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1
Introduction

he study of atomic nuclei takes a prominent position in the quest to understand
@: quantum-mechanical many-body systems. Studying merely the naturally oc-
curring atomic nuclei imposes a severe limit since these constitute only 5 % of the
about 7000 combinations of protons and neutrons which are bound by the strong
interaction. Experimental facilities where radioactive nuclei are created and studied
are thus a necessity. The use and study of radioactive nuclei has had a great im-
pact on other fields of science (ranging from particle physics to materials science)
and has yielded an enormous amount of spin-off technologies and applications
[3, 81, 117, 119]. For a long time, high-energy beams of only stable isotopes were
readily available. In the past 25 years, radioactive ion beam (RIB) facilities allowed
for the first time the study of many exotic nuclei with proton or neutron combina-
tions very different than those of stable nuclei. This led to the discovery of many
new and unexpected phenomena, such as halo nuclei and the melting of nuclear
shells. The construction of next-generation RIB facilities is of the highest priority for
the nuclear physics community. Such a next generation facility will produce beams
with several orders of magnitude higher intensity, allowing new research with a
wide range of nuclear species much further away from the region of stable nu-
clei. In RIB facilities of the in-flight type such as FAIR (Facility for Antiproton and
Ion Research) at GSI, Germany [45], RIBF (Radioactive Ion Beam Factory), RIKEN,
Japan [90], NSCL (National Superconducting Cyclotron Laboratory), MSU, United
States of America [80] and GANIL (Grand Accélérateur National d'lons Lourds),
France [48], radioactive ions are produced and selected at high energies (100-1000
MeV per nucleon), resulting in a radioactive ion beam of high energy and poor
beam quality (large emittance and large energy spread). Many precision studies of
exotic nuclei far from the valley of stability, such as high-resolution particle spec-
troscopy or studies in atom or ion traps, need low-energy beams (typically less than
a few tens of keV) of high quality (small emittance and energy spread smaller than
1 eV). The same requirements hold for the re-acceleration of the radioactive ions
to a precisely defined energy needed e.g. for nuclear reaction studies with radioac-
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tive ions. This makes the transformation of a high-energy, low-quality beam into
a low-energy, high-quality one (a so-called “cold beam”) an essential part of next
generation RIB facilities. The essential requirements for such a transformation are
speed and efficiency because the most exotic nuclei have short half-lives (down to
milliseconds) and are produced in small quantities. The so-called “ion catcher”
method to perform this transformation is being investigated in several laboratories
for use in virtually all existing and planned RIB facilities. It is based on the IGISOL
method developed in the early 1980’s at the University of Jyviskyld, Finland by
J. Arje, J. Aysto and collaborators (see [9, 34] for reviews on this topic): the high-
energy ions are stopped in a chamber filled with helium gas and extracted through
an exit-hole. The size of the chambers required by the high energy of the RIB (up to
2 m long with a pressure of up to 2 bar) makes the use of the gas flow to extract the
ions from the chamber too slow; guidance by DC electric fields or a combination of
DC and RF fields is therefore an essential, but non-trivial task.

The main aim of this research programme is to check the feasibility of cryogenic
noble gases and superfluid liquid helium as stopping medium. This thesis will dis-
cuss these two approaches separately. Physical processes behind both approaches
are discussed in the next two chapters and the experimental techniques, results and
discussion are presented in the following chapters.

The fundamental limit of efficiencies of a noble gas ion catcher has been an open
question for years. Near and at thermal energies, ions cannot neutralize in collisions
with noble gas atoms due to the high ionization potential of the latter. So in case of
near zero impurity level, most of the neutralization of ions will happen during the
slowing down process. This means that the relative importance of neutralization
and ionization cross sections of the ion in the noble gas during slowing down will
determine the efficiency limit of a noble gas ion catcher. The relevant physics has
been explained since the early days of quantum theory of atomic collisions in the
book “The theory of atomic collisions” by N. F. Mott and H. S. W. Massey [76]. How-
ever, accurate charge exchange cross sections could not be calculated accurately
because of the mathematical complexity involved. The pioneering work by Hughes
et al. on electron capture for singly charged particles like protons and muons [58]
had been ignored in the nuclear physics community for some three decades and led
to a series of misunderstandings. Some recent measurements of the average charge
state of low-energy xenon ions in helium are reported by Willmann et al. [130]: the
average charge state of xenon ions decreases down to about 0.25 at the lowest mea-
sured energy of 10 keV in full agreement with the expectations of the early models
in the relevant range of energies.

