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3. Theory

This chapter introduces some of the theoretical tools used in the description
of the present experiment. First an overview of the effective interaction and
how it leads to spin-isospin excitations is given. I will then dwell on one of
them: the spin-dipole resonance (SDR). A description of the tools used to
study spin-isospin excitations and some related observables will be derived.
A thorough review of nuclear spin-isospin excitations can be found in the
review article of Osterfeld [21], on which the first part of this chapter is
based.

3.1 The effective nucleon interaction

To interpret scattering data, knowledge of the interaction between the probe
(projectile) and the nucleus is essential. In the case of nucleon-induced
reactions, the interaction stems mainly from the strong force, which allows
one to investigate many different types of excitations due to the spin and
isospin structure of the nucleon-nucleon (NN) interaction.

Because of the short range of the strong force, and at a sufficiently high
incident energy (= 100 MeV /u), the projectile-target interaction can be ap-
proximated by an effective interaction Vj,; = Zle Vpj between the projectile
nucleon p and the nucleons j in the target, where V), represents the bare
NN interaction. This approximation is known as the impulse approzimation
(TA) and relies on the fact that the projectile interacts with one nucleon in
the target nucleus, without any influence of the surrounding nucleons. For
energies below 100 MeV/u, nuclear medium effects, like multiple scatter-
ing and Pauli blocking, start playing a role and the effective interaction so
constructed is known as Brueckner’s scattering G matriz [22].

In the TA, the effective interaction between the incident nucleon and
each of the target nucleons is taken to be the kinematically corrected free
NN tp matrix [2, 23]. A parametrisation of the NN ¢z matrix between
bombarding energies of 50 and 1000 MeV/u for use in actual calculations
has been determined by Franey and Love [2, 23]. They write the effective
interaction as a sum of central (C), spin-orbit (LS) and tensor (T) terms in
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16 Chapter 3: Theory

the following spin-isospin decomposition

Voi(r) = V() + Vi (r) op-05+ VI (r) 7p- 7
+ VS(r) op-oj T
+ [VP(r) + V() 7 i) Ly - S
+ V) + V() 7 75) Spi(#) (3.1)

where r = r, —r; is the relative coordinate of the two interacting nucleons,
L,; = (rp — rj) x (k, — k;)/2 is the relative angular momentum operator
between the projectile p and target nucleon j, § = s, + s, is the total two-
nucleon spin and Sy;(#) = 30, -#oj - — o) 0 is the tensor operator. The
complex amplitudes V' of the central and spin-orbit components are taken
to be sums of Yukawa forms

/Ri)

Y ex (—r
Voilr) = Vi (3:2)
i=1 t

The radial shape of the tensor term is taken to be 72 times a sum of Yukawa
terms. The force ranges R; and strengths V; are free parameters and are
determined from a best fit to the ¢t matrix of eq. 3.1, or more specifically,
until

tr(Boas, q) = / dr exp(—ik' - ) Vi (r)[1 + (—1)! P¥]explik -7) , (3.3)

is within satisfactory limits, where E¢jps is the energy in the two-nucleon
centre-of-mass frame and q = k — k’. The space-exchange operator, P?,
and (—1)! (I is the relative angular momentum in the N-N system) ensure
antisymmetrisation. The energy dependence of the central part of the ef-
fective interaction at zero-momentum transfer (¢ = 0) is shown in figure
3.1. One sees that the best incoming beam energy region to study isovector
spin-flip excitations at vanishing momentum transfer lies between 150 and
400 MeV /u, since at these energies, the isoscalar central part of the effective
interaction goes through a minimum and the isovector spin-flip part is the
second-dominant one.

The spin-isospin dependence of the effective interaction is explicit in eq.
3.1 and can be used for the description of inelastic-scattering processes. All
terms that involve the spin operators o, - o;, S or §,; produce spin-flip
transitions in the projectile and in the target, and all terms that involve
the isospin operator 7, - 7; induce isospin transitions. For charge-exchange
reactions, isospin excitations of the target are mediated by the operators

T4.
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Figure 3.1: Energy dependence of the central components of the effective tr ma-
trix at zero-momentum transfer, taken from ref. [24].

