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Jan-Willem Romeijn

Faculty of Philosophy

University of Groningen
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Abstract

This chapter1 concerns inductive logic in relation to mathematical
statistics. I start by introducing a general notion of probabilistic induc-
tive inference. Then I introduce Carnapian inductive logic, and I show
that it can be related to Bayesian statistical inference via de Finetti’s
representation theorem. This in turn suggests how Carnapian induc-
tive logic can be extended to include inferences over statistical hy-
potheses. With this extension inductive logic becomes more easily
applicable to statistics. I consider two classical statistical procedures,
maximum likelihood estimation and Neyman-Pearson hypothesis test-
ing, and I discuss how they can be accommodated in an inductive logic
with hypotheses.

1 From inductive logic to statistics

There are strong parallels between statistics and inductive logic. An induc-
tive logic is a system of inference that describes the relation between data
statements, and statements that extend beyond the data, such as predictions
over future data, and general conclusions on all possible data. Statistics, on
the other hand, is a mathematical discipline that describes procedures for
deriving results about a population from sample data. These results include
decisions on rejecting or accepting a hypothesis about the population, the

1This chapter was written in parallel with a chapter for the Handbook for the Philos-

ophy of Science: Philosophy of Statistics, edited by Bandyopadhyay and Forster (2009).

The two chapters show considerable overlap. The present chapter considers how inductive

logic can be developed to encompass the statistical procedures. The other chapter ap-

proaches the same material from the other end, and aims at a reconstruction of statistical

procedures in terms of inductive logics.
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determination of probability assignments over such hypotheses, predictions
on future samples, and so on. Both inductive logic and statistics are thus
calculi for getting from the given data to statements or results that transcend
the data.

Despite this fact, inductive logic and statistics have evolved more or less
separately. This is partly because there are objections to viewing classical
statistics as inferential. Another reason may be that inductive logic has
been dominated by the Carnapian programme, and that statisticians have
perhaps not recognised inductive logic as a discipline that is much like their
own. Statistical hypotheses and models do not appear in the latter, but
they are the start and finish of most statistical procedures. Against this, I
aim to show that Carnapian inductive logic can be developed to encompass
inference over statistical hypotheses, and that the resulting inductive logic
can, at least partly, capture statistical procedures.

In doing so, I hope to bring the philosophical discipline of inductive logic
and the mathematical discipline of statistics closer together. I believe both
disciplines can benefit from such a rapprochement. First, framing statistical
procedures as inferences in an inductive logic may help to clarify the presup-
positions and foundations of these procedures. Second, by relating statistics
to inductive logic, insights from inductive logic may be used to enrich and
improve statistics. And finally, showing the parallels between inductive logic
and statistics may show the relevance, also to inductive logicians themselves,
of their discipline to the sciences, and thereby direct further research in this
field.

The reader may wonder where in this chapter she can read about the his-
tory of inductive logic in relation to the historical development of statistics.
Admittedly, positions and theories from both disciplines are here discussed
from a systematic viewpoint, and not so much as historical entities. I aim
to provide a unified picture of inductive inference to which both inductive
logic and statistics, past or present, can be related. At the heart of this pic-
ture lies the notion of statistical hypothesis. I think the fact that inductive
logic and statistics have had comparatively little common past can be traced
back to the absence of this notion from inductive logic. In turn, this absence
can be traced back to the roots of inductive logic in logical empiricism. In
that derived sense, the exposition of this chapter is related to the history of
inductive logic.
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The plan of the chapter is as follows. I start by describing induction and
observations in formal terms. Then I introduce a general notion of proba-
bilistic inductive inference over these observations. Following that I present
Carnapian inductive logic, and I show that it can be related to Bayesian
statistical inference via de Finetti’s representation theorem. This in turn
suggests how Carnapian inductive logic can be extended to include infer-
ences over statistical hypotheses. Finally, I consider two classical statistical
procedures, maximum likelihood estimation and Neyman-Pearson hypothe-
sis testing, and I discuss how they can be accommodated in this extended
inductive logic.

Given the nature of the chapter, the discussion of statistical procedures
is relatively short. Many statistical procedures are not dealt with. Sim-
ilarly, I cannot discuss in detail the many inductive logics devised within
Carnapian inductive logic. For the latter, the reader may consult chapters
9 and 10 in this volume, and the further references contained therein. For
the latter, I refer to a recent volume on the philosophy of statistics, edited
by Bandyopadhyay and Forster (2009).

2 Observational data

As indicated, inductive inference starts from statements on data, and ends
in statements that extend beyond the data. An example of an inductive
inference is that, from the statement that up until now all observed pears
were green, we conclude that the next few pears will be green as well. An-
other example is that from the green pears we have seen we conclude that
all pears are green, period. The key characteristic is that the conclusion
says more than what is classically entailed by the premises.

Let me straighten the inferences out a bit. First, I restrict attention to
statements on empirical facts, thus leaving aside such statements as that
pears are healthy, or that God made them. Second, I focus on the results of
observations of particular kinds of empirical fact. For example, the empirical
fact at issue is the colour of pears, and the results of the observations are
therefore colours of individual pears. There can in principle be an infinity
of such observation results, but what I call data is always a finite sequence
of them. Third, the result of an observation is always one from a designated
partition of properties, usually finite but always countable. In the pear case,
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it may be {red, green, yellow}. I leave aside observations that cannot be
classified in terms of a mutually exclusive set of properties.

I now make these ideas on what counts as data a bit more formal. The
concept I want to get across is that of a sample space, in which single obser-
vations and sequences of observations can be represented as sets, sometimes
called events. After introducing the observations in terms of a language, I
define sample space. All the probabilities in this chapter will be defined over
that space because, strictly speaking, probability is axiomatized as a mea-
sure function over sets. However, the expressions may be taken as sentences
just as well.

We denote the observation of individual i by Qi. This is a propositional
variable, and we denote assignments or valuations of this variable by qki ,
which represents the sentence that the result of observing individual i is the
property k. A sequence of such results of length t, starting at 1, is denoted
with the propositional variable St, with the assignment sk1...kt , often abbre-
viated as st. In order to simplify notation, I denote properties with natural
numbers, so k ∈ K = {0, 1, . . . , n− 1}. For example, if the observations are
the aforementioned colours of pears, then n = 3. I write red as 0, green as
1, and yellow as 2, so that s012 means that the first three pairs were red,
green, and yellow respectively. Note further that there are logical relations
among the sentences, like s012 → q1

2. Together, the expressions st and qki
form the observation language.

It will be convenient to employ a set-theoretical representation of the
observations, a so-called sample space, otherwise known as an observation
algebra. To this aim, consider the set of all infinitely long sequencesKΩ, that
is, all sequences like 012002010211112 . . ., each encoding the observations of
infinitely many pears. Denote such sequences with ω, and write ω(i) for the
i-th element in the sequence ω. Every sentence qki can then be associated
with a particular set of such sequences, namely the set of ω whose i-th
element is k:

qki = {ω ∈ KΩ : ω(i) = k}.

