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Abstract

This paper presents a generalisation of the Condorcet Jury theorem
by relaxing the assumption that the competence of the jurors is fixed.
Instead we assume a uniform prior probability assignment over the
possible competences, adapt this assignment in the light of the jury
vote, and then compute the posterior probability, conditional on the
jury vote, of the hypothesis voted over. One of the more notable as-
pects of this posterior probability is that it depends on the size of the
jury as well as on the absolute margin of the majority.

1 Condorcet revisited

In this section we introduce Condorcet’s jury theorem. We also present the
results of List [2004], according to which the posterior probability of the
hypothesis voted over, conditional on the jury vote, only depends on the
absolute margin of votes in favour and against the hypothesis.

Let H1 be the hypothesis that Jack murdered Jill and H0 the hypothesis
that he did not, so {H0,H1} is a partition. Suppose that of a jury of n

members trying Jack, a number n1 vote that H1 is true, while the remaining
n0 members vote that H0 is true. For both j = 0 and j = 1, we assume
that if Hj is in fact true, the probability that jury member i votes for Hj

being true, denoted by V j
i , is some fixed chance qj , which we will call the

competence of the jurors on the hypothesis Hj . For all i, i′ = 1, . . . , n and
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j, j′ = 0, 1, if i′ 6= i, we set

p(V j
i |H

j ∩ V j′

i′ ) = p(V j
i |H

j) = qj ,

The left equality says that the jurors all vote independently, and the right
one that they vote with fixed competences qj , for both j = 0, 1. Note that
the competences of the jurors with respect to H0 and H1 do not refer to
a general ability to judge. They are specific for the hypotheses, and the
competences for the hypotheses H0 and H1 can differ: jurors might be
more accurate in judging the former than in judging the latter. Finally, we
assume that the competences will be greater than one half, qj > 1/2, so the
judgment of jury members is better than the result of tossing a fair coin.

We can now introduce Condorcet’s jury theorem. Say that Jack is indeed
guilty, H1, so that the probability for any jury member to vote in favour
of Jack’s guilt, V 1

i , namely q1, is greater than one-half. Now for an ever
larger jury size n, consider the relative frequency of voters in favour, f1 =
n1
n = 1 − f0. By the law of large numbers, the probability that f1 differs
from q1 tends to 0. Because q1 > 1/2, we have that the probability of
a correct majority vote, n1 > n0, tends to 1 in the limit. We refer to
Dietrich [unpublished] for the proof of a somewhat more general version of
this theorem.

List [2004] emphasises the importance of the converse of this result.
Rather than calculating the probability of a majority of votes V j

i given the
truth of Hj , we want to know the probability of correctness of the hypothesis
Hj , given a majority of votes V j

i . For convenience we denote the difference
between votes for H1 and H0, also called the absolute margin of the majority,
by ∆ = n1 − n0. We denote the entire jury vote by Vn∆ = ∩n

i=1V
u(i)
i . Here

u(i) = 1 if jury member i voted for H1 and u(i) = 0 if she voted for H0, so
that n1 =

∑
i u(i) and n0 = n− n1. By Bayes’ theorem we have

p(H1|Vn∆) =
p(∩iV

u(i)
i |H1)p(H1)
p(Vn∆)

=
∏

i p(V u(i)
i |H1)p(H1)
p(Vn∆)

=
qn1
1 (1− q1)n0p(H1)

p(Vn∆)
.

where p(H1) is the prior probability of the hypothesis H1. For H0 we can
derive a similar expression, replacing q1 by q0 and swapping the roles of
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n0 and n1. The denominator p(Vn∆) = p(∩iV
u(i)
i ) is the same in both

equations.
We can avoid calculating the denominator p(Vn∆) by using the posterior

odds instead of the posterior probability:

p(H1|Vn∆)
p(H0|Vn∆)

=
qn1
1 (1− q1)n0p(H1)

qn0
0 (1− q0)n1p(H0)

. (1)

This is the odds that Jack is guilty, given the jury verdict. Since n0 = (n−∆)/2

and n1 = (n+∆)/2, the posterior odds depends both on the absolute margin
∆ and on the jury size n.

For the posterior odds we can derive an inverse variant of Condorcet’s
theorem. If we let the jury size n go to infinity, and assume a fixed relative
frequency f1 > 1/2, the posterior odds for H1 will tend to infinity as well.
This is a direct consequence of the fact that the function

hn(q) = qnf1(1− q)n(1−f1)

has a peak at q = f1, and the further fact that this peak gets sharper for
larger n. Hence the likelihood ratio

hn(q1)
hn(1− q0)

=
qnf1
1 (1− q1)n(1−f1)

q
n(1−f1)
0 (1− q0)nf1

will tend to infinity in the limit of n going to infinity. This is independent
of the values that we fill in for the competences qj > 1/2.

