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1
Introduction

How do planets form? It is a simple question but the answer involves an array
of diverse physical processes — complex as well as fascinating. It requires, first of
all, to realize what planets really are. For centuries, humans were mystified by the
‘wandering stars,’ moving relative to a sky composed of thousands of fixed stars
that could be seen in full glory on dark nights— as nights undoubtedly were in pre-
industrial ages. The movement of the six known planets was explained in the most
compelling way by the Ptolemaic (geocentric) model, in which Earth occupied the
center of the universe, and where the planets and the sun revolved around it on
perfect circular orbits within the celestial sphere composing the stars. To explain
peculiarities as retrograde motion secondary circular orbits (epicycles) were super-
imposed on top of the primary orbit. By the Middle Ages the ∼80 epicycles made
the Ptolemaic model very elaborate, but also very precise and successful: being fash-
ionable for more than a thousand years, it clearly stood the test of time.

It is only for reasons of simplicity that Nicolaus Copernicus brought up his he-
liocentric model: putting the sun in the center and letting the planets, including
Earth, revolve around it in circular orbits. However, the Copernican model was far
short of an accurate explanation of reality— because of its simplicity we would say
nowadays — and was only reluctantly put forward by its founder. The tide, how-
ever, could not be turned, especially not after the invention of the telescope in the
Netherlands in 1608. Exported to Italy, Galileo Galilei used the instrument in per-
haps the first series of dedicated pointing observations of the solar system, observ-
ing the sunspots, the craters of the Moon, the phases of Venus, and — most impor-
tantly — the satellites of Jupiter. His results clearly vindicated the validity of the
Copernican model, reducing the status of Earth to that of a mere satellite.
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Fg. 1.1: A scatter plot of ex-
oplanet properties as of July
18, 2008 taken from the ‘The
Extrasolar Planets Encyclopae-
dia’ (see footnote 1). Circles
show the semimajor axis vs.
the mass of the planets. Most
planets are of Jupiter mass
or larger and orbit their star
at relatively close heliocentric
radii. The observed distribu-
tion, however, is affected by
selection effects. Dashed lines
show the mass-radius relation
a planet should have in or-
der to induce a motion of, re-
spectively, 1 and 10 m s−1 to a
star of solar mass. The posi-
tions of the Earth and the Jo-
vian planets are indicated with
open circles.

In the last ∼15 years the discoveries of planets outside the solar system marks
another milestone in planetary science exploration.1 In Fg. 1.1 the masses and the
semimajor axes of the exoplanets are plotted. Most of the planets are found indi-
rectly, by measuring the motion of the star induced by the presence of a planet. Both
the planet as well as the star rotate around their common center of gravity; and al-
though the stellar velocity is much less than the orbital motion of the planet, the
resulting Doppler shift in the stellar spectral lines is tiny but detectable. Since re-
cently, extra-solar planets are also found by transit methods, where a tiny dip in
luminosity is measured as the planet moves in front of the star. Both methods have a
bias towards large, massive objects that orbit the star at short distance, i.e., towards
the upper-left side of Fg. 1.1: the ‘hot Jupiters.’ Notwithstanding these selection ef-
fects, Fg. 1.1 shows that at least some planetary systems are quite unlike our solar
system, in which the inner rocky planets are separated from the outer gas giants and
all move on almost circular orbits. Questions like whether or not the solar system
is typical certainly provide a strong motivation to understand the origin of the solar
system, and that of planets in particular.

The nebula theory for the origin of the solar system is one of the oldest scientific
theories still fashionable today. First proposed in the 18th century by the philoso-
phers Emanuel Swedenborg and Immanuel Kant, and refined later that century by
Pierre-Simon Laplace, the nebula theory states that the sun and the planets both con-
densed out of the same material: a gaseous nebula. The collapse of the nebula caused
most of the material to end up in the sun, but conservation of angular momentum

1The tally is kept up-to-date at http://exoplanet.eu/ and http://exoplanets.org/.



11

Fg. 1.2: (curves) The opacity in-

dex β as in κ ∝ λ−β as func-
tion of the upper cut-off of the
power-law size distribution of
dust grains, amax. Different
curves correspond to differ-
ent exponents q of the power-
law distribution; in all cases
amin ≪ 1 mm. (histogram)
Measured opacity index from
millimeter observations. Expo-
nents β . 1 can only be ex-
plained by a high upper cut-off
of the grain size distribution,
indicating the presence of large
particles (Natta & Testi 2004).

also resulted in the formation of a disk. Over the centuries the low specific rotation
of the sun compared to that of the planets was an argument against a nebula ori-
gin of the planets.2 In the previous century, however, the nebular theory has seen
a re-emergence, with the Soviet scientist Viktor Safronov particularly influential in
outlining many features of the current paradigm (Safronov 1969).

The pre-planetary nebula (also: protoplanetary disk) is therefore the place to look
for the planet formation process and these disks have indeed been found since the
early 80s of the preceding century by the Infra-Red Astronomy Satellite. However,
detecting evidence for planet formation is quite a different matter. Because of their
reduced surface area-to-mass ratio, larger objects are not favored radiatively and are
often only indirectly detected (as with the exoplanets). Moreover, in the disk the
macroscopic objects are eclipsed by the many small dust particles, obscuring a direct
view of what is going on. Also, planet formation takes place at similar locations as in
our solar system; i.e., on AU-scales, small compared to the interstellar scale (parsecs)
and even to the initial size of the disk (∼100 AU). Adding, finally, that the process
must proceed fast on astronomical timescales (at most millions of years rather than
the Gyr lifetime of the average star), it is clear that in situ observations of planet
formation are quite challenging indeed.

However, as of today there is solid observational evidence that the dust com-
ponent in the protoplanetary disk is being transformed into bigger bodies. For ex-
ample, mid-IR studies of the 10 µm silicate absorption line have shown that this

2The slowdown of the sun’s rotation is now attributed to angular momentum transfer due to stellar
winds or jets.
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feature in disks differs from the interstellar medium, clearly indicating processing—
growth, crystallization, or both — has taken place (van Boekel et al. 2005; Kessler-
Silacci et al. 2006; Bouwman et al. 2008). Also, high-resolution imaging with the
Hubble Space Telescope have likewise shown that the dust component is changing
(Watson et al. 2007; Duchêne 2008). To probe larger particles, observations at longer
wavelengths (millimeters) have to be performed. These wavelengths, furthermore,
penetrate through the outer layers of the disk; it are observations at mm-wavelength
that reveal dust particles have grown in size to millimeter, perhaps centimeter sizes
(Natta et al. 2007; Lommen et al. 2007; see Fg. 1.2).

Most scientist agree that the growth of dust grains driven by intermolecular
forces is the first step of the planet formation process. Through this process dust
grains cluster together in aggregates that grow larger and larger. Numerical and
laboratory studies, furthermore, have shown collisions between dust grains to result
in growth, provided that the impact energy is sufficiently low (Blum & Wurm 2008).
But how benign is the protoplanetary disk really for dust coagulation? The high den-
sities in the disk ensure that initially direct sticking of dust particles by van der Waals
forces is effective for small particles; however its effectiveness decreases for macro-
scopic (&cm size) particles. Moreover, velocities induced by turbulence and other
sources also increase with particle size. Is the growth assumption still probable for
these larger particles?

To combine these different physical processes— i.e., the efficiency of particle stick-
ing and the particle relative motions between the particles—into a coherent picture is
challenging, especially when this picture should be translated into a model that com-
putes the particle coagulation with time: a collisional evolution model. These ques-
tions form a central theme of this thesis, in which we will investigate the feasibility
of the dust accumulation processes. This thesis therefore focuses on the early stages
of planet formation — the primary accretion process — before the stage where big,
km-size bodies (planetesimals) will perturb each other through gravitational forces.
In § 1.3 we outline the several topics of this theses (Chapters 2–6). This chapter con-
tinues to sketch a general overview of planet formation (§ 1.1) and also provides an
introduction into a few concepts that serve as a background to the specialized topics
of this thesis (§ 1.2).

1.1 Chronology of the planet formation process

The journey towards a planet starts with a dense cloud of gas and dust in the in-
terstellar medium (ISM). There are many dense clouds in the galaxy, usually held
together in huge complexes, giant molecular clouds, in which individual clouds (or
cores) are embedded. Thermal pressure equilibrium between the cold, dense cloud
and the diffuse, warm surroundings suffices to hold this cloud together (see Tielens
2005 for a review on the phases of the ISM). A special case forms the so called Bonnor-
Ebert sphere: these are isothermal spheres in which external pressure balances the
thermal pressure of the core. A limited amount of self-gravity can be included, with
the sphere shrinking with increasing density. However, when the cloud becomes
massive enough such that its mass exceeds a critical mass, referred to as the critical
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Bonner Ebert mass or, more generally, the Jeans mass MJ, gravity starts to dominate
the force balance and the cloud collapses. The Jeans mass can be found by equating
the gravitational and thermal energy of the cloud (which follows from the virial the-
orem), i.e., MJ ∼ (kBT/G)3/2ρ−1/2

g , where T is the kinetic temperature of the cloud,

ρg the density, kB Boltzmann’s constant and G Newton’s gravitational constant.3 In
astronomers units

MJ ≈ 2.9 M⊙

(

T

10 K

)3/2 ( n

104 cm−3

)−1/2
, (1.1)

where n = ρ/µmH is the particle density with µ ≈ 2.34 the mean molecular mass and
mH the hydrogen mass. The Jeans mass is the fundamental mass scale: it explains
why stars are of the order of a solar mass. If the core becomes unstable, the collapse
occurs on a free-fall (or dynamical) timescale tff, i.e.,

tff ∼
1

√

Gρ
∼ 105 yr

( n

104 cm−3

)−1/2
, (1.2)

which is, from an astronomical perspective, a relatively short timescale. During the
collapse, gravitational energy is converted into thermal energy and, when cooling
agents are insufficient, the temperature increases, halting further fragmentation be-
cause MJ increases. Assuming spherical symmetry, the collapse of the cloud can be
modeled as inside-out: i.e., the shells near the center of the cloud collapse first (Shu
1977). However, the spherical geometry is quickly broken by the excess rotation of
the cloud— rotation that is mainly present in the outer layers and is amplified due
to conservation of angular momentum. Due to this angular momentum these shells
do not collapse to the central point but end up in the disk.

From an observational point of view the collapse phase is usually identified as
‘class 0’4 (see Fg. 1.3), in which temperatures are still relatively low (T . 30 K). This
stage evolves to class I when the central object contracts — forming a protostar —
and heats the surrounding envelope and disk to temperatures T ∼ 100 K. The disk
accretion creates an outflow, opening a gap through which stellar photons can es-
cape unhindered. The classical disk+outflow situation so common in astronomical
settings is now in place. Initially, the disk is very massive and outflows can be very
energetic, especially during so called ‘FU-Orionis’ outbursts where the accretion rate
is much enhanced. After t ∼ 105 yr, when most of the envelope has been blown away
and the disk has been reduced to a few percent of the stellar mass, a more steady sit-
uation is achieved: the T-Tauri stage for stars of mass less than 2 M⊙ and the Herbig
Ae/Be stage for stellar masses of 2 − 8 M⊙. This is the environment in which planet
formation takes place.

Accretion5 is caused by the viscosity of the gas— either molecular or turbulent—

3A list of symbols is provided on page 239.
4There is some ambiguity in this classification as the ‘class’ designation is mainly based on observa-

tional tracers. Therefore, a new classification scheme, stage 0, 1, 2, etc., based on physical characteristics is
occasionally used. For simplicity I will stick here to the more frequently-used ‘class’ terminology.

5Somewhat confusingly the process of dust coagulation— from micron size grains to planets— is also
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Fg. 1.3: Illustration of the evolving state of the star+disk system for low-mass stars. (upper
left) Cores form inside a dark cloud and collapse under their gravity. (upper right) A central
condensation forms; excess angular momentum causes core mass to accrete on a disk. (middle
left) Heavy disk accretion and removal of angular momentum by an outflow, clearing up the
envelope. (middle right) Onset of planet formation as disk accretion slows down: the T-Tauri
stage; envelope disappears. (lower left) Gas disk dissipates away; giant planet formation com-
pleted and a debris disk remains. (lower right) Possible re-arrangement of the planetary bodies
and clean-up. Figure courtesy: Wilfred Frieswijk.
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and taps the potential energy in the disk: by moving gas inwards, enormous quan-
tities of gravitational energy are released. Because the gradient in the (Keplerian)
gravitational potential Φ is steepest near the inner cut-off, the energies released are
determined by the inner radius of the disk, with the stellar radius R0 being the ex-
treme limit. Thus, the accretion luminosity is

LA ∼ −
1

2
Φ(R0)Ṁ ≃ 1.6 × 102 L⊙

(

Ṁ

10−5M⊙ yr−1

)(

M⋆

M⊙

)(

R0

R⊙

)−1

, (1.3)

where the value of Ṁ = 10−5 M⊙ yr−1 for the accretion rate is motivated by the
timescale in Eq. (1.2). However, for T-Tauri stars the accretion rate will have sub-
sided significantly and usually values on the order of 10−8 M⊙ yr−1 are observed
(Calvet et al. 2004). Since angular momentum is a conserved quantity the disk will
also spread to possibly hundreds of AU in radii. Near the protostar (∼0.1 AU) the
accretion couples to the stellar magnetic field, which is a complex and probably time-
variable state (Hartmann 2005). In short, diverse physical processes operate— grav-
ity, viscosity, magnetic fields— that shape the developing features (disk composition
and structure, outflow, stellar properties) of the stellar-disk system.

Once the infall and heavy accretion subside the star becomes a class II object —
a classical T-Tauri star for low mass stars. During this stage the star obtains most of
its luminosity from gravitational contraction and evolution therefore proceeds on a
Kelvin-Helmholtz timescale

tKH ∼
GM2

R⋆L⋆
= 3 × 107 yr

(

M⋆

M⊙

)2 ( L⋆
L⊙

)−1 ( R⋆
R⊙

)−1

(1.4)

During the T-Tauri phase the star moves from the stellar birthline to the zero-age
mean sequence (Palla & Stahler 1999). For stars of low mass this evolution proceeds
down along the Hayashi track in the HR-diagram (∼4 000 K), while stars of mass
larger than solar develop a radiative core and also move to the left (higher temper-
atures). Meanwhile, the disk will loose its gas. Several gas dispersal mechanisms
may operate (Hollenbach et al. 2000): viscous evolution, stellar encounters, stellar
winds or photo-evaporation. Especially photo-evaporation is of importance, where
the required number of UV-photons is delivered by accretion. Observations with
Spitzer in a sample of T-Tauri stars of age &5 Myr did not detect any gas (Pascucci
et al. 2006), consistent with the result of photo-evaporation models which suggest
that the gas dissipates on timescales of ∼Myr (Alexander et al. 2006). This timescale
is a key constraint on the planet-formation process: i.e., to form the gas giants of our
solar system and extra-planetary systems, objects capable of binding hydrogen must
be present.

The T-Tauri phase is also the stage where the grains in the disk coagulate and
a planetary system is formed. From an observational perspective, grain growth is
equivalent to the removal of the dust component. Grain growth therefore manifest
itself in a decreasing (and disappearing) IR-excess of the spectral energy distribution

referred to as accretion.
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Fg. 1.4: (left) Fraction of disks that show near-IR excess with time, binned by cluster or as-
sociation (Hillenbrand 2005). Near-IR wavelengths only probe the inner disks (. 0.1 AU).
The decay of the Near-IR excess occurs on timescales of ∼106 yr, similar to the accretion and
gas-dissipation timescale. (right) Total disk mass as inferred from sub-mm measurements
(Carpenter et al. 2005). Points denoted FEPS results from Spitzer’s formation and evolution
of planetary systems program. Sub-mm data probe the outer cold dust, and the evolution
timescales therefore extend into the debris disks stage.

(SED). The timescales of the decay of the IR-excess depend on wavelength, i.e., on
location in the disk. In the inner disk the decay seems to be tied to that of the gas,
∼Myr, while the removal of all the (cold) dust takes much longer than that of the gas
(see Fg. 1.4).

The high densities in the protoplanetary disks are a prerequisite for coagulation.
A key quantity to consider is the collision (or coagulation) timescale

tcoag =
1

ndσ∆v
∼

a

∆v

ρs

ρd
, (1.5)

where a monodisperse — i.e., all particles have the same size — dust population is
assumed with nd the dust number density, σ = 4πa2 the collisional cross section, ∆v
the relative velocity, a the size of a dust particle, ρs the internal density and ρd the
dust spatial density. Inserting canonical values of a = 1 µm, ρs ≈ 3 g cm−3, and ∆v =
10 cm s−1 the timescale for coagulation becomes tcoag ∼ 10−12/ρd yr with ρd in units

of g cm−3. The prime difference between a molecular cloud and a protoplanetary
disk is the density. Whereas for a n = 104 cm−3 molecular cloud (ρg ∼ 10−20 g cm−3)
coagulation timescales are millions of years, this is merely on the order of years in
disks where gas densities can easily approach 10−10 g cm−3 (note that the dust mass
density ρd is lower by a factor ∼102). While coagulation is already of importance in
the molecular cloud phase or the collapse phase (Ossenkopf 1993; Weidenschilling
& Ruzmaikina 1994; Suttner & Yorke 2001), significant acceleration takes place in
the dense environment of the protoplanetary disk. From Eq. (1.5) it is clear that in
protoplanetary disks dust can easily grow very fast to sizes ≫meters— but whether
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Fg. 1.5: Core-accretion paradigm of planet formation: (i) micron-size dust particles coagulate
together into km-size planetesimals: the primary accretion process. (ii) Assisted by mutual
gravitational attraction, planetesimals grow into protoplanets during the runaway and the
oligarchic stages. Dynamical friction ensures protoplanets remain in circular orbits. (iii) Plan-
ets acquire a gaseous envelope from the disk and may migrate through disk-planet interac-
tions. (iv) Long-term chaos due to gravitational interaction between planets push planets onto
eccentric orbits or possible ejection out of the solar system.

it does depends on the sticking properties of aggregates.

The transition of the dust component from ISM-grains to planets can be divided
in four stages (see Fg. 1.5). In the first phase (which is the topic of this thesis) dust
grains coagulate into km-size bodies, the planetesimals. In stage II, gravitational
forces between the planetesimals dominate their accretion and also act as a natural
sticking mechanism: growth proceeds to from protoplanets of size ∼103 km, capa-
ble of binding gas. In stage III the massive protoplanets bind gas. Moreover, the
protoplanets may interact gravitationally with the gas disk, resulting in their mi-
gration. On long timescales (stage IV) the protoplanets will dynamically perturb
themselves — resulting in a chaotic accretion phase and ejection. These stages con-
stitute the core-accretion scenario of planet formation, in which a solid core is built
first before gas is bound. The alternative paradigm for giant planet formation is the
disk instability scenario, in which the gaseous disk becomes gravitationally unstable
(see § 1.2.1).

Dust particles stick together through intermolecular forces, a process which is rel-
atively easy for small particles in dense environments like the protoplanetary disk.
However, with growth several processes make this scenario more difficult. First,
sticking is a surface area against mass effect, and favors small particles. Second, im-
pact velocities will increase as the particles start to decouple. Turbulence is probably
most important in providing particles with a relative motion (see chapter 3) but even
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in its absence will dust particles develop a large relative motion at the point where
the particles start to decouple from the gas. This decoupling results in a headwind
through which meter-size particles at 1 AU obtain a relative velocity of ∼10 m s−1

(see § 1.2.1)— hence, the meter size barrier. Additionally, the headwind removes an-
gular momentum from the particles, causing it to spiral into the star in a matter of a
few hundred years.

Therefore, for an incremental sticking scenario to be viable, the m-size barrier6

has to be overcome quickly, requiring efficient sticking mechanisms. It is not clear
whether this scenario can materialize, i.e., whether the effectiveness of ‘ordinary’
sticking forces also holds for macroscopic particles, until at a size of ∼km gravity can
take over. Alternatively, the m-size barrier can be overcome through a gravitational
instability of the dust component. This requires one to concentrate particles, perhaps
in combination with growth to an intermediate size (see § 1.2.1). Presently, these
are all open questions. This lack of understanding is of course a consequence of
the aforementioned mentioned observational constraints, although important clues
can be obtained from the fossil record of our solar system in the form of chondritic
meteorites (see § 1.2.3).

Leaving aside the questions how the dust coagulates and which timescales are
involved, a new stage in the accretion process is reached when the particles have
grown to sizes of kilometers (planetesimals). This is the size at which gravity drives
the accretion and gas-friction may, to first order, be ignored. Due to their mutual
gravitational attraction, the collisional cross section, which for small particles is just
the geometrical cross section, π(a1 + a2)

2 = πa2
s , is now increases, i.e.,

σGF
ij = πa2

s



1 +

(

vesc

∆vij

)2


 , (1.6)

with vesc the escape velocity,

vesc =

√

2G(mi + mj)

as
. (1.7)

Assuming that ∆v > vesc and a ∝ m1/3, the gravitationally-enhanced collisional
cross section starts to scale with the 4/3 power of mass, i.e., σ ∝ m4/3, instead of the
usual 2/3 power. Besides, if ∆v < vesc any fragmentation debris will be re-accreted.
Gravitationally enhanced growth (∆v < vesc) therefore occurs in a runaway fashion,
in which the most massive particles move away in mass from the lighter ones. The
condition for runaway growth may be stated as

d(m1/m2)

dt
> 0, (1.8)

i.e., the most massive particle (m1) moves away from the second-most-massive par-

6in fact the particle size where the dust-gas friction leads to the largest relative velocities depends on
position in the disk, see § 1.2.1.
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ticle m2. If β determines the mass accretion rate, dm/dt ∝ mβ then β > 1 is required
for runaway growth. Conversely, if β < 1 the growth is called ‘ordinary’ and when
β = 1 the growth mode is ‘neutral’ (Lee 2000).

The condition β > 1 requires a dynamically cold disk (∆v < vesc such that
σ ∝ m4/3), meaning that the eccentricity and inclination of the planetesimals must
be kept low. The runaway body must then transfer its energy through dynamical
friction to the lower mass planetesimals and they must ultimately loose it by in-
elastic (non-catastrophic) collisions among themselves or by gas damping (Rafikov
2003; Goldreich et al. 2004b). Many works have simulated this growth stage using
N-body simulations and other numerical methods (e.g., Greenberg et al. 1978; Wei-
denschilling 1997; Inaba et al. 2001; Bromley & Kenyon 2006; Glaschke 2006; Kokubo
& Ida 1996, 1998, 2000, 2002). Important concepts during the planetesimal accre-
tion stage are oligarchy and isolation mass. Assuming that the protoplanets are cooled
efficiently and stay in circular orbits, how big can they become? The gravitational
sphere of influence of the planetary embryo is given by the Hill radius RH. Material
within the embryo’s Hill sphere is subject to its influence and will be accreted. The
Hill radius can be found by equating the local angular velocity around the sun, Ω,
with the rotational frequency around the big body, i.e., GM⋆/R3 = GM/R3

H, or

RH ∼

(

M

M⋆

)1/3

R. (1.9)

The total amount of mass is then easily found and is called the isolation mass, i.e.,
Miso ∼ 2πRΣd2RH with Σd the surface density in planetesimals. Inserting Eq. (1.9)
for RH with M = Miso and solving for Miso by eliminating RH gives

Miso ∼
(4π)3/2Σ3/2

d R3

M1/2
⋆

= 5.6× 10−4 M⊕

(

Σd

1 g cm−2

)3/2 ( R

1 AU

)3 ( M⋆

M⊙

)−1/2

.

(1.10)

(this estimate may be on the low side by a factor of a few; cf. Lissauer 1993.) In
the Earth’s accretion zone Σd ≈ 10 g cm−3 and Miso is comparable to a lunar body,
whereas in Jupiter’s region Σd ∼ 3 g cm−3 (including ices) and Miso ∼ M⊕. The gen-
eral nomenclature for this system of runaway bodies accreting planetesimals from
separate ‘feeding zones’ is oligarchy. Note the strong dependence on Σd and, es-
pecially, R, indicating that the runaway process in the outer solar system produces
larger bodies.

Oligarchy ends when the protoplanets have grown large enough such that dy-
namical friction and subsequent energy dissipation among small bodies cannot keep
pace with viscous heating between the larger bodies. This turning point is roughly
reached if the mass in the oligarchs exceeds the mass in the small bodies. Interactions
between oligarchs speed up their random motions until they become comparable to
the escape speed, vesc. Then, the orbits of the oligarchs will cross, plunging the ac-
cretion process in utter chaos. Coagulation takes place on the timescale of Eq. (1.5)
where ρd = Σd/h with h = ∆v/Ω the thickness of the layer in which the bodies
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reside. Thus,

tcoag ∼
ρsa

ΣdΩ
(1.11)

which is on the order of ∼108 yr for conditions at 1 AU. Of course, for gas giants
to form, the time required to produce a ∼0.1 M⊕ ‘seed body’ able to accrete gas
from the nebula must be shorter than the dissipation time of the gas itself! In the
outer solar system Miso is larger and here runaway accretion—happening on a much
shorter timescale— may be sufficient. However, Pollack et al. (1996) found that gas
is only accreted from the disk in significant quantities when its mass is ∼10 M⊕

or larger; before this time, solids still dominated the accretion. For these reasons,
Jupiter formation may be a lengthy process, taking several 106 yr—a timescale which
competes with the gas removal timescale. Moreover, in the outer solar system the
escape velocity of the protoplanets may exceed the orbital escape velocity ΩR and
much material may be ejected from the planetary system or end up in the Oort cloud.

This relatively long accretion timescale required to produce a ∼10 M⊕ core pro-
vide motivations to pursue a scenario in which the gas collapses due to a gravita-
tional instability (Durisen et al. 2007, see § 1.2). Another way to speed-up accretion
is by migration of the planetary embryo in a radial direction, such that multiple feed-
ing zones of planetesimals are encountered (Alibert et al. 2005). Several migration
mechanisms are possible. In type I migration the gravitational potential of plane-
tary embryos exerts an asymmetric torque on the disk, which causes the embryo to
migrate inwards. Tanaka et al. (2002), using detailed hydrodynamical calculations,
estimate the migration timescale to be a mere 105 yr for earth-like planets. A more
massive planet will clear a gap from the disk (which happens when its Hill radius
is on the order of the scaleheight of the disk, Hg); the planet in this type II migra-

tion mechanism then moves inwards on a viscous timescale (∼105 yr). Thus, disk-
planet interactions are potentially responsible for fast, large-scale re-arrangement
processes, which can severely ‘shake-up’ the planetary system.

In the inner solar system the embryos cannot easily be ejected from the solar
system as vesc is less than the Keplerian speed and will merge on the timescale of
Eq. (1.11). The stochasticity in this phase determines the final outcome of a planetary
system: the planet’s masses and eccentricities but also their composition (e.g., the
presence of water, Chambers 2001). However, at this stage a lot of remaining ‘small-
stuff’ material — quite significant because it will damp the orbits of the protoplan-
ets— will remain, which ultimately must be accreted by the planets or ejected out of
the solar system: the clean-up stage (Goldreich et al. 2004a). Second-generation dust
(debris) is created out of fragmenting collisions between the remaining material. On
these timescales (107 yr) gas will quickly dissipate from the debris disk. Then, frag-
mentation is the dominant collisional process and the resulting collisional cascade
gives rise to a power-law size distribution. The smallest grains (micron-sizes) are
removed either through Poynting-Robertson drag (loss of angular momentum due
to asymmetric irradiation by the sun) or, for even smaller sizes, through blowout
(Meyer et al. 2007).

However, as any N ≥ 3 body system is unstable, the dynamical evolution of a
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planetary system essentially never finishes. Long-term dynamics may ultimately de-
termine the final outcome of planetary systems (Juric & Tremaine 2007). Of particu-
lar importance for the solar system may have been the ‘late heavy bombardment’, re-
sponsible for many of the impact craters observed on the moon, that occurred 3.6 Gyr
ago. It has been hypothesized that the crossing of the 1:2 resonance between Jupiter
and Saturn triggered this event (Tsiganis et al. 2005)— the so called NICE model. At
the expense of a certain degree of fine-tuning it explains many of the orbital charac-
teristics of the outer solar system (position and eccentricities of the Kuiper Belt and
the major planets).

1.2 Important Concepts

1.2.1 The protoplanetary disk: structure

The gas-rich protoplanetary disk— sometimes also referred to as primordial disk—
is the birthplace of planets. During its lifetime many diverse astrophysical processes
operate. I will briefly review a few that are important in the context of this thesis,
and focus in particular on the way dust particles interact with the gas. The first few
paragraphs concern the gas disk and focus on the physical structure of the disk, i.e.,
the density and temperature distribution and the relevance of turbulent processes.
The later paragraphs address the role of the dust component: mechanisms through
which particles obtain relative velocities, particle settling, and particle concentration
mechanisms.

The gas disk

Clouds have (tiny) amounts of rotation and the instability that sheds the parent cloud
of its support, creating the protostar, little affects the angular momentum. Thus,
the gas from the outer shells does not fall onto the protostar but, rather, ends up
in the disk. Although the amount of matter that ends up in the disk depends on
the initial amount of angular momentum present in the core (e.g., Hueso & Guillot
2005), the picture is clear: the large scale geometry of the protostar+disk system is
axisymmetric. But what are the physical parameters of the disk, i.e., its temperature
and density structure? This requires us to solve the continuity and Navier-Stokes
equations for a fluid:

∂ρg

∂t
+ ∇ · (vρg) = 0; (1.12a)

∂v

∂t
+ (v · ∇)v = −

1

ρg
∇P +

1

ρg
∇ · Π + ∇Φ, (1.12b)

where ρg is the (gas) density, P the pressure, Π the viscous stress tensor and Φ the
gravitational potential. In the vertical (z) direction a stationary, isothermal structure
(vz, Π, ∂ρ/∂t and ∂T/∂z are all zero) may be assumed as a zeroth-order approxi-
mation. Then, if self-gravity can be neglected, the residual vertical force due to the
stellar gravity, ∂Φ/∂z = gz = (GM⋆/r2)z/r = Ω2z with G Newton’s constant, M⋆

the stellar mass and Ω the local Keplerian orbital frequency, is balanced by the pres-
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sure force (∂P/∂z)/ρg = c2
g(∂ρ/∂z)/ρg, where cg is the isothermal sound speed

cg =

√

kBT

µmH
≈ 1.0 × 105 cm s−1

(

T

300 K

)1/2

. (1.13)

Solving the hydrostatic equation for the density gives a Gaussian distribution

ρg(z) =
Σg

Hg

√
2π

exp

[

−
1

2

(

z

Hg

)2
]

, (1.14)

where Σg is the surface density (ρg(z) integrated over the z-direction) and the disk
scaleheight, Hg, is defined as

Hg(R) =
cg

Ω
. (1.15)

If an optically thin disk is assumed, irradiated by the parent star as is the case in the
solar system, the received flux at a distance R is F ∝ L/R2. Then, because F ∝ T4,
the temperature scales as T ∝ R−1/2 and the sound speed as cg ∝ R−1/4. For Keple-

rian disks, furthermore, Ω ∝ R−3/2 results in a disk that is flared, i.e., H/R ∝ R1/4

increases with radius (see Fg. 1.6). In reality, however, disks are not at all passive: a
superheated surface layer is exposed to the most energetic stellar radiation and the
midplane regions are only irradiated indirectly. The temperature of the disk mid-
plane is, therefore, lower than 300 K at 1 AU. For a consistent description of the dust
temperature and flaring structure the radiation and hydrodynamics must be calcu-
lated simultaneously (Chiang & Goldreich 1997; D’Alessio et al. 1998). These calcu-
lations nonetheless result in a flared disk and, although the isothermal assumption
is strictly invalid, the relations above are useful first order estimates.

For the radial structure the radial velocity component vR cannot be neglected be-
cause the disk evolves viscously. We thus express the viscous stress in terms of a vis-
cosity, e.g., Π = (ρgν)∇ · v where ν is the kinematic viscosity (in units of cm2 s−1).
Moreover, under the thin disk approximation Eq. (1.12) can be integrated in the z-
direction and expressed in terms of Σg rather than ρg. A straightforward, but some-
what tedious number of manipulations of the Euler and continuity equations then
leads to (Pringle 1981)

∂Σg

∂t
=

3

R

∂

∂R

(

1

RΩ

∂

∂R
(R2ΣgνΩ)

)

. (1.16)

For a Keplerian disk (Ω ∝ R−3/2) this equation shows that under steady-state con-
ditions Σgν = cnst, which reflects the mass flux, Ṁ = 3πΣgν. From these consid-
erations it is clear that the viscosity is a key parameter; the question only is which
physical processes drive it. The problem is that the molecular viscosity, νm ∼ cgℓmfp

with ℓmfp the mean free path of a gas molecule, is much too low to be responsible for

the observed accretion rate Ṁ. For example, a 1 AU surface density of 103 g cm−2
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results by Eq. (1.15) in a density ρg ∼ Σg/2Hg ∼ 10−9 g cm−3. This translates into

a mean free path of ℓmfp ∼ (2 × 10−15 cm2ρg/µmH)−1 ∼ 2 cm where the prefac-

tor of 2 × 10−15 cm2 is the molecular cross section. Thus, the molecular viscosity
is roughly νm ∼ 105 cm2 s−1, which would correspond to an accretion rate of only
Ṁ ∼ 10−17 M⊙ yr−1. Another way to see that the molecular viscosity cannot drive
the accretion, is to consider the viscous timescale,

tvisc =
R2

νm
, (1.17)

which for R = 1 AU results in a value of tvisc > 1013 yr.

MRI turbulence

The astonishing low molecular viscosity led to the understanding that large scale, i.e.,
turbulent, processes govern the dynamics of accretion disks. This turbulent viscosity,
νT, must arise from large-scale (L) input of energy, which, in a fashion described by
Kolmogorov, cascades down to the smallest scale ℓs ≪ L, at which dissipation by
the molecular viscosity takes over. This energy transport is often characterized in
term of fluctuations— referred to as eddies— where an eddy of scale ℓ is associated
with a (random) velocity vℓ and turn-over time of tℓ. According to Kolmogorov, the
rate of energy dissipation ε is constant across the inertial range (ℓs ≪ ℓ ≪ L) . Thus,
as ε ∼ v2

ℓ/tℓ = v3
ℓ/ℓ is constant, vℓ ∝ l1/3. A common parameterization for the

turbulence is, after Shakura & Sunyaev (1973),

νT = αcgHg = αc2
g/Ω ≈ LvL, (1.18)

where α is a dimensionless constant, and L and vL are respectively the large eddy
size and velocity scale. Thus, if cg ∝ R−1/4 the viscosity is proportional to the radial
distance R and a steady-state solution should have a surface density that scales as
Σg ∝ R−1. An accretion rate of 10−8 M⊙ yr−1 results in an α-value of α ∼ 10−2.

Most numerical simulations (Cuzzi et al. 1993; Dubrulle et al. 1995) fix the turn-
over timescale of the largest eddies at tL = Ω−1. Since L = vLtL we thus get a large
eddy velocity of vL ≈ α1/2cg. The properties of the small eddies — ℓs, vs and ts —
follow from the Reynolds number, Re = νT/νm, which is typically ≫1. For example,
vsℓs = νm = vLL/Re combined with the Kolmogorov scaling, vℓ ∝ ℓ1/3, results in

ℓs = Re−3/4L. Similarly, ts = Re−1/2tL and vs = Re−1/4vL.

The disk turbulent structure is of immense importance for the velocity field of
the dust particles (see chapter 3). However, the question remains which physical
processes generate the turbulence? Several instabilities are suggested, ranging from
convection to gravitational instabilities, but one— the Magneto-Rotational Instabil-
ity (MRI)— is perhaps the most likely candidate (Balbus & Hawley 1991; Hawley &
Balbus 1991). The MRI requires a weakly magnetized, ionized disk. Numerical cal-
culations indicate that the ensuing turbulence corresponds to α ∼ 10−2. Thus, there
is ample evidence — from these arguments on accretion rates and timescales, but
also from meteorites (Cuzzi et al. 2005; Brownlee et al. 2006) — that protoplanetary
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nebulae are turbulent.

There is an important caveat, however. MRI-turbulence requires at least low lev-
els of ionization. Although this may be evident in disk surface layers, where copious
EUV and X-rays penetrate, the dense midplane regions are probably too dense, too
well shielded, i.e., too neutral for MRI to be operational. How far turbulence perme-
ates the disk is uncertain. Sano & Stone (2002) find that the MRI operates when the
magnetic Reynolds number, defined as ReM = v2

A/η̂Ω where vA is the Alfven speed
and η̂ the magnetic diffusivity, becomes larger than ReM & 1 − 30. Regions where
this criterion is not reached, i.e., the midplane, are commonly referred to as the ‘dead
zone’ (Gammie 1996) and will have a much reduced turbulence. The α-prescription
offers some flexibility to deal with this uncertain quantity: just lower the value of the
dimensionless constant α. Even then, turbulent motions will dominate the velocity
field of small µm-size particles, until, for α as low as 10−6 − 10−5, systematic or ther-
mal motions take over (see below). Another consequence of the disk stratification,
i.e., a dead zone amid accreting surface layers, is that the disk can no longer maintain
steady state (Fleming & Stone 2003; Gammie & Johnson 2005). In this thesis, how-
ever, we always consider the simplifying assumption of a local environment that is
characterized by one fixed but uncertain α-value.

Minimum Mass Solar Nebula

How is the surface density of the disk determined? From the arguments above sim-
ple estimates can be made. Assuming the gas disk is a few percent of the star’s mass,
extends over distances of 30 AU, and has a surface density structure that scales as
Σg ∝ R−1 (giving a constant Ṁ in the turbulent α model) we end up with a surface

density of Σg ∼ 102 g cm−2 at 1 AU. Another way to estimate the disk mass and den-
sity distribution is from the mass and positions of the planets in the solar system. If
one adds up the masses of the inner planets and the rocky cores of the gas giants
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(these are the most uncertain) and account for the gas-dust mass ratio of ∼100, a
disk mass of ∼0.013 M⊙ is obtained. This is referred to as the Minimum Mass Solar
Nebula (MMSN): the minimum amount of mass needed to form the planets. More-
over, a density distribution can be obtained by spreading out the mass in solids over
annuli centered on the planets radius. These studies show that the surface density
can best be approximated by a power-law of exponent −3/2 (Weidenschilling 1977b;
Hayashi 1981), which translates into a surface density of ρg = 1.7 × 103 g cm−2 at 1

AU and ρg = 10 g cm−2 at 30 AU. However, one must acknowledge that these are all
minimum-mass models; the disk mass could have been much higher during planet
formation with solids being thrown into the sun or ejected from the solar system by
later processes. Furthermore, the current distribution will not reflect the initial distri-
bution if large-scale re-arrangement processes (e.g., planetary migration) were active
in between. Therefore, MMSN models with different power-law exponents are con-
sidered; e.g., Σ ∝ R−1 from the steady-state viscosity model (Takeuchi & Lin 2002) or
Σ ∝ R−2.2 on the basis of the distribution of solids in the NICE model (Desch 2007).
For these reasons MMSN models should be regarded with some caution, but they
do serve as a useful beacon outlining the starting conditions of, e.g., a coagulation
model.

Gravitational instability

Are disks gravitationally stable? This can be assessed from the Toomre instability
criterion, which asserts that instability sets in when the Toomre stability parameter
Q . 1, where Q is given by

Q =
cgΩ

πGΣ
∼ 102

(

T

100 K

)1/2 ( Σg

103 g cm−2

)−1 ( R

1 AU

)−3/2

, (1.19)

which is roughly the ratio of stabilizing forces (pressure and rotation) vs. gravita-
tional forces. Thus, it seems that the inner regions of the disk are gravitationally
stable, unless an unusual amount of material can be compressed. In the outer re-
gions the disk is somewhat more susceptible to become gravitationally-unstable but
again it must be massive and also quite cool. However, there are many studies that
suggest gaseous disks are, at least initially, (marginally) unstable, and simulations
do result in the appearance of gravitationally-bound clumps — the proto-Jupiters
(see e.g., Boss 2000 for a classic example of this). This is the disk-instability model
for (giant) planet formation and the main alternative to the core-accretion model, in
which a rocky core is created first before the accretion of the gas (e.g., Pollack et al.
1996; Hubickyj et al. 2005).

However, to form a planet this way more obstacles have to be overcome; in or-
der to form a clump it has to cool on a timescale less than the orbital period; and,
second, the clumps should be able to survive. It is unclear whether giant planets
really do form via the disk-instability model; numerical simulations are sometimes
ambiguous, i.e., heavily dependent on the chosen assumptions (Durisen et al. 2007).
Besides, observations of exoplanets and of the solar system show a strong correlation
of planet formation with stellar metallicity (see Lissauer & Stevenson 2007), vindi-
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cating the core-accretion model. However, the disk instability hypothesis has some
attractive features (e.g., it makes gas planets fast) and does produce sound, testable
predictions.

Particle-gas interaction, Brownian motion

How do dust and other solid particles interact with the gas? One of the key concepts
is the friction time, i.e., the time required to slow down the motions of a particle by
friction with the gas

τf =
mvpg

FD
, (1.20)

where FD is the drag force and vpg the (averaged) particle velocity with respect to
the gas. Equation (1.21) is merely the time required for the particle’s momentum to
be slowed down due to friction with the gas, i.e., it is the time required to ‘align’
both motions. If a < 9ℓmfp/4, particles are in the free molecular regime in which

the Epstein drag law is applicable, FD = 4πa2ρgcgvpg/3, whereas for larger particle
sizes a continuum approach applies and the Stokes drag law reads

FD =
π

2
CDa2ρgv2

pg. (1.21)

Here CD is a drag coefficient that in turn depends on the Reynolds number of the
particle Rep = 2avpg/νm (see, e.g., Weidenschilling 1977a). However, in the proto-
planetary disk small, micron size particles are always in the Epstein regime for which
the friction time is

τf =
3

4cgρg

m

πa2
(a ≤

9

4
ℓmfp). (1.22)

For example, solid spheres with ρs = 3 g cm−3 at a location of 1 AU in the MMSN

model have friction times of 3 s for micron size particles and ∼1 h for mm-size par-

ticles. For a > 4ℓmfp/9 and Rep < 1 the drag coefficient CD is proportional to Re−1
p ;

friction times are then enhanced by a factor 4a/9ℓmfp with respect to Eq. (1.22) but
are still independent of the particle-gas velocity. In the protoplanetary disk, only
very massive particles will have Rep > 1 for which the friction time becomes depen-
dent on the particle-gas velocity.

In turbulence, it means that particles interact differently to eddies of different
scales (or, rather, different turn-over times), which cumulatively contribute to pro-
viding the particles with a relative velocity with respect to the gas and with respect
to each other solid particles. Computation of these turbulence-induced relative ve-
locities is the subject of chapter 3. Here we discuss two other sources for relative
velocities between particles: Brownian motion and radial drift.

Brownian motion is caused by the momentum transfer due to collisions with
gas particles (Einstein 1905). As the gas molecules collide stochastically the particle
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trajectory resembles a random walk, leading to an averaged relative velocity of

∆vBM =

√

8kBT

πmµ
, (1.23)

with mµ the reduced mass of the particles, mµ = m1m2/(m1 + m2). Thus, Brownian
motions are important only if one of the masses is small: micron size (for which
∆vBM ∼ mm s−1) or smaller. Since velocities decrease with the −3/2 power of the
size (of the smallest particle) Brownian motion is negligible for macroscopic par-
ticles. Another feature of Brownian motion is that relative velocities are indepen-
dent of the gas density. Because relative velocities of small particles usually decrease
with gas density — e.g., in the case of turbulence and radial drift — the relative im-
portance of Brownian motion increases with increasing density. For protoplanetary
disks Brownian motion therefore initiates dust coagulation (Dullemond & Dominik
2005). For molecular clouds, on the other hand, Brownian motion is completely neg-
ligible.

Radial drift

Another source of relative motions emerges from the different nature of the gas and
solids: whereas gas is (partially) pressure-supported, solids are not. The gas, there-
fore, rotates at velocities slightly below the Kepler velocity, i.e., because pressure
gradients are negative, force balance, RΩ2

g = (∂P/∂r)/ρg + RΩ2
K, results in a gas

velocity v = ΩgR that lags the Keplerian velocity vK = ΩR by an amount ηvK, i.e.,
ΩgR = ΩR − ηvK, with η a dimensionless parameter (Nakagawa et al. 1986)

η =
1

2ρgRΩ2

∂P

∂R
=

1

2

c2
g

v2
K

∂ ln ρg

∂ ln r
≈

c2
g

v2
K

, (1.24)

For example, at 1 AU where vK ≈ 30 km s−1 and η ≈ 10−3 the lag amounts to a
velocity of ∆v ≈ 33 m s−1. Solid particles, due to their inertia, are not influenced by
these pressure forces and tend to move at Keplerian velocities, faster than the gas.
The ensuing headwind then removes angular momentum from the particles, causing
them to spiral into the sun. How much particles are affected depends on their size,
or rather, the surface area-to-mass ratio. Particles that are very well coupled to the
gas (i.e., low τf) this effect is minimal. The same holds for large particles which, due
to their large inertia, do not feel the gas at all. It is only in the intermediate regime
for Ωτf ∼ 1 particles that radial drift is important, i.e.,

vrd =
2Ωτf

1 + (Ωτf)2
ηvK, (1.25)

(Weidenschilling 1977a) which peaks for particles that have Ωτf = 1 at vrd = ηvK.
At 1 AU this corresponds to a velocity of ≈ 30 m s−1 or a consumption timescale
(by the sun) of a little more than 100 yr! Assuming the particles can be modeled

as solid spheres with ρ(s) the internal density of the particle, the condition Ωτf = 1
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corresponds to a size of a ∼ Σg/ρ(s) cm, i.e., meter-sizes at 1 AU and cm-sizes in
the outer solar system for a MMSN model. These timescale and velocity constraints
are an enormous problem for any coagulation theory that involves incremental ac-
cretion. However, the other side of the medal is that radial drift motions also concen-
trate particles, since particles merely follow the pressure gradient; i.e., particles will
concentrate at any local pressure maximum (Kretke & Lin 2007). Applying this prin-
ciple to the ice-line where the evaporation will create a pressure maximum, Brauer
et al. (2008b) found a small ‘window of opportunity’ at which radial drift rates will
disappear.

Dust settling and particle concentration

Apart from moving radially, particles of any size will feel the star’s gravitational
pull in the vertical direction, gz = GM⋆/R2 = Ω2R, and settle to the midplane. By
balancing gz with the drag force one finds a terminal velocity of vz = gzτf = Ω2zτf

and a settling timescale of tsettl = (Ω2τf)
−1, which at 1 AU is a few times 105 yr

for a 1 µm particle and ∼102 yr for a mm-size particle. However, particle diffusion
will halt the settling for small particles. The timescale for particles to diffuse over
a scaleheight Hg is tdiff ∼ H2

g/Dp, where Dp is the particle diffusion viscosity. For
small particles well coupled to the gas Dp ∼ νT and the diffusion timescale can be
written as tdiff = 1/αΩ. Thus, particles of friction times τf < α/Ω do not settle,
while larger particles settle into a disk of scaleheight (Dubrulle et al. 1995)

hp

Hg
∼

√

α

τfΩ
; if τf >

( α

Ω

)

(1.26)

where hp ≤ Hg is the particle scaleheight. For very heavy particles, τf > tL, the
particle diffusion coefficient Dp is reduced with respect to νT (the exact amount and
dependence on τf are somewhat debated, see Youdin & Lithwick 2007; Carballido
et al. 2008) and these particles settle into an even thinner disk.

A dust-dominated disk (ρd > ρg) forms when hp/Hg > R−1
gd , where Rgd = 102

is the cosmic gas-to-dust ratio by mass and where a monodisperse population of
particles is assumed . Thus, ρd > ρg requires τfΩ > 104α. For example, for α = 10−6

(very weak turbulence) particles must have grown to cm-size before they settle into
a dust-dominated layer. Alternatively, a dust-dominated layer is obtained (more
easily) if the gas is removed, e.g., by photoevaporation (Throop & Bally 2005). In a
dust-dominated layer particles will again rotate at Keplerian velocities, preventing
radial drift and being more susceptible for gravitational instabilities. However, with
increasing stratification a new instability develops: the Kelvin-Helmholtz instability.
This competition between mixing and buoyancy (which stabilizes mixing) is given
mathematically by the Richardson number Ri ∝ z/(∂ρp/∂z) (Youdin & Shu 2002).
When Ri drops below a certain threshold, shear turbulence ensues. Shear turbulence
prevents the particle layer from becoming gravitationally unstable, until particles are
tens to hundreds of meters in size (Cuzzi et al. 1993). Although several instability
mechanisms have been proposed they often require very specific conditions (Cuzzi
& Weidenschilling 2006); turbulence (either global or shear), together with radial
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drift motions prevent (small) particles from concentrating effectively.

Yet another particle concentration mechanism is the turbulence itself. Although
throughout this thesis we implicitly assume that turbulence mixes particles effec-
tively, this is only a zeroth-order approximation of the turbulent process. Instead,
turbulence is capable of concentrating particles of a specific size. In this way Jo-
hansen et al. (2007) find that particles of τf ∼ tL (i.e., m-sizes) become gravitationally-
unstable in MRI-turbulence. However, it is unclear whether these boulders would
not fragment under these conditions, because radial drift (relative) velocities peak at
τf/tL = τfΩ = 1 (Eq. (1.25)). Likewise, much smaller particles (τf ∼ ts: mm-sizes)
can be concentrated (Cuzzi et al. 2001); these clumps may then slowly contract under
the influence of gravity on a free-fall timescale (Cuzzi et al. 2008). This is an inter-
esting scenario because the mm-scale corresponds to the sizes of the particles that
dominate early meteorites: the chondrules (see § 1.2.3).

1.2.2 Dust microphysics: sticking, restructuring and fragmentation

Two material constants — the surface energy, γ, and the modulus of elasticity, E —
determine the sticking behavior of solids. A brief overview of the microphysical
processes involved in the collision of dust particles (or aggregates) is given below.

Surface tension is a well-known phenomenon in liquids, e.g., water. The intra-
molecular forces (in water caused by the strong H-bonds) are responsible for keeping
the liquid together. At the surface, however, the symmetry is broken and a tension
is created. Energetically, the surface is in a higher energy state than the interior,
because it lacks an (attractive) layer above the surface. Since the natural state is a
state of lowest energy, surface tension thus the effect of reducing the surface area
to a minimum. Therefore, rain drops tend to be spherical, only modified by the
influence of gravity. To increase the area of a surface by an amount δA requires an
amount of energy of γδA, where γ is a measure of the surface tension, or the surface
energy density.

In solid particles, too, molecular forces are present and they are likewise char-
acterized by a surface energy density, γ. For example, if two (identical) bodies are
connected by a surface area A, this requires an energy 2Aγ to separate them to in-
finity. (The factor of two is because two bodies are involved.) The force required to
separate two particles can then be estimated as F ∼ 2Aγ/δ, where δ is the distance
over which the bodies are in contact (see Fg. 1.7). For spheres δ ∼ r2/2a (δ ≪ a)
where r is the radius of the contact region and F ∼ 4πγa.

A detailed study of contact breaking and formation requires another material
property: the elasticity of the material, quantified by the elastic modulus E . It gives
the resistance of a material against compression. That is, to compress an object by a
relative amount ∆x/x0, where x0 is the length of the object and ∆x the compression,
requires a pressure P = E∆x/x0. Given a certain load (attractive force) the modulus
of elasticity then determines the size of the contact area. In the case of two touching
spheres the relevant displacement is δ/r and

δ

r
=

δ1 + δ2

r
=

r

2a1
+

r

2a2
; (δ ≪ r ≪ a1,2). (1.27)



30 Introduction

δa

a
r

− δ

Fg. 1.7: Geometry of
the contact area. a:
radius of the aggre-
gate; r: contact ra-
dius; δ: amount of
compression.

From this expression it can be estimated that, in order to produce a contact area of
πr2, a pressure of P ∼ Eδ/r ∼ Er/a, or a force of F ∼ πEr3/a, must be applied.

Because the deformation of the material is not one dimensional, the elastic modu-
lus must be corrected by Poisson’s ratio ν— the ratio of the transverse to axial strain
of the material. The effective elastic modulus E∗ follows from 1/E∗ = (1− ν1)

2/E1 +
(1 − ν2)

2/E2. In the presence of an attractive force, furthermore, the force balance
equation, which relates the external force F to the contact area r0, becomes (Johnson
1987)

F =
4E∗r3

3aµ
− 4
√

πγE∗r3, (1.28)

where aµ = a1a2/(a1 + a2) is the reduced radius. The last term in Eq. (1.28) is zero
for the case without an adhesive force (γ = 0), for which F corresponds within a
factor of unity to the expression we previously obtained. For the case of a vanishing
force the equilibrium contact radius becomes

r = re =

(

9πγa2
µ

E∗

)1/3

. (1.29)

In the tensile case (negative F), the contact radius r first decreases with respect to
re. However, after a critical pulling force −F > Fc = 3πγaµ at a contact radius of
r = rc, no equilibrium is possible anymore. The particles then separate. Chokshi
et al. (1993) calculate that the corresponding energy to break a contact is

Ebr ≃ 1.8Fcδc = 43

(

γ5a4
µ

(E∗)4

)1/3

, (1.30)

where δc is the displacement at the critical contact radius. The expression in Eq. (1.30)
is the energy required to break an existing contact, and also includes energy dissipa-
tion due to excitation of electric waves.

Apart from tensile motions, the grains can also move along the plane of the con-
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COLLISIONAL REGIMES

Energy threshold Collisional outcome Growth stage
(1) (2) (3)

E < 5Eroll no restructuring (hit-and stick) fractal growth
E > 5Eroll start of visible restructuring compaction+growth
E ≃ NcEroll maximum compression compaction+bouncing
E ≃ 3NcEbr start loosing monomers erosion
E & 10NcEbr catastrophic destruction of aggregates fragmentation

Table 1.1: Results of the Dominik & Tielens (1997) numerical collision experiments for aggre-
gates. (1) Collisional energy E in comparison to the critical energy thresholds Ebr and Eroll. (2)
Outcome of collisions. (3) Corresponding growth regime (indicative). The number of contact
areas of an aggregate is denoted by Nc.

tact surface. In this case, the grains are involved in rolling. Like contact breaking,
a critical force is needed to initiate irreversible rolling (in contrast to elastic rolling).
Dominik & Tielens (1997) derive the energy required to roll a contact over a distance
πaµ (i.e., 90 ◦ for equal size grains)

Eroll = 6πξcritaµγ, (1.31)

where ξcrit is the critical distance required to initiate the rolling motion, which Do-
minik & Tielens (1997) estimated to be on the order of the intra-atomic distance,
ξcrit ∼ 1 Å.

A qualitative picture for collisions involving aggregates then emerges from these
critical energies in relation to the collision energy (see Table 1.1)

E =
1

2
mµ (∆v)2 , (1.32)

where mµ is the reduced mass. Collisions at energies that are both below E < Eroll

and E < Ebr are fully in the elastic regime: the contacts are not displaced. At higher
energies, restructuring of the aggregate will occur. Porous aggregates can restruc-
ture by rolling of the constituent monomers, provided that the individual grains—
monomers — are loosely bound. Thus, porous aggregates will restructure until a
more compact and more stiff state is reached. In compact aggregates, on the other
hand, the monomers have more neighbors and rolling is inhibited. Because the
sound travel time for aggregates is often much shorter than the collisional timescale
(Paszun & Dominik 2008b), the collisional energy is generally well distributed over
the entire grain, which prevents breaking. However, at higher energies E > NcEbr

(with Nc the total number of contacts) the particles will be disrupted.

Dominik & Tielens (1997) and, recently, Wada et al. (2007) have performed nu-
merical experiments for aggregate collisions and confirmed this qualitative picture
(see Table 1.1). However, the values for the critical energies derived by the theoreti-
cal study of Dominik & Tielens (1997) were not matched by collisional experiments
(Poppe et al. 1999; Heim et al. 1999). In these, it was found that critical collisional
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Fg. 1.8: Example of fractal aggregates
produced by differential sedimenta-
tion in a laboratory experiment (Blum
2000). The fractal dimension is Df =
1.8 ± 0.1. The size of the individual
grains is 0.95 µm in radius.

thresholds are higher than the theoretical predictions. Clearly, Dominik & Tielens
(1997) presents an idealized picture, i.e., the monomers are perfect smooth spheres,
whereas, in reality surface roughness and asperities will complicate the picture. For
example, plastic deformation of these irregular features may explain the high stick-
ing velocity measured experimentally (Paszun & Dominik 2008b). However, Blum
& Wurm (2000) showed that their collision experiments are still in agreement with
the framework outlined in Table 1.1 by re-adjusting the critical energy thresholds
Ebr and Eroll — several factors of 10 larger than the theoretical values. Over the last
decade laboratory experiments have contributed significantly to the present physical
picture of dust aggregation (see Blum & Wurm 2008 for a review). In this work we
will use the results of these laboratory experiments for the two critical energies.

Fractal growth

In the regime where the collisional energy is less than a few times the rolling energy,
i.e., E < 5Eroll, the colliding dust particles will stick at the point where they meet:
‘hit-and-stick’ growth. In many cases this growth represents fractal properties, i.e.,
the relation between the number of grains in an aggregate N and the size aout is then
given by

N = kf

(

aout

a0

)Df

(1 ≤ DF ≤ 3), (1.33)

where Df is the fractal exponent, a0 the monomer size and kf a prefactor of order
unity. Linear strings have Df = 1, Df = 2 for planar structures (e.g., PAH molecules),
and Df = 3 for homogeneous (compact) particles. However, in general the fractal ex-
ponent will have non-integer values (see Fg. 1.8 for a typical example of an aggregate
formed by laboratory experiments). The fractal dimension of an aggregate depends
on its growth history. Two specific modes are usually distinguished (see Fg. 1.9):
growth by similar size particles (cluster-cluster coagulation or CCA) and growth by
monomers (particle-cluster coagulation or PCA). The latter case leads to a fractal di-
mension of 3 in the limit of N ≫ 1, whereas CCA typically has fractal dimensions
of around two. Therefore, hit-and-stick growth of equal-size aggregates will lead to
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Fg. 1.9: Schematic illustration
of cluster-cluster coagulation
(CCA, top) vs. particle-cluster
coagulation (PCA, bottom) in
two dimensions. In PCA the
incoming grains (black) collide
with the cluster (grey) individ-
ually, whereas in CCA the in-
coming grains are also clus-
tered, resulting in an overall
more open (fluffy) structure.

PCA

CCA

very open (fluffy) structures.

Another concept related to the porosity of these fluffy aggregates is their geomet-
rical size a. It is defined in terms of the angularly-averaged projected surface area
of the aggregate A, i.e., A = πa2. It is this quantity that is of importance in the
calculation of the drag force. Therefore, the size that must be used in expressions
like Eq. (1.22) is a, and not the extremal or outer radius, aout. Similarly, A can be
expressed as a fractal law like Eq. (1.33), A ∝ Nδ. Meakin & Donn (1988) find that δ
approaches unity for large N; whereas the CCA calculation of Ossenkopf (1993) re-
sult in δ = 0.95 (note that δ cannot be larger than unity as this would indicate that
the geometrical area grows faster than mass).

1.2.3 The solar system: meteorites

Complementary to (high-resolution) observations of protoplanetary disks, the rem-
nant solid bodies of our our planetary system provide valuable clues on the con-
ditions of the solar system during planet formation, which could be applicable for
other systems as well. Most interesting are the bodies that preserved their internal
structure, i.e., the ones that did not melt or were not involved in large-scale differ-
entiation processes (like the Earth where the most dense material — iron — sunk to
the core). From time-to-time meteorites fall on Earth and, if they remain intact, can
be studied using modern laboratory equipment (see Fg. 1.10). Meteorites, especially
chondritic meteorites, are therefore a means to provide observational constraints on
scenarios regarding primary accretion: having formed within the first few million
years after the origin of the solar system, in a disk that was still gas-rich, they are
the real fossils of the solar system. The dominant component of these chondrites are
chondrules: ∼100 µm to mm-size stony spherules composed primarily of the sili-
cate minerals olivine and pyroxene. Here, I briefly sketch the background regarding
chondrule and chondrite properties, mainly focusing on the physical picture. How-
ever, meteorites are renowned for their rich chemical complexity and for a more
complete introduction readers are encouraged to browse more thorough works (e.g.,
Lauretta & McSween 2006).

First of all, chondrites are very diverse. One of the reasons why this diversity
appears is that they can be meticulously studied in laboratories. Thus, instead of



34 Introduction

Fg. 1.10: The Allende carbona-
ceous chondrite which fell on
Mexico, 1969. Most of the
fragments seen here are chon-
drules: several 100 µm-size
spherules embedded in a dark
dusty matrix. The big white
spot in the center of the image
is a Calcium Aluminum Inclu-
sion (CAI) of size ∼1 cm. It
can be seen that the chondrules
are mostly separated from each
other, and are sometimes en-
shrouded by a rim of fine-
grained dust material.

a single property like the size of a dust grain, or perhaps its porosity, laboratory
measurements provide the full chemical state (e.g., relative abundance of volatiles
or isotopes). A cause for the diversity in chondrite properties are the variety of so
called ‘parent body processes’ that the chondrules and matrix material endured after
asteroid formation but which did not lead to its complete melting. Examples of these
(geological) processes include: aqueous alteration (chemical reactions including wa-
ter), abrasion (shaking up the asteroid), and metamorphism (change in mineralogy
of the meteorite due to heating). Some chondrites endured more of these alteration
effects than others, which explains part of their diversity. However, chondrites also
show an intrinsic diversity in physical properties; e.g., the relative proportion and
mean size of chondrules varies between meteorite classes.

There are many different theories regarding the formation of chondrules. Chon-
drules show evidence of being melted, requiring temperatures of ∼1500 K for only
a brief period of time (minutes or hours) . This seems best reconcilable with a ‘shock
heating’ scenario in which the chondrule precursors could be dust particles (or ag-
gregates of dust particles). In another class of theories chondrules are produced near
the sun, and then transported throughout the solar system by an X-wind (Shu et al.
1994). One remarkable property of chondrules is that their sizes distribution within a
given meteorite (class) is quite narrow, commonly within a factor of 10 and centered
at ∼300 µm. This could reflect the property of their dusty precursors or was per-
haps intrinsic to the shock-formation event. However, the (mean) size and chemical
makeup of chondrules varies from meteorite to meteorite, which perhaps indicates
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that the chondrule-producing processes that operated in the protoplanetary disks
were different in space and time (Wood 2005). The question how chondrules formed
is still vividly debated.

Calcium aluminum inclusions (CAIs) are another conspicuous component of chon-
drites that formed even earlier. Although much rarer, they are typically a factor of
10 larger than chondrules. Radio dating put their formation date at 4.5672 Gyr ago,
which is conveniently referred to as the ‘zero-time’ of the solar system. After this
point chondrites formed over a time span of a few million years. As chondrites
formed out of these chondrules and CAIs, this would also indicate that planetesimal
formation (or chondrite formation) was a relatively prolonged process, i.e., happen-
ing over much of the life-span of the solar nebula.

Chondrites consist of another physical component in the form of micron size (sil-
icate) dust particles. These are present throughout the chondrite in a matrix com-
ponent or are found surrounding chondrules in the form of fine-grained rims (see
Fg. 1.10). This configuration suggests that chondrules and dust are accreted together
into the chondrites which implies that the matrix and rim material reflects condi-
tions during the nebula phase, i.e., when chondrules were still freely floating objects,
(Metzler et al. 1992), although the precise interpretation is disputed (Trigo-Rodriguez
et al. 2006). For instance, a positive correlation between the rim thickness and chon-
drule size is observed, which is in agreement with a scenario of sweep-up of dust in
a turbulent nebula (Cuzzi 2004).

1.2.4 Coagulation: modeling

In the previous sections various physical processes have been discussed that are of
importance for dust growth: the various sources of relative velocities, particle con-
centration, the nature and compositions of the particles and their relation to sticking
forces; particle fragmentation. The challenge is to combine all these processes into
one coherent evolution model. These models are referred to as coagulation models
and it is instructive to provide a brief outline here.

In the case where a (gravitational) potential affects the particle motions — like,
e.g., in many cosmological simulations — N-body integration techniques may be
used to calculate the temporal evolution of the system. However, if no potential is
present the particles may be assumed to be ideally mixed and the distribution does
not depend on spatial coordinates. The distribution function is then given by f (m):
the number density of particles in the interval m, m + dm. To generalize, one may
further sub-divide f (m), adding other properties of the population. For example,
f (m, φ) includes the filling factor φ of dust aggregates such that f (m, φ)dmdφ is the
number density of particles of mass [m, m + dm] and filling factor [φ, φ + dφ]. Using
only the mass to characterize the particles, the collisional evolution of the distribu-
tion function f (m) is given by the Smoluchowski equation

∂ f

∂m
= − f (m)

∫

K(m, m′) f (m′) dm′ +
1

2

∫

K(m′, m−m′) f (m−m′) f (m′) dm′, (1.34)

where the first term denotes the removal of particles of mass m due to coagulation
with any other particles, and the second term represents the particles of mass m



36 Introduction

created by collisions of a particle pair whose masses end up to be m (the factor of
1/2 prevents double counting). The rate coefficient, K(m, m′), gives the probability
of collision between a particle of mass m and m′. Equation (1.34) only considers
sticking as a collisional outcome but a generalization to other physical processes
(bouncing, fragmentation) is straightforward.

To calculate the collisional evolution, Eq. (1.34) has to be solved. Except for three
very symmetric cases of the collision kernel — (i) K = cnst., (ii) K ∝ mi + mj, and
(iii) K ∝ mimj — this cannot be done analytically. Equation (1.34) is in fact a rather
complex integro-differential equation, which is notoriously difficult to solve, even
numerically. For example, mass conservation is easily violated when Eq. (1.34) is
integrated directly. For this reason, most works involving dust coagulation do not
explicitly solve the Smoluchowski equation but instead calculate the interaction rate
K(mi, mj) f (mi) f (mj) between the bins and then transfer this mass to the receiving
bin (e.g., Spaute et al. 1991).

In this thesis, however, we will take into account the internal structure as a sec-
ond— and independent— parameter. Then, the Smoluchowski equation should be
extended to a second dimension and it is less straightforward to calculate. This
holds, in essence, for all grid-dependent techniques: more dimensions require more
connections between the grid points. Although in two dimensions a successful inte-
gration of the Smoluchowski equation has been performed (Ossenkopf 1993), in this
thesis we do not use the distribution function f to calculate the collisional evolution.
Instead, a ‘direct simulation Monte Carlo’ (DSMC) technique is developed to follow
the collisions between the particles individually. The distribution function is then
obtained indirectly, after binning the particles, but is not used in the code itself.

The Monte Carlo method is a quite intuitive tool to solve coagulation problems
as the probability of an event (a collision) is simply given through K. More specifi-
cally, the collision rate is Cij = Kij/V where V is the volume of the simulation and
Cij∆t is the probability of a collision between the particles i and j in the (infinitesi-
mal) time-interval ∆t. Random numbers then determine which of the N(N − 1)/2
(where N is the total number of particles involved in the simulation) collision events
is the next. A more thorough introduction to the applied Monte Carlo technique is
provided in § 2.3 or can be found in, e.g., Gillespie (1975). The great advantage of the
MC-simulation technique is that the collisional part of the model is naturally sep-
arated from the time-evolution part, contrary to the bin-techniques in which both
parts are intertwined in the mass transfer. The main drawback of Monte Carlo mod-
els, however, are the limited numbers of particles that can be included, since the cal-
culation and adjustment of the collision rates would otherwise strain computational
resources. This will especially apply to distributions that are very broad or skewed,
e.g., where the massive particles dominate the total mass, whereas the smaller ones
dominate the number. Suitable approximations in these cases should be sought.

1.3 This thesis

The emphasis of this thesis lies on coagulation of dust, either in the environment
of protoplanetary disks (chapters 2, 4) or of molecular clouds (chapter 6). Here, the
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challenge — and a major theme of the thesis — is to combine a physical model like
that of § 1.2.2 with an accurate calculation of the collisional evolution of the system
with time. In chapter 2 the framework of this model is outlined. Concepts of poros-
ity, rephrased in terms of an enlargement factor, and Monte Carlo coagulation are
introduced. The internal structure is included self-consistently, i.e., not only are the
outcomes of collisions determined by the internal structure but the internal structure
is likewise affected by the collisions themselves. The results are then applied to the
upper layers of the protoplanetary disks, with the primary aim of illustrating the
new approach compared to conventional approaches.