Clearly, we can build up all finite sequences of results sk1...kt as intersections
of such sets:

sk1...kt =
t⋂
i=1

qkii .
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Note that entailments in the language now come out as set inclusions: we
have s012 ⊂ q1

2. Instead of using a language with sentences qki and logical
relations among such sentences, I will in the following use a so-called algebra
Q, built up by the sets qki and their conjunctions and intersections.

Finally, I want to emphasise that the notion of a sample space introduced
here is really quite general. It excludes a continuum of individuals and
a continuum of properties, but apart from that, any data recording that
involves individuals and that ranges over a set of properties can serve as
input. For example, instead of pears having colours we may think of subjects
having test scores. Or of companies having certain stock prices. The sample
space used in this chapter follows the basic structure of most applications
in statistics, and of almost all applications in inductive logic.

3 Inductive inference

Now that I have made the notion of data more precise, let me turn to
inductive inference. Consider the case in which I have observed three red
pears: s000. What can I conclude about the next pear? Or about pears in
general? From the structure of the data itself, it seems that we can conclude
depressingly little. We might say that the next pear is red, q0

4. But as it
stands, each of the sets s000k = s000 ∩ qk4 , for k = 0, 1, 2, is a member of
the sample space. The event of observing three red pears is consistent with
any colour for the next pear. Purely on the basis of the classical relations
among observations, as captured by the sample space, we cannot draw any
inductive conclusion.

Perhaps we can say that given three green pears, the next pear being
red is more probable? This is where we enter the domain of probabilistic
inductive logic. We can describe the complete population of pears by a
probability function over the observational facts,

P : Q 7→ [0, 1].

Every possible pear qkt+1, and also every sequence of such pears sk1...kt , re-
ceives a distinct probability. The probability of the next pear being of a cer-
tain colour, conditional on a given sequence, is expressed as P (qkt+1|sk1...kt).
Similarly, we may wonder about the probability that all pears are green,
which is again determined by the probability assignment, in this case P ({∀i :
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q1
i }). All such inductive inferences are completely determined by the full

probability function P .
The central question of any inductive inference or procedure is therefore

how to determine the function P , relative to the data that we already have.
What must the probability of the next observation be, given a sequence
of observations gone before? And what is the right distribution over all
observations, given the sequence? In the framework of this chapter, both
statistics and inductive logic aim to provide an answer to these questions,
but they do so in different ways.

It will be convenient to keep in mind a particular understanding of prob-
ability assignments P over the sample space, or observation algebra, Q. Re-
call that in classical two-valued logic, a model of the premises is a complete
truth valuation over the language, subject to the rules of logic. Because
of the correspondence between language and algebra, the model is also a
complete function over the algebra, taking the values {0, 1}. By analogy,
we may consider a probability function over an observation algebra, which
takes the values in the interval [0, 1] and which is subject to the axioms of
probability, as a model too.

In the following I will use probability functions over sample space as
models, that is, as the building blocks of a formal semantics. But we must
be careful with the terminology here, because in statistics, models often re-
fer to sets of statistical hypotheses. In the following, I will therefore refer to
complete probability functions over the algebra as statistical hypotheses. A
hypothesis is denoted h, the associated probability function is Ph. In statis-
tics, these probability functions are also often referred to as distributions
over a population.

Probabilistic inductive logics use probability functions over sample space
for the purpose of inductive inference. But there are widely different ways
of understanding the inductive inferential step. The most straightforward of
these, and the one that is closest to statistical practice, is to map each sample
st onto a hypothesis h, or otherwise onto a set of such hypotheses. The
inferential step then runs from the data st and a set of statistical hypotheses,
each associated with a probability function Ph, towards a more restricted set,
or even to a single h? and Ph? . The resulting inductive logic is ampliative,
because the restriction on the set of probability functions that is effected
by the data, i.e. the conclusion, is often stronger than what follows from
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the data and the initial set of probability functions, i.e. the premises, by
deduction.

We can also make the inferential step precise by analogy to a more
classical, non-ampliative notion of entailment. As will become apparent, this
kind of inferential step is more naturally associated with what is traditionally
called inductive logic. It is also associated with a basic kind of probabilistic
logic, as elaborated in Hailperin (1996) and more recently in Haenni et al.
(2008), especially section 2. Finally, this kind of inference is strongly related
to Bayesian logic, as advocated by Howson (2003). It is the kind of inductive
logic favored in this chapter.

Recall that an argument is classically valid if and only if the set of
models satisfying the premises are contained in the set of models satisfying
the conclusion. The same idea of classical entailment may now be applied
to the probabilistic models over sample space. In that case, the inferential
step is from one set of probability assignments, characterised by a number
of restrictions associated with premises, towards another set of probability
assignments, characterised by a different restriction that is associated with
a conclusion. The inference is then valid if the former is contained in the
latter. In such a valid inferential step, the conclusion does not amplify the
premises.

As an example, say that we fix P (q0
1) = 1/2 and P (q1

1) = 1/3. Both these
probability assignments can be taken as premises in a logical argument, and
the models of these premises are simply all probability functions P over Q
for which these two valuations hold. By the axioms of probability, we can
derive that any such function P will also satisfy P (q2

1) = 1/6. On its own, the
latter expression amounts to a set of probability functions over the sample
space Q in which the probability functions that satisfy both premises are
included. In other words, the latter assignment is classically entailed by the
two premises.

Along exactly the same lines, we may derive a probability assignment
for a statistical hypothesis h conditional on the data st, written as P (h|st),
from the input probabilities P (h), P (st), and P (st|h), using the theorem
of Bayes. The classical understanding of entailment may thus be used to
reason inductively, namely towards statistical hypotheses that themselves
determine a probability assignment over data. In this chapter I give many
examples of such Bayesian inferences.
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In the following the focus will be on non-ampliative inductive logic, be-
cause Carnapian inductive logic is most easily related to non-ampliative
logic. Therefore, viewing statistical procedures in this perspective makes
the latter more amenable to inductive logical analysis. I do not want to
claim that I thereby lay bare the real nature of the statistical procedures.
Rather, I hope to show that investigating statistics along these specific log-
ical lines clarifies and enriches statistics. Furthermore, I hope to stimulate
research in inductive logic that is directed at problems in statistics.

4 Carnapian logics

With the notions of observation and induction in place, I can present the
logic of induction developed by Carnap (1950, 1952). Historically, Carnapian
inductive logic can lay most claim to the title of inductive logic proper. It
was the first systematic study into probabilistic predictions on the basis of
data.

The central concept in Carnapian inductive logic is logical probability.
Recall that the sample space Q, also called the observation algebra, cor-
responds to an observation language, comprising of sentences such as “the
second pear is green”, or in formal terms, q1

2. The original idea of Carnap
was to derive a probability assignment over the language on the basis of
symmetries within the language. In the example, we have three mutually
exclusive properties for each pear, and in the absence of any further knowl-
edge, there is no reason to think of any of these properties as special or as
more, or less, appropriate than the other two. The symmetry inherent to
the language suggests that each of the sentences qki for k = 0, 1, 2 should get
equal probability:

P (q0
i ) = P (q1

i ) = P (q2
i ) =

1
3
.

