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The transformation laws of chiral (scalar) superfields with arbitrary Weyl weight w are 
determined for the U(2) superconformal theory. A superconformally invariant density is given for 
fields with w = 2. For w = 1 it is possible to have smaller irreducible multiplets. The full restriction 
upon which the chiral superfield becomes reducible is exhibited. These results define a complete 
calculus for the construction of invariant actions with chiral superfields. As an example we find the 
action for the vector gauge multiplet. 

1. Introduction 

In a previous paper [1] we have given the full transformation rules for N = 2 

Poincar6 supergravity in the formulation with auxiliary fields [2, 3]. At  the same time 

we have obtained transformations for the various submultiplets, contained in the 

Poincar6 fields, namely, the Weyl multiplet, the vector gauge multiplet and the 

tensor gauge multiplet. The Weyl multiplet contains the highest-spin components, 
and is the field representation of the U(2) extended conformal theory. To understand 

the relation between this multiplet and the gauge fields of the superconformal 

algebra requires knowledge of the constraints; a set of such constraints was indeed 

presented in [1]. Use of the superconformal notions then proved helpful to clarify the 
transformation rules of the lower-spin submultiplets. In particular, the uniform 

decomposition of Poincar6 supersymmetry into field-dependent superconformal 

transformations allows a separate treatment of each of the superconformal trans- 

formations, thereby leading to a more systematic understanding of the Poincar6 
transformations. Furthermore, the full algebra of superconformal transformations is 
implicit in our results. 

This motivated us to study superconformal transformations for a larger variety 
of multiplets. The purpose of this paper is to give the full superconformal 
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transformations on chiral (scalar) N = 2 superfields. Such fields, which have 16 + 16 
(fermionic + bosonic) components, occur with an arbitrary Weyl and chiral weight 
denoted by w. Products of equal-chirality superfields are again chiral superfields, also 
when the transformations to all orders in the gravitational coupling constant are 
included. (We keep referring to this constant K to enable a direct comparison to the 
Poincar6 theory.) The chiral superfield is a representation of the superconformal 
algebra, and generates a superconformal "tensor calculus". If w = 2 it is possible to 
define an invariant density. We also discuss the case of reduced chiral superfields, 
which have only 8 + 8 components. Such superfields must necessarily have w = 1. 
Their  relevance stems from the fact that all three submultiplets of the Poincar6 field 
representation can be interpreted within the context of reduced chiral multiplets. 

A superconformal tensor calculus is an intermediate step towards a full tensor 
calculus for SO(2) extended Poincar6 supergravity. This has already been demon- 
strated for N = 1 [4]. The crucial element to enable the extension to Poincar6 
supergravity is the previously mentioned decomposition rule for Poincar6 super- 
symmetry in terms of superconformal symmetries. Since the Weyl weight will then 
lose its relevance one may redefine the fields to obtain the proper  Poincar6 
components, whose transformations no longer refer to a specific weight. This will be 
discussed in a separate publication [5]. Results for Poincar6 supermultiplets can also 
be found in ref. [6]. 

This paper is organized as follows. In sect. 2 we discuss chiral scalar superfields for 
rigid N = 2 supersymmetry, and review some relevant aspects of conformal super- 
gravity. In sect. 3 we extend the chiral superfield to a full representation of the 
superconformal algebra. We also give the formula for an invariant density, and 
discuss reduced chiral superfields. As an example we present the invariant action of 
the vector gauge multiplet [7, 8], which describes the particle content (1, 1 1 + ~,~,0 ,0-) ,  
in sect. 4. We give our conclusions in sect. 5. 

2 .  P r e l i m i n a r i e s  

2.1. CHIRAL SUPERFIELDS 

Superfields [9] are elements of a Grassmann algebra on the basis of N anticom- 
muting Majorana spinors 0, labelled by indices i = 1, 2 . . . .  N. We will adopt a 
general chiral SU(N) notation throughout this paper which employs chiral and 
self-dual components [10]. Namely, the left-handed chiral component  of 0 is 
assigned to the fundamental representation of SU(N), and carries an upper SU(N) 
index; right-handed components will then transform according to the conjugate 
representation, in agreement with the Majorana property and have a lower index. 
Hence we have 

(1 - 3'5)0' = (1 + "/5) O, = O, 
(2.1) 

0 ' ( 1  - 3'5) = ~ ( 1  + 3's) = O .  
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We will use this notation consistently, so that chirality and the SU(N) transformation 
properties are in direct correspondence, even although for N = 2, the fundamental 
representation and its conjugate are equivalent. 

