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Abstract

Drug regulators and other strategic health care decision makers assess the health im-
pact of alternative treatment options (e.g. drug A, drug B, or no treatment at all), in
addition to other potential factors such as costs. The health impact of a drug is as-
sessed in terms of its favorable effects, or benefits and its unfavorable effects, or risks.
Whether the benefits of a treatment outweigh its risks (relative to the other options),
i.e. the benefit-risk balance, is essential to this assessment. Thus, we refer to it as bene-
fit-risk assessment. In drug regulation, the benefit-risk assessment is generally based
on pivotal evidence provided by clinical trials. Although various information sys-
tems store and process such evidence, there are still large gaps in the transfer of this
information from the individual studies to the relevant decision makers.

First, clinical trials data are primarily disseminated in text-based reports with no
formal structure. This makes the information impossible to process automatically and
thus leads to difficulty in finding and making use of the relevant data (data acquisi-
tion). Second, current decision making in drug regulation relies entirely on the expert
judgment of the assessors. Reliance on subjective assessment hides the reasoning that
supports the decision and causes the regulatory process to be insufficiently transpa-
rent and traceable. Furthermore, the benefit-risk balance is seldomly made explicit,
least quantified. Formal methods and computer models can facilitate the decision ma-
king process (decision aiding) as well as make it more explicit and transparent. Finally,
while current regulatory decision making is based on the clinical trials data delive-
red by the company, general benefit-risk decision making requires the assessment of
all viable alternatives. Such relative benefit-risk assessments are expected to gain im-
portance for regulators as well. Thus benefit-risk assessment is a problem involving
multiple alternatives as well as multiple criteria, and the evidence supporting it is
provided by complex networks of clinical trials. Appropriate statistical methods are
required to coherently integrate the available data (evidence synthesis). Moreover, the
evidence synthesis method(s) must be compatible with the decision aiding model(s)
in order to be useful.
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In order to increase the transparency and quality of decision making in benefit-
risk assessment all three problems must be addressed by a single integrated decision
support system. The evidence synthesis and decision aiding models must fit together
in an integrated work flow, and constructing them should be straightforward so that
models can be created and revised on the fly for the decision at hand. This requires
straightforward data acquisition, which is only possible if the evidence is available in
a sufficiently structured format to enable computer support.

In this thesis we address these problems by the development of the Aggregate
Data Drug Information System (ADDIS), a decision support system for evidence ba-
sed strategic health care decision making. The development of the ADDIS software
was carried out simultaneously with research into the appropriate data model, evi-
dence synthesis methods and decision support models. ADDIS was developed ite-
ratively according to agile software development principles, meaning that a working
system was available throughout the project and frequent (quarterly) releases were
made to the project stakeholders and the general public to ensure rapid feedback.
ADDIS is working, freely available, and open source software.

The evidence synthesis problem was solved by developing algorithms to auto-
matically generate the complex statistical models that underly network meta-analy-
sis, a method to evaluate any number of treatments using a network of clinical trials.
Previously, network meta-analysis required the manual specification of these models.
We developed Multiple Criteria Decision Analysis (MCDA) methods to support drug
regulatory decisions, and showed how they can be used in combination with net-
work meta-analysis. Specifically, we used the Stochastic Multicriteria Acceptability
Analysis (SMAA) method to take into account the uncertainty inherent in clinical
trials information. In addition, SMAA enables decision aiding when the decision ma-
ker is not able or willing to commit to precise trade-off valuations (preferences) by
allowing them to be completely or partially unspecified. Finally, we developed the
ADDIS decision support system and data model, which are the result of iterative de-
velopment focused on delivering evidence synthesis and decision aiding functiona-
lity rather than top-down design. While other data models for summary-level clinical
trials data are in development, they have thus far not led to useful applications. On
the other hand, statistical software exists for evidence synthesis of clinical trials, but
their data formats are analysis-specific so extracted data can not be reused. In con-
trast, our data model enables data analysis and decision aiding, and that data have
to be extracted only once in order to support many different analyses and decision
aiding scenarios.