The idea of logical probability is to fix a unique probability function over the
observation language, or otherwise a strongly restricted set of such functions,
on the basis of such symmetries.

Next to symmetries, the set of probability functions can also be restricted
by certain predictive properties. As an example, we may feel that yellow
pears are more akin to green pears, so that finding a yellow pear decreases
the probability for red pears considerably, while it decreases the probability
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for green pears much less dramatically. That is,

P (q1
t+1|st−1 ∩ q2

t )
P (q0

t+1|st−1 ∩ q2
t )
>
P (q1

t+1|st−1)
P (q0

t+1|st−1)
.

How such relations among properties may play a part in determining the
probability assignment P is described in the literature on analogy reasoning.
See Festa (2006); Maher (2000); Romeijn (2006). Interesting recent work
on relations between predictive properties can also be found in Paris and
Waterhouse (2008).

Any Carnapian inductive logic is thus defined by a number of symmetry
principles and predictive properties, determining a probability function, or
otherwise a set of such functions. One very well-known inductive logic,
discussed at length in Carnap (1952), employs a probability assignment
characterised by the following symmetries,

P (qki ) = P (qk
′
i ), (1)

P (sk1...ki...kt) = P (ski...k1...kt), (2)

for all values of i, t, k, and k′, and for all values ki with 1 ≤ i ≤ t. These
two symmetries together determine a set of probability assignments P , for
which we can derive the following consequences:

P (qkt+1|st) =
tk + λ/n

t+ λ
, (3)

where n is the number of values for k, and tk is the number of earlier
instances qki in the sequence st. The parameter λ > 0 can be chosen at will.
Predictive probability assignments of this form are called Carnapian λ-rules.

The probability distributions of Equation (3) has some striking features.
Most importantly, for any of the probability functions P satisfying the afore-
mentioned symmetries, we have that

P (qkt+1|st−1 ∩ qkt ) > P (qkt+1|st−1). (4)

This predictive property is called instantial relevance: the occurrence of qkt
increases the probability for qkt+1. It was a huge success for Carnap that
this typically inductive effect is derivable from the symmetries alone. By
providing an independent justification for these symmetries, Carnap effec-
tively provided a justification for induction, thereby answering the age-old
challenge of Hume.
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Note that the outlook of Carnapian logic is very different from the out-
look of the inductive logics discussed in Section 3. Any such logic starts with
a set of probability functions, or hypotheses, over a sample space and then
imposes a further restriction on this set, or derives consequences from it,
on the basis of the data. By contrast, Carnapian logic starts with a sample
space and a number of symmetry principles and predictive properties, that
together fix a set of probability functions over the sample space. Just like
the truth tables restrict the possible truth valuations, so do these principles
restrict the logical probability functions. In sum, whereas the inductive log-
ics above take the probability functions as given, Carnap derives them from
principles that have a logical status.

If we ignore the notion of logical probability and concentrate on the in-
ferential step, then Carnapian inductive logics fit best in the template for
non-ampliative inductive logic. As said, we fix a set of probability assign-
ments over the sample space by means of a number of symmetry principles
and predictive properties. But subsequently the conclusions are reached by
working out specific consequences for probability functions within this set,
using the axioms of probability only. In particular, Carnapian inductive
logic looks at the probability assignments conditional on various samples
st, deriving by means of the probability axioms that they all satisfy the
instantial relevance of Equation (4), for example. Importantly, in this tem-
plate the symmetries in the language, like Equation (1) and Equation (2),
appear as premises in the inductive logical inference. They restrict the set
of probability assignments that is considered in the inference.

Carnapian logic and statistical inference are clearly similar, because they
both concern sets of probability functions over sample space. However,
while statistics frames these probability functions in terms of statistical hy-
potheses, these hypotheses do not appear in Carnapian logic. Instead, the
emphasis is on characterising probability functions in terms of symmetries
and predictive properties. The background of this is logical empiricism:
the symmetries directly relate to the empirical predicates in the language
of inductive logic, and the predictive properties relate to properties of the
probability functions that show up for finite data. By contrast, statistical
hypotheses are rather elusive: they cannot be formulated in terms of finite
combinations of empirical predicates, and they only show up, if ever, in the
limit of the data size going to infinity.

10



The overview of Carnapian logics given here is admittedly very brief. For
example, I have not dealt with a notable exception to the horror hypothesi
of inductive logicians, namely Hintikka systems. For more on the rich re-
search programme of Carnapian inductive logic, I refer to chapter 9, and
for Hintikka systems in particular, to chapter 10. For present purposes the
thing to remember is that Carnapian logic can be viewed as a non-ampliative
inductive logic, and that it does not make use of statistical hypotheses.

5 Bayesian statistics

The foregoing introduced Carnapian inductive logic. Now we can start an-
swering the central question of this chapter. Can inductive logic accommo-
date statistical procedures?

The first statistical procedure under scrutiny is Bayesian statistics. The
defining characteristic of this kind of statistics is that probability assign-
ments do not just range over data, but that they can also take statistical
hypotheses as arguments. As will be seen in the following, Bayesian infer-
ence is therefore naturally represented in terms of a non-ampliative inductive
logic. Moreover, it relates very naturally to Carnapian inductive logic.

Let H be the space of statistical hypotheses hθ, and let Q be the sample
space as before. The functions P are probability assignments over the entire
space H × Q. Since the hypotheses hθ are members of the combined alge-
bra, the functions P (st|hθ) range over the entire algebra Q. We can define
Bayesian statistics as follows.

Definition 5.1 (Bayesian Statistical Inference) Assume the prior prob-
ability P (hθ) assigned to hypotheses hθ ∈ H, with θ ∈ Θ, the space of pa-
rameter values. Further assume P (st|hθ), the probability assigned to the
data st conditional on the hypotheses, called the likelihoods. Bayes’ theorem
determines that

P (hθ|st) = P (hθ)
P (st|hθ)
P (st)

. (5)

Bayesian statistics outputs the posterior probability assignment, P (hθ|st).

See Barnett (1999) and Press (2003) for more detail. The further results form
a Bayesian inference, such as estimations and measures for the accuracy of
the estimations, can all be derived from the posterior distribution over the
statistical hypotheses.
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In this definition the probability of the data P (st) is not presupposed,
because it can be computed from the prior and the likelihoods by the law of
total probability,

P (st) =
∫

Θ
P (hθ)P (st|hθ)dθ.

The result of a Bayesian statistical inference is not always a complete pos-
terior probability. Often the interest is only in comparing the ratio of the
posteriors of two hypotheses. By Bayes’ theorem we have

P (hθ|st)
P (hθ′ |st)

=
P (hθ)P (st|hθ)
P (hθ′)P (st|hθ′)

,

and if we assume equal priors P (hθ) = P (hθ′), we can use the ratio of the
likelihoods of the hypotheses, the so-called Bayes factor, to compare the
hypotheses.