By making two further assumptions we can arrive at the central result
in List [2004], the so-called Condorcet formula. First, we assume that the
priors of H0 and H1 are equal, p(H1) = p(H0), although this is not a
crucial assumption. It means that initially we judge it equally probable
that Jack committed the murder as that he did not. Second, and this is
crucial for List’s result, we assume that the competences of jury members
on H0 and H1 are equal, q0 = q1 = q, meaning that all jury members are
precisely as reliable in condemning a murderer as they are in acquitting an
innocent suspect. With these two assumptions Equation (1) simplifies to
the Condorcet formula

p(H1|Vn∆)
p(H0|Vn∆)

=
(

q

1− q

)∆

. (2)

On the assumption that q > 1/2, we have that q
1−q > 1 so that the posterior

odds that Jack killed Jill is larger than 1 if ∆ > 0 and smaller than 1 if
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∆ < 0. The posterior odds depends only on the absolute margin between
the numbers of correct and incorrect votes brought out by the jury members,
and not on their total number. Note that this is perfectly consistent with
both the Condorcet theorem and its inverse version for posterior odds: for
increasing jury size n and fixed competence q1, the expected value of ∆
increases with n, and for increasing jury size n and fixed relative frequency
f1, the fixed value of ∆ increases with n.

Now focus on the fact that, for a given ∆, the posterior odds do not
depend on the jury size. Imagine there are two juries, one with 10 members
and one with 100 members. Suppose that both juries vote on the guilt of
Jack, and that the 10-member jury unanimously votes for guilt while the 100-
member jury votes by 56 in favour, and 44 against Jack’s guilt. Which of the
two juries then makes the guilt of Jack more probable? Well, the majority in
the former is less than the majority in the latter, i.e. ∆10 = 10 < 12 = ∆100,
so that, according to Equation (2), the probability of Jack’s guilt is greater
for the larger than for the smaller of the two juries. Hence, if we want
to have as much certainty as we can get, apparently we should prefer the
verdict of the larger jury.

As we will argue below, there is something suspect in this conclusion.
Indeed, we surmise that Equation (2) is too strong an idealisation. It is based
on the unwarranted assumption of a symmetrical and fixed competence. By
considering a model in which both these assumptions are dropped we show
the following:

• The probability that the jury majority verdict is incorrect is monoton-
ically increasing in the jury size n, if the absolute margin ∆ remains
constant.

• The probability that the jury majority verdict is incorrect tends to
one-half as n tends to infinity, if ∆ remains constant in this limit.

• The probability that the jury majority verdict is incorrect tends to
zero as n tends to infinity, if the fractional majority, f = ∆/n, tends
to a nonzero constant in this limit.

The exclusive dependence on the absolute margin is thus seen to be an
artefact of idealising assumptions, and not something inherent to real jury
verdicts. The inverse Condorcet jury theorem, on the other hand, will prove
to be valid in the new model as well.
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2 A counterintuitive consequence

In this section we argue, by means of a classical statistical analysis, that
there is something rather puzzling about the Condorcet formula (2), ac-
cording to which only the absolute margin matters when one assesses the
probability that a jury vote lends to the hypothesis voted over. The prob-
lem is that no account has been taken of how probable the jury votes are to
begin with.

We first make precise the problem with the Condorcet formula by con-
structing a confidence interval for juror competence that depends on major-
ity and jury size. As in the previous section we assume that H1 is true and
that the competence parameter is q. Each juror votes independently and
with identical probability, so that the number of votes n1 has a binomial
probability distribution. Its expectation is E[n1] = nq, and the standard
deviation is SD[n1] =

√
nq(1− q). So the mean and standard deviation of

the majority ∆ are

E[∆] = E[n1]− E[n0] = 2E[n1]− n = n(2q − 1) ,

SD[∆] = 2
√

nq(1− q) .

For any given competence q and jury size n, we have a probability of roughly
95% that ∆ lies within the specific bounds of two standard deviations around
the mean, E[∆]− 2SD[∆] < ∆ < E[∆] + 2SD[∆].

On this basis we can construct a confidence interval for q. Suppose ∆
lies at the edge of the interval indicated above. Then we would have one or
other of the following:

∆ = n(2q − 1)± 4
√

nq(1− q) ,

which can be solved for q as a function of ∆, yielding the two roots

qmin , qmax =
1

2(n + 4)

(
n + 4 + ∆±

√
n + 4− ∆2

n

)
.

By way of interpretation, we say that any competence q from within the
interval [qmin , qmax] entails that the given majority ∆ and jury size n are
not so improbable that they are a cause for worry. If the qmin of a jury
characterised by n and ∆ is greater than the qmax of a jury with n′ and ∆′,

qmin(n, ∆) > qmax(n′,∆′) ,
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then we can say that something very improbable has occurred: at least one
of the two jury votes has in that case voted out of the ordinary. This would
give us cause to reconsider the assumptions of the statistical model at issue.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

 ↑
qmax

qmin

∆ →

n=100n=10

Figure 1: A graph of the bandwidth of reasonable values of the competence q against

the jury majority ∆, for both n = 10 and n = 100.

Now let us have a second look at the example provided in Section 1. In
Figure 2 the extremal values of q are plotted against the majority ∆ for
the two juries of 10 and of 100 members. For ∆10 = 10 it turns out that
qmin(10, 10) = 0.786, while for ∆100 = 12 we find qmax(100, 12) = 0.606.
Moreover, since qmax(100, 50) = 0.783 and qmax(100, 52) = 0.792, we need
a majority of at least 76 against 24 in the jury of 100 to feel that there is
no cause for worry. With the given votes, we must therefore conclude that
something highly improbable did occur.

Now perhaps we simply know the numerical value of the juror compe-
tence. Or perhaps we know that all jurors have equal competence without
knowing its value, in which case we might say that the competence of the
jury is larger than what is suggested by the larger jury, or that the compe-
tence of the jurors is much smaller than what is suggested by the smaller
jury, or possibly both. In any such case, the result of List is applicable, and
we must simply conclude that we have witnessed a freak accident.