Samenvatting

Beleidsmakers in de gezondheidszorg, zoals registratieautoriteiten die bepalen of een
geneesmiddel op de markt komt, beoordelen geregeld de effecten van verschillende
behandelingsstrategieën. Hiervoor vergelijken ze een nieuw middel met een of meer
bestaande middelen en/of een placebo. Bij dergelijke beslissingen staan de gezond-
heidseffecten van het middel centraal. Andere beleidsmakers, zoals vergoedingsau-
toriteiten, nemen ook andere factoren zoals de kosten en de maatschappelijke effecten
van behandeling met de verschillende middelen mee in hun beslissing. Over het alge-
meen heeft een geneesmiddel zowel wenselijke als schadelijke gezondheidseffecten.
De vraag die beleidsmakers beantwoorden is of de wenselijke effecten zwaarder we-
gen dan de schadelijke effecten: de balans werkzaamheid-schadelijkheid. De beoordeling
van werkzaamheid-schadelijkheid is altijd relatief tot een of meer andere opties. Zo
zal de balans voor een nieuw geneesmiddel ten minste beter moeten uitvallen dan
wanneer er niet behandeld wordt. Bij markttoegang is deze beoordeling primair ge-
baseerd op bewijs uit gerandomiseerde klinische studies met een controlegroep (ran-
domized controlled trials, RCTs). Hoewel verschillende informatiesystemen deze in-
formatie opslaan en verwerken is de overdracht van informatie uit individuele RCTs
naar de beleidsmakers niet efficiënt, gemakkelijk, of transparant. De beslissingen zelf
zijn ook niet altijd op transparante wijze genomen of duidelijk onderbouwd.

Een aantal problemen liggen ten grondslag aan deze situatie (zie hoofdstuk 2 en
appendix A). Ten eerste vindt de informatieoverdracht plaats door middel van tek-
stuele documenten zonder formele structuur, waardoor de informatie niet goed door
computers te verwerken is. Het is dus moeilijk om de juiste informatie terug te vinden
en te gebruiken (informatieverwerving). Ten tweede is de besluitvorming bij markttoe-
gang grotendeels informeel: er wordt vertrouwd op het (subjectieve) oordeel van de
groep experts die de beslissing neemt. Hierdoor is de onderbouwing van beslissin-
gen soms onduidelijk en is niet transparant welke rol het bewijs uit RCTs gespeeld
heeft bij de beslissing. Doordat niet expliciet gemaakt wordt hoe de wenselijke en
schadelijke effecten gewogen worden in de balans werkzaamheid-schadelijkheid zijn
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de beslissingen onvoldoende reproduceerbaar en voorspelbaar. Formele methoden
en computermodellen kunnen de besluitvorming ondersteunen en deze tegelijker-
tijd explicieter en transparanter maken (beslissingsondersteuning). Ten derde worden
beslissingen nu gebaseerd op een klein aantal RCTs die door het bedrijf wat markt-
toegang aanvraagt uitgevoerd zijn. Meestal is er echter een uitgebreide wetenschap-
pelijke literatuur beschikbaar waarin RCTs worden beschreven die andere behande-
lingsopties met elkaar vergelijken. Het is van belang dat ook deze achtergrondinfor-
matie gebruikt wordt bij de beoordeling van een nieuw middel. In het algemeen moet
de balans werkzaamheid-schadelijkheid dus bepaald worden op basis van complexe
netwerken van RCTs waarin mogelijk een groot aantal middelen met elkaar verge-
leken zijn. Statistische methoden zijn nodig om de informatie uit deze individuele
studies op een consistente manier te combineren (meta-analyse). Om van praktisch
nut te zijn moeten de methoden voor meta-analyse en beslissingsondersteuning goed
op elkaar aansluiten. Om de transparantie en kwaliteit van beoordelingen van de
balans werkzaamheid-schadelijkheid te verbeteren moeten deze problemen alle drie
opgelost worden. De oplossing(en) moeten beschikbaar zijn in één enkel informatie-
systeem waarin de relevante RCTs op efficiënte wijze gecombineerd kunnen worden
en waarin de balans werkzaamheid-schadelijkheid op basis hiervan in kaart gebracht
kan worden.

Om dit te bewerkstelligen wordt in dit proefschrift het informatiesysteem ADDIS
(Aggregate Data Drug Information System) gepresenteerd (hoofdstuk 9). De ont-
wikkeling van ADDIS verliep parallel met onderzoek naar de juiste methoden voor
meta-analyse (hoofdstuk 3-4), beslissingsondersteuning (hoofdstuk 5-8) en informa-
tieopslag en -verwerving (hoofdstuk 2 en 9). ADDIS is iteratief ontwikkeld volgens
een ‘agile’ proces, wat inhoudt dat gedurende vrijwel het hele project er een werkend
systeem beschikbaar was en dat nieuwe versies regelmatig publiek werden gemaakt
(zie ook appendix C en D). Hierdoor konden belanghebbenden in het project (en der-
den) doorlopend de juistheid en doelmatigheid van het systeem beoordelen. ADDIS
is werkende software, gratis beschikbaar en de broncode is door iedereen in te zien
en aan te passen (zie appendix B).
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CHAPTER 1