3.2 Spin-isospin excitations

The presence of spin-isospin dependent terms in the effective interaction of
eq. 3.1 gives rise to spin-isospin excitations. If one expands the isovector
part of V}; in terms of its Fourier components, one gets [21] (I have added
the spin-orbit term)

Voj(rp,rj) = @/dq exp(—iq - rp)
V(@) + Vo (g)op - o — V5 (@)S - A — V] (9) Spi()]
exp(iq-rj) Tp  Tj , (3.4)

where the tensor operator S,,; is defined by Sp; = 30,-§4o;-G§—o0,-0;. The
coordinate system used is the one in which the unit vectors [Q, g, 7i] form a
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right-handed coordinate system with Q = k' +k, g = k— k' and f = § x Q.
In the remaining part of this section, we will confine our attention to the
central and tensor parts of the interaction, since they are generally more
important than the spin-orbit interaction in producing isovector excitations
[2].

Another convenient way of writing the spin-dependent interaction terms
of eq. 3.4 (without the spin-orbit part) is in the longitudinal and transverse
representation

V(@) = |VE(q) +Vig) op-G oG
+ V) (opx @) - (0 x @) |1p-7j, (3.5)

where V! and V! are the spin-longitudinal (/) and spin-transverse (t) isovec-
tor components of the interaction given by

Vi = VE(g) -2V (), (3.6)
Vi o= VS + V() -

It should be noted that the electromagnetic interaction measures only the
transverse spin response of nuclei (o x q) and is therefore (in first order)
blind to spin-longitudinal excitations because of the transverse character
of the one-photon exchange [21]. Moreover, excitation of spin-longitudinal
transitions is forbidden by particles with zero spin such as pions and alpha
particles.

A further specification of the states that can be excited is obtained by
performing a multipole expansion of eq. 3.4. Expanding the plane waves in
eq. 3.4 into partial waves and coupling the orbital (L) and spin (S) angular
momenta to a total angular momentum J leads to an expansion of V,; in
terms of the tensor operators

Mpsyu(gr,Os) = jrlgr) [i* Yi(7) ® O]’ 7, , (3.8)

where Og—y =1, Og—1 = o,

1 _
.o :Fﬁ(‘l';c +71y), p==%1 (3.9)
# Tz /J':O

and 14, Ty and 7, are the Pauli isospin matrices. The expansion of the
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central part of the effective interaction is given by

2 o0
Vai =~ / g*dg Y (1) [V (q)bs0 + V7 (a)ds,1]
T Jo LSJ

X Mrsi(p) - Mpss(j) , (3.10)

and that of the tensor part takes the form

2 © . /
Vij == /0 ¢*dg Yy V' ()it TP+
LL'J
X Z(LI,L, J) ML’lJ(p) . MLIJ(j) . (311)

The Z(L',L,J) are geometrical recoupling coefficients, which can be ex-
pressed [25] in terms of the total angular momentum transfer .J.

For small momentum transfer (¢gr < 1), one can expand the Bessel func-
tion jr,(gr) in a Taylor series. One then finds that for 0t — J7 transitions,
the isovector multipole operators for the lowest multipolarities are given by
[26]

7 2
> Moo u(grs) — \/%—WZU - (qﬁj) J7u(d) (3.12)
J J
U BV g
%:Monu(q'r],a) — \/EEJ:D 6] 1o(G)Tud) , (3.13)
S Miovalars) = 3 $ari) Vi) i) (3.14)
J J
Y Misulars,o) » Y sl W) @ ol m) . (319)

J J

where the summation is done over the number of nucleons in the target.
The operators in eq. 3.12 consist of two parts: the first is proportional to
the Fermi operator, while the second corresponds to the isovector monopole
operator. The same holds for eq. 3.13, only here the spin operator o is also
involved. This leads to the Gamow-Teller (GT) operator for the first part
and the spin-isovector monopole operator for the second. The operators in
eq. 3.14 and eq. 3.15 are associated with isovector dipole transitions which
involve either no spin flip (3.14) or spin flip (3.15). The spin-flip dipole
transitions can have spin-parity J*™ = 07, 1~ or 27, and therefore involve
three collective components grouped into the spin-dipole resonance (SDR).
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3.3 The spin-dipole resonance (SDR)

The SDR is a 1 hw excitation with a change in quantum numbers AL =
AS = AT =1, leading to three components representing angular momen-
tum transfers AJ = 0, 1, 2. Starting from a J™ = 0" ground state, the three
components have spin-parity J* = 07, 1~ or 27. The 0T — 0~ transition
holds a special place among the spin-dipole transitions because it carries the
pion quantum numbers and corresponds to a pure spin-longitudinal transi-
tion (see eq. 3.5). The 0t — 1 spin-dipole transition corresponds to a
pure-transverse transition while the 07 — 2~ transition is a mixture of
both.