Alternatively, we might conjecture that the two juries have different val-
ues for the juror competence. In order to sort this out, we can formulate the
hypothesis that the jurors from the smaller jury are in fact more competent,
and perform a statistical test on this. But the idea that the jury vote tells
us something about the competence of the jurors can also be taken a step
further. We can say that the vote of the jury indicates the competence of
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the jury directly, and that this may be used with advantage in the choice
between jury verdicts. Specifically, the unanimous vote of the jury of 10
should perhaps weigh more heavily, despite the rule of Equation (2), simply
because the unanimity suggests that the jurors are competent.

In other words, the suggestion here is that a jury vote reflects more
than just the truth or falsity of the hypothesis voted over. It also conveys
information on how easy it is for jurors to vote correctly. A close call in
the jury, such as the small majority of 12 in the jury of 100 members,
indicates that the jurors find it hard to tell whether Jack murdered Jill,
while the unanimous vote of the small jury seems to suggest that the jurors
find Jack’s guilt fairly clear. We will devote the remainder of this paper to
making precise what the size of the majority tells us about the competence
of the jurors, and what the consequences of that are for assessing the jury
vote.

Before starting on this, however, we briefly consider some alternative
explanations for the jury votes considered above. First of all, List [2004]
shows that if we do not make the assumption of symmetric competence,
q0 = q1, but instead let these competences vary independently, the posterior
odds do depend on the jury size. Depending on which of the two compe-
tences is larger, a larger jury with equal absolute margin will have smaller
or larger posterior odds for the hypothesis. By choosing the competences in
the right way, this effect may even cause the posterior odds to lean towards
the minority vote. However, the model with differing but fixed competences
q0 and q1 fails to capture the intuitions on jury verdicts voiced above. It
introduces a dependence on jury size of an entirely different nature, one that
is not related to our present concerns.

Another possible extension of the model of jury decisions fares better in
this respect. Arguably, a small jury has a completely different group dynam-
ics than a larger jury, and the jury verdict may reflect how the jurors have
interacted. For example, it may be that jurors adjust their views to coincide
with those of jurors sitting in close proximity to them. In a jury of 100 the
jurors may then still be treated as approximately independent. But in a jury
of 10, all jurors are in close proximity to each other. Therefore a unanimous
vote in a small jury may very well be the result of mindless groupthink
rather than of high juror competence. Such failures of independence will
generally throw the results of a jury vote into a different perspective.
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In a similar vain, we may think that the coherence of the jurors in the
smaller jury is indicative of the veracity of the jury verdict. This idea is
at the basis of the discussion that Bovens and Hartmann [2004] give of the
Condorcet formula. They note its counterintuitive consequences, adapt the
model to include a positive correlation between the votes, and then show
that in this model a smaller unanimous jury lends more credibility to the jury
verdict than a larger jury whose verdict is divided, even while the absolute
margins in both juries are equal. Moreover, by adapting the parameters in
the model they can vary the degree to which the coherence of jurors adds
to the credibility of the verdict.

The coherence model of Bovens and Hartmann provides a successful
explication of certain intuitions concerning jury votes. It sensibly drops
the assumption of the independence of the jurors, and employs the truth-
conduciveness of the coherence of votes to avoid the counterintuitive con-
sequence of the Condorcet formula. A drawback of this solution is that
it relies on particular parameter values that must be filled in at the start.
Given these parameters, we can deduce the dependence of the posterior odds
on the jury size, but this dependence is in a sense put in by hand. But this
drawback does not mean that we should discard the coherence model.

Accordingly, we do not motivate the model of the following sections
with the fact that it captures our intuitions on jury votes better. Rather it
captures other intuitions about jury votes, differing from those captured in
the coherence model, namely that the competence of jurors can be revealed
by the jury vote. We think that these intuitions are of interest in their own
right. In addition, we think that the resulting model meshes better with
the structure revealed by the classical statistical analysis of the preceding
section.

3 Jury vote with unknown competence

In the following we present a model in which the jury vote is indicative of
how competent the jurors are concerning the hypothesis at hand. We re-
tain the assumption that the jurors vote independently and concentrate on
relaxing the assumption of a fixed juror competence. To do so we employ
Bayesian statistical inference. We first compute a posterior probability as-
signment over the competences q0 and q1 for H0 and H1 respectively, based
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on the given jury vote and a prior probability over competences and hy-
potheses. This inference determines how the jury vote informs us of the
competence: we may derive an expectation value for the juror competences
from it. More importantly, we compute the probability that a jury vote
gives to the hypothesis voted over.

Computing the expectation value for the jury competence is a tricky
business. In the foregoing we had a partition of two hypotheses, H0 and
H1. But since the competence parameter is unknown, we must split these
hypotheses up into ranges of hypotheses, Hq0 and Hq1 . The expressions
p(Hqj ) should therefore be regarded as probability densities rather than
themselves probabilities. The hypotheses H0 and H1 each consist of a range
of statistical hypotheses, parameterised by q0 and q1 respectively. These
hypotheses have the likelihoods

p(V i
j |Hqj ∩ V i′

j′ ) = qj

for j = 0, 1. The probabilities of the aggregate hypotheses H0 and H1 are

p(H0) =
∫ 1

0
p(Hq0) dq0 ,

p(H1) =
∫ 1

0
p(Hq1) dq1 .