A left-handed chiral superfield qb ~+) is defined by the condition that the right- 
handed operation 

0 0 
D'  - - =  + y " O ' - -  (2.2) 

0 O, Ox ~" 

vanishes when applied to 4, ~+). This implies that the dependence of 4 ,~+) on 0, is 
contained only through a complex spacetime parameter z", defined by 

z "  = x "  + ff'y'~O, . (2.3) 

Therefore 4, ~+) can be decomposed on the basis of the left-handed generators 0' 
only, in terms of 2 T M  complex functions of z ~'. For N = 2 we thus find the following 
decomposition: 

• (+)(z ~" , 0 ' )=a(z )+O'q ' , ( z )+½g 'O 'B , , ( z )  + !z(~,fl-,O.,~bO ' )Fab- (Z) 

1 --t 1 - k  ab 1 - t  1 2 +~(e,lOtrabO )0 Cr Ak(Z)+r~(E,fl~abO ) C ( z ) .  (2.4) 

The bosonic components A ,  B , ,  F2b and C are complex, and the fermionic 
components ~, and A, are left-handed chiral (Majorana) spinors. The field F2b is 
anti-self-dual: F -  -- - F - .  The complex conjugate of ~+)  is precisely a right-handed 
chiral superfield, satisfying 

D,4  '(-) = 0 ,  (2.5) 

with 

D, - ~ + y~'O,--~O . 
O0 Ox 

Therefore, 4, ~-) can be decomposed on the basis of right-handed generators 0,, in 
terms of functions of (z~) *. As is well-known, chiral superfields can be re-expressed 
in terms of functions of x"  by means of 

• (+)(z", 0 ' ) = e x p  ( - ~  t~O')cI'(+)(x ", 0 ' ) ,  
(2.6) 

4'(-)((z~')*, 0,) =exp ( - 0 '  ;JO,)CI'(-)(x", 0,).  

In principle one has the possibility of considering chiral superfields with extra 
external SU(N) or local Lorentz indices. But in this paper we only deal with the 
singlet version. Such fields have been discussed in the past [11, 12], and here we only 
summarize a number of aspects that are relevant for subsequent sections. 

Within the superconformal context it is meaningful to assign Weyl and chiral 
weights to a chiral superfield. It follows from the full superconformal algebra, that 
these weights are related. They determine the transformation properties under 



178 M. de Roo et al. / Chiral superfields 

dilatations and chiral U(1) transformations. More precisely, a chiral superfield with 
weight w transforms according to 

• <+)(z", 0 ~) ~ e'C*~t+)(z ", e-~/20') ,  (2.7) 

where ¢ is a complex number 

~" = ~'w + g ' A ,  

with g'w and ~'A the transformation parameters of the dilatations and chiral trans- 
formations, respectively. 

It is obvious from the previous discussion that the product of two left (right)- 
handed chiral superfields with weights w~ and WE, is again a left (right)-handed 
superfield with weight w3 = w~ + WE. We give the expression for the product of two 
N = 2  superfields in terms of components. If (A, ~ , B , F , A ,  C)  denote the 
components of a left-handed chiral superfield then 

(A,  gt, B,I, F~b, A,,  C)  ® ( a, ~O,, b o, ]:~b, A,, c) 

= ( A a ,  a g  t, + A ¢ , ,  aB,i +Ab,~  1 - - ~ , ¢ 6 ) ,  

-- 1 l ] - -  
aFab + Aff~b - - ~  ~ , ~ b ~ , ,  (2.8) 

1 k l  1 
aA, + A A , - ~ e  (Bik¢i+b,kV~)--~(tr " f - ~ ,  +tr  " F - ~ , )  , 

1 tk  II 
a C  + A c  - ~e ~ B,,bkt + F~ff~b +~"(~',AI+d~,A,)). 

The rigid supersymmetry transformation of a chiral superfield can also be deter- 
mined straightforwardly in terms of components 

8.4 = ~,gt ,  

8 g  t, = 2 t~AE, +B,~ ~ +tr  • F - ~ , ~ ,  

(2.9) 
8F'~b = Cue ", ~O'ab ~ l  + gttr,,bA, , 

8A, = - t r  • F -  ~ ,  --I~Btl~k~ Ik + C~1~o, 

8 C  = - 2 # ' ~ ,  ~A , .  

Notice that we have also used a chiral notation for the transformation parameters ~. 
An important aspect of chiral superfields in N = 2 is that for a certain weight it is 

possible to reduce the number of independent components. This is achieved by 
imposing the following SU(2) covariant restriction: 

(~,pt:3'O-abD')2(O(+)) * = ~96 [] O ~+) . (2.10) 
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In terms of components, this constraint has the following consequences: 

A ,  = ~:~, iJ ~ 1 ,  

B ,  I = +~,k~ltB *kt , 
(2.11) 

C = ~ : 2 U ] A * ,  

OaF~b + = +OaFab .  