As outlined in the preceding sections, turbulence is an important phenomenon
in protoplanetary disks. It is the driving force behind the relative velocities of par-
ticles; therefore, an accurate description is of key importance for dust coagulation
models. However, most models of dust coagulation are statistical — a full-blown
hydrodynamic simulation would be too time consuming — and the effects of tur-
bulence are included indirectly, usually with an analytic prescription of the relative
velocities. Völk et al. (1980), in a pioneering work, presented a framework for the
calculation of these velocity expressions, subsequently refined by Markiewicz et al.
(1991). However, apart from specialized cases (Cuzzi & Hogan 2003) the expressions
for the relative velocity, although analytic, were not cast in closed-form. It is the aim
of chapter 3 to present such (approximate) closed-form expressions that can be easily
implemented in coagulation models.

Being the dominant component of chondritic meteorites, chondrules must have
played an important role in the primary accretion process. However, how were these
tiny stony particles incorporated into big asteroids? In chapter 4 we look at the im-
portance of the dust component of meteorites: are these µm-size particles responsi-
ble for sticking chondrule-size particles together? It is an appealing idea because the
meteorite record shows that the dust component is scattered throughout the mete-
orite—in most cases the chondrules do not touch— i.e., we may naturally expect that
chondrules have swept up the dust (Cuzzi 2004). Could these chondrule-rimmed
dust particles have facilitated the accretion process? In chapter 4 the feasibility of
this model is thoroughly investigated.

Planet formation is above all a problem of scales. Models tracing the collisional
evolution must therefore be able to handle a very large size-range: the journey from
a 0.1 µm grain to planet Earth covers over 40 orders of magnitude in mass! In chap-
ters 2, 4 and 6 we present Monte Carlo models that incorporate the internal structure
in the collisional evolution. However, one drawback of MC-models is that particle
collisions are usually treated one-by-one and is therefore best suited to situations
where the size-distribution remains narrow. On the other hand, a wide size distri-
bution, which may be obtained if fragmentation processes operate, is characterized
by a multitude of collisions and is much harder to model. The aim of chapter 5 is
to develop a solution to this problem, which we found in (physically) grouping the
particles. The advantage of such an approach is that MC-simulations are no longer
constrained to a physical limit in, e.g., mass, and become applicable for runaway ker-
nels as well. Chapter 5 is therefore predominantly a theoretical treatise which will
find its way to future applications.
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The final chapter forms the culmination of the new approach to the collisional
evolution. Its collision model features many of the elements of the preceding chap-
ters—the formulation of hit-and-stick growth and the grouping method—but is also
based on the outcomes of state-of-the art numerical simulations (Paszun & Dominik
2008a), in which collisions between (small) aggregates are simulated. Collisional
fragmentation is an integral part of the model. Here, we have decided to apply the
model to the environment of molecular clouds, or rather, cores of molecular clouds,
because the average size of dust aggregates in these environments is more compa-
rable to the sizes studied in the numerical collision experiments. However, if dust
particles are coated with ice— a more formidable sticking agent— orders of magni-
tude growth may again be expected. Within the context of this thesis, it is of special
importance to contrast the collisional evolution in the pre-collapse phase with that
of the protoplanetary disk.



2
Dust coagulation in protoplanetary

disks: porosity matters1

— C. W. Ormel, M. Spaans, A. G. G. M. Tielens—

Sticking of colliding dust particles through van der Waals forces is the first

stage in the grain growth process in protoplanetary disks, eventually leading to

the formation of comets, asteroids and planets. A key aspect of the collisional

evolution is the coupling between dust and gas motions, which depends on the

internal structure (porosity) of aggregates. To quantify the importance of the

internal structure on the collisional evolution of particles, and to create a new

coagulation model to investigate the difference between porous and compact

coagulation in the context of a turbulent protoplanetary disk. We have devel-

oped simple prescriptions for the collisional evolution of porosity of grain-

aggregates in grain-grain collisions. Three regimes can then be distinguished:

‘hit-and-stick’ at low velocities, with an increase in porosity; compaction at

intermediate velocities, with a decrease of porosity; and fragmentation at high

velocities. This study has been restricted to physical regimes where fragmenta-

tion is unimportant. The temporal evolution has been followed using a Monte

Carlo coagulation code. This collision model is applied to the conditions of

the (gas dominated) protoplanetary disk, with an α parameter characterizing

the turbulent viscosity. We can discern three different stages in the particle

growth process. Initially, growth is driven by Brownian motion and the rela-

tively low velocities involved lead to a rapid increase in porosity of the grow-

ing aggregate. The subsequent second stage is characterized by much higher,

1Originally published in Astronomy & Astrophysics, vol. 461, p. 215 (2007)
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turbulent driven velocities and the particles compact. As they compact, their

mass-to-surface area increases and eventually they enter the third stage, the set-

tling out to the mid-plane. We find that when compared to standard, compact

models of coagulation, porous growth delays the onset of settling, because the

surface area-to-mass ratio is higher, a consequence of the build-up of poros-

ity during the initial stages. As a result, particles grow orders of magnitudes

larger in mass before they rain-out to the mid-plane. Depending on the precise

value of α and on the position in the nebula, aggregates can grow to (porous)

sizes of ∼10 cm in a few thousand years. We also find that collisional energies

are higher than in the limited PCA/CCA fractal models, thereby allowing aggre-

gates to restructure. It is concluded that the microphysics of collisions plays a

key role in the growth process.

2.1 Introduction

Understanding the formation of planetary systems is one of the central themes of
modern astrophysics. New stars form in molecular cloud cores when these cores
contract under the influence of gravity. This contraction leads to the formation of a
central object surrounded by a disk (Shu et al. 1987). Planets are generally thought to
form in these disks, but neither the precise physical conditions required for, nor the
processes involved in planetary body assemblage are well understood. Generally, it
is thought that grain growth starts with the sticking of sub-micron-sized grains col-
liding at low velocities (Weidenschilling & Cuzzi 1993). The sticking is then driven
by weak van der Waals interaction forces between the grains. Relative velocities may
reflect Brownian motion or differences in coupling to turbulence in the disk. Even-
tually, when the grains have grown to ∼cm-sizes, they will settle to the mid-plane
of the disk, forming a thin dust layer where further growth to planetesimal sizes can
take place (Safronov 1969; Weidenschilling & Cuzzi 1993).

There is much observational support for the growth of dust grains in protoplan-
etary disks from sub-micron to millimeter size scales. In particular, the contrast of
the 10 µm silicate emission feature relative to the local continuum shows that the
grain size in the disk’s photosphere— where these features originate— has increased
from sub-micron sizes characteristic for interstellar dust, to the micron-sized range
(van Boekel et al. 2003; Meeus et al. 2003; Przygodda et al. 2003; Kessler-Silacci et al.
2006). Furthermore, observations of the continuum (sub)millimeter emission— orig-
inating from the deeper layers of protoplanetary disks— show typical grain sizes in
the range of millimeters, outside the range of interstellar grain sizes by many orders
of magnitudes (Beckwith & Sargent 1991). Additional support for the importance
of collisional grain growth follows from analytical studies of solar system dust. In
particular, many interplanetary dust particles (IDPs) collected at stratospheric alti-
tudes, consist of a large number of small grains assembled in a very open struc-
ture as expected for collisional aggregates (Brownlee 1979). These types of IDPs
are thought to derive from comets and, indeed, comets may consist largely of such
loosely bound aggregates. In addition, chondrules recovered from meteorites show
dust rims which are generally attributed to collisional accretion processes in the so-
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lar nebula before the meteorite and its parent body were assembled (Metzler et al.
1992; Cuzzi 2004).

The properties of the dust are of key importance to the evolution of protoplane-
tary disks. First and foremost, planet formation starts at the dust size and the dust
characteristics at the smallest sizes will set the table for further growth. Second, the
opacity is dominated by absorption and scattering by dust grains. Hence, the radia-
tive transfer, temperature structure, as well as emission spectrum of protoplanetary
disks are controlled by the characteristics of the dust (Beckwith et al. 2000; Bouwman
et al. 2000). Third, in turn, the temperature structure will dominate the structure of
the disk, including such aspects as flaring. Fourth, dust grains provide convenient
surfaces that can promote chemical reactions. Specifically, ice mantles formed by ac-
cretion and reactions between simple precursor molecules are widespread in regions
of star formation (Gibb et al. 2004; Boogert et al. 2004). In fact, grain surfaces may be
catalytically active in the warm gas of the inner disks around protostars, converting
CO into CH4 (Kress & Tielens 2001).

Most early studies of the coagulation process and the characteristics of the result-
ing aggregates assumed hit-and-stick collisions where randomly colliding partners
stick at the point of initial contact (Meakin 1988; Meakin & Donn 1988; Ossenkopf
1993). The structure of the aggregate then depends on whether the collision is be-
tween a cluster and a monomer (PCA) or between two clusters (CCA). The latter leads
to very open and fluffy structures with fractal dimensions less than 2, while the for-
mer leads to more compact structures and a fractal dimension (for large aggregates)
near 3. Ossenkopf (1993) also investigated the pre-fractal limit in which aggregates
consist of . 1000 monomers. He provides simple analytical expressions for, e.g., the
geometrical and collisional cross-section in the case of PCA and CCA aggregation.
These expressions include a structural parameter, x, which describes the openness
(or fluffiness) of the particle. In this study we also introduce a structural parameter
and confirm its importance in coagulation studies.

Over the last decade much insight has been gained in the structure of collisional
aggregates through extensive, elegant, experimental studies (Blum et al. 2002; Blum
2004) supported by theoretical analysis (Chokshi et al. 1993; Dominik & Tielens
1997). These studies have revealed the importance of rolling of the constituent mono-
mers for the resulting aggregate structure. At low collision velocities, the hit-and-
stick assumption is well justified but at high collision velocities, aggregates will ab-
sorb much of the collision energy by restructuring to a more compact configuration.
At very high velocities, collisions will lead to disruption, fragmentation, and a de-
crease in particle mass. The critical velocities separating these collisional regimes are
related to material properties such as surface free energy and Young’s modulus as
well as monomer size and the size of the clusters.

While the porous and open structure of collisional aggregates is well recognized,
their importance for the evolution of growing aggregates in a protoplanetary setting
is largely ignored. Most theoretical studies represent growing aggregates either by
an equivalent sphere (e.g., Weidenschilling 1984a; Mizuno et al. 1988; Tanaka et al.
2005; Nomura & Nakagawa 2006) or adopt the fractal dimension linking mass and
size characteristic for CCA or PCA growth (e.g., Weidenschilling 1997; Suttner & Yorke
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2001; Dullemond & Dominik 2005). Ossenkopf (1993) and Kempf et al. (1999) explic-
itly account for aggregates’ internal structure in their numerical models, although,
due to computational reasons, only a limited growth can be simulated. Indeed, the
internal structure of collisional aggregates is the key to their subsequent growth.
The coupling of aggregates to the turbulent motion of the gas is controlled by their
surface area-to-mass ratio, while the relative velocity between the collision partners
dictates in turn the restructuring of the resulting aggregate. Moreover, as a result
of the growth process from sub-micron-sized monomers to cm-sized aggregates, the
coupling to the gas velocity field may well change due to compaction. Indeed, com-
paction can be an important catalyst for aggregates to settle out in a mid-plane dust
layer. Despite its importance for the collisional growth of aggregates in a proto-
planetary environment, the evolution of porosity has not yet been theoretically in-
vestigated. The present chapter focuses precisely on this aspect of grain growth in
protoplanetary disks.

This chapter is organized as follows. In § 2.2 a model is presented for the treat-
ment of the porosity as a dynamic variable. This entails defining how porosity, or
rather the openness of aggregates, is related to the surface area-to-mass ratio (§ 2.2.2)
as well as quantifying how it is affected by collisions (§ 2.2.3). In § 2.3 a Monte Carlo
model is presented to compute the collisional evolution, taking full account of the
collisional aspect and all features of the porosity model. Section 2.4 then applies the
model to the upper regions of the protoplanetary disks. Results from the porous
model of this chapter are compared to traditional, compact models. In § 2.5 we dis-
cuss the differences of the new collision model with respect to PCA and CCA models
of aggregation and also discuss our results from an observational perspective, before
summarizing the main results in § 2.6.

2.2 Collision model

Dust grains are dynamically coupled to the turbulent motions of the gas and ‘sus-
pended’ in the (slowly accreting) protoplanetary nebula. Upon collisions, these small
dust grains can stick due to van der Waals forces, forming larger aggregates. Even-
tually, when these agglomerates have grown very large (∼cm-sized), they will de-
couple from the gas motions and settle in a thin disk at the mid-plane. Further col-
lisional growth in the mid-plane can then lead to the formation of planetesimals
(∼km-sized). Up to this point, growth is driven by weak van der Waals forces,
but for km-sized planetesimals gravitational forces take over and rapid growth to
a planet takes place. Here we focus on this process of small grains suspended in the
nebula forming larger conglomerates. Coagulation is driven by the relative grain ve-
locities. Velocities and the kinematics of dust in a turbulent nebula are discussed in
§ 2.2.1. The frictional coupling between dust and gas depends largely on the area-to-
mass ratio of the grains and hence on the internal structure of the dust. Section 2.2.2
describes the relation between the area-to-mass ratio and the porosity of the dust ag-
glomerates. In § 2.2.3, we discuss experimental and theoretical studies on the micro-
physics of dust coagulation and develop a simple model, given in the form of easily
applicable recipes, which describes how the mass and porosity of the dust evolve
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in collisions between two dust agglomerates. In § 2.2.4, finally, we compare these
recipes in the fractal limit to the frequently used formulations of Particle-Cluster Ag-
gregation (PCA) and Cluster-Cluster Aggregation (CCA).

2.2.1 The turbulent protoplanetary disk

For the characterization of the gas parameters of the protoplanetary disk we use
the minimum-mass solar nebula (MMSN) model as described by Hayashi (1981) and
Nakagawa et al. (1986). The surface gas density of the disk, Σg, is assumed to fall
off as a −1.5 power-law with heliocentric radius (R) and the temperature scales as
R−1/2. The vertical structure of the disk is assumed isothermal, resulting in a density
distribution which is Gaussian in the height above the mid-plane, z. The scaleheight
of the disk, Hg, is an increasing function of radius, Hg = cg/Ω ∝ R5/4, with cg the
local isothermal sound speed and Ω the Keplerian rotation frequency. The thermal
gas motions will induce relative (Brownian) velocities between dust particles with a
mean rms-relative velocity of

∆vBM(m1, m2) =

√

8kBT(m1 + m2)

πm1m2
, (2.1)

with m1, m2 the masses of the particles and kB Boltzmann’s constant. Except for low
mass particles of size . 10 µm, these velocities are negligibly small when compared
to the relative velocities induced by the coupling with the turbulent gas. We assume
that the turbulence is characterized by the Shakura & Sunyaev (1973) α-parameter,

νT = αcgHg = αc2
g/Ω ≈ vLL = v2

LtL, (2.2)

with vL, L and tL, respectively, the velocity, the size and the turn-over time of the
largest eddies. According to the standard (Kolmogorov) turbulence theory, turbulent
energy is injected on the largest scales and transported to and eventually dissipated
at the smallest eddies—characterized by turn-over time (or dissipation timescale), ts,
velocity, vs, and scale size, ℓs, given by νm = vsℓs, with νm the molecular viscosity.2

We can then define the Reynolds number as, Re = νT/νm, giving vs = Re−1/4vL

and ts = Re−1/2tL. If tL is assumed to be (of the order of) the Kepler time (Dubrulle
& Valdettaro 1992), tL = 2π/Ω−1, the turbulence is fully characterized by the α-
parameter (see Fg. 2.1):

tL = 2πΩ−1, ts = Re−1/2tL (2.3a)

vL = α1/2cg, vs = Re−1/4vL (2.3b)

L = α1/2Hg, ℓs = Re−3/4L. (2.3c)

This specification of turbulence is of importance, for, together with the friction
times of two particles, it determines the (average root-mean-square) velocity be-

2νm = cgµmH/2ρgσmol with µ and σmol, respectively, the mean molecular weight and mean molecular
cross-section of the gas molecules.
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Fg. 2.1: Sketch of the turbu-
lence induced relative veloci-
ties, ∆v, as function of fric-
tion time, τ1, for equal friction
times, τ1 = τ2, (solid line) and
different friction times τ2 ≪ τ2

(dashed line) according to the
analytic fits of Eqs. (2.5a, 2.5b)
(after Weidenschilling 1984a).
tL and vL are set by the global
properties of the disk, while
the range over which turbu-
lence is important is deter-
mined by the Reynolds num-
ber, Re. Values between brack-
ets denote typical values for
tL = 1 yr, cg = 105 cm s−1 and

α = 10−4.

tween the particles, ∆vij, which in turn plays a crucial role in both the collision model
of this section as well as in the time-evolution model of § 2.2.3. The relative velocities
are a function of the friction time (τf) of the particles— the time it takes a particle to
react to changes in the motion of the surrounding gas — which in the Epstein limit
is3

τf =
3

4cgρg

m

A
, (2.4)

where ρg is the local mass density of the gas, m the mass of the particle and A its
cross-section. In particular, if the friction time of a particle is much smaller than the
turnover time of the smallest eddy (τf ≪ ts), the particle is coupled to all eddies and
flows with the gas. Therefore, grains with τf ≪ ts have highly correlated velocities.
Eventually, however, due to growth and compaction, agglomerates will cross the
Kolmogorov ‘barrier’ (i.e., τf > ts) and are then insensitive to eddies with turnover
times smaller than τf, since these eddies will have disappeared before they are capa-
ble of ‘aligning’ the particle’s motion. At this point, grains can develop large relative
motions (Fg. 2.1).

To calculate relative velocities accurately, contributions from all eddies have to be
included. Völk et al. (1980) started quantifying these effects by dividing eddies into
several classes and subsequently integrated over the full Kolmogorov power spec-
trum. With the exception of some special cases of the particle’s friction times (Cuzzi
& Hogan 2003) in which ∆v can be expressed analytically, ∆v between particles with
different τf can be presented only numerically (Völk et al. 1980; Markiewicz et al.

3The Epstein limit holds for particles with sizes smaller than the mean-free-path of the gas, a < 9
4 ℓmfp.

If this limit is exceeded, friction times increase by a factor 4
9 a/ℓmfp and quadratically scale with radius

(Whipple 1972; Weidenschilling 1977a; Schräpler & Henning 2004).
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1991). Weidenschilling (1984a,b), however, has presented analytical fits, which have
been frequently applied in subsequent coagulation models (e.g., Suttner & Yorke
2001; Dullemond & Dominik 2005; Tanaka et al. 2005). For particle friction times,
τ1 and τ2 (τ1 ≥ τ2), less than tL, these read,4

∆v12 (τ1, τ2) =















vs
(τ1 − τ2)

ts
τ1, τ2 < ts

vs
3

1 + τ2/τ1

√

τ1

ts
ts < τ1 < tL,

(2.5a)

where τ1 is the larger of the two friction times. If τ1 exceeds tL the relative velocities
become,

∆v12 =











vL τ2 < tL < τ1

vL
(τ1 + τ2)tL

2τ1τ2
τ1, τ2 > tL.

(2.5b)

For example, in the regime where both friction times are small (τ1, τ2 < ts) the tur-
bulence induced relative velocity is negligible when τ2 ≈ τ1, but scales linearly with
τ1 when particle 2’s mass-to-area ratio is much larger than that of particle 1 (Fg. 2.1).
Thus, in the τ1, τ2 < ts regime particles with very different A/m-ratios will pref-
erentially collide, because differential velocities are then highest. When one of the
particles’ friction time exceeds ts the dependence on the absolute difference in τf van-
ishes and the relative velocities now scale with the square root of m/A of the largest
τf. As can be seen in Fg. 2.1 relative velocities are rather insensitive to the precise
ratio of the particles’ friction times in this regime. (Because of the simplicity of the
expressions for ∆v in Eqs. (2.5a, 2.5b) the lines do not connect at τ1 = ts and τ1 = tL.)
In the τf > tL regime, (Eq. (2.5b) relative velocities would stop increasing and even-
tually become only a minor perturbation to the motion of the particle. These large
τf regimes are, however, not reached in the early stages of coagulation considered
in this chapter. Here, it is clear that the relative grain velocities are regulated by the
area-to-mass ratio of the colliding grains which sets the friction timescale (Eq. (2.4)
and hence the velocities (Eqs. 2.5a, 2.5b).

2.2.2 Porosity of agglomerates

For compact, solid particles,5 the area-to-mass ratio scales linearly with the size.
However, for porous aggregates the A/m ratio depends on the internal structure
of the aggregates. In this section, we discuss how the internal structure of the aggre-
gates affects collisions and, conversely, how collisions affect the aggregates’ internal
structure. The internal structure is modeled using the enlargement parameter. Here,
we define an enlargement parameter ψ that is the ratio between its extended volume,

4Dullemond & Dominik (2005) note that the second expression in Eq. (2.5a) may not exceed vL.
5The reader should note that the words ‘particle’, ‘agglomerate’ and ‘aggregate’ are frequently inter-

changed throughout this and other paragraphs.
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V, and its compact volume, V∗, i.e.,

ψ =
V

V∗
, ψ ≥ 1. (2.6)

Here, V∗ is the volume the material occupies in its compacted state, i.e., without
pores, and V the total (extended) volume of the particle. While V∗ reflects the mass
of the particle, V is related to the spatial extent of the aggregate. Here, V has been
defined as the volume corresponding to the geometric cross-section of the aggregate
(see Fg. 2.2). Figure 2.2 shows three aggregates of 1 000 monomers, such that V∗

is the same, though with different degrees of compaction. The (from left to right)
decreasing compaction translates to an increased geometric cross-section, A (outer
circle), of the aggregates and hence to an increased ψ. Using the linearity between V∗

and m and Eq. (2.6), two parameters, e.g., m and ψ, determine A and, consequently,
also determine the coupling with the gas (Eq. (2.4).

An enlargement factor of ψ = 1 thus corresponds to a particle in which the in-
ternal density is the same as the specific density of the material, ρs = m/V∗. For
aggregates, this limit is never reached, since pores contribute to the volume even in
the most compact configuration. An enlargement factor of ψ = 1 can then only be
achieved by melting the aggregates, a mechanism we will not consider in this work.6

Since ψ ≥ 1 we refer to ψ as the enlargement parameter or enlargement factor. ψ is
related to the structural parameter, x, of Ossenkopf (1993), as x ∝ ψ2. Note the close
relationship between ψ and porosity; a higher ψ means more open aggregates, i.e.,
higher porosity. Therefore, we will also use this more familiar reference for ψ, but
only in a qualitative sense.

Since our enlargement parameter, ψ, is defined in order to match the geometrical
cross-section, A, of a particle, we refer to the resulting radii, a(ψ), as geometrical. The
other cross-section of importance in coagulation models is σ, the collisional cross-
section. Ossenkopf (1993) has consequentially defined a ‘toothing radius’, atooth,
such that σ = π(atooth,1 + atooth,2)

2 and provides expressions for atooth for PCA and
CCA aggregates. σ is larger than A by a factor of order unity (see also Krause & Blum
(2004)) and also depends slightly on the structure of the aggregates, i.e., whether
PCA or CCA. In this chapter, however, we are mainly concerned with obtaining a
model for ψ and have therefore simply used a for the calculation of the collisional
cross-section. Likewise, we have also ignored augmentations of σ due to effects such
as, e.g., charges and grain asymmetries (see again Ossenkopf 1993) and rotation of
grains (Paszun & Dominik 2006).

The aggregates’ internal structure has important consequences for the coagula-
tion rate. The geometric cross-section scales, for example, as ψ2/3. More subtle are
the effects of ψ on relative velocities, which, as seen above, depend critically on the
A/m-ratio of both aggregates. In coagulation models where grains are represented
as compact bodies τf increases linearly with size (A ∝ m2/3; τf ∝ m1/3). However, in
the initial stages of coagulation aggregates stick where they meet— a process char-
acterized by a build-up of porous, fluffy structures, which can be described by frac-

6However, we have not put a lower limit to the porosity of the aggregates. Note also that the discussion
in Ormel et al. (2007) regarding the definition of V∗ is slightly erroneous.
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a

a*

Fg. 2.2: Projections of fractal aggregates illustrating the relation between A, V and V∗. All
fractals consist of 1 000 monomers and have consequently the same compact volume, V∗ (inner
circle). The black, outer circle gives the area, A, equal to the total projected surface area of
the agglomerate. This area subsequently defines the volume, V (e.g., V ∼ A3/2) and the
enlargement factor, ψ, of the aggregate (Eq. (2.6)). Arrows denote the compact and porous
radii, a∗ and a.

tals. Meakin & Donn (1988) have computed the A/m ratio of an initially monodis-
perse population and found a profound flattening of this ratio as compared to com-
pact models in which it decreases as m−1/3. Often, in the ‘hit-and-stick’ regime the
growth shows fractal behavior and the cross-section can be directly parameterized
as a power-law, i.e.,

A ∝ mδ, 2
3 ≤ δ ≤ 1. (2.7)

The lower limit δ = 2
3 corresponds to the growth of compact particles, whereas

the upper limit of δ = 1 denotes the aggregation of chains or planar structures. In
the cluster-cluster coagulation (CCA) model of Ossenkopf (1993) δ = δCCA = 0.95,
a result that agrees well with the findings of Kempf et al. (1999), using N-particle
simulations in the Brownian motion regime. More recent models, which also include
rotation of aggregates (Paszun & Dominik 2006) also confirm this exponent. The
scaling of friction time and enlargement factor with mass then become

τf ∝ m1−δ, ψ ∝ m
3
2 δ−1, (2.8)

such that for compact aggregation models (δ = 2/3) ψ stays constant. On the other
hand, in models of cluster-cluster aggregation (δ ≈ 1), area scales roughly as mass
and τf stays constant or is only weakly dependent on mass, while ψ increases mono-
tonically. Thus, in CCA relative velocities are rather insensitive to growth. As a
result, collisions are also less energetic in CCA models, e.g., as compared to compact
aggregation models.
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The key to the coagulation process in protoplanetary disks is the coupling of the
dust to the turbulent motions of the gas and the resulting velocity distribution. In
essence, the enlargement parameter ψ provides a relationship between mass and sur-
face area for growing aggregates which controls this gas-dust coupling. Equation (2.8)
provides a relation for the evolution of ψ, but this relation is only valid in certain spe-
cific aggregation models, e.g., CCA-coagulation, where similar, equally sized aggre-
gates meet. In reality, however, collisions between particles of all kinds of sizes will
occur, although, dependent on the parameters that determine ∆v, some are just more
probable than others. In the end, the growth of grains in protoplanetary disks is con-
trolled by the individual collisions between two aggregates. Therefore, we have to
provide prescriptions for the outcome of all possible collisional encounters, i.e., all
relevant combinations of m, ψ and ∆v.

2.2.3 The collision model

We consider a collision between two particles with the aim of applying the results to
a true coagulation model. Essentially, we have to provide a recipe for the enlarge-
ment factor, ψ, after the collision. Two relevant parameter sets enter into the new
ψ: the progenitor masses and enlargement factors (i.e., the (mi, ψi) of the colliding
particles). Moreover, the collision energy,

E =
1

2

m1m2

m1 + m2
(∆v)2 = 1

2 mµ(∆v)2, (2.9)

with mµ the reduced mass, is of key importance. At very low velocities, collisions
between two aggregates will lead to sticking without internal restructuring, i.e., the
particles will stick where they make first contact. At moderate velocities, the internal
structure of the resulting aggregate will adjust— dissipating a major fraction of the
kinetic collision energy—resulting in a compaction of the aggregates. Finally, at very
high collision velocities, the colliding aggregates will fragment into smaller units and
this can lead to substantial erosion. Following the numerical model of Dominik &
Tielens (1997) and the experimental studies by Blum & Wurm (2000), these collisional
regimes are distinguished by the following critical (collision) energies:

– Erestr = 5Eroll, the energy needed for the onset of compaction;

– Emax−c ≃ Nc · Eroll, the energy at which aggregates are maximum compressed.
Here, Nc is the total number of contact surfaces (between monomers) of the
agglomerate. For a very open, fluffy agglomerate, Nc = N. With increasing
compaction the number of contacts will increase and for a cubic packing Nc =
3N. Here, for simplicity, we will adopt Nc = N.

– Efrag ≃ 3Nc · Ebr, the energy needed for (the onset of) fragmentation of the
agglomerate. Here Ebr is the energy required to break a bond between two
monomers. Its magnitude is of similar order as Eroll.

For monomers of the same size Eroll is given by (Dominik & Tielens 1997; Blum &
Wurm 2000)

Eroll = 3π2γa0ξcrit = 1
2 πa0Froll, (2.10)



2.2: Collision model 49

Fg. 2.3: The collision regimes
as function of total particle
mass and relative velocity.
Thick dashed lines indicate the
critical energies for the onset
of rolling and fragmentation.
Parameters are that of quartz
particles (ρs = 3.0 g cm−3, γ =
25.0 ergs cm−2, a0 = 0.1 µm)
and for the Efrag line we
have assumed equal masses
(m1 = m2) and Ebr = Eroll.
Arrows indicate how the
critical energy lines shift with
increasing monomer size and
mass-ratio, m1/m2.

����������
����������
����������
����������

����������
����������
����������
����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������

Fragmentation

Fractal Growth

Restructuring

Eroll

a0

Efrag

a0

m1

m2

with a0 the radius of the monomer, γ the specific surface adhesion energy and ξcrit

the yield displacement at which rolling commences. Froll, the rolling force, was mea-
sured by Heim et al. (1999) to be Froll = (8.5 ± 1.6) × 10−5 dyn for uncoated SiO2-
spheres of surface energy density γ = 14 ± 2 ergs cm−2. We adopt this value for
Froll and assume proportionality with γ when applying it to other materials. The
monomer size, a0, is also an important model parameter directly affecting the out-
come of the collision at a given mass; a smaller a0 provides more contacts (for the
same mass) and the agglomerate is more resistant to breakup. With these energy
thresholds, three qualitatively different collision regimes can then be discerned (see
Fg. 2.3):

(i) E < Erestr: No internal restructuring. The particles stick where they meet (‘hit-
and-stick’ growth) as in traditional, lattice-based, aggregation models (e.g.,
Meakin 1988)— a process leading to fractal aggregates.

(ii) Erestr < E < Efrag: Restructuring (compaction) of aggregates.

(iii) E > Efrag. Initially, loss of monomers, but for high energies complete fragmen-
tation (e.g., catastrophic collision). This phase requires a recipe for the mass dis-
tribution of the fragments. In this chapter, fragmenting collisions are avoided
by, e.g., ‘choosing’ moderate α and stopping coagulation for particles that reach
a critical friction time (see § 2.4). Within these constraints, our results are there-
fore not compromised by ignoring the fragmentation issue.

From Fg. 2.3 it is clear that, when starting with small particles, growth will initially
be in the fractal regime. This fractal growth will be followed by a period in which the
collisions will promote the restructuring of the growing agglomerate. Fragmentation
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becomes only important for velocities in excess of 103 cm s−1. Since we assume that
every contact can absorb a unit energy Eroll, the Efrag line in Fg. 2.3 is independent of

total mass. The ∆v ≃ 103 cm s−1 limit translates to a critical value for the turbulent
α parameter: α . 10−2. Within Fg. 2.3, the precise ‘growth path’ of the agglomerate
will be controlled by evolution of the relative velocities and hence A/m or, equiva-
lently, ψ. We will now construct recipes for ψ in, respectively, i) the fractal and ii) the
compaction regime.

E < Erestr: hit-and-stick

Besides the usual CCA and PCA formalisms, there have been a few attempts to give
prescriptions for the evolving internal structure of aggregates in the hit-and-stick
regime. Kostoglou & Konstandopoulos (2001) discuss a formalism for obtaining the
new fractal dimension in terms of the sizes and fractal dimensions of the two col-
liding aggregates. One point is, however, that, apart from the fractal dimension,
another parameter— the prefactor— is needed to fully describe the fractal, although
it is usually of order unity. Ossenkopf (1993), like this study, introduces only one
structural parameter and interpolates between the CCA and PCA limits. We will also
follow this idea, but use a different interpolation mechanism.

We recognize that in the pure sticking regime most collisions are between evolved,
fluffy aggregates, since the size distribution evolves progressively toward larger
sizes. For low velocity-mass combinations (Fg. 2.3), where restructuring is unim-
portant, the collisional growth then resembles the CCA growth process the most. We
therefore simply rewrite the fractal law in terms of the individual masses of the par-
ticles and keep the CCA exponent,

A = A1

(

m1 + m2

m1

)δCCA

, m1 > m2. (2.11)

Although collisions between different particles are included in Eq. (2.11), we still
adopt the CCA-characteristic exponent (δCCA = 0.95) to ensure that for the ‘pure’ CCA

case (m1 = m2; A1 = A2) this prescription is in accordance with detailed numerical
studies (Meakin & Donn 1988; Ossenkopf 1993; Kempf et al. 1999; Paszun & Dominik
2006). There is, however, a modification to Eq. (2.11) that must be made. The term
in brackets in Eq. (2.11) determines the amount of increase in A in the fractal regime.
Because fractal growth results from inefficient packing of voluminous objects, it is
clear that this term must include parameters describing the spatial extent of the col-
lision partners. These cannot, however, be given by the masses of the particles, since
m (alone) does not reflect a spatial size. For example, if we would replace one of the
aggregates by one of the same mass, but of lower porosity (i.e., a more compact ag-
gregate), its volume is obviously smaller and packing becomes more efficient. These
effects, however, are not reflected in Eq. (2.11). For these reasons, we replace m by V
in Eq. (2.11),

A = A1

(

V1 + V2

V1

)δCCA

, V1 > V2. (2.12)
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Note that for particles of the same internal density (porosity) Eq. (2.12) and Eq. (2.11)
agree, such that Eq. (2.12) also can be seen as an extrapolation from the CCA case, but
one that takes account of the different internal structures of the collision partners.
Using the relation A ∝ V2/3 and Eq. (2.6), Eq. (2.12) can be re-written in terms of m
and ψ only

ψ = 〈ψ〉m

(

1 +
m2ψ2

m1ψ1

) 3
2 δCCA−1

, (2.13)

with 〈ψ〉m the mass-averaged enlargement factor of the collision partners,

〈ψ〉m ≡
m1ψ1 + m2ψ2

m1 + m2
. (2.14)

In CCA coagulation (m1 = m2 and ψ1 = ψ2) we recover Eq. (2.8), but Eq. (2.13) now
includes all collisions in the hit-and-stick regime. For example, if a large, fluffy ag-
gregate sticks to a compact one, the enlargement factor of the newly formed aggre-
gate is higher than the mass-averaged enlargement factor of the progenitor particles,
〈ψ〉m, but smaller than that of the fluffy collision partner. In § 2.2.4, it will be shown,
however, that the 〈ψ〉m term underestimates the porous growth when one of the par-
ticles is very small, i.e., in PCA-like collisions. This is solved by adding to Eq. (2.13) a
term that compensates for these cases and our final recipe then becomes

ψ = 〈ψ〉m

(

1 +
m2ψ2

m1ψ1

) 3
2 δCCA−1

+ ψadd, (2.15)

where ψadd, a term important only for small m2, is explained in § 2.2.4.

E > Erestr.: compaction

In the compaction limit monomers are restructured at the expense of the porous vol-
ume of the aggregates. Following the theoretical study of Dominik & Tielens (1997)
we will assume that the (relative) amount of compaction, ∆Vp/Vp, scales linearly
with collisional energy, i.e., ∆Vp/Vp = − fC = E/Emax−c = −E/(N · Eroll), where
Vp = V − V∗ denotes the porous volume within the aggregate and N is the total

number of monomers present.7 Essentially, this implies that the collision energy is
used to set individual monomers in an agglomerate rolling and that this rolling is
only stopped when an additional contact is made, resulting in compaction. Recall-
ing that V = ψV∗ and Vp = V − V∗ = (ψ − 1)V∗ with V∗ proportional to mass, we
then find that the porous volume after colliding is

(V∗
1 + V∗

2 )(ψ − 1) = (1 − fC) [V∗
1 (ψ1 − 1) + V∗

2 (ψ2 − 1)] . (2.16)

7Note that we start compaction already at E = Eroll instead of E = 5Eroll. We have found, however,
that the simulations are insensitive to the precise energy at which compaction starts.
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Fg. 2.4: Relative compaction
as function of the mass ratio,
m2/m1, at various collisional
velocities. The expression on
the y-axis measures the com-
paction relative to particle 1
and is a function of mass ra-
tio, m2/m1, only (see Eq. (2.17).
Here ψ1 is the enlargement fac-
tor of the most massive aggre-
gate, i.e., m1 > m2, and plots
are shown for ψ2 ≪ ψ1 (grey
lines) and ψ2 = ψ1 (black lines).
At low mass ratios the curves
converge.

And the new enlargement factor

ψ− 1 = (1− fC) ·
1

m1 + m2
(m1(ψ1 − 1) + m2(ψ2 − 1)) = (1− fC) (〈ψ〉m − 1) , (2.17)

with 〈ψ〉m again the mass-averaged enlargement factor of the (two) collision partners
(Eq. (2.14). We illustrate Eq. (2.17) in Fg. 2.4 for the limiting cases of equal poros-
ity collisions (ψ1 = ψ2; black lines) and very porous vs. compact particle collisions
(ψ1 ≫ ψ2; grey lines). Higher mass-ratios give higher collision energies (higher mµ)

and hence more compaction. If velocities are low, (∆v < 100 cm s−1) the net com-
paction occurs primarily through the 〈ψ〉m factor and the curves converge on the
0 cm s−1 (thick) line. Only when ∆v > 100 cm s−1 does the fC-factor start to become
important. Collisions at velocities higher than 1 000 cm s−1 can result in fragmenta-
tion if the mass-ratios are similar. For low mass ratios the 〈ψ〉m is determined by ψ1

(the highest mass) and there is little difference between the two limiting cases.

2.2.4 Porosity increase in the PCA and CCA limits

In the discussion on the ψ recipes in § 2.2.3 we have used the CCA fractal expo-
nent (δCCA = 0.95) as the starting point and extrapolated this empirical relation to
Eq. (2.13): a general recipe for all collisions in the ‘hit-and-stick’ regime. By defini-
tion, CCA-collisions are incorporated into this recipe and we may expect Eq. (2.13)
also to account for collisions between aggregates having about the same size. The
PCA model, where one monomer collides with an agglomerate, is the opposite ex-
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Fg. 2.5: The enlargement fac-
tor in the PCA and CCA lim-
its as a function of the number
of monomers (N) of the parti-
cle. The thick grey curves show
the fits of Ossenkopf (1993)
for CCA (top) and PCA (bot-
tom) coagulation. The solid
curve corresponds to the lim-
iting cases of Eq. (2.13). The
dashed curves show the same
limits, but now the zero point
lies at N = 40 (after which the
PCA/CCA curves of Ossenkopf
(1993) diverge in porosity) and
includes the ψadd correction
term (Eq. (2.19).

treme. If we take the PCA-limit of Eq. (2.13), i.e., m1 ≫ m2 ∼ m0, with m0 the mono-
mer mass, the change in ψ after addition of a monomer becomes

ψN+1 ≈ ψN +
N2

N

(

3
2 δCCAψ2 − ψN

)

; N ≫ N2, (2.18)

with N = N1 = m/m0 the number of monomers of the PCA agglomerate and
N2 = 1 for monomers. Thus, ψN goes to 3

2 δCCAψ2 ≈ 1.5 in the PCA asymptotic limit

(N2 = 1; ψ2 = 1).8 The fact that an asymptotic limit is reached can be understood
intuitively, since there must be a point at which the inward penetration of mono-
mers into the center of the aggregate, which decreases ψ, starts to balance the porous
growth due to hit-and-stick collisions at the surface. The asymptotic limit of ψ ≈ 1.5,
however, is much lower than typical PCA models indicate (ψ ≈ 10) as is illustrated
in Fg. 2.5, where the PCA/CCA limits of our model (solid lines) are compared to de-
tailed numerical simulations of Ossenkopf (1993) (thick lines). Equation (2.13) thus
underpredicts the porous growth for PCA-like collisions in which one of the parti-
cles is small; a result not too surprising since it originates from the CCA fractal law
(Eq. (2.11)), which is constructed to apply only for similar (i.e., equal-sized) particles.
For these reasons we add to Eq. (2.13) a term that compensates the −N2ψN/N term
in Eq. (2.18),

ψadd = B
m2

m1
ψ1 exp

[

−mµ/mF

]

, (2.19)

8Here we take ψ2 = 1 as the enlargement factor of single monomers.
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Fg. 2.6: Illustration of the adopted Monte Carlo technique. (a) N-particles are assumed to
be uniformly distributed in a box of volume V . The collision rate between particle i and j is
Cij = σij∆vij/V . A random number determines which two particles will collide. (b) After
the collision the number of particles is restored by duplicating one of the remaining N − 1
particles. Physically, this can be interpreted as an expansion of V (heavily exaggerated in this
figure) to a volume at which V contains N-particles again. The hypothesis of this method is
that the collisional evolution within V is representative for the coagulation of the total space
under consideration.

where the exponential ensures ψadd is unimportant for collisions between particles
well above a certain mass-scale, mF. With B = 1.0 and mF = 10 m0 we find good
correspondence with the results of Ossenkopf (1993). In Fg. 2.5 the new CCA and
PCA limits are shown by the dashed curves, where we have shifted the ‘zero point’
from N = 1 to N = 40, i.e, the starting point for ψ after which we recursively apply
Eq. (2.15). The transition toward fractal behavior emerges only after this point and
we therefore directly take ψ from the results of Ossenkopf (1993) when N . 40.

Although, with Eq. (2.19) for ψadd, Eq. (2.15) does achieve the right PCA/CCA

fractal limits, we do not claim they actually provide a model for ψ. The collision
recipes are based on empirical findings and extrapolations from these. However, in
contrast to the CCA and PCA limiting collisional growth models, where ψ can be di-
rectly parameterized in a single exponent, we recognize that the internal structure of
the aggregates is changed during— and caused by— the collisional growth process.
This is the main qualitative difference of our collision model captured in Eq. (2.15).
This equation, together with Eq. (2.17), provides recipes for the collisional evolution
of the enlargement factor, which can be easily incorporated into time-dependent
coagulation models. We acknowledge this is an active area of research and future
model efforts may well improve on the present formulation.
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2.3 Monte Carlo Coagulation

2.3.1 Outline

To determine the implications the new collision model has for the solar nebula, e.g.,
as compared to collision models where mass is the only parameter, it must be em-
bedded in a coagulation model that evolves the particle distribution function, f (x).
f (x, t) gives the number density of particles with a set of properties (parameters)
{xi} at time t. In compact coagulation models all properties depend only on mass,
so f (x, t) = f (m, t). In the model described in § 2.2, however, the particle’s enlarge-
ment factor has been included as an independent parameter such that f becomes
a function of three variables, f (x, t) = f (m, ψ, t). The coagulation equation which
describes the evolution of f (x) is

∂ f (x, t)

∂t
= − f (x, t)

∫

dx′ f (x′, t)K(x, x′)

+
1

2

∫

dx′dx′′ f (x′, t) f (x′′, t)K(x′, x′′, t) δk

(

x − Γ(x′, x′′)
)

, (2.20)

with K = σ∆v the collision kernel, δk the Kronecker δ-function and Γ the collision
function, which maps in the case of sticking 2n parameters (those of x′ and x′′) to n,
where n is the number of independent parameters with which a particle is character-
ized. Equation (2.20) of course is just an extension of the Smoluchowski equation9

(Smoluchowski 1916) to more than one dimension. Applied to the formalism in § 2.2
it describes the loss of particles in state x = (m, ψ) due to collisions with any other
particle (first term) and the gain of ‘x-particles’ that happen to be formed out of any
suitable collision between two other particles (second term). Applied to the findings
in § 2.2, Γ symbolizes the collision recipes with Γ(m1, ψ1; m2, ψ2) = (m1 + m2, ψ) and
ψ is given by Eq. (2.15) or Eq. (2.17), dependent on the collisional energy.

One approach to implement coagulation is to numerically integrate the Smolu-
chowski equation. However, it is immediately clear that numerically integrating
Eq. (2.20) becomes a daunting exercise. Integrating the ordinary (1-dimensional)
Smoluchowski equation is already a non-trivial matter. Problems of near cancella-
tion (the gain terms often equal the loss terms), mass conservation (systematic prop-
agation of errors) and the problem concerning the determination of a time-step must
all be tackled. (Dullemond & Dominik 2005 in their Appendix B give an overview of
the subtleties involved.) The Γ-factor in Eq. (2.20) gives a further complication since
there is no such thing as ‘conservation of porosity’ and the δ-factor cannot be eas-
ily integrated away. Although there is no fundamental reason against the binning
method— see, e.g., Ossenkopf (1993) who solves the Smoluchowski equation in two

9Which reads:

∂ f (m)

∂t
= − f (m)

∫

dm′ K(m, m′) f (m′) +
1

2

∫

dm′ K(m′, m − m′) f (m′) f (m − m′), (2.21)

describing losses of m due to all collisions with m (first term on right hand side) and gains in the distribu-

tion of m due to collisions between m′ and m − m′ (second term), where the factor 1
2 ensures collisions are

not twice accounted for. Ossenkopf (1993) provides a general extension of the Smoluchowski equation
including source and sink terms.
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dimensions — these issues make the whole procedure quite elaborate. We felt that
much of the simplicity of the collision model of § 2.2 would be ‘buried’ by numerical
integration of a 2d-Smoluchowski equation and therefore have found it suitable to
opt for an approach using direct Monte-Carlo simulation (DSMC) techniques.

The simplicity of using Monte-Carlo methods for coagulation problems is appeal-
ing. Basically, N-particles are distributed over a volume V (see Fg. 2.6a). The evo-
lution then boils down to the determination of the two particles which are involved
in the next collision. We hereafter assume that the particles are well mixed, i.e., no
potential is present, such that the determination of the next collision is governed by
basic stochastic principles. Then the probability of a collision between particles i and
j is given by the collision rate, Cij = Kij/V in which Kij is the collision kernel. A

random number determines which of the 1
2 N(N − 1) possible collisions will be the

next. The collision then creates a new particle, after which the {Cij} must be updated
and the procedure repeats itself.

The advantages of such an approach are obvious. Most striking perhaps is the
‘physical character’ of Monte-Carlo simulations. The growth-evolution of individ-
ual particles is directly traced and can be studied. The algorithm does not use the
distribution function, f , in a direct way; it is obtained indirectly by binning the par-
ticles. Secondly, the above described method is exact, i.e., no ‘time vs. accuracy’
considerations have to be made in choosing the time-step ∆t; instead, ∆t— the inter-
collision time— is an outcome of the stochastic coagulation process as it is in nature.
Furthermore, due to its stochastic nature, no Monte-Carlo simulation is the same.
A series of (independent) runs gives at once a measure of the statistical spread in
the distribution. Note that the fluctuations around the average are a combination
of real stochastic noise and random noise, but it is qualitatively different from the
Smoluchowski approach, which describes the evolution of the mean of all possible
realizations and is therefore completely deterministic (Gillespie 1975). From a prac-
tical point of view the straightforwardness of the DSMC-method makes that there is
no need for resorting to ‘control parameters’ like those required in the numerical-
integration method.

The DSMC-method, however, has its limitations. It can be immediately seen, for
instance, that when having started with N (say identical) particles of mass m0 in a
fixed volume, these will over time pile up in one agglomerate of mfinal = Nm0. The
accuracy then steadily decreases during the simulation (in MC-simulations the sta-
tistical error scales proportional to N−1/2) and most of the computing time is spent in
the first few (quite uninteresting) collisions. Consequently, to achieve orders of mag-
nitude growth, the initial number of particles must be extremely large. And because
the calculation of the {Cij} goes proportional to N2 (every particle can collide with
each other), it becomes clear that this method becomes impracticable. To counter the
dependence on large initial particle numbers, one can also try to preserve the num-
ber of particles during the simulation. This can be done, for instance, by ‘tossing-up’
the particle-distribution when the number of particles reaches N/2 as described by
Liffman (1991). A more natural approach perhaps, given by Smith & Matsoukas
(1998), and adopted here, keeps the number of particles constant at each step; every
time a collision takes place one of the remaining N − 1 particles is randomly dupli-
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cated such that the number of particles throughout the simulation stays the same.
This procedure can graphically be represented as an increase in the simulated vol-
ume, V (see Fg. 2.6b), under the assumption that the collisional evolution outside
of V progresses identically. Smith & Matsoukas (1998) have shown that the error
in the coagulation-scheme now scales logarithmically with the extent of growth, —
or growth factor (GF), defined here as the mean mass over the initial mean mass of
the population — much improved over the constant-V case, where the error has a
square-root dependence on GF. We might worry though about the consequences of
the duplication mechanism. It causes a certain degree of ‘inbreeding’, which effects
we cannot quantify directly. Smith & Matsoukas (1998) show it is unimportant for
the constant or Brownian kernels used in their studies. However, these kernels are
known to behave gently, i.e., they are rather insensitive to irregular changes in the
population since the variations in the Kij are small. Perhaps, more erratic kernels are
more sensitive to the ‘duplication mechanism’, but we might equally well attribute
this sensitivity to the stochastic nature of the coagulation process. At any rate, these
consequences are best quantified by running the code multiple times.

2.3.2 Implementation

In implementing the DSMC approach we follow the ‘full conditioning method’ of
Gillespie (1975). This involves the calculation and updating of partial sums, Ci,

Ci ≡
N

∑
j=i+1

Cij, i = 1, . . . , N − 1, (2.22)

with Cij = Kij/V = σij(ai, aj)∆vij(τi, τj)/V(κ) (here κ is the total number of collisions
since the start of the simulation). These N − 1 quantities are stored in the memory
of the computer. Ctot = ∑i Ci is the total coagulation rate. The probability density
function, P(t, i, j), i.e., the probability that the next collision will occur in time-interval
(t, t + dt) and involves particles i and j (i < j) can then be written as (Gillespie 1975)

P(t, i, j) = Cij exp [−Ctott] =
(

Ctot exp [−Ctott]
)

×
(

Ci/Ctot

)

×
(

Cij/Ci

)

. (2.23)

Three random deviates, ri ∈ [0, 1], then determine successively: (i) the time it takes

until the next collision takes place, t = C−1
tot ln(1/r1); (ii) the first particle (i) to collide,

by summing over the Ci-s (starting with i = 1) until r2Ctot is exceeded (this fixes i);
and (iii) its collision partner (j) by summing the Cij-s over the j-index (starting with
j = i + 1) until the value r3Ci is exceeded (Gillespie 1975, Eq. (19)). The outcome of
the collision is evaluated using the relevant equations in § 2.2 and the new particle
is stored in the i-slot. Another random number then determines which of the N − 1
particles (excluding j) will be duplicated and this one is stored in the j-slot. Hav-
ing created, removed and duplicated particles, all of the Ci-s need to be updated.
This implies only the subtraction/addition of the Cij-s that have changed, not the re-
computation of Eq. (2.22). Moreover, the ‘duplication procedure’ entails a rescaling
of the simulated volume, V , such that the spatial density of solids, ρd = ∑i mi/V(κ)
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Fg. 2.7: Flow chart of the MC-
coagulation method. One cycle cor-
responds to one collision. ‘Func’ like
in i = Func( {Ci}, r ) indicates that
i is a function of the Ci values and a
random deviate, r. The procedure is
further explained in the text.

remains constant. The algorithm can then be repeated. All these steps are order-N
calculations at worst; most time-consuming are the determination of j (for which Cij

has to be calculated) and the update of the {Ci}. To achieve a given GF another fac-
tor N in computation time is needed,10 bringing the total CPU-time proportional to
N2. These procedures are graphically summarized in Fg. 2.7.

It is possible, however, to save some CPU time by taking the duplicates together
in the calculation of the collision rates. If there are (gi − 1) copies of particle i, it
would be a waste of time to calculate the (same) rates gi times. Rather, gi can be
absorbed in the calculation of the (combined) coagulation rate. C̃ij = gigjCij is then
the rate at which one of the i-particles collides with one of the j-particles (i 6= j) and

C̃ii = 1
2 gi(gi − 1)Cii between duplicates. The CPU time per step is now proportional

to Ns, the total number of distinct particles, i.e., excluding duplicates, with ∑
Ns
i=1 gi =

N. To think of it in biological terms: gi gives the multiplicity of species i; Ns the total
number of species; and N the total number of living creatures.

2.3.3 Tests

The Monte-Carlo coagulation model described above is tested with kernels that have
an analytic solution. These are: (i) the constant kernel, Kij = 1; and (ii) the linear

kernel, Kij = 1
2 (mi + mj). The evolution of the mean mass of the distribution, 〈m〉

10Due to the duplication, the mean mass of the system increases with a factor (N + 1)/N. The growth
factor after κ steps then becomes GF = ((N + 1)/N)κ . Thus, ln GF = κ ln(1 + N−1) ≈ κ/N if N ≫ 1 and
κ ≈ N ln GF.
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Fg. 2.8: Test of the Monte Carlo
coagulation code — constant ker-
nel (Kij = 1), 20 000 parti-
cles. At (dimensionless) times
t = 1, 102, 104, 106, 108 particles are
binned and the distribution func-
tion f is computed (symbols). The
analytical solutions at these times
are overplotted by the solid curves.
The error bars (hardly visible) show
the spread averaged over 10 runs.
The dotted lines show the distribu-
tion function if all the bins would
be occupied by only 1 particle—it is
an auxiliary line with slope 1 show-
ing the lower limit of the (individ-
ual) distribution function.

for these kernels is11 (Silk & Takahashi 1979; Tanaka & Nakazawa 1994)

〈m〉 =

{

m0(1 + 1
2 t) constant kernel

m0 exp
[

1
2 t
]

linear kernel,
(2.24)

where the distribution at t = 0 is monodisperse of mass m0. Well-known coagulation
models have either K ∝ m1/3 (Brownian coagulation) or K ∝ m2/3 (geometric area),
but here, due to changes in ψ and ∆v, we should be prepared for K to vary with
time. Thus, it is important that the Monte-Carlo code passes both these tests. Initial
conditions for these test cases are monodisperse with all relevant parameters put at
1 at t = 0 (i.e, m0 = 1 and f (t = 0) = 1, ρd = 1, ρs = 1) and we do not take poros-
ity into account (ψ = 1 always). At various times the particles are binned by mass
and the distribution function f (m) is determined by summing over the masses in
the bin and dividing by the width of the bin (to get the spectrum) and the volume of
the simulation (to get the density). Multiple runs of the simulation then provide the
spread in f . Figures 2.8 and 2.9 present the results. On the y-axis f (m) is multiplied
by m2 to show the mass-density per logarithmic bin. Analytical solutions (Tanaka
& Nakazawa 1994) are overplotted by solid curves, while the dotted line shows the
(hypothetical) distribution function if all the bins would be occupied by 1 particle.
Thus, the dotted line corresponds to m2 f (m) = m2/Vwb ≈ m/V , because the widths
of the bins, wb, are also exponentially distributed. In a single simulation, the distri-
bution function should lie above this (auxiliary) line and the vertical distance to this
line is a measure for the number of particles in a bin.

11The mean mass of the population is inversely proportional to the number of particles per unit volume.
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Figure 2.8 shows that the code passes the constant kernel test with flying colors.
The spread in the data is limited, and it does not noticeably increase with time. The
linear kernel (Fg. 2.9a), on the other hand, shows a different story. Here the mean
mass, 〈m〉, as well as the peak mass, mp — defined as the peak of the m2 f (m) size
distribution— evolve exponentially with time. Note that the position of mp only de-
pends on the particles that contain most of the mass, while 〈m〉 is also sensitive to
the total number of particles. Therefore, 〈m〉 lags mp at any time and one can show
that the gap between the two also increases exponentially with time. Inevitably, at
some point in time, the theoretical value of the m2 f (m) mass-peak becomes larger
than the total mass present inside V . This corresponds to the crossing of the dotted
line at, e.g., t ≃ 20 in Fg. 2.9a. In other words, the duplication mechanism, needed to
conserve N but which has the additional effect of enlarging V , is incapable of keep-
ing up with the exponential growth: ‘runaway particles’ could have formed, but the
simulated volume V is just not large enough to take them into account. The postulate
of the ‘duplication mechanism’ — the particle distribution evolves similarly in and
outside V — then breaks down. The only way to avoid this effect is to enlarge V by
having more particles in the simulation, i.e., to improve the ‘numerical resolution’.
In Fg. 2.9b, we show the results, in which Ns, instead of N, is held constant (§ 2.3.2).
In these simulations N increases with time, starting with N = 20 000 and ends with
more than a million particles. The distribution now represents more closely the the-
oretical curve. Growth factors of 14 orders of magnitude in mass (≃5 in size) can
then be accurately simulated.

The drawback, however, is that the computation slows down as N increases,
since the relative increase in the average mass is inversely proportional to N, i.e.,
∆〈m〉/〈m〉 ∝ N−1. These simulations therefore take much more CPU time. It is clear
that a fundamental limit is reached, in which, given a certain CPU power, the cal-
culation of the mass-distributions can only be achieved for a limited range. A way
to overcome this problem is to collide multiple particles per event. In such an al-
gorithm collisions are no longer between two particles but between two groups of
particles. Although this approximates the collisional process, the coagulation can be
accelerated by grouping especially small particles into a single unit. We will discuss
the grouping algorithm and its implication in chapter 5. For the simulations in § 2.4,
the product of N and Ns has been kept constant, which ensures a constant growth (in
exponential terms) per cycle. We have fixed

√
N × Ns at 20 000 but made sure that

the numerical resolution issues as discussed here for the linear kernel, did not occur.
Fortunately, realistic mass-distributions are not that broad as in the analytic, linear
kernel; e.g., the smaller particles are quickly removed due to Brownian coagulation.

In summary, we have built an efficient Monte Carlo code to follow coagula-
tion. The advantage of this code (above other numerical methods) is that it is intu-
itive, simple to implement and expand, and that it takes full account of the stochas-
tic nature of coagulation. Minor disadvantages are the N2 dependence on CPU
time, the somewhat artificial duplication procedure, and the resolution problems
shown for the linear kernel at high m as the simulation progresses. We have ad-
dressed these concerns and developed methods suitable for the scope of this work.
DSMC-coagulation methods are very appropriate to work in conjunction with multi-
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Fg. 2.9: Tests of the Monte Carlo coagulation code. Linear kernel, Kij = 1
2 (mi + mj). (a) fixed

N (N = 200 000). The distribution function f is computed at times t = (1, 10, 20, 30). At t = 30
insufficient mass is present to provide a good fit to the analytical distribution. (b) fixed Ns .
To obtain better correspondence with theory, the number of particles, N, is increased as the
simulation progresses, such that more volume is sampled. Ns is fixed at 20 000 and N ends
with over a million particles. The average corresponds well to the theory, yet the amount of
CPU time is disproportionally larger at the later times.

parameter models. The collision model of § 2.2, with mass, m, and enlargement pa-
rameter, ψ, as variables, can now be put into an evolutionary setting.

2.4 Results

2.4.1 Application to a protoplanetary disk

The collision model of § 2.2 is embedded in the Monte Carlo code of the previous
section and applied to the protoplanetary disk (§ 2.2.1). The coagulation is restricted
to a turbulent environment in which particles are well mixed with the gas, yet do
not fragment upon collision. For these reasons, we start out with a monodisperse
population of sub-micron-sized grains (we choose them to be a0 = 0.1 µm) present
at z = Hg, i.e., at the scaleheight of the disk, where the density is a factor exp[−0.5]
lower than at the mid-plane. Its collisional evolution within the gaseous nebula is
followed until the point that systematic motions, i.e., settling to the mid-plane, start
to dominate. Thus, particles are either present and well mixed by turbulence, or have
started to settle and are no longer in the region of interest. Settling is then modeled
as a sudden phenomenon. The reality is, of course, a more gradual transition, but the
discrete picture here is not a bad approximation, since the vertical structure is quickly
established (Youdin & Chiang 2004). Settling occurs at the point when the friction
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time of a particle has exceeded a critical friction time, τrain, such that the scaleheight
of the particle, hp(τf), becomes smaller than that of the gas, i.e., hp(τf) < Hg. If
self-gravity is neglected (valid in the gaseous nebula) and Schmidt numbers, Sc, are
close to unity,12 then hp can be obtained by equating the particle diffusion timescale,

tdiff = h2
p/νT, with the particle settling timescale, tsettl = (Ω2τf)

−1, i.e., hp(τf) =

Hg
√

α/Ωτf (cf. Schräpler & Henning 2004; Youdin 2005). The critical friction time is
then

τf =
ρs

cgρg

a∗

ψ2/3
= τrain =

α

Ω
, (2.25)

with a∗ the compact size of particles (see Fg. 2.2). As expected, higher values of α and
higher gas densities (lower τf) delay the onset of settling in the sense that the particle
has to grow further in size before it arrives at the critical friction time. Alternatively,
increasing ψ also delays settling.

In the code, settling is implemented as a ‘rain-out’: the particle is removed from
the simulation and the spatial dust density decreases. The evolution of these ‘rain-
out particles’ during settling is not traced anymore. The focus stays on the particles
that remain in the layers above the mid-plane. Their evolution is followed for 107 yr.

The α parameter is one of the major uncertainties concerning the characterization
of protoplanetary disks. One of the prime candidates for turbulence is the magneto-
rotational instability (Hawley & Balbus 1991; Balbus & Hawley 1991), which seems
to be most robust in well-ionized regions, i.e., in the upper layers of the disk. Another
way to characterize α is to relate it to the observed accretion rate, dM/dt, (Cuzzi et al.
2005) and then values in the range of 10−4 . α . 10−2 seem plausible. Yet, despite
its uncertainty, α appears in key expressions as, e.g., ∆vij and τrain. Therefore, models

are run that cover a large range in α: α = 10−6 − 10−2. Furthermore, we divide the
runs in two categories, which reflect the spatial position in the solar nebula. The ‘in-
ner’ models correspond to conditions at 1 AU where the monomers are quartz with
internal density ρs = 3.0 g cm−3 and surface energy density of γ = 25 ergs cm−2.
The ‘outer’ models correspond to conditions at 5 AU, where the coagulation is that
of ices (ρs = 1 g cm−3 and γ = 300 ergs cm−2) and with an enhanced surface density
of a factor 4.2 over the minimum solar nebula (Nakagawa et al. 1986). For compari-
son, we also run compact models for the α = 10−4 runs. Compact models (denoted
by the C-suffix in Table 2.1) are models where the internal structure does not evolve,
i.e., ψ = 1 by definition. An overview of all the models is given in Table 2.1.

2.4.2 Particle growth and compaction

In Fg. 2.10 mass distributions are shown at various times during their collisional
evolution. On the y-axis the mass function is plotted in terms of m · a∗ · f (a∗), which
shows the mass-density, i.e., the mass of grains of compact size a∗ in logarithmic bins.
The panels compare the results of compact coagulation (Fg. 2.10a,b) with those of
porous coagulation (Fg. 2.10c,d) for a turbulent strength parameter of α = 10−4. The

12The Schmidt number measures the ratio of the gas to particle diffusivity; it is supposed to be close to
unity if τf < tL (Schräpler & Henning 2004).
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MODEL RUNS

Model-ida Model Parameters Notes

R b α δ
(1) (2) (3) (4) (5)

R1Ta4-P 1 AU 10−4 0.95 default model
R1Ta2-P 1 AU 10−2 0.95 increased turbulence
R1Ta6-P 1 AU 10−6 0.95 decreased turbulence

R1Ta4-C 1 AU 10−4 2/3 compact model

R5Ta4-P 5 AU 10−4 0.95 default model at 5AU
R5Ta2-P 5 AU 10−2 0.95 increased turbulence

R5Ta6-P 5 AU 10−4 0.95 decreased turbulence
R5Ta4-C 5 AU 10−6 2/3 compact model

Table 2.1: Overview of all the runs. (1) Reference name. Names are intended to be mnemonic.
‘Rx’ stands for radius at x AU. Ta, denotes the strength of the turbulence, e.g., Ta4 stands
for α = 10−4. Finally, the suffix denotes whether models are porous (P) or compact (C). (2)
Heliocentric radius. At 1 AU quartz particles coagulate: ρg/ρd = 240, γ = 25 ergs cm−2,

ρs = 3.0 g cm−3; at 5 AU coagulation is between ices: γ = 370 ergs cm−2, ρs = 1.0 g cm−3,
ρg/ρd = 57. The gas parameters correspond to a minimum mass solar nebula model (see
§ 2.2.1). (3) Turbulent-α parameter. (4) Fractal growth parameter. (5) Notes.

coagulation is calculated at 1 AU (quartz; Fg. 2.10a,c) and at 5 AU (ices, Fg. 2.10b,d).
In Fg. 2.11 the α = 10−4 model at 1 AU is compared to other α models at 1 AU (see
Table 2.1). In Fg. 2.13 averages of the size distributions of Fgs. 2.10a,c are shown
explicitly with time. Here 〈a〉m is the mass-weighted size,

〈a〉m =
1

∑i mi
∑

i

miai, (2.26)

of the population. Thus, while 〈a〉 gives the average particle size, 〈a〉m corresponds
to the (average) size to which a unit of mass is confined. Because of this weighting,
〈a〉m ≥ 〈a〉, with the equality valid only for monodisperse distributions.

The porosity evolution is also displayed in Fg. 2.12, where we plot the ratio of
〈a〉m to 〈a∗〉m. 〈a∗〉m is defined analogously to Eq. (2.26), but then for the compact
particle size. 〈a〉m/〈a∗〉m then gives the mass-weighted averaged enhancement of
the geometrical radius of the particles (see, Fg. 2.2) . In the case of monodisperse
populations or runaway growth one size dominates the average and the ratio is di-

rectly related to 〈ψ〉m as 〈a〉m/〈a〉m = 〈ψ〉1/3
m This ratio is plotted vs. 〈a∗〉m in Fg. 2.12

for various models. It shows the build-up of porosity during the fractal stage, the
stabilization during the compaction stage, up to the stage where the particles rain-
out. In Fg. 2.12 the average sizes of some of these rain-out particles are indicated by
the detached crosses. Note that (for illustrative reasons) the x-axis for these particles
corresponds to porous size, a, rather than compact size, a∗. Properties of the ‘rain-
out’ population are given in Table 2.2. In Fg. 2.12 the temporal stage is indicated by
numbered ticks.

The evolution of the mass-distribution (Fgs. 2.10, 2.11, 2.13) can be divided into



64 Dust coagulation in protoplanetary disks

R
A

IN
-O

U
T

P
A

R
A

M
E

T
E

R
S

m
o

d
el

〈a〉
〈m

〉
〈ψ

〉
〈a/

a
∗〉

〈train
〉

〈t99%
〉

cm
g

r
y

r
y

r
(1)

(2)
(3)

(4)
(5)

(6)
(7)

R
1T

a4-P
2.1

±
0.1

1.4
±

0.1
(8.6

±
0.2)

×
10

1
4.4

±
0.0

(4.7
±

0.2)
×

10
3

(4.5
±

1.0)
×

10
4

R
1T

a4-C
2.4

×
10

−
2

(1.9
±

0.2)
×

10
−

4
1

1
(2.6

±
0.1)

×
10

3
(4.4

±
0.3)

×
10

4

R
5T

a4-P
0.72

±
0.04

(1.4
±

0.1)
×

10
−

2
(1.1

±
0.1)

×
10

2
4.8

±
0.1

(1.9
±

0.1)
×

10
4

(2.2
±

0.3)
×

10
5

R
5T

a4-C
6.7

×
10

−
3

1.2
×

10
−

6
1

1
(8.1

±
0.3)

×
10

3
(2.1

±
0.1)

×
10

5

R
1T

a2-P
7.8

±
0.7

(1.6
±

0.3)
×

10
3

(3.9
±

1.1)
1.6

±
0.1

(2.6
±

0.3)
×

10
2

(4.0
±

19)
×

10
5

a

R
5T

a2-P
24

±
2

(1.7
±

0.3)
×

10
3

(3.6
±

0.1)
×

10
1

3.3
(1.4

±
0.1)

×
10

3
(4.5

±
4.6)

×
10

3
a

R
1T

a6-P
2.1

×
10

−
2

1.3
×

10
−

6
(8.7

±
0.1)

×
10

1
4.4

(1.3
±

0.1)
×

10
3

2.3
×

10
6

R
5T

a6-P
1.3

×
10

−
3

(4.6
±

0.1)
×

10
−

10
(2.0

±
0.0)

×
10

1
2.7

61
±

7.2
1.1

×
10

5

T
a
b

le
2
.2

:
P

ro
p

erties
o

f
th

e
p

article
d

istrib
u

tio
n

at
rain

-o
u

t.
E

n
tries

d
en

o
te:

(1)
m

o
d

el-id
(see

T
ab

le
2.1);

(2)
size

at
rain

-o
u

t;
(3)

m
ass

at
rain

-o
u

t;
(4)

en
larg

em
en

t
facto

r
at

rain
-o

u
t;

(5)
size

en
h

an
cem

en
t

at
rain

-o
u

t;
(6)

tim
e

at
w

h
ich

fi
rst

rain
-o

u
t

o
ccu

rs;
(7)

tim
e-in

terv
al

o
v

er
w

h
ich

99%
o

f
th

e
m

ass
h

as
rain

ed
-o

u
t.