Further, we assume that the prior is equal and uniform over the interval
( 1

2 , 1), for both q0 and q1, meaning that p(Hqj ) = 1 for 1
2 ≤ qj ≤ 1, and

p(Hqj ) = 0 for 0 ≤ qj < 1
2 . Thus the only prior assumption is that the jury

members are not incompetent, but aside from that the prior density is flat.
The above considerations entail

p(H0) =
∫ 1

1/2
1 dq0 =

1
2

=
∫ 1

1/2
1 dq1 = p(H1).

For reasons of simplicity we will not deviate from this assumption in what
follows.

It is convenient to reduce the number of parameters in this statistical
model to a single one by a suitable substitution of the parameters over the
domain. In the above setup, the use of the two parameters q0 and q1 does
not mean that the statistical model is two-dimensional. The likelihoods
involve q0 if H0 is true and q1 if H1 is true, but these are mutually exclusive
hypotheses, so there is no overlap in which the likelihoods involve both
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parameters. Because of this we can employ a single range of hypotheses Hr

with the parameter domain r ∈ [0, 1], which is formally equivalent to the
combination of q0 in H0 and q1 in H1.

Let us make this formal equivalence precise. First, within the domain
r ∈ [0, 1/2), and setting q0 = 1− r, we have the following equalities:

p(V 0
i |Hq0) = q0 = 1− r = p(V 0

i |Hr)
p(V 1

i |Hq0) = 1− q0 = r = p(V 1
i |Hr) .

(3)

Similarly, in the domain r ∈ (1/2, 1], and setting q1 = r, we have the following
equalities:

p(V 0
i |Hq1) = 1− q1 = 1− r = p(V 0

i |Hr)
p(V 1

i |Hq1) = q1 = r = p(V 1
i |Hr) .

(4)

In words, there is a formal equivalence between the likelihoods of the hy-
potheses Hr for r < 1/2, and those of Hq0 for q0 > 1/2. Similarly, there is
an equivalence between the likelihoods of the hypotheses Hr for r > 1/2 and
those of Hq1 for q1 > 1/2.

Now consider the resulting likelihoods for the hypotheses Hr. From the
right hand side of Equations (3) and (4) we can see that, over the entire
domain r ∈ [0, 1], the hypotheses Hr have the likelihoods

p(V 0
i |Hr) = 1− r ,

p(V 1
i |Hr) = r .

By updating the separate hypotheses Hr according to these likelihoods, we
are effectively updating the hypotheses Hq0 and Hq1 for each of the values
q0 ∈ (1/2, 1] and q1 ∈ (1/2, 1].

Next we consider the priors over the hypotheses Hq0 and Hq1 . Recall
that we assumed a uniform prior probability distribution over both of them.
But we can rewrite these priors in terms of priors over the hypotheses Hr

in the respective domains r ∈ [0, 1/2) and r ∈ (1/2, 1], as follows:

p(H0) =
∫ 1

1/2
p(Hq0) dq0 =

∫ 1/2

0
p(Hr) dr ,

p(H1) =
∫ 1

1/2
p(Hq1) dq1 =

∫ 1

1/2
p(Hr) dr .

Hence the uniform priors over the hypotheses Hq0 and Hq1 translate into a
single uniform prior over the hypotheses Hr with r ∈ [0, 1]. We can interpret
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the probability of Hr with r < 1/2 as the probability of Hq0 by the translation
q0 = 1− r, and similarly, we can interpret the probability of Hr with r > 1/2

as the probability of Hq1 by the translation q1 = r. We note, as an aside,
that it is attractive to start out with uniform priors over the hypotheses Hqj ,
or at least with priors that combine into a Beta distribution over Hr. Priors
over Hqj that have a different shape do not necessarily lead to posterior
distributions that can be expressed analytically.

The substitution above is useful because we have thereby disposed of
a parameter, replacing q0 and q1 by the single parameter r. Moreover, we
can model the impact of the jury vote on the combined uniform probability
assignments over q0 ∈ (1/2, 1] and q1 ∈ [1/2, 1] by modelling its impact on the
uniform probability assignment over r ∈ [0, 1].

We shall condition this distribution on the jury vote Vn∆, characterised
by the numbers of votes n0 for H0 and n1 for H1, or equivalently, by the
size of the jury n = n1 + n0 and the majority ∆ = n1 − n0. Then the
posterior probability distribution over Hr results in a well-known form for
the posterior distribution, the Beta distribution,

p(Hr|Vn∆) =
(n + 1)!
n0!n1!

rn1(1− r)n0 ,

with r ∈ [0, 1]. For r > 1/2 we are thereby indirectly specifying the posterior
probability distribution over the hypotheses Hq1 according to the transfor-
mation q1 = r, while for r < 1/2 we are indirectly specifying the posterior
for the hypotheses Hq0 , using the transformation q0 = 1− r.

From this expression we can derive the posterior probability of the hy-
potheses H0 and H1:

p(H0|Vn∆) =
(n + 1)!
n0!n1!