Let me give an example of a Bayesian procedure. Say that we are inter-
ested in the colour composition of pears from Emma’s farm, and that her
pears are red, q0

i , or green, q1
i . Any ratio between these two kinds of pears is

possible, so we have a set of hypotheses hθ, called multinomial hypotheses,
for which

Phθ(q
1
t |st−1) = θ, Phθ(q

0
t |st−1) = 1− θ (6)

with θ ∈ [0, 1]. The hypothesis hθ fixes the portion of green pears at θ,
and therefore, independently of what pears we saw before, the probability
that a randomly drawn pear from Emma’s farm is green is θ. The type of
distribution over Q that is induced by these hypotheses is sometimes called
a Bernoulli distribution, or a multinomial distribution.

Let us define a Bayesian statistical inference over these hypotheses. In-
stead of straightforwardly choosing among them on the basis of the data, as
classical statistics advises, we assign a probability density function over the
range of hypotheses,

P (hθ) ∝ θλ/2−1(1− θ)λ/2−1 (7)

with θ ∈ Θ = [0, 1]. For λ = 2, this function is uniform over the domain.
Now say that we observe a sequence of pears st = sk1...kt . Defining t1 as the
number of green pears, or 1’s, in the sequence st, and t0 for the number of
0’s, so t0 + t1 = t. The probability of these data given the hypothesis hθ is

P (st|hθ) =
t∏
i=1

Phθ(q
ki
i |si−1) = θt1(1− θ)t0 . (8)
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Note that the probability of the data only depends on the number of 0’s and
the number of 1’s in the sequence. Applying Bayes’ theorem then yields:

P (hθ|st) ∝ θλ/2−1+t1(1− θ)λ/2−1+t0 . (9)

This is the posterior distribution over the hypotheses. It is derived by the
axioms of probability theory alone, specifically by Bayes’ theorem.

Most of the controversy over the Bayesian method concerns the deter-
mination and interpretation of the probability assignment over hypotheses.
As will become apparent in the following, classical statistics objects to the
whole idea of assigning probabilities to hypotheses. The data have a well-
defined probability, because they consist of repeatable events, and so we can
interpret the probabilities as frequencies, or as some other kind of objective
probability. But the probability assigned to a hypothesis cannot be under-
stood in this way, and instead expresses an epistemic state of uncertainty.
One of the distinctive features of classical statistics is that it rejects such an
epistemic interpretation of the probability assignment, and that it restricts
itself a straightforward interpretation of probability as relative frequency.

Even if we buy into this interpretation of probability as epistemic un-
certainty, how do we determine a prior probability? At the outset we do
not have any idea of which hypothesis is right, or even which hypothesis is
a good candidate. So how are we supposed to assign a prior probability to
the hypotheses? The literature proposes several objective criteria for filling
in the priors, for instance by maximum entropy or by other versions of the
principle of indifference, but something of the subjectivity of the starting
point remains. The strength of the classical statistical procedures is that
they do not need any such subjective prior probability.

6 Inductive logic with hypotheses

Bayesian statistics is closely related to the inductive logic of Carnap. In this
section I will elaborate on this relation, and indicate how Bayesian statistical
inference and inductive logic may have a fruitful common future.

To see how Bayesian statistics and Carnapian inductive logic hang to-
gether, note first that the result of a Bayesian statistical inference, namely
a posterior, is naturally translated into the result of a Carnapian inductive
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logic, namely a prediction,

P (q1
t+1|st) =

∫ 1

0
P (q1

t+1|hθ ∩ st)P (hθ|st)dθ, (10)

by the law of total probability. Furthermore, consider the posterior prob-
ability over multinomial hypotheses. Recall that the parameter θ is the
probability for the next pear to be green, see Equation (6). Therefore we
have

Exp[θ] =
∫

Θ
θP (hθ|st)dθ

=
∫ 1

0
P (q1

t+1|hθ ∩ st)P (hθ|st)dθ

= P (q1
t+1|st),

This shows that in the case of multinomial statistical hypotheses, the ex-
pectation value for the parameter is the same as a predictive probability.

But the correspondence becomes even more striking. We can work out
the integral of Equation line (10), using Equation (9) as the posterior, to
obtain

P (q1
t+1|st) =

t1 + λ/2

t+ λ
. (11)

This means that there is a specific correspondence between certain kinds of
predictive probabilities, as described by the Carnapian λ-rules, and certain
kinds of Bayesian statistical inferences, namely with multinomial hypotheses
and priors of a particular shape.

The equivalence is in fact more general than this. Instead of the well-
behaved priors just considered, we might consider as prior any functional
form over the hypotheses hθ, and then wonder what the resulting predictive
probability is. As de Finetti (1937) showed in his representation theorem,
the resulting predictive probability will always comply to a predictive prop-
erty known as exchangeability, which was given in Equation (2). Conversely,
and more surprisingly, any predictive probability complying to the property
of exchangeability can be written down in terms of a Bayesian statistical
inference with multinomial hypotheses and some prior over these hypothe-
ses. In sum, de Finetti showed that there is a one-to-one correspondence
between the predictive property of exchangeability on the one hand, and
Bayesian statistical inferences using multinomial hypotheses on the other.

It is useful to make this result by de Finetti explicit in terms of the non-
ampliative inductive logic discussed in the foregoing. Recall that a Bayesian
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statistical inference takes a prior and likelihoods as premises, leading to a
single probability assignment over the space H×Q as the only assignment
satisfying the premises. We infer probabilistic consequences, such as the
posterior and the predictions, from this probability assignment. Similarly,
a Carnapian inductive logic is characterised by a single probability assign-
ment, defined over the space Q, from which the predictions can be derived.
The representation theorem by de Finetti effectively shows an equivalence
between these two probability assignments: when it comes to predictions,
we can reduce the probability assignment over H×Q to an assignment over
Q only.

For de Finetti, this equivalence was very welcome. He had a strictly sub-
jectivist interpretation of probability, believing that probability expresses
uncertain belief only. Moreover, he was eager to rid science of its metaphys-
ical excess baggage to which, in his view, the notion of objective chance
belonged. Therefore, in line with the logical empiricists working in induc-
tive logic, de Finetti applied his representation theorem to argue against
the use of multinomial hypotheses, and thereby against the use of statis-
tical hypotheses more generally. Why refer to these obscure chances if we
can achieve the very same statistical ends by employing the unproblematic
notion of exchangeability? The latter is a predictive property, and it can
therefore be interpreted as an empirical and as a subjective notion.

The fact is that statistics, as it is used in the sciences, is persistent in
its use of statistical hypotheses. Therefore I want to invite the reader to
consider the inverse application of de Finetti’s theorem. Why does science
use these obscure objective chances? As argued in Romeijn (2004, 2005), the
reason is that statistical hypotheses provide invaluable help by, indirectly,
pinning down the probability assignments over Q that have the required
predictive properties.

Rather than reducing the Bayesian inferences over statistical hypotheses
to inductive predictions over observations, we can use the representation the-
orem to capture relations between observations in an insightful way, namely
by citing the statistical hypotheses that may be true of the data. In terms of
Carnapian inductive logic, we are thereby extending the language of induc-
tive logic with theoretical terms. As illustrated in Romeijn (2006), enriching
inductive logic in this way improves the control that we have over predic-
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tive properties. Hence it seems a rather natural extension of traditional
Carnapian inductive logic.

