimte zit vol met deze deeltjes. Als een zo’n deeltje toevallig in de
richting van de aarde beweegt, dan botst het op grote hoogte met een atoom uit
de atmosfeer. Een groot deel van de energie van het deeltje wordt dan omgezet
in nieuwe deeltjes. Deze nieuwe deeltjes botsen opnieuw met atomen uit de
atmosfeer en zo ontstaat een deeltjesregen. Uiteraard gaat dit proces niet voor
altijd door. Iedere generatie deeltjes heeft een lagere energie en op een gegeven
moment is er niet genoeg energie meer om nieuwe deeltjes te genereren. De
meeste deeltjes worden tegengehouden door de atmosfeer (en dit is maar goed
ook want deze deeltjes zijn ioniserende straling en zijn schadelijk voor de mens).
Slechts een klein deel van de deeltjes bereikt het aardoppervlak.

Pierre Auger was de eerste die het bestaan van dergelijke deeltjesregens,
in 1939, aantoonde. Hij plaatste twee deeltjesdetectoren op verschillende af-
standen van elkaar en mat het aantal keren dat beide detectoren op hetzelfde
moment een deeltje registreerden. Er is altijd sprake van achtergondstraling
die niet afkomstig is uit de ruimte maar uit natuurlijke radioactieve bronnen
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in de omgeving. Het was daarom mogelijk dat de detectoren van Auger bij
toeval tegelijkertijd een afzonderlijk deeltje registreerden. Het was echter ook
mogelijk dat één enkel deeltje beide detectoren zou raken. Om dit laatste te
voorkomen plaatste Auger de detectoren steeds verder uit elkaar en hij ontdekte
dat beide detectoren veel vaker tegelijkertijd een deeltje bleven registreren dan
men zou verwachten op basis van puur toeval. De enige conclusie die men hieruit
kon trekken was dat de twee afzonderlijk gedetecteerde deeltjes een gezamelijke
oorzaak hadden: een primair deeltje uit de ruimte.

Inmiddels weten we dat er kosmische deeltjes met veel verschillende energieën
bestaan. De meest energetische deeltjes hebben een bijna onvoorstelbare ener-
gie. Een dergelijk deeltje heeft dezelfde kynetische energie (bewegingsenergie)
als een steen van een kilo die met 100 kilometer per uur beweegt of een kogel van
10 gram met een snelheid van 1 000 kilometer per uur of een zandkorrel van 0.1
gram met een snelheid van 10000 kilometer per uur. Hoe kleiner het deeltje, hoe
sterker de kynetische energie als het ware ‘geconcentreerd’ is. Kosmische deeltjes
zijn elementaire deeltjes. Een elementair deeltje, zoals bijvoorbeeld een proton,
is onvoorstelbaar veel lichter dan een kilo.1 Toch is dezelfde hoeveelheid energie
geconcentreerd in dit ene minuscule deeltje. Het deeltje heeft zoveel kynetische
energie dat het bijna met de lichtsnelheid gaat.

Het Pierre Auger Observatorium (gebouwd van 2004 tot 2008) berust op
hetzelfde principe als de originele opstelling van Auger maar is vele malen groter.
Auger had twee tot drie detectoren tot zijn beschikking die hij niet meer dan 300
meter uit elkaar plaatste. Het Pierre Auger Observatorium bestaat daarentegen
uit 1600 deeltjesdetectoren die over een gebied van 3000 vierkante kilometer
verspreid staan: een gebied zo groot als Friesland. De detectoren bevinden
zich op een hoogvlakte in Argentinië op de zogenaamde Pampas Amarillas in
de provincie Mendoza. De locatie is geschikt omdat het een vlakte is, zodat
de detectoren gemakkelijk op gelijke hoogte ten opzichte van elkaar in een vast
patroon geplaatst kunnen worden. De hoogte van het gebied is ook nuttig omdat
de detectoren hierdoor dichter bij het punt van de eerste interactie staan, daar
waar het kosmische deeltje de atmosfeer raakt. Hierdoor bereiken meer deeltjes
het aardoppervlak en is er een hogere kans op nauwkeurige detectie.

De vele deeltjesdetectoren kunnen ook de aankomstrichting van het oor-
spronkelijke deeltje bepalen, omdat de deeltjesregen zich in de vorm van een
soort pannenkoek naar het aardoppervlak beweegt (zie figuur 1). De onderlinge
tijdsverschillen waarmee de detectoren de deeltjes registreren vertellen ons meer
over de hoek waaronder de pannenkoek zich naar het aardoppervlak beweegt,
en zodoende geeft dit informatie over de hoek waaronder het oorspronkelijke
deeltje uit de ruimte komt.