∫ 1/2

0
rn1(1− r)n0 dr = 1− p(H1|Vn∆). (5)

This can be written in terms of the jury size n and the majority ∆, using
n0 = (n−∆)/2 and n1 = (n+∆)/2. The expectation values for the competences
of the jurors, finally, are given by the following normalised integrals:

E[q0] =
1

p(H0|Vn∆)

∫ 1/2

0
rn1(1− r)n0+1 dr,

E[q1] =
1

p(H1|Vn∆)

∫ 1

1/2
rn1+1(1− r)n0 dr.

If n1 > n0, then we will have that E[q1] > E[q0], because on the assumption
that H0 is true a majority for H1 is more likely if the competence q0 is low.
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Before we investigate the expression (5) in the next section, we want
to address a possible criticism of the derivation of the posteriors. It may
be objected that the jury vote seems to have been used twice: once for
the determination of the posterior over competences, and then again for
the determination of a posterior for the hypotheses based on some expected
competence. But in the model above there is no such double usage. We only
employ the vote to determine a probability distribution over the parameter r,
which summarises the two competences q0 and q1. All the other probability
assignments are derived from this distribution without using the data again.

4 Calculating the Posterior Probability

In the preceding section we derived a probability assignment for the hy-
potheses concerning Jack’s guilt, under the assumption of the independence
of jurors but without assuming a fixed value for the competences q0 and
q1. The assignment is an integral expression in which both the size of the
majority ∆ and the jury size n play a role. In contrast, in Section 1 we pre-
sented the result by List (2004) that, on the assumption of any particular
competence q0 = q1 = q, the probability of the hypotheses only depends on
the majority ∆. In this section we investigate the integral of Equation (5)
both analytically and numerically, thereby putting these earlier results in a
new perspective.

We first give an analytic characterisation of how the probability for the
hypotheses depends on jury size and absolute margin. Significantly, we
retain an important consequence of the Condorcet formula, as discussed in
Section 1. On the assumption that n1 > n0, or ∆ > 0, we have the pairwise
inequality

p(Hr|Vn∆) > p(H1−r|Vn∆)

for all r ∈ (1/2, 1]. Hence we also have that∫ 1

1/2
p(Hr|Vn∆) dr >

∫ 1

1/2
p(H1−r|Vn∆) dr .

Via the translation 1− r = q0 and r = q1 within r ∈ (1/2, 1], we thus obtain
the inequality p(H1|Vn∆) > p(H0|Vn∆) on condition that ∆ > 0.

Further, let us look at the so-called marginal likelihoods of the hypothe-
ses Hj on the two votes V 0

n+1∩V 1
n+2. These two votes effectively enlarge the
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jury while keeping the absolute margin ∆ fixed. In Appendix A it is shown
that if ∆ = n1 − n0 > 0, we have

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆) > p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆). (6)

Since we also have

p(H1|Vn+2,∆)
p(H0|Vn+2,∆)

=
p(V 0

n+1 ∩ V 1
n+2|H1 ∩ Vn∆)

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)
× p(H1|Vn∆)

p(H0|Vn∆)
,

the inequality of Equation (6) entails that the odds of Jack’s guilt decreases
monotonically as the jury size n is increased if we hold the absolute margin
∆ > 0 fixed. This is in accordance with the intuitions voiced in the preceding
sections, namely that the jury size affects the probability of the hypothesis.

Secondly, we investigate the limiting behaviour in order to arrive at a
generalisation of Condorcet’s theorem for posterior odds. The mere fact
that p(H0|Vn∆) increases with the jury size for fixed ∆ > 0 does not yet
determine the limiting value for p(H0|Vn∆) as n goes to infinity. However,
as shown in Appendix B, if the absolute margin ∆ is held constant in the
limit, we find the asymptotic behaviour

lim
n→∞

p(H0|Vn∆) =
1
2
.

It is further shown that if the fractional majority, f = ∆/n, is held constant
in the limit, we have instead

lim
n→∞

p(H0|Vn,nf ) = 0.

Finally, we show that for the latter limiting behaviour, it is not necessary
for the majority to increase linearly with n. It is enough if ∆ increases more
quickly than

√
n to ensure that p(H0|Vn∆) tends to zero.

These results are in accordance with the aforementioned intuitions on
the relation between jury votes and the hypothesis voted over: if, in a large
jury, we have a close call between votes in favour and votes against, this
should be taken as a sign that it is hard to decide over the hypotheses, and
accordingly as a reason to put less trust in how the jury has voted than may
be suggested by the absolute margin.

In addition to these qualitative results, we have also done some numerical
calculations with the aid of Mathematicar. The integral in Equation (5)
can be written as a known transcendental function, the so-called regularised
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n →
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  ↑
p(H0|Vn∆)

Figure 2: Graphs showing p(H0|Vn∆) against jury size n for fixed values of ∆ = 2, 5, 10,

and 12.

incomplete Beta function. In Figure 2 we have plotted the relation between
the probability p(H0|Vn∆) and the jury size n = n1+n0, for various values of
the size of the majority ∆ = n1−n0. These calculations illuminate the case of
the two juries considered at the beginning of this paper. With a unanimous
verdict of guilt in a jury of 10, ∆ = 10 and n = 10, for example, we find the
probability p(H1|V10,10) = 0.9995. For a jury of 100 with a majority of 12
for guilt, on the other hand, we calculate a smaller probability that the jury
verdict is correct, namely p(H1|V100,12) = 0.8839. The important point here
is that the probability depends not only on the majority, as it did when we
chose some fixed competence. It decreases as n is increased, and this effect
may counterbalance a difference in the size of the majority.
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→n

→

∆

p(H0|Vn∆)

Figure 3: A graph showing p(H0|Vn∆) against jury size n and majority size ∆.
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In Figure 3 we see the dependence of the probability p(H0|Vn∆) on the
majority size ∆ spelled out in more detail. Note first that for ∆ = 0, this
probability is one-half, as it should be. Furthermore, for any fixed jury size,
the probability of the hypothesis H0 decreases with increasing majority size.
And finally, for fixed majority size ∆ and increasing jury size n, we can see
that the probability p(H0|Vn∆) slowly increases towards a half again. For
very large juries, as also suggested by Figure 2, a small majority does not
carry much weight.