Introduction

Health care policy decisions often involve assessing the performance of alternative
treatment options. Ideally, such decisions should be informed by all available high
quality evidence, which is usually provided by clinical trials. However, there is a
large gap between the available evidence published as articles in scientific journals
and the integrated overview of current scientific knowledge that the decision maker
requires. To close this gap, three challenging and time-consuming steps must be
taken:

1. Data acquisition: collecting the relevant clinical trials

2. Evidence synthesis: statistically combining the evidence

3. Decision aiding: giving insight in the data and identifying trade-offs

Currently, each of these steps is performed separately or sometimes not at all. A lim-
ited budget or lack of expertise may mean that some steps are bypassed, leading to
less transparent, lower quality decisions that may be based on only part of the rele-
vant evidence. An integrated approach to evidence-based decision making is needed
to increase the quality of decision making, to take into account all available evidence,
and to enable transparency through explicit coupling of decision models with the
underlying evidence from clinical trials.

This thesis shows how statistical methods for evidence synthesis and models for
Multiple Criteria Decision Analysis (MCDA) can be applied to support benefit-risk
decision making by drug regulatory authorities and other decision makers. The com-
putational methods developed were implemented in an integrated decision support
system, Aggregate Data Drug Information System (ADDIS). ADDIS enables basing
decision models directly on an underlying database of aggregated clinical trials data.
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In this manner, ADDIS improves the transparency and reproducibility of benefit-
risk assessment by allowing decisions to be traced back to the underlying evidence
from clinical trials. Importantly, automating these features enables an on-demand
approach to decision modeling that was not previously possible.

In the following sections, first the context and history of the project that culmi-
nated in this thesis are briefly described. Then, the research problems that were ad-
dressed are explained. Finally, an outline of the thesis is given. The background
literature is discussed in Chapter 2.

1.1 Project context

My PhD project was funded by the Escher project of the Top Institute Pharma
(TI Pharma). TI Pharma is a Dutch public-private partnership, financing research
projects with funding from government, pharmaceutical companies and academic
institutes. The Escher project aims to generate new insight into the drug regulation
process and to produce innovations that can lead to more efficient drug development,
more transparent decision making, increased public trust in industry and regulators
and the removal of unnecessary barriers to market entry of innovative new medi-
cines. The project consists of three main work packages, with 16 PhD projects divided
among the three. The first work package investigates the regulatory system itself,
in order to identify unnecessary barriers to market access and opportunities for in-
novation, and consists of 6 PhD projects. The second work package is focussed on
developing innovative methods of testing and monitoring the efficacy and safety of
drugs, and consists of 8 PhD projects. The third work package is concerned with
knowledge transfer and preservation, learning, and decision making based on clini-
cal data. This final work package consists of 2 PhD projects, 3.1 and 3.2, of which this
PhD project is work package 3.2.

The aim of Escher work package 3.2 is to develop an information system that
streamlines the handling of clinical data submitted to regulators and the execution
and reporting of the benefit-risk assessment that is based on that data. Regulatory
data should transition from document-based repositories to structured databases of
clinical and assessment data that enable cross-study analyses.

1.2 A brief history

When I joined the project in April 2009, the Escher project had been running for nearly
a year. An overview of drug information systems had already been produced [Ter-
vonen et al., 2010], and the team was able to point me towards the right literature,
providing me with a flying start. In addition, several rounds of discussions with
stakeholders (e.g. MSD, GSK, and assessors from CBG and EMA) were conducted,
and a list of 16 global requirements had been composed. Because the project was
originally formulated as a software development project without clear research re-
lated deliverables it was decided that the best course of action would be to develop
a prototype as quickly as possible. The prototype could then function as a basis for
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discussion with the various stakeholders, and we expected that research questions
would emerge naturally from its development. After a month of literature catch-up
and intense discussions, we identified the three key elements for the prototype:

1. A structured database of clinical trials, with aggregated data

2. The synthesis of data from multiple clinical trials using meta-analysis

3. Formal decision modeling based on the clinical evidence using MCDA

The initial prototype, ADDIS 0.2, was released on 2009-06-30 and consisted of rudi-
mentary implementations of each of the key elements. Several problems emerged
immediately from our initial implementation: (1) standard meta-analysis techniques
do not extend easily to decision problems involving more than two alternatives and
more advanced techniques require manual model specification, and (2) the results of
a meta-analysis are not directly transferable to a decision analytic environment. These
problems gave rise to the research questions described in the next section.