Notice that the last equation is a Bianchi identity, which implies that F [or aft, 
depending on the sign in (2.10), (2.11)] can be expressed as a field strength in terms of 
a vector potential. By comparing weights of both sides of (2.10) it is obvious that this 
restriction can only be imposed for weight w = 1. The vector gauge multiplet [7, 8] 
discussed in [1] is of this kind, and has indeed components with the corresponding 
weights. We will give the full correspondence later• The tensor gauge multiplet is also 
related to a reduced chiral superfield. For instance if we choose a minus sign in (2.10) 
the components of the tensor multiplet are related to the higher 0 components of the 
superfield according to (compare ref. [1]) 

~o ~ = % A  I + ~ 1 A I ,  

A S ,  I + iB ,  I = B, I  , 

• + --  1 I E~,~ '1 = t (F~,~ - F~,~)~ , 
(2.12) 

F -  i G  = - C *  . 

Again the Weyl and chiral weights implied by eqs. (2.12) agree precisely with those 
found in [1]. 

As is already obvious from the assignment of Weyl and chiral weights to a chiral 
superfield, a product of two reduced superfields will be a ehiral superfield of the 
general type, which will no longer satisfy the restriction (2.10). This observation 
completes the discussion of chiral superfields in fiat superspace. 

2.2. N = 2 SUPERCONFORMAL GRAVITY 

We now summarize some results of [1] in chiral notation. The superconformal 
i l l "  a a b  . . . . . . .  ~q~ i theory contains the gauge e as e~,, w,  , o,, f~, , ~ , ,  qh,, ~,, o//. i, and "matter  fields" 

- -  l I 1 1 
T a b  , X c ,  D o  With upper SU(2) indices ¢A, and Xc '  denote left-handed chiral 
components, whereas ~b~,' is right-handed. In SU(2) notation, the SU(2) gauge fields 
are contained in an antihermitian quantity ~, ' j  defined in terms of the fields of [1] by 

~t,'J = ( ~ 0  _ is¢~,"). (2.13) 

The gauge fields tot, ~b, ft, ~, and ~bt,', of local Lorentz, special conformal, and 
S-supersymmetry transformations are expressed in terms of the other fields by means 
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of the constraints 

R . f  (P) = 0 ,  

ya(/~ab~(Q) +CrabXtC) = 0 ,  (2.14) 

b ~, • ~' 1 2 + - - t l  3 R , ~  (M)e b -- l tcR,a (M) + ~l¢ Tab,~T~b -- ~aKDce ,~  = 0 

The curvatures Rab c a n  be found  in the tables of [1]. In the third constraint  we have 
allowed a free pa ramete r  a. 

Because of the constraints (2.14) the curvature  tensors /~(Q) are self-dual, 

whereas  the modified curvature  tensors ~ (S) are almost  self-dual. The  latter follows 
f rom the Bianchi identi ty (4.13) in ref. [1]. Hence ,  we have the following useful 
identities 

t /~ab'(Q) =--Rab ( Q ) =  " ' y 5 R ~  (Q) ,  

~ b  ( S ) - ~  (S)=  23' o',,bDaR~a (Q) ,  (2.15) 

o . a ~ , ( S  ) 3,-,C , =~./~ Xc • 

We repeat  the Q-  and S-supersymmetry  t ransformat ions  of the superconformal  
fields in chiral notat ion 

¢$e  a -~ a = X~ y ~. ,  + h .c . ,  

~ o )  ab -~ a b l  3 - t  ab - t  A ab 
= - - x E c r  to., + ~Ke y .o .  Xc, + K~ y . R  , ( Q )  

! 2 - t , - ~ + a b ~  I -  T i ab 
--2K ~ I o qY~. t t c ~ . t r  r / l+h . c . ,  

3_ - t  1_ - t n  1 T z . 
8 b .  = -4Ke  3".Xc, +2xe  t o . , -  ~u~,. rl, + n . c . ,  

a - I  C ~ 1 a 8f.  = K~ y . D  b R ~ , ( Q )  - ~Ke. (a + 2 ) F D C x c ,  

1 2 - t - - I r . ~ C , ' ~ + b a  _41_tc2(a  - i  a 1 - I  a +2)~  y 0 . ,Dc+~K 'q  y ~b.,+h.c.  - - 2  K E I~t.  L l b  l ~1 