Rondom het observatorium staan vier gebouwen met speciale telescopen die
de deeltjesregens in de atmosfeer waarnemen. De deeltjesregens veroorzaken
namelijk ultraviolet licht door interactie met de stikstofatomen in de lucht. De
telescopen registreren het pad dat de deeltjes in de deeltjesregen volgen maar

1Als getal uitgedrukt is een proton 1027 keer lichter dan een kilo, waar 1027 een “1” met
27 nullen betekent.
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Figuur 1 (links): Schematische weergave van de deeltjesregen – De rode lijntjes geven
het pad van enkele deeltjes weer. In principe zijn er veel meer deeltjes dan met
deze dunne lijntjes kan worden aangegeven. De zwarte stip geeft het punt van de
eerste interactie aan. De zwarte lijn volgt de as van de deeltjesregen. Loodrecht
op deze lijn staat het front van de deeltjesregen, de zogenaamde pannenkoek. De
pannenkoek heeft een deel van de detectoren (rode blokjes) al geraakt en deze hebben
de deeltjesregen al geregistreerd. De zwarte detectoren hebben nog geen deeltjes
geregistreerd.

Figuur 2 (rechts): Bovenaanzicht van door de antennes gemeten polarisaties –
De ster geeft het punt aan waarop de as van de deeltjesregen de grond raakt. De
driehoekjes geven de locaties van de radioantennes aan. De rode pijltjes geven
de richting van het elektrisch veld van de geomagnetische contributie weer, de
groene pijltjes de richting van het elektrisch veld dat wordt veroorzaakt door het
ladingsoverschot en de blauwe pijltjes de gecombineerde richting van het elektrisch
veld dat uiteindelijk wordt gemeten in de radio-antennes.

ze meten meer dan alleen de richting van de deeltjesregen. Ze zeggen ook meer
over het punt van de eerste interactie omdat ze het profiel van de deeltjesre-
gen nauwkeurig in kaart brengen. Dit profiel is veel lastiger te bepalen met de
deeltjesdetectoren. De telescopen leveren helaas slechts 13% van de tijd data,
omdat ze alleen bij heldere nachten en bij weinig maanlicht effectief zijn.

Het Pierre Auger Observatorium is zo groot omdat het bedoeld is om tot
aan de meest energetische deeltjes te observeren. Deze deeltjes zijn niet alleen
zeer energetisch maar ook zeer zeldzaam, zo zeldzaam dat er slechts één deeltje
per vierkante kilometer per eeuw binnenvalt. Deze zeldzame mysterieuze deel-
tjes zijn interessant, omdat we niet exact weten waar ze vandaan komen, hoe
ze tot stand komen, hoe ze zulke hoge energieën kunnen bereiken, en omdat
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we niet exact weten wat voor deeltjes het precies zijn. Het is namelijk vrijwel
zeker dat het niet allemaal dezelfde deeltjes zijn. Men heeft het sterke vermoe-
den dat het protonen zijn en andere atoomkernen, zoals ijzerkernen, maar de
exacte samenstelling en verhouding van deze deeltjes is nog niet bekend. De
telescopen zijn bij uitstek geschikt om meer te weten te komen over de samen-
stelling van de deeltjes. Het profiel van de deeltjesregen zegt namelijk meer
over de doordringdiepte in de atmosfeer en dit kan ons weer meer vertellen over
wat het oorspronkelijke deeltje is. Een ijzerkern zal bijvoorbeeld eerder met
de atmosfeer botsen dan een proton, omdat een ijzerkern groter is en daardoor
makkelijker botst met atomen in de atmosfeer en zodoende zal het een minder
grote doordringdiepte hebben dan het kleinere proton. De deeltjesdetectoren
die gevoelig zijn voor de aankomstrichting en de telescopen die gevoelig zijn
voor het profiel van de deeltjesregen vullen elkaar op deze manier aan.

Kosmische deeltjes met de hoogste energieën zijn niet alleen interessant om-
dat ze zo mysterieus zijn, maar ook omdat het de enige geladen deeltjes zijn die
in een min of meer rechte lijn bewegen. Een geladen deeltje dat door een mag-
neetveld beweegt wordt afgebogen en aangezien de Melkweg een magneetveld
bevat, worden deeltjes met lage energie zo sterk afgebogen dat ze zich over on-
voorspelbare paden door de Melkweg bewegen. Alleen de meest energetische
deeltjes worden het minst afgebogen en zijn zo goede kandidaten om terug te
wijzen naar waar ze vandaan komen.