During the initial months, we spent a substantial part of our time designing the
software and writing code. It became clear that the resources available were not suf-
ficient to address both the research questions and the software requirements. Fortu-
nately, starting October 2009, we could attract several part-time software developers
to take over most of the development workload, which permitted both research and
software development to proceed in parallel, and provided me with the unique op-
portunity of managing my own software development team. Since the requirements
were not clearly defined and preliminary, we decided to work according to an Agile
software development process, which emphasizes responding to change rather than
following a set-in-stone plan. We spent a fair amount of time researching Agile soft-
ware development processes, which also resulted in two publications.

A collaboration with the Multi-Parameter Evidence Synthesis group at Bristol
University was established in the first half of 2010 to support the work on advanced
meta-analytic techniques. This collaboration gave rise to Chapter 3 and many im-
provements to the software, and is still ongoing.

1.3 Research questions

Based on the intended key elements of the ADDIS prototype, the main research ques-
tion can be formulated as follows:

How can a network of clinical trials be used to inform benefit-risk assess-
ment in a formal decision modeling framework, and how can an informa-
tion system support such decision modeling?

To apply decision modeling to a network of clinical trials, the results of these tri-
als must first be combined in a methodologically sound and consistent framework.
Network meta-analysis is a family of evidence synthesis methods that enables the si-
multaneous synthesis of complex networks of clinical trials comparing two or more



4 1. Introduction

alternatives [Lu and Ades, 2004, Salanti et al., 2008a]. However, performing a net-
work meta-analysis requires manually specifying a complex statistical model. This is
a potential source of errors and requires specific knowledge of the statistical software
being used that is not directly relevant to network meta-analysis itself. More impor-
tantly, to build upon network meta-analysis in a decision support system, it must be
relatively straightforward to apply. Therefore, the first sub-question is:

How can the statistical models for network meta-analysis be generated
automatically, based on the network of clinical trials data?

While network meta-analysis provides a consistent account of what the data tells
us about the performance of the alternative drugs on a single clinical outcome, most
drugs do have an impact on multiple clinical outcomes. Benefit-risk decisions usu-
ally involve at least one beneficial outcome (benefit criterion) and several adverse
outcomes (risk criteria). Thus, a framework for providing insight in the data and
identifying trade-offs between different criteria is needed. Supporting decisions in
health care is complex, because the underlying evidence is inherently uncertain, and
trade-offs are often difficult to quantify. Accepting MCDA as the proper framework
for decision making involving multiple criteria [Keeney and Raiffa, 1976] raises the
second sub-question:

How can the MCDA framework be applied to drug benefit-risk assess-
ment, while properly accounting for the uncertainty inherent in data ob-
tained from clinical trials, and acknowledging the difficulty of precisely
quantifying trade-offs?

Furthermore, building a decision model based on (network) meta-analysis creates
an additional problem. Meta-analysis results in estimates of relative effects for reasons
of statistical robustness, but absolute treatment effects are needed for decision making
[Egger et al., 1997]. This is especially important if trade-offs between multiple criteria
are to be considered. Therefore, the results of meta-analysis are not directly amend-
able to decision modeling, and the third sub-question is:

How can the results of (network) meta-analysis be used to inform drug
benefit-risk decision making in the MCDA framework?

Finally, once a sound and feasible framework for decision aiding based on net-
works of clinical trials has been established, it should be implemented in a deci-
sion support system to facilitate on demand decision modeling. Thus, the fourth sub-
question is:

How can aggregate clinical trial results be stored in an efficient and mean-
ingful way, and how can automated decision modeling be applied to those
results?
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1.4 Outline

This thesis consists of an introduction, eight chapters (seven of which correspond to
a published or submitted journal article), a discussion, an appendix providing ad-
ditional background on clinical trial information systems (published as a research
report), an appendix describing the software that was produced, and two appendices
on software development methodology (published as a conference and a journal ar-
ticle).

Chapters 2–9 are the main body of the thesis. Chapter 2 presents a review of
information systems and data representation standards dealing with aggregate data
from clinical trials, and identifies problems in the dissemination and subsequent use
of clinical trials results. The currently open problems provide the motivation for the
development of ADDIS: there are clear gaps to be filled, and ADDIS addresses some
of these problems.