Bayesian statistics, as it has been presented here, is a ready made spec-
ification of this extended inductive logic, which may be called Bayesian
inductive logic. The premises of the inference are restrictions to the set of
probability assignments overH×Q, and the conclusions are simply the prob-
abilistic consequences of these restrictions, derived by means of the axioms
of probability, often Bayes’ theorem. The inferential step, as in Carnapian
logic, is thus non-ampliative. When it comes to the predictive consequences,
the extension of the probability space with H may be considered unneces-
sary because, as indicated, we can always project the probability P over the
extended space back onto Q. However, the probability function resulting
from that projection may be very hard to define in terms of its predictive
properties alone.

Capturing Bayesian statistics in this inductive logic is immediate. The
premises are the prior over the hypotheses, P (hθ) for θ ∈ Θ, and the like-
lihood functions, P (st|hθ) over the algebras Q, which are determined for
each hypothesis hθ separately. These premises are such that only a single
probability assignment over the space H ×Q remains. In other words, the
premises have a unique probability model. The conclusions all follow from
the posterior probability over the hypotheses. All these conclusions can be
derived from the assignment by applying theorems of probability theory,
primarily Bayes’ theorem.

Finally, let me relate this view on inductive logic to a comparable view,
expressed by Hintikka in Auxier and Hahn (2006). In response to Kuipers’
overview of inductive logic, Hintikka writes that “Inductive inference, in-
cluding rules of probabilistic induction, depends on tacit assumptions con-
cerning the nature of the world. Once these assumptions are spelled out,
inductive inference becomes in principle a species of deductive inference.”
The symmetry principles and predictive properties used in Carnapian induc-
tive logic amount to such tacit assumptions. The use of particular statistical
hypotheses in a Bayesian inference come down to the same, but here they
are not tacit anymore. They can thus help to understand and control these
assumptions.
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7 Neyman-Pearson testing

In the foregoing, I have presented Carnapian inductive logic and Bayesian
statistical inference. I have shown that these two are strongly related, and
that they both fit the template of non-ampliative inductive logic introduced
in section 3. This led to the introduction of Bayesian inductive logic in the
preceding section. In the following, I will consider two classical statistical
procedures, Neyman-Pearson hypothesis testing and Fisher’s maximum like-
lihood estimation, and see whether they can be captured in this inductive
logic.

Neyman-Pearson hypothesis testing concerns the choice between two sta-
tistical hypotheses, that is, two fully specified probability functions over
sample space. Let H = {h0, h1} be the set of hypotheses, and let Q be the
sample space, that is, the observation algebra introduced earlier on. Each of
the hypotheses is associated with a complete probability function Phj over
the sample space. But note that, unlike in Bayesian statistics, the hypothe-
ses hj are not part of the probability space, so no probability is assigned to
the hypotheses themselves, and we cannot write P (·|hj) anymore.

In Neyman-Pearson statistics we compare the hypotheses h0 and h1 by
means of a so-called test function. See Barnett (1999) and Neyman and
Pearson (1967) for the details.

Definition 7.1 (Neyman-Pearson Hypothesis Test) Let F be a func-
tion over the sample space Q,

F (st) =

1 if Ph1
(st)

Ph0
(st)

> r,

0 otherwise,
(12)

where Phj is the probability over the sample space determined by the statis-
tical hypothesis hj. If F = 1 we decide to reject the null hypothesis h0, else
we reject the alternative h1.

Note that, in this simplified setting, the test function is defined for each set
of sequences st separately. For each sample plan, and associated sample size
t, we must define a separate test function.
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The decision to accept or reject a hypothesis reject is associated with
the so-called significance and power of the test:

SignificanceF = α =
∫
Q

F (st)Ph0(st)dst,

PowerF = 1− β =
∫
Q

F (st))Ph1(st)dst.

The significance is the probability, according to the hypothesis h0, of ob-
taining data that leads us to reject the hypothesis h0, or in short, the type-I
error of falsely rejecting the null hypothesis, denoted α. Similarly, the power
is the probability, according to h1, of obtaining data that leads us to reject
the hypothesis h0, or in short, the probability of correctly rejecting the null
hypothesis, so that β = 1 − Power is the type-II error of falsely accepting
the null hypothesis. An optimal test is one that minimizes the significance
level, and maximizes the power. Neyman and Pearson prove that the de-
cision has optimal significance and power for, and only for, likelihood-ratio
test functions F . That is, an optimal test depends only on a threshold for
the ratio Ph1

(st)

Ph0
(st)

.
Let me illustrate the idea of Neyman-Pearson tests. Say that we have a

pear whose colour is described by qk, and we want to know from what farm
it originates, from farmer Maria (h0) or Lisa (h1). We know that the colour
composition of the pears from the two farms are as follows:

Hypothesis \ Data q0 q1 q2

h0 0.00 0.05 0.95
h1 0.40 0.30 0.30

If we want to decide between the two hypotheses, we need to fix a test
function. Say that we choose

F (qk) =

0 if k = 2,

1 else.

In the definition above, which uses a threshold for the likelihood ratio, this
comes down to choosing a value for r somewhere between 6/19 and 14, for
example r = 1. The significance level is Ph0(q0 ∪ q1) = 0.05, and the power
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is Ph1(q0 ∪ q1) = 0.70. Now say that the pear we have is green, so F = 1
and we reject the null hypothesis, concluding that Maria did not grow the
pear with the aforementioned power and significance.

Note that from the perspective of ampliative inductive logic, it is not too
far-fetched to read an inferential step into the Neyman-Pearson procedure.
The test function F brings us from a sample st and two probability functions,
Phj for j = 0, 1, to a single probability function Phj over the sample space
Q. So we might say that the test function is the procedural analogue of an
inductive inferential step, as discussed in Section 3. This step is ampliative
because both probability functions Phj are consistent with the data. Ruling
out one of them cannot be done deductively.

There are attempts to make these ampliative inferences more precise,
by means of a form of default reasoning, or a reasoning that employs a
preferential ordering over probability models. Specifically, so-called eviden-
tial probability, proposed by Kyburg (1974) and more recently discussed by
Wheeler (2006), is concerned with inferences that combine statistical hy-
potheses, which are each accepted with certain significance levels. However,
in this chapter I will not investigate these logics. They are not concerned
with inferences from the data to predictions or to hypotheses, but rather
with inferences from hypotheses to other hypotheses, and from hypotheses
to predictions.

Neyman-Pearson hypothesis testing is sometimes criticised because its
results depend on the shape of the entire sample space, and not just on the
observed sample. That is, the decision to accept or reject the null hypothesis
against some alternative hypothesis depends not just on what has actually
been observed in experiment, but also on what could have been observed.
A well-known illustration of this concerns so-called optional stopping. But
here I want to illustrate the same point with an example due to Jeffreys
(1931), which is discussed at length in Hacking (1965). I hope it helps to
understand Neyman-Pearson statistics better.

Instead of the hypotheses h0 and h1 above, say that we compare the
hypotheses h′0 and h1.