V
alu

es
h

av
e

b
een

av
erag

ed
o

v
er

th
e

50
ru

n
s

w
ith

th
e

erro
r

b
ars

refl
ectin

g
th

e
v

ariatio
n

s
b

etw
een

th
e

50
ru

n
s

o
f

th
e

sim
u

latio
n

.
(T

h
e

sp
read

is
o

n
ly

g
iv

en
w

h
en

th
e

rm
s-v

alu
e

ex
ceed

s
th

e
seco

n
d

sig
n

ifi
can

t
d

ig
it.)

aS
o

m
e

sim
u

latio
n

s
d

id
n

o
t

ach
iev

e
a

99%
rain

-o
u

t
o

f
th

e
d

en
sity,so

th
at

t99%
>

10
7

y
r.

T
h

is
cau

sed
th

e
larg

e
sp

read
.



2.4: Results 65

Fg. 2.10: The mass function
plotted at various times for
the α = 10−4 models. The
panels compare the coagula-
tion of the compact models
(ψ = 1, top panels) with those
where porosity effects are in-
cluded (bottom panels). Left
(right) panels show the coag-
ulation of quartz (ice) parti-
cles at 1 AU (5 AU). Each plot
shows the mass function at
every logarithmic interval in
time from t = 10 yr until t =
107 yr. Greyscales indicate the
spread in the 50 realizations of
the simulation. See page 244 for
a larger, full-color version of this
figure.

3

4

5

6 7

21

three stages. Initially, since particles start out as grains with sizes of 0.1 µm, Brown-
ian motion dominates. The size-distribution is therefore rather narrow, because the
Brownian collision kernel favors the lighter particles. Quickly (∼102 yr), however,
turbulent velocities become dominant and relative velocities are now highest for the
more massive (high τf) particles. Once the first compaction event occurs (dotted line)
τf enters the regime in which it becomes (at least) proportional to size and the pace of
coagulation strongly accelerates toward larger sizes. These findings correspond well
with the simple analytical model of Blum (2004), where in his Fg. 5 the Brownian mo-
tion driven growth is also followed by a stage in which the growth is exponential.
This evolution could be called ‘run-away’, were it not for the fact that (in our case)
the particle distribution is truncated at τrain (Eq. (2.25). The distribution at the first
rain-out event is shown by the dashed line. Thereafter, the mass function collapses
and evolves to a monodisperse population, close to the rain-out size (Fgs. 2.10,2.13).
Two causes conspire to make these particles favored: first, large particles can only be
(efficiently) removed by a collision with a similar-sized particle (and no longer by a
larger particle since these have disappeared); second, in the α = 10−4 models friction
times are always in the τf < ts regime and relative velocities between similar-sized
particles are suppressed. For these reasons, particles in the α = 10−4 models near
rain-out deplete the smaller particles faster than they deplete themselves, and the
size distribution evolves again to monodispersity. Note, however, that this behav-



66 Dust coagulation in protoplanetary disks

Fg. 2.11: Effects of turbulence on the coagulation. Panels show the collisional evolution at 1
AU of the porous models, yet with α values of 10−2 (a), 10−4 (b) and 10−6 (c). The scaling of
the axis is the same throughout the panels. In the α = 10−2 models the spread in the runs
is very large, causing the error bars to overlap. In the α = 10−6 model the particles rain-out
without compacting.

ior is essentially caused by the imposed presence of a sharp cut-off size due to the
rain-out criterion. In reality, a more smooth transition can be expected.

Although the qualitative trends between the porous and compact models are es-
sentially the same— fractal growth, compaction and run-away growth, rain-out and
depletion — it is unambiguously clear that the porous models evolve to larger par-
ticles, as is also seen in Table 2.2 in which the values for the rain-out particles are
tabulated. The size difference at rain-out is ∼2 order of magnitude in size and ∼4
orders of magnitude in mass. Particles only rain-out at τrain and in the porous mod-
els particles have to grow much further before the critical friction time is reached
(Eq. (2.25). The inclusion of porosity in the coagulation models thus allows particles
(when α > 10−4) to grow to cm/dm sizes in the gaseous nebula, i.e., before settling
to the mid-plane.

Apart from determining the size at which particles rain-out, α also determines the
pace of coagulation. In the α = 10−2 models (Fg. 2.11a) coagulation is rapid. Also, a
large degree of stochasticity is seen among different models. In the α = 10−6 models,
on the other hand, the turbulent velocities are very small and the support against
gravity is weak, such that that rain-out happens before any compaction takes place.
These models are most reminiscent of the ‘laminar nebula’, where systematic (i.e.,
settling) velocities dominate and are therefore most prone to gravitational instability
effects (Hubbard & Blackman 2006). The comparison between the various α-models
is perhaps best seen in the ‘evolution tracks’ of Fgs. 2.12. They show that initially all
porous models follow the same (fractal) curve, until the moment compaction occurs.
In the 1 AU, α = 10−2 model a significant compaction of aggregates can clearly be
observed (descending line). After t > 103 yr, this is followed by a slight increase
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Fg. 2.12: Evolution curves of various models. In these panels the enlargement factor is charac-
terized by the ratio of the mass-weighted porous size, 〈a〉m, over the mass-weighted compact
size, 〈acomp〉m, (〈a∗〉m in the text), against 〈acomp〉m. Rising curves correspond to an increase of
porosity due to fractal growth, and horizontal or declining curves indicate compaction. Num-
bers give the temporal stage of the coagulation (i.e., t = 10i). The detached, crosses indicate
the average porous sizes (x-axis) and the size enhancement of the rain-out particles (y-axis).

in 〈a〉m/〈acomp〉m; apparently due to the heavy rain-out, most collisions are again in
the fractal regime.

Comparing the coagulation of the two materials studied here, i.e., quartz for the
1 AU models and ice for the 5 AU models, one sees similarities in their collisional
evolution (see also Fg. 2.13). It seems, however, that the coagulation at 5 AU is some-
what slower. This can be explained naturally because of the lower density, but also
perhaps because compaction is more difficult to achieve due to the higher surface
density (γ) of ices. Although the differences are subtle, one can see, e.g., in Fg. 2.12
that the curves of the α = 10−4, 10−2 porous models level-off at higher 〈a〉m-to-〈a〉
ratio than the corresponding 1 AU curves, indicating compaction is achieved ‘easier’
at 1 AU. Also, at α = 10−2 the 1 AU particles that rain-out are strongly compacted
(an even higher α would have led to fragmentation), while the rain-out particles at 5
AU do not compact considerably before rain-out (see also Table 2.2). Thus, the larger
surface energy (γ) of ices translates into a higher rolling energy and, subsequently,
to decreased compaction.

2.5 Discussion

It now becomes clear that the internal structure of particles, represented here by
the enlargement parameter ψ, is a variable of key importance in models of dust-
aggregation. To illustrate this point further, Fg. 2.14 compares the ‘evolution curve’
of our (default α = 10−4, 1 AU) model with those of compact, PCA and CCA aggrega-
tion (grey curves). The superimposed black curve connects the (m, ψ) values of the
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〈a〉

〈a〉m

5 AU

1 AU Fg. 2.13: Evolution of the
size distribution with time.
The mass-weighted size, 〈a〉m

(solid line), and the mean size,
〈a〉 (dashed curve), are calcu-
lated for the default models
(α = 10−4) at 1 AU (top
lines) and 5 AU (bottom curves).
The data are averaged over
the 50 simulation runs. Af-
ter t & 103 yr the coagulation
drives most of the mass into
the largest particles.

most massive particle resulting from the collision model. The small, erratic structure
in this curve corresponds to the fact that the particles fluctuate stochastically during
the simulation. Furthermore, since we compare single particles here, instead of a
(weighted) mean of the distribution as, e.g., in Fg. 2.12, a fixed point in the figure
corresponds to one particular friction time and lines of equal friction times lie par-
allel to the dashed lines indicating τf = τrain and τf = ts. For the specific choice of
α = 10−4 we see that τrain comes prior to ts and velocities therefore remain modest.
Still, in our collision model the coagulation will reach a point, indicated by a cross
in Fg. 2.14, at which some collisions, having the right mass ratio and relative veloc-
ity, are energetic enough to cause compaction (E > Eroll), which effectively halts
any further increase in porosity. However, due to the earlier extensive build-up of
porosity in the fractal regime, the particle distribution now evolves to larger sizes as
compared to the compact models (Fg. 2.10), causing the rain-out masses to be orders
of magnitudes higher (Table 2.2). Thus, a major part of the growth takes place in
the nebula phase. Large, porous particles are quickly produced, stay in the nebula
mixed with the gas and only settle when they are sufficiently compacted, e.g., by
energetic collisions (this chapter) or shocks (see below).

The curve of our model, with its characteristic bending point due to compaction,
is a direct result of treating porosity as a dynamic variable that is altered by the col-
lisional process. In all other models in Fg. 2.14, on the other hand, compaction is not
incorporated, resulting in straight lines when the growth is in the fractal regime. In
the PCA/CCA fractal models compaction is of course a priori ruled-out. However,
the pre-assumed absence of compaction in the PCA/CCA models is consistent with
the low collision energies in these limiting cases. In CCA, friction times barely grow
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Fg. 2.14: The m-ψ relation
for several aggregation mod-
els. Plotted is ψ(m) for: the
most massive particle in one
of the R1Ta4-P models (black
curve); the PCA, CCA aggre-
gation models, discussed in
§ 2.2.4, (grey curves); and com-
pact (ψ = 1) models. The
dashed lines indicate points of
equal friction times, τrain ≈
500 s and ts ≈ 1 600 s. The
cross shows the point at which
the model experiences the first
compaction event.

(τf ∝ m0.05), the ts ‘threshold’ is not reached and relative velocities vanish for similar
particles. In PCA, on the other hand, relative velocities are higher, but the collision
energy is now suppressed by the reduced mass. Thus, if the coagulation process
would (for some reason) be restricted to these limiting growth modes, aggregates
will not restructure. Fg. 2.14 shows how this affects the overall coagulation process.
It shows, e.g., that compact grains rain-out at ∼10−4 g, ‘PCA grains’ at ∼10−2 g,
porosity-evolving particles of our model at ∼1 g, and ‘CCA particles’ will grow for-
ever! It is clear that the porosity evolution of collisional agglomerates is of decisive
influence on the coagulation process. Modeling the porosity evolution in combina-
tion with a microphysical collision model is therefore a key requirement for a full
understanding of the first stages of planet formation.

To quantify the effects of coagulation on the appearance of the disk, we have
calculated optical depths to the mid-plane in the MMSN. As a first order approxima-
tion, the vertical structure is to be taken of constant density and extends over one
scaleheight. We assume that this layer is represented by the particles of our simu-
lation and that the rain-out particles (which we do not follow) are below it, i.e., at
the mid-plane regions of the disk. The geometrical optical depth (i.e., at visible/UV-
wavelengths) to the mid-plane is then calculated as

τgeom = Hg

∫

dm f (m)πa2. (2.27)

Results are given in Fg. 2.15 for the 1 AU and 5 AU models. In Fg. 2.15a it is seen
that the α = 10−6 models stay optically thick for most of the disk’s evolution. Note
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Fg. 2.15: Geometrical optical depth to the mid-plane as function of time for the 1 AU models
(left) and the 5 AU models (right). The optical depth is computed at every logarithmic interval
in time and also at the point where particles rain-out (grey symbol). For illustrative purposes
the points are connected by lines. Error bars denote the spread throughout the 50 runs of each
model.

also that the α = 10−4 porous models (solid lines) and the α = 10−4 compact models
(dashed-dotted line) do not deviate much in τgeom. This shows again the dual effects
of porosity on the population: it increases the geometrical cross-section, yet it also
speeds up the coagulation, causing more mass to be ‘locked’ inside large particles. At
5 AU (Fg. 2.15b), the timescales are longer and the disks only becomes optically thin
after ∼106 yr when α . 10−4. In the α = 10−2 models, evolution to optical thinness
is very fast at both radii. It is clear that, within the frame-work of these models,
the inner regions of protoplanetary disks are rapidly depleted of small grains unless
α ∼ 10−6 or less.

There is a further serious issue hidden here. All our models show a rapid decline
of the (sub-)micron size population on a timescale of ∼103 yr. This is a well-known
problem in models for grain coagulation in protoplanetary environments: the den-
sities are high enough for coagulation to proceed rapidly (Dullemond & Dominik
2005). Furthermore, the turbulence induced relative velocities promote collisions be-
tween particles with different friction times, i.e., between small and larger particles.
In contrast, observations reveal the presence of copious amounts of small grains in
the disk-photospheres of isolated Herbig AeBe stars and T-Tauri stars, pointing to-
ward the presence of small grains on timescales of some 106 yr (van Boekel et al.
2004, 2005; Meeus et al. 2003; Natta et al. 2007). This discrepancy implies a con-
tinuous replenishment of (sub)micron-sized grains. In particular, it may reflect the
importance of vaporization and condensation processes continuously forming fresh,
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small grains. Likely, this vaporization and condensation would be localized in the
hot and dense, inner regions of the disk and these grains would then have to be
transported upwards and outwards to the disk photosphere through diffusion pro-
cesses. The high degree of crystallinity of silicates in the inner few AU of protoplan-
etary disks also points toward the importance of condensation processes in these
environments (van Boekel et al. 2004). Likewise, the presence of crystalline silicates
in the cold outer regions of protoplanetary disks has been attributed to large scale
mixing of materials in these environments (Bockelée-Morvan et al. 2002; Gail 2004).
Alternatively, the replenishment of small grains is through collisional fragmenta-
tion. These energetic collisions could take place either in the gaseous nebula due
to high relative velocities driven by a high α, or in the mid-plane regions with the
subsequent upwards diffusion of small grains. While it might be difficult to sustain
α & 10−2 over a prolonged period of time, fragmentation in the mid-plane regions
seems viable since more massive particles will reside here. Furthermore, if the mid-
plane becomes dust-dominated (ρd > ρg), shear-turbulence will develop, further
augmenting the collisional energies (Cuzzi et al. 1993).

Further constraints on the collisional growth of grains in protoplanetary disks
are provided by the solar system record; specifically, the chondrules and Ca-Al-rich
Inclusions (CAI), which dominate the composition of primitive meteorites. These
millimeter-size igneous spherules are high-temperature components that formed dur-
ing transient heating events in the early solar system. We realize that the cm-sized
fluff-balls formed in our porous coagulation models are in the right mass-range of
these meteorite components. It is tempting to identify these fluff-balls as the pre-
cursors to the chondrules and CAIs. We might then envision a model where the
collisional evolution is terminated by the flash-heating event, for example a shock or
lightning, which leads to melting and the formation of a chondrule and subsequent
immediate settling. During the settling phase the chondrule may acquire a dust rim
by sweeping up small dust grains or other unprocessed fluff-balls still suspended in
the nebula (Cuzzi 2004). One key point to recognize here is that chondrules show
a spread in age of a few million years (Wood 2005), which indicates that the colli-
sional grain growth process takes place over a much longer timescale than our mod-
els would predict (see above).

In this study we have focused on the agglomeration driven by random motions—
either Brownian or turbulent— high up in the nebula. Growth is then presumed to
be terminated once the aggregate has compacted enough to settle. At that point, the
aggregate will drop-down about one scaleheight after which further growth must oc-
cur for further settling to continue. In reality, instead of the simple two-component
picture of nebula and mid-plane presented in this work, the nebula will acquire a
stratified appearance (Dubrulle et al. 1995), where larger particles with higher fric-
tion times have smaller scaleheights. Collisional evolution models should be able
to include this stratified nature of the disk. This stratification also extends in the
radial direction due to radial drift motions and turbulent diffusion. Incorporation
of these motions into the Monte Carlo code will be challenging. We expect that the
study presented here can serve as the basis for incorporating realistic grain growth
in hydrodynamical models, likely in the form of well-selected ‘collision-recipes’. An
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obvious step would be to include collisions that exceed the Efrag limit in the colli-
sion model. Note, for example, that in the Dominik & Tielens (1997) terminology
what we have called ‘fragmentation’ should in fact be sub-divided in a continuous
range of aggregate disruptions. At first monomers will be lost and only if E ≫ Efrag

are aggregates completely shattered. Other extensions to the model are to allow for
a distribution of monomer sizes and to use monomers of different chemical com-
position. Both will affect the critical energy for restructuring, Eroll. However, with
an increasing number of parameters characterizing the collision, it is worthwhile to
verify experimentally — either through laboratory experiments or through detailed
numerical calculations— which are of prime importance.

2.6 Conclusions

We have presented a model that incorporates the internal structure of aggregates as
a variable in coagulation models. We used the enlargement parameter ψ to represent
the internal structure. It is seen that the internal structure is key to the collisional
evolution, since it crucially affects the dust-gas coupling. However, in the model
presented in § 2.2 ψ is not a static variable. It is altered by the collisional process and
we have constructed simple recipes to include this aspect in coagulation models.

Next, we have applied the new collision model to the collisional evolution of the
turbulent protoplanetary disk, until particles rain-out to the mid-plane. Our main
conclusions are:

1. With the treatment of porosity as a variable, three different regimes can be dis-
tinguished: fractal growth, compaction and fragmentation (Blum 2004) . These
regimes are also reflected in the collisional evolution of the size distribution:
fractal growth (mostly Brownian motion), compaction (growth accelerates) and
rain-out.

2. The collisional evolution of our porosity-evolving model is quantitatively dif-
ferent from PCA/CCA aggregation models in which porosity can be parameter-
ized by a fixed exponent. Therefore, a microphysical collision model is a key
requirement for coagulation models.

3. Due to the porous evolution, particles up to dm-sizes can be suspended in the
gaseous nebula, orders of magnitude larger in mass than in models of compact
coagulation. Therefore, chondrule precursors could have had their origin in
regions above the mid-plane.

4. If α < 10−2, no fragmentation occurs in the gaseous nebula. Therefore, if
10−6 < α < 10−2, the inner nebula will become optically thin on timescales
of ∼104 yr, unless an influx of small grains takes place.
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3
Closed-form expressions for particle

relative velocities induced by
turbulence1

— C. W. Ormel, J. N. Cuzzi—

We present complete, closed-form expressions for random relative velocities

between colliding particles of arbitrary size in nebula turbulence. These re-

sults are exact for very small particles (those with stopping times much shorter

than the large eddy overturn time) and are also surprisingly accurate in com-

plete generality (that is, also apply for particles with stopping times compara-

ble to, or much longer than, the large eddy overturn time). We note that some

previous studies may have adopted previous simple expressions, which we

find to be in error regarding the size dependence in the large particle regime.

3.1 Introduction and outline

Gas in astrophysical environments is often in a turbulent state of motion, constantly
affected by temporally and spatially varying accelerations from eddies having a va-
riety of scales. A particle, due to its inertia, does not instantaneously follow the gas
motions but requires a certain time in order to align with the gas motion. The parti-
cle’s interaction with the gas is captured in the definition of the stopping time of the
particle (sometimes also referred to as friction time),

τf =
3

4cgρg

m

A
, (3.1)

1Originally published in Astronomy & Astrophysics, vol. 466, p. 431 (2007)
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where cg and ρg are, respectively, the sound speed and the volume mass density of
the gas, and m and A the mass and projected surface area of the particle. Due to this
inertial lag, a particle develops a relative velocity with respect to the gas. In addition,
these lags also cause particles to acquire relative velocities among themselves.

While the general problem of calculating these relative velocities has received
considerable attention in the basic fluid dynamics community (see Cuzzi & Hogan
(2003) for references; henceforth CH03), the formalism most frequently used in the
astrophysics community was developed by Völk et al. (1980) and Markiewicz et al.
(1991) (henceforth MMV). In these works the final results are given in terms of inte-
grals that were not solved analytically. Some workers have used simple fits to these
numerical results in their models of dust coagulation; however, simple closed-form
expressions for particle-particle relative velocities would help streamline these mod-
els (e.g., Suttner & Yorke 2001; Dullemond & Dominik 2005; Nomura & Nakagawa
2006; Ormel et al. 2007). Recently, CH03 obtained closed-form expressions from the
MMV model for particle velocities in inertial space vp, for particle-gas relative veloc-
ities vpg, and for relative velocities between two identical particles vpp, but did not
extend their results to the general case of two particles of different stopping times.
Moreover, CH03 stressed the validity of their analytical results for particles with
stopping times much shorter than the large eddy turnover time. In this chapter we
generalize the approach and results of CH03 to obtain closed-form expressions for
relative velocities between particles of arbitrary, and unequal, size. In § 3.2 we define
important quantities and review previous work. In § 3.3 we present two indepen-
dent approaches for obtaining the desired closed-form solutions. In § 3.4 we give
our conclusions and a summary.

3.2 Definitions and previous work

Nebula gas turbulence is generally described as being composed of eddies having
a range of spatial scales ℓ and spatial frequencies k = 1/ℓ, with an energy spec-
trum E(k) ∝ k−5/3 and total energy v2

g/2 per unit mass providing the normalization
condition

v2
g

2
=
∫ ks

kL

E(k)dk, (3.2)

from which E(k) = v2
g/3kL (k/kL)−5/3. The largest, or integral scale, eddies have

spatial scale L = 1/kL, and the smallest, or Kolmogorov scale, eddies have spatial
scale ℓs = 1/ks. The form of E(k) given above is the inertial range expression most
often assumed, with E(k) = 0 for k > ks or k < kL. Völk et al. (1980) used a spectrum
P(k) = 2E(k) and stipulated no smallest scale ℓs for the turbulence, but Weiden-
schilling (1984a) and MMV noted that a finite value for ℓs > 0 had profound effects
on the particle velocities, especially the relative velocities vpp for small particles.

Each eddy wavenumber k has a characteristic velocity v(k) =
√

2kE(k) and overturn
time tk = ℓ/v(k) = (kv(k))−1. Our standard definition of the particle Stokes number
is St = τf/tL, where tL is the overturn time of the largest eddy, generally taken to
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be the local orbit period. The local turbulent intensity is described by its Reynolds
number, Re, defined as the ratio between the turbulent and the molecular kinematic
viscosities, Re = νT/ν. The values for ℓ, v and t at the integral scale then follow from

Re, e.g., ℓs = Re−3/4L and ts = Re−1/2tL. These expressions bring Re into the final
expressions for particle velocities as a limit on certain integrals (cf. CH03 for more
detail). In the notation of astrophysical ‘α-models’, Re = αcgHg/ν = αc2

g/νΩ where
cg, Hg, and ν are the sound speed, vertical scale height, and kinematic viscosity of
the nebula gas and Ω is the orbital frequency.

Völk et al. (1980) introduced the concept of ‘eddy classes’. Class I eddies vary
slowly enough that a particle, upon entering a class I eddy, will forget its initial
motion and align itself to the gas motions of the eddy before the eddy decays or the
particle leaves the eddy. Class II eddies, on the other hand, have fluctuation times
shorter than the particle’s stopping time τf, and fluctuate too rapidly to provide more
than a small perturbation on the particle. The timescale on which an eddy decays is
given by tk, while the eddy-crossing timescale is tcross ≈ ℓ/vrel = (kvrel(k))−1, with
vrel the relative velocity between a grain and an eddy. For an eddy to be of class
I both tk and tcross must be larger than the particle’s stopping time. The boundary
between these classes occurs at k = k∗ (or at tk = t∗) which can be defined as (Völk
et al. 1980, MMV):

1

τf
=

1

t∗
+

1

tcross
=

1

t∗
+ k∗vrel(k∗). (3.3)

It is important to realize that k∗ (or t∗) is a function of stopping time τf, that is,
the boundary separating the two classes is different for each particle. The different
treatment for the two eddy classes k < k∗ and k > k∗ forms the core of the derivation
of the turbulence-induced particle velocities.

All turbulent velocities in this chapter are statistical, root-mean-square, averaged
quantities. The average inertial space particle velocity vp is given by Eq. (6) of MMV.

v2
p =

∫ max(k∗,kL)

kL

2E(k)
(

1 − K2
)

dk +
∫ ks

max(k∗ ,kL)
2E(k) (1 − K) [g(χ) + Kh(χ)] dk,

(3.4)

in which K = τf/(τf + tk). The K2 term in the first integral results from the more
recently preferred ‘n = 1’ gas velocity autocorrelation function (MMV and CH03).
The functions g(χ) = χ−1tan−1(χ) and h(χ) = 1/(1 + χ2) with χ = Ktkkvrel were
first obtained by Völk et al. (1980).

CH03 noted that, for very small particles with τf ≪ tL or St ≪ 1, the second
integral becomes negligible, leaving only the first integral which is analytically solv-
able and for which the upper limit can be extended to ks with negligible error. Here,
to generalize the approach of CH03 to particles of arbitrary size, we approximate
h(χ) = g(χ) = 1 for all particle sizes (see CH03 § 2.2.3 for supporting logic). Nu-
merical calculations of h(χ) and g(χ) validate this approximation to order unity (see
App. 3.A), and we gain further confidence in it from a posteriori comparison with ex-
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act numerical model results. The general expression for v2
p is then the same as in the

τf ≪ tL regime, and the same analytical result is obtained, i.e., CH03,

v2
p =

∫ ks

kL

dk 2E(k)
(

1 − K2
)

= v2
g

(

1 −
St2(1 − Re−1/2)

(St + 1)(St + Re−1/2)

)

. (3.5)

CH03 did not give this explicit result for vp, but merely noted that it was straight-

forward to derive it from their Eq. (19) for vpg and the general relationship v2
pg =

v2
p − v2

g; however we will use it explicitly here.

Comparison of the predictions of this simple expression with detailed numerical
results (MMV, CH03) show that it is indeed a good approximation for arbitrary St.
A more accurate approximation to Eq. (3.4), in which the g and h functions are ap-
proximated as power-laws in k∗/k, is outlined in App. 3.A. Unless St ≪ 1, we can

neglect the Reynolds number term in Eq. (3.5) and obtain vp = vg/
√

1 + St, a well
known result (Völk et al. 1980; Cuzzi et al. 1993; Schräpler & Henning 2004) which
describes the diffusivity of large particles in turbulence.

3.3 Results

3.3.1 k-space approach

MMV (their Eq. (7)) expressed the relative velocities vp1p2 between particles of dif-
ferent stopping times t1 and t2 as

v2
p1p2 = v2

p1 + v2
p2 − 2vp1vp2 ≡ ∆v2

12. (3.6)

Having already derived v2
pi (i = 1, 2) above, we can determine ∆v12 by evaluating the

cross term vp1vp2; this chapter presents analytical solutions of this problem obtained
in two separate ways. In this subsection we retain the wavenumber dependence; in
§ 3.3.2 we transform to time variables. In Eq. (8) of MMV the cross term is given as
a sum over the two particle sizes involved, which we separate here, writing ∆v2

12 =

v2
p1 + v2

p2 − (v2
c1 + v2

c2), where

v2
ci =

2ti

t1 + t2

(

∫ min(k∗1 ,k∗2)

kL

E(k)dk −
∫ min(k∗1 ,k∗2)

kL

E(k)

(

1

1 + tk/ti

)2

dk

)

. (3.7)

Changing variable to x = k/kL, substituting for E(k), and converting stopping time
ti to Stokes number Sti = ti/tL:

v2
ci =

2v2
gti

3(t1 + t2)

[

∫ x∗1

1
x−5/3dx −

∫ x∗1

1

St2
i dx

x5/3(Sti + x−2/3)2

]

, (3.8)

where we have taken, without loss of generality, k∗1 ≤ k∗2. The first integral is trivial
and the second integral can be solved exactly as in Eqs. (17–19) of CH03. In evalu-
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ating the specific value of the integrals above, we need a closed form for the upper
limit x∗1 = k∗1/kL. A simple prescription is readily found by inspection of Fg. 3 of

CH03: x∗1 = k∗1/kL = 0.5St−3/2
1 + 1. That is, the boundary eddy for particles with

stopping time t1 is that for which tk ∼ t1 until t1 > tL, beyond which it remains
constant. This is merely a convenient mathematical shorthand to keep everything in
closed form. Then, repeating the analytical solution of CH03 (Eqs. (17–19)) we obtain

v2
ci = v2

g
ti

(t1 + t2)

[

(1 − x∗1
−2/3) −

(

Sti

1 + Sti
−

Sti

1 + Stix
∗
1

2/3

)]

. (3.9)

This solution for the cross term is easily combined with Eq. (3.5) to obtain expres-
sions for particle-particle relative velocities ∆v2

12. Further manipulation of these ex-
pressions may be possible, but the important point here is that ∆v12 can be expressed
in closed form as function of St1, St2, vg, and Re. With a few minutes of algebra, sim-
pler expressions can be found in the limiting regimes of interest (St1 ≪ 1,≫ 1, etc.)
which agree well with those which we present in the next section, for analytical so-
lutions obtained in the time domain instead of the wavenumber domain, and where
an analytical solution for the boundary k∗(t∗) is used rather than the form for x∗1
adopted above. It should be recalled that, for very small particles τf < ts, x∗1 has an

upper limit of ks/kL = Re3/4 (see, e.g., CH03, Fg. 3).

3.3.2 t-space approach

The integrals expressing v2
pi and v2

ci are transformed into a simpler form by changing

variables from k to tk. Since tk = 1/kv(k) =
(

k
√

2kE(k)
)−1

and E(k) = Ak−5/3 for

a Kolmogorov power spectrum (where A is the normalization factor), we obtain that

E(k)dk = 3
2

√
2A3/2dtk. Now, A = 1

3 v2
gk2/3

L from the normalization of the turbulent

spectrum (Eq. (3.2)), kL = (vLtL)−1 with vL the velocity of the largest eddy, and
v2

L = 2
3 v2

g also by normalizing the power spectrum (see CH03). We then end up with

E(k) dk =
1

2

v2
g

tL
dtk, (3.10)

which can be substituted into all the integrals, putting them into a simpler form. For
instance, Eq. (3.5) becomes for particle i

v2
pi =

v2
g

tL

∫ tL

ts

1 −

(

ti

ti + tk

)2

dtk =
v2

g

tL

[

tk +
t2
i

ti + tk

]tL

ts

. (3.11)

Similarly, the cross term becomes

v2
ci =

v2
g

tL

2ti

t1 + t2

∫ tL

t∗12

1 −

(

ti

ti + tk

)2

dtk =
v2

g

tL

2ti

t1 + t2

[

tk +
t2
i

ti + tk

]tL

t∗12

(3.12)
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With t∗12 = max(t∗1 , t∗2) and ts ≤ t∗12 ≤ tL since t∗ refers to an eddy’s turn-over time.

We now solve for ∆v2
12 by splitting the integral in Eq. (3.11) at t∗12 and subtracting the

corresponding vci terms from Eq. (3.12) to get

∆v2
12 =

v2
g

tL

([

tk +
t2
1

t1 + tk

]t∗12

ts

+

[

tk +
t2
1

t1 + tk

]tL

t∗12

−
2t1

t1 + t2

[

tk +
t2
1

t1 + tk

]tL

t∗12

+ (1 ↔ 2)

)

, (3.13)

where the (1 ↔ 2) notation indicates interchange between particles 1 and 2. With
further manipulation and cancellation of terms, the previous expression simplifies
slightly to

∆v2
12 =

v2
g

tL





[

tk +
t2
1

t1 + tk

]t∗12

ts

+
t2 − t1

t1 + t2

[

t2
1

t1 + tk

]tL

t∗12

+ (1 ↔ 2)



 (3.14)

= ∆v2
II + ∆v2

I

This is perhaps the most concise way to write the expressions for ∆v2
12. The first term

we call ∆v2
II since this term involves class II (fast) eddies. If t∗12 = tL (heavy particles)

all eddies are fast and only this term remains. Conversely, if t∗12 = ts (small particles)
the contribution from ∆vII vanishes and the second term, ∆vI, determines relative
velocities. In the intermediate regime, ts < t∗12 < tL, both terms contribute. Written
in terms of the Stokes numbers these terms becomes

∆v2
I ≡

v2
g

tL

t2 − t1

t1 + t2

[

t2
1

t1 + tk

]tL

t∗12

+ (1 ↔ 2)

= v2
g

St1 − St2

St1 + St2

(

St2
1

St∗12 + St1
−

St2
1

1 + St1
− (1 ↔ 2)

)

(3.15a)

∆v2
II ≡

v2
g

tL

[

tk +
t2
1

t1 + tk

]t∗12

ts

+ (1 ↔ 2)

= v2
g

(

(St∗12 − Re−1/2) +
St2

1

St1 + St∗12
−

St2
1

St1 + Re−1/2
+ (1 ↔ 2)

)

(3.15b)

Note again that since ts ≤ t∗12 ≤ tL we also have that Re−1/2 ≤ St∗12 ≤ 1. Below, we
will first solve for St∗12, and then consider solutions for ∆v12 in various limiting cases
of the particle stopping times.
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Fg. 3.1: The function 2
3 y∗(y∗ −

1)2 − 1/(1 + y∗). If τf ≪
tL and vsys = 0 (no system-
atic velocity drifts; see § 3.3.3)
this equation is equal to zero
and we find a solution y∗ =
t∗/τf ≈ y∗a = 1.6. On the
other hand, for τf ∼ tL, the
RHS of Eq. (3.18d) is ≈−0.5
and y∗ ≈ 1.

0.0 0.5 1.0 1.5 2.0

y∗ = t∗/τf

−1.0

−0.5

0.0

0.5

1.0

F
(
y
∗
)
≡
2 3
y
∗
(
y
∗
−
1
)
2
−
1
/
(
1

+
y
∗
) y∗a = 1.6

F(y∗) = 0

Solving for t∗

The relative velocity between a particle with stopping time τf and an eddy k, is given
by Völk et al. (1980), Eq. (15):

v2
rel(k) = v2

sys + 2
∫ k

kL

E(k′)

(

τf

τf + tk

)2

dk′. (3.16)

vsys is any systematic velocity component not driven by turbulence— such as due to
pressure-gradient driven azimuthal headwind, the ensuing radial drift, or vertical
settling under solar gravity. We can integrate this equation in the same fashion as
Eq. (3.12) and arrive at

v2
rel(k∗) = v2

sys +
v2

g

tL

[

τ2
f

τf + tk

]t∗

tL

= v2
sys +

v2
gτf

tL

(

1

1 + y∗
−

1

1 + yL

)

, (3.17)

in which y = tk/τf. Also, using the definition for tk (see text above Eq. (3.10)), k∗ can

be expressed as (k∗)2 = (2A)−3/2t∗−3 = 3
2 v−2

g tLt∗−3. Inserting the expressions for

k∗ and v2
rel into Eq. (3.3), assuming that vsys = 0 for simplicity (see however § 3.3.3),

we obtain:

1

k∗

(

1

τf
−

1

t∗

)

= vrel ⇒ (3.18a)



80 Particle relative velocities in turbulence

10−1 100 101

St

10−1

100

S
t∗

=
t∗
/
t L

y∗a = 1.6 approx.

exact y∗

k∗

kL
=
1
2
St−3/2 + 1

Fg. 3.2: Three different as-
sumptions for t∗ (or the related
k∗) are shown here.

t∗
(

t∗

τf
−

t∗

t∗

)2

= (2A)−3/2v2
rel ⇒ (3.18b)

t∗ (y∗ − 1)2 = 3
2 τf

(

1

1 + y∗
−

1

1 + yL

)

⇒ (3.18c)

2
3 y∗ (y∗ − 1)2 −

1

1 + y∗
= −

1

1 + yL
, (3.18d)

where we have defined y∗ = t∗/τf and yL = tL/τf = St−1. The LHS of Eq. (3.18d)
is plotted in Fg. 3.1. If yL ≫ 1 for small particles, the RHS of Eq. (3.18d) is negligible
and the numerical solution for y∗ becomes y∗ ≈ y∗a = 1.6, or t∗ ≈ 1.6τf. On the other
hand, when τf nears tL, the −1/(1 + yL) term causes the RHS of Eq. (3.18d) to drop
to −0.5, and y∗ → 1. For τf > tL we always have that t∗ = tL; i.e., for such a particle
all eddies are of class 2. In Fg. 3.2 we compare the exact solution (dashed line) for t∗

with the t∗ ≈ y∗a τf = 1.6τf approximation (solid curve; in both cases t∗ ≤ tL is simply

enforced), and the empirical function k∗/kL = 1 + 1
2 St−3/2 (dotted line; see § 3.3.1).

The exact solution for ∆v12 (Eq. (3.14)) is given in Fg. 3.3 both for t1 ≫ t2 (solid
curve) and for particles of equal stopping times (dashed curve). A Reynolds number
of Re = 108 has been adopted.

3.3.3 The role of vsys: eddy-crossing effects

Systematic velocities vsys due to vertical settling, and pressure-gradient headwinds
and drifts, will occur (e.g., Nakagawa et al. 1986). Because particles drift through
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eddies, their transit time is affected (because vrel is larger) and the boundary between
class I and II eddies shifts. Cuzzi et al. (1993) include this effect, due to vertical
settling, in their model of particle diffusion (their Eq. (43)). The model presented
here offers a generalized way of treating this effect, which we will only sketch here.

Repeating the procedure outlined in § 3.3.2 but retaining the vsys term in vrel

(Eq. (3.17)), we end up with Eq. (3.18d) including a correction term

2
3 y∗ (y∗ − 1)2 −

1

1 + y∗
≡ F(y∗) = −

St

1 + St
+

1

St

v2
sys

v2
g

, (3.19)

where we have substituted St = 1/yL. The correction term can be roughly con-
strained using an estimate of the systematic drift velocity vsys ∼ (St/(St + 1))βvK,
where vK is the Keplerian velocity at distance R from the Sun, Ω is the orbit fre-
quency, and β = (Hg/R)2 is a radial pressure gradient parameter; also we take

vg = α1/2cg (see, e.g., Nakagawa et al. 1986 or Cuzzi & Weidenschilling 2006). Then

vsys

vg
=

St

St + 1

βvK

α1/2cg
=

St

St + 1

βRΩ

α1/2HgΩ
=

St

St + 1

β

α1/2β1/2
=

St

St + 1

(

β

α

)1/2

,

(3.20)

and Eq. (3.19) becomes,

F(y∗) =
St

1 + St

(

β/α

1 + St
− 1

)

. (3.21)

Normally β ∼ 2 × 10−3 is assumed (Nakagawa et al. 1986; Cuzzi et al. 1993), but
its real value, and that of α, are not well known. Equation (3.21) shows that for a
given value of St, F(y∗) increases with increasing β/α. Consequently, y∗ = t∗/τf is
also higher (see Fg. 3.1). The boundary between the class I and II eddies therefore
shifts to higher values of t∗, that is, there are less class I eddies for high β/α and the
St∗ = 1 upper limit (when t∗ = tL) is reached at lower Stokes numbers. Inserting

the definition of F(y∗) (LHS of Eq. (3.19)) into Eq. (3.21) with y∗ = tL/τf = St−1 and
solving for St, we find that the Stokes number at which St∗ = 1 occurs at

StSt∗=1 =

(

1 +

√

3β

2α

)−1/2

. (3.22)

For example, for β/α = 1, St∗ reaches its upper limit at St ≈ 0.67.

In the small particle regime (St ≪ 1), however, the exact value of β/α is unim-
portant since F(y∗) is always close to zero, and the y∗a approximation is justified. It

is only for β/α & St−1 that the RHS of Eq. (3.21) starts to becomes significant and
y∗ > y∗a . This is the weakly-turbulent or non-turbulent regime where class II eddies
dominate even for small particles. In practise, however, it means that eddy cross-
ing effects are important only if turbulence is very weak and we will not treat them
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Fg. 3.3: Exact solution to
Eq. (3.14) for ∆v12 in the case
of identical particles (dashed
curve) and t1 ≫ t2 (solid curve)
for a Reynold number of
108. The dotted curves are
approximations to Eq. (3.14)
given by Eqs. (3.24, 3.25, 3.26).

further in this chapter.

3.3.4 Limiting solutions

As intuition-building examples we obtain simple, closed-form expressions for ∆v2
12

in various limiting regimes from the t-space solutions; similar results are easily ob-
tained from the k-space solutions (§ 3.3.1). Without loss of generality we take particle
1 to have the largest stopping time, i.e., t1 ≥ t2 and t∗12 = t∗1 . Moreover, we assume

that ts ≪ tL; i.e., Re1/2 ≫ 1 and there is an extended inertial range of eddies. Recall

again that St∗12 = Re−1/2 for t1 < ts/y∗a , and that St∗12 will not exceed 1.

Tightly coupled particles, t1, t2 < ts

In this limit all eddies are of class I and ∆v2
12 → ∆v2

I . For each particle, the second
term on the RHS of Eq. (3.15a) is negligible; thus

∆v2
12 = v2

g
St1 − St2

St1 + St2

(

St2
1

St1 + Re−1/2
−

St2
2

St2 + Re−1/2

)

. (3.23)

In the very small particle regime (t1 ≪ ts), Sti ≪ ts/tL = Re−1/2 and

∆v2
12 = v2

g
tL

ts
(St1 − St2)

2 . (3.24)
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Since v2
g = 3

2 v2
sRe1/2 = 3

2 v2
s tL/ts, this expression transforms directly to ∆v12 =

√
3/2(t1 − t2)vs/ts, in good agreement with the heuristic, although physically moti-

vated, expression ∆v12 = vs(t1 − t2)/ts of Weidenschilling (1984a).

Intermediate regime, ts ≤ t1 ≤ tL.

If t1 (the stopping time of the larger particle) approaches the Kolmogorov scale, two

changes occur. First, the St2
1/(St∗12 + St1) term in Eq. (3.15a) now becomes linear with

St1, since St∗12 grows proportional to St1 (the second term is still negligible through-
out most of this regime). Relative velocities therefore increase as the square-root of
stopping time. Second, class II eddies also contribute to ∆v2

12 (Eq. (3.15b)). This con-
tribution scales also with St1, but is significantly larger and does not disappear when
t1 = t2. From a physical point of view, class II eddies act as small, random kicks to
the particle trajectory, while two particles captured by a class I eddy are subject to
the same, systematic, change in motion. Class II eddies are therefore much more
effective in generating velocity differences for similar-sized particles.

In the ‘fully intermediate regime,’ i.e., ts ≪ t1 ≪ tL, we can also ignore the Re−1/2

terms in Eq. (3.15b). In addition, the t∗/τf = y∗a approximation holds. Upon writing
St2 = ǫSt1, Eqs. (3.15a, 3.15b) become linear with St1 and we can write ∆v2

12 as (see
App. 3.B)

∆v2
12 = v2

g

[

2ya − (1 + ǫ) +
2

1 + ǫ

(

1

1 + ya
+

ǫ3

ya + ǫ

)]

St1, (3.25)

where ǫ ≤ 1 is the ratio between the stopping times and ya = 1.6. For t1 ≫ t2

we then find that ∆v2
12 ≈ 3.0v2

gSt1, while for equal particles the numerical factor
goes down to 2.0. Written in terms of stopping times the relative velocities become,
∆v12 = [1.7 ÷ 2.1]vL

√
t1/tL. This also compares well with Weidenschilling (1984a)

fits for this regime (who gives prefactors of 2.1 and 3.0, respectively). Note, however,
that our full expressions for ∆v (Eqs. 3.14, 3.15a, 3.15b) also capture the behavior near
the ts and tL ‘turning points’ (see Fg. 3.3).

Heavy particles, t1 > tL

If t1 > tL, St∗12 = 1 and there is no contribution from class I eddies (Eq. (3.15a)).

Also, we can neglect the Re−1/2 terms in Eq. (3.15b) and the relative velocities simply
become

∆v2
12 = ∆v2

II = v2
g

(

1

1 + St1
+

1

1 + St2

)

. (3.26)

This result can, of course, directly be obtained from the vpi terms (Eq. (3.11)) since
the cross-term vanishes in this regime. For small St2 relative velocities are still ∼vg;
however, if both Stokes numbers are large, the relative velocity decreases roughly
with the square root of the smallest particle stopping time. Note that the linear fit of
Weidenschilling (1984a) in this regime (his Eq. (15)) is inappropriate (see, however,
Völk et al. 1980; Weidenschilling 1988; Weidenschilling & Cuzzi 1993; Cuzzi et al.
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Fg. 3.4: Contour plots of
particle-particle, turbulence
induced, relative velocities
∆v12 normalized to vg. (a) Nu-
merical results of Markiewicz
et al. (1991), without inner
scale (Re → ∞). (b) Analogous
result from our closed-form
expressions with the fixed
y∗ ≈ y∗a = 1.6 approximation
(§ 3.3.2). (c) Like (b), but with
an exact solution for y∗ and
with Re = 108. (d) Using
the CH03 formula for k∗,
k∗/kL = 0.5St∗ + 1, and also
with Re = 108. Contours are
drawn twice per logarithmic
decade (at ∆v12/vg = 3 × 10i

and at 10i) with an additional
contour at 0.8 and 1.15. See
page 245 for a larger, full-color
version of this figure.

1993 in which a square-root fall off is advocated). Since an explicit, closed-form solu-
tion to the Völk et al. (1980) and MMV expressions for ∆v12 has not previously been
available, many dust coagulation models (e.g., Suttner & Yorke 2001; Dullemond &
Dominik 2005; Ormel et al. 2007) have relied on the Weidenschilling (1984a) fits to
calculate relative velocities. Turbulent motions and relative velocities for particles in
the τf > tL regime have therefore been underestimated in these calculations. How-
ever, concerning these works, we also think no major conclusions have been affected,
since the error is introduced only for large dust particles, that is, if the system is al-
ready well evolved.

3.3.5 Contour plots

Following Völk et al. (1980) and MMV we also present our results as contour plots.
Figure 3.4a shows, for comparison, the results of MMV, obtained by numerical eval-
uation of the integrals involved without an inner turbulent scale (Re → ∞). The next
three panels of Fg. 3.4 show the result using our closed-form expressions derived
from Eq. (3.14). In Fg. 3.4b, the y∗a approximation has been used and, like Fg. 2 of
MMV (Fg. 3.4a), the inner scale of the turbulence is extended to infinity so that Eqs.
(3.25, 3.26) apply. Somewhat systematically higher values for ∆v12 when compared
to MMV can be explained by the CH03 approximation for vp (see Eq. (3.5)) but these
discrepancies are less than ∼10%. In Fg. 3.4c and Fg. 3.4d we show the contour plots
corresponding to the other formulations for k∗ (see Fg. 3.2), i.e., the exact solution
for y∗ (Fg. 3.4c) and the CH03 empirical approximation (Fg. 3.4d). The differences
between these three methods for determining k∗ differ around the St = 1 point (see
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Fg. 3.2) and are reflected in the contour plots. For St ≈ 1, Fg. 3.4c compares best to
the numerical result of MMV, but no significant errors are made when using the y∗a
approximation or the CH03 formula for k∗.

In Fg. 3.4c and Fg. 3.4d, a Reynolds number of Re = 108 has been adopted. For
St < 10−4, therefore, velocities are greatly suppressed since only class I eddies re-
main to generate relative velocities and relative velocities disappear completely for
equal friction times. Also, the contours are much closer spaced since in this limit the
velocity ∆v12 is proportional to St (see Eq. (3.23)).

3.4 Conclusions

We have extended and, essentially, completed the work of Cuzzi & Hogan (2003),
who derived explicit, closed-form expressions for particle velocities in turbulence
based on the physics originally developed by Völk et al. (1980) and Markiewicz et al.
(1991). Within the framework of this physics, the only approximations used here
are in Eq. (3.5) for the particle velocities (where a posteriori comparisons with exact
numerical solutions indicate the approximation is well justified) and in Eqs. (3.17) et
seq where the systematic velocity vsys is neglected to simplify calculating the bound-
ary between eddy classes (generalizing this step should be straightforward, how-
ever). The full analytic expression for ∆v12 is given by Eq. (3.14) (or by the sum of
Eqs. (3.15a, 3.15b)), but more simple, explicit expressions apply in restricted regimes

(provided Re1/2 ≫ 1):

– Equation (3.24), in the very small particle limit (t1 ≪ ts);

– Equation (3.25), in the ‘fully intermediate’ regime, i.e., for ts ≪ t1 ≪ tL;

– Equation (3.26), for t1 ≥ tL.

Near the t1 = ts and t1 = tL turning points the behavior is more complex (see Fg. 3.3)
and for accurate analytical approximations one has to revert to the full expressions
for ∆v given by Eqs. (3.14, 3.15a, 3.15b).

Acknowledgment. The authors thank Robert Hogan for computational assistance in creating
Fg. 3.5 and the referee, H. Völk, for positive feedback. C.W.O. acknowledges support from
the Netherlands Organisation for Scientific Research (NWO) that made this work possible.
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3.A A more accurate closed-form solution for vp and all related
velocities, using power-law approximations to the functions g
and h

In § 3.2 the very simple approximation g(χ) = h(χ) = 1 was introduced for all stokes
numbers St and eddy scales k. It proves to be quite adequate for most purposes;
however, as noted in § 3.3.5, small inaccuracies remain at the 10% level because the
approximation overestimates the contributions of fast eddies to v2

p and other velocity
components. Figure 3.5 shows the detailed behavior of the functions g and h for
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Re = 108 for Stokes numbers of St = 0.01, 0.1, and 1.0. The inflection point for all

three values of St is at k = k∗ (recall that k∗/kL ≈ 1 + 1
2 St−3/2). For k > k∗, the

functions are well approximated by power-laws of −1/3 and −3/4, respectively,
i.e., g(k) = (k/k∗)−1/3 and h(k) = (k/k∗)−3/4. The success of the approximation
of § 3.2 is due to the fact that the power in the weighting function kE(k) (solid grey
line; we multiply with k since we compare logarithmically) decreases rapidly with
increasing k; thus by the time the assumption g(k) = h(k) = 1 becomes really bad,
the relative contribution of successive terms has become small. For small St, the
weighted contribution of eddy power has already become very small even before
k ∼ k∗ (the logic of CH03). For St = 1 or larger, the weighting function has dropped
by nearly an order of magnitude by the time h(k) (the faster-decreasing function) has
dropped to 0.3 (dotted line), and this seems to account for the success of our simple
assumption.

This behavior can be understood from the definition of χ = Ktkkvrel. For k ≫ k∗,
K ≈ 1 and vrel . vg are both constant. Then, because tk ∝ k−2/3, χ scales as χ ∝ k1/3

and becomes large at large k. Since g(χ) = arctan(χ)/χ ∝ χ−1 for large χ, we get
that g(k) ∝ k−1/3. Similarly, h(χ) ∝ k−2/3, which is a bit shallower than the −3/4
exponent observed over most regions of interest (Fig 3.5). While the −2/3 exponent
is reached at large k, the −3/4 exponent seems more appropriate at intermediate
k. Yet, in our subsequent analysis, we will use the large-k limit for this exponent
(−2/3) because it simplifies the math. Thus, we approximate the g and h behavior
as follows: unity for k < k∗, and power laws in k/k∗ with exponents of −1/3 and
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−2/3 for k > k∗. Then Eq. (3.4) becomes

v2
p =

∫ k∗

kL

2E(k)
(

1 − K2
)

dk +
∫ ks

k∗
2E(k) (1 − K)

[

(

k

k∗

)−1/3

+ K

(

k

k∗

)−2/3
]

dk.

(3.27)

Where we have that ks ≤ k∗ ≤ kL such that in the case of very small or very large
particles one of the integrals vanishes (§ 3.3.2). Since the approximation g = h = 1
still holds for k < k∗ (or for t > t∗) the velocities resulting due to class 1 eddies
(Eq. (3.15a)) are not affected; the new approximation only affects Eq. (3.15b). By writ-
ing K = St/(St + x−2/3), E(k) = EL(k/kL)−5/3 ∝ x−5/3 with x = k/kL the solution
to Eq. (3.27) involves integrals of the form

∫

x−5/3+p

(

St

St + x−2/3

)n=[1,2]

dx (3.28)

with n = 2 for the K2 term and p = −1/3 or −2/3. These integrals can be solved
analytically. Going to ‘t-space’, however, gives somewhat cleaner solutions and we
will from here on follow that approach and show how it affects relative velocities, i.e.,
∆vII. After the change of variables (tk/t∗ = (k/k∗)−2/3) the second term of Eq. (3.27)
becomes

v2
g

tL

∫ t∗

ts

(1 − K)

(

tk

t∗

)1/2

+ (1 − K)K

(

tk

t∗

)

dtk. (3.29)

We now introduce the dimensionless variable y = tk/τf (cf. Eq. (3.17)). Then tk/t∗ =
y/y∗ with y∗ = t∗/τf. Also K = 1/(1 + y) and 1 − K = y/(1 + y) and Eq. (3.29)
becomes

v2
gτf

tL

∫ t∗/τf

ts/τf

(y∗)−1/2 y3/2

1 + y
+ (y∗)−1 y2

(1 + y)2
dy =

v2
gτf

tL

{

(y∗)−1/2
[

Ih(y)
]t∗/τf

ts/τf

+ (y∗)−1
[

Ig(y)
]t∗/τf

ts/τf

}

(3.30)

in which the functions Ih(y) and Ig(y) are defined as

Ih(y) ≡
∫ y

0

z3/2

1 + z
dz =

(

2

3
y − 2

)

√
y + 2 arctan(

√
y) (3.31a)

Ig(y) ≡
∫ y

0

z2

(1 + z)2
dz =

(2 + y)y

1 + y
− 2 log(1 + y) (3.31b)

The expressions for ∆vII now consist of several contributions. First, Ih(y) and Ig(y)
are evaluated at both the upper (y∗) and lower (ys) limits. This must be done for
both particles 1 and 2, because the ∆vII term (Eq. (3.15b)) has separate contributions
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from each particle. For the particle of highest friction time (say this is t1) the power-
law approximation for g and h holds over the range ∆vII is calculated, i.e., τf ≤
t1k ≤ t∗12 = t∗1 . However, for the second particle the power-law approximation only
holds for t2k ≤ t∗2 , while for the remaining range over which the integral in ∆vII is
evaluated, i.e., t∗2 ≤ t2k ≤ t∗1 , the g = h = 1 approximation applies.

This gives us several terms that contribute to ∆vII. Collecting these terms, the
new expression for ∆vII becomes

∆vII =
v2

g

tL

{

t1

(

t∗1
t1

)−1/2 [

Ih(y)

]t∗1 /t1

ts/t1

+ t1

(

t∗1
t1

)−1 [

Ig(y)

]t∗1 /t1

ts/t1

+ (1 ↔ 2)

+

[

tk +
t2
2

t2 + tk

]t∗1

t∗2







, (t1 ≥ t2). (3.32)

Although still fully analytical, this more accurate expression for ∆vII is also more
complicated and we did not present it in the main body of the chapter. Equation (3.32)
is useful, however, for readers whose applications demand this higher level of accu-
racy.

3.B Derivation of Eq. (3.25)

We consider the limiting case of ts ≪ t1 ≪ tL. The y∗a approximation for St∗12 then
holds, i.e., St∗21 ≈ y∗aSt1 with ya = 1.6. We will now argue that we can neglect the

Re−1/2 terms in Eq. (3.15b). For particle 1 this is obvious since St1 ≫ Re−1/2. The

last term (where Re−1/2 is in the denominator) then becomes simply −St1. However,
for the interchange term a similar approximation

St2
2

St2 + Re−1/2
≈ St2, (3.33)

is not that obvious since we have not put a constraint on St2. For example, if St2 ≪

Re−1/2 the Re−1/2 term dominates the denominator. However, in that case this term
and its approximation are small anyway compared to −St1, such that by making the

approximation in Eq. (3.33) our final result is not affected. Similarly, if St2 ∼ Re−1/2,

Eq. (3.33) (which goes to ∼ 1
2 Re−1/2) or its approximation (∼Re−1/2) are insignificant

since St1 ≫ Re−1/2. Only if ǫ ∼ 1, i.e., St2 ≫ Re−1/2, does the St2 term matter, but
then the approximation in Eq. (3.33) is well justified. All terms in Eq. (3.15b) are then
linear in Stokes and we can reduce it to

∆v2
II

v2
g

=

(

2y∗a − (1 − ǫ) +
1

1 + y∗a
+

ǫ2

ǫ + y∗a

)

St1, (3.34)
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with ǫ = St2/St1 ≤ 1. Similarly, Eq. (3.15a) becomes

∆v2
I

v2
g

=
1 − ǫ

1 + ǫ

(

1

y∗a + 1
−

ǫ2

y∗a + ǫ

)

St1. (3.35)

Combining these expressions and collecting the 1/(1 + y∗a) and ǫ2/(y∗a + ǫ) terms
then gives Eq. (3.25).
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Co-accretion of chondrules and dust in

the solar nebula1

—C. W. Ormel, J. N. Cuzzi, A. G. G. M. Tielens—

We present a mechanism for chondrules to stick together by means of com-

paction of a porous dust rim they sweep up as they move through the dusty

nebula gas. It is shown that dust aggregates formed out of micron-sized grains

stick to chondrules, forming a porous dust rim. When chondrules collide, this

dust can be compacted by means of rolling motions within the porous dust

layer. This mechanism dissipates the collisional energy, compacting the rim

and allowing chondrules to stick. The structure of the obtained chondrule-

dust agglomerates (referred to as compounds) then consists of three phases:

chondrules, porous dust, and dust that has been compacted by collisions. Sub-

sequently, these compounds accrete their own dust and collide with other com-

pounds. The evolution of the compound size distribution and the relative im-

portance of the phases is calculated by a Monte Carlo code. Growth ends, and

a simulation is terminated when all the dust in the compounds has been com-

pacted. Numerous runs are performed, reflecting the uncertainty in the phys-

ical conditions at the chondrule formation time. It is found that compounds

can grow by 1-2 orders of magnitudes in radius, upto dm-sizes when turbu-

lence levels are low. However, relative velocities associated with radial drift

form a barrier for further growth. Earlier findings that the dust sweep-up by

chondrules is proportional to their sizes are confirmed. We contrast two scenar-

ios regarding how this dust evolved further towards the densely packed rims

seen in chondrites.

1Originally published in The Astrophysical Journal, vol. 679, p. 1588 (2008)
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4.1 Introduction

Protoplanetary nebulae have been studied in increasing detail from visual to mi-
crowave wavelengths (Meyer et al. 2007; Watson et al. 2007), and hundreds of ex-
trasolar planetary systems have been discovered, but the ‘primary accretion’ stage
of the planetary formation process — that which leads from interstellar grains to
planetesimals large enough to decouple from the nebula gas (asteroid- and comet-
nucleus size objects)— remains obscure. In this particle size range, coupled particle-
gas dynamics dominates the evolution, as reviewed recently by Cuzzi et al. (2005),
Cuzzi & Weidenschilling (2006), and Dominik et al. (2007). The main processes
which have been hypothesized for primary accretion include (i) incremental growth
by sticking of small grains to each other and to larger particles, (ii) various kinds of
instabilities occurring in a particle-rich midplane region, and (iii) formation of plan-
etesimals from dense zones of particles that form in turbulence due to vorticity or
pressure effects.

A critical but unknown nebula question in this stage is whether turbulence is
present, and if so, what its intensity is (Stone et al. 2000; Gammie & Johnson 2005).
If the nebula is nonturbulent, particles of all sizes can settle into a dense layer near
the midplane where incremental growth is fairly robust for expected, but still poorly
known and therefore somewhat ad-hoc, sticking properties (Weidenschilling & Cuzzi
1993; Cuzzi et al. 1993; Weidenschilling 1997, 2000, 2004). This is because the dense
particle layer drives the entrained gas to corotate, and relative velocities between
equal-size particles would largely vanish. The high local mass density ensures that
growth is rapid (Weidenschilling 2000)— perhaps too rapid (Cuzzi et al. 2005). Vari-
ous instabilities in such a layer, mostly gravitational, have been studied for decades
(Goldreich & Ward 1973; Sekiya 1998; Youdin & Shu 2002; Youdin & Goodman 2005),
but these are precluded if the nebula is even weakly turbulent (Cuzzi & Weiden-
schilling 2006).

Astronomical and planetary observations seem to be most naturally reconciled
with turbulent nebulae (Dullemond & Dominik 2005; Cuzzi et al. 2005; Brownlee
et al. 2006; Zolensky et al. 2006; Ciesla & Cuzzi 2007). A number of studies indicate
that turbulence excites meter-size particles to relative velocities at which they prob-
ably disrupt each other (Weidenschilling 1988; Benz 2000; Sirono 2004; Langkowski
et al. 2008), posing a barrier to further growth. However, some recent studies suggest
that turbulence itself can concentrate particles of different sizes, in different ways,
and trigger rapid planetesimal formation (Cuzzi et al. 2001, 2007; Rice et al. 2006; Jo-
hansen et al. 2007). Thus, in spite of the ongoing uncertainty in just how turbulence
may be maintained (Stone et al. 2000; Mukhopadhyay 2006), it is sensible to consider
its effect in model studies. This collisional disruption limit, combined with the rapid
inward drift of m-size particles by which they are ‘lost’ from the local region, led to
the concept of a ‘m-size barrier’ or bottleneck to growth; once large particles exceed
this barrier, relative velocities become lower, allowing them to grow further and to
drift less rapidly out of the accreted region. Our studies were initially motivated by a
desire to see if growth into loose fractal clusters and subsequent packing could allow
the m-size barrier to be crossed.

In the conceptually simplest models, growth occurs by simple sticking of parti-
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cles (Weidenschilling 1997, 2000, 2004; Blum 2004). While it goes against our earth-
bound intuition that macroscopic particles can stick to each other, some microgravity
and earth-based experiments show that, while bouncing transpires at intermediate
velocities, sticking prevails for both low (less than a meter/second) and high (for
13− 25 m s−1) relative velocities (Blum & Wurm 2000; Blum & Schräpler 2004; Wurm
et al. 2005; Marshall et al. 2005; Dominik et al. 2007). Other experiments indicate that
certain solids (water and methanol ice, organic material) are ‘stickier’ than others
(silicates) (Bridges et al. 1996). However, no significant amount of these especially
sticky materials has been found in primitive meteorites. Still, entire chondrites (and
by inference entire parent bodies) are composed of small silicate objects that seem
to have been gently assembled and compacted, at least initially (Metzler et al. 1992;
Brearley 1996; Cuzzi & Weidenschilling 2006); how did this happen? The meteorite
record (discussed in more detail below) shows that many mm-sized solid objects are
encased in rims of micron and submicron-sized mineral grains. One obvious possi-
bility is that these rims form by nebula accretion of grains onto the underlying core
particles (Nagahara 1984; Metzler et al. 1992; Paque & Cuzzi 1997; Hua et al. 2002;
Zega & Buseck 2003). In § 4.2 we show that this dust accretion may be expected to
occur fractally, leading to porous structures. Collisions easily crush this structure, in
the process dissipating kinetic energy and allowing colliding particles to stick (Blum
& Wurm 2008).

Recent reviews of the relevant properties of chondrites are provided by Brearley
& Jones (1998), Scott & Krot (2005a) and Weisberg et al. (2006). Chondrites are dom-
inated by mm-sized silicate chondrules, which were melted in the nebula (Brearley
& Jones 1998; Jones et al. 2000, 2005; Lauretta & McSween 2006), but are found in
meteorites to be embedded in a fine-grained matrix. Formation of chondrules (and
chondrites) occurred over a period of several Myr (Scott & Krot 2005a; Kita et al.
2005; Russell et al. 2006; Kleine et al. 2006). Chondrites can be divided into three
broad classes — ordinary, carbonaceous and enstatite — with each class being fur-
ther subdivided into more than a dozen groups reflecting chemical, mineralogical
and isotopic differences. For example, CM carbonaceous chondrites contain abun-
dant matrix that has been affected by aqueous alteration, while Ordinary Chondrites
contain very little matrix and have generally incurred only limited aqueous alter-
ation. Violent collisional processes occurred after primary accretion which affected
the contents and appearance of most meteorites, and to best understand the primary
accretion process one must look back through this stage where possible to the rare,
unbrecciated subset of rocks and rock fragments called ‘primary texture’ (Metzler
et al. 1992; Brearley 1993).

The dust in chondrites is found to have two physically defined components: rims
and inter-chondrule matrix (Huss et al. 1981; Scott et al. 1988; Brearley 1996; Brearley
& Jones 1998). Fine-grained rims are clearly associated with individual chondrules
and other macroscopic particles in microscopic images, and usually even stay at-
tached to the chondrules when they are disaggregated from the host rock (Paque &
Cuzzi 1997). Some studies report that the composition of these fine-grained rims is
uniform across a wide range of underlying mineral types, including more refractory
(higher-temperature) oxides which formed much earlier (Brearley 1993; Hua et al.



94 Co-accretion of chondrules and dust in the solar nebula

2002) and some find dramatic variations between the composition of rims on ad-
jacent chondrules (Taylor et al. 1983; Scott et al. 1984). Generally, the chondrules
cooled completely before accreting these fine dust grains (Brearley 1993). Interchon-
drule matrix, more generally dispersed between all the macroscopic components of
the rock, is also made of fine-grained material. The grain sizes in fine-grained rims
are noticeably smaller than the ubiquitously enveloping matrix, even though the
compositions of the rims and matrix are very similar or identical (Ashworth 1977;
Brearley 1993, 1996; Zolensky et al. 1993). It has been reported that the rim porosity
is also smaller than that of the surrounding matrix (Ashworth 1977; Trigo-Rodriguez
et al. 2006). The relative abundance of rim and matrix material to chondrule mate-
rial varies from one meteorite class to another (Scott et al. 1988); however, the rim
mass (or thickness) is often found to be proportional to the mass (or radius) of the
underlying chondrule (Metzler et al. 1992; Paque & Cuzzi 1997).

Several different model efforts have attempted to explain some of these prop-
erties in the context of nebula sweep-up or accretion of the fine-grained rims by
chondrules and their like. Morfill et al. (1998) hypothesized that if a particle had a
speed relative to the gas which was proportional to its radius, and if the chondrules
in a region sweep up all the local dust in a one-stage event (no ongoing replenish-
ment of dust), the observed rim-core correlation would be obtained. Cuzzi (2004)
showed that chondrule-size particles in turbulence plausibly exhibit just the appro-
priate (near-linear) dependence of relative velocity on size, even though most parti-
cles obey a square-root dependence on radius. Cuzzi (2004) relied on collisional out-
comes proposed by Dominik & Tielens (1997) for porous aggregates of fine grains,
and suggested that for particles much larger than chondrules, the velocity relative to
the gas increases to a point where they enter an erosional regime.

On the other hand, Sears et al. (1993) and Trigo-Rodriguez et al. (2006) ques-
tion whether fine-grained rims are nebula accretion products at all. Trigo-Rodriguez
et al. (2006) point out in particular that the fine-grained rims in CM chondrites, such
as discussed by Metzler et al. (1992), have a porosity of 10-20%, much lower than the
high-porosity structures formed by, e.g., Blum & Wurm (2000) or Blum & Schräpler
(2004). Less is known quantitatively about the porosity of fine-grained rims in other
chondrite types, although Ashworth (1977) states that rim porosities are less than 6-
15% in ordinary chondrites. The alternate that Trigo-Rodriguez et al. (2006) and Sears
et al. (1993) prefer, while they differ in the details, is that the fine-grained rims seen in
CM chondrites, in particular, are created on the parent body from a generic envelop-
ing matrix, by some combination of compaction and pervasive aqueous alteration.
This suggestion might make it harder to explain why the grain size is smaller than in
the nearby enveloping matrix. Nevertheless, the discussion shows that the porosity
of fine-grain rims is an important diagnostic of their origin.

In this chapter, we develop a detailed collision model to study the rimming and
accretion processes of chondrules simultaneously and, in a statistical study, quantify
the growth that can be obtained under a wide range of (uncertain) nebular condi-
tions. Our model treats multiple components: solid ‘chondrules,’ submicron grains
and their very porous nebula aggregates, porous accretion rims formed by direct
accretion of monomers and aggregates onto chondrules, compact rims formed by
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collisional compression of pre-existing porous rims, and compound objects formed
by sticking of rimmed objects, which themselves might become rimmed in dust. Our
collisional outcomes use physical guidelines set by laboratory and theoretical models
(Dominik & Tielens 1997; Blum & Wurm 2000; Blum & Schräpler 2004; Langkowski
et al. 2008). We use quantitatively correct closed form relative velocity expressions
for particles in turbulence of varying intensity (Ormel & Cuzzi 2007), which capture
the increase in relative velocity as particles grow by accretion of other particles. We
use a Monte Carlo approach to calculate the probability of different outcomes, over
a wide range of nebula parameters (level of turbulence, gas and solid density). We
assess (i) the extent to which fine-grained rims can dissipate collisional energy and
allow growth by sticking to proceed, and (ii) the extent to which these dissipative
collisions compact initially porous dust rims into lower porosity states. We leave for
future study the physics of disruptive collisions and the details of vertically varying
particle density and turbulent intensity, such as might occur if the global turbulent
intensity is vanishingly small (Cuzzi et al. 1993; Sekiya 1998; Dobrovolskis et al. 1999;
Weidenschilling 1997).