5 Concluding remarks

Now that we have obtained these results, what can we say of the earlier
result of List [2004], which stated that the probability of the hypotheses
voted over only depends on the absolute margin ∆? Of course this is still
a valid point under the assumption of fixed symmetric competence. But
with the foregoing considerations in mind, we see that if we do not know the
competences q0 and q1, and if we decide to learn about these competences
on the basis of the jury vote, then both the absolute majority and the jury
size do matter.

We conclude with some suggestions on how to develop the results of the
present paper. First, we think that it is important for the practical appli-
cability of Condorcet-style results to relax the assumption of the theorems
concerning the independence of the jurors. As mentioned above, Bovens and
Hartmann [2004] successfully model a jury vote with dependent jurors, and
it will be interesting to see if that model can be combined with the model
presented in this paper. Another way to incorporate the jury dynamics into
the analysis is presented by adapting the prior, so as to make it less sensitive
to almost or entirely unanimous votes. As indicated before, we might think
that unanimity in small juries is due to mindless groupthink, and not a sign
of a high juror competence or of truth-conducive coherence. If so, we can
correct for a possible overestimation of the competence by choosing a prior
over competences that is peaked around r = 1/2.

Perhaps a more accurate way of modelling the interaction between group
members is by dropping the assumption on the likelihoods that is expressed
in the left-hand equality of Equation (1) altogether. In the model presented
in this paper, jury votes Vn∆ are characterised by the numbers n and ∆ only,
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because the likelihoods of the hypotheses Hj only depend on these numbers.
But we might also partition the space of possible jury votes differently,
according to other characteristics of the votes, and employ hypotheses that
have more complicated likelihood functions over that space. While this will
no doubt provide interesting new insights, we can scarcely hope to attain
analytic results for a model with these more involved statistical hypotheses.

An entirely different line of research concerns the possible variation of
competences within the jury. Dietrich [unpublished] shows that the classical
Condorcet jury theorem still holds if we suppose that the competences of
jurors vary, as long as their average competence is larger than 1/2. This raises
the question whether we can also derive an expression for the posterior odds
of the hypothesis on the assumption of a certain spread in the competences
of the respective jurors. A suitable statistical setting for answering this
question is hierarchical Bayesian modelling, in which we may suppose the
juror relative competence qij to be drawn at random from a distribution of
possible values for the competence. Again, analytic results may be very hard
to come by, but software packages such as WinBUGSr are well equipped to
investigate such models numerically.

Finally, we expect that much can be gained by applying the present
insights to the discussion over the coherence measures proposed in Bovens
and Hartmann [2004], and continued in Haenni and Hartmann [2006]. The
reliability parameter employed there is formally similar to the competence
parameter employed in the present paper. It will be interesting to see if and
how we can adapt our estimations of the reliability of measurement appa-
ratuses or witnesses from their coherence. Because the well-known impossi-
bility result of Bovens and Hartmann relies on variability in the reliability
parameter, and because in the present paper we have shown how to adapt
the probability assignment over values of this parameter, we surmise that
casting their impossibility result in terms of the present findings will lead to
interesting new insights.
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A Relative size of the marginal likelihoods

In this appendix we prove that the marginal likelihood of the hypothesis
H0 for the combined votes V 0

n+1 ∩ V 1
n+2, given an earlier jury vote Vn∆ for

which ∆ > 0, is larger than the corresponding likelihood of the hypothesis
H1. Mathematically,

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆) > p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆). (7)

We will do so by writing out the marginal likelihoods in terms of the likeli-
hoods of the statistical hypotheses Hr for r < 1/2 and r ≥ 1/2 respectively.

We first determine the likelihoods of the hypotheses Hr for the two votes
V 0

n+1 ∩ V 1
n+2:

p(V 0
n+1 ∩ V 1

n+2|Hr ∩ Vn∆) = r(1− r).

Recall that the hypotheses H0 and H1 are composed of the statistical
hypotheses Hr. The likelihood of the hypothesis H0 for the two votes
V 0

n+1 ∩ V 1
n+2 is

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)

=
∫ 1/2

0
p(Hr|H0 ∩ Vn∆)p(V 0

n+1 ∩ V 1
n+2|Hr ∩H0 ∩ Vn∆) dr

=
1

p(H0|Vn∆)
(n + 1)!
n0!n1!