Hypothesis \ Data q0 q1 q2

h′0 0.05 0.05 0.90
h1 0.40 0.30 0.30
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We determine the test function F (qk) = 1 iff k = 0, by requiring the same
significance level, Ph′0(q0) = 0.05, resulting in the power Ph1(q0) = 0.40.
Now imagine that we observe q1 again, so that we accept h′0. But this is
a bit odd, because the hypotheses h0 and h?0 have the same probability for
q1! So how can they react differently to this observation? It seems that,
in contrast to h0, the hypothesis h′0 escapes rejection because it allocates
some probability to s0, an event that does not occur, thus shifting the area
in sample space on which it is rejected. The example gave rise to the famed
complaint of Jeffreys that “the null hypothesis can be rejected because it
fails to predict an event that never occurred”.

This illustrates how the results of a Neyman-Pearson procedure depends
on the shape of the sample space, and not just on the actual observation.
From the perspective of an inductive logician, it may therefore seem “a re-
markable procedure”, to cite Jeffreys again. But it must be emphasised that
Neyman-Pearson statistics was never intended as an inference in disguise.
It is a procedure that allows us to decide between two hypotheses on the
basis of data, generating error rates associated with that decision. Neyman
and Pearson themselves were very explicit that the procedure must not be
interpreted inferentially. Rather than inquiring into the truth and falsity of
a hypothesis, they were interested in the probability of mistakenly deciding
to reject or accept a hypothesis. The significance and power concern the
probability over data given a hypothesis, not the probability of hypotheses
given the data.

8 Neyman-Pearson test as an inference

In this section, I investigate whether we can turn the Neyman-Pearson pro-
cedure of Section 7 into an inference within Bayesian inductive logic. This
might come across as a pointless exercise in statistical yoga, trying to make
Neyman and Pearson relax in a position that is far from natural. However,
the exercise will nicely illustrate how statistics may be related to inductive
logic, and thereby stimulate research on the intersection of inductive logic
and statistics in the sciences.

An additional reason for investigating Neyman-Pearson hypothesis test-
ing in this framework is that in many practical applications, scientists are
tempted to read the probability statements about the hypotheses inversely

20



after all: the significance is often taken as the probability that the null hy-
pothesis is true. Although emphatically wrong, this inferential reading has
a strong intuitive appeal to users. The following will make explicit that in
this reading, the Neyman-Pearson procedure is effectively taken as a non-
ampliative entailment.

To this aim, we construct the space H × Q, and define the probability
functions Phj over the sample spaces 〈hj ,Q〉. For the prior probability
assignment over the two hypotheses, we take P (h0) ∈ (l, u), meaning that
l < P (h0) < u. We write P (hj) = minP (hj) and P (hj) = maxP (hj).
Finally, we adopt the restriction that P (h0) +P (h1) = 1. This defines a set
of probability functions over the entire space, serving as a starting point of
the inference.

Next we include the data in the probability assignments. Crucially, I
coarse-grain the observations to the simple observation f j , with

f j = {st : F (st) = j},

so that the observation simply encodes the value of the test function. We
then have the type-I and type-II errors as the likelihoods of the observations,

P (f1|h0) = α,

P (f0|h1) = β.

Finally we use Bayes’ theorem to derive a set of posterior probability distri-
butions over the hypotheses, according to

P (h1|f j)
P (h0|f j)

=
P (f j |h1)P (h1)
P (f j |h0)P (h0)

.

Note that the quality of the test, in terms of size and power, will be reflected
in the posteriors. If, for example, we find an observation st that allows us
to reject the null hypothesis, so f1, then for the posterior interval we will
generally have P (h0|f1) < P (h0) and P (h0|f1) < P (h0).

With this representation, we have not yet decided on a fully specified
prior probability over the statistical hypotheses. This echoes the fact that
classical statistics does not make use of a prior probability. However, it
is only by restricting the prior probability over hypotheses in some way or
other that we can make the Bayesian rendering of the results of Neyman and
Pearson work. In particular, if we choose (l, u) = (0, 1) for the prior, then
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we find the interval (0, 1) for the posterior as well. However, if we choose

l ≥ β

β + 1− α
, u ≤ 1− β

1− β + α
,

we find for all P (h0) ∈ (l, u) that P (h0|f1) < 1/2 < P (h1|f1). Similarly, we
find P (h0|f0) > 1/2 > P (h1|f0). So with this interval prior, an observation
st for which F (st) = 1 tilts the balance towards h1 for all the probability
functions P in the interval, and vice versa.

Let me illustrate the Bayesian inference by means of the above example
on pears. We set up the sample space and hypotheses as before, and we
then coarse-grain the observations to f j , corresponding to the value of the
test function, f1 = q0 ∪ q1 and f0 = q2. We obtain

P (f1|h0) = P (q0 ∪ q1|h0) = α = 0.05

P (f0|h1) = P (q0 ∪ q1|h1) = β = 0.30

Choosing P (h0) ∈ (0.24, 0.93), this results in P (h0|f0) = (0.50, 0.98), and
P (h0|f1) = (0.02, 0.50).

Depending on the choice of prior, we might claim that the resulting
Bayesian inference replicates the Neyman-Pearson procedure: if the prob-
ability over hypotheses expresses our preference over them, then indeed f0

makes us prefer h0 and f1 makes us prefer h1. Moreover, the inference
fits the entailment relation mentioned earlier: we have a set of probabilistic
models on the side of the premises, namely the set of priors over H, coupled
to the full probability assignments over 〈hj ,Q〉 for j = 0, 1. And we have
a set of models on the conclusion side, namely the set of posteriors over H.
Because the latter is computed from the former by the axioms of probability,
the two sets are identical. Therefore the conclusion is classically entailed by
the premises.

On the other hand, the results of a Bayesian inference will always be
a probability function. By contrast, Neyman-Pearson statistics ends in a
decision to accept or reject, which is binary instead of some sort of weak
preference. That bivalence cannot be replicated in a Bayesian rendering. We
may supplement the probabilistic results of a Bayesian inference with rules
for translating the probability assignments into decisions. As suggested,
we might say that we choose h0 if we have P (h0|st) > 1/2, and similarly
for h1. But as attested by the vast literature on the lottery paradox, this
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quickly leads to problematic consequences. On this count, the portrayal of
Neyman-Pearson statistics as an inference simply does not work.

More in general, the representation in probabilistic logic will probably
not appeal to advocates of classical statistics. Quite apart from the issue of
binary acceptance, the whole idea of assuming a prior probability, however
unspecific, may be objected to on the principled ground that probability
functions express long-term frequencies, and that hypotheses cannot have
such frequencies.

There is one attractive feature, at least to my mind, of the above ren-
dering, that may be of interest in its own right. With the representation
in place, we can ask again how to understand the example by Jeffreys. For
Hacking it illustrates that Neyman and Pearson do not respect the likeli-
hood principle. However, in the above representation, we do respect the
likelihood principle. Instead, we could say that the approach of Neyman
and Pearson takes the observations to present rather coarse-grained infor-
mation. Specifically, in the Bayesian representation we condition on f j and
not on qk. The whole example hinges on how the samples are grouped into
regions of acceptance and rejection. Within this viewpoint, therefore, the
sample space dependence of Neyman-Pearson procedures may be taken as
an illustration of the idea that the content of observation depends on how
the observation is framed.