Sinds 2006 zijn er een aantal proef-opstelllingen met radio-antennes bij het
observatorium geplaatst. Deze proef-opstellingen zijn uitgegroeid tot AERA
(the Auger Engineering Radio Array) dat tijdens het onderzoek voor dit proef-
schrift data vergaarde met 24 antennes. De deeltjesregens veroorzaken namelijk
ook waarneembare radiopulsen. Door de aankomsttijden van de pulsen in ver-
schillende antennes te registreren kan, op dezelfde manier als met de deeltjesde-
tectoren, de aankomstrichting van het oorspronkelijke deeltje bepaald worden.
Bovendien zegt de vorm van de puls ons meer over het profiel van de deel-
tjesregen en daarom kan de puls ons zo dichter bij een antwoord brengen over
de samenstelling van het oorspronkelijke deeltje. Het voordeel van deze detec-
tiemethode is ook dat er niet alleen ’s nachts gemeten hoeft te worden maar
dat de antennes in principe bijna altijd actief kunnen zijn. Bovendien kan deze
radio-detectietechniek ons meer vertellen over de fysische processen die zich in
een deeltjesregen afspelen.

Analyse van de pulsen is uiteraard pas mogelijk wanneer ze gemeten worden.
Dit is gemakkelijker gezegd dan gedaan. De pulsen zijn van zeer korte duur
(slechts enkele miljardsten van een seconde) en ze komen soms maar nauwelijks
uit boven de ‘zee’ van achtergrondsgolven.

Een van de meest lastige factoren is de mens zelf. De door de mens gemaakte
apparatuur zendt namelijk constant en bijna overal radiosignalen uit. Sommige
van deze radiosignalen zijn bijvoorbeeld de FM- en de AM-zenders. Daarom
wordt er bij AERA gemeten tussen de FM- en de AM-band (tussen de 30 en
80 megahertz) waar het relatief radiostil is. Er zijn echter ook stoorzenders die
tussen de FM- en de AM-band zitten. Deze stoorzenders kunnen het achter-
grondsignaal zo hoog maken dat de kleine radiopulsjes erin verdrinken, waardoor
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ze niet meer gedetecteerd kunnen worden.
Er is echter een klein voordeel: sommige van deze stoorzenders zijn (deels)

voorspelbaar. Binnen de AERA-groep zijn verschillende methodes ontwikkeld
om deze stoorzenders te verwijderen om zo de radiopulsen alsnog te kunnen
detecteren. Een van deze methodes is lineaire predictie. Deze methode wordt in
dit proefschrift beschreven en er wordt een vergelijking gemaakt met twee an-
dere methodes om zo te zien voor welke doeleinden ze het meest geschikt zijn.
Niet alle door de mens gemaakte signalen kunnen makkelijk verwijderd wor-
den. Radiopulsen die (bijvoorbeeld) door slecht ontworpen transformatorhuis-
jes gemaakt worden, zijn veel lastiger te voorspellen en zijn hierdoor ook veel
lastiger te verwijderen. Uiteindelijk is de AERA-groep erin geslaagd om deze
obstakels te overwinnen en er worden momenteel op regelmatige en betrouwbare
basis pulsen geregistreerd.

Voor de uiteindelijke analyse is het ook belangrijk de apparatuur goed te
ijken, de posities van de antennes nauwkeurig te bepalen en ervoor te zorgen
dat de apparatuur zelf niet te veel radiosignalen uitzendt, waardoor het een
stoorzender wordt voor zichzelf.

Bovendien moet er software geschreven worden die de data analyseert en
reconstrueert. Het is belangrijk te onderzoeken hoe de relevante data het beste
geëxtraheerd kunnen worden. Een groot deel van de ruwe data moet men
namelijk negeren en de relevante data moeten op de meest optimale manier
geëxtraheerd en samengevat worden. Een deel van dit proefschrift is gericht
op het bepalen van de juiste signaal-ruis verhouding waarop de kwaliteit van
de puls acceptabel is, de extractie van de radiopuls en het nauwkeurig bepalen
van de meetfout. Na al deze stappen kan men zich eindelijk op de echte fysica
richten, daar, waar het in dit vakgebied daadwerkelijk om draait.