8~ .  = 2K-1D.We ' -¼o" -,/ -1 , ' " T  y . e ~ - K  y . ~  , 

8~b~, -1 a , 1 " , ' = - - 2 K  f .  Ya~ + [ R ( ~ ) ~ .  o'r.F+i/~(~/), o'r.~ 

- ¼ ~ C T - "  • o 'y.e,  + ½(1 - a ) D c 3 " . C  

(2.16) 

.~_3 K -- a ] t -- a ] I ((xc,3' ~ )3,~4~ - ( x c , 3 '  ~ .  )3 '~  ) + 2 K - 1 D . W n  , 

~ S ~ .  3 . - t  1 . - t - -  1 . T  t 
= ~tE ? . X c ,  + ~ t (  ( 0 . ,  - ~t~u.  ~ ,  + h . c . ,  

1 - 1  - !  - i 
8 ~ .  j = 3(  Y.Xcl - 2 (  tb.l + 20.17j - (h.c.; t raceless) ,  

8T~,-~' = 4~['/~aa'](Q), 
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X c  = -~o,  . T - ' I D c 6 ,  +½/~(o//-), . crC - ~ i R ( ~ )  . o'6' + O c 6 '  +1o"" r - " r l , ,  

8 D c  = g']~Cxc, + h.c. ,  (2.16) 

where 6' and r/' denote  the parameters of Q- and S-supersymmetry, respectively. 
Notice that 6' has left-handed and r/' r ight-handed chirality. We have used deriva- 
tives D ,  c that are fully covariantized with respect to the superconformal symmetries, 
except in 80, ;  and B&~,', where D~, w is defined by 

D~,W6 (0~, - ~to~, ' cr + ~b~, = + ~ l K ~ . ) 6  + ~ ' ~ ' j 6 '  

O w , 1 1 1. , 1 , i ~. 7/ = (0~, -~co , .  o--~b~, +~txM,)t/  +~x~"~,,~7 . (2.17) 

On the basis of the transformation rules (2.16) one can verify that the supercon- 
formal transformations close under (anti)commutation. In particular, we find for the 
commutator  of two supersymmetry transformations with parameter  ~1 and 62: 

[8o(61) ,  8o(e2) ]  = -k 2(62y 6 1 k + h . c . ) D a c + s r a ( e " b ) + S K ( A ~ ) + ' 8 s ( * 7 ) ,  (2.18a) 

where D~ c indicates the effect of a superconformally covariant translation [13], and 
a b  a 6 , AK and r/ are the parameters of an extra field-dependent Lorentz, special 

conformal and S-supersymmetry transformation respectively 

~b ,- , .r+ab I+h.c.)  = KI ,61 . t  u 6 2  

a -~ C + 1 1 - i  
A g = x6 tDb Tb~,~62 -- ~x (a + 2)Dc62"y,,¢l, + h.c. ,  (2.18b) 

- [ t  I] 
7/ = 3 K 6 1 6 2 X c I .  

The commutator  of a Q- and S-supersymmetry transformation with parameters 6 
and t/, respectively, is given by the superconformal algebra. Its precise form is 

[8s(¢/), 8o@)] = 8M(6 ab) + 8D(Sr) + 8u(2)(A ' j) .  (2.19a) 

The Lorentz, Weyl and U(2) chiral transformation on the r.h.s, are given by 

a b  
6 = 2 #Jcr ab6, + b .c . ,  ~" = #'6, + h . c . ,  

A ' ,  = - 2 # ' 6 ,  +½ 8' ,#k6k -- b.c. ,  (2.19b) 

and the U(2) transformation is defined by its action on the field 6~,': 
I I J 8u(2)0~ = A/0~, • 

3. Chiral supertields in N = 2 supergravity 

The results of rigid supersymmetry for chiral superfields can be extended to the full 
supeconformal theory. This requires the definition of the supermultiplet as a 
representation of the superconformal algebra. In particular, the commutators (2.18) 
and (2.19) must be realized for all its components (2.4). The first step in obtaining this 
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representation is to find the transformation rules under S-supersymmetry. This is 
most easily done by extending the derivatives in (2.9) to covariant derivatives with 
respect to dilatations, which generates extra terms in the transformation rules 
proportional to J¢e,, depending on the Weyl weight of the multiplet. As we know 
from [1], these terms can be cancelled precisely by an S-supersymmetry trans- 
formation with parameter  Xe,, which allows a direct identification of these trans- 
formations. They are 

8 s A  = O, 

8s !g, = 2wAr~,,  

8 s B ,  = (1 - w)~ogt , ) ,  
(3.1) 

8sF~b = - (1  + w)~"fT,o.,,b~I',, 

8sA, = - (1  + w)B,l~tkr/k + (1 -- W)O. ' F - r / , ,  

8 s C  = 2weOCl,Aj. 