Calculated strength distributions for the SDR based on shell-model cal-
culations for 2B (see figure 3.2) have been performed by Brady et al. [8]
(using the Millener-Kurath (MK) interaction [27]) and by Olson et al. [9]
(using the Warburton and Brown (WBT) interaction [28]) and for 2C by
Suzuki and Sagawa [29] (using the PSDMKII [30] interaction and the in-
teraction from Kuo [31]). The results of the calculation from Suzuki and
Sagawa, assuming isospin symmetry, have just to be shifted by 15.11 MeV
since the 2B ground state is the analog of the 15.11 MeV state in 2C. All
these calculations predict similar strength distributions for the SDR, with
one main 2~ state around 4 MeV excitation energy, a group of 1~ levels
around 7-8 MeV excitation energy and 0~ strength fragmented between 4
and 20 MeV, with most strength concentrated around 9 MeV excitation
energy.

Experimentally, the three components of the SDR have not yet been re-
solved, because the interpretation of the results is hampered by the difficulty
of identifying contributions from the different J components, since angular
distributions are dependent on the orbital angular momentum transfer AL,
rather than AJ. Additional information is needed to separate the differ-
ent components. One way is to measure the spin-transfer coefficient D,,,
in the (p,0) reaction along with AL from the angular distribution, which
is predicted to provide a unique determination of AJ. A measurement of
the angular distribution of the particle decay of the SDR would also yield
additional information on the different components. Finally, the measure-
ment of tensor analysing powers in a (d,2He) reaction would give the same
information as the (p,i) measurement.
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Figure 3.2: Theoretical distribution of dipole and spin-dipole strength as a func-
tion of the excitation energy in 2B, taken from ref. [8]. All distributions have the
same scale.

3.3.1 Status of the SDR search

The SDR was discovered using the (p,n) reaction on 2%Pb at 120 MeV [32].
The properties of the SDR were further investigated by Gaarde et al. [33]
using the (p,n) reaction on targets of mass 40 < A < 208 at 200 MeV.
In additon, the SDR has also been studied using the (*He,t) reaction on
different Sn isotopes [34, 35, 36]. However, the most serious efforts to study
the SDR have been performed on 2C in order to resolve a longstanding
controversy concerning the location of the J™ = 07, 17, 27 states. We will
be focusing on these.

Reactions that have been used for studying the SDR on the mass A = 12
system are the (p,n) [12, 15, 10, 14, 16], (n,p) [8, 9, 10], (*He,t+p) [11, 6],
(d,%He) [6, 5, 7] reactions and a heavy-ion charge-exchange reaction [13].
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From all these measurements, it was concluded that the 2~ component
of the SDR. in 2B was located at 4.5 MeV. The spin and parity assignment
of a second bump around 7.5 MeV is still puzzling. Theoretical calculations,
(p,n) studies [12, 10] and a measurement of the neutron decay of 2B fol-
lowing the (d,?He) reaction [6] suggest the bump is dominated by 1~ states.
However, a dominant contribution of 27 states is proposed by other groups,
based on (p,il) measurements [16], tensor analysing power measurements in
the (d,?He) reaction [5, 7] and a heavy ion charge-exchange reaction [13].
Ref. [7] also indicates possible evidence for the 0~ state around E; = 9.3
MeV.

3.4 The (d,’He) reaction

The (d,2p) reaction is referred to as (d,2He) when the two protons of the
ejectile are in a 1S state. It is a charge-exchange reaction exciting the same
isospin-raising transitions (87) as (n,p)-type reactions, but with additional
selectivity in the spin response, which will be addressed later. Although 2He
is an unbound state, one assumes it behaves like a real particle and that it
decays only after the scattering process, when it is far from the residual
nucleus. The distance from the scattering process at which the breakup of
2He into two protons happens can be estimated from the width of the 'S
state of ~ 1 MeV. Taking a velocity of 0.3 ¢ for the 2He, where c is the
speed of light, yields a flight path of = 70 fm before decay. At bombarding
energies of about 100 MeV /u or higher, the (d,2He) reaction is considered
as a one-step reaction.

3.4.1 (n-p)-type reactions

The most used (n,p)-type reactions are the (n,p), (t,>He), (d,2He) and the
heavy-ion reactions ("Li,"Be), (*2C,!2N). The last two reactions suffer from
several limitations, among which a rapid increase in momentum transfer
with angle (difficulty in discriminating different AL transfers) and a need
for high-energy beams to ensure a one-step reaction (limitation in energy
resolution).