This chapter is organized as follows. In § 4.2 the collision model is discussed.
Here we outline the three distinct components with which we model the compound
objects that result out of accretion of dust on chondrule surfaces and collisions with
other chondrules. We also introduce the different sources of relative velocities par-
ticles can obtain in the nebula, and calculate the timescales involved in the various
accretion processes. We end this discussion with a brief summary of the envisioned
collisional scenario. Section 4.3 briefly reviews the Monte Carlo code with which the
coagulation is solved. Section 4.4 presents the results of our work. First, a few indi-
vidual models are addressed in detail, before we present the results of a parameter
study in which many uncertain (mostly nebula-related) parameters are varied. In
§ 4.5 we discuss the effects of a particle dominated environment caused by settling
of compounds on the growth of compounds. We also discuss several observational
implications, emphasizing in particular the relation between the dust in our model
to the fine-grained rims seen around chondrules in meteorites. We summarize our
results in § 5.4.

4.2 Model

4.2.1 Outline

The central theme of this chapter is to model the process of dust accretion onto chon-
drule surfaces and explore whether compaction of this dust during inter-chondrule
collisions acts as a sticking agent, with which significant growth can be achieved. For
dust aggregates this compaction mechanism is well known (Dominik & Tielens 1997;
Blum & Wurm 2000; Wada et al. 2007): by restructuring of the constituent grains the
excess collisional energy is dissipated. For dust-rimmed chondrules we argue the
situation is analogous, except that part of the aggregate’s interior is now replaced
by a chondrule. The prerequisite for such a scenario is the presence of a reservoir of
dust that is accreted fractally by the chondrules, preserving its fluffy structure. Here,
we follow the Morfill et al. (1998) ‘closed box’ scenario in which a fixed amount of
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dust is injected instantaneously to the chondrule population. The compound objects
(or, simply, compounds) thus obtained are modeled to consist of three phases: chon-
drules, compact (i.e., restructured) dust, and porous (i.e., fractally accreted) dust. The
restructuring mechanism also holds for collisions between compounds, again at the
expense of the porous phase. In this way a coagulation process is initiated by which
chondrules are accreted into large compounds. This coagulation is only stopped
when the compounds run out of porous dust, such that the collisional energy can no
longer be dissipated; at this stage, all the free-floating dust has been accreted and no
more porous dust remains.

The environment in which these processes take place is a key ingredient that en-
ters the coagulation model. A violent, low dust density environment leads to high
velocity collisions which quickly pack down the porous rim, limiting its capability
to allow further sticking, while even higher velocities will lead to break-up of com-
pounds. On the other hand, if (relative) velocities are modest and remain so during
the phase in which compounds accrete other compounds and porous dust, this could
lead to significant growth. In this work we use various sources for relative veloci-
ties: thermal, turbulent and systematic. The relative velocity is further determined
by the internal structure (density) of the compounds, which affects their coupling
to the gas. The internal structure of compounds is reflected in the definition of the
‘geometric size’: the size that corresponds to the effective aerodynamic cross section.
The evolution of the internal structure during the accretion process is therefore of
key importance: i.e., do collisions follow ‘hit-and-stick’ behavior in which growth
proceeds fractally, or do collisions keep the filling factor constant.

4.2.2 The turbulent nebula

Disk physical structure and model components

The start of the model is defined as the point at which populations of chondrules and
dust interact. Before this point, the two populations were either spatially isolated or
one did not exist. This chapter is not concerned with the history of the two pop-
ulations — specifically, we avoid the nagging chondrule formation question — but
merely define the zero time of the model (t = 0) as the point where the two popula-
tions mix. Of course, the history of the two populations determines to a large extent
the conditions that prevail at the start of the model, e.g., the size of the dust particles.
We take 1 µm as the monomer size (i.e., the smallest constituent size of a dust grain),
which roughly corresponds to the sizes of the fine grains observed in chondrites
(Ashworth 1977). These grains may have formed by condensation onto seed grains
(Chiang 2004) and could have aggregated into larger (fluffy) dust particles before
they interact with the chondrules. For instance, if dust condenses out in a region of
(recently formed) chondrules (Wasson & Trigo-Rodriguez 2004; Scott & Krot 2005b),
the size distribution will be dominated by monomers. However, if chondrules en-
counter a dust cloud only after a certain time since its formation (∼102 − 103 yr),
larger aggregates are expected to have formed through monomer collisions. In this
work, though, the size of the dust aggregates (adust) is simply treated as a free model
parameter (§ 4.2.4).

Both solid components find themselves in the gas-dominated protoplanetary disk.
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GAS AND DUST PARAMETERS

(1) (2) (3) (4)

gas density⋆ ρg 28/2.4/0.16 10−11 g cm−3

sound speed cg 10./7.6/5.6 104 cm s−1

mean free path (gas) ℓmfp 6.9/82/1230 cm

temperature T 280/162/89 K
pressure parameter η 1.6/2.7/4.9 ×10−3

large eddy turn-over time tL = Ω−1 0.16/0.82/5.0 yr

turbulent strength parameter⋆ α 10−4

inner eddy turn-over time⋆ ts 1.3/12/131 103 s

gas-chondrule ratio⋆ Rgc 100
gas-dust ratio⋆ Rcd 100
chondrule mean size ac 300 µm
monomer dust size a0 1 µm
fractal growth parameter δ 0.95
surface energy density dust⋆ γ 19 erg cm−2

Table 4.1: Parameters characterizing the gas (upper rows) and dust/chondrules (bottom
rows). Gas parameters correspond to a minimum mass solar nebula (MMSN) model of total
gas mass of 2.5 × 10−2 M⊙ inside 10 AU with power law exponents of, respectively, −1.0 and
−0.5, for the surface density and temperature structure as function of radius (Takeuchi & Lin
2002). Columns denote: (1) parameter description; (2) symbol, Rgc = ρg/ρc and Rcd = ρc/ρd;
(3) corresponding value with multiple values denoting conditions at 1, 3 and 10 AU, respec-
tively (3 AU is the default); (4) unit. Parameters indicated by ⋆ are variables (default model
values are given).

We use a minimum mass solar nebula (MMSN) model (Hayashi 1981) to determine
the gas parameters (Table 4.1, after Takeuchi & Lin 2002). At R = 3 AU this cor-
responds to a spatial density of ρg = 2.4 × 10−11 g cm−3, a thermal speed of cg =

7.6 × 104 cm s−1 and a mean free path of ℓmfp = 82 cm. Studies of chondrule forma-
tion indicate, however, that gas densities may be much higher (e.g., Desch & Con-
nolly 2002; Cuzzi & Alexander 2006) and we will therefore treat ρg as a free param-
eter, denoting with ρX the density enhancement over MMSN. We further assume the
gas surface density (Σ) and temperature (T) profiles are power-laws of heliocentric
radius (R) and fix the exponents at −1.0 and −0.5, respectively. This choice is con-
sistent with a steady disk in which Σ̇ = 0 and an accretion flow, Ṁ, independent of
radius.2 The gas-to-chondrule and the chondrule-to-dust density ratios,

Rgc = ρg/ρc; and Rcd = ρc/ρd, (4.1)

are free parameters; for example, Rcd = 1 means that chondrules and dust are
present in equal proportion (as observed in some meteorite groups, Huss et al. 2005)
and Rgc = 100 is the standard gas to solids ratio. In our model chondrules follow
a log-normal size distribution, for which we take parameters of 300 µm (the mean)

2Provided the α-turbulence model (Eq. (4.2)) is assumed and boundary conditions are neglected (see,
e.g., Pringle 1981).
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and a (log-normal) width parameter of 0.5 (see, e.g., Rubin & Keil 1984; Nelson &
Rubin 2002). This makes the mean, mass-weighted size of the chondrule population,
〈a〉m = 720 µm. Note that the initial distribution is not necessarily equivalent to
the distribution that ends up in meteorites, or the distribution extracted from mete-
orites by the thin section method (Eisenhour 1996). An overview of all parameters
characterizing the gas and solids is given in Table 4.1.

We assume that the gas in the disk is in a turbulent state of motion. After Shakura
& Sunyaev (1973), the turbulent viscosity is parameterized as

νT = αcgHg = αc2
g/Ω, (4.2)

where Hg is the scaleheight of the gas disk, Ω the local (Keplerian) rotation velocity,
and α a scale parameter that determines the strength of the turbulence (Shakura &
Sunyaev 1973). Values for α are very uncertain. If the magneto-rotational instabil-
ity is active it may be up to 10−3 (Balbus & Hawley 1991; Hawley & Balbus 1991);
however in regions of low ionization it can be much lower (Gammie 1996; Sano et al.
2000). The extent of the turbulence is determined by the Reynolds number, Re, de-
fined as Re = νT/νm, with νm the molecular viscosity, νm = cgℓmfp/2 (Cuzzi et al.
1993). The turbulent spectrum consists of eddies characterized by a scale (ℓ), veloc-
ity (v), and turn-over time (t), between an outer (or integral) scale L and an inner
(or Kolmogorov) scale ℓs. Following previous works, tL, the largest eddy turn-over
time, is taken equal to the inverse orbital frequency, tL = 1/Ω, and vL = α1/2cg

(e.g., Dubrulle et al. 1995; Cuzzi et al. 2001; Schräpler & Henning 2004). The eddy
properties at the turbulence inner scale then follow from the Reynolds number:

ts = Re−1/2tL; ℓs = Re−4/3L; vs = Re−1/4vL. (4.3)

Thermal motions

When gas molecules collide with a larger (dust) particle momentum is transferred,
changing the motion of the dust particle. These kicks occur stochastically, resulting
in a velocity behavior known as Brownian motion. The ensuing velocity difference
between two particles of mass m1 and m2 is highest for low masses and high tem-
peratures,

∆vBM =

√

8kBT(m1 + m2)

πm1m2
, (4.4)

where kB is Boltzmann’s constant. For micron-sized particles Brownian velocities
are a few mm/s; but since ∆vBM decreases with the −3/2 power of the size of the
smallest particle, it quickly becomes negligible for larger particles.

Systematic motions

The key parameter that determines the coupling of solids to the gas is the friction
time, τf. In the Epstein regime the size of the particle, a, is small with respect to the
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mean-free-path of gas molecules, ℓmfp, and the friction time is given by

τf = τ
Ep
f =

3

4cgρg

m

πa2
. (a ≤ 9

4 ℓmfp) (4.5)

For solid 1 µm-grains the friction time is τf ∼ 102/ρX s for the default nebula param-
eters of 3 AU (Table 4.1), while for an a ∼ 300 µm chondrule it takes ∼10/ρX hours
before the traces of its initial motion are ‘erased.’ Note that Eq. (4.5) defines a as
the geometrical radius of the particle, i.e., the radius corresponding to the angularly-
averaged projected surface area of the particle. If the particle is a fluffy aggregate its
friction time is therefore much less than a compact-equivalent with the same mass.
If significant growth takes place, particles will no longer obey the Epstein drag law;

friction times are then enhanced with respect to τ
Ep
f , i.e.,

τSt
f =

4a

9ℓmfp

1

RepC
τ

Ep
f . (a ≥ 9

4 ℓmfp) (4.6)

Here, Rep = 2avpg/νm is the particle Reynolds number, which determines the con-

stant C,3 and vpg the particle-gas velocity. Within the physical conditions of the
simulations in § 4.4 the particle Reynolds number stays below Rep = 1, for which

C = Re−1
p (Weidenschilling 1977a). Friction times are then independent of vpg.

One of the well-known problems in the planet-formation field is the strong in-
ward radial drift particles of a specific size experience, e.g., meter-sized particles at
∼AU radii or cm-sized at ∼100 AU radii (see Brauer et al. (2007) for a recent review).
This inward radial drift is caused by the existence of gas pressure gradients, resulting
in a gas velocity that is somewhat less than Keplerian by a difference of magnitude
ηvK (Weidenschilling 1977a; Nakagawa et al. 1986) with η the dimensionless pres-
sure parameter, defined as

η ≡ −
1

2RΩ2

1

ρg

∂P

∂R
≈ c2

g/v2
K. (4.7)

However, particles do not experience this pressure term and instead attempt to move
at Keplerian velocities, faster than the gas. The ensuing drag force removes angu-
lar momentum from the particle resulting in a radial velocity of (Weidenschilling
1977a)4

vrd = −
2St

1 + St2
ηvK, (4.8)

3Compared to, e.g., Weidenschilling (1977a) the definition of C has been scaled down by a factor of 24.
That factor is already present in Eq. (4.6).

4In Eq. (4.8) we have not accounted for collective effects when the particle density is comparable to
or higher than the gas density. Equation (4.8) then changes (Nakagawa et al. 1986). Angular momentum
exchange between the dust and gas dominated layers (Youdin & Chiang 2004) is another process to be
accounted for, but its significance is relatively modest (Brauer et al. 2007).
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slope between the linear and
the square-root turbulent ve-
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Stokes number corresponding
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indicated. All velocities peak
at St = 1 (light-dashed vertical
curve).

where we have defined St = τfΩ. This systematic radial drift velocity peaks at
St = 1. Chondrule-sized particles, however, are generally sufficiently well cou-
pled to the gas (St ≪ 1) so that radial motions are low in most physical conditions;
turbulent-induced motions then dominate (unless α is really low). However, when
particles grow in size, systematic motions may take over from turbulent velocities
(see Fg. 4.1).

Turbulent motions

For a Kolmogorov spectrum, turbulence leads to mean (large scale) velocity fluctu-
ations of vg = (3/2)1/2vL = (3/2)1/2α1/2cg (Cuzzi & Hogan 2003). Due to their
inertia, solids do not instantaneously follow these fluctuations but require a time τf

before their motions align. This leads to a net relative motion, vpg, between the gas
and the solid particle of (Cuzzi & Hogan 2003)

vpg = vg

√

St2(Re1/2 − 1)

(St + 1)(StRe1/2 + 1)
, (4.9)

where the Stokes number, St, is the ratio between the friction time and the large
eddy turn-over time, i.e., St = τf/tL = τfΩ.5 The limiting expressions of Eq. (4.9),
vpg = Stvg for St ≪ 1 and vpg = vg for St ≫ 1, respectively, correspond to the
cases of particles that are well coupled (small particles) and poorly coupled (larger

5St = τf/tL is the formal definition for the Stokes number. In the α-turbulence model tL = Ω−1 and
the definitions for St in equations (4.8) and (4.9) coincide.
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particles) to the gas.

The calculation of particle-particle relative velocities does not follow directly from
the vpg’s since particle velocities can become very incoherent in turbulence (e.g.,
∆v12 6= |v1g − v2g|). Consider, for example, two small particles entrained in the
same eddy. If their motions are aligned, no relative velocity is present; it is only
within a time τf after being caught in the eddy that these particles have the chance
to develop relative motions, provided their friction times differ (i.e., τ1 6= τ2). The
problem of finding suitable (i.e., closed-form) expressions for ∆v12 is important since
these are key to any model of dust coagulation (e.g., Weidenschilling 1997; Suttner
& Yorke 2001; Dullemond & Dominik 2005; Nomura & Nakagawa 2006) including
this work. Following earlier works of Völk et al. (1980), Weidenschilling (1984a),
Markiewicz et al. (1991) and Cuzzi & Hogan (2003), Ormel & Cuzzi (2007) have pre-
sented closed-form analytical expressions for ∆v12 (with a margin of error of ∼10%)
in terms of the Stokes number of the particles:

(

∆v12

vg

)2

=















Re1/2 (St1 − St2)
2 for τ1 < ts

[

2y∗a − (1 + ε) + 2
1+ε

(

1
1+y∗a

+ ε3

y∗a+ε

)]

St1 for 5ts ≃ τ1 . tL
(

1
1+St1

+ 1
1+St2

)

for τ1 ≥ tL

(4.10)

In these expressions τ1 (or St1) always corresponds to the particle of the largest fric-
tion time and ε = τ2/τ1 ≤ 1. Near the τ1 = ts turning point the expression for ∆v12 is
somewhat more complex (see Ormel & Cuzzi 2007). The term y∗a is a numerical con-
stant of value y∗a ≃ 1.60 if τ1 ≪ tL; however, when τ1 ≃ tL it becomes a function of
τ1 and drops to unity at τ1 = tL. In that case we approximate y∗a by an interpolation
function. In Fg. 4.1 ∆v12 is plotted for two values of α in the limit of St = St1 ≫ St2

(dashed curves). The three regimes of Equation (4.10) are clearly distinguishable:

the linear regime for τf . ts (or St . Re−1/2; small particles); the square-root regime,
ts . τf . tL; and the high Stokes regime, St ≥ 1, where particles decouple from the
gas. Small particles like chondrules have Stokes number St ≪ 1; whether they fall
into the linear or square-root velocity regime depends on their sizes in relation to the
gas parameters (e.g., α, ρg) of the disk.

Figure 4.1 also shows the systematic drift velocity (Eq. (4.8), solid curve). If one
assumes that St2 ≪ St1 the radial drift curve also gives the relative velocity a particle
with St = St1 has with a much smaller particle. Actually, for St1 ≤ 1 turbulent
and systematic drift relative velocities (Eqs. (4.8) and (4.10)) depend only weakly on
St2 (the lower Stokes number); the curves in Fg. 4.1 can therefore be interpreted as
the typical relative velocity a particle of a given Stokes number has with particles of
similar or lower Stokes numbers. Figure 4.1 shows that for very small particles (τf ≪

ts or St ≪ Re−1/2) turbulent velocities only dominate when α & 10−5. Then, when
turbulent velocities flatten out in the square-root regime, the radial drift motion may
catch up with the point of intersection lying at St ≃ α/η, provided α is not either
too low or too high. For any model with α . η radial drift motions will eventually
dominate: a regime of high relative velocities (∼10 m s−1) is therefore unavoidable.
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COMPOUND PHASES

Phase Specific density Mass fractiona Filling factor

chondrule ρ
(s)
c = 3 g cm−3 (1 − fd) φc = 1

compact dust ρ
(s)
d = 3 g cm−3 fd(1 − fp) φcd = 0.33

porous dust ρ
(s)
d = 3 g cm−3 fd fp φpd . 0.15

Table 4.2: Material properties of compounds phases. aMass fraction with respect to entire
compound (sum equals 1); fd = mass fraction in dust; fp = porous mass fraction of the dust.

4.2.3 Collisions between dust-rimmed chondrules

Theoretical studies and laboratory experiments have shown that the outcome of
grain-grain or aggregate-aggregate collisions depends on its ratio of the kinetic en-
ergy to a critical energy (Dominik & Tielens 1997; Blum & Wurm 2000). Specifically,
porous dust is accreted when chondrules sweep up dust grains, or aggregates of dust
grains, at collisional energies (E) that stay below the energy threshold for restructur-
ing, 5Eroll, where Eroll is the energy required to roll one contact area over the surface
of the grain. This can lead to a very open structure of filling factors (φpd) that are
lower than the filling factors obtained in particle-cluster aggregation, φPCA ≃ 0.15
(see below). As outlined in § 4.2.1, the absence of restructuring during dust sweep-
up is crucial since the resulting porous structure can then be compacted in more
energetic collisions — the collision of compounds — promoting further growth. In
compound collisions, E > Eroll and the dust within the compound will restructure,
dissipating a unit of ∼Eroll for each dust grain that is involved in the rolling motion.
The porous dust that is involved in restructuring compacts to a higher filling factor,
φcd.

Compounds can then be represented as a three phase structure: chondrules, com-
pact dust and porous dust. Two numbers, the dust fraction fd and the porous dust
fraction fp, quantify the relative importance of each phase within a compound (see
Table 4.2). The internal structure of each phase is further characterized by its filling
factor, φ. A schematic picture of the structure is given in Fg. 4.2.

Collisional compaction

The accreted dust mantles surrounding chondrules can have a very porous and frac-
tal structure. Typically, grains in these rims will be bonded to two other grains in
large string-like structures. When two rimmed chondrules collide, contact will be es-
tablished between two (or a limited number of pairs of) grains and these grains will
bear the full brunt of the collision. Once the force on these grains exceeds the critical
rolling force, they start to roll (restructuring). The rolling of these grains may en-
able contact formation between more pairs of grains, thereby promoting compaction
and at the same time reducing the force per contact. Compaction will stop when
the force on newly made contacts drops below the rolling force. Compaction may
also stop because the resulting structure is too rigid to allow for further rolling, i.e.,
the rolling grain made contact with too many grains. Since forces are propagated
through such compacted structures, this means that none of the grains involved ex-
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Fg. 4.2: (a) Schematic represen-
tation of the three-phase model
of dust-rimmed chondrules:
chondrule (dark grey), compact
dust (light grey) and porous
dust (pattern). The inset (b)
shows the substructure of the
dust that consists of micron-
sized monomers. (c) If chon-
drules collide, the collision en-
ergy is dissipated by transfer-
ring dust from the porous to
the compact dust phase. Fig-
ure not to scale.
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periences a force exceeding the rolling force. The compression of the contact area in
a collision between two monomers will give rise to an elastic repulsion force slow-
ing down and eventually reversing the collision. The absolute value of the repulsive
force will be set by the kinetic energy of the collision; in the Hertzian limit the sum
of the forces on the individual contacts scales with the remaining kinetic energy to
the 3/5th power. For colliding aggregates, rolling of the contacting monomers pro-
vides an additional energy dissipation channel. But once the resulting structure is
too rigid to enable further rolling, compression of the individual contact areas will
provide the repulsion required to slow down and possibly even reverse the collision
if the collision is energetic enough. The collision partners then bounce.

Blum & Schräpler (2004) have designed experiments to measure the compaction
of dust cakes under uniaxial compression. These dust cakes were grown through a
Particle-Cluster-Aggregation (PCA) method by deposition of individual 1.5 µm di-
ameter monomers at low velocities where rolling is not a factor and growth occurs
through a hit-and-stick process. The volume filling factor of the resulting aggre-
gates was measured to be 0.15, in good agreement with numerical simulations of
this process (Ossenkopf 1993; Watson et al. 1997). At this volume filling factor, the
typical coordination number, i.e., the number of neighbors with which the monomer
is in contact, is calculated to be 2 (Ridgway & Tarbuck 1967). These dust cakes were
exposed to a unidirectional pressure in a static experiment. Figure 4.3 shows the
resulting volume filling factor as a function of the applied unidirectional pressure
(Blum & Schräpler 2004). The results show that compaction is initiated at an applied
pressure of ∼104 dyn cm−2. If we assume that the number of monomers per unit
area being pressed on is given by,

N/A =
(

πa2
0φ2/3

)−1
∼ 2 × 108 cm−2 (4.11)

with a0 the radius of the monomer, the force on an individual monomer becomes
∼5 × 10−5 dyn. This is very close to the rolling force of 7 × 10−5 dyn Blum &
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Fg. 4.3: (solid curve) Com-
pression of PCA aggregates,
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sion of ‘dust cakes’ created
by random ballistic deposition
of a0 = 0.75 µm SiO2 spheres
(Blum & Schräpler 2004; Blum
et al. 2006). The uncertainty
in the measurements is de-
noted by the grey area. Val-
ues for φ for several amounts
of packing configurations are
shown. (Data on the compres-
sion curve experiments kindly
provided by Jürgen Blum.)

Schräpler (2004) extrapolated from the measurements by Heim et al. (1999). As the
dust cake compacts and the average coordination number increases, the structure
becomes more rigid and resistant to further compression (under these conditions,
see below). Finally, at a pressure of ∼106 dyn cm−2 the structure is dense enough for
rolling motions to be inhibited. This corresponds to an average coordination number
of 3.9 and a filling factor of 0.33 (Fg. 4.3).

The conditions in the protoplanetary disk under which dust rims are formed by
grain accretion and under which they evolve through collisions with other rimmed
grains differ from those in these laboratory studies. First, the initial structure of
the dust rims accreted on the chondrule surface may differ from PCA. Although
low velocity collisions are expected, the monomers may collide preferentially among
each other before colliding with a chondrule. In that case the resulting structure is
referred to as Cluster-Cluster Aggregation (CCA), a process that leads to much lower
filling factors than PCA. Whether PCA or CCA is preferred depends on the relative
abundance of dust and chondrules and their relative velocities. So, the filling factor
of the porous dust component may start lower than the experimental one in Fg. 4.3.
However, since this process is directly tied to the rolling force experienced by the
monomers that make contact, we expect that this difference in initial structure will
have no influence on the critical pressure required for the onset of compaction. We
expect, likewise, that uniaxial compression of dust rims grown by CCA will stall at
0.33 filling factor since this is again a property of the resulting structure; e.g., at these
kinds of volume filling factors, monomers in the dust rims will have been organized
in ‘stabilizing’ structures.

However, under nebular conditions continuous impacts will arise from random
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CRITICAL ENERGIES

Expression Breaking Rolling

Theoretical a Ebr = Abrγ5/3a4/3
µ /E⋆2/3 Eroll = Arollξcritaµγ

DT97 Prefactorsa Abr ≃ 9.6 Aroll ≃ 59

Measured energiesb Ebr = 1.3 × 10−8 erg Eroll = 1.7 × 10−8 erg
Empirical prefactorsc Abr = 2.8 × 103 Aroll = 1.8 × 103

Table 4.3: Comparison between predicted and measured critical energies for breakup and
rolling. Notes. aTheoretically derived expressions for Ebr, Eroll from Chokshi et al. (1993) (for
the breakup energy) and Dominik & Tielens (1997) (for rolling) and corresponding pre-factors,
Abr, Aroll . We define ξcrit = 10−8 cm. bValues adopted from Blum & Wurm (2000) for param-
eters of a0 = 2aµ = 9.5 × 10−5 cm, γ = 19 erg cm−2 and E⋆ = 3.7 × 1011 dyn cm−2. The
original measurements were performed by Poppe et al. (1999) (for the breakup energy) and
Heim et al. (1999) (for the rolling energy). cEmpirically derived prefactors from the theoretical
expressions with the measured values for Ebr and Eroll.

directions; it is therefore likely that collisional compaction under these conditions
will result in higher volume filling factors than the unidirectional compression ex-
periments would indicate, possibly even as high as 0.5 (the value of φ = 0.64 charac-
terizes for Random Close Packing, RCP). We note that Blum & Schräpler (2004) and
Blum et al. (2006) in their compression studies did approach RCP when applying an
omnidirectional pressure of ∼109 dyn cm−2. Note, however, that omnidirectional
pressure is not achieved in collisions between two bodies in an open environment;
i.e., the dust has the chance to spread perpendicular to the direction of compres-
sion, and the obtained high volume filling factor may not be generally attainable.
Indeed, for φ > 0.33 rolling motion become impeded and we do expect that in order
to ‘crush’ the dust (rims) to RCP values much higher pressures are required. Stud-
ies indicate pressures of ∼1010 dyn cm−2 in order to reach RCP (Martin et al. 2003;
Tanwongwan et al. 2005). This second stage of compaction would correspond to a
very different collision regime characterized by much higher energies. Adopting the
Hertzian limit, we expect that this higher pressure, c.q. force in the contact area cor-
responds to a impact energy which is higher by a factor (109/106)5/3 or a collision
velocity higher by a factor 105/2 over the velocity/energy required to initiate com-
paction. In this study, while acknowledging that higher filling factors are plausible,
we have for simplicity assumed that φ = 0.33 is the limiting value.

Acquisition of a porous dust layer

Two critical energies— the breakup and rolling energy— regulate the behavior of the
dust (porous accretion/compaction) upon collision: (Chokshi et al. 1993; Dominik &
Tielens 1997; Blum & Wurm 2000)

Ebr = Abr

γ5/3a4/3
µ

E⋆2/3
; (4.12a)

Eroll = 6π2ξcritaµγ = Arollξcritaµγ, (4.12b)
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where aµ = a1a2/(a1 + a2) is the reduced radius of the collision partners, γ the sur-
face energy density of the material and E⋆ Young’s elastic modulus (assuming the
same materials collide). Also, ξcrit in the Eroll expression is some critical distance
used to initiate rolling which Dominik & Tielens (1997) assumed to be on the order
of the atomic size, ξcrit = 10−8 cm. Using these definitions the constants Abr and
Aroll are dimensionless. Blum & Wurm (2000) have experimentally determined the
breakup and rolling energies (see Table 4.3) and found these to be higher than the
Dominik & Tielens (1997) theoretical predictions. However, apart from a scale fac-
tor, the Blum & Wurm (2000) experiments agreed well with the Dominik & Tielens
(1997) model; that is, collisions can be separated into the regimes of perfect sticking,
restructuring and fragmentation. We therefore apply the mechanism put forward
by Dominik & Tielens (1997) but use pre-factors (Abr, Aroll) from the experimental
results (last row of Table 4.3). Note that for micron-sized particles the rolling and
breakup energy are similar.

When two particles meet, direct sticking occurs if the collision energy, E, is dis-
sipated at the first point of contact; i.e., E ≤ Est, where Est is related to the breakup

energy as Est = 0.22Ebr (Dominik & Tielens 1997). Writing E = 1
2 mµ(∆v)2 with

mµ = m1m2/(m1 + m2) the reduced mass and ∆v the relative velocity, the criterion
E ≤ Est translates into a threshold velocity of

vst =

√

2Est

mµ
=
√

0.45Abr

γ
5
6 a

4
6
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(E⋆)
1
3 m

1
2
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1
2
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(
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(s)
d
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2
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− 1
2
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2
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= 35 cm s−1 N
− 1

2
µ

(
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(

a0

µm

)− 5
6

(
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)− 1
2

×

(

γ

19 erg cm−2

) 5
6
(

E⋆

3.7 × 1011 dyn cm−2

)− 1
3

, (4.13)

where we have assumed that like materials meet (i.e., same γ, E⋆) , and where the

reduced mass has been parameterized as mµ = Nµm0 with m0 = 4πρ
(s)
d a3

0/3 the
mass of the (smallest) grain. Thus, Nµ = 1/2 for equal-size particles and Nµ =
1 for very different size particles. Equation (4.13) shows that micron-sized silicate
particles have no problem to stick to each other at velocities of ∼10 cm s−1. This also
holds for collisions between µm-sized grains and chondrules since it is the reduced
size aµ that enters the equation. However, at higher velocities the grains will bounce
off.

In collisions between chondrules (a0 ∼ 300 µm) the sticking velocity falls be-
low ∼cm s−1, lower than the velocities between chondrules for most values of α
(see Fg. 4.1). Also, for chondrules, the assumption of a smooth, spherical surface
on which the physics behind Eq. (4.12a) is based breaks down. Although surface
roughness increase the sticking capabilities for µm-sized grains (Poppe et al. 2000),
the asperities in chondrules are probably too large to favor sticking. However, we
now expect the previously accreted porous dust layer to act as the sticking mecha-
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nism through a dynamic restructuring and compaction of the constituent grains.

Another important collision is between a chondrule (or compound) and a dust
grain or dust aggregate. Here, the criterion for sticking without restructuring is E ≤
5Eroll (Dominik & Tielens 1997). This translates into a velocity of (using the same
substitutions as above)

vst,aggr =

√

10Eroll

mµ
= 1.6 × 102 cm s−1 N−1/2

µ

(

aµ

a0

)1/2 ( a0

1 µm

)−1

(4.14)

×

(

ρ
(s)
d

3 g cm−3

)−1/2
(

γ

19 erg g−1

)−1/2

, (4.15)

in which now Nµ > 1 roughly corresponds to the number of grains in the aggregate.
Thus, at moderately low velocities small aggregates will hit-and-stick, preserving
their porous structure. This ‘hit-and-stick’ behavior will also be referred to as ‘fractal
accretion.’ However, when aggregates become large or α is high (e.g., α ≥ 10−3 and
ρX = 1; Fg. 4.1) some compaction is likely to occur. However, in this study we have
ignored this effect (for reasons of computational efficiency) and simply assumed that
all dust accretion occurs fractally. Although invalid in a violent collisional environ-
ment, the consequences of this assumption are marginal as the porous dust on the
chondrule surface is quickly compacted by colliding chondrules in any case.

Collisions between dust-chondrules compounds

Hatzes et al. (1991) studied collisions between cm-sized particles and found that
sticking forces increased significantly when a frosty layer was present. While they at-
tribute this enhanced sticking to interlocking of jagged surface structures, this effect
probably reflects energy dissipation due to restructuring. In the case of chondrules,
rimmed by a layer of fluffy dust, the situation is analogous: the fluffy structure al-
lows the collisional energy to be dissipated away. Assuming that each monomer (of

mass m0, size a0 and internal density ρ
(s)
d ) in the porous dust layer is capable of ab-

sorbing an energy Eroll, E/Eroll monomers are needed to dissipate the total collision
energy. Expressed in terms of mass, a porous mass fraction of at least fcomp must be
available, with fcomp the ratio of the required mass in porous dust to the total mass
of the collision partners,

fcomp =
m0E/Eroll

m1 + m2
=

4π

3Arollξcrit
ρ
(s)
d a2

0γ−1

(

m2
µ

m1m2

)

(∆v)2 (4.16)

= 3.7 × 10−2

(

m2
µ

m1m2

)

(

a0

µm

)2 (
∆v

10 cm s−1

)2
(

ρ
(s)
d

3 g cm−3

)

(

γ

19 erg cm−2

)−1

.

This equation reveals a few important results. First, fcomp decreases with smaller
dust grains (smaller a0); although more monomers are required to dissipate the same
collision energy, the total mass of the monomers that restructures is less. Also, the
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10−2 100 Fg. 4.4: Contours of fcomp

(dashed curves) — the fraction
of the (combined) compound
mass that must be involved in
restructuring to dissipate away
the collisional energy to stick
the compounds (Eq. (4.16)) —
as function of collision veloc-
ity (x-axis) and size ratio (y-
axis). Equal internal densi-
ties are assumed, ρ1 = ρ2 =
3 g cm−3 and a0 = 1 µm The
criterion for sticking is fcomp ≤
〈 fd fp〉m (see text). For low
velocities or size-ratio’s com-
paction is insignificant. Col-
lisions with fcomp & 〈 fd fp〉m

compact all their dust. When
fcomp & 8 complete destruc-

tion occurs (see § 4.2.3).

dependence on velocity is rather steep; at very low velocities the amount of com-
pacted material is negligibly low ( fcomp ≪ 1), while visible compaction happens in
a quite restricted velocity band (see Fg. 4.4). Another important point is the mass-
dependence in Eq. (4.16). The value of fcomp does not depend on the absolute masses

of the particles involved, but, through the m2
µ/m1m2 factor, rather on the mass-ratio

of the collision partners. Thus, a collision between particles of very unequal size has
a lower fcomp than equally-sized particles colliding at the same velocity and, there-
fore, a higher probability to stick (see Fg. 4.4). This is of course due to the reduced
mass that enters the collision energy.

Collisional recipe

We will now quantify how the collisions affect the structural parameters of the com-
pound, i.e., the fd and fp quantities. Equation (4.16) gives the mass fraction of the
collision partners that must be compacted, which, for sticking, must be less than
the mass fraction available in porous dust ( fd fp), averaged over the collision part-
ners, i.e., 〈 fd fp〉m = (m1 fd,1 fp,1 + m2 fd,2 fp,2)/(m1 + m2). If fcomp ≤ 〈 fd fp〉m enough
porous dust is present to absorb the collisional energy and the two compounds
stick. A fraction fcomp is then transferred from the porous to the compact phase.
If fcomp > 〈 fp fd〉m, however, restructuring cannot dissipate all the collisional en-
ergy. As mentioned before, we do not include other energy dissipation channels but
simply consider all collisions in which fcomp > 〈 fd fp〉m to result in bouncing; fp is
then set to 0 for both particles. This means fragmentation of compounds or erosion
of the porous rim are neglected (but see below: role of fragmentation).
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Fg. 4.5: Projection of two compounds collid-
ing at an impact parameter b. The ratio of the
shaded region (A) relative to the cross section
of each compound (πa2

i ) determines the frac-
tion of the porous dust that can be used dur-
ing the collision, i.e., fgeo,i = A/πa2

i . A is
obtained by subtracting the kite O1BO2C from
the two circular sectors spanned up by β1 and
β2 (Eq. (4.17)).
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A further restriction to the amount of dust that can be compacted is made when
we account for the geometry of the collision. Then, only a fraction ( fgeo) of the com-
pound (and of its dust) is involved in being compacted and dissipating energy. We
estimate fgeo from the intersection between the particles’ trajectories. This intersec-
tion actually is one between a cylinder and a sphere, but here we approximate it as a
2d intersection between two circles which meet at an impact parameter b. The area
of the intersection, A, can be calculated by elementary geometry as (see Fg. 4.5)

A(a1, a2, b) = 2a2
1 arccos

(

b2 + a2
1 − a2

2

2ba1

)

+ 2a2
2 arccos

(

b2 + a2
2 − a2

1

2ba2

)

−
√

(−b + a1 + a2)(b + a1 − a2)(b − a1 + a2)(b + a1 + a2), (4.17)

from which fgeo,i for each particle is calculated as fgeo,i = A/πa2
i . Equation (4.17)

is valid for impact parameters of |a1 − a2| < b < a1 + a2. For b ≤ |a1 − a2| the
intersection equals the projected area of the smaller particle, while A = 0 for b ≥
a1 + a2. The total mass-fraction of the particles that participates is (m1 fd1 fp1 fgeo,1 +
m2 fd2 fp2 fgeo,2)/(m1 + m2) and this has to be greater than fcomp for sticking. Note,
however, that inclusion of the fgeo factor might be too restrictive: since the sound

speed inside aggregates (∼30 m s−1; Paszun & Dominik 2008b) is usually much
higher than ∆v, the energy will be quickly transferred along movable structures. For
completeness we therefore consider both extremes: fgeo determined from Eq. (4.17)
and fgeo = 1.

When the collision results in sticking, the total dust and porous dust fractions are
calculated as follows,

fd =
fd1m1 + fd2m2

m1 + m2
; (4.18a)

fp =
fd1 fp1m1 + fd2 fp2m2 − fcomp(m1 + m2)

fd(m1 + m2)
. (4.18b)
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For example, in Eq. (4.18b) the three terms in the numerator denote, respectively, the
mass in porous dust of particle 1, the porous dust mass of particle 2, and the porous
mass transferred to the compact dust phase. In order to get the relative amount of
porous dust this is divided by the new total dust mass (calculated in Eq. (4.18a)) of
the compound. If the collision results in a bounce, fd stays the same for both particles
and fp is reduced by a factor 1 − fgeo.

Role of fragmentation

As the above formulas for fd and fgeo suggest, fragmentation is not included in the
collision model. The large number of particles produced by a fragmenting collision is
especially problematic in the context of a Monte Carlo program, where the number of
particles is limited (see § 4.3). However, the results of Dominik & Tielens (1997) pro-
vide insight into the stage at which fragmentation becomes important. They found
that the onset of fragmentation starts at E ≃ 0.3NcEbr with catastrophic disruption
at energies of ≃10NcEbr, where Nc is the total number of contacts (roughly equal to
the number of monomers, N) in an aggregate. Recalling that Ebr ∼ Eroll the catas-
trophic fragmentation limit corresponds to fcomp ∼ 8 in terms of Eq. (4.16). The
corresponding curve in Fg. 4.4 then shows that fragmentation becomes important at
velocities above a few 102 cm s−1 (for equal sized particles; as the mass disparity
increases the fragmentation velocity increases). The m/s transition for the onset of
fragmentation is in agreement with previous studies (Blum & Münch 1993; Blum &
Wurm 2000) but compact structures at high filling factor may require more effort to
fragment than their fluffy counterparts (D. Paszun 2007, priv. comm.). From Fg. 4.1
the critical velocity can be translated into a Stokes number. We will a posteriori check
to determine in which models fragmentation is expected to play a dominant role.

4.2.4 Evolution of the internal structure

The aerodynamic properties of the compounds, which determine their coupling to
the gas, alter with accretion of dust and mutual collisions between compounds.
These properties are quantified in the friction time, τf (see Eq. (4.5)), of the particles—
essentially a measure of its mass-to-surface area ratio, m/πa2. It is an important pa-
rameter since lower friction times mean lower relative velocity between the particles
(§ 4.2.2), and low relative velocities between compounds, in turn, imply potential to
grow large.

Through the adopted three phase model of compounds (§ 4.2.3) the total geo-
metrical volume, Vgeo, defined by a, can be reduced to its three components: (i)
chondrule, (ii) compact dust, and (iii) porous dust, i.e.,

4π

3
a3 ≡ V = Vc + Vcd + Vpd. (4.19)

In § 4.2.3 the filling factors of the chondrule and compact dust phases have been
fixed at 1 and 0.33, respectively, so that Vi for these phases linearly corresponds to
the mass inside these phases. However, for the porous dust phase, this does not
have to be the case: the dust fluff-balls that are accreted can be of different size and
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porosity. Besides, if the compound accretion process itself proceeds fractally, the
porous phase becomes a mixture of porous dust and voids created by the hit-and-
stick packing of the compounds. This could lead to a much reduced filling factor of
the porous phase (see § 4.2.4).

With these issues in mind we discuss the three accretion modes that are at work
and outline the implications for the internal structure of dust and compounds. In
a largely chronological order these are: (i) dust-dust, (ii) chondrule-dust, and (iii)
compound-compound accretion.

Dust-dust aggregation

If the dust distribution initially consists of monomers of size a0, the number density
of dust particles is likely to be much larger than that of chondrules. Therefore, mono-
mers probably form aggregates before they are themselves accreted by chondrules or
compounds. Provided the collisional energies involved stay below 5Eroll (see § 4.2.3),
the dust aggregates will hit-and-stick, leading to fractal growth (Meakin & Donn
1988; Blum et al. 2000). In addition, if this collision is between similar-size aggre-
gates, the outcome is referred to as CCA. In that case fractal aggregates form with a
surface area that grows faster with mass than in the compact case, i.e, πa2

dust ∝ mδ,

or, V ∝ m3δ/2 with δ = 0.95 (Ossenkopf 1993; Paszun & Dominik 2006) as compared
to V ∝ m1/3 (or δ = 2/3) for compact growth. Using the relation V = V0N3δ/2,
where V0 denotes the volume of a single monomer and N the number of monomers
the aggregate contains, the filling factor evolves as

φdust =
NV0

V
=

(

V

V0

)2/3δ−1

=

(

adust

a0

)2/δ−3

= N1−3δ/2. (4.20)

We consider two mechanisms through which dust aggregates can form: (i) Brow-
nian motion and (ii) differential velocities due to turbulence. For simplicity, equal
particle sizes are assumed at all times. The timescales involved are determined by
the particle number density (nd), size (adust) and relative velocities (∆v) between the
particles, i.e.,

tdd = (ndσ∆v)−1 =
1

3

ρ
(s)
d

ρd

adustφ

∆v
, (4.21)

in which we have used nd = ρd/m, σ = π(a1 + a2)
2 = 4πa2

dust for the collisional

cross section, and m = 4πa3
dustφρ

(s)
d /3 for the mass of a dust aggregate, with ρ

(s)
d the

specific material density of the dust. The relative velocities in the case of Brownian
motion and turbulence read, respectively,

∆vBM =

√

8kBT

πmµ
=

2

π

√

√

√

√

3kBT

ρ
(s)
d

a−3/2
dust φ−1/2; (4.22a)



112 Co-accretion of chondrules and dust in the solar nebula

∆vT =
vs

ts

ρ
(s)
d

cgρg
adustφ, (4.22b)

If τf < ts, turbulent relative velocities are in fact determined by the spread within
their friction times (see § 4.2.2) and a numerical factor of, e.g., 0.1 in front of Eq. (4.22b)
can be inserted if the particle distribution is monodisperse. This expression is further

reduced by writing vs/ts = Re1/4α1/2cgΩ. For Brownian motion, the timescale tdd

then becomes

tBM
dd =

π(ρ
(s)
d )3/2Rgd

6ρg
√

3kBT
φ3/2a5/2 ≈ 1.4 × 102 yr ρ−1

X φ3/2

(

adust

1 µm

)5/2

, (4.23a)

and for turbulence,

tT
dd ≈

10

3
RgdRe−1/4α−1/2Ω−1 ≈ 6 × 102 yr ρ−1/4

X

( α

10−4

)−3/4
, (4.23b)

where the expressions are evaluated for the default parameters of the R = 3 AU
model (Table 4.1) with Rgd = RgcRcd = 100 the gas to dust mass ratio, and where
the factor of 10 in Eq. (4.23b) follows from the considerations given above. For tur-
bulence the increase in geometrical area due to the fractal growth is exactly canceled
by the decreased τf so that the timescales for turbulence become independent of size
and φ and growth progresses exponentially; for Brownian motion the growth of ag-
gregates (in mass) is proportional to t2 (Blum 2004).

Equations (4.23a) and (4.23b) show that aggregate formation is initiated by Brow-
nian motion. Turbulence can take over at high α but the dust is then also quickly
swept up by chondrules. At high gas densities aggregates can grow large.

Dust-chondrule/compound accretion

The size of the dust aggregates at which they are accreted by chondrules/compounds
(adust) depends on the dust-chondrule accretion time tdc in relation to tdd. The
timescale, tdc, for a dust particle to encounter a chondrule of size ac, is

tdc =
1

ncπa2
c∆v

=
4ρ

(s)
c ac

3ρc∆v
=

4Rgc

3Re1/4α1/2Ω
≈ 240 yr ρ−1/4

X

( α

10−4

)−3/4
, (4.24)

where a monodisperse distribution of chondrules that dominates the cross section
(ac ≫ adust) and the velocity field is assumed, and Rgc = 100. Equation (4.24)
again assumes the relation ∆v ∼ vsτc/ts, although chondrules might also fall in
the square-root part of the velocity regime (§ 4.2.2). Equations (4.23b) and (4.24)
show that in turbulence the dust is preferentially swept up by chondrules. On the
other hand, in Brownian motion, velocities are always determined by the smallest
particle (the dust); the grains therefore simply collide with particles that dominate
the total cross-section. Thus, if turbulence dominates the velocity field for the grains
and Rcd ∼ 1, chondrules will sweep up the dust before significant aggregation takes
place and adust ∼ a0; contrarily, if Brownian motion dominates (or when τc ≫ ts),
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the monomers will first collide with each other before being accreted by chondrules.

The question that remains is what this means for the porosity of the rim. As-
suming a hit-and-stick process, in which the accreting dust particles are all of equal
size and much smaller than the chondrule/compound, the structure of the rim will
resemble that of PCA. Thus, if the dust particles are solid monomers the filling factor
of the rim indeed equals φPCA. On the other hand, if the accreting dust particles are
fluffy aggregates, but still smaller than the chondrule, the resulting filling factor of
the rim will be less than φPCA. The precise filling factor will be determined by the
amount of interlocking between the aggregates but as a crude upper limit the aggre-
gated may be approximated as a homogeneous porous sphere such that the packing
process of the dust aggregates is PCA. Then, the filling factor of the porous dust,
φpd, is just the product of φPCA (caused by hit-and-stick packing) and the porosity
the dust aggregates already contain (φdust), i.e., φpd = φPCAφdust.

In yet another collisional growth scenario we envision that chondrules are mixed
into a dust region after this dust has aggregated into dust balls but before the dust balls
are compacted (Ormel et al. 2007). In any case we assume here that the dust consists
of porous aggregates and parameterize its filling factor by the φpd = φPCAφdust rela-
tion. Using Eq. (4.20), adust is the parameter that regulates the fluffiness of the dust
accretion process and we run models at different values of adust to test its importance
and sensitivity.

Compound-compound accretion

The timescale for chondrule-chondrule accretion, tcc, is similar to the dust-chondrule
timescale, Eq. (4.24). During the collision, a fraction of the porous dust is lost to the
compact dust phase. Since the porous phase filling factor is always less than that
of the compact phase there is always a net loss in geometrical volume when two
compounds collides, i.e., V < V1 + V2. This, we call the ‘conservative approach’ (no
fractal accretion of compounds). Alternatively, collisions of compounds (consisting
of one or more dust-rimmed chondrules) may be in the hit-and-stick regime. This
would occur if the impact energy is absorbed locally and is not communicated to
other parts of the compound. In that case the compound packing proceeds fractally.
Ormel et al. (2007) provide an expression for the growth of V in the hit-and-stick
case for particles of different size, derived by an interpolation from the PCA and CCA

limiting cases, i.e.,

V = V1

(

1 +
V2

V1

)

3
2 δ

, (4.25)

where V1 is the volume of the largest of the two particles that meet and δ ≃ 0.95. The
growth of the porous phase Vpd then results from the gain in V through Eq. (4.19).
The porous phase is then a mixture of porous dust and voids and the geometrical
volume becomes a balance between hit-and-stick packing of chondrules (increasing
V) and compaction of porous dust (decreasing V). This, contrary to the conservative
approach in which the total volume always decreases at collision.

For example, if V2 = 1
10 V1, Eq. (4.25) shows a volume 0.045V1 is added to the
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porous phase, decreasing its filling factor. It then depends on fcomp how the net
growth of the porous phase turns out. In the initial stages of coagulation fcomp is
often very low and, therefore, fractal accretion of compounds can become very im-
portant in enhancing the geometrical volume of the compounds.

Although fractal accretion of compounds increases the volume of the porous
phase, no mass is transferred to it. It is only the filling factor that is affected, in
its turn affecting the aerodynamic properties of the compound. Eventually, due to
compaction, all models run out of porous dust and the dust inside the final objects—
whether fractal accretion is involved or not— has the same filling factor φcd = 0.33.
The lower filling factor of the porous phase during the collision process merely re-
flects the voids between the chondrules that are created in the models with fractal
accretion. As velocities increase, however, the fractal structure must collapse. We
suspect, furthermore, that structures of very low filling factor are too weak to sur-
vive the more violent collisions (see, e.g., Paraskov et al. 2007).

4.2.5 Collisional scenario

We have proposed a model where chondrules— in the presence of dust particles—
acquire rims of fine-grained dust, which help them stick together, and discussed
various collisional scenarios for this growth process. Here we briefly summarize
the envisioned scenario from a chronological viewpoint, and emphasize the (free)
parameters the model contains.

At the start of our simulation (t = 0) a population of chondrules encounters a
reservoir of dust particles of characteristic size adust (see § 4.2.4). The physical condi-
tions of the disk (e.g., gas density ρX , turbulent strength α; see § 4.2.2) determine the
relative velocities between the chondrules/compounds. Another important param-
eter is the spatial density of dust (ρd) or, rather, the dust to chondrule density ratio,
Rcd, since this determines the thickness of the rims. These, and other physical condi-
tions at the start of the simulation determine the subsequent accretion process. First,
chondrules start to accrete the dust aggregates (see § 4.2.4), resulting in a porous rim
of filling factor, φpd. When rimmed chondrules collide, part of this porous struc-
ture collapses to φcd = 0.33 filling factor through the initiation of rolling motions.
This dissipates the collisional energy and, if enough porous dust is present by the
criterion of Eq. (4.16), the two chondrules stick and a compound is created. In this
way compounds are created and many chondrules can be stuck together until the
accretion process is terminated when both the amount of free-floating dust and the
porous dust inside the compounds have become insignificant. The end product is
an inert population of compact-dust rimmed chondrules and compounds that only
bounces. Collisional fragmentation is not explicitly included in the model, but we
can a posteriori compare the velocities with a critical threshold (∼m s−1) to verify its
importance.

4.3 Monte Carlo coagulation

The physical model of chondrule accretion contains many free (i.e., unknown) pa-
rameters. In a statistical study of compound coagulation, we will sample these free
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parameters at discrete intervals such that a grid of models is created (see § 4.4). In
this section we briefly describe the Monte Carlo coagulation code used to calculate
the collisional evolution of the compounds.

Compounds are characterized by four numbers— e.g., m, fd and fp to determine
the mass inside each phase, and φpd for the filling factor of the porous phase. There-
fore, a Monte Carlo code, rather than the multi-variate Smoluchowski equation, is
the obvious way to solve the collisional evolution. In our code we do not keep
track of the individual positions of each constituent unit (the monomers) within a
compound as in e.g., Kempf et al. (1999) but identify each compound by these four
numbers. In this way we have a good characterization of the internal structure of the
compound, although the precise internal structure cannot be retrieved.

The code we use is called event driven; i.e., the timestep ∆t defines the time be-
tween two consecutive events (Gillespie 1975; Spouge 1985; Liffman 1991). Here,
events are collisions between two compounds (see below for the dust). The collision
rate Cij gives the probability of a collision— Cij∆t is the probability of collision in the
next (infinitesimal) timestep ∆t involving compounds i and j, i.e.,

Cij =
σij∆vij

V
; and Ctot =

N

∑
i

N

∑
j>i

Cij, (4.26)

in which σij is the collision cross section6 between particles i and j, ∆vij the relative
velocity between the two compounds, and N the total number of particles in the
simulation. The volume of the simulation, V , is determined from the spatial density

in chondrules, the constant ρc, and the total mass in chondrules, i.e., V = ∑
N
i=1 mi(1−

fd,i)/ρc. From these quantities the timestep is defined by ∆t = −C−1
tot ln r, with r a

random deviate. The particles that are involved in the collisions are also determined
randomly, weighted by their collision rates Cij. Then, using the recipes outlined in
§ 4.2, the outcome of the collision— sticking or bouncing— is determined. In either
case, the parameters of the new or modified compounds are re-computed. (In the
case of bouncing the change is reflected in a smaller size, a, due to the compaction.)
Subsequently, the new collision rates of the particles (i.e., the {Cik} and, if the second
particle due to bouncing is still present, the {Cjk} for k = 1 . . . N and k 6= i, j) are
re-computed. These updates of the collision rates are the most CPU-intensive part of
the code. With it one cycle is completed, after which a new stepsize ∆t is determined
and the steps repeat themselves.

Equation (4.26) involves the total relative velocity between the particles. To cal-
culate ∆vij we use thermal, turbulent and systematic velocities (Eqs. (4.4), (4.8) and
(4.10)), adding them up in quadrature. Strictly speaking, the zero-dimensional na-
ture of the MC-model is inconsistent with dispersal of particles (particles do not have
a positions); however, when the drift is modest the change in the physical environ-
ment is negligible and we can still use the MC-approach. For the radial drift this

6In general one must distinguish between the collisional cross section (which gives the reaction rate of
the two species) and the geometrical cross section (which is the average projected area of the particle that
determines the coupling to the gas). Here we will simply equate them as in σij = π(ai + aj)

2 and ignore
the small discrepancy (see Krause & Blum 2004).
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assumption applies only when the total drift is small compared to the initial location
of the particle, i.e., ∆R ≪ R, such that the same physical conditions apply through-
out the simulation. We will a posteriori check whether radial drift is significant.

Apart from collisions between compounds, we also keep track of dust accretion.
This is, however, not implemented in a Monte Carlo fashion: it would have made
the code very slow since the tiny dust particles far outnumber the chondrules. In-
stead, we catalogue the cumulative dust mass that is accreted by the compounds
over the timesteps; i.e., for compound i we increase the amount by πa2

i ∆vidρd(t)∆t.

Only when this mass exceeds a certain fraction (say fupd = 10−3) of the total mass
of the compound, this quantity is added as porous dust to the compound and the
fd, fp parameters as well as the collision rates are updated (Eq. (4.26)). Although
this procedure makes the program still a bit slow at the initial stage of the simula-

tion, it is definitely much faster than updating all 1
2 N(N − 1) collision rates at every

timestep. The (decreasing) amount of free-floating dust, ρd(t), is computed in this
way. We have examined the sensitivity of this mechanism on fupd and found that

fupd = 10−3 is accurate, while much more efficient (faster) than, e.g., 10−5.

The strong point of the MC code is that it can deal with many structural param-
eters and that it is transparent and straightforward; the weak point, however, is its
low numerical resolution. Given the complexity of the model and the large number
of models we intend to run, the number of particles (N) we use in the simulations is
a few thousands at most. To prevent the resolution from deteriorating (a collision re-
sulting in sticking decreases N by one) we artificially stabilize the total particle num-
ber by a procedure called duplication. In this process, one particle is randomly cho-
sen and duplicated from the existing population (Smith & Matsoukas 1998). Subse-
quently, V is increased proportionately such that the total density in chondrules, ρc,
stays constant. This procedure is called the constant-N algorithm— an algorithm far
superior in terms of accuracy to the constant V algorithm (Smith & Matsoukas 1998),
and we have previously shown that it is able to calculate large orders of growth,
especially when the size distribution is narrow (Ormel et al. 2007). Through the du-
plication mechanism, furthermore, a distinction can be made between ‘duplicates’
and ‘distinct species,’ and it is actually the latter that we keep constant, such that the
total number of compounds involved can be much larger than a few thousands, also
improving the efficiency of the model.

4.4 Results

In our models we generally recognize three stages in the growth process: hit-and-
stick dust accretion (increasing the porosity), compound accretion (i.e., growth), and
compaction with accompanied stalling of the growth. The balance between these
phases controls the size of the resulting compounds, while their relative importance
and ‘timing’ are determined by the adopted model parameters. In § 4.4.1 we dis-
cuss two illustrative cases, focusing on the temporal stages during their evolution.
Then, in § 4.4.2 we investigate the sensitivity of the other parameters by means of a
parameter study.



4.4: Results 117

10
0

10
1

10
2

10
3

time [yr]

10
−3

10
−2

10
−1

10
0

initial 〈a〉m

max. comp.

A

ρd(t)

〈a〉m[cm]

〈φ〉m

〈St〉m

GF

10
0

10
1

10
2

10
3

time [yr]

10
−3

10
−2

10
−1

10
0

initial 〈a〉m

max. comp.

B

ρd(t)

〈a〉m[cm]

〈φ〉m

〈St〉m GF

Fg. 4.6: (a) A run of the compound accretion model with α = 10−4, ρX = 1, adust = 10 µm,
γ = 19 erg cm−2, R = 3 AU, Rgc = 100 and Rcd = 1 (the default model). Plotted as
function of time are: the normalized density of free floating dust (solid black curve; the initial
dust density is ρdust(t = 0) = 2.4 × 10−13 g cm−3); the mass-averaged size of the population
(dashed-line); the mass-averaged filling factor of the dust within the compounds (dotted curve);
and the mass-averaged Stokes number of the population (solid grey curve). Shown is also the
definition of the growth factor, GF. All quantities share the same y-axis. (b) Like (a) but with
α = 10−6.

4.4.1 Individual model runs

Figures 4.6 and 4.7 show detailed results for two individual runs of the simulation
with (default) parameters of gas density ρX = 1, adust = 10 µm, Rgc = 100 and

Rcd = 1, γ = 19 erg cm−2 at a distance of 3 AU (see Table 4.1). In these figures
panels A correspond to a model with α = 10−4, while α = 10−6 in panels B. In
Fg. 4.6 several (mass-averaged) quantities are shown as function of time, while in
Fg. 4.7 the size distributions of compounds are shown at three points during their
evolution: (i) t = 0 (the initial size distribution of chondrules); (ii) the time at which
50% of the dust is accreted; and (iii) the time at which a negligible amount of porous
dust remains (the final distribution). The negligible criterion is met when both the
porous dust mass within all compounds as well as the density of free-floating dust
are less than 0.1% of the initial dust mass.

In Fg. 4.6 we make use of mass-weighted averages. For example, the mass-
weighted average size of the population is defined as

〈a〉m =
∑i miai

∑i mi
, (4.27)

where the summation is over all particles of the simulation. It gives the mean size
in which most of the mass of the population resides, and is more appropriate to de-
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Fg. 4.7: Size distributions of compounds corresponding to the runs in Fg. 4.6 for the α =
10−4 model (a) and the α = 10−6 model (b). Shown are the initial distribution (crosses), the
distribution at the time where 50% of the dust has been accreted (plus-signs) and the final
distribution (diamonds). Note that compaction has the effect of shifting the distribution to the
left.

scribe the population than the average size, 〈a〉. In particular, adding a large number
of small particles with negligible mass (density) to the population, decreases 〈a〉 but
leaves 〈a〉m unaffected. In the following the prefix ‘mw-’ is used as an abbreviation
for ‘mass-weighted average of the distribution.’

Figure 4.6a shows that dust is accreted on timescales of a few 102 yr, which agrees
well with previous studies (Cuzzi 2004). This causes the size distribution (Fg. 4.7) to
shift towards larger sizes: the accretion of porous dust particles at low filling factor
significantly increases the geometrical size of the compounds. The dotted curve in
Fg. 4.6a shows the mw-filling factor of the accreted dust. At the start of the sim-
ulation this equals φpd = φdustφPCA; however, collisions are energetic enough to
compact the porous dust on a global scale. The decrease in friction time (solid grey
curve), caused by the accretion of porous dust, therefore is only modest. (Note that
even accretion of φ = φcd = 33% dust on chondrules would cause the friction time
to decrease). Consequently, the sticking rate never increases much beyond ∼50%.
After ∼102 yr the accretion of porous dust cannot keep pace with the compaction
and sticking fails, resulting in a decrease of the compounds geometrical size (dashed
curve). This results in a ‘retrograde motion’ of the final size distribution curve in
Fg. 4.7a. In the α = 10−6 model (Fg. 4.6b) the collision velocities are much lower and,
different from the α = 10−4 model, the porous dust does not experience compaction
for a long time. The sticking rate then increases to almost 100%. However, deple-
tion of dust triggers the end of the growth phase; growth is quickly terminated by
the mutually enforcing processes of rim compaction and increasing velocities. From
these panels it is clear that much growth can be achieved when relative velocities are
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Fg. 4.8: Relative fraction
of dust accreted by com-
pounds of different size for
the α = 10−4 and α = 10−6

simulations. The compounds
are placed in bins according to
the number of chondrules they
contain. The bins are expo-
nentially distributed by factors
of two. The histogram shows
the distribution of the dust
over the compound sizes (in
terms of number of chondrules
inside the compound) at the
time of the dust accretion.
Single chondrules (first bin)
accrete a significant fraction of
the dust.
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kept low during the dust and chondrule accretion.

Although the Monte Carlo code does not keep track of the position or size distri-
bution of chondrules within compounds, we can still extract useful statistical infor-
mation from the model runs. One such statistic is the distribution of the dust over
compounds of different size: is the dust primarily accreted by individual chondrules
or by large compounds containing many chondrules? The results are presented in
the histogram of Fg. 4.8. The x−axis denotes the number of chondrules a compound
contains (N) and is divided into logarithmic bins of base 2, i.e., the first bin corre-
sponds to single-chondrule compounds, the second to compounds that contain 2 or
3 chondrules, the third to 4− 7 chondrules, etc. The y−axis gives the relative fraction
of the dust that first accretes onto a chondrule or compound with size in each bin;
that is, Fg. 4.8 only reflects the dust accretion history and does not include the sub-
sequent re-distribution of dust due to coalescence of compounds (which would shift
the dust-rimmed chondrules to a larger compound bin). The relatively high level of
the first bin (single-chondrule compounds) reflects dust accretion during the early
phase of the simulation where individual chondrules provide a high surface area
and the density of free-floating dust is highest. In simulations with strong turbu-
lence this fraction becomes very high: the dust is then accreted by single chondrules
only. But even in the case of low α single chondrules are responsible for a significant
share of the dust sweep-up, as the α = 10−6 results show. Besides, larger compounds
also have a larger surface to spread this dust over; rims created by dust accretion are
therefore thickest on chondrules.



120 Co-accretion of chondrules and dust in the solar nebula

FREE MODEL PARAMETERS

(1) (2) (3) (4) (5)

turbulent strength α 5 [10−7 — 10−3]

size of dust aggregates adust cm 3 [10−4 — 10−2]
gas densitya ρX g cm−3 3 [1— 100]
nebula location R AU 3 [1, 3, 10]
gas-chondrule ratio Rgc 2 [10, 100]
chondrule-dust ratio Rcd 2 [1, 10]

dust compositionb γ ergs cm−2 2 [19, 370]
compaction modec fgeo 2 [X, 1]

fractal accretion of compoundsd 2 [yes, no]

Table 4.4: List of free model parameters. Columns denote: (1) parameter description; (2)
symbol; (3) unit; (4) number of grid points per parameter; (5) parameter range, with a grid
point at every factor of 10, unless otherwise indicated. See also Table 4.1 for other (fixed)
parameters. Notes. aGas density over MMSN model at 3 AU. bEnergy surface density, γ. The
high γ model corresponds to ice as the sticking agent (10 AU models only). c fgeo = ′X′: fgeo

is computed after the procedure outlined in § 4.2.3; fgeo = 1: use fgeo = 1 always. dWhether a
hit-and-stick packing model for compounds (leading to a fractal structure, § 4.2.4) is adopted
or not.

4.4.2 Parameter study

Figure 4.9 presents the results of the parameter study. The free parameters (Table 4.4)
are distributed over a grid such that each grid point corresponds to a unique model.
In total a few thousand distinct models are run. Each model is run a few times to
account for stochastic effects in their results (typically ∼10% or so). For each free pa-
rameter the models are ordered by the grid-values of the parameter, corresponding
to the panels in Fg. 4.9. Two output values are shown: the ratio of final mw-radius
to initial mw-radius, or growth factor (crosses) and the time at which the dust is de-
pleted and the simulation terminated, or simulation time (diamonds) (they share the
same y-axis; for clarity the timescale error-bars are slightly offset in the x-direction).
The symbols denote the logarithmic averages of all models at the grid-values and
the error bars indicate the range in which 50% of the models fall. This spread can
be huge since it is primarily determined by the spread in the other parameters (and
therefore nowhere close to Gaussian). The same holds for the averages: these can
be arbitrarily scaled up or down by giving more weight to extreme models in the
parameter study.

However, the value of Fg. 4.9 lies not in its absolute numbers but in the trends
that emerge from the parameter variation. The lines indicate this trend and their
slopes are given in each panel. From these, it is seen that timescales are primarily
determined by turbulent α (velocities), nebula location R (densities) and the chon-
drule density (Fg. 4.9e). Parameters that favor large growth of compounds are low
α (Fg. 4.9a), high gas densities (Fg. 4.9c), low chondrule-to-dust ratios (Fg. 4.9f), and
high surface energy densities (Fg. 4.9g). Growth is favored in these models due to
the moderate relative velocities (Fg. 4.9a,c) or better sticking capabilities (Fg. 4.9f,g).
Other parameters are sometimes surprisingly irrelevant. For example, the depen-
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Fg. 4.9: Results of the parameter study. Each panel sorts the data according to a free parameter
(x-axis), from which the logarithmic mean and variance are calculated. Two output values are
shown on the same y-axis: growth factor (crosses) and simulation time (diamonds). The lines
show the trend in variation of the parameter and the ‘best-fit’ power-law exponent is given.
(g) Data from R = 10 AU models only, comparing silicate dust (γ = 19 erg cm−2) with ice
(γ = 370 erg cm−2). (h) fgeo = X indicates fgeo is a free parameter calculated after Eq. (4.17),
while fgeo = 1 indicates it is 1 always. (i) 0 and 1 denote, respectively, that fractal accretion
of compounds is turned off or on. In these latter two panels the numerical factor next to the
m gives the ratio in growth factor and timescale between the two modes (not the power-law
exponent).
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dence on the size of the dust fluff-balls, adust, defining their porosity (Eq. (4.20)),
is only modest (Fg. 4.9b), and also the latter two panels do not show clear trends.
Figure 4.9h,i directly give the ratio between the two data points, instead of the ex-
ponent of the power-law fit. Figure 4.9h shows the effects of taking the geometry
of the collision into account. Here, fgeo = X where 0 < X ≤ 1 means that fgeo is
determined by the geometry of the collision as discussed in § 4.2.3, whereas fgeo = 1
indicates that all dust is available for compaction. However, allowing for a lower
fgeo also reduces the maximum amount of dust that is compacted. Apparently, these
two effects largely compensate. A similar insensitivity is shown in Fg. 4.9i: whether
we allow for fractal accretion of compounds (‘1’) or not (‘0’) does not, on average,
make a difference. Note, however, that the values shown in the panels are averages;
in some individual simulations we do see a notable increase when fractal accretion
is turned on. Figure 4.9a shows that the positive correlation between growth fac-
tor and decreasing α breaks down for values below α < 10−5: the growth flattens
out and reaches a constant level. The reason is that for low values of α, and, sub-
sequently, large compounds, radial drift motions quickly take over from turbulent
motions such that the evolution becomes insensitive to α. The high radial drift ob-
tained when particles approach the St = 1 regime forms a barrier for further growth.
Low α combined with high gas densities delay this transition since compounds are
now much better coupled to the gas (lower Stokes numbers) meaning much growth
early on. Yet, Stokes numbers inevitably grow to values near unity, and in most cases
the resulting ηvK drift velocities (Eq. (4.8)) stall growth below 1 meter.

Figure 4.9d shows that growth depends only modestly on nebula radius, R. Here,
the positive correlation with growth factor is a bias resulting from the high γ ‘ice
models’ (Fg. 4.9g) — ice promotes sticking — that are only present at R = 10 AU.
Thus, despite the fact that almost all nebula parameters scale with R, their combined
effect does not result in a clear trend that favors growth. For example, larger neb-
ula radii mean lower densities and higher Stokes number, increasing the velocity in
the initial stages, but this is offset by a (slightly) lower sound speed, and the better
sticking agents that are available.