9 Fisher’s parameter estimation

Let me turn to another important classical statistical procedure, so-called
parameter estimation. I focus in particular on an estimation procedure first
devised by Fisher, namely maximum likelihood estimation. The two sections
following this one will be devoted to the question if and how we can capture
this classical statistical procedure in Bayesian inductive logic.

The maximum likelihood estimator determines the best among a much
larger, possibly infinite, set of hypotheses. It depends on the probability
that the hypotheses assign to points in the sample space. See Fisher (1956)
and Barnett (1999) for the details.

Definition 9.1 (Maximum Likelihood Estimation) Let H = {hθ : θ ∈
Θ} be a set of hypotheses, labeled by the parameter θ, and let Q be the
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observation algebra. Then the maximum likelihood estimator of θ,

θ̂(st) = {θ : ∀hθ′
(
Phθ′ (st) ≤ Phθ(st)

)
}, (13)

is a function over the elements st in the sample space.

So the estimator is a set, typically a singleton, of those values of θ for
which the likelihood of hθ on the data st is maximal. The associated best
hypothesis we denote with hθ̂(st), or hθ̂ for short. The estimator is a function
over the sample space, associating each st with a hypothesis, or a set of them.

Often the estimation is coupled to a so-called confidence interval. Re-
stricting the parameter space to Θ = [0, 1] for convenience, and assuming
that the true value is θ, we can define a region in sample space within which
the estimator function is not too far off the mark. Specifically, we might
set the region in such a way that it covers 1− ε of the probability Phθ over
sample space: ∫ θ+∆

θ−∆
Phθ(θ̂)dθ̂ = 1− ε (14)

We can provide an unproblematic frequentist interpretation of the interval
θ̂ ∈ [θ −∆, θ + ∆]. In a series of estimations, the fraction of times in which
the estimator θ̂ is further off the mark than ∆ will tend to ε. The smaller the
region, the more reliable the estimate. Note, however, that this interval is
defined in terms of the unknown true value θ. In Section 11, I will introduce
an alternative notion of confidence interval that avoids this drawback.

For now, let me illustrate parameter estimation in a simple example on
pears, concerning the statistical hypotheses defined in Equation (6). Now
the general idea is that we choose the value of θ for which the probability
that the hypothesis gives to the data is maximal. Recall that the likelihoods
of the multinomial hypotheses hθ are

θt1(1− θ)t0 .

This function is maximal at θ = t1/t, so the maximum likelihood estimator
is

θ̂(st) =
t1
t
. (15)

Note finally that for a true value θ, the probability of finding the estimate
in the confidence interval of Equation (14),

t1
t
∈ [θ −∆, θ + ∆]
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increases for larger data sequences. Fixing the probability at 1− ε, the size
of the interval will therefore decrease.

This completes the introduction into parameter estimation. Note that
the statistical procedure can be taken as the procedural analogue of an am-
pliative logical inference, running from the data to a probability assignment
over the sample space. We have H as the set of probability assignments
or hypotheses from which the inference starts, and by means of the data
we then choose a single hθ̂ from these as our conclusion. However, in the
following I aim to investigate whether there is a non-ampliative logical rep-
resentation of this inductive inference.

10 Estimations in inductive logic

There are at least two ways in which parameter estimation can be turned into
a non-ampliative logic. One of these, fiducial inference, generates a prob-
ability assignment over statistical hypotheses without presupposing a prior
probability at the outset. We deal with this inference in the next section. In
this section, we investigate the relation between parameter estimation and
the non-ampliative inductive logics devised in the foregoing.

To spot the similarity between parameter estimation and Carnapian in-
ductive logic, note that the procedure of parameter estimation can be used
to determine the probability of the next piece of data. In the example on
pears, once we have observed s000101, say, we choose h1/3 as our best esti-
mate, and we may on the basis of that predict that the next pear has a
probability of 1/3 to be green. The function θ̂ is then used as a predictive
system, much like any other Carnapian inductive logic:

P (qkt+1|st) = Phθ̂(st)
(qkt+1).

The estimation function θ̂ by Fisher is thereby captured in a single probabil-
ity function P . So we can present the latter as a probability assignment over
sample space, from which estimations can be derived by a non-ampliative
inference.

Let me make this concrete by means of the example on red and green
pears. In the Carnapian prediction rule of Equation (3), choosing λ = 0
will yield the observed relative frequency as predictions. And according to
Equation (15) these relative frequencies are also the maximum likelihood
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estimators. Thus, for each set of possible observations, {sk1...kt : ki = 0, 1},
the Carnapian rule with λ = 0 predicts according to the Fisherian estimate.

Note that the probability function P that describes the estimations is a
rather unusual one. After three red pears for example, s000, the probability
for the next pear to be green will be 0, so that P (s0001) = 0. Then, by
the standard axiomatisation and definitions of probability, the probability
of any observation q0

5 conditional on s0001 is not defined. But if the prob-
ability function P is supposed to follow the Fisherian estimations, then we
must have P (q0

5|s0001) = 3/4. To accommodate the probability function im-
posed by Fisher’s estimations, we must therefore change the axiomatisation
of probability. In particular, we may adopt an axiomatisation in which con-
ditional probability is primitive, as described in Rényi (1970) and in chapter
15 of this volume.

Apart from the nonstandard axiomatisation, the alignment of Fisher
estimation and Carnapian inductive logic is not exactly easy. For more
complicated sets of hypotheses, and the more complicated estimators asso-
ciated with it, the corresponding probability assignment P may be even less
natural. Moreover, the principles and predictive properties that motivate
the choice of that probability function will be very hard to come by. In
the following I will therefore not discuss the further intricacies of capturing
Fisher’s estimation functions by Carnapian prediction rules.

Instead, I want to devote some attention to capturing parameter esti-
mation in Bayesian statistical inference, and thereby in inductive logic with
hypotheses. Note that in both parameter estimation and Bayesian statistics,
we consider a set of statistical hypotheses and we are looking to find the best
fitting one. Moreover, in both of these our choice among these is informed by
the probability of the data according to the hypotheses. Bayesian inductive
logic, the non-ampliative inductive logic that emulates Bayesian statistics, is
therefore more suitable for capturing parameter estimation than Carnapian
inductive logic.

To capture something like parameter estimation, note that the poste-
rior over hypotheses can be used to generate the kind of choices between
hypotheses that classical statistics provides. As for parameter estimation,
note that we can use the posterior to derive an expectation for the parameter
θ, as follows:

E[θ] =
∫

Θ
θP (hθ|st)dθ.
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Clearly, E[θ] is a function that brings us from the hypotheses hθ and the
data st to a preferred value for the parameter. The function depends on the
prior probability over the hypotheses, but it is nevertheless analogous to the
maximum likelihood estimator.