The other (n,p)-type reactions also come with their share of experimen-
tal problems. The (n,p) reaction at intermediate energies suffers from the
limited energy resolution (=~ 1 MeV) and intensity (=~ 10° n/s) of the sec-
ondary beam, while the production of a primary tritium beam for the (t,3He)
reaction is confronted with safety regulations if one wants to obtain high in-
tensities. The (d,2He) reaction imposes severe conditions on the detection
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system, especially close to (and at) 0°, where the two correlated protons are
emitted in close geometry among a huge quantity of uncorrelated protons
stemming from the Coulomb break up of the incoming deuterons on the
target.

3.4.2 Measuring the (d,?He) reaction

Since the He is in a 'S state, it will decay isotropically in its centre-of-mass
frame. When one performs the Lorentz transformation to the laboratory
system, the relative angle between the two protons decreases, depending on
the kinematics of the reaction. The higher the incoming beam energy, the
smaller the relative angle. This means that above a certain incident energy,
a magnetic spectrometer is perfectly suited to detect the 2He particles with
a high efficiency, since the two protons from the 2He are emitted in a narrow
cone.

An important quantity measured with the (d,?He) reaction is the internal
energy € of the diproton system. The energy ¢ is given by using by the four-
momenta P! = (E;, p;) of the two protons

€= \/2 (m2 + E1E — |py||po|cos(6pp)) — 2m, (3.16)

where m, is the proton mass and 6, the relative angle between the two
protons. The internal energy is a measure of the contribution of higher
order partial waves in the p-p system. It was shown [37] that for an internal
energy € below 1 MeV, the 2He system is in a well defined 'S, state and
that contributions from higher partial waves are negligibly small.

3.4.3 Selectivity of the reaction

The (d,2He) reaction forces a spin-flip and isospin-flip transition (AS =
AT = 1) because the deuteron and 2He have spin-isospin values of (1,0) and
(0,1), respectively. The D-state admixture (= 4%) of the deuteron wave
function is neglected at this point.

In N>7Z nuclei, the (d,?He) reaction excites exclusively states with isospin
To + 1. The selectivity of the (d,2He) reaction makes it particularly useful
for the determination of Gamow-Teller (GT) strength, since it fulfills all
the requirements of the selection rules for small momentum transfer (see eq.
3.13).

However, if one uses a purely tensor-polarised deuteron beam, the (d,?He)
reaction becomes a unique tool for the study of spin phenomena. The tensor
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analysing powers correspond to information that can be obtained in a much
more difficult spin-transfer experiment in the (i, p) reaction [3].

3.4.4 DWBA treatment of the reaction

Generally, data obtained from scattering experiments are analysed using the
distorted-wave Born approximation (DWBA). The differential cross section
for a reaction A(a,b)B corresponding to a transition from an initial state 4
to a final state f is given by [38]

dogi _ pifif

= 3.17
ds} (2mh?)2 k ‘ il (3.17)
where p; and py are the reduced masses in the initial and final states, k;
and k; are the wave numbers of the incoming and outgoing waves, respec-
tively. T; is the transition amplitude. A quantity related to the transition
amplitude is the scattering amplitude M defined by

Vil /
Myi = = % ;i? Ty;. (3.18)

In case 2He were in a bound state, the transition amplitude looks like [5]

TPWBA — < () e Ta-[VIXST 0q Ta >, (3.19)

where the projectile and ejectile wave functions of the incident- and exit-

channels are denoted by ¢4 and ¥2p,, the target wave functions by ¥4 and
G

However, in the (d,?He) reaction, one has to deal with a three-body
problem in the outgoing channel, since 2He is an unbound state. If one uses a
standard DWBA technique, like the one presented in eq. 3.19, the imaginary
part of the optical potential for the outgoing wave has to be arbitrarily
searched for to fit the data, leading to ambiguities when interpreting the
results [39].

U 4+ and the distorted waves by X,(1+) and x respectively.

The adiabatic approximation

A method to treat the three-body dynamics of the (d,?He) reaction was for-
mulated by Okamura in the adiabatic approximation [40], which had been
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B

Figure 3.3: Coordinates of the three-body system p-p-B, where B is the residual
nucleus and b the p-p system.

successfully applied to the (*He,?He) reaction [41]. The Schrédinger equa-
tion for the three-body system is given by

h2
( AR—I—VlB(r,R)+VQB(I‘,R)+H12—E) \I!(Kf,k;r,R) =0.

2ppm
(3.20)
Here, R represents the relative coordinate between the centre of mass of the
ejectile system and the residual nucleus, r the relative coordinate between
the two protons, as shown in fig. 3.3, K; and k are the asymptotic wave
numbers in the exit channel.