In Fg. 4.10 all models are combined in a scatter plot of total (mass-weighted) ra-
dial drift against the final mw-size obtained in the simulation. The few models that
cluster around the meter size are all ice models (γ = 370 and R = 10 AU, indicated
by triangles). Some of them do manage to cross the 〈St〉m = 1 barrier (at 10 AU
and ρX = 1 this already happens at a few centimeters) but do not make the jump to
planetesimal sizes. In models that during their growth drift less than ∆R ∼ R the
local assumption is justified; for models that drift over several AU-distances, how-
ever, the approximation we used in the calculation of the collisional evolution, i.e.,
that the physical conditions stay the same, breaks down. Note, however, that the
drift distances in Fg. 4.10 are upper limits: radial drift slows down with decreasing
R due to a better coupling to the gas, or may diminish when collective effects become
important (see § 4.5.1).
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Fg. 4.10: Scatter plot of the fractional inward radial drift covered during the aggregation pro-
cess (∆R/R, x-axis) against the final mass-averaged size of the compounds (〈a〉m, y-axis).
The results of all model runs are shown. Models are separated into the low-velocity regime
(∆v . 102 cm s−1, black squares) and the high velocity regime (∆v & 102 cm s−1, open squares).
Triangles denote ‘ice models’ (γ = 370 at R = 10 AU). In the models shown by grey squares
(or triangles) the collective effect could have prevented high drift velocities but this is not in-
corporated in the present models. The vertical dashed line corresponds to a drift of 1 AU. The
dashed horizontal lines indicate compound sizes of 1 cm and 1 m, respectively.

4.4.3 Importance of fragmentation

The models neglect the possibility that high velocity collisions will fragment, rather
than merely compact or bounce, compounds. In § 4.2.3 it was estimated that at
∼m s−1 velocities, fragmentation becomes likely, starting with erosion, followed
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Fg. 4.11: A selection of 12
models from the scatter plot
of Fg. 4.10, indicating sys-
tematic trends. Compared
to Fg. 4.10 results are limited
to: adust = 10−3, ρX = 1 or
10, Rgd = 100, Rcd = 1,
R = 3 AU, fgeo = X (local
compaction), and no fractal
accretion of compounds. See
Table 4.5 for quantitative
results.

by catastrophic disruption of the compound. This threshold can now be compared
to the maximum velocities attained at a particular Stokes number (see Fg. 4.1), i.e.,

∼η1/2cgSt and ∼α1/2cgSt1/2 for the systematic drift and turbulent velocities, respec-
tively. Inserting the final mw-Stokes number into these expressions, we obtain a
criterion that tells us whether fragmentation is of importance. As the critical veloc-
ities we take 2 m s−1 for turbulence and 6 m s−1 for radial drift (see Fg. 4.4). It can
be shown that for systematic velocities scaling proportional to size the collisional
energy peaks at size ratios of ǫ ∼ 0.5, which, according to Fg. 4.4, corresponds to a
fragmentation velocity of ∼3 m s−1, or a ∼6 m s−1 radial drift velocity for the largest
particle. For ice models (triangles) the fragmentation threshold is increased by an-
other factor of four, reflecting their higher γ. In Fg. 4.10 the models that have crossed
the threshold velocity are indicated by an open square, whereas black squares indi-
cate velocities that stay below the threshold. The grey squares are models in which
collective effects could have had a significant reduction in relative velocities and
drift rates, due to concentration of compounds near the midplane (see below, § 4.5.1).
However, these subtleties are presently not taken into account in the simulation and
it remains unclear whether fragmentation is an important phenomenon in models
for which settling is important.

For most models in Fg. 4.10 fragmentation is not a serious concern. This is a nat-
ural result as compaction precedes fragmentation and growth stalls before reaching
the fragmentation threshold. However, for large, fluffy compounds the compaction
is more pronounced, resulting in a significant decrease in surface area-to-mass ratio,
increasing the Stokes, and thereby possibly breaching the threshold for fragmenta-
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DETAILED RESULTS

α ρX 〈a〉m 〈St〉m ρp/ρmid
g ∆vturb ∆vsys ∆vsys,CE

[cm] [cm s−1] [cm s−1] [cm s−1]
(1) (2) (3) (4) (5) (6) (7) (8)

10−7 10 8.5 2.6 × 10−2 4.9 5.9 358.6 10.3
10−6 10 8.0 2.5 × 10−2 1.5 18.0 336.9 54.6
10−5 10 4.8 1.5 × 10−2 0.4 44.3 204.4 108.2
10−7 1 0.8 2.5 × 10−2 4.8 5.8 345.0 10.2
10−6 1 0.7 2.3 × 10−2 1.4 17.4 316.7 53.4

10−4 10 0.6 2.0 × 10−3 0.0 51.2 27.4 25.1
10−5 1 0.5 1.4 × 10−2 0.4 42.8 190.9 103.8

10−3 10 0.1 3.9 × 10−4 0.0 71.4 5.3 5.2

10−4 1 0.1 4.0 × 10−3 0.1 71.9 53.9 47.9
10−3 1 0.1 3.3 × 10−3 0.0 206.7 44.5 42.8
10−2 1 0.1 3.2 × 10−3 0.0 641.7 42.9 42.0

10−2 10 0.1 3.5 × 10−4 0.0 212.3 4.7 4.6

Table 4.5: Detailed results from 12 selected models (see text), ordered after final mw-size, col.
(3). The columns denote: (1) turbulent-α; (2) gas-density enhancement (restricted to 1 or 10);
(3) final mw-size; (4) final mw-Stokes number; (5) final midplane dust-gas density ratio would

settling have been included; (6) turbulent velocity contribution, α1/2St1/2cg; (7) systematic
drift after Eq. (4.8); (8) systematic drift due to collective effects after Eq. (4.28) with col. (4) for
St.

tion. Also note the fragmentation models (open symbols) at the bottom of Fg. 4.10:
in these the fragmentation threshold was already exceeded at the start of the simu-
lation.

Figure 4.11 shows a small subset of models from Fg. 4.10 that takes away the
redundancy (caused by less influential parameters) and focuses on the more plau-
sible scenarios. More specifically, Fg. 4.11 shows models limited to the following
parameters: Rgc = 100, Rcd = 1.0, adust = 10−3 cm, ρX = 1 or 10, R = 3 AU,

γ = 19 erg cm−2; furthermore, we assume only local compaction ( fgeo = X) and
assume collisions between compounds are not in the hit-and-stick regime (§ 4.2.4).
Only 12 models are then shown with the only free parameters being α (all 6 distinct
values) and ρX (2 values). Table 4.5 shows various output values corresponding to
the ‘top ten’ models of Fg. 4.11, ordered after final mw-size; for example, the maxi-
mum velocities due to systematic and turbulent motions. This shows that for these
low-α models systematic drift velocities (col. (7)) quickly become dominant over tur-
bulent motions (col. (8)).

4.5 Discussion

4.5.1 Collective effects in a settled layer

Despite the ability of the chondrule-sticking model to tweak many parameters to
optimize the growth, compounds never achieve planetesimal sizes. Ultimately, m/s
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or higher velocities are unavoidable in any model due to the radial drift; that is,
compounds inevitably reach (and have to cross) the St = 1 bottleneck at which their
radial drift velocities peak. The studied accretion mechanism— chondrule sticking
by compaction of initially fluffy dust— is simply too weak to grow past the St = 1
bottleneck.

There is one issue, however, that is unaccounted for within the framework in
which the simulations are performed: if the turbulence is weak enough, in addition
to moving radially, compounds can also settle into a dense layer at the midplane
as their Stokes numbers increase. When the density of solids at the midplane ex-
ceeds the gas density, the gas is dragged with the particles (instead of the other way
around), resulting in gas velocities that tend to become closer to Keplerian, which
subsequently diminishes the radial drift and relative velocities of particles. Naka-
gawa et al. (1986) have solved the equations of motion in such a two-fluid medium
analytically for a single particle size (or Stokes number); the radial drift velocity now
becomes (instead of Eq. (4.8))

vrd =
2St

St2 + (1 + ρp(z)/ρg)2
ηvK, (4.28)

where ρp(z) is the total density of particles at a height z above the midplane. For
a generalized solution over a particle size distribution see Weidenschilling (1997) or
Tanaka et al. (2005). Thus, in a dust-dominated layer the radial drift of individual
particles depends through ρp(z) on the density of all other particles: a collective
effect. The particle concentration can be found by balancing the gravitationally in-
duced settling rate with the diffusion rate of a particle, assuming a steady-state dis-
tribution. The scaleheight of the resulting particle distribution, hp, can be calculated
as (Dubrulle et al. 1995)

hp =
Hg

√
1 + S

, (4.29)

where S = St/α. Under conditions of initial cosmic abundances, in order to reach
ρp ∼ ρg the particles must settle into a layer of thickness one-hundredth of the gas

scaleheight, requiring S > 104 (Cuzzi et al. 2005). This may occur for chondrules
in very low-α environments, or, at moderate α, only for large compounds during
their growth and settling stage. In Table 4.5 we have calculated the density enhance-
ment (ρp/ρg, col. (5)) and the corresponding velocities (∆vsys,CE, col. (8)) for a few
selected models at the end of their simulation, where we fixed most parameters at
their default 3 AU values, except for α and ρX . Note that in the context of our cur-
rent model setup collective effects are purely hypothetical (we treat ρg/ρc = Rgc as
a constant); the columns of Table 4.5 therefore merely provide an indication of what
could be expected had settling-effects been included. In these calculations we have
used the mass-averaged Stokes number of the population (col. (4) of Table 4.5) as
the Stokes number that enters equations (4.28) and (4.29). The last two columns of
Table 4.5 show that collective effects (ρp/ρg > 1) quickly reduce the radial drift. In a
future study, we intend to investigate the effects of the particle concentration on the
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compounds’ growth.
There is yet another subtlety involved when collective effects (i.e., a dust-dominated

midplane) become important. This is the Kelvin-Helmholtz instability (Weiden-
schilling 1980), caused by the shear between the two fluids now moving at a relative
velocity of ∆V, the azimuthal velocity difference between the gas in the particle-
dominated and the gas-dominated layer. For shear turbulence the turbulent viscos-

ity is νT ∼ (∆V)2/ΩRe∗2 (Cuzzi et al. 1993), where Re∗ is a critical Reynolds num-
ber at which the flow starts to become turbulent, which Dobrovolskis et al. (1999)
found to be Re∗ ∼ 20 − 30. Also, the large eddy turnover frequency in shear tur-
bulence (Ωe) can become much larger than Ω, depending on the thickness of the
shear layer (see Weidenschilling 2006 for how Ωe depends on the particle density

structure, ρp(z)). Equating νT ∼ (∆V)2/ΩRe∗2 with (vsh
L )2/Ωe then provides the

expression for the shear turbulent (large eddy) velocity, vsh
L ,

vsh
L ∼

(

Ωe

Ω

)1/2
∆V

Re∗
≈ 0.033

(

Ωe

Ω

)1/2

∆V . 0.18η1/2cg, (4.30)

where the upper limit assumes (Ωe/Ω) ∼ Re∗ = 30 and ∆V = ηvk = η1/2cg. This
corresponds to the situation where the shear layer is thin (meter-size or larger par-
ticles; the shear layer cannot become thinner than the Eckman layer, see Cuzzi et al.

1993). In that case, setting vsh
L = α1/2

sh cg the equivalent α value for shear turbulence

becomes αsh ∼ 3 × 10−5. This is an upper limit; for smaller particles, or a size-
distribution of particles, both Ωe and ∆V are lower and αsh decreases as well. Shear
turbulence may therefore be much more conducive to compound growth.

Future studies must show whether these effects enable growth to planetesimal
sizes. Recently, Johansen et al. (2007) have suggested that concentration of meter-
size particles (St ∼ 1) in certain azimuthally-oriented near-midplane high pres-
sure zones, which form between large turbulent eddies, might lead to gravitation-
ally bound clumps with the mass of planetesimal size objects. The results from Jo-
hansen et al. (2007) were most pronounced when the turbulent intensities were mod-
erately high (this leads to the largest radial pressure contrast), suggesting values of
α ∼ 10−3. However, our results suggest that it is difficult to grow a population of
meter-size boulders in the first place under such conditions. The maximum growth
(in terms of Stokes number) our models achieve for α = 10−3 is St ∼ 5 × 10−3 at 3
AU (essentially no growth at all: just dust-rimmed chondrules). 10 AU ice models do
somewhat better: St ∼ 7.4× 10−2. Even if they can form, a population of meter-sized
boulders may be difficult to maintain if these originated from dust-coated, solid
chondrules as modeled in this chapter. In § 4.2.3 we estimated that fragmentation
occurred at a critical velocity of ∼102 cm s−1, 30 times smaller than the expected
value of St = 1 particles for α = 10−3. This translates into a specific kinetic energy
for disruption of Q∗ = 104 erg g−1, much lower than the critical Q∗ Johansen et al.
(2007) adopt (for aggregates of solid basalt objects, as taken from Benz 2000). Thus,
our results indicate that it may be difficult for the instability described by Johansen
et al. (2007) to become viable in the turbulent inner (ice-free) nebula.

In the outer solar system, however, conditions may be more favorable to growth
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in a turbulent environment. First, if ice acts as the sticking agent Q∗ may be over an
order of magnitude larger, reflecting the scaling with the surface energy density pa-
rameter, γ. Second, if chondrule formation is not common the particles grow directly
from aggregates of tiny grains to larger aggregates and therefore contain roughly
twice as much mass in small grains as dust-rimmed solid chondrules. Moreover,
Stokes numbers for the same particles increase with larger heliocentric radii (R) due
to the lower gas densities. Therefore, at large R the St ∼ 1 regime is reached at
smaller sizes (centimeters), which may be somewhat more difficult to disrupt (i.e.,
higher Q∗) than m-size bodies (Housen & Holsapple 1990; Benz 2000). (In our sim-
ple estimate of Q∗ we do not have a size dependence, though.) Still, it is hard to see
that & 10 m s−1 velocity collisions between equally-sized particles, even under these
most favorable conditions, will not result in disruption; but this should of course re-
ally be tested by experiments.

On the other hand, it also seems sensible to pursue incremental growth scenarios
which take place in quiescent (or low-α) nebulae. Due to the relatively low effec-
tive α-values for shear turbulence derived above, it is the radial drift motions that
will provide the limits to growth. However, even a modest reduction of radial drift
motion by a few factors due to collective effects may already be sufficient to pre-
vent catastrophic collisions as particles reach St = 1 (see, Cuzzi et al. 1993; Weiden-
schilling 2006). Recall that fragmentation is easiest for nearly equal-size particles,
which collide at very low velocities due to their systematic, nonturbulent motions.
Moreover, the compound size distribution, which is a function of height, also de-
termines whether collisions are beneficial to the growth; for example, if the size
distribution is nearly monodisperse this will certainly favor growth in the nontur-
bulent cases. Since all these effects will vary with height, however, it is difficult
to predict how these effects will unfold, and which parameters are key. Clearly,
additional modeling is needed, where we may even combine these two different
modes of turbulence since it is quite natural to expect that different physical pro-
cesses operate at different heights (Ciesla 2007). However, incremental growth in
the dense, particle-dominated midplanes of nonturbulent models then proceeds ex-
tremely rapidly (Cuzzi et al. 1993; Weidenschilling 2000) which is contrary to the
evidence from meteorites and asteroids (see Cuzzi et al. 2005 or Cuzzi & Weiden-
schilling 2006 for a discussion).

4.5.2 Dust rim and matrix

Figure 4.12 provides an illustration of the internal structure of the objects obtained
at the end of our simulation. In Fg. 4.12 it is assumed that each chondrule (black
circles) is surrounded by a dust rim at least ∼40% of the chondrule’s mass, corre-
sponding to the amount of dust accreted by individual chondrules (see Fg. 4.8). This
translates into an outer rim radius that is a factor of 1.3 larger than that of the chon-
drule and is reflected in the inter-chondrule spacing of Fg. 4.12. For the remainder
the chondrules are positioned at random. (Note that Fg. 4.12 does not follow directly
from the Monte Carlo collision model since we do not keep track of the positions of
chondrules within compounds and cannot ‘reconstruct’ a compound.) Furthermore,
we have assumed the initial chondrule size distribution holds, but accounted for the
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Fg. 4.12: A sketch of a cross-
cut through a compound at
the final state of our model.
The compound contains two
phases, present in equal pro-
portion by mass: chondrules
(black) and φ = 0.33 compact
dust (grey). The cross-cut in-
troduces a selection effect and
shifts the chondrule size dis-
tribution to bigger chondrules.
The chondrules are placed at
random but a certain distance
between the chondrules is pre-
served (see text).

1cm

chondrule

φ=33% compact dust

bias a cross cut introduces to the observed structure (Eisenhour 1996). The chondrule
size distribution is therefore skewed towards larger chondrules.

However, the picture of a uniform 67% porosity dust phase between chondrules
contrasts with the meteoritic record. Here, the dust is compacted to a much larger
extent and — at least in the pristine CM chondrites but in others as well — can be
divided into two distinct components: the fine-grained, low porosity (10-20%; Trigo-
Rodriguez et al. 2006) rim that surrounds chondrules and the interstitial matrix ma-
terial. Figure 4.12, however, does not show this fine structure as the physical pro-
cesses responsible for it were not modeled. Yet, the observed fact that chondrules in
chondrites are separated by dust and not clustered together supports the main idea
of this work: that dust is accreted by chondrule-sized and perhaps somewhat larger
particles (compounds) but not, e.g., by planetesimals. How then did the rim-matrix
distinction originate? Two scenarios can be envisioned: (i) a period of nebula dust
sweep-up and compaction; or (ii) shock waves in the parent body.

The first scenario concerns a moderately intense turbulent environment (i.e., high
α) in which chondrules are largely unable to stick, so that most of the dust is accreted
by individual chondrules. These bouncing chondrules quickly compact each other’s
rims, while grazing collisions may also result in dust being partially stripped away
or eroded from the rims. Presumably, a steady-state between rim accretion and ero-
sion is established, where some of the dust is firmly attached to each chondrule and
compacted, while another, more fluffy, component is continuously eroded off and
reaccreted to the chondrule surfaces. Any of this latter, loosely bound phase which
remains attached to chondrules at the point they are accreted to their parent plan-
etesimal would be easily stripped away in the abrasive environment of the accreting
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planetesimal to become ‘matrix.’

Alternatively, a much more gentle collisional environment may be considered in
which big compounds form very quickly, and then continue to grow to planetesi-
mal sizes. The dust is then primarily accreted by compounds, though, as we have
argued in § 4.4.1, a significant proportion of the dust is always accreted by individ-
ual chondrules. As collisional energies stay low no identifiable rims are formed;
and any rim signature might anyway easily abrade off on the parent planetesimal.
In this scenario, the fine-grained dust rims might result from later processes on the
parent body. Specifically, it has been suggested that shock waves through these plan-
etesimals (caused, for example, by violent collisions with other planetesimals) will
compact the dust (Trigo-Rodriguez et al. 2006). In the Trigo-Rodriguez et al. (2006)
model the highest compaction of the dust takes place near the solid chondrule sur-
face. Thus, it is only during the planetesimal stage that rims become distinguishable
from the matrix.

There are a number of constraints the rim formation mechanisms must satisfy.
For instance, collisions must be energetic enough to compact the rims significantly
to explain the high filling factors observed in chondrites. In the nebula formation sce-
nario, therefore, more energetic collisions are required than provided by the model
we present here. From the arguments given at the end of § 4.2.3, we can estimate
the velocities required to compact the accretion rims into nearly random closely
packed configurations to be 105/2 higher than the sticking velocity (Eq. (4.13)), or
v ∼ 0.1 km s−1. Clearly, other compaction processes are needed than can be pro-
vided by collisions in turbulence, even between compounds approaching St = 1
in size. One possibility, given the preference for melting of chondrules by Mach 7
shock waves (Desch & Connolly 2002; Hood et al. 2005), is that the plausibly more
numerous, more prevalent, weaker shocks which are consequently experienced even
more routinely by particles, would provide this range of collisional velocities for
chondrule-size particles and their fractal aggregates (Ciesla 2006). Another con-
straint is the rim-matrix distinction. In the parent body shock scenario it must there-
fore be shown that this distinction unambiguously results from these shocks. Trigo-
Rodriguez et al. (2006) provide a qualitative idea on how this mechanism operates,
and it would be desirable for this hypothesis to be backed-up more quantitatively
by, e.g., sophisticated numerical simulation.

Yet a third observational constraint is the linear correlation between chondrule
radius and rim thickness (Metzler et al. 1992; Paque & Cuzzi 1997). Figure 4.13 il-
lustrates this point in the context of our accretion model. In Fg. 4.13a the chondrule-
mass (mc, x-axis) is plotted against the rim mass (mrim, y-axis) for the two models
discussed in detail in § 4.4.1: crosses for the α = 10−6 model and circles for the
α = 10−4 model. (In Fg. 4.13a the α = 10−6 points are arbitrarily offset vertically
by a factor of 103 for reasons of clarity.) The parameter mrim is defined as dust that
is accreted by individual chondrules, before they become incorporated into a com-
pound. The mc-mrim relation is shown for 200 chondrules, randomly selected from
the initial distribution. The dashed lines show the best fit having slopes of 0.93 and
0.91, respectively. The near-linear trend of mrim with chondrule mass is obvious but
the spread is large, as seen in actual chondrites (Metzler et al. 1992). Figure 4.13b
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Fg. 4.13: (symbols) Model pre-
dictions for the thickness of
the chondrule dust rim. The
amount of dust accreted be-
fore the chondrule’s incorpo-
ration into a compound de-
termines the dust rim mass
(mrim). (a) Scatter plot of chon-
drule mass mc against mrim for
200 chondrules, chosen ran-
domly at the conclusion of the
run. Two models are shown:
α = 10−4 and α = 10−6

with the latter population be-
ing shifted by a factor of 103

for clarity. The least-squares
power-law fits are given by the
dashed lines, which have ex-
ponents of 0.93 and 0.91, re-
spectively. (b) Dust-chondrule
mass ratio (y-axis) at the time
of its accretion into a com-
pound (x-axis).
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shows the accretion history of these compounds: the mass ratio, mrim/mc, is plot-
ted (y-axis) against the time at which the chondrule is swept up by a compound.
The ‘α = 10−4 chondrules’ lie to the left of the ‘α = 10−6 chondrules,’ reflecting
their shorter collision times. The initially linear trend breaks down at later times
as the density of free-floating dust decreases. Although many processes contribute
to the spread in the data points of Fg. 4.6a — for example, differences in velocity
field (linear/square-root regime) during the simulation and the bouncing history of
chondrules—the stochasticity in the chondrule-compound accretion time is the main
contributor. Note also the pile-up of particles in the α = 10−4 model near t ∼ 103 yr,
the final time of the simulation: these are the chondrules that remained single during
the entire simulation.

The relation of rim thickness with chondrule size can be naturally understood as
the outcome of a nebula accretion process (Morfill et al. 1998; Cuzzi 2004; Fg. 4.13).
The observed linear relationship in chondrites therefore suggests this relationship
should somehow have survived further processing. As dust rim accretion in the
violent collisional environment differs from the non-fragmentation environment in
which our simulations are performed, it still remains to be shown that the linear
relationship is maintained after fragmentation/erosion sets in. Alternatively, if the
imprints of nebula dust-accretion are destroyed during parent body accretion, a dif-
ferent mechanism must explain the observed relationship.
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Future work— e.g., experimental work on rim-chondrule size ratios and more ad-
vanced theoretical models — must determine which of the two scenarios described
above is more likely. Dust fragmentation and additional compaction mechanisms
may be included into the present model. Increasingly energetic collisions (when
compounds grow towards the St = 1 barrier) may disrupt compound objects with-
out stripping the rims entirely off of individual chondrules, and in doing so may
compact the surviving fine grained rims further than the φcd = 0.33 limit we have
adopted in this study. Also, size distributions in the fine-grained component might
also allow a greater degree of packing than in our models and Blum & Schräpler
(2004) expect, in which the grains are all monodisperse.

4.6 Summary

We have investigated a chondrule-dust aggregation mechanism in which the fine-
grained dust acts as the glue that allows chondrules to stick. We argue that the en-
ergy in collisions is sufficient to compress directly accreted material, which initially
has a porous ‘fairy-castle’ structure, into a more compact state having a porosity
that is roughly 67% (based on compaction measurements by Blum & Schräpler 2004
and theoretical arguments). We have applied this model to a variety of questions
regarding the meteoritic record: the relation of individual chondrules to their fine-
grained dust rims, the internal structure of the chondrites, and the ability of growth
by sticking to surpass the meter-size barrier. This study only starts to address these
questions; more sophisticated models are needed to answer detailed questions on
the structure of the meteorites.

We find that porous accretion rims do indeed cushion collisions and facilitates
growth to compound objects containing many rimmed chondrules, but this growth
is limited to 30 − 100 cm radius objects under the most favorable conditions. This is
because the chondrule component sweeps up all the local dust in a short time (102 −
104 yr, depending on nebular location) and these compounds experience higher rel-
ative velocities during their growth stage. Subsequent collisions merely pack the
existing rims down further, so that the system ultimately reaches a dead-end steady
state where collisions only result in bouncing, or possibly disruption. Other conclu-
sions from this study are:

1. Compound growth works best in a quiescent environment (high gas density,
low α values). In a more violent collisional environment (α ∼ 10−3 − 10−2) it is
difficult to accrete dust fractally on chondrules surfaces and the energetic colli-
sions between compounds quickly compact the remainder such that collisional
growth is quickly terminated.

2. The importance of the other parameters on the accretion process is mostly mi-
nor. The radial location does not affect the final growth of the compounds, al-
though timescales are longer at larger R. Ice, rather than silicate, as the sticking
agent will lead to bigger compounds (but we note icy grains do not dominate
the meteoritic record).

3. In no single model do compounds grow to planetesimal sizes. Either turbulent
or systematic velocities are too high for the porous dissipation mechanism, the
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St = 1 size being the bottleneck; but we may have over-estimated the system-
atic velocities in this study by not accounting for particle collective effects in
low turbulence nebulae.

4. We anticipate that the dust accreted by individual chondrules — before chon-
drules coagulate into compounds — will finally end up as the chondrule rim.
In strong turbulent models this fraction is very high, but it remains significant
(tens of percents) even in the collisionally gentle models.

5. However, at the current state of the art of this model, fine-grained accretion
rims have a porosity significantly larger than seen in actual rims. Other com-
paction processes are not hard to envision, such as higher velocity collisions
by larger mass compound objects, or nebula shock waves (peripheral to those
energetic enough to melt chondrules). These remain to be modeled.

6. When we define the rim as the dust swept up by individual chondrules, we
find very good agreement with the nearly linear (average) correlation between
rim thickness and underlying chondrule radius seen in CM and CV chondrites
(Metzler et al. 1992; Paque & Cuzzi 1997).

Future work will focus on two aspects of our coagulation model:

1. An improvement of the collisional physics, i.e., including fragmentation as a
collisional outcome for velocities above ∼m s−1; and a refinement of the char-
acterization of the compound structure, e.g., to allow dust to compact to higher
filling factors.

2. Inclusion of a proper description of the vertical structure of the nebula, i.e.,
taking account of phenomena such as settling, collective effects, and shear tur-
bulence. Especially, the transition from global- (α) to shear-turbulence is im-
portant, and in future work we will address this critical junction.

Acknowledgment. We thank Jürgen Blum, Carsten Dominik, Alan Rubin, Marco Spaans and
John Wasson for helpful conversations. C.W.O. acknowledges a grant from the Netherlands
Organisation for Scientific Research (NWO). J.N.C.’s contributions were supported by a grant
from NASA’s Origins of Solar Systems program. We thank the anonymous referee for com-
ments that helped clarifying this chapter.





5
Monte Carlo simulation of particle
interactions at high dynamic range:

Advancing beyond the Googol1

—C. W. Ormel, M. Spaans—

We present a method which extends Monte Carlo studies to situations that re-

quire a large dynamic range in particle number. The underlying idea is that,

in order to calculate the collisional evolution of a system, some particle in-

teractions are more important than others and require more resolution, while

the behavior of the less important, usually of smaller mass, particles can be

considered collectively. In this approximation groups of identical particles,

sharing the same mass and structural parameters, operate as one unit. The

amount of grouping is determined by the zoom factor— a free parameter that

determines on which particles the computational effort is focused. Two meth-

ods for choosing the zoom factors are discussed: the ‘equal mass method,’ in

which the groups trace the mass density of the distribution, and the ‘distri-

bution method,’ which additionally follows fluctuations in the distribution.

Both methods achieve excellent correspondence with analytic solutions to the

Smoluchowski coagulation equation. The grouping method is furthermore

applied to simulations involving runaway kernels, where the particle inter-

action rate is a strong function of particle mass, and to situations that include

catastrophic fragmentation. For the runaway simulations previous predictions

for the decrease of the runaway timescale with the initial number of particles

1Originally published in The Astrophysical Journal, vol. 684, p. 1291 (2008)
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N are reconfirmed, extending N to 10160. Astrophysical applications include

modeling of dust coagulation, planetesimal accretion, and the dynamical evo-

lution of stars in large globular clusters. The proposed method is a power-

ful tool to compute the evolution of any system where the particles interact

through discrete events, with the particle properties characterized by structural

parameters.

5.1 Introduction

In the field of natural sciences the dynamical evolution of a population is often deter-
mined by interactions that operate at short range, e.g., when the members come into
contact, but which do otherwise not influence each other. The dynamical evolution
of the system is then regulated by discrete events and the system can be described
statistically. The most direct interaction is, of course, the merging of two bodies that
come into contact. Examples are numerous. In the Earth’s atmosphere water vapor
condenses on cloud droplets (tiny water drops), which merge to form rain drops. In
biology, the size distribution of many species of animals can be found by assuming
animal groups merge when they make contact. The distribution is then determined
by a power-law, which seems to agree with observations of, e.g., schools of tuna fish
or herds of African buffaloes (Bonabeau et al. 1999). Similarly, a power-law emerges
when bigger organisms are assumed to feed on smaller ones (Camacho & Solé 2001).
In astrophysics, too, coagulation processes appear. The transition of the dust compo-
nent in protoplanetary disks — from (sub)micron grains to planets — covers a huge
dynamic range: many tens of orders of magnitude in mass. Due to small molecular
forces, micron-sized grains will stick when they meet (Blum 2004). How sticking con-
tinues as particles grow to macroscopic proportions (∼cm or larger) is still unclear
but once the km-size is reached gravity will dominate the accretion process (Lissauer
1993; Goldreich et al. 2004b). Another example where coagulation is of importance
are dense stellar systems. Although stellar densities are usually too low for collisions
to be likely on a Hubble timescale, it has been shown that mechanisms, e.g., mass-
segregation or equipartition, conspire to make stellar collisions feasible (Freitag et al.
2006). The coagulation process, excluding fragmentation and injection, is described
mathematically by the Smoluchowski equation (Smoluchowski 1916), which in the
continuous limit reads

∂ f (m)

∂t
= − f (m)

∫

f (m′)K(m, m′)dm′ +
1

2

∫

f (m − m′) f (m′)K(m − m′, m)dm′,

(5.1)

where the terms on the RHS denote, respectively, the loss and gain terms of particles
of mass m. The distribution function, f (m), gives the number density of particles
(e.g., dust grains, stars, etc.) of mass m; i.e.,

f (m) · dm = number density of particles in mass-interval (m, m + dm). (5.2)
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MOMENTS

Kernel Kij M0(t) M1(t) M2(t)

constant 1 (1 + 1
2 t)−1 1 1 + t

sum 1
2 (mi + mj) exp[− 1

2 t] 1 exp[t]

product mimj 1 − 1
2 t 1 (1 − t)−1

Table 5.1: Moment expressions for the classical analytic kernels: M0 describes the particle
density, M1 the mass density (which is conserved), and M2 is related to the mass peak, mp,
of the distribution. The initial distribution at t = 0 is monodisperse, f (m, t = 0) = δ(m − 1).
The numerical factor of 1/2 in the sum kernel causes its evolution to coincide with the other
kernels at small t. The expressions for the product kernel, K = mimj become invalid after
the formation of the gel, at t = 1. The mean mass 〈m〉 and peak mass mp are related to the
moments as 〈m〉 = M1/M0 and mp = M2/M1.

Given that the initial conditions of the distribution, i.e., f (m, t = 0) are specified,
the coagulation is fully determined by the coagulation kernel, K(m, m′), which is
the product of the cross section of collision and the relative velocity of the particles,
K(m, m′) = σ(m, m′)∆v(m, m′). It gives the rate coefficient (in units of cm3 s−1) for
the collision between two particles of mass m and m′. For only three distinct cases
of K does Eq. (5.1) have a, closed form, analytic solution (Tanaka & Nakazawa 1994).
These are:

1. The constant kernel, K = cnst.;

2. The additive (or sum) kernel, K ∝ (mi + mj); and

3. The product kernel, K ∝ mimj;

These three kernels each show their own characteristic behavior. This can be seen by
considering the moments of the distribution

Mp(t) =
∫ ∞

0
mp f (m, t) dm. (5.3)

Multiplying the Smoluchowski equation by mp and integrating over m yields the
moment equation (Leyvraz 2003; Estrada & Cuzzi 2008)

dMp

dt
=

1

2

∫ ∞

0
K(m, m′) f (m, t) f (m′, t)

[

(m + m′)p − mp − m′p
]

dm dm′, (5.4)

from which Mp(t) can be found. In Table 5.1 the zeroth, first and second moments
as function of time for monodisperse initial conditions are given for the three classes
of kernels. The first moment M1, the mass density, is conserved. The zeroth mo-
ment, M0, describes the (decreasing) particle density; it therefore defines the mean
mass of the population, 〈m〉 = M1/M0. The second moment, M2, is of consid-
erable importance for our study as it traces the mass distribution on a logarith-
mic scale, i.e., m f (m)dm = m2 f (m)d log m. We therefore define the peak mass as
mp = M2(t)/M1(t). For most continuous distributions mp corresponds to the parti-
cle sizes that (together) dominate the total mass of the population.
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These three kernels are each representative of a very distinct growth behavior.
In the constant kernel growth is orderly, not only do 〈m〉 and mp evolve linearly
with time, their ratio, which indicates the (relative) spread in the distribution, stays
constant as well. This relative narrowness of the distribution means that this kernel
can be relatively easily simulated by numerical methods. The situation for the sum
kernel, however, is different. Initially, (t ≪ 1) it evolves similarly to the constant
kernel, but after t ∼ 1 it starts to grow exponentially. The exponential nature of the
growth not only holds for 〈m〉 or mp but also holds for the spread in the distribution,

mp/〈m〉 ∼ exp[ 1
2 t] (see Fg. 5.1).

The third class of kernels are the runaway kernels, of which Kij = mimj is its
analytic representative. From Table 5.1 a peculiarity can be noted: the moment ex-
pressions do not make sense after a certain amount of time: the mean density will
become negative after t = 2, whereas M2(t) becomes infinite at t = 1. The reason
for this behavior is that at t = 1 a runaway particle of mass mR(t) is created that
separates from the rest of the distribution. In theoretical studies of coagulation this
particle is called the ‘gel’ and mR(t) becomes infinite at precisely t = 1. In physical
situations, where the total mass in the system is finite, mR(t) grows continuously
with time but nevertheless separates from the distribution. This discontinuity in the
distribution is also the reason why the moment expressions become invalid after
t = 1.

In systems where small number statistics (one runaway particle) become impor-
tant the assumptions underlying the Smoluchowski equation become invalid. Co-
agulation is more accurately described by the stochastic coagulation equation which
assigns a probability that the system is in a specific state {nk}(t), with {nk} the dis-
crete particle numbers for the mass bins k. The Smoluchowski equation only follows
when certain assumptions are made, like 〈ninj〉 = 〈ni〉〈nj〉, which break down when
i and j are statistically correlated (Gillespie 1975). Clearly, Eq. (5.1) is dangerous
when it is used to describe the coagulation process — a process that is inherently
discrete.

In many situations of physical interest K = σ∆v cannot be expressed in the simple
forms above where analytic solutions are available. If K can be expressed in terms

of a simple mass-scaling behavior of the form K ∝ (mass)β, then semi-analytic solu-
tions are available (Silk & Takahashi 1979). However, in many physical situations β
will not be constant over the whole mass range under consideration. For example,
in studies of dust coagulation in protoplanetary disks, relative velocities can be di-
vided into several ‘regimes,’ each with a different velocity behavior (e.g., Ormel &
Cuzzi 2007). Another example, is the enhancement of the collisional cross section by
gravitational focusing, i.e.,

σ = πR2
s

(

1 +
2G(mi + mj)

Rs(∆vij)2

)

, (5.5)

where Rs is the sum of the radii of the bodies and G is Newton’s gravitational con-
stant. Equation (5.5) displays a natural break in the scaling of σ versus mass: i.e.,
σ ∝ m2/3 at low masses vs. σ ∝ m4/3 at high masses. The break happens at the
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point where the relative velocity of the particles starts to become less than the escape

velocity vesc =
√

2G(mi + mj)/Rs of the biggest body, ∆vij/vesc < 1.

So in most situations a numerical approach to the coagulation problem is re-
quired. Most directly, Eq. (5.1) can be integrated numerically. This entails divid-
ing up the mass-axis into discrete bins and applying Eq. (5.1) to all of these bins.
However, this is a rather elaborate procedure as, e.g., mass conservation is not in-
trinsically conserved, and most works have actually avoided to explicitly use the
Smoluchowski equation. For example, Spaute et al. (1991) and Inaba et al. (1999)
use a (fixed) binning method that assumes the mass inside a bin is distributed as
a power-law; coagulation is then an interchange of mass between the various bins.
Recently, Brauer et al. (2008a) have modified a matrix method, the Podolak algo-
rithm (see also Kovetz & Olund 1969), which distributes the mass of a coagulation
event evenly between its two nearest grid points. Wetherill (1990) and Inaba et al.
(1999) use a method where the mass is divided over a discrete number of ‘batches,’
each characterized by a single mass. Interactions with other batches and with them-
selves cause the batches to grow, i.e., move up the mass scale. This representation
of intrinsically discrete quantities is especially useful in the case of non-continuous
distributions (runaway kernels).

Bin size techniques are generally one-dimensional, i.e., the quantities that enter
Eq. (5.1) (cross sections, velocities) depend on mass only. This approximation may
neglect variables that play a pivotal role in the coagulation process. For example, a
charge distribution on grains (Marshall & Cuzzi 2001; Konopka et al. 2005) is diffi-
cult to include in this way. A more subtle example concerns the coagulation of dust
particles in disks. Here, collisions affect the internal structure of the particles such
that their porosity is not constant, which affects their aerodynamic properties and
hence their collisional evolution. Ossenkopf (1993) has extended the Smoluchowski
formalism to solve the two-dimensional distribution function for the collisional evo-
lution of dust aggregates, using their fluffiness as the second variable. However,
it is clear that the increased number of connections between the bins, caused by
the higher dimensionality of the problem, makes the procedure more elaborate, and
slower— impractical, perhaps, for three or more dimensions.

In these cases one has to resort to Monte Carlo (MC) simulations. A good descrip-
tion of how a direct-simulation MC method is implemented is outlined by Gillespie
(1975) which we briefly summarize below (§ 5.2.1). In MC methods K(m, m′) deter-
mines the probability that an event (here, the collision between the particles) takes
place. For multi-dimensional models it is probably the preferred method. Besides,
the MC method as described by Gillespie (1975) provides an exact description of the
stochastic coagulation process, and will also accurately describe runaway kernels.
However, in MC simulations one is limited to the finite number of particles that can
be followed. It is therefore best suited for distributions that remain relatively narrow,
such that a modest number of particles gives a good knowledge of the distribution
function f . On the other hand, when the distribution is wide a large number of par-
ticles must be present in order to obtain a good characterization of f ; the required
particle numbers then severely limit the applicability of the code.
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Fg. 5.1: (solid curves) The

m2 f (m) mass function of the
sum kernel (Kij = 1

2 (mi + mj))
at t = 15. At this time the
mass function has achieved
self-similarity. The mean mass,
〈m〉, and peak mass, mp, are
indicated. Dashed lines of
logarithmic slopes 0 and 1, re-
spectively, trace areas of equal
mass- and number density
per logarithmic unit of mass.
Because of the f (m) ∝ m−3/2

falloff towards small masses,
the small particles dominate
by number, yet most of the
mass resides in the large
particles (around m = mp).

These effects can best be illustrated in the case of the sum kernel. In Fg. 5.1 we
have plotted the theoretical value of m2 f (m) at t = 15 (Tanaka & Nakazawa 1994)

corresponding to Kij = 1
2 (mi + mj), and an initial monodisperse distribution of mass

m0 = 1 and f (m, t = 0) = δ(m − m0). At t = 15 the distribution has reached
self-similarity and the shape is the characteristic one for the sum kernel. In Fg. 5.1
m2 f (m) is plotted showing (per logarithmic mass interval) the mass density distri-
bution. Because of the m−3/2 falloff of f (m) with mass in the low-m tail of the distri-
bution, the smaller (m ∼ m0) particles dominate by number, although it is the larger
particles that contain most of the mass. If, for example, the total simulated mass
is Mtot, there are ∼Mtot/mp particles representing the mass peak, and ∼Mtot/〈m〉
particles in total. The fraction of mp particles then decreases with increasing mp as

〈m〉/mp ∝ m−1/2
p . This behavior inevitably causes computational problems since

a few massive particles remain in comparison to a huge number of small particles,
while both regimes must be included in order to obtain a good characterization of
f (m). With increasing mp, a point is reached at which there are simply not enough
particles to resolve the complete distribution.

In short, the dynamic range for these kinds of simulations is too large to tackle
with conventional MC methods; more particles are required, but this is impossible
due to computational constraints. To overcome these problems— i.e., to extend MC
methods to situations that require high dynamic range— we introduce the assump-
tion that one simulation particle can represent multiple physical particles: the group-
ing method. Section 5.2.2 introduces the grouping method. First the framework
of a MC simulation is described in § 5.2.1, then § 5.2.2-§ 5.2.4 outline the grouping
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method in detail. In § 5.3 the new method is tested against the analytic solution of
the sum kernel (§ 5.3.1) and the product kernel (§ 5.3.2). In § 5.3.3, we consider a class
of runaway kernels and test the assumption that the runaway timescale goes down
with the size of the simulation (keeping the physical quantities such as the initial
mass density constant). Next, in § 5.3.4 we present steady-state distributions that re-
sult from fragmentation of the largest particles. We briefly summarize our findings
and discuss astrophysical applications in § 5.4.

5.2 The grouping algorithm

Before introducing the grouping method (§ 5.2.2) we first briefly outline the main
features of a direct simulation Monte Carlo code.

5.2.1 The Monte Carlo code

The direct simulation Monte Carlo method in its simplest form consists of three steps
(Gillespie 1975):

1. calculation/update of the collision rates, {Cij};

2. selection the collision by random numbers: which particles collide and the
timestep involved;

3. execution of the collision: removal of the collision partners and addition of the
new particle(s).

A Monte Carlo simulation starts with the calculation of the collision rates between
the particles, Cij = Kij/V where V is the simulated volume and 1 ≤ i, j ≤ Np. Here,
Np is the number of particles in the simulation and Cij, the collision rate, is related
to the probability of collision, such that Cij∆t is the probability that particles i and
j collide in the next infinitesimal time ∆t. In total there are Np(Np − 1)/2 collision
rates. A trick which saves memory requirements (although it increases CPU-time) is

to store only the partial rates, Ci = ∑
Np

j Cij. The total collision rate is Ctot = ∑
Np

i Ci.

In step 2 three random deviates (r) determine the time interval to the next collision,
and the particles involved (i and j). As described by Gillespie (1975) the time incre-

ment ∆t is found from the total collision rate, ∆t = −C−1
tot ln r, whereas the particles

that are involved are found from sampling the {Ci} and {Cij}. Step 3 computes the
new properties of the particles that result from the collision. The fact that in MC
methods these steps are separated shows its advantages when introducing multiple
variables; by including multiple variables, the outline of the program, i.e., steps 1–3,
will remain the same. Finally, the (Np − 1) collision rates associated with the newly
created particle need to be re-calculated (step 1), after which the {Ci} are updated.
The steps then repeat themselves in a new cycle.

Constant-V vs constant-N simulations

Because each collision that results in coagulation reduces the particle number by one,
all particles will have coalesced into one body after Np steps. This is the constant-
V algorithm: the simulated volume V and total mass stays the same. However, in
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many cases this is not the intended behavior: the volume V occupied by the initial
number of particles in the simulation, N = Np(0), is only a small sample of the total
volume under consideration. Although V may start out as a volume large enough
to represent the particle population, after sufficient coagulation (and decreasing par-
ticle numbers) it loses this property: a larger volume is needed in order to get the
desired sampling. However, increasing the initial number of particles N is no solu-
tion, since the number of collision rates becomes quickly impractical.

A natural solution to prevent the statistical deterioration due to the decreasing
particle numbers is to keep the numbers constant: the constant-N algorithm. Here,
the number of (simulated) particles is artificially kept constant by duplicating a par-
ticle after each coagulation event. Thus, mass is added to the system, which physi-
cally translates into an expansion of the simulated volume, because the volume den-
sity stays the same. As described in Smith & Matsoukas (1998) the new particle is
taken randomly from the existing (simulated) distribution and is therefore called a
duplicate. Smith & Matsoukas (1998) have shown that the error introduced due to
the duplication scales logarithmically with 〈m〉(t)/m0, which is a measure of the
amount of growth. This is much improved compared to the constant-V method in
which the reduced number of particles causes the error to scale as the square-root of
the growth. In principle, this method allows for indefinite growth. Fundamentally,
the assumption is that the simulated volume (containing Np particles) at all times
stays representative of the parent distribution (containing ≫ Np particles). We test
whether the Smith & Matsoukas (1998) duplication mechanism also holds in systems
where the growth occurs over many orders of magnitude.

On the other hand, in situations where runaway growth occurs, the collisional
evolution will depend on the initial number of particles present in the system, even if
locally the same physical conditions apply, i.e., for the same density (Wetherill 1990;
Malyshkin & Goodman 2001). Clearly, a constant-N simulation is not the proper
way to treat these kernels; we will always use a constant-V algorithm when treating
these kernels. It is challenging to test simulations in which N = Np(0) becomes
truly astronomical. Here, too, the grouping method will be applied.

The species formalism

A natural way to deal with the existence of a large number of identical particles, e.g.,
resulting from monodisperse initial conditions or through the duplication mecha-
nism in constant-N simulations, is to combine them in the calculation of the collision
rates (Spouge 1985; Malyshkin & Goodman 2001; Laurenzi et al. 2002; Laurenzi &
Diamond 2003). Since the collision rates of the duplicates are the same, it is efficient
to introduce a multiplicity array, g, for all distinct particles. This is like saying we
have 1 particle of type 1, 5 particles of type 2 . . . gi particles of species i. It causes
the number of distinct simulation particles (Ns, or number of species) to become less
than the total number of physical particles in the simulation (Np) since

Np =
Ns

∑
i=1

gi. (5.6)
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This algorithm is much more efficient, for it is the number of distinct particles (Ns)
that matters in the calculation of the collision rates. The collision rate for one collision
between species i and j then becomes

λij = gigjCij (i 6= j); λii = 1
2 gi(gi − 1)Cii (i = j), (5.7)

where the Cij are the individual collision rates between two single particles. So the
λij give the probability that a (single) particle of species i collides with one of species
j. After the collision partners are determined, their multiplicity is first decreased
(gi → gi − 1, gj → gj − 1). If this means that gi becomes zero, no particles of type i
exist anymore and it is consequently removed (Ns → Ns − 1). The new particles that
result out of the collision are added as a new (and distinct) species (Ns → Ns + 1).
When particles are characterized by only one parameter (mass) it would in this case
be more efficient to assess first whether the species is really unique, but in this study
we treat a general approach. Duplication causes the occupancy number of the dupli-
cated species k to increase by 1, gk → gk + 1. Laurenzi et al. (2002) describe in-depth
how the species formalism can be implemented and quantify its computational effi-
ciency.

We note that this grouping of the collision rates is nothing more than a com-
putational trick, which, within the assumptions of, e.g., the duplication mechanism
does not approximate the MC method. Occupation numbers may become very large,
however. For example, for monodisperse initial conditions g1 = Np initially but g1

may increase if the constant-N algorithm is enforced and V grows, as in the case of
the sum kernel (Fg. 5.1). In fact, the existence of a large number of identical particles
is the basis of the (physical) grouping algorithm.

Limiting Ns.

The accuracy and efficiency of Monte Carlo simulations is then determined by a sin-
gle parameter, Ns. Ideally, one wants to constrain Ns. In the constant-Ns simulations
this means that Ns should fluctuate around a (fixed) target value N∗

s . (There is no
need to enforce an exact 1-to-1 correspondence.) Here we list a few mechanisms that
can be applied to balance Ns. Operations that increase Ns:

1. Duplication (gk → gk + 1). Although duplication does not directly increase
the number of species, the increased multiplicity of a species will decrease the
likelihood that it becomes empty of particles (gk = 0) and that it is removed;

2. Coagulation/Fragmentation. Because we generally assume that the collision
products are different species, the number of species always increases with
coagulation and fragmentation. Especially fragmentation may lead to a prolif-
eration of the number of species.

And operations that decrease the Ns parameter:

1. (Physical) grouping (discussed below). This has the effect that many particles
are involved in the collision and therefore increases the likelihood of a disap-
pearing species (gi → 0).

2. Coagulation. Requires two particles, with which again a species may disap-
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pear.

3. Particle removal. This is the reverse of duplication. If the number of species
keeps increasing, we may randomly remove particles to enhance the probabil-
ity of obtaining gi = 0.

4. Merging. This is the most drastic approach, in which different species are
merged together in a single species whose properties reflect the properties of
its progenitors. Because of the averaging, this procedure is somewhat against
the spirit of the MC methods. It is in fact a smoothing where particles of differ-
ent properties are averaged, including their structural parameters. However,
the mean parameters may still be applicable to describe the present state.

In this work the species-averaging is performed as follows. If a species needs to
be merged, we first look for its neighbor species in terms of mass, and then mass
average over their (structural) properties. As in this work mass is the only property,
it simply means that for species i and j their merged occupation number becomes
g = gi + gj and the new mass (gimi + gjmj)/(gi + gj). (If needed, the latter quantity
is rounded to integer values). If structural parameters would be present, however,
this procedure can be simply extended to any structural property ψ, i.e., ψ → (giψi +
gjψj)/(gi + gj), where ψ may, e.g., represent charges or filling factor.

5.2.2 The grouping algorithm

To simulate a coagulation process by Monte Carlo methods in a way to obtain growth
over many orders of magnitude, two criteria have to be met:

I The simulation must involve a large number of physical particles (Np), such
that the population is a proper sample of the continuous distribution. Physi-
cally, it means the spatial volume that is sampled will be large enough to ac-
count for all various kinds of particles.

II The number of species (Ns) cannot become too large: since there are ∼N2
s colli-

sion rates to be taken care of, the computational speed will slow down rapidly
with increasing Ns.

To meet these conditions—high Np and low Ns —the occupation numbers gi must be
very large. This can, in principle, be achieved by duplicating particles many times.
However, a new problem then arises. Since the total collision rate, Ctot, scales with
the total number of physical particles squared, i.e., Ctot ∼ N2

p, the time step per col-

lision is proportional to N−2
p . The simulations then seem to freeze as the required

CPU-time per unit simulation time blows up. In the MC simulation the focus lies on
the particles that dominate by number, which may sometimes be irrelevant from
a physical point of view. This occurs, for example, with the sum kernel. Here,
the most dominant collisional process — a collision between a small particle and a
very massive one— is rather meaningless: a single collision neither affects the mass
of the massive particle nor the number of small particles. The ubiquity of many
of these subleading collisions then overwhelms the more important ones involving
more massive particles, a process that together is very CPU intensive. This leads to
the conclusion that, given (I) and (II), a third condition must apply:
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III A simulation involving a large number of particles (Np) yet with only 2 phys-
ical particles colliding per MC cycle can become very inefficient. Therefore,
(small) particles should be grouped together— i.e., considered as a single unit—
during the collision.

Because of the duplication mechanism there is a natural way to group particles
together. In Eq. (5.7) it was already seen that identical particles can be effectively
absorbed in the calculation of the collision rates. We will now take this idea further
and write the occupation number gi of species i as

gi = wi2
zi , (5.8)

where wi is the group number and zi the zoom number (an integer equal to zero or
larger) of species i. Thus, instead of tracking gi particles, we now simulate only wi

groups, each containing 2zi particles. It is then the number of groups (Ng) that deter-
mines the collision rate per cycle. Because collisions are now between two groups of
particles, involving 2zi and 2zj physical particles, coagulation is speeded up signifi-
cantly. That is,

Ng =
Ns

∑
i

wi; Np =
Ns

∑
i

wi2
zi , (5.9)

and we can, with a limited number of groups (Ng), represent large numbers of phys-
ical particles (Np) by choosing appropriately high zoom factors zi. This satisfies cri-
teria (I) and (II) and since each collision is now between two groups involving many
particles we also avoid the inefficiency described in (III). Note that the base factor of
2 in Eq. (5.8) is arbitrary; however, it must be an integer (gi is integer) and 2 is proba-
bly most convenient. More critical are the choices for the zoom factors, zi: these must
be chosen to reflect the nature of the system that is under consideration (see § 5.2.3).

A group collision is illustrated in Fg. 5.2a. The first group is magnified three
times (zj = 3), and the second has zi = 1 (zj ≥ zi in this and all other examples). The
groups thus consist, respectively, of 8 and 2 identical particles. During the collision,
assuming sticking, the particles are equally distributed over the groups so that we
end up with one group consisting of two identical particles. The mass of the new
particle then becomes mi + 4mj and the zoom factor z = zi = 1 (the lowest of the
two; the grouping may always be adjusted if needed). Note that in Fg. 5.2a only
particles of different groups collide: out-of group collisions. However, if their λii

do not vanish, particles within a group can also collide: in-group collisions. This
procedure is illustrated in Fg. 5.2b. The zoom number decreases by one in the final
configuration (group collapse).

To generalize, for out-of-group collisions with zj ≥ zi every i-particle collides

with 2zj−zi j-particles. In total there are 2zj collisions, whereas for in-group collisions
(Fg. 5.2b) there are 2zi /2 collisions. Therefore, the collision rates of Eq. (5.7) — the
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Fg. 5.2: Illustration of collisions in the grouping algorithm. (a, top) Two groups with zj = 3
and zi = 1, respectively, collide. The zoom factors (zi) give the number of particles within the
group (2zi ). Less massive particles have higher zoom factors than particles of higher mass. All
particles within the group are identical. (a, bottom) Assuming sticking, the collision product
is obtained by equal distribution of the collision partners. The end-product is a new species
consisting of one group where the zoom factor corresponds to the lowest z of the progenitor
particles. (b) Same as (a), but for in-group collisions.

rates corresponding to one collision— are divided by 2zj and 2zi−1, respectively, i.e.,

λG
ij = gigjCij/2zj = wiwj2

zi Cij (zi ≤ zj, i 6= j); (5.10a)

λG
ii = 1

2 gi(gi − 1)Cii/2zi−1 = wi(wi2
zi − 1)Cii (i = j), (5.10b)

give the collision rates between two groups. Thus, although collisions between
groups are less likely (the rate is decreased by a factor 2zj ), this is ‘compensated’
by the 2zj particle-collisions that occur inside the group.

However, grouping does introduce various sources of systematic errors:

1. the outcome of a collision between two groups is fixed; in reality, a distribution
of configurations will be present;

2. it is assumed that the grouped collision rates obey Poisson statistics like the
single particle collision rate;

3. the individual collision rates {Cij} do not change during the group collision
process to ensure that Eq. (5.10) is applicable.

A fixed configuration for the outcome of the grouping process is required because it
prevents (unwanted) proliferation of the diversity of species, which would increase
the Ns parameter and strain CPU requirements. However, the diversity of the sim-
ulation is already specified by the Ns parameter and we may simply check how Ns
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affects the accuracy of the collisional process. This point is similar to the second con-
cern where all collisions are forced to occur at one point in time. Also, note that we
must use the memoryless property of Poisson statistics; otherwise all collision rates
must be adjusted at each timestep. However, it can be shown that, provided the col-
lision rates stay constant, the grouped rates in Eq. (5.10) will conserve the mean of
the particle distribution if i 6= j (see App. 5.A). The last assumption is the weakest:
the individual rates between the particles in principle change after each individual
collision as the collision affects the properties of the particles. Therefore, expressions
such as gigjCij should actually be averaged over the number of collisions that make
up the group process. This is of course a very tedious procedure with which we
would go back to the one-by-one treatment of the particles. Rather, we prefer to in-
troduce a new parameter, fǫ, that limits the amount of mass accretion onto a particle
during the group collisions, thereby strengthening the approximation that the Cij

stay constant during the group collision process.

Choosing the particle labels again such that j has the high zoom factor (zj ≥ zi)

the fractional mass accretion on a single i particle is ∆mi/mi = 2zj−zi mj/mi. From
the preceding discussion it is this quantity that should be limited from below by a
fixed value, fǫ. One way to implement this is to reduce the j-particles that take part
in the collision. For example, in Fg. 5.2a this could mean that only 2 j-particles are
involved, i.e., only a fraction of the particles in a group. Let this fraction be denoted

by 2−Nǫ with Nǫ ≥ 0 an integer. Then, only 2zj−zi−Nǫ j-particles are involved in the

collision and the mass of an i particle increases by 2zj−zi−Nǫ mj, i.e.,

∆mi

mi
=

2zj−zi−Nǫ mj

mi
≤ fǫ. (5.11)

Solving for the group splitting factor, Nǫ, gives

Nǫ =
[

− log2( fǫ2zi mi/2zj mj)
]

, (5.12)

where the square brackets denote truncation to integer numbers ≥ 0. Consequently,
the collision rates, instead of Eq. (5.10), now become

λG
ij = gigjCij/2zj−Nǫ = wiwj2

zi+Nǫ Cij; zi ≤ zj, (5.13)

(the collision rates for in-group collisions do not change since Nǫ = 0). Another
consequence is that the group numbers are real numbers, i.e., since a fraction 2−Nǫ of
the j-group is removed, its group occupation number decreases accordingly, wj →

wj − 2−Nǫ . The {gi} cannot become fractional, however, since this would physically
split a particle. Also, a situation where 0 < wi < 1 is not allowed, because ∆w = 1
for the particle of the lowest zoom factor; when it arises we ‘demagnify’ the group
(zi → zi − 1) such that wi ≥ 1 (see below, § 5.2.4).
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5.2.3 Choosing the zoom factors

We have implemented the grouping method in such a way that the zoom factors, are
free parameters, and there is indeed considerable freedom to choose (an algorithm
for) the {zi}. However, it is also an important choice as it will determine how ef-
ficient the Monte Carlo simulation becomes. Here, with “efficient” it is meant that
the number of species Ns should not (suddenly) increase. A way that observes this
constraint fairly well is to divide the mass inside the simulations equally over the
groups. In addition, we present a more general method, in which the zoom factors
are determined by the particle distribution.

Equal mass approach

In this method, we assume there is a characteristic mass m⋆ after which the zoom
factors are determined. Particles of mass larger than m⋆ are ungrouped (z = 0),
whereas particles of mass m < m⋆ have zoom factors such that the group mass is
around m⋆, i.e.,

zi = log2(m⋆/mi). (5.14)

In the case of constant-V simulations and monodisperse initial conditions of unity
mass the simulation then starts with N/m⋆ groups, where N is the initial number of
particles. Therefore, N/m⋆ is a measure for the number of species parameter Ns. The
target value of Ns, N∗

s , and N then determine the value of m⋆. For the constant-Ns

simulations, where the mass in the simulation varies, the mass peak mp is a natural
value for the characteristic mass, m⋆ = mp. It forces most of the groups to represent
particles around the mass peak, with those of higher mass ungrouped.

Thus, the equal mass approach resolves the mass density of the distribution, in-
stead of the particle density as in conventional MC methods. Once a species becomes
insignificant in terms of mass, mi2

zi < m⋆, occupancy number approaches unity
(wi = 1) and the species will be “removed” from the simulation when it collides at
the next collision, completely independent of the actual number of particles a group
contains.

Distribution approach

A different way to choose the zoom factors is to force the distribution to be resolved
over its entire mass range. This can, for example, be done by dividing the distribu-
tion into exponentially-spaced mass bins and to choose the zoom factors such that
there are a fixed number of groups per bin. Here the bins are exponentially dis-
tributed between a lower mass (most often the initial mass, m0) and the largest mass
ML1 present in the simulation. For example, let Nk be the total occupancy number of
bin k, then the zoom numbers are determined by the requirement that an equal num-
ber of groups is present in each bin, i.e., Nk/2zk is constant for each bin k. There is no
constraint on the number of species per bin, but as this quantity is always less than
the number of groups it is limited as well. For a smoother progression of zoom factor
with mass we allow for a linear interpolation within each bin, such that the zoom fac-
tors become a continuous, piecewise, and decreasing function of mass, z(m). Thus,
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z is now determined, not by the particle or mass density, but by the sheer occurrence
of particles of a certain mass. The bins and zoom factors are dynamically adjusted,
as the simulation progresses, and the distribution changes.

The distribution method has the consequence that (high-m) fluctuations are re-
solved very well, even if they are completely insignificant by number and mass. The
zoom factors of these particles are much reduced in comparison with the equal mass
method. For example, if the m0 = 1 particles are still at zoom levels of z0 situations
where 2z0 m0 ≫ 2zi mi are frequently encountered. A collision between a massive
and an m = 1 group then takes place at a high value of Nǫ (Eq. (5.12)) and collision
rates involving high-m groups increase (Eq. (5.13)). Since each collision creates a new
species, the number of species (Ns) also increases rapidly— too rapid, in fact— and
we are forced to merge species (§ 5.2.1). Merging of species is therefore a necessary
feature of the distribution method.

5.2.4 (De)magnification

In the grouping method the zoom factors of the groups are determined in accordance
with one of the two methods above. The zoom factors will therefore change during
the simulation. When zi increases (zi → zi + 1) we speak of magnification, whereas
when zi decreases the group is demagnified (zi → zi − 1). This dynamical adjust-
ment of the zoom factors is the main reason why the method is capable of achieving
very high dynamic range. Demagnification furthermore occurs when the occupancy
number of a group becomes fractional, 0 < wi < 1. However, we note again that the
actual number of particles of a species, gi, is always an integer.

There is a small price to pay in terms of overhead for these re-adjustments. Be-
cause the {zi} are an argument of the collision rates (Eq. (5.13)) these rates (or, more
accurately, the {λi} quantities, as these are the ones that are stored in the computer’s
memory, ∼Ns in total) have to be adjusted at each (de)magnification event. This may
slow down the simulation by a factor of 2. Finally, we note that (de)magnification is,
within the context of the grouping algorithm, an exact procedure; collision rates are
not approximated and the total mass of the simulation stays conserved.

5.2.5 Grouping Summary

We have outlined an approach for a Monte Carlo coagulation scheme that can in-
volve many particles— allowing the growth to be orders of magnitude— yet avoids
the severe computational problems that would naturally arise with a single particle
per collision treatment. In App. 5.B we have summarized the main steps of the algo-
rithm in the context of the grouping method. At its core lies the approximation that
many identical particles are present, due to monodisperse initial conditions or the
duplication mechanism, which can be efficiently grouped together or (in the distri-
bution method) merged. Collisions are now between two groups of, possibly, many
particles and this significantly speeds up the computation. While it is clear that such
grouping inevitably approximates the collision process, we have advocated a funda-
mental shift in the implementation of MC methods, i.e., to focus on the particles in a
distribution that really matter— e.g., those around m = mp — and we anticipate that
the benefits resulting from the new emphasis will more than justify the approxima-
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LIST OF SIMULATIONS

Kernel Figure Type Grouping N∗
s /N∗

g N fǫ Nsim

(1) (2) (3) (4) (5) (6) (7) (8)

sum kernel Fg. 5.3 cnst-Np none 105 . . . 10−4 40

sum kernel Fg. 5.4a cnst-Ns equal mass 2 × 104 . . . 10−4 40

sum kernel Fg. 5.4b cnst-V distribution 104 10100 10−4 40

product kernel Fg. 5.5 cnst-V equal mass 2 × 104 1020 10−4 40

product kernel Fg. 5.6 cnst-V distribution 103 1020 10−4 40

runaway kernels Fg. 5.7 cnst-V distribution . 105 a 10160 a 10−4 100a

sum: fragment. Fg. 5.8 cnst-Ns equal mass 2 × 104 . . . 10−3 1b

cnst: fragment. Fg. 5.9 cnst-Ns equal mass 104 . . . 10−3 1b

Table 5.2: Summary of all simulations. (1) Collision kernel. (2) Figure reference. (3) Sim-
ulation type: fixed or adjustable volume. (4) Grouping method: outlines in which way the
zoom factors, {zi}, are chosen (no grouping, equal mass, or distribution method). (5) Target
number of species (equal mass method), or groups (distribution method) in simulation. When
multiple values apply the largest is given. (6) Initial number of monomers, or total mass in
simulation for constant-V simulations. (7) Fractional mass accretion. (8) Number of simu-
lations performed. The initial distribution is monodisperse in all simulations with m0 = 1.
Notes. aUpper limit. bIn fragmentation simulations a steady state is reached in which the
distribution is averaged ∼100 times during the same simulation.

tions inherent to the grouping method. In any case, to validate the new method a
comparison must be made with the analytic solutions of the classical kernels, after
which the algorithm can be applied to more physically interesting kernels.

5.3 Results

In this section the grouping method— both the equal mass approach, as well as the
distribution method— is tested in situations that require a high dynamic range. Its
performance is then discussed. First, the grouping method is tested against the sum
kernel. We show that both the equal-mass and the distribution methods are capable
of following the analytic distribution, whereas conventional MC methods (without
grouping) will fail. The grouping method is also tested against the product kernel,
which is one of a class of kernels that produces runaway-growth behavior. For these
kernels it will be shown that that it is important to accurately follow the fluctua-
tions of the mass distribution, which can only be done by the distribution method.
More runaway-models are discussed in § 5.3.3. Finally, we also perform simulations
including a simplified form of fragmentation, where the particles are catastrophi-
cally fragmented at the largest scale mfrag to be injected back at the smallest scale m0

(§ 5.3.4). We test whether the grouping method can also be applied in these cases.
An overview of the simulations is given in Table 5.2, including the adopted numeri-
cal parameters. These are chosen such that the CPU-time per simulation is typically
several hours on a modern desktop machine (1.8 GHz clock speed). Similar CPU-
times apply for the choice of the numerical parameters of the simulations including
grouping.
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Fg. 5.3: Results for the sum

kernel, Kij = 1
2 (mi + mj), with-

out grouping for Np = 105.
Distributions are plotted at di-
mensionless times t = 1, 10, 20
and 30 and error bars show
the spread over 40 simulations.
Particles are binned at each fac-
tor of two in mass. The corre-
spondence with the analytic re-
sults (solid curves) deteriorates
over time. After t ≃ 20
the mass peak is no longer re-
solved by the simulation.
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For the product and other runaway kernels, the system will after a certain time be
dominated by a single particle. Hence, no self-similar solutions exist and in order to
study the evolution properly, the simulation volume of these systems must be well
defined. These simulations are therefore modeled using constant-volume simula-
tions. In most cases the distribution method is used, which also requires a fixed sim-
ulation volume. In the other cases, we may assume that a small volume is representa-
tive of the parent distributions, which can then be modeled using constant-number
simulations. The only exception is Fg. 5.4b, where we have used the distribution
method in order to compare it to the results of the equal-mass method simulations
of Fg. 5.4a.

5.3.1 Test case I: the sum kernel

Before presenting the results of the grouping mechanism, a case without the group-
ing method is considered first, illustrating some of the ‘deficiencies’ mentioned in
§ 5.1. We do not consider the constant kernel, because in the constant kernel the
dynamic range (mp/〈m〉) stays confined and a grouping method is not required. In

Fg. 5.3 the number of simulation particles, Np, is kept constant at 105. The distribu-
tion function is plotted at various times during its evolution, t = 1, 10, 20 and 30.
Times are dimensionless, i.e., in units of (K00n0)

−1 where K00 and n0 are the kernel
and number density corresponding to the initially monodisperse conditions of parti-
cles of mass m0 = 1. In Fg. 5.3, as well as in all other figures that show distributions
from the MC simulation, f (m) is determined using exponentially-spaced bins every
factor of 2 in mass. Each point shows the average and spread of in total 40 model
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Fg. 5.4: Results for the sum kernel using the grouping algorithm. Particle distributions (sym-
bols) are shown at times t = 20, 40, 60 and 80. Particles are binned at each factor of two in
mass and results from 40 separate simulations are combined. The spread in the simulations
is denoted by the error bars. (a) Equal mass method, Ns = 20 000. Thanks to the grouping
algorithm most of the groups are centered on the mass peak, which favors an accurate com-
putation of the collisional evolution, without introducing systematic errors. (b) Distribution
method with N∗

g = 10 000, distributed over 20 bins. The zoom factors are adjusted to resolve
the distribution over its entire range.

runs in total. The analytic distribution functions at these times are given by the solid
curves.