These results agree with those of ref. [11 ]. Using (3.1) we can now fully covariantize 
the rigid supersymmetry transformations (2.9) with respect to the superconformal 
symmetries. One then realizes that these transformations are complete for the low-0 
components, because no modifications can be found that are consistent with the 
assignments of Weyl and chiral weights. However,  for the highest components A, and 
C, modifications are possible, which contain the Weyl matter fields T,,~, 1 and 
Xc,. Their  precise form can be found by imposing the commutation relation (2.18) to 
all orders, making estensive use of (2.14)-(2.16). A straightforward calculation then 
leads to the full transformation rules under Q-supersymmetry 

a o A  = , 

8o ~', = 2EiCAe, + B e e '  + o. " F-e , ,~ '  , 

8oBo = ~(,E j c  ~'1)- i k  A OeJ)k , 

8 OFab = ~ O~i~COr ab ~'¢l "~- ~- 'o.ab A ,  , 
(3.2) 

8oA,  = - o . "  F - D C e ,  --  D C B , I ~ k ~  Ik + C eJe , l  

+½K((DCA)T~ o. + w A j ~ t C T ~  o.)eke,k 3 - ,k 
• " - ~K (gct,3'~ ~ 9  3,~e~e , 

8 o C  = - 2 e  "~,/~CAl - 6K~d(crBkl~'k~ jt 

1)o- .  ':'. 

To verify the correctness of our results, we have also calculated the commutator  of 
a Q- and an S-supersymmetry transformation and found complete agreement with 
(2.19). It also turns out that the non-covariant modifications in (3.2) are independent 
of the dilatational gauge field b,,, so that our argument for finding (3.1) remains 



M. de Roo et al. / Chiral superfields 183 

unaffected. Eq. (3.2) clarifies why non-covariant modifications were found in the 
tensor gauge multiplet, but not in the vector gauge multiplet [1], since the latter 
corresponds to the low-0 components of the chiral superfield. We will give a full 
discussion of the vector multiplet in sect. 4. 

If w = 2 the highest component C of the superfield has Weyl weight 4, and chiral 
weight 0. Therefore, C can serve as a starting point for the construction of an 
invariant action. Calculating order-by-order in x leads to the following density which 
is invariant under all superconformal symmetries: 

e - l ~  = C -  x•"$ ", ' 3,A, - l ~ r  2 -~ ,  Or • T + "  " l f f  t • 

1 2 + q 2 2 -  t t v  ~k II 
- - ~ K  A ( T ~ b , i •  ) - - K  dA,,Or d.lviBklf • 

(3.3) 
2 -- q - - ~ v  1 +t~v k l  

+K 4t~,,4%• ( F  - - ~ K A T k t  • ) 

1 3 • l l ' • k l  --1 v . v ~ -  
--~K e • ~k~,,$~,(qtokY,,tltt + K~okqt, n A ) .  

We have thus presented the main elements of a superconformal tensor calculus for 
chiral superfields. The multiplication rule for products of these superfields is still 
given by eq. (2.8). This is obvious for the low-0 components, because their trans- 
formation rules ~ire superconformal covariantizations of the linearized results. For 
the full multiplet the multiplication property has been verifed by direct compu- 
tations. 

These results also apply to the reduced chiral multiplet with w = 1, but the 
reduction takes a more complicated form in a superconformal background. Namely, 
the constraints (2.11) are replaced by 

A ,  = w • , t t ~ c ~  1 , 

B,~  = + • , k • l t B  * kl , 

C = : ¢ ( 2 ~ c A *  x ,,.+ ,-,+ 0 . . . . . . .  t_2 ~ + ~ K l a b , l r a b •  * O K X c , ~ " - 2 K ( 1 - a ) D c A * ) ,  (3.4) 

C -- C + 1 C q + 

3 - 0 - ~  I 
-~X(2c,3'bg'~ :¢Xc3'b~/" •,,). 