The basic idea behind the adiabatic approximation resides in neglecting
the excitation of the diproton system when constructing the final three-body
wave function. This is done by replacing the sub-Hamiltonian Hio by its
eigenvalue, the relative energy e. Furthermore, the sum of the two potentials
Vip(r,R) is replaced by a sum of two optical potentials U;p(r, R) evaluated
at 3(E — €), which yields

2
(AR - %(UIB(L R) + UQB(r7 R)) + K%) \Ilad(Kf’ k; r, R) =0, (321)

where

24
K?= h’;B (E—¢), (3.22)

and Uoq(Ky, k;r,R) is the adiabatic three-body wave function.



26 Chapter 3: Theory

The T-matrix is now
Tk, K, Kf) =< U, [F| x5 04 >, (3.23)

in which F' is the target form factor

F(R,r) =< ®p| > _ Vpj|®4 > (3.24)
P,J

describing the nuclear response using the effective interaction between nu-
cleons in the target and projectile. ®4 and ®p denote the target ground
state and the final state of the rest nucleus, respectively. The advantage of
this method is that there is no need to define a ?He optical potential.

A detailed discussion of the application of the adiabatic approximation
to the (d,2He) reaction can be found in ref. [39], while ref. [42] gives another
theoretical method based on the eikonal approximation, including the three-
body treatment of both entrance and exit channels.

3.4.5 Symmetry of the transition amplitude

Transition amplitudes have various symmetry properties resulting from the
invariance of the Hamiltonian to rotations (conservation of angular momen-
tum) and inversion of the coordinate axes (conservation of parity). These
properties allow one to extract information on experimental observables.

In the helicity frame (see figure 2.1), the scattering plane is defined by
the two momenta k;, and k... The y-axis is then the perpendicular to the
scattering plane. Reflection with respect to the scattering plane (x-z plane)
is accomplished by the combined action of the parity and rotation operators
and yields the following symmetry relation [38]

\k; IM >=m (=)™ |k;T — M > | (3.25)

where 7 is the intrinsic parity of the particle, I its spin and M its z-
projection.

Applying eq. 3.25 to the transition matrix 7" for an A(a,b)B-type reac-
tion yields

< IBMBIbe|T|IAMAIaMa > =
(—1)”” T < Ip — Mgl — Mb|T|IA — Mul, — M, >, (326)

where 7y; is the overall change in intrinsic parity

Tfi = TRTHTAT, , (3.27)
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and 7)y; is the phase

ngi = Ip—Mp+1Iy— My+1g— Mg+ 1, — M, . (3.28)

3.4.6 Polarisation observables

For the (d,?He) reaction on an even-even target, for which I3* = 0T, I =
1* and I;® = 0%, the T matrix has only < Mp|T|M, > components, and
model-independent relations concerning the tensor analysing powers given
by

Tr(TP,T")
Ajj=——9"_~ 3.29
Yo Tr(TTY) (3:29)
can be derived.
For a 0~ state, I5® = 0~ and eq. 3.26 leads to
<Mp=0T|M;=1>=— <Mp=0|T|M;,=-1>. (3.30)

Inserting this into the expression for the analysing power eq. 3.29 gives

B Pompramy, < Mp|T|Mg >< M,y |Pyj| M), >< M}|T|Mp >*

A = 3.31

. S v, | < Mo[TM, > 7 (331
and using P, as operator yields

Ayy =1 fora 0 state, (3.32)

irrespective of the scattering angle and model independently.
Furthermore, still for a 0~ state, using the same method as above, it can
be shown that!

A+ Ay — Ay = —2 fora 0 state, (3.33)

again, irrespective of the scattering angle and model independently.
At 0° (or 180°), the T-matrix is rotationally invariant around the beam
axis, meaning [J,,7T] = 0 and one can deduce

< Mg|[J,,T)|M, >= (Mg — M,) < Mg|T|M, >=0. (3.34)

This yields
A,, =—2 for a0 state at 0°. (3.35)

! This can also be derived by inserting the result from eq. 3.32 in eq. A.15
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Additionally, one sees that A;; and Ay, are equal at 0°. For natural parity
states, 7 = (—1)!2 and eq. 3.26 becomes

< Mp|T|M, >= (=1)(=1)MeTMe <« _Mp|T| - M, > . (3.36)

This last result tells us that the only non-zero components of the T-matrix
are for Mp = M, = +£1, resulting in

A, (0°) = 1 and Agy(0°) = Ayy(0°) = —= (3.37)

for natural-parity states at exactly 0°.