Then, Chapter 3 and Chapter 4 show how network meta-analysis models can be
generated automatically, a core ingredient in the ADDIS decision support system.
Chapter 5 takes a step back and considers how to apply MCDA, specifically the
Stochastic Multicriteria Acceptability Analysis (SMAA) method, to drug benefit-risk
assessment in the context of a single clinical trial. Chapter 6 describes a method for
sampling from the distribution of possible weights that satisfy preference informa-
tion given by the decision maker. How this method can be used to better model the
decision maker’s preferences is briefly illustrated in Chapter 7. The pieces are put
together in Chapter 8, which addresses the problem of using a SMAA model for drug
benefit-risk assessment based on meta-analysis of a larger number of trials. Chapter 9
describes the ADDIS decision support system itself, putting all the pieces together in
a single integrated workflow, and showing how ADDIS supports benefit-risk deci-
sions. Overall conclusions and future research directions are discussed in Chapter 10.

Appendix A provides an account of clinical trials information systems used in
drug development and regulatory submission. Then, Appendix B is an overview of
the software that was delivered during the research project, consisting of the ADDIS
software itself as well as several supporting libraries and programs. Finally, Appen-
dices C and D present work on planning agile software development projects, specif-
ically those using the eXtreme Programming (XP) methodology.





CHAPTER 2

Deficiencies in the transfer and availability of clinical trials
evidence

A survey of existing systems and standards

G. van Valkenhoef, T. Tervonen, B. de Brock, and H. Hillege. Deficiencies in the transfer and
availability of clinical evidence in drug development and regulation. BMC Medical Informatics
and Decision Making, 2012c. doi: 10.1186/1472-6947-12-95. (in press)

Abstract
Background: Decisions concerning drug safety and efficacy are generally
based on pivotal evidence provided by clinical trials. Unfortunately, find-
ing the relevant clinical trials is difficult and their results are only available
in text-based reports. Systematic reviews aim to provide a comprehensive
overview of the evidence in a specific area, but may not provide the data
required for decision making.
Methods: We review and analyze the existing information systems and
standards for aggregate level clinical trials information from the perspec-
tive of systematic review and evidence-based decision making.
Results: The technology currently used has major shortcomings, which
cause deficiencies in the transfer, traceability and availability of clinical tri-
als information. Specifically, data available to decision makers is insuffi-
ciently structured, and consequently the decisions cannot be properly traced
back to the underlying evidence. Regulatory submission, trial publication,
trial registration, and systematic review produce unstructured datasets that
are insufficient for supporting evidence-based decision making.
Conclusions: The current situation is a hindrance to policy decision mak-
ers as it prevents fully transparent decision making and the development of
more advanced decision support systems. Addressing the identified defi-
ciencies would enable more efficient, informed, and transparent evidence-
based medical decision making.
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2.1 Background

2.1.1 Motivation

Health care policy decision makers such as drug regulatory authorities, reimburse-
ment policy makers and guideline committees routinely evaluate the efficacy and
safety of medicines, as well as other factors such as costs. Clinical trials provide the
pivotal evidence for drug efficacy and safety. The ability to efficiently identify and
make use of the results of existing clinical trials is critical to evidence-based policy
decision making.

Until recently, journal publications were the only generally available source of
trial designs and results. Thus, systematically reviewing the medical literature for
the clinical trials that address a specific topic is of central importance to evidence-
based health care policy [Chalmers, 2007, Sackett et al., 1996]. This provides decision
makers with a coherent overview of the current evidence, and also helps to set the
agenda for future clinical research [Mulrow, 1994, Sutton et al., 2009]. However, sys-
tematic reviewing is currently not feasible for most decision makers, because it is time
consuming and expensive.

Therefore, most decision makers will have to rely on published systematic re-
views. However, this is problematic because the review may not match the needs
of the decision maker. Thus, even when a relevant systematic review is available,
there may be a need to go back to the underlying trial data, especially for quanti-
tative decision modeling. It may additionally be necessary to update or extend the
review, or to combine several of them. Doing so also requires access to the underly-
ing trial data, but these are not commonly reported. This is a serious limitation to the
efficiency of both evidence-based decision making and systematic reviewing.

Thus, the quality of health care policy could be improved if systematic reviews
could be performed for whatever decision is currently at hand, ideally even on de-
mand. This would require enormous improvements to the manner in which clinical
trials evidence is made available. Although efforts to standardize the information
systems for the management and regulatory submission of clinical trials have been
successful [Bleicher, 2003, El Emam et al., 2009, van Valkenhoef et al., 2012b], this
has not so far resulted in similar improvements in the dissemination of clinical trial
evidence. A comprehensive overview of the various information systems that store
and process clinical trials information could identify the gaps in information trans-
fer that limit the efficiency of systematic reviews and consequently health care policy
decision making.