The superconformal d'Alembertian is defined by 

[-]c A c c = D a D a A  . (3.5) 

Its form can immediately be obtained from the transformation properties of D C A .  In 
particular DCA transforms under Q- and S-supersymmetry and special conformal 
boosts, with parameters •', 7/' and A ~c, respectively, according to 

8(DCA)=•Dafft_-, c 1 - . - o  3 - , T gtl + ~ K W • , y ~ x c A  

- ~ r l  % , -  w A r a A .  (3.6) 
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A direct way of obtaining (3.4) is to calculate the variation of ]~cgt,: 

8o(DCqt,) = ]~Co- • F-~ '~ ,  + DCB,,~ 1 

+(2 7-] c A + 1 - -,~ -, ~xF~bT~b ~,1 + 3 g c ~ ,  - 2K (1 - a )DcA)E ,  

1 + + ~ x ( A T , ,  ¢r)]~c# +~K - ~ ' 
' (J(C[lYall[tl])'y ~ • (3.7) 

Assuming the first equation of (3.4), we compare the variation of :~ ~,~/~cg t '  with 
BOA,. This gives the remaining equations of (3.4). Subsequently one verifies the 
consistency of all four equations. Using (3.4) we can now discuss reduced chiral 
superfields within the same context as general chiral superfields. As an example of 
this we will construct the lagrangian of the vector gauge multiplet in the next section. 

4. The vector gauge muitiplet 

The N = 2 vector multiplet describes a massless vector gauge field V,,, a complex 
scalar A, and a doublet of Majorana fermions ~,. If the gauge field is represented 
through its modified field-strength tensor F,,~, then the components of this multiplet 
form a reduced chiral superfield [1]. More precisely, V, transforms according to 

8Vt, = g,%, qt ~,~ + 2xg, qj~,j#~A + h.c. ,  (4.1) 

and has a modified field strength* 

= a,,v  - a W , ,  - ½K (gTt ,r l + 

_ t c z ( ~ t ,  Ak~;~ , ,A  + ~ t / t p ~ 6 u A * )  ! + ,, * - , ,  - + A  T ~ , ~ , , ) .  (4.2) 4 K ( m T t , ~ u e  

The components A ,  ~,, B,,, F~b =½(Fab--#~b) are the low-O components of the 
superfield, whereas the high-0 components follow from (3.4). The invariant action of 
the vector multiplet can be found from the general chiral superfield (q~(+))2, where 
~(÷) represents the reduced chiral superfield of this multiplet. Since (q~(÷))2 has 
weight w = 2, one can immediately apply the density formula (3.3) to obtain the 
action. The components of (~(÷))2, denoted by (a, ~b,, b,, f~b, A,, c) are equal to 

a = m  2 , 

¢, = 2 A ~ , ,  

b,, = 2AB,~ - ~,qz , (4.3) 

* Our notat ion is adapted to the chiral-superfield decomposit ion.  The  precise relation to the 
components  of [1] is given by 

Vt, = - Wt,, Bu = -e , k  (F  - tG)k, , 

~, = 1(1 + "/5)~,,'/", Fab = -~a~ (W), 

A = ¼~,, ( A  - iB)U 
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l a b  = 2 A F : b  x ,1 - - ~ ~ , C r . b  q t l  , 

3., = - 2 e , l A J ~ C g  t l  --  B , k  ~-¢#[ kl --  0"" F -  qt, , 

c = _ 4 A  ~ C  A .  + 4 ( 1  2 1 + + ,~ - a ) / ( D c l A I  - ~ / ( A F a b T . b , j ~  

-6/(A,~c, t/t' _ ½1B,, 12 + ( V Z b ) z  + 2 gt, J ~ c ~ ' .  
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(4.3) 

This can now be substituted into (3.3), which leads to the following invariant 
lagrangian (with proper  normalization) 

A ~ C A .  1 - 2 l -  c , - z ( F , , b )  - ~ , ~  ~ +~IB,,I z 

_ , , : ( l _ a ) D d A I  ~ ~ + + ,, ~ - , + g / ( A F a b T a b e e  + g / ( A x c ,  

+½/(~, r ~ C ~ , A + ¼ / ( ~ ,  , r ,o*, ,  t ,,,Y, " " Y~I"-" -~/(~ ,e, " ycr • F - g t  I 

1 2 2 + t/ 2 1 2 -- ~ +  t ~ . r .  tl kl +64/( A (TaboE ) +g/( ACtt,,o" l l k ] /  ~Ftff 

1 2 -- ~ v  *tl +~/( O.,o" O ~ j ( 2 A B  - - f f t k f f11#k~l )  

_ ¼ / ( 2 ~ a , O ~ , , , ( 2 A F ~  1 __2 . . .+  kl 1 kt . . . . . . .  --~/(_/-I labk l~  --~ff ~l~kO'abWl) 

+1/(  3 ,  q E kl e - 1  ~,,,oo-¢~t,,¢ % (2 t~ok'Yo. ~tA + X~ff ok~llo-lA 2 )  

+ h .c . .  