Initially, t < 10, the agreement between the MC simulation and the analytic curve
is very good. The mass range in the simulation is still rather modest and the 105

particles suffice to represent all relevant masses. However, while the peak mass pro-
gresses steadily to higher m, the majority of particles stays behind at low masses;
that is, although both 〈m〉 and mp evolve exponentially with time (Fg. 5.1), mp/〈m〉,
which is a measure of the dynamic range, also increases exponentially. Since MC
methods sample the number density, increasingly fewer particles become associated
with the mass peak, and the simulation loses numerical resolution. The effects of
these low-number statistics are a bit alleviated by averaging over many different sim-
ulation runs but it is not merely a statistical deterioration; the mass peak dominates
the collisional sweep-up of the system and the fluctuations caused by an inaccurate
characterization blow up. There is especially a trend to lag the analytic solutions,
because, it is impossible to ‘recover’ from a lagging distribution, because the dupli-
cation mechanism does not duplicate the particles that are not present. At t = 20
these problems already become apparent when the spread is very high, especially
around the mass peak, and there is a slight tendency to lag the analytic curve. At
t = 30 the effects are disastrous: 105 particles are simply too few to sample a large
enough volume to represent the large particles.
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Because of the duplication mechanism many duplicates are created and Ns slowly
decreases. This somewhat speeds up the computation at larger times since colli-
sional rates scale with N2

s . A more accurate result will be obtained by keeping Ns

constant (Ormel et al. 2007). However, now Np increases and the simulation suffers
computational freeze-down as it progresses. Fundamentally, either approach— the
constant Np or constant Ns — is the same since each cycle only treats one collision
and each collision is equally important. Clearly, this ‘socialist’ approach is ineffec-
tive as Fg. 5.3 illustrates: the more massive particles deserve more attention than
their smaller brethren.

Results with the grouping method applied are shown in Fg. 5.4. In Fg. 5.4a we
used the equal mass method for the groups (each group has a mass of ∼m⋆ = mp

if m < mp and particles with m > mp are not grouped) and chose the zoom fac-
tors accordingly (see Eq. (5.14)). The number of species, Ns, is stabilized at a target
number of N∗

s = 2 × 104 through the duplication mechanism. That is, if Ns due to
coagulation falls below N∗

s , duplicates are added to the system until Ns ≥ N∗
s . The

simulation total mass and volume then increase, but their ratio (the mass density)
is fixed. As mp becomes larger during the simulation, zoom factors of particles that
do not take part in collisions will increase, according to Eq. (5.14). This ‘magnifica-
tion’ causes the occupancy numbers wi to stay low, despite the ongoing duplication
events. When wi reaches 1, the species will disappear at the next collision, freeing
up this slot for more massive particles. The grouping thus forces the particles to act
collectively. This procedure prevents the systematic errors (Np constant, Fg. 5.3) or
computational freeze down (constant Ns) of the ‘one collision per cycle’ approach of
the conventional MC methods.

Figure 5.4a shows that the grouping mechanism resolves the mass peak well dur-
ing its entire simulation. The agreement between the analytic and numerical method
remains very good during the entire simulation. Figure 5.4a proves that once the
mass peak is resolved, the simulation will accurately compute the collisional evolu-
tion, and systematic errors as in Fg. 5.3 are prevented. Thus, the resolution of the
mass peak is key. However, at lower mass densities the groups disappear from the
simulation as they do not have sufficient mass.

These low-m statistics can be accurately followed when we switch the method
for assigning the group’s zoom factor {zi} to the distribution method, in which the
zoom factors are adjusted such that there are an equal number of groups per expo-
nential mass interval. The zoom number for the low-m particles is then much lower
in comparison with the equal mass method. Figure 5.4b shows that the mass density
as well as number density are accurately followed over the entire distribution. It can
be seen in Fg. 5.4b that the match to the high-m tail slightly deteriorates over time.
This is a consequence of the equal spacing in log space of the bins that determine
the zoom factors. The high-m tail, which falls off exponentially, becomes associated
with only a single bin, and is then less well resolved. A more flexible placement
of the bins is expected to give an even better correspondence. Note again that the
bins are only needed to determine the zoom factors; there’s no actual binning of the
particles in the MC simulation.

Although Fg. 5.4b more precisely follows the distribution — i.e., it both follows
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the mass density as well as the number density— it requires to merge species in or-
der to restrict their numbers (see § 5.2.1). For these test cases, in which only mass
is a parameter, Fg. 5.4b shows that this is not problematic. However, when struc-
tural parameters are involved, the merging procedure is less obvious; i.e., are species
of comparable mass merged or, say, species of comparable porosity? The merging
principle is, therefore, somewhat against the spirit of MC simulations, as there is
no physical equivalent of ’merging’ in nature. Thus, for a MC simulation with many
structural parameters, where it is not required to resolve the number density, Fg. 5.4a
is probably the preferred method. In the other test cases of this section we therefore
first pursue whether these can be modeled by the equal-mass method.

5.3.2 Test case II: the product kernel

The kernel Kij = mimj is the only runaway kernel with an analytic solution. In
models that show runaway-behavior a particle will appear that separates from the
continuous distribution to consume, in a relatively short time, all the available mass.
This separation is an intrinsic feature of the kernel and is not caused by a poor sam-
pling of the distribution. The point at which this separation occurs, tR, depends on
the properties of the kernel and, in some cases, on the initial number of particles (N ).
In the case of the product kernel it always occurs at t = 1, independent of N . The
runaway growth properties of other kernels are discussed in § 5.3.3.

In § 5.1 it was noted that the Smoluchowski coagulation equation becomes in-
valid in the case of the runaway kernel: it keeps assuming that the distribution is
continuous and it is therefore ill-suited to describe a discrete system caused by the
runaway particle. Wetherill (1990) has adjusted the original (incorrect) solution of
Trubnnikov (1971) by inclusion of a term for the runaway body in Eq. (5.1). Although
not mathematically rigorous, this approach captures the physics of the runaway: as
soon as the (incorrect) numerical solution exhibits a f (m) ∝ m−5/2 power-law tail,
the interaction between the higher mass bins causes the runaway growth. In the
Monte Carlo simulations we also expect that the appearance of a power-law tail is a
signature that runaway growth is incipient.

In Fg. 5.5 the distributions corresponding to the product kernel with N = 1020

are plotted at dimensionless times t = 0.4, 0.7, 0.95, 1.0, 1.05, 1.3 and 2.0, using the
equal mass method. Since we start the simulation already with a huge number
of particles, large zoom numbers are required. We have fixed the mass peak at
m⋆ = N/104, which causes the particles to be sufficiently magnified, except for
the runaway particle. (The 104 factor may be thought of as a fudge parameter akin
to Ns or Np in the constant-N simulations.) Theoretical curves correspond to the
Trubnnikov (1971) solutions which, as Wetherill (1990) showed, are still valid for
the continuous part of the distribution. At t = 1, runaway growth is expected and
the continuous power-law distribution reaches its furthest extent: the −5/2 power-
law exponent. After the runaway particle has separated the continuous distribution
shrinks, especially in the −x direction since the more massive particles are consumed
rapidly by the runaway body, which itself is not shown in Fg. 5.5.

The runaway growth is generally well modeled by the Monte Carlo method. The
distribution becomes most sensitive near t = 1 where a small change in time means
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Fg. 5.5: Results for the product
kernel, Kij = mimj, with N =

1020. The simulated distribu-
tion is plotted at times t = 0.4,
0.7, 0.95, and 1.0 (from left to
right, crosses) and t = 1.05, 1.3
and 2.0 (from right to left, cir-
cles). The analytic solution is
plotted by solid curves for t ≤
1 and by the dashed curves for
t > 1 (the t = 0.95 and t = 1.05
curves almost overlap). Error
bars denote the spread in the
40 simulations. After t ≈ 1 a
runaway particle of mass m ∼
N appears that consumes most
of the mass in the system.
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a big change in the high-m distribution function. Because of the stochastic behavior
of the Monte Carlo method, the precise timing of the runaway event does not exactly
coincide with t = 1. Therefore, the t = 1 distribution lags the theoretical curve since
at t = 1 either runaway growth did not yet occur (and the distribution still has to
reach the power-law curve) or has already happened (and the distribution is on its
way back from the power-law curve). In Fg. 5.6 the relation between the two most
massive groups is denoted by the thick solid curve, together with the simulation
time t as function of ML1. Figure 5.6 shows that until t = 1 there is little differ-
ence between the mass of the most massive particle— actually group— ML1 and the
second-most massive group ML2. However, as runaway is reached at ML1 ∼ 105 the
masses diverge very quickly.

These results, however, are in disagreement with the theoretical study of Tanaka
& Nakazawa (1994). Comparing the solutions to the stochastic and the statisti-
cal equation they find that, in the case of the product kernel, the statistical equa-
tion (Eq. (5.1)) becomes invalid after ML1 ∼ N 2/3. It is only at this point that
ML1 and ML2 should start to diverge. However, in the equal-mass method (Fg. 5.6,
thick solid curve) the divergence happens much earlier: ML2 never reaches beyond
108 ≪ (1020)2/3. This discrepancy can be explained as an artifact of the equal mass
method. Because each group is still of considerable mass, m⋆ ∼ 1016, runaway
growth is just the collapse of one group by a continuous series of in-group collisions
(Fg. 5.2b); that is, until zi = 0, the ML1 group does not correspond to a single particle
and therefore never really separates. It is thus not a proper modeling of a runaway
process. In order to accurately follow the behavior of the particles during runaway
growth, the groups should be demagnified much more rapidly than Eq. (5.14) al-
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Fg. 5.6: Statistics for the sim-
ulations involving the prod-
uct kernel. As function of
the mass of the largest species,
ML1, are shown: the mass
of the second-largest species,
ML2, according to the equal-
mass method (thick solid curve)
and the distribution method
(thin solid curve); and the time
(dashed curve). Values are av-
eraged over 40 runs. The aux-
iliary lines ML2 = ML1 and
ML2 = N 2/3 are also given
(dotted lines).

lows. It is perhaps surprising that the equal-mass method still works fine — i.e., its
distribution agrees with the analytical case (Fg. 5.5) — despite the fact that it does
not resolve the runaway particles. However, in general this is not the case: the fluc-
tuations present at high-m require more resolution than what is attributed to them
through the equal representation of mass density (Eq. (5.14)).

In Fg. 5.6 the ML1 and ML2 statistics of the product kernel are recalculated with
the distribution method for the zoom factors (thin solid curve). According to the
Tanaka & Nakazawa (1994) prediction ML1 and ML2 should then separate at ML1 ∼
N 2/3. This is exactly the trend seen in Fg. 5.6. We therefore conclude that the dis-
tribution method is the appropriate choice to compute the collisional evolution of
runaway kernels.

5.3.3 Strong Runaway kernels

There is an extensive literature on the phenomenon of runaway growth, especially
mathematical (N → ∞), where the phenomenon is termed gelation. In general, three
growth modes can be considered (see Table 5.3): (i) kernels where runaway growth
does not appear, as in the constant or sum kernel; (ii) kernels that exhibit growth
after some characteristic time, as in the product kernel; and (iii) kernels in which
gelation is instantaneous.2 The occurrence of instantaneous gelation for the class of
kernels K ∝ (mimj)

ν with ν > 1 was conjectured by Spouge (1985) on the basis of MC

2We note that in a physical situation where runaway growth tends towards instantaneity, causality
should not be violated. As we will see, N , even in astrophysical circumstances, does not become so large
that the process is instantaneous.
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Runaway models

type conditions growth mode

(i) ν ≤ 1, β ≤ 1 Orderly growth
(ii) ν ≤ 1, β > 1 Runaway growth at t0

(iii) ν > 1 Instantaneous runaway growtha

Table 5.3: Properties of runaway models according to the study of Lee (2000). The exponents
ν and µ give the mass dependence of the kernel on a heavy and light particle, respectively,
with β = ν + µ the total mass dependence, Ki j ∝ mν

i m
µ
j (mi ≫ mj). Notes: aInstantaneous in

the limit N → ∞.

coagulation experiments and was proved by Jeon (1998). Lee (2000) illustrates these
distinct modes of solution by a simple coagulation model, in which the distribution
is approximated by a characteristic mass m, e.g., the peak mass, and a test particle of
mass M > m. Particles of mass m dominate the total mass and hence n(m) ∝ m−1.
Furthermore, the coagulation kernel is characterized by two exponents, ν and µ, that
give the dependence of K(mi, mj) in the case of a heavy (i) and a light particle (j), i.e.,

Kij ∝ mν
i m

µ
j , for mi ≫ mj. The total mass dependence is then given by β = µ + ν. For

example, in the case of the product kernel ν = µ = 1 and β = 2. Setting the physical
density equal to unity, the equations for the simplified merger problem become (Lee
2001)

dm

dt
= 1

2 mβ; (5.15a)

dM

dt
= mµ Mν. (5.15b)

These can also be combined to obtain

dM

dm
= 2

(

M

m

)ν

. (5.16)

Equation (5.15a) can be solved as

m =







[

1 + 1
2 (1 − β)

]1/(1−β)
for β 6= 1;

exp[ 1
2 t] for β = 1,

(5.17)

where we have for simplicity taken m0 = m(t = 0) = 1. Equation (5.16) can be
solved in terms of m as

M(m) =







(

M1−ν
0 + 2m1−ν − 2

)1/(1−ν)
for ν 6= 1;

M0m2 for ν = 1,
(5.18)
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where M0 > 1 is the initial mass of the test particle. Three qualitatively distinct
growth modes follow from these equations: (i) if ν ≤ 1 and β ≤ 1 both Eq. (5.17)
and Eq. (5.18) have finite solutions at all t: orderly growth. (ii) If ν ≤ 1 and β > 1,
Eq. (5.17) reaches a singularity at a time t = tR = 2/(β − 1) > 0,3 while Eq. (5.18)
does not: both m and M become infinite at the same time tR that does not depend on
M0. (iii) If ν > 1, Eq. (5.18) reaches infinity for a finite value of m. Furthermore, the

gelation time decreases with increasing M0, tR ≃ M1−ν
0 /(ν − 1). Then, if the initial

mass in the system goes to infinity, a sufficiently strong fluctuation (large M0) will
always be present to satisfy the singularity condition for M(t) even as t → 0; this is
the physical reason behind the instantaneous gelation conjecture.

Here, we concentrate on the case ν > 1 and test the instantaneous gelation conjec-
ture for kernels K = (mimj)

ν with ν = 2 and 3. Malyshkin & Goodman (2001) extend
the simplified merger model discussed above to a model with only two kinds of par-
ticles — one predator and many preys — and one collisional process (the predator
feeds of preys). This is the monotrophic model, e.g., one particle (‘mono’) that nour-
ishes (‘trophein’) off the others. Considering this model, Malyshkin & Goodman
(2001) compute the probability that the predator occupies any finite mass, which
decreases with increasing time. Consequently, the gelation time tR is computed as

tR ∝ (logN )1−ν , (5.19)

where N is the initial number of particles present. Thus, the timescale for runaway
growth decreases as function of the initial number of particles in the system, but
only logarithmically. Equation (5.19) may be anticipated from the discussion above
on the simple merger model. Consider a distribution of particle masses N(m) at a
fixed time. It is quite likely to expect that the tail of the distribution is exponentially
suppressed as in the case with Poisson statistics, i.e., N(m) ∝ N exp[−m] with N the
total number of particles. Setting N = 1 we thus obtain M0 ∼ n ∼ logN . Hence, the
logarithmic dependence on the number of particles. Malyshkin & Goodman (2001)
tested this model by Monte Carlo simulations and found qualitative agreement: the
gelation time decreases as function of logN , although the power-law exponent is
not precisely that of Eq. (5.19): 1 − ν. However, the simulations of Malyshkin &
Goodman (2001) were limited in their dynamic range; we will extend their study
to much larger values of N to see whether Eq. (5.19) holds over a sizeable range of
logN .

Note that as conjectured above, a good census of the fluctuations is the key to an
accurate modeling of the collisional evolution. Therefore, the grouping must then
be implemented by the distribution method. There is, however, another catch. At
t = 0 the number of groups of the monodisperse species is w0 ∼ N∗

g ≪ N and
the collision rate for a collision between two monomers according to Eq. (5.10) is
λ11 ∼ Nw0C11 ∼ w0. Then, the timescale for collisions involving monomers is

t11 = λ−1
11 ∼ w−1

0 , which can, however, become comparable to, or larger than, the

3Note that this expression disagrees with the product kernel in which β = 2: the simplified merger
model does not give the correct prefactor, see Lee (2001).
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Fg. 5.7: The runaway time tR

as function of the initial num-
ber of particles N for the ker-
nel Kij = (mimj)

ν with ν = 2
(solid curve) and ν = 3 (dashed
curve). Simulations are run at
N = 300, 105, 1010, 1020, 1080

and 10160. The power-law in-
dex is indicated at every in-
terval of logN . The agree-
ment with the theoretically ex-
pected value for the power-law
index, 1 − ν, becomes better at
higher N . At N = 10160 a
simulation at a higher numer-
ical resolution gives an even
steeper slope (indicated below
the line) confirming the con-
verging trend towards, respec-
tively, −1 and −2.
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runaway timescale of Eq. (5.19). Therefore, the monodisperse groups have to be de-
magnified such that t11 ≪ tR. By forcing the appropriate collision timescale for the
monodisperse collisions, the fluctuations are adequately resolved, but it also means
that the CPU-time increases, especially at large N . For the ν = 2 simulations we used
a number of N∗

g = 60 000, whereas in the ν = 3 simulations we take N∗
g = 300 000.

At ν = 3, runaway occurs at a lower value of ML1 and we are allowed to start with a
higher number of groups. However, the discrepancy between the simulations at dif-
ferent values of N becomes large in terms of CPU-time: the highest-N simulations
take about half a day to finish.

The results for the kernels K = (mimj)
2 and K = (mimj)

3 are presented in Fg. 5.7.

We extend the model of Malyshkin & Goodman (2001) to an unprecedented 10160

particles (about the square of the number of particles in the universe). To speed
up the simulations at high N we have decreased the mass-ratio parameter fǫ to 10−3

(which we checked to be still sufficiently accurate). The number of simulations varies
between Nsim = 100 at low N and Nsim = 10 at N = 10160. We stop the simulations
when the ratio between the two largest masses becomes ML1/ML2 ≥ 104, which is a
measure of tR. By this time the simulation has either already finished or has reached
it asymptotic limit.

According to the analytic prediction (Eq. (5.19), Malyshkin & Goodman 2001) the
tR-logN power-law is −1 and −2 for ν = 2 and ν = 3, respectively. In Fg. 5.7 the
piecewise exponent is indicated (number above the lines), which shows a declining
trend, except for the N = 10160 point. To check convergence, we have additionally
performed five simulations at a higher numerical resolution for N = 1080 and 10160
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(N∗
g = 2× 105 for the ν = 2 simulations and N∗

g = 2× 106 for the ν = 3 simulations).

For N = 1080 it was found that the results had converged, but at N = 10160 a
reduced tR compared to the lower resolution simulations was found. This increased
the local slope between N = 1080 and 10160 (dotted lines, hardly distinguishable
from the dashed lines, with the slope indicated below the line). Altogether, Fg. 5.7
suggests that the agreement between the numerical simulation and the monotrophic
model becomes better as N increases, a conjecture already made by Malyshkin &
Goodman (2001).

5.3.4 Fragmentation

The grouping method can also be used in steady-state situations where fragmenta-
tion balances coagulation. From the simulations in § 5.3.1 we expect that for the dis-
tribution method this is not a problem, as it follows both the mass density and the
number density. We will therefore concentrate our efforts on the equal-mass method.
Fragmentation events in Monte Carlo may seem problematic, because catastrophic
destruction can result in the creation of many small particles that consume computa-
tional resources. However, due to the grouping method we now have a natural way
to deal with fragmentation. In this section we consider a test case of complete de-
struction— meaning: the breakup of a particle into its smallest constituents (mono-
mers)— that occurs once a mass threshold, mfrag, is exceeded. We then solve for the
emergent, steady-state, mass distribution. Note that due to stochastic fluctuations
the number distribution is never really steady-state. We will therefore average over
many distributions during the same simulation run to obtain the ‘steady-state’ mass
spectrum.

In Fg. 5.8 the results of the sum kernel, Kij = mi + mj, are given. In Fg. 5.8a

the fragmentation threshold is mfrag = 1010. The crosses denote the average over
∼100 distributions during the simulation after the initial distribution has relaxed to
a semi-steady state. The volume of the simulation is stabilized when it incorporates
N∗

s = 104 species at V = 2 × 1012 ≫ mfrag. Figure 5.8b presents the result for an

even larger value of mfrag = 1020. The same characteristic distribution— resembling
a bath tub—is found. These results suggest that, for the sum kernel with catastrophic
fragmentation at a cut-off mass, most of the mass density becomes located near the
end points. The system may then be approximated by two states at m = m0 ∼ 1
and m = mf ∼ mfrag. The mass-loss of the monomer state due to collisions with the

high-m state is mdm/dt|− = n0nfmf, and the gain due to fragmentation within the
high mass bin becomes mdm/dt|+ = n2

f m2
f . Balancing these we get n0 = nfmf, i.e.,

equal mass densities for the monomer and high-m state.

However, with other kernels the mass distribution due to fragmentation may
also emerge as a power-law. To see this we adopt a simple model (Camacho 2001) in
which the mass sweep-up, ṁ, of a particle of mass m due to particles of lower mass
m′ < m is assumed to change only the mass in a continuous way. That is,

ṁ =
∫ m

m0

dm′K(m, m′)m′ f (m′), (5.20)
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Fg. 5.8: Steady state distributions of the sum kernel. At m = mfrag particles are catastrophically

disrupted into monomers of mass m = m0 = 1. (a) Distribution with mfrag = 1010 and

N∗
s = 104. (b) Distribution with mfrag = 1020 and N∗

s = 2 × 104. Distributions are averaged
over various times during the steady-state process. Plus signs denote this average over ∼100
distributions. The spread is indicated by the grey shading.

will shift particles of mass m by an amount ∆m = ṁ∆t. The total particle change per
unit time in the interval [m, m + ∆m] becomes −∆[ṁ f (m)] due to gradients in ṁ and
the distribution function. The other side of the distribution then acts as a sink for the
particles of mass m, i.e., R(m) f (m)∆m is the number of particles in [m, m + ∆m] that
is ‘consumed’ by the more massive particles, with

R(m) =
∫ mfrag

m
dm′K(m, m′) f (m′), (5.21)

as the removal rate. For a steady state we must therefore have

∂(ṁ f (m))

∂m
= − f (m)R(m). (5.22)

Assuming a power-law for f , f ∝ mα, Eq. (5.22) can be solved for α by extending
the limits of the integrals in Eq. (5.20) and Eq. (5.21) to 0 and ∞, respectively (Cama-
cho 2001). If |β| < 1 the integrals converge and the resulting power-law exponent
is α = −(3 + β)/2. The physical reason for the scale-free solution is thus that, con-
trary to the linear kernel, the behavior of the distribution near the cut-off points is
unimportant for the (local) distribution. Other works have confirmed this power-law
exponent, (e.g., White 1982; Hayakawa 1987). If β > 1 the integrals do not converge:
i.e., collisions with the boundaries of the distribution dominate and no power-law
emerges. However, Klett (1975) has shown that the β = 1 kernel Kij = (mimj)

1/2,
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Fg. 5.9: (a) Catastrophic fragmentation in the constant kernel, K = 1, with mfrag = 1010.

At masses above m ∼ 104 a power-law develops with a slope approximately equal to the
predicted slope (α = −3/2; dashed line). At low-m the simulation lacks resolution and the
power-law relation breaks down because of the episodic nature of the monomer injection. (b)
This discrepancy is solved by performing a follow-up simulation for the low-mass part of the
distribution only (m < mcut = 105) but including a removal rate due to collisions with large
masses above mcut, R(m), and a monomer injection rate, I, that were obtained in (a). The
distribution above mcut is copied from (a).

which therefore somewhat resembles the sum kernel, has an α = −2 power-law.

To test whether a power-law emerges, we have performed fragmentation simu-
lations for the constant kernel, K = 1, see Fg. 5.9. Thus, as β = 0 we expect to end up
with a slope of 1/2 for the m2 f (m) mass distribution. This trend is indeed observed
in Fg. 5.9a but only at large masses. The reason why an extension of the power-law
to low masses is not seen, is the same as in Fg. 5.4a. Again, due to the equal-mass
method, region of low mass density are not represented. In addition, the injection
rate at m = m0 is episodic: at one instance many monomers of total mass ∼mfrag

enter the system, such that the mass density at this particular instance becomes very
high (in comparison to the expected power-law distribution) for a very brief pe-
riod of time. However, as coagulation is a non-linear process, i.e., dn0/dt ∝ −n2

0,
these particles coagulate very quickly with each other. In other words, the episodic
injection rate has the effect of speeding up the coagulation compared to a smooth
rate and, when averaged over time, the true distribution is underestimated at places
where the particle density strongly fluctuates with time.

However, this deficiency of the equal-mass method does not affect the results
at higher m: here the distribution is well resolved. Additionally, the mean (time-
averaged) influx rate of monomers, I, at m = m0 is available, as well as the removal
rate of the higher mass particles, R(m). A simple remedy to retrieve the low-m dis-
tribution becomes then available. In a separate simulation we have focused only
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on the low-m part of the mass spectrum until a cut-off mass mcut, and addition-
ally include the fixed rates I and R, which were obtained from the previous sim-
ulation. Thus, R(m) is the probability that a particle of mass m collides with any
particle of the ‘frozen’ large-m distribution that was previously obtained in Fg. 5.9a.
Finally, if particles manage to grow above mcut (i.e., avoid to collide with a high-m
particle through R), they are also removed. In this way we effectively re-perform
the same fragmentation simulation, but in a reduced simulation volume, where the
much smaller inter-collision time-increments ∆t are appropriate for the low-m tail. In
Fg. 5.9b this procedure is illustrated. Here, we put the cut at m ≈ 105, recalculated
the steady-state for small m, and ‘glued’ it to the high-m distribution of m > mcut

from Fg. 5.9a.

5.4 Summary and discussion

5.4.1 Merits of the Method

In the previous section we have applied the grouping method to a variety of situ-
ations and found satisfactory behavior, in terms of both accuracy as and required
computing power, despite the large dynamic range under consideration. The col-
lisional evolutions of the analytic kernels were tested and agreed with the theoret-
ical distributions. We also confirmed the predictions made for a class of runaway
kernels, which required us to model an unprecedented large number of particles.
Finally, we applied the grouping method to situations in which fragmentation op-
erates and found excellent agreement with earlier findings (at least for the constant
kernel; we are not aware of a prediction for the shape of the distribution function in
the sum-fragmentation kernel).

Here we further discuss the (dis)advantages of both the equal mass and distri-
bution methods and compare them with other studies. In short our conclusions are
the following: the equal mass method is a true MC method, in the sense that no
merging of the species array is required, while the mass density of the distribution is
resolved (following a characteristic mass). For non-runaway situations this is there-
fore the preferred method. Other work along these lines can be found in Shima et al.
(2007). These authors implement a superparticle method to model rain drop forma-
tion. These super-droplets (like our groups) represent a multiple number of physical
particles with the same properties (like mass) and position. However, their colli-
sional setup is different. Where we allow many particles of one group to collide with
another, in Shima et al. (2007) there is at most one collision per particle. Also, in the
Shima et al. (2007) work the number of superdroplets is conserved and therefore (if
we understand their picture correctly) the mean mass of the superdroplets is con-
served as well. Thus, they always need a large number of superdroplets in order to
resolve the high-m fluctuations (see the discussion on Fig. 2c of Shima et al. 2007).
The biggest difference, therefore, is that our method allows a dynamical adjustment
of the group sizes. Thus, we think the Shima et al. (2007) work is not capable of
achieving the high dynamic range of our grouping method. Still, we do note that
their method achieves growth factors of at least 106 in mass, and this may be suffi-
cient for application to the atmospheric conditions of rain formation.
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With the distribution method we are able to trace well the fluctuations of the mass
(or distribution) spectrum, by choosing the zoom factors such that there are a fixed
number of groups for all exponentially spaced mass bins. This method is therefore
well suited for runaway kernels. However, the consequence is a rapid proliferation
of the Ns parameter as many new species (which may be insignificant by, e.g., mass)
are created. To limit Ns, these species need to be merged, which somewhat violates
the spirit of MC methods as this includes averaging, not only over mass but also over
structural parameters. The merging feature renders this method similar to Wether-
ill’s discrete ‘batches’ technique (Wetherill 1990). However, in our method structural
parameters, like porosity and charge, can be included and there is considerable (use-
ful) freedom in how the averaging can be performed. These structural parameters
survive, in averaged form, the merging process in our distribution method, and can
be fundamental in the process of coagulation. For example, fractal grain structure
(porosity) and dust charging can lead to, respectively, strong particle growth and
even gelation (Konopka et al. 2005; Ormel et al. 2007).

Both the Wetherill (1990) method and our approach give the correct behavior for
the most massive and second most massive particles in the case of the product ker-
nel (see Inaba et al. 1999 for verification). Still, Wetherill’s method has to deal with
a number of free parameters: the spacing between the discrete batches and a pa-
rameter that determines the timestep, which must be fine-tuned. Our MC method,
although not free of them either, does have the advantage that the free parameters
correspond to physically-identifiable quantities, such as the mass-fraction parame-
ter, fǫ. Another key advantage of our code is that the timestep, ∆t, follows natu-
rally from the MC code and is not required to be specified a priori. Especially in
the super-runaway kernels with ν = 2, 3, growth can be very erratic: during the
runaway-process there is a large amount of growth during a small time step. The
success of Wetherill’s approach lies in ‘discretizing’ the original (mean-field) Smolu-
chowski equation in an efficient way. Naturally, in Monte Carlo codes, discreteness
is assured.

The existence of two separate methods might appear to be a drawback. That
is, runaway kernels (modeled with the distribution method) and information on
structural parameters (through the equal mass method) are difficult to treat simul-
taneously, especially because one does not know a priori if a runaway situation will
materialize. However, information about the kernel is ’hard-wired’ into the Monte
Carlo program and it is therefore clear at which point the situation is susceptible to
runaway growth. Then, these particles (the high-m particles) have to be further re-
solved, and this can be achieved by switching to the distribution method. Thus, we
feel that it is possible to model runaway kernels with MC methods, provided one
implements a hybrid switch that signals runaway growth through the effective mass
scaling exponent that a kernel exhibits during the simulation. For example, consider
the cross section of Eq. (5.5). Obviously, the mass scaling of σ, mν, becomes stronger
than unity (ν ≈ 4/3) for sufficiently large masses. It does so in a smooth manner,
allowing a hybrid switch to be implemented. That is, as the program signals a large
value of ν for a particular kernel, it switches from the equal mass to the distribution
method, i.e., assigning lower zoom factors for the high-m particles and, if needed,



5.4: Summary and discussion 165

merging structural parameters. This kernel adaptation technique is analogous to
adaptive mesh refinement (Wise & Abel 2007), where the latter is grid based/spatial
and we take a particle/stochastic approach. Both numerical treatments require one
to look carefully at the consequences of the switch, i.e., the impact of the merging
prescription or the under-resolved part of the grid.

The bottom-line on MC methods thus becomes clear: there is a priori no universal
way in which the correct, accurate result can be guaranteed. Each situation requires
interpretation and, if necessary, (re)adjustment of some aspects related to the group-
ing method; most notably through the choices for the grouping factors, i.e., the {zi}.
However, MC methods are flexible enough to do so in physically meaningful way.
As such, they are a very powerful tool to describe any dynamical system in which
particles interact in a manner that can be statistically represented. In fact, the tech-
niques presented in this work allow one to treat a wide range of, astrophysically
relevant, kernels. The nicest feature of MC methods is that besides mass, structural
properties of particles, like porosity and charge, can be directly incorporated into the
collisional dynamics.

5.4.2 Astrophysical implications

There are several astrophysical situations where a large dynamic range is required
and for which our algorithm may be applicable. In protoplanetary disks, one of the
key questions is how the tiny (sub)micron-sized grains are transferred to planetesi-
mals (Dominik et al. 2007). Because of the increasing relative velocities with particle
growth, it may very well be the case that, while grains grow, the likelihood of frag-
mentation increases. An additional argument for fragmentation is that collisional
growth very efficiently removes the smallest grains, contrary to what observations
indicate (Dullemond & Dominik 2005). Recently, Brauer et al. (2008a) has solved the
steady-state coagulation-fragmentation equation for the dust distribution. It would
be worthwhile to investigate whether these results are also obtained with the group-
ing method, and how this picture changes by inclusion of structural parameters, e.g.,
the porosity of aggregates (Ossenkopf 1993; Kempf et al. 1999; Ormel et al. 2007).

If particles reach the planetesimal size (∼1 km) self-gravity may be sufficient to
keep the collision products together. Furthermore, gravitational focusing, enhancing
the gravitational cross-section, will turn the accretion process into a runaway pro-
cess (ν > 1). Goldreich et al. (2004b) has outlined under which conditions runaway
growth proceeds. Greenberg et al. (1978) followed the collisional evolution (includ-
ing fragmentation) of a population of initially 1012 km-sized planetesimals until sizes
of ∼500 km were reached (after which particle-in-a-box approximations fail). We
again note that a bin-based approach may have difficulty in modeling the runaway
stage unless it uses an ad-hoc extension to include the runaway particle explicitly
(Wetherill 1990). Bromley & Kenyon (2006) have developed a hybrid code that com-
bines a N-body and statistical approach. However, these models can only treat one
variable; with a Monte Carlo approach the internal structure of the particles can be
included and a rubble pile structure can be distinguished from a homogeneous one.

In stellar clusters, too, conditions may be feasible for runaway growth. Because
of dynamical friction (equipartition) the more massive stars will sink to the center of
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the cluster and we may even have ν = 2 (Malyshkin & Goodman 2001; Lee 2000).
Moreover, the cluster will eject the smaller members and contract as a whole. These
processes lead to core collapse in which the inner cut-off for the power law density
function, r0, disappears, r0 → 0, and the density seemingly becomes singular. This
condition is very favorable for a runaway-growth scenario, and may well be the
mechanism for the formation of high mass stars, seed black holes or even gamma
ray bursts (Portegies Zwart et al. 1999; Freitag et al. 2006; Portegies Zwart & van den
Heuvel 2007). Globular clusters are already successfully modeled by MC methods
where the structural parameters are now the energy and angular momentum charac-
terizing an orbit on which a particle (group) resides (e.g. Joshi et al. 2000). Here, the
grouping mechanism may then be well suited to model systems with a very large
number of stars and stellar ejecta. Similarly, the collapse, and possible fragmenta-
tion, of an interstellar gas cloud, leading to the formation of a stellar cluster or black
hole, could be treated by following many (porous) gas clumps.
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Final note. Recently, the authors became aware of the work of Zsom & Dullemond (2008), in

which Monte Carlo methods are also used to solve the collisional growth. Their work has been

developed independently of ours. Like in this chapter, the method by Zsom & Dullemond

is specialized to achieve high orders of magnitude growth, and their result features some

resemblance to our ’equal mass approach.’

5.A Grouped collision rates

We justify the expressions for the grouped collision rates, Eq. (5.10), where the col-
lision rates are divided by the number of collisions during the group collisions. We
show that, provided the individual rates Cij do not change as particles accrete, the
mean collision rate is independent of the grouping.

Consider a species of N identical particles that react with an individual rate a0

with an external particle. In the language of the grouping method of § 5.2 the N
particles are of species j that, during the group process, react with a particle from
species i and a0 = Cij. Let the process be such that the N particles react in groups of
N/w, where 1 ≤ w ≤ N is the total number of such events.

Let Pi be the probability that the system is in state i, meaning that the i-th event
(out of w) has occurred. At t = 0 the system is in the first state, so P0(t = 0) = 1 and
Pi(t = 0) = 0 for i 6= 1. Let the rate at which the system evolves from state i to the
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next state (i + 1) be given by λi, then

dP0

dt
= − λ0P0; (5.23a)

dP1

dt
= − λ1P1 + λ0P0; (5.23b)

dPi

dt
= − λiPi + λi−1Pi−1; (1 < i < w) (5.23c)

dPw

dt
= + λw−1Pw−1. (5.23d)

Let R(t) be the mean reactivity of the system measuring the mean number of par-

ticles that has reacted at time t (0 ≤ R ≤ 1). Likewise, let R2 measure the square
number of reactants, i.e.,

Rk(t) =
1

Nk

w

∑
i=0

Pi

(

iN

w

)k

=
w

∑
i=0

Pi

(

i

w

)k

. (5.24)

If we weigh the state-equations (Eq. (5.23)) with i/n and (i/n)2, respectively, and
sum over i we obtain:

dR

dt
=

1

w

w

∑
i=0

λiPi; (5.25a)

dR2

dt
=

1

w2

w

∑
i=0

(2i + 1)λiPi. (5.25b)

Now the λi are proportional to the amount of particles left, i.e., λi ∝ (1 − i/w)N. In
the case of group collisions, furthermore, we have argued that the rates should be
divided by the number of reactants, such that the collision rate stays the same. We
thus obtain

λi = (w − i)a0, (5.26)

where a0 is the individual collision rate between two single particles. Equation (5.25)
then transform to

dR

dt
= a0

(

1 − R
)

; (5.27a)

dR2

dt
= a0

(

−2R2 +
2w − 1

w
R +

1

w

)

. (5.27b)

This first equation of the first moment (average value) is independent of w. Its solu-
tion is of course the well known exponential decay corresponding to Poisson statis-
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tics, i.e.,

R(t) = 1 − exp[−at]. (5.28)

Inserting R into the equation for the second moment we solve for R2 as

R2(t) =
(

1 − e−at
)

(

1 − e−at
(

1 − w−1
))

. (5.29)

The spread σ in the distribution then becomes

σ2(w) =
(

1 − e−at
) e−at

w
. (5.30)

That is, for w → ∞, σ → 0 and we are certain about the fraction of objects that have
collided. For small w, however, there can be a significant spread.

By choosing the collision rates as in Eq. (5.26) — which is simply the rate for a
collision with one particle, a0(N − iN/w), divided by the number of particles in
the group (N/w) — we end up with Eq. (5.28) for the mean number of collisions.
Since this is independent of w the mean reactivity of the system is also unaffected
by the choice of w. For the mean reactivity it does not matter whether w = N (no
grouping) or w = 1 (all particles in the same group) as long as a0 stays constant
during the group process. However, the spread in R does depend on the choice of w,
which is quite natural, of course. A similar procedure cannot be performed for the
in-group collisions since here Eq. (5.23) involves i2 terms. The group collision rates
for in-group collisions are not exact. However, the rates of Eq. (5.10) are still a good
approximation, and will become exact for large w. Besides, in-group collisions are a
relatively minor occurrence.

5.B Outline Monte Carlo Program

1. Initialization

The prerequisites to run a MC simulation involving grouping are:

1. Identification of the (independent) particle properties x. Here, x can represent
various particle properties: e.g., mass, porosity, charge, chemical composition,
etc. Particles of unique x are called species; identical particles are called dupli-
cates and their multiplicity is denoted gi. An example of a possible state vector
is given in Table 5.4.

2. Interaction rate. This outlines the collision kernel Kij between any two parti-
cles. The individual collision rate, Cij = Kij/V , gives the probability of colli-
sion between particle i and j within the simulation volume V .

3. A grouping mechanism. This determines the “choice” for the zoom-factor {zi}
of the species. The group number then follows, wi = gi/2zi (wi ≥ 1). We
have outlined two methods to regulate {zi}. (i) Equal mass method: zi is re-
lated to the mass peak and requires duplication; (ii) distribution method: zi is
determined by the distribution.
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STATE VECTOR EXAMPLE

species group number zoom factor particle properties x

1 w1 z1 (m1,. . . )
2 w2 z2 (m2,. . . )
...

...
...

...
Ns wNs zNs (mNs,. . . )

Table 5.4: Particles are defined by their mass, mi, and, possibly, structural parameters. The
group number wi is a real number larger than unity (wi ≥ 1); zi is integer. The number of
particles of species i, gi = 2zi wi, is also an integer. The total number of species, Ns, fluctuates
around a target value N∗

s .

4. A collision module. It gives the outcome of a collisions between particles i
and j; i.e., how the particles are modified and whether any new particles are
created, in terms of the properties x.

2. Calculate group collision rates

The collision rate between a species i containing wi groups each of 2zi particles and
a species j (wj, zj) is given by:

λG
ij =

{

wiwj2
zi+Nǫ Cij if i 6= j

wi(wi2
zi − 1)Cii if i = j, in-group collision.

(5.31)

The partial rates, λi = ∑
Ns
k=i λG

ik (i = 1 . . . Ns), and total rate, λtot = ∑
Ns
i λi, are stored

in the memory of the computer program. The group splitting factor, Nǫ, regulates
mass accretion of j-particles on i-particles (here, zj ≥ zi) to avoid excessive instanta-
neous mass load. It is defined as

Nǫ =
[

− log2( fǫ2zi mi/2zj mj)
]

, (5.32)

where fǫ is the maximum allowed fractional increase in mass of the larger particle i.

3. Pick collision particles

This follows the “full conditioning” method of Gillespie (1975). The time increment
∆t and collision partners i, j are determined successively from the collision rates
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{λG
i } and three random deviates rk:

time increment: ∆t = λ−1
tot ln(1/r1); (5.33a)

i − particle:
i−1

∑
k=1

λk ≤ r2λtot ≤
i

∑
k=1

λk; (5.33b)

j − particle:
j−1

∑
k=1

λG
ik ≤ r3λG

i ≤
j

∑
k=1

λG
ik. (5.33c)

4. Perform collision

Each i-particle (zi ≤ zj) collides with N = 2zj−zi−Nǫ j-particles. Perform the group
collision: the sequential collision of N j-particles with the i-particle. Determine the
new (structural) properties of the particles from the collision module. The multiplic-
ity of the new particles that are created is 2zi . If i = j (in-group collisions) one group
of 2zi particles “collapses”: there is one collision per particle and the multiplicity is
2zi−1.

5. Update collision rates, state vector

1. Reduce the group number of collision species: wi → wi − 1, wj → wj − Nǫ.
If wi or wj becomes 0, remove this row from the state vector (Ns → Ns − 1)

and remove the entry from {λG
k }. If wi becomes fractional (wi < 1), demagnify

(re-group) this species.

2. Add the new species to the state vector at index q = Ns + 1 (Ns → Ns + 1).
Determine zq and wq ≥ 1 for the new species q.

3. Update the collision rates {λk}. For every k = 1 . . . Ns look to see whether the
rates λG

ik and λG
jk should be subtracted (if k ≤ i, respectively, k ≤ j) and add the

rate λG
qk if k ≥ q where q denotes the ‘new’ particle. Recalculate λtot.

6. Adjust {zi}, merge species, choose duplicates

These steps are necessary for a smooth progression of the program to keep Ns and
Ng (the total number of groups) around their target values, but do not have to be
processed at every cycle. Adjust the collision rates, {λi} accordingly. Zoom factors
can be adjusted up or down:

1. Magnification: the zoom factor of the species is increased, zi → zi + 1 and
wi → wi/2.

2. Demagnification: the zoom factor of the species is decreases, zi → zi − 1 and
wi → 2wi.

3. Merging: properties of similar species are averaged to one species. This regu-
lates the number of groups per (logarithmic) mass interval.

4. Duplication (constant-Ns simulations only): pick species-k randomly from the
state vector (with weights {wi}) and increase it by one (wk → wk + 1).
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Although (de)magnification and duplication do not directly increase (or decrease)
Ns, increasing (decreasing) group numbers make an occurrence of an empty row,
caused by disappearance of wi = 1 species, less (more) likely. If particles are du-
plicated the simulated volume V also increases. Constant-V simulations do not use
duplication.
End of cycle → return to 3.





6
Dust coagulation and fragmentation in

molecular clouds

—C. W. Ormel, D. Paszun, C. Dominik, A. G. G. M. Tielens—

The cores in molecular clouds are the densest and coldest regions of the in-

terstellar medium (ISM). These are the places, therefore, where the ISM-dust

grains can coagulate. Here, we study the coagulation and fragmentation pro-

cess from first principles; through direct quantification of the outcomes of de-

tailed numerical simulations that cover a wide parameter space characterized

by four dimensions: energy, porosity, angle of impact, and size ratio. Colli-

sions can result in sticking or fragmentation (shattering, breakage, and ero-

sion) and affect the internal structure of the particles. In combination with a

Monte Carlo coagulation code the dust aggregate collision model is applied

to a homogeneous and static cloud of temperature 10 K and gas densities that

range from n = 103 cm−3 to 107 cm−3. The coagulation is followed locally for

timescales of ∼107 yr. We find that the growth can be divided into two stages: a

growth-dominated phase and a fragmentation-dominated phase, in which the

evolution evolves towards steady state. In the first stage the mass distribu-

tion is relatively narrow, peaking at a particular size that shifts to larger size

with time. At some point, however, collision velocities are energetic enough

to fragment particles, which decrease the growth rate and start to replenish the

particles of lower mass. Eventually, a steady state is reached, where the mass

distribution is characterized by a relatively flat m2 f (m) mass-spectrum (equal

amount of mass per logarithmic size bin). The amount of growth depends on



174 Dust coagulation and fragmentation in molecular clouds

the density of the gas (setting the coagulation timescale) compared to the life-

time of the cloud, as well as on the material properties of the dust grains. Coag-

ulation between silicates are always in the fragmentation regime, whereas ice-

coated particles show a large potential for growth due to their better sticking

properties. If clouds evolve on free-fall timescales, however, little coagulation

is expected to take place in either case. However, if clouds have long-term sup-

port mechanism and live in isolation, the impact of coagulation is important,

leading to a significant decrease of the opacity if the fragmentation-dominated

phase has not yet been reached.

6.1 Introduction

Dust plays a key role in molecular clouds. Extinction of penetrating FUV photons
by small dust grains allows molecules to survive. At the same time, gas will accrete
on dust grains forming ice mantles consisting of simple molecules (Tielens & Ha-
gen 1982; Hasegawa et al. 1992; Bergin & Langer 1997). Moreover, surface chemistry
provides a driving force towards molecular complexity (Charnley et al. 1992; Aikawa
et al. 2008). Dust also plays an active role in the star formation process. The smallest
grains set the degree of ionization in the cloud, which controls the ambipolar dif-
fusion rate and therefore regulates the magnetic support of prestellar cores (Ciolek
& Mouschovias 1994). Radiation pressure on grains limits the mass accretion onto
luminous protostars and hence grains may play a role in the upper mass cut off
of stellar masses (Kahn 1974; Wolfire & Cassinelli 1987). Furthermore, after enter-
ing a protoplanetary disk, interstellar dust grains also provide building blocks from
which ever larger bodies such as chondrules, planetesimals and cometesimals can
be built. Finally, dust is often used as a proxy for the total gas (H2) column density,
either through near-IR extinction measurements or through sub-millimeter emission
studies (Johnstone & Bally 2006; Alves et al. 2007; Jorgensen et al. 2008). Dust is of-
ten preferred as a tracer in these types of studies because it is now well established
that — except for pure hydrides — all species condense out in the form of ice man-
tles at the high densities of prestellar cores (Flower et al. 2006; Bergin & Tafalla 2007;
Akyilmaz et al. 2007). Thus, it is clear that our assessment of the molecular contents
of clouds, as well as the overall state of the star and planet formation process, are
tied to the properties of the dust grains— in particular, its size distribution.

The properties of interstellar dust are, however, expected to change during its
sojourn in the molecular cloud phase. In particular, dust grains are expected to grow
in size and this has profound influence on many of the processes involving dust.
Grain sizes will increase due to the growth of ice mantles but this has only a limited
effect because the total ice volume will be dominated by the smallest grains— which
dominate the total grain surface area — and, if all the condensible gas freezes out,
the thickness of the ice mantles is still only 175 Å, independent of core size (Draine
1985). In dense clouds, coagulation is potentially a much more important promoter
of dust growth. Observationally, the decreased visual extinction per H-nucleus in
the ρ-Oph cloud is evidence for dust growth by coagulation (Jura 1980). Indirect ev-
idence for grain coagulation is also provided by a comparison of visual absorption
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studies (e.g., star counts) and sub-millimeter emission studies which imply that the
smallest grains have been removed efficiently from the interstellar grain size distri-
bution (Stepnik et al. 2003). On a long time scale (>108 yr), the interstellar grain
size distribution is thought to reflect a balance between coagulation in dense clouds
and shattering in interstellar shocks as material constantly cycles between dense and
diffuse ISM phases (Jones et al. 1996; O’Donnell & Mathis 1997). Thus, because co-
agulation controls the total surface area of dust in molecular cloud cores, it in turn
affects many of the direct and indirect observational manifestations in these environ-
ments.

Because it is the site of planet formation, coagulation studies have largely focused
on grain growth in protoplanetary disks (Weidenschilling & Cuzzi 1993). In molec-
ular clouds, dust coagulation has been theoretically modeled by Ossenkopf (1993)
and Weidenschilling & Ruzmaikina (1994). In these studies, coagulation is driven by
processes that provide grains with a relative motion. For larger grains (&100 Å) tur-
bulence in particularly is important in providing relative velocities. These motions—
and the outcomes of the collisions— are very sensitive to the coupling of the parti-
cles to the turbulent eddies, which is determined by the surface area-to-mass ratio of
the dust particles. At low velocities, grain collisions will lead to the growth of very
open and fluffy structures, while at intermediate velocities compaction of aggregates
will occur. At very high velocities, cratering and even catastrophic destruction will
provide a powerful counterforce to the coagulation process (Dominik & Tielens 1997;
Paszun & Dominik 2008a; Blum & Wurm 2008). It is clear then that understanding
grain growth requires us to know the relationships between the macroscopic velocity
field of the molecular cloud, the internal structure of aggregates (which follows from
its collision history), and the microphysics of dust aggregates collisions. In view of
the complexity of the coagulation process and the then existing, limited understand-
ing of the coagulation process itself, previous studies of coagulation in molecular
cloud settings have been forced to make a number of simplifying assumptions con-
cerning the characteristics of growing aggregates.

Theoretically, our understanding of the coagulation process has been much helped
by the development of the atomic force microscope, which has provided much in-
sight in the binding of individual monomers. This has been translated into sim-
ple relationships between velocities and material parameters, which prescribe un-
der which conditions sticking, compaction, and fragmentation occur (Chokshi et al.
1993; Dominik & Tielens 1997). Over the last decade, a number of elegant exper-
imental studies by Blum and coworkers (e.g., Blum & Wurm 2008) have provided
direct support for these concepts and in many ways expanded our understanding of
the coagulation process. Numerical simulations have translated these concepts into
simple recipes, which link the collisional parameters and the aggregate properties
to the structures of the evolving aggregates (Paszun & Dominik 2008a). Together
with the development of Monte Carlo methods, in which particles are individually
followed (Ormel et al. 2007; Zsom & Dullemond 2008), these studies provide a much
better framework for modeling the coagulation process than hitherto possible.

In this chapter, we reexamine the coagulation of dust grains in molecular cloud
cores in the light of this improved understanding of the basic physics of coagula-
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tion with a two-fold goal. First, we will investigate the interrelationship between the
detailed prescriptions of the coagulation recipe and the structure, size, and mass of
the resulting aggregates. While these collisional recipes are very general, we have
elected here to apply them to the relatively simple setting of a molecular cloud core.
This will serve as an efficient way to investigate the implication of the detailed colli-
sion experiments. In a future study, we may apply these recipes to more convoluted
models for the structure of molecular clouds, as well as studying grain growth and
planet formation in protoplanetary disks. Second, we will give a simple prescrip-
tions for the temporal evolution of the total grain surface area, thereby capturing
its observational characteristics, in terms of the physical conditions in the core. Be-
cause the surface area holds the key to many of the physical effects involving grains
in dense cores — including opacity and surface chemistry — we expect that a sim-
ple, but reliable, description of the coagulation process will be of great benefit to the
larger field of molecular cloud physics.

This chapter is organized as follows. In § 6.2 the static cloud model that is adopted
for the gas properties is presented and linked to the turbulent velocity structure.
Section 4.2.3 describes the results from the collisional experiments, and quantifies
their outcome in the collision recipe. A significant effort is invested to make the
outcomes of the numerical collision experiments applicable to a size regime much
larger than the collision experiments can handle. Also, the outcome is quantified in
such a way to treat a Monte Carlo approach, discussed in § 6.4. In § 3.3 the results
are presented: we discuss the imprints of the collision recipe on the coagulation and
also present a parameter study, varying the cloud gas densities and the dust ma-
terial properties. The merits of our approach are discussed in § 6.6, together with
some caveats. In § 6.7 we review the implications of our result to molecular clouds.
Section 2.6 summarizes the main conclusions of this study.

6.2 Density and velocity structure of molecular clouds

The physical structure — the gas density and temperature profiles — of molecular
clouds is determined by its support mechanisms. Various support mechanisms can
be envisioned: thermal, rotation, magnetic fields, or turbulence. If there is only ther-
mal support to balance the cloud’s self-gravity and the temperature is constant, its
structure is that of an isothermal sphere where the gas density (ρg) falls-off with ra-

dius (r) as ρ ∝ r−2. However, the isothermal sphere is unstable as it heralds the
collapse phase (Shu 1977). The cloud will then collapse on a free-fall timescale

tff =

√

3π

32Gρg
= 1.1 × 105 yr

( n

105 cm−3

)−1/2
, (6.1)

where G is Newton’s gravitational constant, n = ρg/mHµ the number density of
the molecular gas with mH the hydrogen mass and µ the molecular mass µ = 2.34.
Thermally supported cores are only stable if the thermal pressure wins over gravity,
a situation described by the Bonnor-Ebert sphere (still assuming a constant tempera-
ture), where an external pressure confines the cloud. The critical Bonnor-Ebert mass
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is (Ebert 1955; Bonnor 1956)

MBE = cBE

c4
g

P1/2
out G3/2

, (6.2)

where cg is the isothermal sound speed, Pout the external pressure, and cBE ≃ 1.18.

Inserting Pout = ρgc2
g, c2

g = kT/µ and ρg = nµmH we obtain

MBE = cBE

c3
g

G3/2√nµmH
= 0.31 M⊙

(

T

10 K

)3/2 ( n

105 cm−3

)−1/2
, (6.3)

where, n is the density at the outer radius of the cloud. Because Bonnor-Ebert spheres
have a modest density gradient, the density in the center of the core is a factor of ∼10
larger. Thermally-supported subcritical Bonnor-Ebert spheres (M . MBE) are stable
and can in principle exist on long timescale — as long as they are not disturbed by
dynamical interactions.

Magnetic fields in particular are important to support the cloud against the op-
posing influence of gravity, because the ions, which are tied to the field, will prevent
the cloud from collapsing. Ion-molecule collisions will move the magnetic field out
of the cloud, which can be a prolonged process. The ambipolar diffusion timescale
can be estimated from the ion-molecular collision rate, Kin ∼ 2 × 10−9 cm3 s−1. The
force on a neutral particle through momentum transfer due to collisions with ions
is Fad = mnvdrKinni, where mn is the neutral mass, vdr the ion-molecule drift veloc-
ity, and ni the number density in ions. This force balances the gravitational force,
from which the drift velocity can be obtained. The ambipolar diffusion timescale,
tad = r/vdr, then becomes,

tad =
3Kin

4πµmHG

(ni

n

)

≃ 3.7 × 106 yr
( n

105 cm−3

)−1/2
, (6.4)

where we have assumed a degree of ionization due to cosmic rays of ni/n = 2 ×
10−5/

√
n (Tielens 2005).

Turbulence is another possible support mechanism of molecular cores, but its na-
ture is dynamic— rather than (quasi)static. At large scales it provides global support
to molecular clouds, whereas at small scales it locally compresses the gas. If these
overdensities exist on timescales of Eq. (6.1), collapse will follow. This is the gravo-
turbulent fragmentation picture of turbulence-dominated molecular clouds, where
the (supersonic) turbulence is driven at large scales, but also reaches the scales of
quiescent (σturb < cg) cores (Mac Low & Klessen 2004; Klessen et al. 2005). In this
dynamical, turbulent-driven picture both molecular clouds and cores are transient
objects.

Thus, cloud cores will dynamically evolve due to either ambipolar diffusion and
loss of supporting magnetic fields or due to turbulent dissipation, or simply because
the core is only a transient phase in a turbulent velocity field. In this work, for rea-
sons of simplicity, we constrain ourselves to a static cloud model, where turbulence
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is unimportant for the support of the core, but we do include (subsonic) turbulence
in the formalism for the calculation of relative motions between the dust particles.
In the following we present the working model for the structure of the cloud.

6.2.1 Working model

In this exploratory study we will for simplicity adopt an homogeneous core of mass
given by the critical Jeans mass. Moreover, we assume the cloud is turbulent, but
neglect the effects the turbulence has for the support of the cloud. Thus, our approx-
imation is probably applicable for high density, low mass cores as velocity disper-
sions increase towards high mass cores (Kawamura et al. 1998). The homogeneous
structure causes collision timescales to be the same throughout the cloud, i.e., the
coagulation and fragmentation is treated locally and not affected by diffusion. In
our calculations, we will study the sensitivity of the coagulation process on the gas
density n and compare the calculated coagulation/fragmentation timescales to the
other relevant timescales in the problem.

Starting from the isodense sphere, we derive the turbulent velocity structure.
First, the cloud outer radius is given by the Jeans length (Binney & Tremaine 1987)

LJ =
1

2

√

πv2
g

Gρg
= 0.033 pc

( n

105 cm−3

)−1/2
(

T

10 K

)1/2

, (6.5)

From which the Jeans mass is obtained as

MJ =
4π

3
ρgL3

J = 0.90 M⊙

( n

105 cm−3

)−1/2
(

T

10 K

)3/2

. (6.6)

and the sound crossing time of the core is

tcross =
LJ

cg
= 1.7 × 105 yr

( n

105 cm−3

)−1/2
, (6.7)

independent of temperature. At the Jeans mass, the crossing time is of course equal
to the free-fall time of the cloud.

We now assume (i) that the largest eddies decay on the sound crossing time of
Eq. (6.7) (i.e., tL = tcross), and (ii) that the fluctuating velocity at the largest scale is
given by the sound speed i.e., vL = cg. Thus, the turbulent viscosity is νt = LvL =

v2
LtL = cgLJ with L = LJ the size of the largest eddies. Although our parameteriza-

tion of the large eddy quantities seems rather ad-hoc, we can build some trust in this
relation by considering the energy dissipation rate v3

L/L per unit mass. Balancing
the energy dissipation with the heating, requires a heating rate nΓ of

nΓ =
v3

L

L
ρg = 2.5 × 10−23 erg cm−3 s−1

(

T

10 K

)

( n

105 cm−3

)3/2
. (6.8)

Based upon observational studies of turbulence in cores, Tielens (2005) give a heating
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rate of nΓ = 3 × 10−28n erg s−1, with which Equation (6.8) reasonably agrees for the
range of densities we will consider. Additionally, the adoption of the crossing time
and sound speed for the large eddy properties are natural upper limits. A higher
value for the sound speed means that turbulence becomes supersonic, which may
be difficult to sustain. A much reduced value, on the other hand, would give an
energy dissipation that may be too low. Note again that turbulence does not act as a
support mechanism in our working model.

The turbulent properties further follow from the Reynolds number, which is the
ratio of the turbulent viscosity νt over the molecular viscosity νm,

Re =
νt

νm
=

vLL

cgℓmfp/3
= 6.2 × 107

( n

105 cm−3

)1/2
(

T

10 K

)1/2

, (6.9)

where νm is the molecular viscosity and ℓmfp the mean free path of a gas particle.
Assuming a Kolmogorov cascade, the turn-over time and velocity at the inner scale
follow from the Reynolds number as,

ts = Re−1/2tL = 2.2 × 102 yr
( n

105 cm s−1

)−3/4
(

T

10 K

)−1/4

(6.10)

vs = Re−1/4vL = 2.1 × 102 cm s−1
( n

105 cm s−1

)−1/8
(

T

10 K

)3/8

. (6.11)

We note that the fluctuating velocity of the smallest eddies is a few m/s.

6.2.2 Relative velocities between dust particles

The quantity that determines the amount of interaction a particle experiences with
the gas is the friction time τf,

τf =
3

4πcgρg

m

A
, (6.12)

where m is the mass of the particle and A the average projected surface area. For
compact grains of size a0 and density ρ0, Eq. (6.12) scales linearly with radius, τf =
a0ρ0/cgρg. However, for porous particles A can have a much steeper dependence on
mass (in the case of flat structures, A ∝ m) and τf a much weaker dependence.

Ossenkopf (1993) considers a variety of sources for inducing relative velocities
between dust particles in molecular clouds: asymmetric drift velocities, Brownian
motion, gravitational settling, and turbulence. Except for combinations of high den-
sities and small particles, turbulence dominates the velocity field between the par-
ticles. This becomes clear from considering the friction time of particles of radius
a0

τ0 = τf(a0) =
ρ0a0

cgρg
= 1.1× 102 yr

( n

105 cm−3

)−1
(

T

10 K

)−1/2 ( a0

0.1 µm

)

, (6.13)
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where we take the bulk density ρ0 = 2.65 g cm−3 applicable to silicates. Specifically,
the ‘0’ subscript denotes the smallest constituent dust particle (monomer). Because
τ0 > ts the particle motion will not align with the eddies of shorter turn-over time.
These ‘class II’ eddies (Völk et al. 1980) are responsible for giving random kicks to
the particle motion—an important source for sustaining relative velocities of at least
∆v ∼ vs. These velocities are rather insensitive to density as (i) vs has a very shallow
dependence on n; and (ii) the ratio τf/ts, which we define as the Stokes number Sts

1

is also weakly dependent on density

Sts ≡
τf

ts
= 5.2

(

a0

0.1 µm

)

( n

105 cm−3

)−1/4
(

T

10 K

)−1/4

. (6.14)

It is only for densities above ∼107 cm−3 that 10−5 cm size dust grains have Sts < 1.

Specifically, for identical particles of Sts > 1, ∆v ≈
√

3vsSt1/2
s (Ormel & Cuzzi 2007).

The relative velocity between two dust monomers is then

∆v0 ≈
√

3vsSt1/2
s = 8.3× 102 cm s−1

(

a0

0.1 µm

)1/2 ( n

105 cm−3

)−1/4
(

T

10 K

)1/4

.

(6.15)

Thus, velocities between silicate dust particles are ∼10 m/s, and decrease only very
slowly with density. The same expression holds when the silicates are coated by
an ice mantle that is not too thick, as we will assume throughout this chapter (i.e.,
ρ0 is then still the silicate bulk density). Dust monomers then collide on a collision
timescale of

tcoll,0 =
(

nd∆v04πa2
0

)−1
=

ρ0a0Rgd

3ρg∆v0

= 8.5 × 104 yr

(

a0

0.1 µm

)1/2 ( n

105 cm−3

)−3/4
(

T

10 K

)−1/4

, (6.16)

where Rgd = 100 is the standard gas-to-dust density ratio by mass. Thus, if dense
cores exist on timescales less then Eq. (6.16) coagulation is of little importance. This
happens, e.g., when the cores exist on free-fall timescales (Eq. (6.1)) at densities less
than n = 104 cm−3. On the other hand, if the lifetime of molecular clouds is longer
than Eq. (6.16) we do expect that coagulation is significant. At very high densities
(n ≫ 105 cm−3) tcoll,0 can become much less than the lifetime of the core — espe-
cially if long term support mechanisms are available — and we do therefore expect
significant potential for coagulation.

6.2.3 Particle sticking, restructuring and fragmentation

Although a detailed model for the outcome of collisional encounters between dust
aggregates will be discussed in § 6.3, it is instructive to present order-of-magnitude

1The more usual definition is St = τf/tL.
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COLLISIONAL OUTCOMES

Energy Outcome of Collision

E < 5Eroll Sticking without restructuring
E ≈ 5Eroll Onset of restructuring local to the impact area
E ≈ NcEroll Maximum compression
E ≈ 3NcEbr Onset of erosion (start to lose monomers)
E > 10NcEbr Catastrophic disruption

Table 6.1: Collision outcome predicted by Dominik & Tielens (1997) for 2d aggregates. The
breaking energy, Ebr, corresponds to the energy to break a single contact, whereas the rolling
energy, Eroll, corresponds to the energy required for visible restructuring of the contact area
through rolling. The number of contacts in an aggregate, denoted by Nc, is typically similar
to the number of monomers the aggregate contains, N.

expressions for the sticking behavior of dust aggregates. This requires us to compare
the critical threshold for sticking with the expected relative velocity between two
dust particles derived above.

Dominik & Tielens (1997) provide a simple recipe for the outcome of aggregate
collisions, see Table 6.1. According to Dominik & Tielens (1997) the outcome of a
collision depends on the impact energy,

E =
1

2
mµ(∆v)2, (6.17)

where mµ is the reduced mass, relative to two critical energy thresholds: the energy
required to break a contact, Ebr, and the energy required to roll a contact, Eroll. From
the Dominik & Tielens (1997) study,

Ebr = Abr

γ5/3a4/3
µ

E⋆2/3
; (6.18a)

Eroll = 6π2ξcritγaµ, (6.18b)

where aµ = a1a2/(a1 + a2) is the reduced radius of the aggregates colliding (in our
case we shall always consider two equal-size monomers such that aµ = a0/2), and
γ and E⋆ are, respectively, the surface energy density and the reduced elastic mod-
ulus of the material. The model parameters ξcrit and Abr result from the Dominik
& Tielens (1997) study: ξcrit = 10−8 cm and Abr = 43. The critical energies of
Eq. (6.18) were obtained by Dominik & Tielens (1997) from theoretical considera-
tions; however, laboratory experiments performed by Poppe et al. (2000) showed
that monomers stick at a much higher velocity than predicted from the derived the-
oretical limit. Although the nature of this discrepancy remains unclear, the constant
Abr in Eq. (6.18a) had to be increased by about two orders of magnitude. Moreover,
Heim et al. (1999) find that the energy Eroll is also an order of magnitude higher than
the threshold given by the theory. This indicates that the critical displacement ξcrit

must be about 10 times larger than assumed by Dominik & Tielens (1997). Blum &
Wurm (2000), however, confirmed the quantitative picture proposed by the theory,
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provided that the experimental threshold energies are used (ξcrit = 2 × 10−7 cm and
Abr = 2.8× 103). In this study we will adopt these experimentally-measured values.

Using the critical energies, we briefly review contact breaking and restructuring.
Contact breaking occurs when E > Ebr, where E is the collision energy. The critical
velocity is therefore,

vbr =

√

2Ebr

mµ
=
√

2Abr

γ5/6a4/6
µ

E⋆1/3m1/2
µ

=

√

6Abr

4π
ρ−1/2

0 γ5/6a2/3
µ a−3/2

0 E⋆−1/3 (6.19)

= 7.4 m s−1 N−1/2
µ

(

aµ

a0

)2/3 ( a0

0.1 µm

)−5/6 ( ρ0

2.65 g cm−3

)−1/2

×

(

γ

25 erg cm−2

)5/6 ( E⋆

2.8 × 1011 dyn cm−2

)−1/3

.

In this expression we have introduced the reduced number of monomers in the
collision, Nµ = N1N2/(N1 + N2) = mµ/m0 and inserted the material properties
measured for small silicate grains. Given the expected velocities in molecular cores
we see that breaking of contacts is important for silicate grains of 0.1 µm. How-
ever, ice formation on the surface of dust particles will change this picture. Ad-
hesion forces are governed in this case by the material properties of ice, where the
surface energy density is γ = 370 erg cm−2 and the reduced elasticity modulus is
E⋆ = 3.7 × 1010 dyn cm−2. This results in a higher velocity threshold of vbr =
1.2 × 104 cm s−1 between two monomers. However, in aggregates the collisional
energy is distributed over multiple monomers so that a more realistic threshold for
shattering is E ∼ NcEbr, even increasing the threshold for fragmentation. Besides,
the collisional energy can also be dissipated by restructuring. From these consider-
ations it is clear that for ices (or ice-coated silicates) high velocities, >102 m s−1, are
required to fully fragment aggregates. There are two exceptions, however. In very
fluffy fractal aggregates that have an open structure (e.g., string-like), removal of a
central contact may result in its breakup. Secondly, if the impact energy is localized
in a small region of the aggregate we may expect that collisions of velocity v & vbr

produce some local damage in the form of cratering. This local aspect will feature
prominently in the collision recipe of § 6.3.