∫ 1/2

0
rn1(1− r)n0 r(1− r) dr . (8)

in which we have used the normalisation p(H0|Vn∆) because within r ∈
[0, 1/2] we have that

p(Hr|H0 ∩ Vn∆) =
p(Hr ∩H0|Vn∆)

p(H0|Vn∆)
=

p(Hr|Vn∆)
p(H0|Vn∆)

=
1

p(H0|Vn∆)
(n + 1)!
n0!n1!

rn1(1− r)n0 . (9)

The marginal likelihood of the hypothesis H1 for the two votes is given by
a similar expression, with the difference that the integration bounds are 1/2

and 1, and that the normalisation is p(H1|Vn∆).
In order to compare the two marginal likelihoods, it will be convenient

to write Equation (9) in terms of the same integration bounds, making use
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of the symmetry in the integral expression:

p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
1

p(H1|Vn∆)
(n + 1)!
n0!n1!

∫ 1

1/2
rn1(1− r)n0 r(1− r) dr

=
1

p(H1|Vn∆)
(n + 1)!
n0!n1!

∫ 1/2

0
rn0(1− r)n1 r(1− r) dr . (10)

We can now compare the two marginal likelihoods by comparing the func-
tions appearing under the integration sign. Specifically, we will investigate
the expression

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)− p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
∫ 1/2

0

(
p(Hr|H0 ∩ Vn∆)− p(Hr|H1 ∩ Vn∆)

)
r(1− r) dr

=
(n + 1)!
n0!n1!

∫ 1/2

0

(
rn1(1− r)n0

p(H0|Vn∆)
− rn0(1− r)n1

p(H1|Vn∆)

)
r(1− r) dr , (11)

the difference between the marginal likelihoods of Equations (8) and (10).
If this function is positive, then the marginal likelihood of H0 is larger than
that of H1, which is what we have set out to prove.

The expression inside the integral of Equation (11) consists of two parts.
We now make some observations on the part between brackets,

g(n0, n1, r) =
rn1(1− r)n0

p(H0|Vn∆)
− rn0(1− r)n1

p(H1|Vn∆)
.

First, because of the normalisations, p(Hj |Vn∆), we have∫ 1/2

0
g(n0, n1, r) dr = 0. (12)

Next, if we assume that n1 > n0, Equation (6) says that p(H1|Vn∆) >

p(H0|Vn∆), so that we have

g(n0, n1, 1/2) =
(

1
p(H0|Vn∆)

− 1
p(H1|Vn∆)

)
1
2n

> 0 . (13)

Furthermore, the equation g(n0, n1, r) = 0 has two solutions in r. One is
r = 0, the other is

r∗ =
c

1 + c
with c =

(
p(H0|Vn∆)
p(H1|Vn∆)

)1/∆

. (14)
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Together with Equations (11) and (13), Equation (14) entails that in the
domain r ∈ (0, r∗) we have that g(n0, n1, r) < 0 while in r ∈ (r∗, 1/2] we
have that g(n0, n1, r) > 0. Finally, with Equation (12) this entails that∫ r∗

0
|g(n0, n1, r)| dr =

∫ 1/2

r∗
g(n0, n1, r) dr. (15)

In other words, the entire negative contribution to the integral of Equation
(12) lies in r < r∗, while the entire positive contribution to it lies in r > r∗.
All this is illustrated in Figure 4.

r →

  ↑
p(Hr|Hj∩Vn∆)

½

j=0

j=1

r*0

Figure 4: Graphs of the functions p(Hr|Hj ∩ Vn∆) for j = 0, 1 against r ∈ [0, 1/2]. The

values of n and ∆ are kept fixed. As expressed in Equation (15), the two areas in between

the two curves are equal.

We make one further observation on the function r(1−r), namely that it
is monotonically increasing in r over the domain r ∈ [0, 1/2]. Now recall that
in the domain r ∈ [0, r∗], the contribution of the integral is entirely negative.
The factor with which the function g(n0, n1, r) is multiplied over this domain
is, on average, strictly less than r∗(1−r∗), and the contribution to the whole
integral of Equation (11) therefore has the following lower bound:∫ r∗

0
g(n0, n1, r) r(1− r) dr > r∗(1− r∗)

∫ r∗

0
g(n0, n1, r) dr. (16)

In the domain r ∈ [r∗, 1/2], on the other hand, the integral is entirely posi-
tive, and the factor with which the function g(n0, n1, r) is multiplied is, on
average, strictly more than r∗(1− r∗), thus leading to a contribution with a
lower bound∫ 1/2

r∗
g(n0, n1, r) r(1− r) dr > r∗(1− r∗)

∫ 1/2

r∗
g(n0, n1, r) dr. (17)
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Combining these two equations, we have a lower bound of the difference
between the two marginal likelihoods covering the entire domain of r.

Hence we can determine the lower bound of the difference between the
marginal likelihoods, as follows:

p(V 0
n+1 ∩ V 1

n+2|H0 ∩ Vn∆)− p(V 0
n+1 ∩ V 1

n+2|H1 ∩ Vn∆)

=
∫ 1/2

0
g(n0, n1, r) r(1− r) dr

=
∫ r∗

0
g(n0, n1, r) r(1− r) dr +

∫ 1/2

r∗
g(n0, n1, r) r(1− r) dr

> r∗(1− r∗)

(∫ r∗

0
g(n0, n1, r) dr +

∫ 1/2

r∗
g(n0, n1, r) dr

)
= 0.

The crucial step in this derivation is of course the inequality, which is based
on the two lower bounds of Equations (16) and (17). Together they establish
Equation (7).

