University of Groningen ## On conjugative plasmids van der Hoeven, Nelly IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1985 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Hoeven, N. (1985). On conjugative plasmids: Mathematical models of their population dynamics and population genetics. s.n. Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment. If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-10-2022 esirable from an tibiotic resistance tewart & Levin In this thesis several mathematical models are formulated to analyse the population dynamics of plasmids. Furthermore it is investigated how selection affects the characteristics of the population dynamics of plasmids. In the Introduction (Chapter 1) a survey is given of the principal properties of plasmids. In the Chapters 2, 3, 4 and 5 the fate of a mutant plasmid in a plasmid population is investigated. A mutant will in most cases be incompatible to the corresponding wild-type plasmid, because a plasmid and its mutant mostly use the same mechanism to regulate their replication and partitioning. First the question is answered whether one, two or three incompatible plasmids, which exclude each other completely, can coexist. In Chapter 2 this is done for plasmids in a bacterial population kept in a chemostat and in Chapter 3 for the case that the bacterial population is periodically transferred to fresh medium. It appears that under both growth conditions two plasmids may be able to coexist if one of them has a higher transfer rate, whereas bacteria bearing the other plasmid possess a higher growth rate. In a chemostat the concentrations of both plasmids will converge to stable equilibria concentrations. In a periodically transferred bacterial population the frequency of plasmids may oscillate, both when one plasmid type is present and when two plasmid types are competing. Three plasmids are able to coexist under neither growth conditions. Occasionally plasmid mutants with a different transfer rate will arise. It is assumed that as the transfer rate of the plasmid mutant is the higher, the more negative the effect of the plasmid on the growth rate of its bearer will be. In that case selection will ultimately lead to the establishment of a plasmid with an optimal transfer rate, or to a situation in which two plasmids, one with a high transfer rate and the other non-conjugative, will coexist. The first situation will occur if the relation between the transfer rate and the bacterial growth rate is convex, and the second if this relation is concave (see fig. 2, p. 30). Plasmids often exclude other incompatible plasmids from their hosts by changing some of the bacterial membrane properties. This change has probably a negative effect on the bacterium. Since survival and growth of the bacterial host are of great importance for the survival and spread of the plasmid, a property disadvantageous for the bacterial host tends also to be detrimental to the plasmid. So it can be asked why plasmids exclude other incompatible plasmids. This question is dealt with in *Chapter 4*. It appears that exclusion is advantageous for a plasmid if its transfer rate is high and its copy number low. For plasmids with a high copy number exclusion does not seem to be profitable since the entering plasmid will probably disappear out of the majority of the descendants of the invaded bacterium by incompatibility segregation. Many plasmids regulate their ability to induce transfer. Plasmids have only an efficient transfer in newly infected hosts. After several generations in a bacterial cell line, the ability to transfer becomes repressed. In Chapter 5 the dynamics of transfer regulation is modelled, both in a chemostat and in a bacterial population with serial transfer. It appears that competition between a transfer regulating plasmid and its mutants in a chemostat will lead to a situation of neutrality for a non-regulating plasmid, provided that the ability to regulate transfer has no costs. In the case where bacteria, bearing non-regulating plasmids, have a slightly higher growth rate than bacteria bearing derepressed regulating plasmids (i.e. if regulation has some costs), the non-regulating plasmid will eventually win. In a serially transferred bacterial population optimal regulation dynamics exist. A regulating plasmid with optimal regulation is able to compete successfully with a non-regulating plasmid, even if regulation has some costs. How great the costs of regulation may become without regulation becoming disadvantageous, depends on several factors. One of these is the extent of the environmental differences the plasmid has to cope with during its stay at each growth site. More particularly, how ple plasmids from rial membrane propose effect on the me bacterial host and spread of the me bacterial host d. So it can be able plasmids. This opears that exclutransfer rate is swith a high copy at table since the put of the majority arm by incompatibil- induce transfer. in newly infected terial cell line, . In Chapter 5 the ed, both in a chemoerial transfer. It er regulating plasead to a situation d, provided that osts. In the case asmids, have a bearing derepressed as some costs), the n. In a serially regulation dynamics regulation is able ting plasmid, even he costs of regulang disadvantageous, is the extent of has to cope with particularly, how much the bacterial concentration differs between the start and the end of each growth period. A greater difference leads to a higher advantage for transfer regulation. The dynamics of competition between compatible plasmids differs from those of incompatible plasmids. Compatible plasmids often do not exclude each other and from the moment they are combined in a bacterium they stay together in that bacterial cell line. In Chapter 6 the competition between compatible plasmids is analysed. It appears that it is possible for at least three compatible plasmids to coexist; this probably also holds for higher numbers. Two (or three) plasmids can coexist, although one of them is superior to the other, i.e. when it has a higher transfer rate and its bacterial host has a higher growth rate. Sometimes it depends on the initial plasmid concentrations which equilibrium concentration will be reached. When a bacterial population carrying a plasmid is invaded by a second compatible plasmid, which is slightly superior to the resident plasmid, it may occur that the less fit plasmid, which was present first, remains predominant. The competition between two (or three) compatible plasmids can be considered as an example of the possibility of stable coexistence of two (or three) species in the same In *Chapter* 7 some unanswered questions about plasmid dynamics are discussed: - How are the population dynamics of competing incompatible plasmids affected by incomplete surface exclusion? - Is the structure of the plasmid genome arbitrary or influenced by selection? - Why do plasmids carry so often genes coding for properties which are only once in a while favourable for bacteria? - How are the (theoretical) conditions for plasmid spread in nature affected by the ability of a plasmid to regulate its transfer rate?