At collision energies less than the restructuring limit, E < 5Eroll, aggregates col-
lide without affecting their internal structure. Then, the collision is in the ‘hit-and-
stick’ regime (Blum & Wurm 2000). Translating the collision energy to a velocity
thresholds gives

vhs =

√

10Eroll

mµ
=

√
45π a1/2

µ a−3/2
0 ρ−1/2

0 ξ1/2
crit γ1/2N−1/2

µ (6.20)

=16.3 m s−1 N−1/2
µ

(

aµ

a0

) 1
2
(

a0

0.1 µm

)−1 ( ρ0

2.65 g cm−3

)− 1
2
(

γ

25 erg g−1

) 1
2

.

It should be noted that Eq. (6.20) is applicable to aggregates, whereas Eq. (6.19) gives
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the breaking velocity between two monomers. Because we consider aggregates,
we give preference to the vhs threshold (even though it is in the case of silicates
higher than vbr), which has been experimentally verified as the onset for restructur-
ing (Blum & Wurm 2000).

Comparing the critical sticking velocities (Eqs. (6.19), (6.20)) with the velocities in
the molecular cloud (Eq. (6.15)), we may expect that collisions between silicate aggre-
gates are prone to fragmenting behavior from the outset, whereas for ices the onset
of fragmentation is delayed — if enough time is available — to a stage where parti-
cles are much larger, compact, and have much larger relative velocities. Concerning
the structure of aggregates, we expect that restructuring will be important from the
outset as ∆v & vhs, except perhaps at the highest densities. For ices Eq. (6.20) is a
factor of 4 higher, but note that the discrepancy between ice and silicates is less for
the rolling energy than for the breaking energy (Eq. (6.18)). Finally, if fragmentation
is present, a significant injection of porous material can be expected (see below).

These considerations present, however, only a qualitative picture, which neglects
important parameters that may be key to the outcome of the collision, i.e., the particle
porosity and the impact parameter. It may therefore be dangerous to provide a full
collision model from these energy considerations alone. For a quantitative model,
therefore, we will use the results of detailed numerical simulations for collisions
between two colliding aggregates, which have been recently performed (Paszun &
Dominik 2008a). We will review these numerical experiments in the next chapter
and provide a collision recipe that quantifies their outcome and can be applied to a
Monte Carlo coagulation model.

6.3 Collision model

Collisions between aggregates are modeled using the soft aggregates numerical dy-
namics (SAND) code (Dominik & Nübold 2002; Paszun & Dominik 2008b). This code
treats interactions between individual monomers held together by the surface forces
in a contact area (Johnson et al. 1971; Derjaguin et al. 1975). The SAND code calculates
the equation of motion for each grain individually and simulates vibration, rolling,
twisting and sliding of the monomers that are in contact. These interactions lead to
energy dissipation via different channels. When two monomers in contact are pulled
away, the connection may break causing loss of the energy. Monomers may also roll
or slide over each other, which also involves energy dissipation. These mechanisms
are discussed in details by Dominik & Tielens (1995, 1996) and Dominik & Tielens
(1997). For further details regarding this model and testing it against laboratory ex-
periments we refer the reader to the paper by Paszun & Dominik (2008b).

6.3.1 Collision setup

To understand mechanisms that determine a collision outcome, we performed a
large number of simulations covering a wide parameter space. Although all simula-
tions are described in detail by Paszun & Dominik (2008a) we present here a setup
of these numerical experiments and provide a qualitative picture of the mechanisms
that influence the outcome of a collision.
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Fg. 6.1: Sketch of the initial setup of our simulations. Different parameters are shown in the
plot. We varied collision energy, impact parameter, and compactness.

The outcome of a collision is shaped by five key parameters: (i) the collision
energy E, (ii) the impact parameter b, (iii) the initial compactness of aggregates, (iv)
the mass ratio N1/N2, and (v) the material properties of the monomers. Using an
appropriate normalization, we can describe the collisional outcome independently
of the latter parameter (the material properties) so that only four parameters are left.
The applied scaling is discussed in § 6.3.5. An example of the setup of a simulation
is shown in Fg. 6.1. It illustrates three parameters that determine the outcome of a
collision: the initial compactness as represented by the geometrical filling factor φ (see
below), the collision energy E, and the impact parameter b.

A collision for each parameter set is repeated 6 times at different orientations.
This provides an overview of the possible range of outcomes. However, some ori-
entations do not result in a collision hit. This is caused by the high porosity of ag-
gregates, where a small particle can fly through voids in a larger aggregate without
colliding with it, or, more simply, if the path of the protuberances that character-
ize fractal, fluffy aggregates do not cross. The fraction of these missing collisions
depends on two parameters: the structure of the particle characterized by the geo-
metrical filling factor and the impact parameter.

The range of the parameters we use in our study is summarized in Table 6.2. We
sample the collisional energy parameter space from the pure hit-and-stick collisions,
where particles grow without changing the internal structure of the colliding ag-
gregates, up to catastrophic destruction, where the aggregate is shattered into small
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SIMULATION PARAMETERS

v [m/s] b/bmax mass ratio φ

0.05 0.0 1.0 0.070
0.30 0.25 0.8 0.090
0.50 0.5 0.6 0.122
0.75 0.75 0.4 0.127
1.0 0.875 0.2 0.155
2.0 0.95 0.1 0.161
4.0 0.05 0.189
6.0 0.01 0.251
8.0 0.001
10.0

Table 6.2: Parameters used in the numerical simulations. Note that not all combinations are
sampled.

fragments. In the intermediate energy regime, we observe restructuring, where the
growth process leads also to a change of the internal structure of an aggregate.

The dimensionless impact parameter space is also well sampled. We probe cen-
tral collision (b = 0), where aggregates can be compressed, grazing impacts (b ∼ 1),
where particles can be stretched due to inertia, and several intermediate cases. The
impact parameter is taken relative to the outer radius of the particles, bmax = aout,1 +
aout,2. Here the outer radius aout is the radius of the smallest sphere centered at the
center-of-mass of the particle that fully encloses it.

The third parameter that determines the collision outcome is the mass ratio. To
verify its influence on a collision outcome, we simulate impacts of different mass
aggregates onto a target made of 1000 monomers. In this way we explore the mass
ratio in the range from 1 to 10−3. Additional experiments are performed at a mass
ratio of unity containing aggregates made of 200 monomers each. The two extreme
cases (mass ratio of 1 and 10−3) will affect the outcome of the collision in two qualita-
tively distinct ways. In collisions between equal-size aggregates the properties of the
particle change globally, whereas if the colliding particles have very different masses
the impact of the collision can be described locally (except if the collision energy is
very high, see below) The intermediate cases may be classified into one of the two
categories of collisions (see below).

The last, fourth, parameter is the initial compactness. To express the compactness
of an aggregate we use the geometrical filling factor, defined as

φ = N

(

a0

a

)3

, (6.21)

where a =
√

A/π is the projected surface equivalent radius. The projected surface
area, πa2, is averaged over a large number of different orientations of the particle.
The compactness parameter φ is the inverse of the enlargement factor ψ adopted as
the structural parameter in the study by Ormel et al. (2007). Although the friction
time τf follows easily from the geometrical filling factor, it is not straightforward to
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determine the outer radius aout of an aggregate based on this quantity. The outer
radius is of importance because it determines the collisional cross section (uncor-
rected for missing collisions) between the aggregates. Therefore, a relation between
the radii (aout and a) has to be provided, see § 6.3.4.relation between the radii.

The parameter space of the filling factor φ is chosen such that we sample both
very porous, fractal aggregates that grow due to the Brownian motion (Krause &
Blum 2004; Paszun & Dominik 2006), through intermediate compactness aggregates
that form by particle-cluster aggregation (PCA), up to compact aggregates that may
result from collisional compaction events. It is not trivial to assign an upper limit
for collisional compaction of an aggregate, as unilateral compression is countered
by sideways spreading of monomers. Although the upper limit for collisional com-
pression is that of random packing (66%) here, following Ormel et al. (2008), we
use φ = 33% for the upper limit of (rolling) compression, which is in turn based
on laboratory findings of Blum & Schräpler (2004). The compactness influences the
collisional output in a few different ways. These are described in § 6.3.2, where we
discuss the prescription for a collision outcome.

6.3.2 Collision recipe: an overview

To provide both a qualitative and a quantitative description of a collision, Paszun
& Dominik (2008a) perform a large number of simulations exploring an extensive
parameter space. They formulate a simple, quantitative, collision recipe that deter-
mines the influence of the kinetic energy, compactness, and mass ratio on the out-
come of aggregate-aggregate collisions. The outcomes of a collision are averaged
over the impact parameter b. In this case the contribution from off-center impacts
is dominant. The fragment size distribution consists in such a case of two main
components: large fragments are produced at large impact parameter collisions and
small fragments form mostly in central impacts. An offset hit leads to a very lim-
ited interaction that may result in an outcome very similar to the initial setup (two
large fragments of weakly changed structure). Moreover, collisions at large b have
a higher probability to miss than porous aggregates. Central impacts, on the other
hand, are less likely to miss and lead to a better distribution of energy in aggregates.
Therefore, collisions at energies above the fragmentation threshold produce many
small particles.

For an impact energy above the restructuring energy threshold, a different impact
parameter results in a different outcome. In head-on impacts monomers are pushed
into the center of an aggregate, filling the pores and compressing the aggregate. On
the other hand, in offset collisions, the overlap of interacting aggregates is smaller,
and the amount of compression is limited. In this case monomers are pushed further
from the center of an aggregate and an elongated particle may be produced. There-
fore, tensile forces present in off-center impacts lead to stretching, decompressing the
agglomerates.

In this chapter we reformulate the recipe to probe directly the effect of the impact
parameter on the collision evolution of dust aggregates. In this way we explicitly re-
solve the effects of off-center impacts and compare this to the simplified case of head-
on collisions only. Therefore, the recipe becomes four-dimensional and depends on
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the impact energy, initial compactness, the impact parameter, as well as mass-ratio.
The complete presentation of the redesigned recipe is discussed in § 6.3.3.

Given the level of complexity, it is not feasible to provide simple analytical ex-
pressions for the outcome parameters of Table 6.3 as function of the collision param-
eters (E, φ, b, N1/N2). Therefore, like in Paszun & Dominik (2008a), the results are
expressed in a tabular form, where each table provides one of the output quantities
as a function of a normalized collision energy ε and initial filling factor φini. The ex-
ception is the fraction of missed collisions, fmiss, which is given as function of aout/a,
instead of φ. Since the recipe contains a large number of tables we provide them in a
digital form only.2 See App. 6.A for further discussion on the format of the collision
recipe.

In this study the reshaped recipe is applied to the Monte Carlo model devel-
oped by Ormel et al. (2007). This method resolves individual collisions and includes
structural parameters. Therefore, our recipe may be easily implemented to study
both coagulation and compression of aggregates. In addition, our recipe broadens
the range of models, where it can be applied to. The original formulation by Paszun
& Dominik (2008a) was designed for applications to continuous methods. Here, the
method is extended to become applicable to the particle-oriented approach of the
Monte Carlo (MC) method.

6.3.3 Porting the recipe to a Monte Carlo model

An outcome of a collision consists of two essential parts: the mass distribution and
the compactness of aggregates in this mass spectrum. The new implementation of
our recipe provides these two elements of a collision product in a different form than
the original recipe formulated by Paszun & Dominik (2008a). In this study we use
the impact parameter as one of the input quantities. Therefore, as discussed above,
collision outcomes are not averaged over impact parameter. Additionally, the nature
of the Monte Carlo approach requires us to treat discrete quantities. Two compo-
nents characterize the mass distribution of a collision experiments: (i) a power-law
component that describes the small fragments and, (ii) a large fragment component
(one or two fragments). The border line between the two components is at a quarter
of the total mass Ntot. The power-law distribution spans the range from monomer
mass up to the N = 0.25Ntot, while the second component consists of aggregates
larger than 0.25Ntot. In this work, the large fragment component is described by
different parameters than in Paszun & Dominik (2008a), where a Gaussian distribu-
tion was used. In the new recipe we provide a number of large fragments Nf with
a standard deviation Sf. The spread in the number of large fragments is found by
averaging several simulations performed at different orientations for the same set of
parameters.

Table 6.3 presents all quantities describing a collision outcome. The first one is the
fraction of missing collisions, fmiss. This number is a correction factor that needs to
be applied when the collision cross-section is determined using the outer radius of an
aggregate aout. The small fragments are described by two quantities: the exponent of

2These tables will be presented as online material once this chapter is submitted to the journal. In
App. 6.A we provide an example of the structure of these tables.
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OUTPUT QUANTITIES

Symbol Description

fmiss Fraction of collisions that resulted in a miss
Nf Mean number of large fragments
Sf Standard deviation of the Nf

fpwl The fraction of the total mass (N1 + N2) in the small fragments component

q Exponent of the power-law distribution of small fragments
Cφ = φ/φini Relative change of the geometrical filling factor.

Table 6.3: Quantities provided by the Monte Carlo suited recipe.

the power-law distribution q and the normalized mass of this component fpwl. The
normalization of this and other quantities are discussed in § 6.3.5.

To fully describe a collision outcome, the recipe also provides the relative change
in filling factor, Cφ. It describes the compaction or decompaction of aggregates in the
large fragment component. Concerning the small fragments that are produced by
erosive or fragmenting collisions and constitute the power-law component, a com-
mon filling factor can be assigned. The compactness of these particles depends only
on mass and is presented in Fg. 6.2, where fragments produced in many simulations
are plotted. Almost all particles are located along the power-law with the slope of
−0.33. This provides a very easy prescription for the filling factor of small frag-
ments. This dependence indicates a fractal structure (with the fractal dimension of
about Df ≈ 2.0) of aggregates formed in a fragmentation event, since the non-fractal
aggregates have filing factor independent of mass.

As shown by Paszun & Dominik (2008a) after reaching the maximum compaction,
further increase of the impact energy causes more restructuring and results in a flat-
tening of the produced aggregate. Therefore, very fluffy particles can be produced in
collisions of massive aggregates, where the power-law component extends to larger
N. This behavior is also observed in Fg. 6.2, where fluffy, small fragments follow the
power-law relation, while some large, still compact particles are above the dashed
line.

6.3.4 Relation between aout and a

In this study we distinguish two different radii of an aggregate: the outer radius
aout and the projected surface equivalent radius a. The first one is used as a refer-
ence of our impact parameter b. The collision offset is limited by the largest impact
parameter bmax = aout,1 + aout,2. The cross-section equivalent radius a defines our
structural parameter φ (see Eq. (6.21)). We determine the relation between the two
radii (aout and a) empirically. Both aout and a are determined for many aggregates of
various shape and mass. We sample particles with the fractal dimension in the range
of Df = 1 . . . 3 and masses from several to a few thousands monomer masses. These
aggregates were produced using an algorithm developed by Filippov et al. (2000).

Figure 6.3 shows the filling factor determined for different aggregates versus the
ratio of the outer radius over the cross-section equivalent radius. The mass depen-
dence, as determined in § 6.3.3, is shown by plotting φ N0.33. Interestingly, the data
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Fg. 6.2: The geometrical filing
factor as a function of fragment
mass. Many simulations with
different sets of parameters
are overplotted. The dashed
line indicates the least square
method fit of the power-law to
the small mass fragments.

for all aggregates are very well confined along a single curve. At small ratio of aout/a
the curve decreases very steeply with increasing aout/a. This corresponds to compact
particles for which aout/a does not depend much on filling factor. The line, however,
breaks at about aout/a ≈ 1.2 and turns in to a power-law with a slope of −0.3. This
shallow relation represents fluffy aggregates that show a large discrepancy between
the projected surface equivalent radius and the outer radius.

In order to provide a simple relation between the two radii, two power-law func-
tions are fitted to the two regimes: compact particles below aout/a = 1.2 and fluffy
aggregates above that limit. These two functions are given by

φcompact =
( aout

a

)(0.75−4.21 log N)
(6.22a)

φfluffy = 1.21
( aout

a

)−0.3
N−0.33. (6.22b)

To further verify these relations we use particles produced in several simulations
performed by Paszun & Dominik (2008a). These aggregates are indicated in Fg. 6.3
by black squares. They show a very similar relation to the one obtained in Eq. (6.22).
Points that are slightly shifted above the fitted lines correspond to aggregates that are
partly compressed (they did not reach the maximum compaction). Their compact
cores are still surrounded by a fluffy exterior that causes a small increase of the ratio
of the outer radius over the projected surface equivalent radius aout/a. This behavior,
however, occurs at a relatively small value of aout/a < 2. At a larger size ratio the
filling factor falls back onto the power-law given in Eq. (6.22b).
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Fg. 6.3: The geometrical filling
factor dependence on the ratio
of outer to geometrical radii.
In this figure we plot φN0.33 to
scale the data for aggregates of
different mass.

6.3.5 Parameter space and normalizations

We list the five key parameters that shape the outcome of aggregate collisions:

1. the collision energy, E;

2. the impact parameter, b;

3. the structure of aggregates, φ;

4. the mass ratio, N1/N2 (local or global influence);

5. monomer properties, γ, E .

The influence of the material properties and monomer size can be eliminated by a
proper scaling of the energy to the rolling and breaking energies corresponding to
the material properties. Thus, we normalize to Eroll where it concerns the change
in the filling factor, i.e., the Cφ parameter reflecting restructuring, and to Ebr for the
other parameters of Table 6.3 that describe the fragmentation behavior.

Another parameter that affects collisions is the mass ratio. This influences mostly
the collision outcome in terms of compactness. Impacts of similar size aggregates
show compression for small impact parameters (b ≈ 0) and decompaction for large
offsets (b ∼ 1). On the other hand, impact of a smaller particle onto a larger target
results in a similar outcome regardless of the impact parameter. This discrepancy
is dealt with by providing two separate sub-recipes: the local and the global recipe.
Collisions of similar mass aggregates result in changes throughout both particles. We
refer to this behavior as the global recipe. When a mass ratio is smaller than 0.1 the
changes become more localized. In this case the energy is concentrated in the region
local to the impact area, which may, e.g., result in cratering. This confined behavior is
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provided in the local recipe. The energy in the global recipe is normalized to the total
number of monomers, Ntot, which represents the extended influence of the collision.
However, in the local recipe the energy scales by the reduced number of monomers
Nµ, which is basically the number of monomers of the smaller collision partner. The
dimensionless energy parameter is then defined as

ε =
E

NeffEcrit
, (6.23)

where Ecrit and Neff depend on the context: The energy Ecrit can be either one of Ebr

or Eroll, whereas Neff is one of Ntot or Nµ. The distinction of the two sub-recipes is
presented in § 6.3.9.

The remaining three quantities (the normalized energy ε, the impact parameter
b, and the filling factor φ) form the 3D space of input parameters of the recipe. Their
influence on the collision outcome is described in § 6.3.7 and 6.3.8, where we first
discuss quantities defining the result of an impact. However, before we present the
effect of different parameters on a collision outcome in both the local and the global
recipes, we discuss impacts in the hit-and-stick energy regime.

6.3.6 Hit and stick

At very low energies (E ≤ 5Eroll) two aggregates will stick where they meet, without
affecting the internal structure of the particles. This is the ‘hit-and-stick’ regime in
which the collisional growth can often be described by fractal laws. Two important
limits are cluster-cluster coagulation (CCA) and particle-cluster coagulation (PCA). In
the former, two particles of equal size meet, which often leads to very fluffy struc-
tures, whereas PCA describes the process in which the projectile particles are small
with respect to the target. The filling factor then saturates to a constant value. For
example, in the case of monomers, the filling factor will reach the PCA limit of 15%
(Kozasa et al. 1992).

In general particles do not merely collide with either similar-size particles or
monomers. Every size-ratio is possible and leads to a different change in filling fac-
tor. Ormel et al. (2007) provide an analytical expression, based upon fits to collision
experiments of Ossenkopf (1993), that give the increase in void space as function of
the geometrical volume of the collision partners. Here, the geometrical volume V is
the volume that corresponds to the geometrical radius, a. Although the expressions
of Ormel et al. (2007) are easily convertible into filling factor, we have used additional
numerical collision experiments to further constrain these analytical fits. These ex-
periments involved several ‘PCA-bombardments’ (repeated collisions by monomers)
of several aggregates. Using these data, the adopted expressions in the ‘hit-and-stick’
regimes are now, in terms of the geometrical volumes (V1 > V2) of the particles

Vvoid

V0
= max

[

(V1 + V2)

(

(

1 +
V2

V1

)3δ/2−1

− 1

)

,
N2

0.087φ2
exp

[

−

(

15V2

V1

)0.25
]]

.

(6.24)
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The first term converges to CCA in the limit of V2 = V1, and is the same as in Ormel
et al. (2007). Here, δ is an exponent that reflects the fractal growth in this limit, which,
following Ossenkopf (1993), we put at δ = 0.95. The second expression converges to
PCA in the limit of V2 ≪ V1. The rationale of providing a second expression is that in
the case of V2 ≪ V1 (PCA) the first expression goes to zero very quickly (no voids are
added), which is clearly inappropriate as PCA must result in a filling factor of 15%.
From the results of our new collision experiments we have altered the dependence of
the PCA-part on the volume ratio (V2/V1) by inclusion of the exponent of 0.25, which,
compared to Ormel et al. (2007), smooths out the fall-off with increasing mass ratio.

In fitting the numerical values in the PCA-part we note, however, that not all nu-
merical experiments could be fitted equally well. In fact, we had to compromise:
some experiments were better fit by a more ‘smoothed’ PCA expression, while oth-
ers were not. It is probable that for a complete description more parameters are
required, e.g., the elongation of the aggregates or their fractal dimension. Here, we
have adopted approximate fits that follow the qualitative picture in both the CCA

(V1 = V2) and the PCA (V2 ≪ V1) limit. We note, finally, that ‘hit-and-stick’ collisions
are more prevalent in dense environments like protoplanetary disks, rather than in
molecular clouds. In our case, therefore, the hit-and-stick regime is only relevant in
the initial stages of coagulation at densities of n ≥ 105 cm−3.

6.3.7 Local recipe

In the local recipe the scaling of the energy parameter ε depends on the quantity it
is applied to. When it concerns erosion, it scales with Nµ, the reduced number of
monomers of the aggregates, which renders the collision outcome insensitive to the
size of the larger aggregate. In the case of restructuring, however, the outcome of a
collision depends very much on the size of the large particle. The compaction may
be local and moderate, but the affected quantity— the filling factor— describes the
particle globally. Thus, Cφ is normalized to the total number of aggregates, whereas
the other quantities that describe the fragmentation process are normalized to Nµ.

In the local recipe the number of large fragments rarely increases above unity (the
exception are ‘lucky projectiles’ that destroy the central contacts of fluffy aggregates,
causing the two sides of the aggregate to become disconnected). This deep penetra-
tion of a particle may also result in more severe damage. Fragments produced in a
cratering event and on their way out of the eroded aggregate may result in secondary
impacts causing stronger erosion. This process is the main cause of fragmentation
of large targets, since the energy transfer into the target is not efficient and a large
fraction of the kinetic energy is carried away by the ejecta.

Figure 6.4a shows how much of the mass is ejected during collisions at different
energies. This mass may exceed the mass of the small projectile by even two orders
of magnitude. The collision energy is not transported deep into the target but rather
used at the surface to break contacts between monomers. Thus, collisions between
particles of different mass result in erosion if sufficient energy is available (a few
times NµEbr).

The local recipe describes cratering that does not fully shatter the target. Erosion
events generate a similar distribution, where the slope oscillates between q = −1.3
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Fg. 6.4: Quantities provided by the local recipe. (a) The mass of small fragments, power-
law component, normalized to the reduced mass of the colliding aggregates. (b) The relative
change in the geometrical filling factor Cφ.

and q = −2.0. This is comparable to the slopes obtained for erosive collisions of
equal mass projectiles in the global recipe (see § 6.3.8).

Since the influence of the impact is local, the degree of compression is relatively
small. However, increasing collision energy results in an increasing degree of com-
pression. The very fluffy and elongated aggregates may break in half causing an
artificial increase of the filling factor. This can be observed in Fg. 6.4b for aggregates
with φini = 0.07, where the change in filling factor shows a strong variation for ener-
gies above E = 10−2 N Eroll.

6.3.8 Global recipe

The two key quantities that follow from the recipe are the mass distribution (small
and large fragment component) and the change in filling factor of the large fragment
component. Figures 6.5a and 6.5b show the number of the largest particles that re-
main after a collision. The left panel (Fg. 6.5a) shows the result for central impacts of
particles of different initial filling factor and at different collision energies. The right
panel (Fg. 6.5b) shows the result for collisions at an impact parameter of b = 0.75.

Central impacts at low energy produce one large fragment. An increase of the
impact energy results in erosion, where a few small fragments are removed from
the surface. In the limit of very high energies (E > 5NEbr), the interaction leads
to catastrophic disruption. Offset collisions, on the other hand, produce two large
fragments at high energy collisions. At large impact parameter aggregates interact
with their outer parts. This can lead to the formation of only a few contacts that can
be easily broken at high impact energies.

The mass distribution of the collision products depends on both energy and im-
pact parameter. The higher the energy, the smaller the two fragments are. An in-
crease of the impact parameter, however, results in a weaker interaction and an in-
crease of the mass of the fragments. In the limiting case of a grazing collision, two
particles are almost unaffected regardless of the impact energy. Collisions between
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Fg. 6.5: Quantities provided by the global recipe. Left panels correspond to central collisions,
while the right panels correspond to off-center collision at impact parameter b = 0.75. From
top to bottom: Number of large fragments Nf (A, B); mass of the small fragments component,
Mp, normalized to the total mass of the two aggregates Mtot (C, D); relative change in the

geometrical filling factor Cφ = φ/φini (E, F).

compact aggregates colliding at a very high energy and at a very large impact pa-
rameter result in two large fragments, containing in total over 80% of the initial mass.

The number of large fragments Nf is very well defined for central and grazing
collisions. In the first case one large fragment remains, while in an off-center impact
both collision partners survive. Intermediate impact parameters introduce some am-
biguity. Some orientations cause sticking, which leads to one large aggregate, and
others produce two large particles. This is reflected in the standard deviation Sf. If
all orientations lead to the same outcome, the situation is unambiguous and Sf = 0.
However, when the spread in Nf is larger, it defines the probability of a collision to



6.3: Collision model 195

produce one or two fragments.

Figures 6.5c,d show the mass of the power-law component (small fragments).
Central collisions result in an equal distribution of energy among the monomers. A
collision energy of 3NEbr is sufficient to shatter an aggregate catastrophically. In the
case of a fluffy aggregate, the entire particle is destroyed and all fragments belong
to the power-law distribution. The most compact aggregate is, however, able to
survive these energy inputs. In this case over 70% of the mass is in the power-law
component, whereas the rest is in a large fragment. However, the average number
of large fragments is below unity and in some cases only the power-law component
remains.

An increase of the impact parameter makes the distribution of energy over the
aggregate less efficient. This results in a higher threshold for catastrophic destruc-
tion: more energy must be provided to completely shatter aggregates. Figure 6.5c,d
show that at the energy sufficient to fully shatter compact aggregates at central im-
pact, only 25% of the mass is shattered in an offset collision at impact parameter
b = 0.75. Fluffy aggregates ‘feel’ the effect of an increased impact parameter even
more, because in this case, the redistribution of the kinetic energy is even weaker.
For example, very fluffy aggregates of filling factor φ = 0.122 colliding at an impact
parameter of b = 0.75 produce small fragments which add up to only about 6% of
the total mass. The rest of the mass is locked into 2 large fragments.

The degree of damage can also be assessed through the slope of the power-law
distribution of small fragments. The steeper the slope, the stronger the damage.
Heavy fragmentation produces many small fragments and results in a steepening of
the power-law. Although destruction is very strong in the case of a central impact
(the slope reaches values of q = −3.7 at energy of>20NEbr), it weakens considerably
for offset collisions (q > −2.0).

At low energies, the amount of aggregate restructuring, as quantified in the Cφ

parameter Fg. 6.5e,f, is independent of impact parameter. This is simply because
the collision energy is insufficient to cause visible restructuring. Then, the aggregate
volume increases in a hit-and-stick fashion, resulting in a decrease of the filling factor
as compared to the initial state of the colliding aggregates.

With increasing collision energy the degree of restructuring is enhanced, and
therefore compression occurs. Central impacts strongly affect the filling factor φ.
Figure 6.5e shows that the compression is maximal at an impact energy of about
E = NEroll. Those aggregates that are initially compact are difficult to further com-
press. For static compression, the critical filling factor is φ = 0.33 (Blum et al. 2006;
Paszun & Dominik 2008b). Any further restructuring can only move monomers
sideways, which causes a decrease of the packing density and flattening. Offset col-
lisions, however, lead to much weaker compression as shown in Fg. 6.5f. In this
case the main reason is that forces acting on monomers in the impacting particles
are more tensile, contrary to the compressive forces present in the central collisions.
Large offset impacts at velocities above the sticking velocity of about 1 m s−1 (Poppe
et al. 2000) result in two large fragments with the unaffected filling factor (Cφ = 1).
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Fg. 6.6: Schematic decision
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the hit-and-stick, global, and
local recipes.

6.3.9 The recipe’s manual

The local and global recipes are generally distinguished by the mass ratio of the col-
liding aggregates. However, at very high collision energies the results are always
well described by the global recipe, even if the mass ratios involved are large. In this
case the aggregate is catastrophically disrupted, which, of course, affects the aggre-
gate globally. For example, at a mass ratio of N2/N1 = 0.01 the velocity required to
shatter the target is a 10 times higher than for equal mass aggregates (cf. Eq. (6.19)).
At low energies the hit-and-stick recipe will always apply. Figure 6.6 presents the
adopted algorithm that provides the distinction between the recipes.

When two aggregates collide at a given impact parameter b and energy E, we first
check whether the impact is in the hit-and-stick regime or that energies are above the
restructuring limit: E = 5Eroll. If E < 5Eroll no restructuring takes place and the hit-
and-stick analytical description discussed above follows. Otherwise, we perform
another test. The global influence of the collision occurs if one of two conditions is
satisfied:

1. the masses of colliding particles must not differ by more than a factor of 10;

2. the energy must be sufficient to cause global changes to both interacting aggre-
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gates.

This latter criterion means that if particles are very different by mass, they will still
result in a global change to the properties of the aggregates if the energy is suffi-
cient to break the entire target aggregate. Otherwise, the effect is local and cratering
occurs. Equal mass projectiles, however, always affect aggregates globally.

6.4 The Monte Carlo program

In the previous section we have seen that four parameters— the collisional energy E,
the filling factor φ, the impact parameter b, and the mass ratio in terms of the local
and global recipe — determine the outcome of a collision between two aggregates.
As the collisional energy depends on mass and the impact parameter is random, we
discern two (independent) particle properties: mass and filling factor. From these
two quantities all other particle properties are derived. For example, the collisional
energy E between two particles depends on the particle masses and the particle’s
friction times through the relative velocities (see § 6.2), which, in turn, depend on
the particle filling factors and masses.

Characterizing particles by only two properties does not fully define their inter-
nal structure. For example, we assume that aggregates are spherically symmetric,
even though numerical experiments show a distinct elongation (Paszun & Dominik
2006). Still, the collision model contains a significant level of sophistication. The
modeling of collisions can be divided in three steps. First, the particle properties
(m, φ) and the collision properties (∆v) are turned into a collision ‘grid point’ given
by ε, φ and b. Then, the outcome of the collision is specified by 6 collision quantities
(Table 6.3). Finally, these quantities specify the change to the initial particle proper-
ties (m, φ) and also describe the properties of the collision fragments.

An important goal of our collision recipe is to make it applicable to a wide range
in mass: e.g., it is intended to be applicable to the scales at which the collisional
experiments were performed (∼103 monomers) but also to particles of much larger
size. This is the rationale behind the scaling of the collision energy to the rolling or
the breaking energy, and the distinction between the global and local recipes. We are,
therefore, fully equipped to compute the full collisional evolution, even if it takes us
well beyond the domain of the numerical experiments, i.e., N ≫ 103. However, we
acknowledge that as a consequence of this extrapolation we may not account for
physical processes that show up at a different scale; e.g., it may well be the case that
particles that have reached a macroscopic proportion will bounce, rather than stick
(Langkowski et al. 2008). We will return to these issues in § 6.6.

The formulation of the collision recipe in terms of the 6 output quantities enables
a Monte Carlo (MC) oriented approach to the calculation of the collisional evolution.
The advantage of a MC approach is that collisions are modeled individually and
therefore have a direct correspondence to the collision model. Furthermore, struc-
tural parameters (like φ) can be easily included and the collisional outcome can be
quantified in detail. Indeed, the outcomes of the collision experiments are quantified
by (a change in) 6 critical parameters (see previous section), with the MC program
merely sampling the appropriate values (or an interpolation between the appropri-
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ate values; see below). We emphasize that our MC model does not represent indi-
vidual aggregates as in Kempf et al. (1999) but that the particle’s structure is merely
characterized by two values: the mass of the aggregate or the number of grains, N,
and the filling factor φ.

In setting up the MC model we have followed previous work of Ormel et al.
(2007, 2008). Furthermore, we implement the new grouping method outlined by
Ormel & Spaans (2008). In this method the 1-1 correspondence between a simula-
tion particle and a physical particle is dropped; instead, the simulated particles are
represented by groups of identical physical particles. Ormel & Spaans (2008) have
shown that the method is very well suited to simulate a large dynamic range, which,
in the light of the anticipated fragmentation, is exactly what is required. The group’s
mass is determined by the peak of the m2 f (m) mass distribution — denoted mp —
and particles of smaller mass ‘travel’ together in groups of total mass mp. Grouping
entails that a large particle can collide with many small particles simultaneously— a
major but necessary approximation of the collision process. This happens when the
mass-ratio is less than 1% ( fǫ = 10−2).

We now continue with an overview of one cycle in the Monte Carlo program, em-
phasizing in particular the role of the collision recipe and its implementation within
the context of the grouping method. Other details concerning the architecture of the
MC setup have been discussed in Ormel & Spaans (2008).

6.4.1 One collision cycle

Collision rates

The cycle starts with the calculation (or update) of the collision rates between the
groups of the simulation. The individual collision rate between two particles i and
j is Cij = Kij/V (units: s−1), where V is the simulation volume and K the collision
kernel. For grouped collisions Cij is larger because many particles are involved in

the collision. The collision kernel K is defined as Kij = σij∆vij with σij = πa2
out

the collisional cross section (uncorrected for missing collisions) and ∆vij the average
root-mean-square relative velocity. Thus, to calculate the collision rates we need
the relative velocities and the relation between the geometrical and the outer radius
(Fg. 6.3).

Determination of collision partners

Random numbers determine which two groups collide and the number of particles
that are involved from the i and j groups, ηi and ηj. Then, each i-particle collides with
ηj/ηi j-particles. The grouping method implicitly assumes that collision rates do not
change significantly during the collision process. For erosion or sticking the proce-
dure is appropriate as we only apply grouping when the mass ratio between the i
(the large particles) and the j particles (the smaller projectiles) is large. However, in
collisions that result in breakage the grouping assumption is potentially problematic,
since the particle properties — and hence the collision rates — then clearly change
during the collisions. Fortunately, breakage is not a frequent occurrence as grouped
collisions are only applicable in the local recipe due to the large mass-ratio’s. Catas-
trophic disruptions (shattering) is problematic for the same reasons, because when
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Fg. 6.7: Illustration of the pick-
ing of the grid points. The
collision takes place at (ε, φ, b):
a point that is generally sur-
rounded by eight grid points
(here corresponding to the
nodes of the cube). Each node
is then assigned a probabil-
ity inversely proportional to
the distance to the grid point.
Thus, the probability that the
energy parameter ε = ε1 is
picked (corresponding to four
of the eight grid nodes) is P1 =
(ε − ε1)/(ε2 − ε1). The proce-
dure is identical for the other
parameter grid points.
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it occurs, there is no ‘large’ aggregate left. However, for energetic reasons we expect
that shattering occurs mainly when two equal-size particles are involved, for which
the global recipe would apply (and no grouping). In the following we continue with
a collision of ηt = ηj/ηi j-particles colliding with a single i-particle.

Interpolation of data cubes

When the collision is in the ‘hit-and-stick’ regime the properties of the new particles
are easily found by adding the masses of the j-particles to the i-particle and calcu-
lating their filling factor using Eq. (6.24). In the following we will outline only the
changes in either the local or global recipe. The collision is then characterized by
three parameters: normalized collision energy ε, filling factor φ and impact parame-
ters b. The energy parameter ε is different for the local and the global recipe and is
normalized with respect to the breaking energy except in the case of the Cφ quantities
where it is normalized to the rolling energy (§ 6.3.5). These three parameters consti-
tute an arbitrary point in the 3D (ε, φ, b)-space, and will in general be ‘surrounded’
by 8 grid points (k) which correspond to the parameters at which results from the
collision experiments are available. We next distribute the ηt collisions over the grid
point in which the weight of a grid point is inversely proportional to the ‘distance’ to
(ε, φ, b) as explained in Fg. 6.7. Taking account of the collisions that result in a miss,
we have

ηt = ηmiss + ∑
k

ηk., ηmiss = ∑
k

ηmiss,k, (6.25)
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where ηmiss,k = [ηtPk fmiss,k] denotes the number of collisions at the grid point re-
sulting in a miss. Here, Pk denotes the weight of the grid point, fmiss the frac-
tion of missed collisions at the grid point and the brackets indicates this number
is rounded to integer values. Similarly, the number of ‘hits’ at a grid point is given
by ηk ≃ ηtPk(1 − fmiss,k). Not all of these grid points have to be occupied (i.e., ηk can
be zero). In the special case without grouping ηt = 1 and only one grid point at most
is occupied.

We continue here to outline the general case of multiple occupied grid points.
First, we consider the mass that is eroded, given by the fpwl,k quantities. The mass

eroded at one grid point per collision is given by Mpwl,k = fpwl,k(mi + mj). Then, the
total mass eroded by the group collision is

Mpwl = ∑
k

Mpwl,kηk. (6.26)

If this is more than mi, then clearly there is no large fragment component.3 Other-
wise, the mass of the large fragment component is Mlarge = mi + (ηt − ηmiss)mj −
Mpwl. Each Mpwl,k quantity is distributed as a power-law with the exponent pro-
vided by the slope qk of the grid point (see below). Concerning the large-fragment
component, there is a probability that it will break, given by the Nf,k and Sf,k quanti-
ties. As argued before, breakage within the context of the grouping algorithm cannot
be consistently modeled. Notwithstanding these concerns, we choose to implement
it in the grouping method. Because its probability is small, we assume it happens at
most only once during the group collision. The probability that it occurs is then

P2 = 1 − ∏
k

(1 − P2,k)
ηk , (6.27)

where P2,k is the probability that breakage occurs at a grid point and follows from
the Sf and Nf quantities. If breakage occurs, the masses Mpwl are removed first and
we divide the remaining mass Mlarge in two.

The last quantity to determine is the change in the filling factor of the large ag-
gregate, denoted previously by the Cφ parameter. Like Eq. (6.27) we multiply the
changes in Cφ at the individual grid nodes,

Cφ = ∏
k

C
ηk
φ,k, (6.28)

and φlarge = Cφ〈φ〉m. This completes the implementation of the collisional outcome
within the framework of the grouping mechanism. That is, we have the masses
and the new φ-values of the large fragment component(s), and have computed the
distribution of the power-law component in terms of mass. Note again that all these
results are per i-particle, and that the multiplicity of the results is ηi.

3Recall that in grouped collisions (ηt > 1) this implies that the grouping method is not fully accurate
as the change in mass is of the order of the mass itself; but the procedure is always fine if ηt = 1.
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Picking of the power-law component masses

The final part of the MC cycle is to pick particles according to the power-law distri-
bution, under the constraints of a total mass Mpow and slope q. (If Mpow = 0 there
is of course no mass to distribute.) This must be done at each gridpoint k, because
the slope qk in general is different at each grid point. The mass Mpow is the mass
that goes into fragmentation at the grid point k, Mpwl,k, multiplied by ηk and ηi (the
collision multiplicity). The general formula for picking the mass of the fragments is

mi =
[

1 + r(m
1+q
rem − 1)

] 1
1+q

, (6.29)

where mrem is the maximum mass of the distribution (this decreases at every step
and should from the definitions above be no more than 25% of the total mass) and r
a random number between 0 and 1. Equation (6.29) is obtained from

r =
∫ m

1
xqdx

/

∫ mrem

1
xqdx . (6.30)

In the MC program the number of distinct fragments that can be produced is limited
to a few per grid point. This is to prevent an influx of a very large number of species
(non-identical particles; in this case, particles of different mass), which would lead to
severe computational problems, filling-up the statevector array (see below). There-
fore, if the same mass mi is picked again it is considered to be the same species, and
the multiplicity of this species is increased by one. After we have obtained a maxi-
mum of ηdis distinct species, we redistribute the mass Mpow over the species. In this
way the fragment distribution is only sampled at a few discrete points.

Merging/Duplication

The final part of the MC program consist of an inventory, and possible adjustment,
of the amount of groups and species (Ns) present in the program. To combine a
sufficiently high resolution with an efficient computation in terms of speed is one
of the virtues of the grouping method. One key parameter, determining the res-
olution of the simulation, is the N∗

s parameter (the target number of species in a
simulation). In order to obtain a sufficient resolution we require that a total mass
of ∼mpN∗

s is present in the simulation. Particles are duplicated to fulfill this crite-
rion, adding mass to the system. To prevent a pileup of species we have adopted the
‘equal mass method’ as described in Ormel & Spaans (2008). However, we found
that due to the fragmentation many species were created at any rate—too many, in
fact (Ns > N∗

s ) which would severely affect the efficiency of the program. There-
fore, if Ns = 2N∗

s we used the ‘merging algorithm,’ in which neighboring species are
combined into one species, averaging over their (structural) parameters. This sig-
nificantly improved the efficiency (i.e., speed) of the simulation, although the many
fragments created by the collisions (all contributing to a higher Ns) can be regarded
as a redundancy, because it requires a lot of subsequent regrouping. The alternative
would be to produce only 1 new species per collision event (Zsom & Dullemond
2008); here, we prefer to stick with a more detailed representation of each collision
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MODEL RUNS

id Density Type Grain size Figure reference
n [cm−3] a0 [µm]

(1) (2) (3) (4) (5)

1 103 ice 0.1

2 104 silicates 0.1 Fg. 6.13

3 104 ice 0.1 Fg. 6.13
4 105 silicates 0.1 Fg. 6.13
5 105 silicates 1
6a 105 ice 0.1 Figs. 6.8, 6.10, 6.9
7 105 ice 1 Fg. 6.14
8 105 ice 0.03 Fg. 6.14

9 105 ice, compactb 0.1 Fg. 6.11
10 105 ice, head-onc 0.1 Figs. 6.10, 6.11
11 106 silicates 0.1 Fg. 6.13
12 106 ice 0.1 Fg. 6.13
13 107 ice 0.1

Table 6.4: Overview of the model runs. (1) Model number. (2) Number density of the gas.
(3) Collision type, describing material parameters and collision setup. Here ‘ice’ refers to ice-
coated silicates of bulk density that is the same to that of silicates, ρ0 = 2.65 g cm−3, and
material parameters γ = 370 erg cm−2 and E⋆ = 3.7 × 1010 dyn cm−2. For bare silicates,
γ = 25 erg cm−2 and E⋆ = 2.8 × 1011. (4) Monomer radius. (5) Figure reference. Notes: athe
standard model; bfilling factor of particles restricted to a minimum of 33%; ccentral impact
collisions only (b = 0).

event by creating many particles, but we acknowledge that this amount of detail is
to some extent lost by the subsequent merging.

6.5 Results

All requirements to calculate the collisional evolution of dust grains are now in place.
In § 6.4 we have discussed how the collision model of § 6.3 is treated in the context of
a MC model. We have calculated a large set of models varying the relevant param-
eters: the density, grain size and material properties. We investigated grains con-
sisting of silicates, and silicates with ice mantles. These properties of the simulation
runs are summarized in Table 6.4. Only static models are considered, characterized
by a constant density. To obtain a measure of the influence of the density on the
coagulation process — timescales and amount of growth — a large range in density
is considered. The coagulation is followed for 107 yr in most of the models, unless
a steady state has clearly appeared before this time. Other parameters that affect
the coagulation process but which are fixed here i.e., T = 10 K, µ = 2.34, etc. are
discussed in § 6.2.

We continue in § 6.5.1 with the analysis of the standard model (n = 105 cm−3,
a0 = 0.1 µm, ice-coated silicates). In § 6.5.2, the results of our parameter study are
presented.
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Fg. 6.8: Mass distribution of
the standard model (n =
105 cm−3, a0 = 10−5 cm,
ice-coated silicates) at several
times during its collisional
evolution, until t = 5 ×
107 yr. The distribution is
plotted at times of 10i yr (solid
curves, except for the 106 yr
curve, which is plotted with
a dashed curve) and 3 × 10i yr
(all dotted curves), starting at
t = 3 × 104 yr. The grey
shading denotes the spread in
10 runs. Mass is given in
units of monomers. The fi-
nal curve (thick dashed curve)
corresponds to 5 × 107 yr and
overlaps the 3 × 107 yr curve
almost everywhere, indicat-
ing that steady-state has been
reached.
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6.5.1 The standard model

Figure 6.8 shows the progression of the collisional evolution of ice-coated silicates
at a density of n = 105 cm−3 (the standard model). Each curve shows the average
of 10 simulations, where the grey shading denotes the 1 σ spread in the simula-
tions. At t = 0 the distribution starts out monodisperse at size N = 1. Here, N
denotes the number of monomers in an aggregate and is a dimensionless measure
of the mass. The distribution function f (N) gives the number of aggregates per
unit volume such that f (N)dN is the number density of particles in a mass inter-
val [N, N + dN]. Thus, at t = 0 the initial distribution has a number density of
f (0, t = 0) = nµmH/Rgdm0 = 3.5 × 10−7 cm−3 in the case of n = 105 cm−3 and

a0 = 0.1 µm. On the y-axis N2 f (N) is plotted at several distinct times during the col-
lisional evolution, which shows the mass of the distribution in a logarithmic interval.
The mass where N2 f (N) peaks in Fg. 6.8 is denoted the mass peak: it corresponds
to the particles in which most of the mass is contained. The peak of the distribution
curves stays on roughly the same level during its evolution, reflecting conservation
of mass density.

After t = 105 yr (first solid line) a second mass peak has appeared at N = 10
that separates itself from the initial distribution. The peak at N = 1 is a remnant
of the compact (φ = 1) size and smaller collisional cross-section of monomers com-
pared with dimers, trimers, etc.— not by fragmentation. Furthermore, the high col-
lisional cross section of, e.g., dimers is somewhat overestimated, being the conse-
quence of the adopted power-law fit between the geometrical and collisional cross
section (Fg. 6.3). These effects are modest and do not affect the result of the simu-
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lation. Meanwhile, the porosity of the aggregates steadily increases, initially by hit-
and-stick collisions but after ∼105 yr mostly through low-energy collisions between
equal-size particles (global recipe) that do not visible compress the aggregate. In
Fg. 6.9 the porosity distribution is shown at several times during the collisional evo-
lution. Initially, due to low-energy collisions the filling factor decreases as a power-
law with exponent ≃0.3, φ ≃ N−0.3. This trend ends after N ∼ 104, at which col-
lisions have become sufficiently energetic for compaction to halt the fractal growth.
The filling factor then flattens out and increases only slowly. At t = 3 × 106 yr the
N ∼ 107 particles are still quite porous.

After t = 3 × 106 yr collisions have become sufficiently energetic for particles to
start fragmenting, significantly changing the appearance of the distribution. Slowly,
particles at low mass are replenished and growth decelerates. When inquiring the
statistics underlying the fragmenting collisions, we find that collisions that result in
fragmentation are mostly of a (very) modest erosive nature, in which only a few per-
cent of the mass of the large aggregate is removed. Therefore, when erosion first
appears, growth is not immediately halted, but it is effective in replenishing the par-
ticles at low-N. With time, however, the stationary point is unquestionably reached
as collisions will eventually enter a regime in which there is no net growth. The
collisional evolution does never proceed to a stage in which shattering collisions
dominate the fragmentation.

The collision experiment is continued beyond 107 yr, until the point where a
steady-state has been reached. At 107 yr the largest particles have reached the upper
limit of 33% for the filling factor. The compaction increases the collision velocities
between the particles and therefore enhances the fragmentation. At 3 × 107 yr the
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Fg. 6.10: (black curves) The
temporal evolution of the
mean size 〈a〉 (dashed curve),
the mass-weighted size 〈a〉m

(dotted curve) and the mass-
weighted filling factor, 〈φ〉m

(solid curve) of the distribution
for the standard model. (dark
grey curves) Compact model,
in which the filling factor stays
above 33%. (light grey curves)
The standard model restricted
to head-on collisions only.
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distribution curve has flattened-out significantly. The final curve (t = 5 × 107 yr)
mostly overlaps the 3 × 107 curve (both in Fgs. 6.8 and 6.9) and therefore indicates
that steady-state has been reached. At this stage most of the mass resides in ∼100 µm
grains. However, small particles, due to the fragmentation, are again dominant by
number.

The transition towards a flat mass spectrum is consistent with a scenario in which
mass is injected at N = 1, and then ‘flows’ to large-N at which it is fragmented, or,
in this case, eroded. Indeed, the erosive nature of fragmenting collisions produces
mostly low-N particles. The change in the shape of the mass function with time
also provides a clue why the curves in Fg. 6.9 do not overlap in the intermediate-
N region. At times before 107 yr, the point where the curves terminate correspond
to the most massive particles in the distribution. These are quite rare and therefore
preferentially collide with particles of lower mass, which suppresses the collisional
energies due to the mass-ratios. When the distribution has flattened out, however,
equal-mass collisions are more important and the higher energies involved cause
compaction to occur at lower N.

Compact and head-on coagulation

To further understand the influence of the porosity on the collisional evolution we
plot in Fg. 6.10 the progression of a few key quantities as function of time: the mean
size 〈a〉, the mass-average size 〈a〉m, and the mass-average filling factor 〈φ〉m of the
distribution. Here, mass-average quantities are obtained by weighing the particles
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Fg. 6.11: Plots that test the influence of the collision recipe on the evolution of the size distri-
bution for the standard model where ice-coated silicates are treated. (a) Compact coagulation,
in which the filling factor is restricted to a lower limit of 33%. (b) The standard model, shown
for comparison. (c) Head-on collisions only, where the impact parameter is fixed at b = 0 for
every collision. The evolution extends until t = 107 yr.

of the MC program by mass; e.g., the mass-weighted size is defined as

〈a〉m =
∑i miai

∑i mi
. (6.31)

The weighing by mass has the effect that only the massive particles contribute —
provided these particles dominate the mass peak, which is mostly the case when
the distribution is evolved. On the other hand, in a regular average all particles
contribute equally, meaning that this quantity is particularly affected by the particles
that dominate the number distribution. Thus, as particles start out monodisperse,
〈a〉m = 〈a〉. However, over time 〈a〉m starts to move away from the mean size of
the distribution, meaning that most of the mass becomes locked up in large particles
but that the small particles still dominate the number distribution. This picture is
consistent with the distribution plots in Fg. 6.8.

How important is the adopted collision recipe in shaping the distribution? To
assess this question we additionally ran simulations in which the collision recipe
is varied with respect to the standard model. The distribution functions of these
runs are presented in Fg. 6.11, whereas Fg. 6.10 also shows the computed statistical
quantities (until t = 107 yr). In the case of compact coagulation the filling factor of
the particles was restricted to a minimum of 33% (small particles like monomers can
still have higher filling factors). Clearly, the results show that the initial stages of the
growth is much faster for porous aggregates (cf. Fg. 6.11a and Fg. 6.11b). This can be
understood by considering the dependence on filling factor of the friction time and
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the cross-section

τf ∝ N1/3φ2/3; (6.32a)

A ∝ N2/3φ−2/3, (6.32b)

where we substituted for simplicity the geometrical cross section A for the collisional
cross-section σij. Because velocities depend on the square-root of the friction time,

the collision rate, K = σij∆v, has a −1/3 dependence on filling factor, K ∝ N5/6φ−1/3.
Therefore, the collision rate is increased if filling factors decrease. Porous aggrega-
tion, then, shortens the growth timescale.

Figure 6.11c presents the results of the standard model in which collisions are re-
stricted to take place head-on, an assumption that is frequently employed in collision
studies. That is, except for the missing collision probability ( fmiss), the collision pa-
rameters are obtained exclusively from the b = 0 entry. In this way we can assess the
importance of offset collisions. The temporal evolution of the head-on only model
is also given in Fg. 6.10 by the light-grey curves. It can be seen that the particles are
generally less porous than in the standard model. This follows also from the recipe,
see Fg. 6.5: at intermediate energies (E/NtotEroll ∼ 1) central collisions are much
more effective in compacting than offset collisions. For these reasons, also, growth
in the standard model is somewhat faster during the early stages. However, at later
times the differences between Fg. 6.11b and Fg. 6.11c become relatively minor, indi-
cating that head-on or offset collisions do not result in a very different fragmentation
behavior.

A simple analytical model

Despite the complexity of the recipe, it is instructive to approximate the initial col-
lisional evolution with a simple analytical model. From the preceding discussion
it is clear that the evolution of the filling factor drives the growth, as this quantity
implicitly determines the velocity structure and the collision timescales. Continuing
from Eq. (6.32) we can write

∆v ∝ τ1/2
f ∝ N1/6φ1/3; (6.33a)

tcoll =
(

nd∆vσij

)−1
∝ N1/6φ1/3, (6.33b)

where the monodisperse assumption nd ∝ N−1 has been applied. As explained in

§ 6.2.2 the expression ∆v ∝ τ1/2
f holds only for the square-root part of the turbulence,

but this is fully appropriate for the molecular cloud environment. Then, relative ve-
locities and collision timescales have the same dependence on N and φ. Concerning
φ Fg. 6.9 suggest that the initial evolution of φ can be divided in two regimes, where
the transition point occurs at a mass N1. Initially (N < N1), the filling factor is in the
fractal regime, which can be well approximated by a power-law, φ ≃ N−3/10. We
refer to this regime as the fractal regime, because it includes hit-and-stick collisions
(no restructuring) as well as collisions for which E > 5Eroll but which do not lead to
visible restructuring, i.e., only a small fraction of the grains take part in the restruc-
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turing. For N > N1 the filling factor starts to flatten-out. It is difficult to assign a
trend for φ in the subsequent evolution. Following Fg. 6.9 we may assume that ini-
tially φ stays approximately constant for several orders of magnitude in N, but at
some point it will quickly assume its compact value of 33%. Here, we assume that
the collapse of the porous structure takes place after the point where the first erosive
collisions occurs, at N = N2. A sketch of the adopted porosity structure and the
resulting scaling of velocities and timescales is presented in Fg. 6.12.

From the collision recipe (§ 6.3.2) we can identify the critical energies where vis-
ible compaction and fragmentation occur. In the first case, the global recipe applies
and Fg. 6.5 shows that the transition to compaction (Cφ > 1) corresponds to a nor-
malized energy of εroll = E/NEroll ≃ 0.2. On the other hand the simulations clearly
show that small particles are replenished by fragmentation in the form of erosive
collisions. From Fg. 6.4 we can assign an energy threshold of εbr = E/NµEbr ≃ 1.0.
Working out these expressions and using a typical mass ratio of 3 for the global
recipe (Nµ = N/6), we find that these energy criteria corresponds to relative veloc-

ities of (∆v1)
2 ≃ 1.0Eroll/m0 and (∆v2)

2 ≃ 2.0Ebr/m0, respectively. These energy
thresholds are also indicated in Fg. 6.12.

From these expressions and the initial expressions for the relative velocity and
the collision timescale (Eqs. (6.15) and (6.16)), the turn-over points N1 and N2 can be
calculated. We assume that ∆v0 < ∆v1 such that a fractal growth regime exist. Then,
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the first transition point is reached at a mass

N1 ∼

(

∆v1

∆v0

)15

=

(

1.0Eroll

m0(∆v0)2

)7.5

(6.34)

= 2 × 103
( n

105 cm−3

)3.75
(

γ

370 erg cm−2

)7.5 ( a0

0.1 µm

)−22.5

.

Unfortunately, the high powers make the numeric evaluation rather unstable. In
our simulations we find that N1 ∼ 104. Subsequently, we can write for the second
transition point, the onset of fragmentation, N2,

N2

N1
∼

(

∆v2

∆v1

)6

=

(

2.0
Ebr

Eroll

)3

(6.35)

= 5 × 104

(

γ

370 erg cm−2

)(

a0

0.1 µm

)(

E⋆

3.7 × 1010 dyn cm−2

)−2

,

which corresponds also well to the results from the simulation for which N2 ∼ 108.
In our simulations the first fragmentation involves particles that are still relatively
porous, such that the assumption in Fg. 6.12 about the porosity of the N2-particles
is justified. However, once steady-state has been reached, particles of N2 ∼ 108 will
have a 33% filling factor (see Fg. 6.9).

Equations (6.34) and (6.35) also provide a clue how the collisional evolution will
behave under different conditions. First, Eq. (6.35) shows that the ratio N2/N1 de-
pends on the critical energies only, and therefore that this ratio should stay the
same for the same material properties. The n3.75 dependence on gas density in
Equation (6.34) indicates that the transition points shift ≃1 magnitude in size when
the gas density increases by a factor of 10. Even more critical is the dependence on
grain size, a0. This follows directly from the requirement that for visible restructur-
ing all grains have to participate. A smaller grain size makes this requirement harder
to obtain. Together with the lower initial velocity (lower ∆v0) and the extremely shal-
low way relative velocities evolve in the fractal regime, aggregates are expected to
become very large when a0 < 0.1 µm.

Using a monodisperse model we can also obtain the timescales t1, t2 at which
these transition points are reached. Starting from the expression

dN

dt
=

N

tcoll
, (6.36)

the collision time tcoll is approximated by a power-law assumption, tcoll = tcoll,i(N/Ni)
λ.

Here, tcoll,i is the collision timescale at the point Ni. Specifically, tcoll,0 is the initial
collision timescale (Eq. (6.16)). Straightforward integration then leads to

t − ti

tcoll,i
=

1

λ

[

(

N

Ni

)λ

− 1

]

; (N > Ni). (6.37)
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For i = 0, λ = 1/15 and N1/N0 ∼ 104 it results that the fractal growth stages takes
∼12 initial collision timescales, or ∼ 106 yr (cf. ∼6 × 105 yr in the simulation). In
the second regime λ = 1/6, tcoll,1 ≃ 2tcoll,0 and taking N2/N1 = 104 it follows
that t2 − t1 ∼ 40tcoll,0. Altogether, we may expect that the first fragmentation event
takes place after ∼50 collision timescales. The simulation shows that in the standard
model ∼65 initial collision times are required. Because the collision timescale only
slowly changes, we may expect the calculated timescales present a general picture,
i.e., both compaction and fragmentation take place in a ∼10 − 100tcoll,0 interval.

6.5.2 Parameter study

In Fg. 6.13 the collisional evolution of silicates and ice-coated particles are contrasted
at densities of n = 104, 105 and 106 cm−3. Simulations run until a time of 107 yr, ex-
cept for Fg. 6.13c where steady state has been reached before. The reason to stop the
calculation, then, is that in steady-state the average inter-collision timesteps will be
constant, whereas in the preceding ‘pure-growth’ scenario, the inter-collision time
increases. The linear behavior makes it computationally intensive to further evolve
the distribution for similar timescales. Again, distributions are plotted at fixed log-
arithmic timesteps between t = 3 × 104 yr and t = 107 yr, where the curves corre-
spond to the same times as in Fg. 6.8.

Figure 6.13a-c show the collisional evolution of silicates at various densities. In
most of the models fragmentation is important from the earliest timescales on. This
is of course a consequence of the much lower breaking energy Ebr that silicate mono-
mers have compared with ice-coated silicates. As a result, in terms of size the growth
is very modest: only a factor of 10 in the n = 106 cm−3 model, whereas at even lower
densities most of the mass stays in monomers. For the same reason, silicates reach
steady state much quicker than ice-coated particles, on a timescale of 106 yr.

This situation becomes very different, however, if the silicates are coated with
ice (Fg. 6.13d-f). Much more energetic collisions are then required to break aggre-
gates and aggregates grow large indeed. In all cases the qualitative picture reflects
that of our standard model, discussed in § 6.5.1: porous growth in the initial stages,
followed by compaction and fragmentation in the form of erosion. The evolution
towards steady-state is a rather prolonged process, and is only complete within
t = 107 yr in Fg. 6.13f. Again, steady state is characterized by a rather flat mass spec-
trum. In the low density model of Fg. 6.13d fragmentation does not occur within
107 yr.

In Fg. 6.14 the collisional evolution is contrasted at three different values for the
monomer size: a0 = 300 Å (Fg. 6.14a), 0.1 µm (the standard model, Fg. 6.14b), and
a0 = 1 µm (Fg. 6.14c). To obtain a good comparison, Fg. 6.14 uses physical units
(grams) for the mass of the aggregates, rather than the dimensionless number of
monomers, N. The effects of varying a0 are twofold. First, as we have seen above, the
length of the fractal growth phase (no compaction or fragmentation) is very sensitive
to a0. Second, the monomer size a0 directly reflects the amount of energy dissipation
of the material. In the literature this is often characterized by an impact strength
Q, which is the ratio of the excavated mass over the collision energy. Changing
the monomer size will affect the strength of the monomers, because it determines
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Fg. 6.13: Distribution plots corresponding to the collisional evolution of silicates (left panels)
and ice-coated silicates (right panels) at densities of n = 104, 105 and 106 cm−3 until t = 107 yr.
For the silicates a steady-state between coagulation and fragmentation is quickly established
on timescales of ∼106 yr, whereas ice-coated silicates grow much larger before fragmentation
kicks in. The initial distribution is monodisperse at a0 = 10−5 cm. Note the different x-scaling.
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Fg. 6.14: Effects of a varying monomer size a0 on the evolution of the size distribution for
the ice-coated silicates of the standard model: (a) a0 = 300 µm, (b) a0 = 0.1 µm (the default,
shown for reasons of comparison), and (c) a0 = 1 µm. To facilitate the comparison, physical
units are used (grams) for the mass of aggregates, rather than the dimensionless number of
monomers (N).

the amount of surface area that must be broken. Taking the breaking energy as a
typical threshold for fragmentation, we obtain Q ∼ Ebr/m0 ∼ 107 erg g−1 for a0 =

0.1 µm size aggregates and a scaling with size of Q ∝ a−5/3
0 . Therefore, aggregates

that consist of smaller grains are much more resistant against energetic collisions
than aggregates consisting of larger monomers. Likewise, silicate grains due to their
much lower γ have a correspondingly lower strength. We do point out that in reality
Q must be determined by experiment; however, our definition (Q ∼ Ebr/m0) serves
explanatory purposes.

These effects are best seen in Fg. 6.14c where a tenfold increase in monomer size
compared to the standard model (Fg. 6.14b) results in completely different distri-
bution curves. Due to the much reduced strength of the aggregates, fragmenting
collisions occur already from the outset. The curves, therefore, resemble the silicate
models of Fg. 6.13b, which are also dominated by fragmentation. Figure 6.14a, on
the other hand, shows the effects of reducing the size of the monomers by about a
factor three (a0 = 0.03 µm). Despite starting out at a lower mass, the 300 Å model
quickly catches up with the standard model and overtakes it at t ∼ 106 yr. This re-
sults because significant compaction fails to occur, in line with the results of the sim-
ple analytic model of § 6.5.1; until 4 × 106 yr no significant compaction takes place,
and aggregates become really porous indeed (φ ≃ 4 × 10−4). The consequence is
that fragmentation is also delayed, and has only tentatively started at the close of
the simulations.

Tables 6.5 and 6.6 present the results of the coagulation/fragmentation process
in tabular format. In Table 6.5 the mass-weighted size of the distribution (reflecting
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MASS-WEIGHTED SIZE

〈a〉m [cm]

model 104 yr 105 yr 106 yr 107 yr tff(n) tad(n)
(1) (2) (3) (4) (5) (6) (7)

n = 103, ice 1.0(−5) 1.0(−5) 1.2(−5) 8.3(−5) 1.2(−5) 8.3(−5)
n = 104, silicates 1.0(−5) 1.1(−5) 1.4(−5) 1.4(−5) 1.2(−5) 1.4(−5)
n = 104, ice 1.0(−5) 1.1(−5) 4.6(−5) 8.5(−4) 1.5(−5) 8.5(−4)
n = 105, silicates 1.0(−5) 1.9(−5) 4.0(−5) 4.0(−5) 2.0(−5) 4.0(−5)
n = 105, silicates, a0 = 10−4 1.0(−4) 1.0(−4) 1.0(−4) 1.0(−4) 1.0(−4) 1.0(−4)
n = 105, ice 1.0(−5) 2.2(−5) 6.4(−4) 7.4(−3) 2.3(−5) 3.2(−3)
n = 105, ice, a0 = 10−4 1.0(−4) 1.1(−4) 2.2(−4) 2.3(−4) 1.1(−4) 2.3(−4)
n = 105, ice, a0 = 3 × 10−6 3.2(−6) 1.1(−5) 1.3(−3) 4.3 1.2(−5) 2.4(−1)
n = 105, ice, compact 1.0(−5) 1.5(−5) 1.4(−4) 5.8(−3) 1.6(−5) 1.3(−3)
n = 105, ice, head-on 1.0(−5) 2.2(−5) 3.6(−4) 7.5(−3) 2.4(−5) 3.1(−3)
n = 106, silicates 1.4(−5) 1.2(−4) 1.3(−4) 1.3(−4) 4.4(−5) 1.3(−4)
n = 106, ice 1.4(−5) 2.7(−4) 3.7(−2) 2.0(−2) 4.6(−5) 2.9(−2)
n = 107, ice 7.9(−5) 3.7(−2) 5.2(−2) 6.1(−2) 8.6(−5) 7.8(−1)

Table 6.5: The mass-weighted size of the distribution, 〈a〉m, at several distinct events during
the simulation run. Col. (1) list the models in terms of the density (n) and material properties.
The monomer size (a0) is 0.1 µm, unless otherwise indicated. Cols. (2)–(5) give the mass-
weighted size of the distribution at fixed coagulation times. Likewise, cols. (6)–(7) give value
of 〈a〉m at the free-fall and the ambipolar diffusion timescale of the cloud that corresponds
to the gas density n. These are a function of density and are given in Eq. (6.1) and Eq. (6.4),
respectively. Values a × 10b are denoted a(b).

GEOMETRICAL OPACITY

〈κ〉 [cm2 g−1]

model 104 yr 105 yr 106 yr 107 yr tff(n) tad(n)
(1) (2) (3) (4) (5) (6) (7)

n = 103, ice 2.8(4) 2.8(4) 2.7(4) 1.5(4) 2.7(4) 1.5(4)
n = 104, silicates 2.8(4) 2.8(4) 2.7(4) 2.6(4) 2.7(4) 2.6(4)
n = 104, ice 2.8(4) 2.8(4) 2.0(4) 2.5(3) 2.6(4) 2.5(3)
n = 105, silicates 2.8(4) 2.5(4) 2.0(4) 2.0(4) 2.5(4) 2.0(4)
n = 105, silicates, a0 = 10−4 2.8(3) 2.8(3) 2.8(3) 2.8(3) 2.8(3) 2.8(3)
n = 105, ice 2.8(4) 2.4(4) 5.1(3) 2.3(3) 2.4(4) 8.4(2)
n = 105, ice, a0 = 10−4 2.8(3) 2.8(3) 2.4(3) 2.4(3) 2.8(3) 2.4(3)
n = 105, ice, a0 = 3 × 10−6 9.3(4) 7.1(4) 1.4(4) 4.4(2) 6.9(4) 1.7(3)
n = 105, ice, compact 2.8(4) 2.6(4) 8.0(3) 1.9(3) 2.6(4) 1.0(3)
n = 105, ice, head-on 2.8(4) 2.4(4) 4.9(3) 3.1(3) 2.4(4) 9.3(2)
n = 106, silicates 2.7(4) 1.4(4) 1.4(4) 1.4(4) 2.0(4) 1.4(4)
n = 106, ice 2.7(4) 1.2(4) 6.7(2) 2.2(3) 2.0(4) 1.5(3)
n = 107, ice 1.7(4) 1.8(3) 1.4(3) 1.7(3) 1.6(4) 6.4(2)

Table 6.6: Like Table 6.5 but for the geometrical opacity of the particles. The opacity κ gives
the total surface area per unit (dust) mass.
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the largest particles) are given, and in Table 6.6 the opacity of the distribution is
provided, which reflects the behavior of the small particles. Here, opacity means
geometrical opacity — the amount of surface area per unit mass — which would be
applicable for visible or UV radiation, not to the IR. Its definition is, accordingly,

〈κ〉 =
∑ πa2

i

∑ mi
, (6.38)

where the summation is over all particles in the simulation. These tables show,
for example, that in order to grow chondrule-size particles (∼10−3 g), dust grains
need to be ice-coated and, except for the n = 106 cm−3 model, coagulation times of
∼107 yr are required. Furthermore, concerning the observational properties, Table 6.6
shows that a decrease of the opacity by a factor of 10 at most can be expected, for ice
models at long timescales.