2.1.2 Systematic review

The need to identify and summarize the evidence for decision makers is evident from
the sheer scale of the available information: PubMed alone indexes nearly 20 million
publications from over 5,500 journals, and this is only a selected subset of the biomed-
ical literature [Mulrow, 1994]. Systematic review addresses this need and consists of
three steps: literature screening, data extraction, and reporting. In the first step, litera-
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ture databases are searched, yielding a set of potentially relevant publications. These
are screened for suitability, which results in them being included in, or excluded from,
the review. Because literature searches are often inaccurate, thousands of publica-
tions may need to be screened. Moreover, to ensure comprehensiveness and avoid
bias, multiple databases have to be searched [Crumley et al., 2005] and multiple pub-
lications of a single trial have to be identified as such. Once the relevant trials have
been identified and the corresponding reports retrieved, the data have to be extracted
from the reports. Finally, the collected data are summarized and combined (e.g. using
meta-analysis), and reported in a journal article or a technical report. Typically only
this final product is made available, even though making the results of the screening
step and the extracted data available would greatly enhance the efficiency of future
systematic reviews and decision making. Thus, to assess the efficiency of clinical tri-
als results dissemination, systematic review should not be ignored.

The difficulty of performing a systematic review also impacts the quality of sys-
tematic reviews themselves: it leads to reviews that focus on a single treatment or
a pair of treatments. Consequently, for one particular therapeutic indication many
competing reviews may be available, that each provide only a small part of the over-
all picture [Caldwell et al., 2010]. This has led to ‘overviews of reviews’ or ‘umbrella
reviews’ summarizing the results of several existing reviews [Ioannidis, 2009]. Um-
brella reviews generally merely repeat the pooled summaries of treatment effects
from the original reviews, but it has been argued that they may lead to misleading
and inconsistent conclusions [Caldwell et al., 2010]. An approach based on the indi-
vidual studies is therefore preferable but labor-intensive if the data are not available
in a structured format.

2.1.3 Scope and objectives
The aim of this paper is to identify opportunities to enhance the efficiency of system-
atic review and evidence-based decision making, supported by a broad and useful
overview of the current state of the art in the transfer and availability of clinical trial
evidence. To these ends, we provide a critical overview of existing systems and stan-
dards that support the dissemination of clinical trial results.

Because publicly available clinical trial results are nearly always aggregated (at
the population level) rather than reported per patient, and because most decision
makers base their decisions on such data, we limit the scope of this paper to systems
and standards for the aggregate level.

2.2 Methods

We included academic publications and websites of manufacturers or standardiza-
tion bodies that describe information systems or standards that deal with the transfer
and availability of aggregate-level results of clinical trials. We also considered review
articles and peer-reviewed position papers related to such information systems.

We identified relevant publications through key word searches using Google,
Google Scholar, ISI Web of Science and PubMed (last searched May 2011). We also
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Figure 2.1: An overview of the processes dealing with clinical trials information and
how they relate to each other.

screened the reference lists of included publications. In addition, through our partic-
ipation in the Escher project of the Dutch Top Institute Pharma (TI Pharma), we were
able to engage in discussions with many experts from the pharmaceutical industry,
regulatory authorities, and academia.

Publications (both peer-reviewed articles and web pages published by companies
or standardization bodies) were screened for eligibility using titles and abstracts (if
applicable). Potentially relevant publications were read in full. If a peer-reviewed ar-
ticle and a web page conveyed (nearly) identical information, only the peer-reviewed
work was included. Moreover, web pages were excluded if the source was not con-
sidered authoritative for the subject matter. Included publications were summarized
using keywords, and especially important sections were highlighted for later refer-
ence. For each system and standard we collected the context in which it is used, its
purpose, its defining features, the types of data it handles and/or produces, its con-
nection to other systems or standards, and expected future developments.

2.3 Results

In this section, we present the identified systems grouped according to the processes
they support. These are publication in the scientific literature (Section 2.3.1), trial reg-
istration (Section 2.3.2), systematic review (Section 2.3.3) and regulatory assessment
(Section 2.3.4). Figure 2.1 shows how these processes relate to each other, to the op-
eration of the trial itself, and to policy decision making. Standards and data models
relevant to the dissemination of aggregate level results of clinical trials are discussed
in Section 2.3.5.