(4.4) 

The lagrangian (4.4) can be coupled to N = 2 Poincar6 or Weyl supergravity. In both 
cases one can eliminate auxiliary fields, and obtain an invariant action in terms of 
dynamical fields. We will not do this in any detail, but rather  confine ourselves to a 
qualitative discussion of the most  salient features of (4.4). 

We start by noticing that (4.4) seems to depend on the paramete r  a that was 

introduced in the constraint (2.14). This constraint expresses f~, the gauge field of the 
conformal boosts, in terms of other fields, and it receives an a-dependent  contribu- 
tion 

f ~  = - ¼ a D c  e a + .  . . (4.5) 

Because f~ occurs in the definition of the superconformal  d 'Alember t ian  7-1 c [see 
(3.6)], this introduces a second a -dependent  term in the action through (4.5). As 
expected, this precisely cancels the original term. A second point is that the auxiliary 
fields B ,  1 occur in various places in (4.4), both explicitly and through supercovarian- 
tizations. Apar t  f rom the term quadratic in B,I, the dependence on B,I disappears, 
which is in agreement  with explicit Noether - type  constructions of the lagrangian. 

As ment ioned before we can couple (4.4) to Weyl supergravity. This theory has 
only one auxiliary field, Dc ,  which occurs quadratically in the Weyl action [3]. Its 
elimination leads to a self-interaction 

e - ~  = -½IAI 4 . (4.6) 
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Of course, the lagrangian also contains the standard conformal improvement terms 
(supersymmetric generalizations of R IA 12) for the scalar fields, which enter through 
the gauge field f~ as well as through various supercovariantizations. 

In the coupling to N = 2 Poincar6 supergravity many more auxiliary fields play a 
role, and their elimination leads to a large variety of non-polynomial modifications. 
The final results can be compared to the work of Luciani, who considered the 
coupling of several vector multiplets [ 14]. However, before the elimination can take 
place one must first represent the superconformal components in terms of the 
Poincar6 fields. These substitutions are known and have been given in [1]. The most 
important one is for Dc, which in the Poincar6 theory is equal to (not in chiral 
notation): 

D c  = D P" V - ~ g  P + ¼K (( V~ )2 + (A~)2 _ 2 V~ - (M")  z - (N'I) 2) 

+K,~'(2X' +2~PA ' _ i T  . R , e + i x y s , ~ A , - x c r  • T ° A I ) .  (4.7) 

The definition of the Poincar6 components has been given in [1], and we remind the 
reader that the spinor X', the vector V~ and the axial vector A~, are related to the 

z superconformal fields X~ and ~rj, respectively. 
Because of the Dc-dependent term in (4.4), many auxiliary fields occur with a 

characteristic factor (1-2K 21A 12) in the coupling to Poincar6 supergravity. To exhibit 
some of these terms, we give part of the combined action: 

*~Pomcar~ + ,-~vector ---~ - $ 2  - l[Dll2k ar )~2 "r-~ktab)~ 1 [÷il ,~2 -r" A 2 

+ (1 - 2K 2IAI2){_2V~,  2 +Z((1 Va)" 2 + ( A ~ ) "  2 _ ( M , , ) 2  _ ( N , , ) 2 )  

+ 7t' (2X' + 2~PA ' + iXys,afA ' -- x tr"  T"A ')}. (4.8) 

According to their field equations certain auxiliary fields in (4.8) will be proportional 
to (1-2~21AI2) -1, and upon elimination they will induce non-polynomial 
modifications of the type found in [14]. 

We now discuss the elimination of some of the auxiliary fields and the resulting 
non-polynomial terms in the action. The axial vector field Aa couples minimally to 
the scalars A, so that the equation of motion for A~ gives 

K 
A a  = 1 - 2 K 2 1 A  [ 2'A'ffaA* + spinor terms. (4.9) 

The vector field Va couples to IAI 2 through the D e .  V term in (4.7). Therefore we 
find using the appropriate terms of (4.8) 

2K 
"ca = 1 - 2K2[A[ 2 aalAI2 + spinor terms. (4.10) 
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When inserted back into the action, (4.9) and (4.10) lead to non-polynomial 
modifications of the kinetic term of the scalar fields. Varying the combined action 
with respect to X' leads to a solution for the auxiliary spinor At: 

/¢  

A'=  I _ 2 x 2 I A I 2 ( A ~ ' + A * q z , ) .  (4.11) 

Substituting this into the action leads to a modification of the kinetic term of ~ ' .  
The non-polynomial modifications of the terms quadratic in the field strengths are 

the result of the elimination of the auxiliary tensor field " t~b. This field also occurs in 
T~b. The field equation for t~b is the Poincar6 expression for ,1 ,j 

4 + + 2 A 2 r , +  
t.b,~ I _ 2 K 2 A 2 ( K A F . b ( V ) - K  ~ r~b,1(B)), (4.12) 

where F+~b(V) and F~+b,I(B) are the self-dual components of the field-strength 
tensors of V, and B~, the gauge fields of the vector multiplet and the Poincar6 
theory, respectively. 