6.6 Assessment of the collision recipe

Our study of coagulation in Molecular Clouds is the first study that applies the
results of detailed numerical simulations — simulations, that have previously suc-
ceeded in explaining laboratory experiments (Paszun & Dominik 2008b) — to the
global evolution of molecular clouds. This includes modeling the impact parameter
and porosity of aggregates as independent variables. Much effort has been invested
in the collision model. Fragmentation, especially, is modeled in detail, being charac-
terized by three parameters and distinguished through the local and global recipe.
In summary, we have presented the first model that couples the collisional growth
of aggregates to the evolution of their internal structure while simultaneously ac-
counting for the diverse collision outcomes that follow from the changing velocities
between the particles as they grow. The collision model, certainly, is state-of-the-art.

The drawback of relying on a sophisticated numerical model is, however, that
their results are in the strictest sense only applicable to the same size regime, i.e.,
for N . 103 particles. For silicates, this limited dynamic range of the numerical
models is appropriate, because coagulation does not proceed beyond N ∼ 103 − 104

(Fg. 6.13). Ice grains, on the other hand, are capable to grow to much larger sizes.
For the recipe to become applicable for these large aggregates extrapolation of the re-
sults of the collision experiments is required. This is a critical point of the recipe in
which we have invested considerable effort. The outcome was that we divided col-
lisions in two groups— local and global— scaled their results to the critical energies
involved (Ebr and Eroll), and the number of particles (either the total number, Ntot, or
the reduced number, Nµ). The idea behind these normalizations is to make the colli-
sion recipe scale-independent: applicable to the low-N regime as well as the large-N
regime.

Extrapolating the collision recipe is nonetheless risky. Because of the large dy-
namic range involved and the embedding of the results in a MC approach, collisions
of many small particles with a large particle are considered simultaneously through
the grouping method. Tiny deviations of the recipe then have the potential to blow
up. Furthermore, the extrapolation assumes that the collision physics at large scale
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is the same to the size of the collision experiments. This, too, is a crucial assumption
in which collisional outcomes like bouncing are a priori not possible because these do
not take place at the low-N part of the simulations.

Below, we present some of the limitations of the collision recipe, and offer sug-
gestions for future improvement. These points concern the physics represented in
the collision recipe (bouncing, irregular grains, and a size distribution of grains) or
its implementation into the coagulation model. Although we acknowledge that by
including a more sophisticated treatment, it is probable that the quantitative out-
come of the collision experiments will change to some extent, we do not expect that
the main results of our model— the initial coagulation phase, followed by the tran-
sition to a flat steady-state distribution— and their dependence on gas density and
material properties will be much affected.

6.6.1 Bouncing

Bouncing of aggregates is observed in laboratory experiments (Blum & Münch 1993;
Blum 2006), whereas it does not occur in our simulations. For silicates, the bouncing
phenomenon occurs at sizes above approximately 100 µm (i.e., N > 109 particles)
and is not fully understood. It is a challenge to investigate in the laboratory the
microphysics of these large particles.

In the case of ice-coated silicate grains, which provide stronger adhesion forces,
our simulations show that growth proceeds to ∼100 µm sizes where bouncing be-
comes potentially important. In this case, therefore, the growth might slow down
earlier than observed in our experiments, especially when the internal structure has
already re-adjusted to a compact state, where energy dissipation is no longer avail-
able. It is presently unclear how these laboratory experiments apply to ice aggregates
and hence whether and to what extent the Monte Carlo results would be affected by
bouncing. We recognize that this may, potentially, present a limitation to growth of
aggregates in molecular clouds, but also emphasize it will not affect the main con-
clusions from this study as in only few models aggregates grow to sizes ≫100 µm.

6.6.2 Size distribution of grains

Our recipe is based on simulations of aggregates that are built of monomers of a
single size. Therefore, we treat a monodisperse distribution. However, ISM-dust
typically consist of a size distributions of small grains and larger grains. The most
frequently used size distribution is the MRN-distribution where the grain distribu-
tion scales as a −7/2 power-law of size, between a lower (ai) and an upper (af size)
(Mathis et al. 1977). Thus, in the MRN-distribution the smallest grains are dominant
by number, whereas the larger grains dominate the mass. For an MRN distribution
we take, ai = 50 Å and af = 0.25 µm. Therefore, the collision outcome may differ
when the colliding particles are made of grains of several sizes.

To illustrate this point, we quantitatively compare the aggregates’ strength for a
monodisperse and an MRN size distribution using the Q prescription. As described
in § 6.5.2 the strength of aggregates is determined by the breaking energy, which

scales proportional to the contact radius as Ebr ∝ a4/3
µ . We will assume that in the

MRN distribution a typical contact area always involves a small grain, so that we



216 Dust coagulation and fragmentation in molecular clouds

can substitute aµ = ai in the Ebr expression. Next, we assume that the number of
contacts is of the order of the number of grains. Then, in order to determine their
strength, we calculate the number of grains per unit of mass,

N

m
∝

∫ a f
ai

n(a)da
∫ a f

ai
n(a)a3da

≃ a−1/2
f a−5/2

i /5, (6.39)

where we have used that af ≫ ai. In the monodisperse case, the equivalent quantity

is (N/m)0 ∝ a−3
0 .

The strength of the MRN-grains can then be estimated by considering the energy
dissipation per unit of mass. Thus, we multiply their typical breaking energy, which
from the reasons given above is determined by the smallest grains ai, by N/m. Com-
paring this to the monodisperse case we obtain

QMRN

Q0
=

a4/3
i (N/m)MRN

(a0/2)4/3(N/m)0
=

1
5 a−1/2

f a−7/6
i

( 1
2 )4/3a−5/3

0

≃ 0.5

(

a f

a0

)−1/2 ( a0

ai

)7/6

. (6.40)

(Note again that this calculation assumes that af ≫ ai; otherwise the numerical pref-
actor would be different.) In our study, where the monomer size was mostly fixed at
a0 = 0.1 µm, this ratio is about 10. Equation (6.40) therefore shows that the size dis-
tribution can increase the strength of an aggregate. In this picture, small grains act as
the ‘glue’ that holds the bigger grains together and efficiently absorbs the incoming
energy, because there is more contact surface. This occurs only if small monomers
dominate by number. Otherwise, the mass dominated by big grains is held by much
weaker contacts provided by small grains.

The results above show that in our standard case of a0 = 0.1 µm the strength of
aggregates is underestimated by a factor of ∼10, compared to the MRN-distribution.
In the case of a0 = 0.03 µm, the aggregate strength would be approximately the
same as an MRN-distribution of grains. Remark, finally, that the above analysis only
concerns the intrinsic strength of aggregates, not the relative velocities. These are
determined by the friction times of the particles and the question therefore is how
a distribution of grains affect the filling factor of aggregates, or, rather, the mass-to-
surface area of aggregates. These will be active areas of future research.

6.6.3 Irregular particles

In this study we approximate grains with spheres, because irregular monomers are
virtually impossible to simulate. Numerical modeling of these randomly shaped
particles is very difficult and computationally expensive. Here, we try to assess the
effect of irregular grains on the strength of aggregates and on the collision outcome.

The strength of an aggregate can be defined as the amount of the contact area
per mass that is held by these inter-grain connections. The contact size in the case
of irregular monomers depends on the radius of curvature local to the place where
the grains touch each other. Therefore, highly irregular grains are held by contacts of
much smaller size, because they are connected by surface asperities. This must result
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in a much weaker strength of aggregates. On the other hand, irregular monomers
may form more than one contact with each other. This results in a higher restructur-
ing threshold, as the energy required to initiate rolling is comparable to the energy
needed to break a contact.

Poppe et al. (2000) determined the critical sticking velocity for monomers of dif-
ferent size, shape, and material properties. They showed that irregular enstatite
grains can stick at much higher velocities than silica spheres, 5 − 25 m s−1 for en-
statite and 1.5 − 2.3 m s−1 for silica. This discrepancy suggests that additional en-
ergy dissipation may occur during a collision. The mechanism that allow sticking at
this high velocity remains unknown.

Since the physical processes that determine the behavior of irregular monomers
are not fully understood, we leave this issue to further study. We remark, however,
that the geometry of the grains does not pose a bottleneck to the validity of the colli-
sion model; instead the consequences of irregular monomers will merely be reflected
in a different energy scaling.

6.6.4 Structure of particles

In the recipe the internal structure of particles is described by only one parameter:
the geometrical filling factor, φ. Thus, in our model the full structure of an aggre-
gate follows from φ. Therefore, the collision model always assumes a spherically
symmetric structure, despite the fact that elongation appears in the output results
of the numerical model, especially in grazing collisions. Moreover, the filling factor
is an averaged quantity and does not determine whether the aggregate structure is
homogeneous or fractal; e.g., the structure of a PCA particle is very different from a
Df = 2 fractal but they can have the same filling factor if N is small. However, these
are mostly second order effects and to use more variables that describe the internal
structure requires a significant increase in the load of the recipe model.

6.6.5 The tabular format

In App. 6.A the tabular format of the recipe is discussed at length. The tabular for-
mat was first presented in the Paszun & Dominik (2008a) study, but here additional
tables were required in order for the recipe to become applicable to the MC program.
The alternative would have been to provide analytic fits that would depend on three
parameters (energy, impact parameter, and porosity). Fits have the advantage that
the behavior of the low and high energy regimes are immediately evident; indeed,
it would become easier to include boundary constraints from an analytical prescrip-
tion. However, providing 3D-analytical fits turned out to be impractical, particularly
because phenomena as restructuring are somewhat erratic in nature. On the other
hand, the advantage of the tabular format is that the results are implemented in the
recipe in a straightforward and unbiased way.

6.7 Discussion

As can be seen from Tables 6.5 and 6.6 coagulation of bare silicates only marginally
affects the collisional evolution. Therefore, we do not expect that coagulation of bare
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silicates in molecular cloud cores will leave significant imprints on either the large
particles or the observational diagnostics. At T ∼ 10 K we do consider ice-coating
of grains the more relevant scenario, however. Freeze-out of H2O-ice on grains pro-
ceeds at thermal motions and is therefore faster than coagulation, provided the dust
particles are well-shielded from UV-photons (Bergin et al. 1995). Then, our results
suggest that grains have the potential to grow significantly, if densities are high and
long coagulation timescales are available (&106 yr). But do these conditions materi-
alize in molecular clouds? We will address these questions and compare our results
to previous studies on dust coagulation in molecular clouds.

Ossenkopf (1993) and Weidenschilling & Ruzmaikina (1994) have pioneered stud-
ies of dust coagulation in molecular clouds. As is the case with this study, these
models contain significant detail. Ossenkopf (1993) includes a structural parameter
(essentially the geometrical filling factor, φ), an MRN size distribution for the ini-
tial distribution of dust particles (covering the range of 50 − 2500 Å), and presents
a model for the change in collisional properties upon collisions for the hit-and-stick
regime. The model of Ossenkopf (1993), however, does not include aggregate re-
structuring and fragmentation and is therefore only applicable to the first stages of
coagulation. Ossenkopf (1993) evolves his models for ∼105 yr, usually at rather high
densities (n & 106 cm−3) for which fragmenting collisions between ice(-coated) par-
ticles are indeed of no concern. The coagulation then proceeds to produce particles
of compact size, ∼0.5 µm. It can be seen from Table 6.5 that the growth in the corre-
sponding model of our study (ice, n = 106) is higher: 1.9 µm. This may be caused by
the somewhat lower turbulent velocities Ossenkopf (1993) adopts and, the fewer big
∼0.1 µm grains the MRN distribution contains compared to our monodisperse mod-
els. At any rate, the study of Ossenkopf (1993) is mainly focused on understanding
the IR dust-opacities during this relatively short timescale (Ossenkopf & Henning
1994).

On the other hand, Weidenschilling & Ruzmaikina (1994) evolve their models for
much longer timescales, until t = 107 yr. Like our study, Weidenschilling & Ruz-
maikina (1994) include fragmentation in the form of erosion and, at high energies,
shattering. Their particles are characterized by a strength of Q ∼ 106 erg g−1, which
are, therefore, somewhat weaker than the particles of our standard model. Although
their work lacks a dynamic model for the porosity evolution, it is assumed that the
initial growth follows a fractal law until 30 µm. At these sizes the filling factor then
becomes less than 1%, lower than in our models.

Weidenschilling & Ruzmaikina (1994) model a Bonnor-Ebert sphere where the
density at the inner region is ten times higher than at the surface. They find that the
coagulation proceeds initially faster at the lower density outer regions than inside
the cloud. This is caused by the assumption that the turbulent pressure stays the
same throughout the cloud, providing higher turbulent motions in the outer regions.
Still, coagulation is significant. Particles grow to &100 µm in their nominal model at
timescales of ∼106 yr, which is comparable to our standard model. More striking is
that the nature of the growth is different: while in our model the mass-peak always
occurs at the high-mass end of the spectrum, in the Weidenschilling & Ruzmaikina
(1994) calculations most of the mass stays in the smallest particles. In this respect,
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our findings qualitatively agree with the coagulation-fragmentation model of Brauer
et al. (2008a) for protoplanetary disks. In contrast, the lack of massive particles in
the Weidenschilling & Ruzmaikina (1994) models may be a result of the diffusion
processes Weidenschilling & Ruzmaikina (1994) include; massive particles produced
at high n mix with less massive particles from the outer regions. Thus, although the
models agree on the amount of growth that is obtained, there is some difference in
detail, which result from the different collisional behavior of aggregates as well as
the adopted cloud model.

In our models we observe that the shape of the initially monodisperse dust size
distribution evolves rapidly, first to a Gaussian-like distribution and eventually to
a flat steady-state distribution. For timescales longer than the coagulation timescale
(Eq. (6.16)) we can expect that this result is independent of the initial conditions, even
if the coagulation starts from a power-law distribution. Essentially, these distribu-
tions are a direct result of the physics of the coagulation: the Gaussian-like distribu-
tion reflects the hit-and-stick nature of the agglomeration process at low velocities
while the flat f (N)N2 distribution at later times results from a balance between frag-
mentation— erosion but not catastrophic destruction— and growth. In contrast, in
interstellar shocks grains acquire much larger relative velocities and grain-grain col-
lisions will then quickly shatter aggregates into their constituent monomers (Jones
et al. 1996) . Hence, the interstellar grain size distribution will be very different in the
dense phases of the interstellar medium than in the diffuse ISM and studies of the
effects of grains on the opacity, ionization state and chemical inventory of molecular
clouds will have to take this into account.

To further assess the impact of grain coagulation we must compare the coagula-
tion timescales with the lifetimes of molecular clouds. In a study of molecular clouds
in the solar neighborhood Hartmann et al. (2001) hint the lifetime of molecular cloud
is short, because of two key observations: (i) most cores do contain young stars,
rather than being starless; and (ii) the age of the young stars that are still embed-
ded in a cloud is 1 − 2 Myr at most. From these two arguments it follows that the
duration of the preceding starless phase is also 1 − 2 Myr. Therefore, the grain pop-
ulation will not leave significant imprints on either (i) the large particles produced,
or (ii) the removal of small particles, if core lifetimes are limited to the free fall time
(Eq. (6.1)). This can be seen from Tables 6.5 and 6.6 where the growth in terms of the
mass-weighted size (〈a〉m, Table 6.5) and the reduction of the geometrical surface (κ,
Table 6.6) is given at the free-fall time of the simulation (col. 6). From Table 6.5 it is
seen that the sizes of the largest particles all stay below 1 µm, except for the models
that started off at monomer sizes of a0 = 1 µm. Similarly, Table 6.6 shows that the
opacities from the tff entry (col. 6) are similar to those of the 104 yr column.

This information is also displayed in Fg. 6.15. In Fg. 6.15a the decrease of the
opacity with respect to the initial opacity is, κ/κ0, is plotted against time, normal-
ized by the initial coagulation timescale, for all a0 = 10−5 cm ice-coated silicate
models. The similarity of the curves for the first ∼10 tcoll,0 is in good agreement
with the simple analytic model presented in § 6.5.1. In the models where small parti-
cles are replenished by fragmentation, κ first obtains a minimum and later levels-off
at κ/κ0 ∼ 0.05. In Fg. 6.15b the coagulation timescale is plotted as function of gas
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Fg. 6.15: Coagulation timescales of the a0 = 0.1 µm ice-coated silicates models at five different
gas densities. (a, curves) The opacity κ normalized to its initial value vs. time in units of the
initial collision time tcoll,0. The decrease in opacity occurs on timescales of ∼10 tcoll,0. In
the simulations that last long enough, however, κ starts to increase again, reflecting the re-
emergence of small grains due to fragmentation. (b, dashed curves) Coagulation timescales
in units of years as function of density. The timescales correspond to the point where the
geometrical opacity, κ, has been reduced by a factor of exp[i] with i = 1 (open circles), i = 2
(filled circles) and i = 3 (squares), respectively. The free-fall timescale (Eq. (6.1)) and ambipolar
diffusion timescale (Eq. (6.4)) are plotted for comparison by solid lines. If no symbol is plotted,
the corresponding ith e-folding reduction timescale has not been reached.

density (dashed lines), where the solid black line shows the free-fall time (Eq. (6.1)).
Open circles denote the time required to reduce the opacity by a factor e; filled cir-
cles by a factor e2 ∼ 7, and black cubes refer to a third e-fold reduction (∼20). At
n = 103 cm−3 the opacity is not reduced by even a single e-folding factor within
107 yr, and no symbols are shown at this density. At the free-fall timescale, no signif-
icant reduction occurs and the dust coagulation will not affect the chemistry in the
dense core.

However, there is still lively debate whether the fast SF picture — or, rather, a
fast timescale for molecular clouds— is generally attainable, as cores may have ad-
ditional support mechanisms. If clouds are magnetically supported, the fast col-
lapse phase is retarded by ambipolar diffusion. Then, star formation takes place on
a much longer timescale, perhaps 107 yr (see Eq. (6.4)), much longer than the free-fall
timescale. Thus, if ions couple to the magnetic field and retard the collapse, growth
can be significant. Table 6.5 shows grains are then able to reached chondrule size
proportions, ∼100 µm, in the densest models. Also, the observational appearance
of such a core will change significantly, as is clear from Fg. 6.15. If clouds exist on
AD-timescales, Table 6.6 and Fg. 6.15 suggest the UV-opacity, which is directly pro-
portional to κ, will be reduced by a factor of ∼10. In this case, studies that relate the
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AV extinction measurements to column densities through the standard dust-to-gas
ratio possibly underestimate the amount of gas that is actually present.

6.8 Conclusions and outlook

We have studied the collisional aggregation of dust in the environments of the molec-
ular cloud (cores). In this study we have particularly focused on the collision model
and the analysis of the collisional growth stages. Much effort was invested to ap-
ply the outcomes of the detailed numerical experiments to a collisional evolution
model. We have treated a general approach, and outcomes of future experiments—
either numerical or laboratory — can be easily included. One important feature of
the collision model is its scaling to the relevant masses and critical energies, which
allows the coagulation model to proceed to much larger sizes than covered by the
original collision experiment. Our method is therefore also applicable to the dust
coagulation and fragmentation stages in protoplanetary disks.

In this study we discussed the observational implications of our model in a very
coarse way, by considering the total amount of geometrical surface, captured in the
κ parameter. We find that its behavior can be largely expressed as function of the
initial collision timescale, tcoll,0. It would be worthwhile to further investigate the
extinction properties of the cloud as function of wavelength, and to quantify the im-
portance of porous grains in it. Recently, Min et al. (2008) have presented a method
to calculate the optical properties of porous aggregates, in which the filling factor is
a key ingredient. In a follow-up study we will use this method in order to e.g., study
the consequences of this study to the 10 µm silicate absorption feature.

We list below the key results that can be concluded from this study:

1. Coagulation can be roughly divided into two phases: a growth stage, where
the N2 f (N) mass spectrum peaks at a well-defined size, and a fragmentation
stage, where the N2 f (N) mass spectrum is relatively flat due to the replenish-
ment of small particles by fragmentation. Fragmentation is primarily caused
by erosive collisions.

2. A large porosity speeds up the coagulation of aggregates in the early phases.
This effect is self-enhancing, because very porous particles couple very well to
the gas, preventing energetic collisions capable of compaction. Grazing colli-
sions are largely responsible for obtaining fluffy aggregates.

3. Silicates dust grains (without ice-coating) are always in the fragmentation regime.
This is caused by their relatively low breaking energy.

4. The enhanced sticking capabilities of ices are conducive for growth. Likewise,
a smaller grain size (or a distribution of grain sizes where small grains domi-
nate the surface contacts) also enhance the growth phase.

5. If cloud lifetimes are restricted to free-fall times, little coagulation can be ex-
pected. However, if additional support mechanism are present and freeze-out
of ice has commenced, dust aggregates of ∼100 µm are produced, also signifi-
cantly changing the UV-opacity of the cloud.
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SMALL FRAGMENT MASS FRACTION

ε φini

0.121938 0.155263 0.189273 0.250536

0.000572118 0.00000 0.00000 0.00000 0.00000
0.0205945 0.00000 0.002500 0.00000 0.00000
0.0572069 0.000833 0.00000 0.00000 0.00000
0.128715 0.092500 0.030417 0.008750 0.0029167
0.228827 0.388750 0.094167 0.030417 0.01500
0.915310 0.957500 0.603333 0.243750 0.115833
3.66124 1.00000 1.00000 1.00000 0.727083
8.23779 1.00000 1.00000 1.00000 1.00000
14.6450 1.00000 1.00000 1.00000 1.00000

Table 6.7: Fraction of mass in the power-law component fpwl at b = 0 in the global recipe.

6.A The collision recipe format

Our collision recipe is provided as a set of 72 tables. They describe six output quan-
tities (see Table 6.3) for six impact parameters b and for both the local and the global
recipes. Since listing all these tables here is impractical, we will provide them in the
digital form as online material once this chapter is submitted to the journal. In this
appendix we present two examples to illustrate the format.

Each table lists one quantity as function of the dimensionless energy parameter ε
and the initial filling factor of aggregates φ. The only exception concerns the fraction
of missed collisions, fmiss. This quantity provides a correction to the collision cross-
section of particles, in our case calculated from the outer radius of an aggregate aout

(cf. § 6.4.1). The filling factor φ is not an appropriate quantity to use here, because it
is ambiguous where it concerns the structure of particles. For example, low φ could
mean either a very fractal structure (and correspondingly high number of missing
collisions) or a porous but homogeneous structure (and low number of missing col-
lisions). Therefore, it is more appropriate to relate the probability of a collision miss
directly to the radii with which the particle is characterized. Thus, fmiss is provided
as a function of the ratio of the outer radius over the projected surface equivalent
radius, aout/a.

Each table is preceded by a header that specifies: the corresponding recipe (key-
word: GLOBAL or LOCAL), the corresponding impact parameter b, and the quantity
listed in the table (keywords are: fmiss, Nf, Sf, fpwl, q, Csig). In the case of
Table 6.7 the header is

# GLOBAL, b=0.0, Q=fpwl

Therefore, Table 6.7 presents the fraction of mass in the power-law component, fpwl,
for the global recipe and for head-on collision.

In each table the first column and the first row specify the normalized energy
parameter ε and the initial filling factor φini (or the ratio of the outer over the geo-
metrical radii aout/a in the case of fmiss), respectively. In this case ε is scaled by the
total number of monomers (the global recipe scaling) and by the breaking energy
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NORMALIZATION FACTORS

quantity Local Global

fmiss Nµ Ebr Ntot Ebr

Nf

...
...

Sf

fpwl

q

Cφ Ntot Eroll Ntot Eroll

Table 6.8: Normalization factor of the dimensionless energy parameter ε for all output quan-
tities in both local and global recipes.

Ebr (erosion/fragmentation scaling). The normalizations for all quantities are listed
in Table 6.8 to avoid any confusion with other tables. The intersection of a row cor-
responding to ε with a column corresponding to φ provides the output quantity for
this set of parameters (εi, φi, b).

Table 6.9 is the second example. It is taken from the local recipe and it presents
the fpwl quantity for the head-on collision. The dimensionless energy parameter ε
has fewer entries in the local recipe than in the global recipe. It is also normalized to
different quantities. In Table 6.9 the energy is scaled by reduced number of mono-
mers Nµ (local recipe scaling) and by the breaking energy Ebr (erosion scaling) as
indicated in Table 6.8. The header in this case is

# LOCAL, b=0.0, Q=fpwl

Note that in the local recipe the filling factors are lower. In this case larger aggre-
gates are used to model collisions of large mass ratio. The fractal structure of these
aggregates result in lower filing factor. Also, the size of these aggregates causes
strong variation of the filling factor. Small difference in arrangement of monomers
may change the filling factor by several percent when a few more monomers are
exposed.

ERODED MASS FROM THE POWER-LAW COMPONENT

ε φini

0.0700907 0.0904748 0.126801 0.160992

0.228847 0.00000 0.00000 0.00000 0.00000
0.915388 1.00100 0.333667 0.00000 0.00000
3.66124 4.00400 46.5465 6.33967 0.667333
14.6450 7.00700 67.0670 35.2018 9.00900
32.9511 7.50750 148.315 58.2248 16.0160
58.5798 9.50950 129.129 62.3957 30.0300

Table 6.9: Normalized mass in the power-law component fpwl at b = 0 in the local recipe.





7
Conclusions and outlook

The goal of this thesis has been to obtain a better understanding on the way dust
coagulates during the first stages of planet formation. This requires to calculate the
collisional evolution of the dust as a function of time. It is therefore natural to focus
on the dust component, and treat the influence of the gas, i.e., the gas-dust coupling,
using analytical expressions. In this thesis the development of a detailed collision
model is emphasized in particular, in which the collisional outcome depends on the
properties of the colliding dust particles. The Monte Carlo method was instrumental
in achieving this goal.

Because this thesis touches many diverse topics, I briefly emphasize a few of
them individually and identify prospects for further work.

7.1 The Monte Carlo model

In chapter 2 we have introduced the Monte Carlo method and applied it to the upper
layers of the protoplanetary disk. This approach was also used in chapter 4 for the
evolution of chondrules in a dusty environment and in chapter 6 for the collisional
evolution of dust in molecular clouds.

In all these cases the MC method merely reflects the particle-oriented approach,
in which the state of the particle is characterized by a few parameters, e.g., the poros-
ity and mass in chapter 2 and chapter 6, and the mass fractions of the chondrule,
compact dust, and porous dust components in chapter 4. This approach is therefore
a middle course between the formalism followed by Kempf et al. (1999), where the
position of each grain within an aggregate is stored, and the usual binning-methods.
It is this compromise that makes our method so easily applicable, and allows us to
connect to the finding of numerical or laboratory collision experiments; that is, the
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output of these experiments can be converted to (a change in) particle properties as
was seen, e.g., in chapter 6.

The bottleneck of MC-methods are the ∼N2 collision rates that must be continu-
ously tracked during the evolution of the system. The consequence is that traditional
MC-methods have difficulty to model broad distributions, where many simulation
particles are required to follow both the low-mass particles (often dominating the
numbers) and the large-mass particles (dominating the mass). Indeed, in chapters
2 and 3 the size distribution remained relatively narrow. However, fragmentation
of dust will change this picture: a large dynamic range is then required. Therefore,
in chapter 5 we have introduced a new method for MC-coagulation, the grouping
method. In the grouping method, the numerous similar particles are considered col-
lectively, like in the binning method. The key difference is that in MC the particles
retain their individual behavior.

The grouping method described in chapter 5 is applicable to systems that expe-
rience runaway growth. An obvious application to extend this work is to apply the
method to the planetesimal accretion stage of planet formation. Because of their
gravitational focusing, planetesimals (km-size bodies and larger) have a collisional
cross-section that scales with the 4/3 power of mass. Thus, this phase is character-
ized by runaway growth, which cannot be modeled accurately by the usual binning
approach (Wetherill 1990). Modeling this phase by a MC-method with its advan-
tages in terms of the additional structural parameters may shed a new light on this
key accumulation phase.

Perhaps the main drawback the MC-approach currently has, is that it is strictly
0-dimensional. The requirement, therefore, is that particles are distributed evenly
throughout the volume, i.e., there cannot be differentiation in position. For example,
in chapter 4 we checked a posteriori whether the local assumption remained justified.
However, there is no fundamental reason against including spatial information to
the MC-particles — as long as their rate of interaction can be expressed in terms of
probabilities. Another, more straightforward, approach is to ’cut’ the system in sev-
eral zones and calculate the collisional evolution separately in each of them. These
are interesting avenues for further study.

7.2 The internal structure of particles

In this thesis MC-models are used as a tool to follow the internal structure of the
particles. The most important structural parameter is probably the parameter that
determines the porosity of particles, referred to as enlargement parameter in chapter 2
and geometrical filling factor in chapter 6. Thus, using this structural parameter the
surface area-to-mass ratio is no longer confined to the −1/3 exponent as in the case
of compact particles, which results in a very different velocity structure.

However, the most important property of the internal structure is that it affects
the outcome of collisions. In this thesis we have related all collisional outcomes —
sticking, bouncing, or fragmentation — to the internal structure of particles. Colli-
sions are the key physical process that drive growth, and an understanding of planet
formation is impossible without understanding individual collisions. Even in the
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models in which the dust layer becomes gravitationally unstable at some point, it is
still important to assess how collisions would affect the starting conditions (can par-
ticles grow to this size?) or the subsequent collapse phase. The theme of this work
has been to connect the (microphysical) properties of dust particles to the outcome of
collisions. In Chapters 2, 4, and 6 we have included results of numerical and labora-
tory findings. To connect the output of these experiments to the collisional evolution
of physical systems will undoubtedly be the topic of many further studies.

7.3 Turbulence

Turbulence is arguably the most important mechanism to drive relative velocities
between particles. Although the high gas densities in protoplanetary disk ensure a
strong coupling (‘strong’ in astrophysical standards), which somewhat suppresses
these velocities (and makes Brownian motion important for very small particles), as
growth continues turbulence takes over. Furthermore, it mixes particles efficiently,
both in the vertical as well as in the radial direction.

In chapter 3 relative velocities between particles in a turbulent velocity field were
derived. It is a result that follows a long history. The framework of this approach—
i.e., the division of turbulent eddies into distinct classes— was already introduced by
Völk et al. (1980), and improved by subsequent works (e.g., Markiewicz et al. 1991;
Cuzzi & Hogan 2003). By extending some of the simplifying assumptions in Cuzzi
& Hogan (2003) the results of the Völk et al. (1980) study could now be put in closed
form, at the level of ∼10% in accuracy.

In future research this work may be expanded to treat an even more general ap-
proach, e.g., by changing the spectrum of the turbulence other than Kolmogorov.
Moreover, it is worthwhile to compare directly the results of this analytic work with
hydrodynamical simulations of, e.g., Carballido et al. (2008), who find a good cor-
respondence. On the other hand, Johansen et al. (2007) find that velocities between
particles at close distance are suppressed compared to the analytical expressions.
Identifying the sources of this discrepancy and understanding the particle-gas inter-
actions is important, in particular for models in which the dust component becomes
gravitationally unstable.

7.4 The meter size barrier

Even were turbulence is unimportant, high particle velocities would still be present
because of the intrinsically distinct nature of gas and dust (e.g., Weidenschilling
1977a). This meter-size barrier — or, rather, the St = 1 barrier — is characterized
by high, ∼ 10 m s−1, relative velocities between dust particles. These relative veloc-
ities seem to be too high for particles to avoid fragmentation, and many works have
subsequently focused on circumventing this barrier, either by producing local pres-
sure gradients in the gas disk (Kretke & Lin 2007; Brauer et al. 2008b) or by studying
the amount of particle concentration before they reach the St = 1 regime (Cuzzi
et al. 2008). However, this thesis may offer some clues to ‘revive’ the idea to cross
the St = 1 barrier by incremental growth. First, the impact of high velocities could
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be remedied by mechanisms that dissipate the collision energy, e.g., the particle’s
porosity. Second, if particles are fluffy, a sudden compaction (and corresponding in-
crease in Stokes number) could help to cross this barrier. In chapter 4 some models
came close to cross the St = 1 barrier, although the chondrule component did not
contribute to the sticking capability and we did not include the collective effects that
could have somewhat reduced particle velocities.

This idea is not new, of course. Cuzzi et al. (1993) have shown that if growth in
the midplane regions is rapid, radial drift is not important. In the models of Weiden-
schilling (1997) growth also proceeded past the m-size barrier, despite the erosive
processes that were included. However, Brauer et al. (2008a) using a “hard” frag-
mentation threshold of 10 m s−1 did not observe growth past St = 1. On the other
hand, taking account of the internal structure, an array of new possibilities in terms
of the collisional outcome becomes available (and the outcome is much harder to
predict a priori). Therefore, it would be worthwhile to simultaneously model the in-
ternal structure, the location in the disk, and the growth of the particles and assess
whether energy dissipation process can help to overcome the m-size barrier.
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Flower, D. R., Pineau Des Forêts, G., & Walmsley, C. M. 2006, Astronomy and Astrophysics, 456, 215
Freitag, M., Rasio, F. A., & Baumgardt, H. 2006, Monthly notices of the Royal Astronomical Society, 368,

121
Gail, H.-P. 2004, Astronomy and Astrophysics, 413, 571
Gammie, C. F. 1996, The Astrophysical Journal, 457, 355
Gammie, C. F. & Johnson, B. M. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 341,

Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth, 145
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, The Astrophysical Journal

Supplements, 151, 35
Gillespie, D. T. 1975, Journal of Atmospheric Sciences, 32, 1977
Glaschke, P. 2006, PhD thesis, PhD Thesis, Combined Faculties for the Natural Sciences and for Mathe-

matics of the University of Heidelberg, Germany. XIV+134 pp. (2006)
Goldreich, P., Lithwick, Y., & Sari, R. 2004a, The Astrophysical Journal, 614, 497
Goldreich, P., Lithwick, Y., & Sari, R. 2004b, Annual Rev. Astron. and Astroph, 42, 549
Goldreich, P. & Ward, W. R. 1973, The Astrophysical Journal, 183, 1051
Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Icarus, 35, 1
Hartmann, L. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 341, Chondrites and the

Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth, 1003
Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, The Astrophysical Journal, 562, 852
Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, The Astrophysical Journal Supplements, 82, 167
Hatzes, A. P., Bridges, F., Lin, D. N. C., & Sachtjen, S. 1991, Icarus, 89, 113
Hawley, J. F. & Balbus, S. A. 1991, The Astrophysical Journal, 376, 223
Hayakawa, H. 1987, Journal of Physics A Mathematical General, 20, L801
Hayashi, C. 1981, Progress of Theoretical Physics Supplement, 70, 35
Heim, L.-O., Blum, J., Preuss, M., & Butt, H.-J. 1999, Physical Review Letters, 83, 3328
Hillenbrand, L. A. 2005, ArXiv Astrophysics e-prints astro-ph/0511083
Hollenbach, D. J., Yorke, H. W., & Johnstone, D. 2000, Protostars and Planets IV, 401
Hood, L. L., Ciesla, F. J., & Weidenschilling, S. J. 2005, in Astronomical Society of the Pacific Conference

Series, Vol. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth,
873

Housen, K. R. & Holsapple, K. A. 1990, Icarus, 84, 226
Hua, X., Wang, J., & Buseck, P. R. 2002, Meteoritics and Planetary Science, 37, 229
Hubbard, A. & Blackman, E. G. 2006, New Astronomy, 12, 246
Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2005, Icarus, 179, 415
Hueso, R. & Guillot, T. 2005, Astronomy and Astrophysics, 442, 703
Huss, G. R., Alexander, C. M. O., Palme, H., Bland, P. A., & Wasson, J. T. 2005, in Astronomical Society of

the Pacific Conference Series, Vol. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D.
Scott, & B. Reipurth, 701

Huss, G. R., Keil, K., & Taylor, G. J. 1981, Geochimica et Cosmochimica Acta, 45, 33
Inaba, S., Tanaka, H., Nakazawa, K., Wetherill, G. W., & Kokubo, E. 2001, Icarus, 149, 235
Inaba, S., Tanaka, H., Ohtsuki, K., & Nakazawa, K. 1999, Earth, Planets, and Space, 51, 205
Jeon, I. 1998, Communications in Mathematical Physics, 194, 541
Johansen, A., Oishi, J. S., Low, M.-M. M., et al. 2007, Nature, 448, 1022
Johnson, K. L. 1987, Contact Mechanics (Contact Mechanics, by K. L. Johnson, pp. 464. ISBN

0521347963. Cambridge, UK: Cambridge University Press, August 1987.)
Johnson, K. L., Kendall, K., & Roberts, A. D. 1971, Proceeding of the Royal Society A, 324, 301
Johnstone, D. & Bally, J. 2006, The Astrophysical Journal, 653, 383



232 References

Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, The Astrophysical Journal, 469, 740
Jones, R. H., Grossman, J. N., & Rubin, A. E. 2005, in Astronomical Society of the Pacific Conference Series,

Vol. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth, 251
Jones, R. H., Lee, T., Connolly, Jr., H. C., Love, S. G., & Shang, H. 2000, Protostars and Planets IV, 927
Jorgensen, J., Johnstone, D., Kirk, H., et al. 2008, The Astrophysical Journal, in press, ArXiv e-prints

0805.0599
Joshi, K. J., Rasio, F. A., & Portegies Zwart, S. 2000, The Astrophysical Journal, 540, 969
Jura, M. 1980, The Astrophysical Journal, 235, 63
Juric, M. & Tremaine, S. 2007, ArXiv Astrophysics e-prints astro-ph/0703160
Kahn, F. D. 1974, Astronomy and Astrophysics, 37, 149
Kawamura, A., Onishi, T., Yonekura, Y., et al. 1998, The Astrophysical Journal Supplements, 117, 387
Kempf, S., Pfalzner, S., & Henning, T. K. 1999, Icarus, 141, 388
Kessler-Silacci, J., Augereau, J.-C., Dullemond, C. P., et al. 2006, The Astrophysical Journal, 639, 275
Kita, N. T., Huss, G. R., Tachibana, S., et al. 2005, in Astronomical Society of the Pacific Conference Series,

Vol. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth, 558
Kleine, T., Halliday, A. N., Palme, H., Mezger, K., & Markowski, A. 2006, in Lunar and Planetary Institute

Conference Abstracts, Vol. 37, 37th Annual Lunar and Planetary Science Conference, ed. S. Mackwell
& E. Stansbery, 1884

Klessen, R. S., Ballesteros-Paredes, J., Vázquez-Semadeni, E., & Durán-Rojas, C. 2005, The Astrophysical
Journal, 620, 786

Klett, J. D. 1975, Journal of Atmospheric Sciences, 32, 380
Kokubo, E. & Ida, S. 1996, Icarus, 123, 180
Kokubo, E. & Ida, S. 1998, Icarus, 131, 171
Kokubo, E. & Ida, S. 2000, Icarus, 143, 15
Kokubo, E. & Ida, S. 2002, The Astrophysical Journal, 581, 666
Konopka, U., Mokler, F., Ivlev, A. V., et al. 2005, New Journal of Physics, 7, 227
Kostoglou, M. & Konstandopoulos, A. G. 2001, J. Aerosol Sci, 32, 1399
Kovetz, A. & Olund, B. 1969, Journal of Atmospheric Sciences, 26, 1060
Kozasa, T., Blum, J., & Mukai, T. 1992, Astronomy and Astrophysics, 263, 423
Krause, M. & Blum, J. 2004, Physical Review Letters, 93, 021103
Kress, M. E. & Tielens, A. G. G. M. 2001, Meteoritics and Planetary Science, 36, 75
Kretke, K. A. & Lin, D. N. C. 2007, The Astrophysical Journal, 664, L55
Langkowski, D., Teiser, J., & Blum, J. 2008, The Astrophysical Journal, 675, 764
Laurenzi, I. J., Bartels, J. D., & Diamond, S. L. 2002, Journal of Computational Physics, 177, 418
Laurenzi, I. J. & Diamond, S. L. 2003, Physical Review E, 67, 051103
Lauretta, D. S. & McSween, Jr., H. Y. 2006, Meteorites and the Early Solar System II (Meteorites and the

Early Solar System II)
Lee, M. H. 2000, Icarus, 143, 74
Lee, M. H. 2001, Journal of Physics A Mathematical General, 34, 10219
Leyvraz, F. 2003, Physics Reports, 383, 95
Liffman, K. 1991, J. Comput. Phys., 100, 116
Lissauer, J. J. 1993, Annual Rev. Astron. and Astroph, 31, 129
Lissauer, J. J. & Stevenson, D. J. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil,

591–606
Lommen, D., Wright, C. M., Maddison, S. T., et al. 2007, Astronomy and Astrophysics, 462, 211
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125
Malyshkin, L. & Goodman, J. 2001, Icarus, 150, 314
Markiewicz, W. J., Mizuno, H., & Völk, H. J. 1991, Astronomy and Astrophysics, 242, 286
Marshall, J. & Cuzzi, J. 2001, in Lunar and Planetary Inst. Technical Report, Vol. 32, Lunar and Planetary

Institute Conference Abstracts, 1262
Marshall, J. R., Sauke, T. B., & Cuzzi, J. N. 2005, Geoph. Res. Lett., 32, 11202
Martin, C. L., Bouvard, D., & Shima, S. 2003, J. Mech. Phys. Solids, 51, 667
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, The Astrophysical Journal, 217, 425
Meakin, P. 1988, Ann. Rev. Phys. Chem., 39, 237
Meakin, P. & Donn, B. 1988, The Astrophysical Journal, 329, L39
Meeus, G., Sterzik, M., Bouwman, J., & Natta, A. 2003, Astronomy and Astrophysics, 409, L25
Metzler, K., Bischoff, A., & Stoeffler, D. 1992, Geochimica et Cosmochimica Acta, 56, 2873



References 233

Meyer, M. R., Backman, D. E., Weinberger, A. J., & Wyatt, M. C. 2007, in Protostars and Planets V, ed.
B. Reipurth, D. Jewitt, & K. Keil, 573–588

Min, M., Hovenier, J. W., Waters, L. B. F. M., & de Koter, A. 2008, Astronomy and Astrophysics, in press,
ArXiv e-prints 0806.4038

Mizuno, H., Markiewicz, W. J., & Voelk, H. J. 1988, Astronomy and Astrophysics, 195, 183
Morfill, G. E., Durisen, R. H., & Turner, G. W. 1998, Icarus, 134, 180
Mukhopadhyay, B. 2006, The Astrophysical Journal, 653, 503
Nagahara, H. 1984, Geochimica et Cosmochimica Acta, 48, 2581
Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, Icarus, 67, 375
Natta, A. & Testi, L. 2004, in Astronomical Society of the Pacific Conference Series, Vol. 323, Star Formation

in the Interstellar Medium: In Honor of David Hollenbach, ed. D. Johnstone, F. C. Adams, D. N. C. Lin,
D. A. Neufeeld, & E. C. Ostriker, 279

Natta, A., Testi, L., Calvet, N., et al. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil,
767–781

Nelson, V. E. & Rubin, A. E. 2002, Meteoritics and Planetary Science, 37, 1361
Nomura, H. & Nakagawa, Y. 2006, The Astrophysical Journal, 640, 1099
O’Donnell, J. E. & Mathis, J. S. 1997, The Astrophysical Journal, 479, 806
Ormel, C. W. & Cuzzi, J. N. 2007, Astronomy and Astrophysics, 466, 413
Ormel, C. W., Cuzzi, J. N., & Tielens, A. G. G. M. 2008, The Astrophysical Journal, 679, 1588
Ormel, C. W. & Spaans, M. 2008, The Astrophysical Journal, 684, 1291
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, Astronomy and Astrophysics, 461, 215
Ossenkopf, V. 1993, Astronomy and Astrophysics, 280, 617
Ossenkopf, V. & Henning, T. 1994, Astronomy and Astrophysics, 291, 943
Palla, F. & Stahler, S. W. 1999, The Astrophysical Journal, 525, 772
Paque, J. M. & Cuzzi, J. N. 1997, in Lunar and Planetary Institute Conference Abstracts, Vol. 28, Lunar and

Planetary Institute Conference Abstracts, 1071
Paraskov, G. B., Wurm, G., & Krauss, O. 2007, Icarus, 191, 779
Pascucci, I., Gorti, U., Hollenbach, D., et al. 2006, The Astrophysical Journal, 651, 1177
Paszun, D. & Dominik, C. 2006, Icarus, 182, 274
Paszun, D. & Dominik, C. 2008a, in prep.
Paszun, D. & Dominik, C. 2008b, Astronomy and Astrophysics, 484, 859
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
Poppe, T., Blum, J., & Henning, T. 1999, Advances in Space Research, 23, 1197
Poppe, T., Blum, J., & Henning, T. 2000, The Astrophysical Journal, 533, 454
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. 1999, Astronomy and Astrophysics, 348,

117
Portegies Zwart, S. F. & van den Heuvel, E. P. J. 2007, Nature, 450, 388
Pringle, J. E. 1981, Annual Rev. Astron. and Astroph, 19, 137
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Glossary

Term Description

AD Ambipolar diffusion
AU Astronomical Unit. The distance from the Earth to the

Sun, 1.5 × 108 km.
Accretion (I) The conversion of primordial material, i.e., interstellar

dust, to macroscopic objects: pebbles, rocks, planetesi-
mals, and eventually planets.

Accretion (II) The gravitational attraction of matter (mostly gas) onto
a central, e.g., stellar, object. A consequence of pro-
cesses through which angular momentum is lost.

CAI Ca-Al-rich inclusion. A relatively large particle (∼mm-
cm) found in chondrites that is enriched in the refrac-
tory elements of Ca and Al.

CCA Cluster-cluster aggregation
Chondrite An old meteorite consisting of material (mostly chon-

drules) that dates back from the birth of the solar sys-
tem.

Chondrule Solid particles composed mostly of olivine and pyrox-
ene typically ∼300 µm in size. Chondrules often are the
dominant constituent of chondrites.

Compound The name given in chapter 4 for the objects that are
obtained from the aggregation process which involves
chondrules and (porous) dust.

DSMC Direct simulation Monte Carlo
Debris disk Gas-free or gas-poor disk, in which ‘second-generation’

dust is produced from a collisional cascade.
Continued on next page
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— continued

Term Description

Eddy Part of a turbulent flow characterized by the same ve-
locity structure. Phenomenologically, turbulence is the
superposition of eddies of different scales.

IDP Interplanetary dust particle
IR Infra-red
ISM Interstellar medium
Incremental accretion The steady accumulation of small dust particles to form

larger bodies.
MC Monte Carlo
MMSN Minimum Mass Solar Nebula
MRI Magneto-Rotational Instability
Matrix Predominantly silicate material that fills the spaces be-

tween chondrules in chondrites. The grain sizes of the
matrix material are typically ∼1 µm but large varia-
tions exist.

Monodisperse A distribution (of, e.g., dust particles) that is composed
of a single size.

Monomer Smallest constituent particle (dust grain)
PCA Particle cluster aggregation
Parent body The body in which the meteorites were contained be-

fore its disintegration.
Planetesimal A body large enough for its self-gravity to become

important to capture or hold together smaller bodies.
Typically &km in size.

Protoplanetary disk A flattened, gas-rich disk around a young star in which
the planet formation process takes place.

RCP Random Close Packing (filling factor ≈ 65%)
SED Spectral energy distribution
Solar nebula A synonym for protoplanetary disk, used mostly in re-

lation to the young solar system.
T-Tauri star A pre main-sequence star that obtains its energy mostly

from gravitational contraction.
UV Ultra-violet



List of Symbols

Symbol Description

E∗ reduced modulus of elasticity
∆v or ∆v12 relative velocity
Σ surface density
Ω angular (Keplerian) rotation frequency
Φ gravitational potential
A geometrical cross-section (1 particle)
Cφ change in geometrical filling factor, Cφ = φ/φini

Cij collision rate between particles i, j

Df fractal dimension
E collision energy
Erestr, Emax-c,
Efrag

energy limits for particle restructuring/ maximum-
compression/ fragmentation (§ 2.2.3)

Eroll, Ebr monomer rolling/breakup energy (§ 1.2.2)
G Newton’s gravitational constant
Hg scale height of gas disk (Eq. (1.15)

Kij coagulation kernel or rate coefficient [cm3 s−1] (velocity × colli-
sional cross-section)

Mk k-th moment of mass distribution
ML1, ML2 first, second most massive particle
N initial number of particles, Np(0) (chapter 5)
N (mostly) total number of monomers within aggregate
Nǫ group splitting factor (Eq. (5.12))
Nµ reduced number of monomers in collision Nµ = N1N2/(N1 +

N2)
Nc total number of contacts
Nf number of big fragments

Ng number of groups, ∑
Ns

i=1 wi

Continued on next page
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— continued

Symbol Description

Np number of total particles in simulations
Ns number of species (distinct particles)
Ntot total number of monomers in aggregates
Mpwl mass in power-law component

R heliocentric radius
Rgd spatial gas-dust ratio by mass

Rgc spatial gas-chondrule ratio by mass
Rcd spatial chondrule-dust ratio by mass
V simulation volume
Re Reynolds number
Sf spread in number of fragments of big component
St particle Stokes number
P pressure
T temperature
V geometrical volume (§ 2.2.2)
α turbulent strength parameter (§ 1.2.1)

β mass dependence of kernels as in K ∝ mβ

γ specific surface adhesion energy (surface energy density)

δ exponent in surface area-mass (A ∼ mδ) in fractal regime
ǫ size ratio (ǫ ≤ 1)
η nebula pressure parameter, number of particles or groups

(§ 6.4.1)
φ, φPCA, φpd filling-factor (PCA/porous dust)

κ number of coagulations
ℓmfp mean free path of gas molecules

λij collision rate [s−1] between species i and j (including duplicates)

ν1/ν2 Poisson ratios
νm/νT molecular/turbulent viscosity
µ molecular mass in units of unified atomic mass (µ ≈ 2.34)
ψ enlargement parameter
ρX gas density over MSN
ρd, ρg spatial dust/gas density

ρ
(s)
c , ρ

(s)
d specific material chondrule/dust density (bulk densities)

ρ1, ρ2 internal particle density
σij collision cross-section

τf friction time
τrain friction time at which particles are removed from simulation due

to rain-out (chapter 2)
ξcrit critical displacement to initiate rolling of a contact area
a geometrical radius (surface area equivalent radius)
aσ aggregate geometrical radius (projected surface equivalent ra-

dius)
aµ reduced radius
a0 monomer radius
ac chondrule radius
ae equilibrium contact radius

Continued on next page
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— continued

Symbol Description

adust dust aggregate radius
aout aggregate outer radius
b impact parameter
cg thermal sound speed
fǫ maximum allowed fractional mass change of a particle during

group collisions (chapter 5)
f (m) particle distribution function (number density spectrum)
fcomp required dust fraction at collision for sticking (Eq. (4.16))
fd compound dust fraction by mass (Table 4.2)
fgeo geometry factor (§ 4.2.3)
fmiss fraction of collision misses
fpwl fraction of mass in power-law component

fp compound porous dust fraction with respect to total dust mass
(Table 4.2)

gi occupancy number of species i; number of duplicates
hp particle (or dust) scale height
kB Boltzmann constant
ℓ eddy length scale
m mass
mµ reduced mass
m⋆ characteristic mass of distribution determining the {zi} (§ 5.2.3)
〈m〉 mean mass of the distribution M1/M0

mH hydrogen mass
m, md, mch (dust/chondrule) mass
mp peak mass of the distribution M2/M1

mw-.. or 〈..〉m mass-weighted averages (see Eq. (2.26))
n particle density (gas)
r random deviate
q power-law exponent (size distribution)
t time
tdd, tdc, tcc dust-dust/dust-chondrule and chondrule-chondrule collision

times (§ 4.2.4)
tL/ts large/small eddy turn-over time (§ 1.2.1)
vK orbital (Kepler) velocity
vrd particle radial drift velocity (Eq. (1.25))
vK orbital (Kepler) velocity
vs/vL velocity smallest/largest eddies
wi group number; number of groups for species i
zi zoom number of species i





Color figures



244 Color figures

3

4

5

6 7

21

Fg. 2.10: The mass function plotted at various times for the α = 10−4 models. The panels
compare the coagulation of the compact models (ψ = 1, top panels) with those where porosity
effects are included (bottom panels). Left (right) panels show the coagulation of quartz (ice)
particles at 1 AU (5 AU). Each plot shows the mass function at every logarithmic interval
in time from t = 10 yr until t = 107 yr. In the first ∼102 yr Brownian motion dominates
the coagulation. Subsequent evolution is driven by turbulence-induced velocity differences
and includes the moment of first compaction (blue, dotted curve) and first rain-out (red, dashed
curve). After rain-out (t & 104 yr), the mass density in the gaseous nebula decreases and the
mass function collapses. In the compact models the blue, dotted curve also corresponds to the
first time that E > Eroll. Greyscales indicate the spread in the 50 realizations of the simulation.
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Fg. 3.4: (Chapter 2) Contour plots of particle-particle, turbulence induced, relative velocities
∆v12 normalized to vg. (a) Numerical results of Markiewicz et al. (1991), without inner scale
(Re → ∞). (b) Analogous result from our closed-form expressions with the fixed y∗ ≈ y∗a = 1.6
approximation (§ 3.3.2). (c) Like (b), but with an exact solution for y∗ and with Re = 108. (d)
Using the CH03 formula for k∗, k∗/kL = 0.5St∗ + 1, and also with Re = 108. Contours are
drawn twice per logarithmic decade (at ∆v12/vg = 3 × 10i and at 10i) with an additional
contour at 0.8 and 1.15.
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Gebaseerd op ‘Werelden in Wording’
Zenit, mei 2008

Sinds de jaren negentig worden met de regelmaat van de klok plane-
ten buiten ons zonnestelsel gevonden. Deze zogeheten exoplaneten
zijn vaak erg zwaar en staan in veel gevallen dicht bij de moederster.
In bijna alle gevallen worden de exoplaneten overstraald en dat maakt
het vinden van deze objecten erg lastig. Door de ontwikkeling van
nieuwe, gevoelige instrumenten worden steeds meer exoplaneten ont-
dekt: in januari van dit jaar stond de teller op 271 planeten. In dit
artikel bekijken we de vorming van planeten.

De eerste exoplaneet werd in 1995 ontdekt door de Zwitserse astronoom Michel
Mayor. Hij vond een planetaire begeleider bij de ster 51 Pegasi in het sterrenbeeld
Pegasus. Deze exoplaneet wordt sindsdien 51 Pegasi B genoemd. Zoals gezegd in
de inleiding is het vinden van exoplaneten lastig en ontdekkingen zijn altijd indi-
rect. Het bestaan van de planeet (of planeten) kan namelijk afgeleid worden uit de
beweging van de moederster. Dit principe is een direct gevolg van de derde wet van
Newton: als een voorwerp A een gegeven kracht op een voorwerp B uitoefent, dan
gaat deze kracht gepaard met een even grote, maar tegengestelde kracht van B op A.
De zon (A) trekt aan de aarde (B), wat resulteert in een beweging van de aarde om de
zon met een snelheid van 30 km/s. Het omgekeerde geldt ook: de zon ondervindt
een tegengestelde, maar even grote kracht. Oftewel: actie = reactie. De zon is echter
veel zwaarder en is daarom de beweging een stuk kleiner. De mate van bewegen is
omgekeerd evenredig aan de massa: aangezien de zon ongeveer 300 000 maal zwaar-
der is dan de aarde, is de snelheid van de zon als gevolg van onze planeet ongeveer
tien cm/s. De beweging van de moederster is groter naarmate de planeten grotere
massa’s hebben en voor planeten die dichter bij de ster staan. De beweging van de



248 Nederlandse samenvatting

Figuur 3.1: Een impressie van
een gasplaneet dicht bij de
ster. Dit soort planeten wordt
ook wel aangeduid als he-
te Jupiterachtigen. Artist im-
pression: (David A. Aguilar,
Harvard-Smithsonian CfA)

Figuur 3.2: Een schematische
weergave van het Doppler-
effect. De beweging van
de ster ten opzichte van de
waarnemer veroorzaakt een
blauwverschuiving als de ster
naar ons toe beweegt en een
roodverschuiving als de ster
van ons af beweegt. De-
ze verschuiving kan geme-
ten worden in het spectrum
van de ster en zodoende kan
de massa van de planeet be-
paald worden. (Illustratie:
obswww.unige.ch)

zon die door Jupiter wordt veroorzaakt is zo’n tien m/s en zou dertig m/s bedragen
wanneer de reuzenplaneet op de plek van de aarde zou staan.

Deze beweging vinden we terug in het spectrum van de ster. Wanneer de ster
naar ons toe beweegt, schuift het spectrum naar een kortere golflengte (het blauw)
en wanneer de ster van ons af beweegt, gebeurt het omgekeerde (een verschuiving
naar het rood). Dit verschijnsel staat bekend als het Dopplereffect. We kennen dit
effect allemaal: wanneer een ambulance met loeiende sirene naar ons toe rijdt is de
toon hoog en wanneer de ambulance passeert neemt de toonhoogte af.

In het geval van de ster is de verschuiving in golflengte heel klein, maar ze is toch
te zien in het spectrum en vooral als het gaat om een zware planeet die dicht bij de
ster staat. De indirecte methode van zoeken is succesvol, want momenteel zijn er 271
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Figuur 3.3: Een opname van
de protoplanetaire schijf rond
de ster AB Aurigae. De ster
bevindt zich op 469 lichtja-
ren van de aarde in het ster-
renbeeld Voerman. Het licht
van de ster is ten dele ge-
blokkeerd om overbelichting
te voorkomen. De schijf is erg
uitgestrekt en meet ongeveer
1300 AE in diameter. Wor-
den hier planeten gevormd?
(Illustratie: Hubble Heritage
Team/NASA)

Figuur 3.4: Puinschijven zijn
oude schijven waarvan het
gas al verwijderd is. Alleen
de brokstukken van botsingen
tussen grotere objecten zijn
overgebleven. Dit puin wordt
door de stralingsdruk van de
ster langzaam uit het plane-
tenstelsel verwijderd. (Artist
impression: Hubble Heritage
Team/NASA)

exoplaneten bekend. Het is dan ook duidelijk dat planeetvorming een verschijnsel
is dat vaker optreedt. Ons zonnestelsel is waarschijnlijk niet zo uniek als eens werd
aangenomen.

Protoplanetaire schijf

Hoe ontstaan planeten? Deze vraag is niet eenvoudig te beantwoorden, want nie-
mand heeft ooit een planeet zien ontstaan. Bovendien vindt de vorming van pla-
neten dicht bij de ster plaats en ook nog eens in een schijf van kleine stofdeeltjes
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(vergelijkbaar met roet). De stofdeeltjes vormen een gordijn waarachter het planeet-
vormingsproces zich afspeelt. Planeten ontstaan dus uit een schijf van gas (voorna-
melijk waterstof en helium) en stof. De roet- of stofdeeltjes zijn in feite diverse zware
elementen die gecondenseerd zijn uit het gas.

De schijf is ‘slechts een bijproduct van de ineenstorting: planeten ontstaan door-
dat de gaswolk ineenkrimpt. De gaswolk heeft een kleine rotatiesnelheid, maar door
de ineenkrimping neemt de snelheid toe. Door de toenemende rotatiesnelheid valt
niet alle materie op de protoplaneet, maar vormt ze een schijf: de zogeheten pro-
toplanetaire schijf. Moderne bureaustoelen zijn ideaal om deze natuurwet in beeld
te brengen: neem plaats en draai rond, met armen en benen gespreid. Trek na een
aantal rondjes armen en benen in: de rotatiesnelheid zal dan toenemen. Het be-
staan van protoplanetaire schijven werd in 1983 bevestigd door waarnemingen met
de Infra-Rood Astronomische Satelliet (IRAS).

Vormingsproces

Hoe worden planeten nu precies gevormd? Het is bekend dat het gas in de schijf
door allerlei processen langzaam verwijderd wordt. Dit gebeurt bijvoorbeeld door-
dat het op de ster valt, maar ook door foto evaporatie. In dat laatste geval wordt
een waterstof (H2) molecuul uit de schijf vernietigd door botsing met een UV-foton
(lichtdeeltje). Hierbij komt zoveel energie vrij dat het gasdeeltje uit de schijf kan
ontsnappen. Men schat dat deze processen een protoplanetaire nevel binnen enkele
miljoenen jaren kunnen schoonvegen.

Planeten zoals Jupiter moeten dus binnen enkele miljoenen jaren zijn ontstaan,
want anders had Jupiter nooit een gasmantel kunnen krijgen. Hoe moeten we ons
dit voorstellen? Volgens een van de theorieën is de gasschijf zeer zwaar en ontstaan
planeten op dezelfde wijze als de zon: de zwaartekracht veroorzaakt instabiliteit die
leidt tot de vorming van een gebonden object. Volgens dit model worden planeten
zoals Jupiter dus in een keer gevormd.

De andere aanname is iets minder ambitieus en gaat er vanuit dat planeetvor-
ming een geleidelijk proces is van stofdeeltjes die aan elkaar plakken. Dit begint bij
stofdeeltjes ter grootte van een micron, zoals die overal in het Melkwegstelsel voor-
komen (een micron is 1/1000 van een millimeter). Deze deeltjes plakken aan elkaar
en vormen stofdeeltjes van een millimeter. Deze groeien tot metersgrote stofballen
en naarmate dit proces vordert ontstaan objecten met een doorsnede van een kilo-
meter; dit worden planetesimalen genoemd (voorlopers van planeten). De planete-
simalen groeien sneller, want de zwaartekracht bespoedigt het samenklonteren.

De rol van het stof

Dat stof een belangrijke rol speelt in het planeetvormingsproces is iets wat buiten kijf
staat. De aarde bijvoorbeeld bestaat (met uitzondering van een zeer dunne damp-
kring) alleen uit zware elementen zoals ijzer en silicium. De voor het leven zo be-
langrijke koolstof is in mindere mate vertegenwoordigd. Er zijn aanwijzingen dat
ook de gasplaneten Jupiter en Saturnus een rotsachtige kern hebben die groter is
dan op grond van de samenstelling verwacht mag worden.

Het beste bewijs komt misschien wel van de exoplaneten. Uit de waarnemingen



Nederlandse samenvatting 251

is gebleken dat bij sterren met een relatief grote hoeveelheid zware elementen de
kans op een exoplaneet groter is. Het lijkt er dus op dat er zware elementen nodig
zijn om een planetenstelsel zoals het onze te kunnen vormen; de zon is wat dit be-
treft inderdaad meer dan gemiddeld bedeeld in het aandeel zware elementen. Dit
betekent niet dat de theorie van het geleidelijke proces geen obstakels kent.

Belemmeringen

Er zijn genoeg belemmeringen te bedenken: een van de belangrijkste is dat het plak-
ken van deeltjes niet zo eenvoudig is als het klinkt. Hoe goed iets plakt, hangt af
van het materiaal (ijsdeeltjes plakken beter dan zanddeeltjes), de grootte en snelheid
van de botsende deeltjes. Voor stofdeeltjes kleiner dan een millimeter is het geen
probleem: het kleine spul plakt gewoon goed en de snelheden waarmee ze botsen
zijn laag.

Voor macroscopische objecten–in de orde van een centimeter en groter–ligt dit
anders. Door hun grootte plakken ze moeilijker aan elkaar. Dit komt doordat de
plakkracht in relatie staat tot het oppervlak, terwijl de hoeveelheid materiaal die aan
elkaar geplakt een directe relatie heeft met het volume (of de massa). De effectiviteit
van het plakken neemt af voor grotere deeltjes. Bovendien zorgt de interactie met
het gas ervoor dat juist deze objecten grote onderlinge snelheidsverschillen zullen
hebben. Het is heel moeilijk om onder deze omstandigheden het plakken te bewerk-
stelligen; je zou eerder verwachten dat deze deeltjes uit elkaar spatten. Relatieve
snelheden mogen daarom niet te hoog zijn.

Botsingen

Objecten groter dan ruwweg 100 meter worden qua botsingsgedrag beı̈nvloed door
de zwaartekracht. Dit heeft twee gevolgen voor het samenklonteringsproces: de
kans op een botsing wordt vergroot, omdat objecten elkaar aantrekken, en de aan-
trekkingskracht zorgt voor een natuurlijk plakmechanisme. Het samenklonterings-
proces verloopt in dit stadium dan ook vrij snel. Grotere deeltjes zullen sneller groei-
en dan kleinere. In vaktermen wordt dit ‘runaway growth’ genoemd: de grote jon-
gens eten alles op. Echter, de groei van een planeet is beperkt door de hoeveelheid
materiaal die hij kan oprapen. Een aantal grote lichamen consumeert al het kleine
materiaal, maar houdt een onderlinge afstand omdat ze zich in verschillende banen
bevinden.

Een rotsachtige planeet zoals de aarde is ontstaan nadat een groot aantal objec-
ten ter grootte van de maan op elkaar botsten. Tijdens deze megabotsingen (krach-
tiger dan de explosie van 100 miljard x miljard ton TNT) is de aarde in haar geheel
gesmolten en gevormd, wat heeft bijgedragen aan haar differentiatie: de zwaarste
elementen (ijzer) kwamen in de kern en de lichtere (zoals koolstof) vinden we in de
buitenste lagen.

De grote planeten in het buitenste deel van het zonnestelsel ontstonden door
gas te ontrekken aan de protoplanetaire nevel. Dit gebeurde al bij een tiende van
de aardmassa, maar kwam bij ongeveer tien aardmassa’s pas echt op gang. In het
vroege zonnestelsel waren botsingen meer regel dan uitzondering: de vele kraters
op de maan zijn hier een bewijs van. Veel van deze botsingen veroorzaakten een
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Figuur 3.5: Dit stofdeeltje met een
diameter van ongeveer tien micro-
meter (1/100 millimeter) is letter-
lijk uit de bovenste lagen van de
aardse atmosfeer geplukt. De sa-
menstelling van dit soort stofdeel-
tjes verschaft veel informatie over
de processen die in het jonge zon-
nestelsel van belang waren. (Bron:
NASA)

Figuur 3.6: Volgens een van de the-
orieën is de maan ontstaan door
een botsing in het vroege zon-
nestelsel. De maan stond vroe-
ger veel dichter bij de aarde en
bijvoorbeeld zonsverduisteringen
kwamen veel vaker voor. De jon-
ge aarde was het slachtoffer van
veel meteorietinslagen, waarvan
de grotere catastrofale gevolgen
hadden. (Artist impression: David
A. Aguilar, Harvard-Smithsonian
CfA)

complete vernietiging van het materiaal. Het stof uit de tweede generatie wordt
ook wel puin genoemd en de schijf wordt in zon geval een debris disk (puinschijf)
genoemd.

Uiteindelijk nam het aantal planeten en planetesimalen af en werden de botsin-
gen minder talrijk. Het zonnestelsel belandde hierdoor in een stabiele fase. Het
proces, waarbij puin langzaam werd vermalen tot gruis, is nog steeds gaande. Op
een heldere nacht kunnen we de sterk uitgedunde stofschijf zien in de vorm van het
zodiakaal licht. Uiteindelijk zal het gruis door de stralingsdruk van de zon uit het
zonnestelsel worden verwijderd.

Bijproducten

De voorgaande alinea’s beschrijven voornamelijk de situatie van ons zonnestelsel.
De planetenstelsels die zijn waargenomen bij andere sterren (met Jupiter-achtige pla-
neten dicht bij de moederster) steken echter heel anders in elkaar. Dit is ten dele te
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Figuur 3.7: Een asteroı̈dengordel
rond de oranje dwergster HD
69830 in Puppis. De gordel werd
ontdekt door NASA’s Spitzer Spa-
ce Telescope, die warm stof ont-
dekte in de nabijheid van de ster.
Waarschijnlijk is dit warme stof
ontstaan door de botsing van twee
asteroı̈den. Op de voorgrond zien
we een van de drie exoplaneten die
om de dwergster draaien. (NASA/
JPL-Caltech/T. Pyle (SSC).

verklaren doordat deze planeten veel gemakkelijker met de Dopplertechniek wor-
den opgemerkt dan wanneer ze zich op een afstand van vijf Astronomische Eenhe-
den (AE) of verder zouden bevinden. Het kan zijn dat deze gasachtige planeten wel
ontstaan zijn in de buitenste delen van het stelsel, maar in een latere periode naar
binnen zijn geëmigreerd. Het zal nog een wel een tijd duren voordat het hele pla-
neetvormingsproces volledig duidelijk is, maar het staat vast dat planeten minder
exotisch zijn dan aanvankelijk gedacht werd. In feite zijn het de bijproducten van
sterren.
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