2.3.1 Scientific literature

Pharmaceutical industry and other investigators may choose to summarize selected
results of clinical trials in manuscripts submitted to peer-reviewed scientific journals.
A clinical trial may result in any number of publications, from none to dozens. Unfor-
tunately, such publications frequently lack sufficient information to allow the reader
to judge whether the trial was rigorously conducted. The CONSORT statement [Begg
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et al., 1996, Schulz et al., 2010] aims to improve the situation by providing guidance
on the proper reporting of clinical trials. Nevertheless, trial reporting is often still in-
adequate [Chan and Altman, 2005] and selective outcome reporting is common [Chan
et al., 2004].

Reporting clinical trial results in text-based articles rather than properly struc-
tured data sets makes computational processing of the results practically impossi-
ble [Sim et al., 2000]. Moreover, although peer review is essential to guarantee the
quality of such articles, publication in scientific journals scatters the results through-
out the scientific literature. The problem of identifying and accessing clinical trial
publications is addressed by abstract databases and search engines, most notably
PubMed (http://pubmed.com/), backed by the MEDLINE database, and EMBASE
(http://embase.com/), which maintains its own database; see Table 2.1 for their
coverage. Both databases label abstracts using controlled vocabularies, allowing the
restriction of searches to clinical trials, controlled clinical trials, or systematic reviews
of clinical trials. However, not all abstracts might be labeled, which is why system-
atic reviewers often broaden their search beyond these categories. PubMed’s Clinical
Queries (http://pubmed.com/clinical) provide optimized search strategies that
have been empirically validated for this use [Haynes et al., 2005]. It might be use-
ful in these cases to annotate which abstracts do not belong to reports of clinical trials.
Research is ongoing to improve the accuracy of search results through text processing
of abstracts [Boudin et al., 2010] and to aid the screening process by ranking the search
results [Karimi et al., 2010]. The Cochrane CENTRAL database of trial publications
[Dickersin et al., 2002], kept up-to-date by the non-commercial Cochrane Collabora-
tion (http://www.cochrane.org/), provides links to publications known to describe
randomized controlled trials. It is quarterly updated from MEDLINE, EMBASE, and
databases of specialized Cochrane groups [The Cochrane Foundation, 2010] Records
that are identified as clinical trials are reported back to MEDLINE.

When clinical trial results were only published in scientific journals, the decision
whether to publish the results was completely left to the investigator, which led to
incomplete trial reporting and publication bias [Dickersin and Rennie, 2003]. For ex-
ample, over half of the clinical trials that supported successful new drug applications
made to the Food and Drug Administration (FDA) had still not been published 5
years after the medicines’ market approval [Lee et al., 2008]. This is a serious prob-
lem that can lead to incorrect conclusions from a systematic review.

2.3.2 Trial registration

As early as 1986 the registration of trials in advance was proposed as a solution to
publication bias [Simes, 1986]. The trial bank concept proposes to take the registration
of trials even further by recording not only the existence of a trial, but also the study
protocol (in advance) and the results (after completion) in a “machine readable” way
[Sim, 1997, Sim et al., 2000]. For trial banks to be successful, all trials must be entered
in a way that conforms to a single machine-readable data model [Sim, 1997, Sim et al.,
2004]. The Global Trial Bank project was set up in 2005 to create a practically usable
trial bank [Sim and Detmer, 2005], but in 2008 it was put on hold due to lack of

http://pubmed.com/
http://embase.com/
http://pubmed.com/clinical
http://www.cochrane.org/
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funding [AMIA, 2010].
The FDA Modernization Act of 1997 made the US the first country to make trial

registration a legal requirement. To implement this legislation, the ClinicalTrials.gov
registry was launched in February 2000 [McCray and Ide, 2000]. The initial install-
ment focused on providing a record of trials for enabling patient recruitment and
investigator accountability. In 2004, both the World Health Organization (WHO) and
the International Committee of Medical Journal Editors (ICMJE) released statements
in support of the prospective registration of clinical trials. This policy has been widely
adopted and now assures that the existence of most recent trials is known [Zarin et al.,
2007]. Subsequently, various organizations, including the WHO, have called for a
full disclosure of the trial protocol (including amendments) and results [Krleza-Jeric
et al., 2005, Sim et al., 2006, Kaiser, 2008, Ghersi et al., 2008, Zarin and Tse, 2008, Chan,
2008, Sim et al., 2009]. In the US, recent legislation [FDA, 2007] has required protocol
registration since December 2007, basic results reporting since September 2008, and
Adverse Drug Events (ADEs) reporting since September 2009 [Wood, 2009]. Other
governments with policies requiring prospective registration include the EU, India,
Argentina, Brasil, Israel and South Africa [ICTRP, 2010].