In analogy to the confidence interval, we can also define a so-called credal
interval from the posterior probability distribution:

Cred1−ε(st) =

{
θ : |θ − E[θ]| < ∆ and

∫ E[θ]+∆

E[θ]−∆
P (hθ|st)dθ = 1− ε

}
.

Therefore,
P ({θ : θ ∈ Cred1−ε(st)}|st) = 1− ε. (16)

This set of values for θ is such that the posterior probability of the cor-
responding hθ jointly add up to 1 − ε of the total posterior probability.
We might argue that this expression is an improvement over the classical
confidence interval of Equation (14). The latter only expresses how far an
estimate is off the mark on average, while it does not warrant an inference
about how far away the specific estimate that we have obtained, lies with
respect to the true value of the parameter. By contrast, a credal interval
does allow for such an inferential reading.

Of course there are also large differences between the results of parameter
estimation and the results of a Bayesian analysis. One difference is that in
parameter estimation, and in classical statistics more generally, the choice
for some hypothesis is an all-or-nothing affair: we accept or reject, we choose
a single best estimate, and so on. In the Bayesian procedure, by contrast,
the choice is expressed in a posterior probability assignment over the set of
hypotheses. As indicated in the discussion of Neyman-Pearson hypothesis
testing, this difference remains problematic.

In addition, there is a well-known, but no less grave drawback to the way
in which the Bayesian conclusions are reached: we have to assume a prior
probability assignment over the statistical hypotheses. Any expectation and
credal interval depends on the exact prior that is chosen. This dependence
can only be avoided by assuming that we have sufficient data to swamp the
impact of the prior or, equivalently, by assuming that the prior is sufficiently
smooth in comparison to the likelihoods for the data.
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11 Fiducial probability

This latter problem, of how to choose the prior, motivated Fisher (1930,
1935, 1956) to devise an alternative way of making parameter estimation in-
ferential, by means of the so-called fiducial argument. This argument yields
a probability assignment over hypotheses without assuming a prior prob-
ability over statistical hypotheses at the outset. The fiducial argument is
controversial, however, and its applicability is limited to particular statisti-
cal problems. See Hacking (1965) and Seidenfeld (1979) for detailed critical
discussions, and Barnett (1999) for a good overview. In the following, I will
only provide a brief sketch of the argument.

A good way of introducing fiducial probability is by the notion of confi-
dence intervals, introduced in Section 9. In some cases, we can also derive a
region of parameter values within which the true value θ can be expected to
lie. The general idea is to define a set of parameter values R within which
the data are not too unlikely, R(st) = {θ : Phθ(st) > 1%}. Specifically, in
terms of the integral in Equation (14), we can swap the roles of θ and θ̂ and
define:

Fid1−ε(st) =

{
θ : |θ − θ̂(st)| < ∆ , and

∫ θ̂+∆

θ̂−∆
Phθ(θ̂)dθ = 1− ε

}
. (17)

Every element of the sample space st is thus assigned a so-called fiducial
interval Fid1−ε of parameter values.

Note, however, that the integral of Equation (17) only properly concerns
a probability if we have

Phθ(θ̂ + δ) = Phθ−δ(θ̂)

for all values of δ. If that condition is met, then for any fixed value of θ̂,
the function Phθ(θ̂) is indeed a probability density over the variable θ. In
that case, we can interpret this interval in much the same way as the credal
interval of Equation (16), as a probability:

P ({θ : θ ∈ Fid1−ε(st)}|st) = 1− ε. (18)

But if the condition is not met, the interval cannot be taken as expressing a
probability that the true value of the parameter lies within a certain interval
around the estimate. Or at least, we cannot interpret it in this way without
further consideration.
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The determination of the intervals of Equation (17) is an example of the
determination of fiducial probability. But note that it relies on a strong
requirement. We must presuppose the equivalence of two distinct functions,
both written Phθ(θ̂), one taking θ and one taking θ̂ as argument. A much
more general formulation of this requirement is provided by Dawid and Stone
(1982). They argue that in order to run the fiducial argument, one has to
assume that the statistical problem can be captured in a functional model
that is smoothly invertible.

I want to conclude with an explanation of the notion of a smoothly
invertible functional model. Assume that there is some function of the data
θ̂(st) relating the statistical hypothesis hθ and an error term ω according to

θ̂(st) = f(hθ, ω).

Now we assume a probability function P (ω) over the error terms, so that the
functional relation and the probability over error terms together determine
a probability

P (θ̂(st)|hθ) = P ({ω : f(θ, ω) = θ̂}). (19)

Suppose that the function f is invertible: we also have a function f−1(θ̂, ω) =
θ. And finally, we assume that the error terms and the hypotheses are
probabilistically independent:

P (hθ, ω) = P (hθ)P (ω). (20)

As described in Neapolitan (2003), for example, we can write down the
overall probability assignment in terms of a graphical structure, as depicted
below.

hθ θ ω^

Say that we observe st, thus fixing the value for θ̂(st), and that we
condition on this observed data. Then, because of the network structure
and the further fact that the relation f(hθ, ω) is deterministic, the variables
ω and hθ become perfectly correlated: each ω is associated with a unique
θ = f−1(θ̂, ω). And because the observation of st does not itself influence
the probability of ω either, meaning that P (ω|st) = P (ω), we can write

P (hθ|θ̂(st)) = P ({ω : f−1(θ̂, ω) = θ}), (21)
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which is the inverse of Equation (19). This means that after observing st

we can transfer the probability distribution over ω onto hθ according to the
function f−1.

The fiducial probability over the hypotheses hθ is, I think, a surprising
result. No prior probability has been assumed, and nevertheless the con-
struction is such that we can derive something that looks like a posterior.
Moreover, the inductive inference in this construction is non-ampliative.
The set of probability assignments over hθ, st, and ω is such that P (hθ)
can be any convex combination of elements from a set of functions over θ,
while P (hθ|st) is a distinct element from that set. Given the controversy
that surrounds the interpretation and determination of prior probabilities,
it is a real pity that the fiducial argument can only be run under such strict
conditions.

12 In conclusion

In the foregoing I have introduced a setting in which inductive logic and
statistics may be unified. I have discussed how inductive logic can be de-
veloped to encompass and emulate a number of inductive procedures from
mathematical statistics. In particular, the discussion of Bayesian statistical
inference has led to the extension of the language of inductive logic with
statistical hypotheses. The resulting inductive logic was applied to two clas-
sical procedures, to wit, Neyman-Pearson hypotheses testing and Fisher’s
maximum likelihood estimation. While these procedures are best under-
stood as ampliative inductive inferences, I have shown that they can also be
modelled, at least partly, in terms of this extended inductive logic.

I hope that portraying statistical procedures in the setting of non-am-
pliative inductive logic has been illuminating. More than that, I hope that
the relation between Carnapian inductive logic and Bayesian and classical
statistics stimulates research on the intersection of the two. For example,
it will be nice to know, from the perspective of inductive logic, what kind
of terms these elusive statistical hypotheses are. I believe that an inductive
logic that includes statistical hypotheses in its language is very closely re-
lated to statistics. Research on their intersection can greatly enhance the
relevance of inductive logic to the philosophy of science, and ultimately to
science itself.
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