B Limiting behaviour of the probabilities

The posterior probability for H0 conditional on the jury vote Vn∆ can be
written as a regularized incomplete Beta function; see Abramowitz and Ste-
gun [1964, p. 263], formulae (6.6.1) and (6.6.2). Specifically,

p(H0|Vn∆) =
(n + 1)!
n0!n1!

∫ 1
2

0
dr rn1(1− r)n0

=
B1

2
(n1 + 1, n0 + 1)

B(n1 + 1, n0 + 1)
≡ I 1

2
(n1 + 1, n0 + 1) . (18)

In this appendix we exploit certain asymptotic properties of the regularized
incomplete Beta function to show that p(H0|Vn∆) tends to one-half as n

tends to infinity at constant ∆, but to zero if the fractional majority, f =
∆/n, is held constant in the limit. It is also shown that if ∆ increases more
quickly than

√
n, p(H0|Vn∆) still tends to zero in the limit of n to infinity.

Theorem 1
If ∆ = n1 − n0 ≥ 0 is constant, then I 1

2
(n1 + 1;n0 + 1) tends to 1/2 in the

limit that n = n1 + n0 tends to infinity.
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Proof
On changing the integration variable from r to t = (1− 2r)2, we find

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n + 1)!

n0!n1!

∫ 1

0

dt√
t
(1−

√
t)n1(1 +

√
t)n0 . (19)

This expression can be rewritten as

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n + 1)!

n0!n1!

∫ 1

0

dt√
t
(1− t)n0(1−

√
t)∆ . (20)

The last factor in the integrand can be expanded as the finite binomial series

(1−
√

t)∆ =
∆∑

m=0

∆!
m! (∆−m)!

(−1)m t
m
2 ,

and this allows the evaluation of the integral, term for term:

I 1
2
(n1+1;n0+1) = 2−n−2 (n + 1)!

n0!n1!

∆∑
m=0

∆!
m! (∆−m)!

(−1)m Γ(m+1
2 )Γ(n0 + 1)

Γ(n0 + m+3
2 )

.

(21)
The Stirling expansion, namely

Γ(n) = (n− 1)! =
√

2πnn− 1
2 e−n[1 + O( 1

n)]

is now used to give the asymptotic expressions

(n + 1)!
n0!n1!

∼ 2n+1

√
n

2π

Γ(n0 + 1)
Γ(n0 + m+3

2 )
∼ n

−m+1
2

0 =
(

2
n−∆

)m+1
2

.

On inserting these forms into Equation (21), we find that I 1
2
(n1 + 1;n0 + 1)

is asymptotically equivalent to

1
2
√

π

√
n

n−∆

[
Γ(1/2)−∆Γ(1)

√
2

n−∆
+ . . . + (−1)∆Γ(∆+1

2 )
(

2
n−∆

)∆
2

]

All the terms in the square braces, except for the first one, vanish in the
limit of large n, and there is only a finite number of these terms. So only the
first term survives, and since Γ(1/2) =

√
π, we have thereby proved indeed

that I 1
2
(n1 + 1;n0 + 1) tends to 1/2 in the limit as n tends to infinity.
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Theorem 2
If ∆ ∼ nβ for large n, with 1/2 < β ≤ 1, then I 1

2
(n1 + 1;n0 + 1) tends to 0

in the limit.

Proof
Recall that we can rewrite Equation (18) as Equation (19). The latter can
also be rewritten as

I 1
2
(n1 + 1;n0 + 1) = 2−n−2 (n + 1)!

n0!n1!

∫ 1

0

dt√
t
(1− t)n1(1 +

√
t)−∆ , (22)

and we now split the integral into two pieces, corresponding to 0 < t < ε2

and ε2 < t < 1, where ε will be specified in a moment. Clearly,∫ ε2

0

dt√
t
(1− t)n1(1 +

√
t)−∆ <

∫ ε2

0

dt√
t

= 2ε

whereas∫ 1

ε2

dt√
t
(1− t)n1(1 +

√
t)−∆ < (1 + ε)−∆

∫ 1

0

dt√
t
(1− t)n1

= (1 + ε)−∆ Γ(1
2)Γ(n1 + 1)
Γ(n1 + 3

2)
.

We insert the last two inequalities into Equation (22) and also employ the
Stirling expansion, as in the proof of Theorem 1. This yields

I 1
2
(n1 + 1;n0 + 1) <

√
n

2π
ε +

√
n

n + ∆
(1 + ε)−∆ .

Now choose ε = n−α and put ∆ ∼ nβ, thereby obtaining

I 1
2
(n1 + 1; n0 + 1) <

1√
2π

n
1
2
−α + (1 + n−α)−nβ

.

Now (1 + n−α)nα
tends to e in the limit of large n, so we obtain

I 1
2
(n1 + 1;n0 + 1) <

1√
2π

n
1
2
−α + exp[−nβ−α]

asymptotically. For any α > 1/2, the first term above vanishes asymptoti-
cally, and for any β > α, so does the second term. Hence for any 1/2 < β ≤ 1
we have shown that I 1

2
(n1 + 1;n0 + 1) tends to 0 in the limit as n tends to

infinity.
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Corollary
If f = ∆

n is constant, then I 1
2
(n1 + 1; n0 + 1) tends to 0 in the limit that

n = n1 + n0 tends to infinity.

Proof
This follows immediately by taking the special case β = 1 in Theorem 2.
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