De radiopuls van een deeltjesregen wordt veroorzaakt door twee emissiepro-
cessen. Om te beginnen is het belangrijk te weten dat de deeltjesregen ge-
vuld is met positieve, negatieve en neutrale deeltjes. Het zijn de positief en
negatief geladen deeltjes die een rol spelen bij het onstaan van de radiopuls. Het
eerste proces wordt veroorzaakt doordat de geladen deeltjes afgebogen worden
door het aardmagnetisch veld. De negatieve deeltjes worden echter in tegen-
overgestelde richting ten opzichte van de positieve deeltjes afgebogen. Hierdoor
onstaat een deeltjesstroom die loodrecht op de aankomstrichting van de deel-
tjesregen staat. Deze stroom veroorzaakt een electromagnetische puls die door
de antennes geregistreerd wordt. De richting van het elektrisch veld van deze
puls is op ieder punt dezelfde (de rode pijltjes in figuur 2). Het tweede proces,
dat minder makkelijk te detecteren is, wordt veroorzaakt doordat de deeltjes-
regen zelf een netto lading heeft. Door verschillende processen blijven positieve
ladingen namelijk vaker achter in de atmosfeer, terwijl negatieve ladingen verder
bewegen. Dit ladingsoverschot zorgt ervoor dat er ook een tweede stroom is die
zich in dezelfde richting als de deeltjesregen voortbeweegt. De richting van het
elektrisch veld dat onstaat door het ladingsoverschot wordt aangegeven met de
groene pijltjes in figuur 2 en wijst altijd naar de as van de deeltjesregen (de
rode ster). Dit tweede effect bepaalt ook voor een deel de vorm en amplitude
van de uiteindelijke radiopuls. Het is duidelijk te zien in figuur 2 dat de twee
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processen een verschillende ‘vingerafdruk’ hebben. Deze twee vingerafdrukken
kunnen echter niet afzonderlijk waargenomen worden. De blauwe pijltjes in
figuur 2 geven de ‘som’ van deze vingerafdrukken weer: de richting van het
daadwerkelijk gemeten elektrisch veld. Een onderdeel van dit proefschrift is
het ontrafelen van deze twee processen. Een van de voordelen van de antennes
waarmee wordt gemeten, is dat ze de richting van het elektrisch veld kunnen
bepalen. Deze zogenaamde polarisatierichting kan gemeten worden omdat deze
bipolaire antennes het elektrisch veld in de noord-zuid en in de oost-west rich-
ting meten. Hierdoor kunnen we uiteindelijk een onderscheid maken tussen de
twee emissieprocessen.

Op de achterzijde van het omslag van dit proefschrift zijn de twee gemeten
polarisatierichtingen van een enkele puls in groen en in blauw weergegeven. De
tijdas loopt in de richting van de titel op de rug van het boekwerk. Verder is
in rood een ruimtelijke combinatie van de twee polarisaties weergegeven. De
rode lijn heeft bij benadering een ovale structuur. Men kan een denkbeeldige
lijn door de lengteas van deze ovaal trekken. Deze lijn is de polarisatierichting
van de puls. Op de voorzijde ziet men de zogenaamde Poincaré-bol. Deze bol
biedt een elegante wiskundige methode om de polarisatie van een radiosignaal
te visualiseren en te analyseren. De rode, groene en blauwe assen beschrijven de
circulaire, rechte en schuine polarisaties. De pulsen zijn vertaald naar informatie
op deze assen en met deze informatie is een analyse uitgevoerd.

Een substantieel deel van dit proefschrift is gewijd aan deze analyse en het
ontrafelen van de twee emissieprocessen. Met behulp van de gemeten pulsen bij
AERA en voorafgaande opstellingen zijn we ertoe in staat gebleken een kwan-
titatieve overeenkomst met de theorie te vinden. Hoewel er nog onverklaarde
discrepanties zijn tussen meting en theorie en tussen de theorieën onderling is
het duidelijk dat de laatste jaren grote stappen zijn gezet in het begrijpen en
beschrijven van de emissieprocessen. We zijn met de technologische ontwikke-
lingen in de laatste eeuwen enorme sprongen vooruitgekomen in het beantwoor-
den van de mysteries van de wereld en het universum, maar de ultieme vraag,
wat dit allemaal te betekenen heeft, de vraag die zeker 200000 jaar oud is, moet
nog steeds beantwoord worden.
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