What happens to thermalized ions is determined by the presence of impurities
and the ionization of the noble gas by the energetic ions and possibly by an accel-
erator beam or radioactive decay radiation or both [6]. Impurities take part in the
neutralization process via three-body recombination involving a free electron and
form molecules or adducts with the ions, see e.g. Reference [65]. It is important
to note that the ionizing radiation also plays a role in re-ionizing those ions which



have been neutralized. So one of the main factors that could improve the efficiency
of the gas cells is a low impurity level. Over the past 25 years, a lot of technical
development has focused on removing impurities from and preventing ionization
of the noble gas. Sub-ppb impurity levels have been achieved in noble gas catch-
ers that are built according to ultra-high vacuum standards, that are bakeable and
filled with ultra-pure noble gases, see e.g. References [65, 93]. Constructing large
ultra-pure gas catchers, although possible, is far from trivial [93]. There is, however,
an alternative approach to reach ultra-pure conditions: freezing out the impurities.
An added benefit of cryogenic gas catchers comes from the fact that for a constant
gas density, the mass flow out of a gas cell is proportional to the square-root of
the gas temperature. This means that a cryogenic noble gas cell allows easier dif-
ferential pumping for the same gas density, or, reversing this argument, allows a
higher density for a constant gas load on the extraction system. The latter means
that higher energy ions can be stopped or that, for the same ion energy, the gas cell
can be made shorter.

Chapter 4 is dedicated to describe the setup, the methods and the principles
used for the experimental study and the data analysis.

Chapter 2 gives an overview of the physics involved in the processes and a liter-
ature survey on the available experimental data within the context of cryogenic no-
ble gases. Off-line experiments using recoil ions from a radioactive >*Ra source are
performed to study the feasibility of using a cryogenic noble gas stopping medium
for high-energy ion beams. Based on the off-line result, an on-line experimen-
tal study on the extraction of thermalized 2!°Rn recoils from an ionized stopping
medium was conducted. Results from both on-line and off-line experiments and a
discussion of the observed properties are reported in chapter 5.

The much larger density (factor 800) of liquid helium relative to room temper-
ature helium gas at 1 bar allows the use of a very small stopping chamber. This
makes the extraction of the ions very fast, thereby also increasing the efficiency
of ion extraction because of a reduction in neutralization and radioactive decay
which is important for short-lived nuclei. Also, the guiding by electric fields can
be very simple. The fact that nuclear polarization is preserved in superfluid helium
[100, 111, 112, 106, 109, 110] could allow the extraction of polarized beams. At the
envisaged temperatures, the low vapour pressure above the superfluid helium sur-
face removes the need for pumping large volumes of helium gas. This new method,
if proven successful, could be implemented in many existing and planned laborato-
ries around the world. Experimental work to produce a cold radioactive ion beam
using superfluid helium was started at the Department of Physics of the University
of Jyviskyld about 7 years ago. 2!Rn ions created in the alpha decay of 2>Ra and
recoiling out of the source were stopped in superfluid helium and extracted into
the vapour phase as positive ions by means of electric fields. This was the first
ever observation of the extraction of positive ions from the surface of liquid helium
[56, 57, 108].

Different processes, most importantly the dependence of the survival of snow-
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balls on applied electric fields and the dependence of their extraction across the
superfluid-vapor interface on temperature are studied in the framework of this
project. Chapter 3 give an essence of the physics tools necessary to understand the
physical processes involved. The experiments described in chapter 6 aim towards
a better understanding of the ion extraction at the superfluid-vapor interface. Fur-
ther, as a new idea, the possibility to enhance the ion extraction efficiency by second
sound assisted superfluid surface evaporation is also investigated.

Finally chapter 7 gives concluding remarks and discusses some future research
directions.