A complete comparison with the results of [14] requires several field redefinitions, 
but the general characteristics of eqs. (4.9)-(4.12), in particular the presence of the 
factors (1-2K21A[2) -1 and (1 -2KA2)  -1, indicate that our results are indeed 

equivalent. To couple several vector multiplets to supergravity is of course straight- 
forward in our approach. As compared to N = 1, there are two new elements that 
lead to the emergence of non-polynomialities. First the tensor field, which is essential 
to obtain the modified kinetic terms of the vector fields; secondly the quantity D c  
which is responsible for most of the non-polynomial terms in the solutions of the 
various auxiliary fields. 

5. Conclusions 

In this paper we have presented the superconformal tensor calculus for chiral 
superfields. Apart  from the action of the vector multiplet, which we gave as an 
example, there exists a large variety of invariant actions on the basis of N = 2 chiral 
superfields. Not all of them can be treated strictly within the superconformal 
context. However,  this poses no essential limitation, since our results can be 
rewritten in terms of Poincar~ components.  This then defines a corresponding tensor 
calculus, which allows the construction of actions with arbitrary Weyl weight [5]. In 
this way one can construct a self-interaction of the vector multiplet, which is known to 
exist from a reduction of the SO(8) extended theory. Also the SO(2) supergravity 
action itself can be obtained from the unit chiral multiplet, i.e., the multiplet with 
only a constant A-component  different from zero. This construction of the Poincar~ 
theory, which was already mentioned in [6], is suggested by the density formula (3.3). 
For the unit multiplet this formula contains a term + 2 (Tab,i) that partly coincides with 
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the tensor terms in the Poincar6 action, so that the full supersymmetric  density 
written in Poincar6 notions should lead to this action. 

The N = 2 superconformal  Weyl theory can be constructed on the basis of a 
reduced chiral multiplet as well, but this requires a slight extension of our results. The 

reason is that the superconformal chiral field is no longer a Lorentz  scalar but a 
self-dual antisymmetric Lorentz  tensor. The low-0 components  of this superfield are 

Tabo, XC, comple t e ly  known.  T h e y  consist  of  the  con fo rma l  fields + ' D c ,  and  the  

a p p r o p r i a t e l y  modi f i ed  s u p e r c o n f o r m a l  curva tures .  These  curva tu res  and  the i r  

t r ans fo rma t ion  p rope r t i e s  can be  found  in [1]. A n o t h e r  ac t ion  based  on chiral  

mul t ip le t s  was p r e s e n t e d  long ago in [15]. In this case the  super f ie ld  is not  r e d u c e d  

and one  needs  to d e t e r m i n e  a k ine t ic  mu l t i p l e t  in o r d e r  to genera l i ze  the  resul ts  of  

[15] to local  s u p e r s y m m e t r y .  

A n  i m p o r t a n t  conclus ion  of o u r ' w o r k  is tha t  the  use of the  s u p e r c o n f o r m a l  a lgeb ra  

is e x t r e m e l y  he lpfu l  as an i n t e r m e d i a t e  step,  even  a l though  this a lgeb ra  is m o r e  

compl i ca t ed  in ou r  case than  for  N =  1 [16]. I t  m a y  be  tha t  this  i n t e r m e d i a t e  

s tep  is not  poss ib le  for  all mul t ip le ts .  O n e  then  has to a im d i rec t ly  for  a r e p r e s e n t a t i o n  

of the  Po incar6  a lgebra ,  which is subs tan t ia l ly  m o r e  compl ica ted .  H o w e v e r ,  the  

genera l  s t ra tegy  is a lways  the  same.  Namely ,  one  ex tends  the  resul ts  of r igid 

s u p e r s y m m e t r y  to a full r e p r e s e n t a t i o n  of  the  supe r -Po inca r6  or  s u p e r - W e y l  a lgebra .  

To  find the mul t ip l i ca t ion  rules  and  the  co r r e s pond ing  invar ian t  dens i t ies  is then  

s t ra igh t fo rward .  

For two of us (B.dW. and J.W.v.H.) this work is part of the research program of the 
Stichting voor Fundamenteel Onderzoek der Materie (F.O.M.). 
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