To register a trial in ClinicalTrials.gov [Tse et al., 2009], researchers enter summary
protocol information [ClinicalTrials.gov, 2009a] when their studies are initiated, and
subsequently create the results section [ClinicalTrials.gov, 2009c] when the data col-
lection for at least one primary outcome measure is complete. The ClinicalTrials.gov
staff will review the results data after their submission. The data are reported in a
structured tabular format and some meta-data, such as units of measurement or the
use of standard vocabularies, can also be provided. Limited support for reporting
statistical analyses is offered; these analyses are tied to specific results tables. Study
protocols have long been available in XML format, and the retrieval of results in XML
format was added in December 2011 [ClinicalTrials.gov, 2011].

Other countries have set up their own registries. Since 2004, the European Medi-
cines Agency (EMA) has established clinical trial registration in accordance with the
EU Directive 2001/20/EC through the EudraCT system. EudraCT was opened to the
public only recently as the EU Clinical Trials Register, on 22 March 2011 [European
Medicines Agency, 2011b], and the records are being released in a staggered fashion.
Currently 17,102 [European Medicines Agency, 2012] of over 28,150 registered trials
[European Medicines Agency, 2011a] are available. Another international registry
is the Current Controlled Trials Ltd.’s ISRCTN registry, which has been in operation
since 1998 [Current Controlled Trials Ltd., 2010]. It provides a semi-structured textual
representation of the trial protocol, but no results. A number of countries have open
national registries that generally record information in a way similar to ISRCTN. All
of these registries are less sophisticated than ClinicalTrials.gov.

In order to unify trial registration world-wide, the WHO International Clinical
Trials Registry Platform (ICTRP) was established following the Ministerial Summit
on Health Research in November 2004. The goal of the ICTRP is to create “a network
of international clinical trial registries to ensure a single point of access and the un-
ambiguous identification of trials” [The Ministerial summit on health research, 2004].
This network of trial registries, the WHO Registry Network, was formally launched
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Register Studies Indexed Results
ClinicalTrials.gov (United States) 122,758 yes yes (5,436)
European Union Clinical Trials Register 17,102 no no
ISRCTN register (international) 10,465 yes no
Japan Primary Registries Network 8,329 yes no
Australian New Zealand Clinical Trials Registry 6,369 yes no
The Netherlands National Trial Register 3,187 yes no
Clinical Trials Registry India 2,499 yes no
Iranian Registry of Clinical Trials 2,449 yes no
Chinese Clinical Trial Register 2,004 yes no
German Clinical Trials Register 831 yes no
Cuban Public Registry of Clinical Trials 392 yes no
South Korea Clinical Research Information Service 379 yes no
Brazilian Clinical Trials Registry 131 no no
Pan African Clinical Trial Registry 97 yes no
Sri Lanka Clinical Trials Registry 71 yes no

Table 2.2: ClinicalTrials.gov and the 14 WHO primary registries. The ‘studies’ column
indicates the number of registered trials (per 19 March 2012), the ‘indexed’ column
whether the register is indexed by the WHO search portal and the ‘results’ column
whether the registry also enables results publication.

in 2007. In March 2012, 14 primary registries were listed on the ICTRP website (see
Table 2.2). The ICTRP also provides a search portal that collects and indexes some
basic information on trials from most of the primary registries and attempts to group
trials that are registered in more than one registry in the search results. The search
portal provides a textual description of the trial design as well as a link to the primary
registry. Table 2.2 gives an overview of the WHO primary registries and ClinicalTri-
als.gov, with the number of included studies and whether or not they are indexed by
the search portal. ClinicalTrials.gov is by far the largest registry, containing more than
7 times the number of trials available in the second largest registry (EU Clinical Trials
Register), and 69% of all trials in the registries (not taking duplicates into account).
Moreover, ClinicalTrials.gov is the only registry that registers results. In January 2010
it had published the results of 1,156 studies, which had increased to 5,436 studies by
March 2012.

Although a decentralized system of federated registries (both national and multi-
national) seems cumbersome and may cause duplicate registration, there are impor-
tant reasons why this method is to be preferred to a centralized approach [Grobler
et al., 2008]: national registries, for example, are in the position to ensure complete
registration in their region of influence and are perfectly aligned with the local po-
litical situation. As long as the different registries are sufficiently interoperable, an
overarching organization such as the ICTRP can aggregate their databases.

The increased transparency enabled by trial registration offers new opportunities
for evidence-based medicine and will likely lead to an increase in the number of sys-
tematic reviews that are undertaken [Honig, 2010]. However, the current registries
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contain only text-based or semi-structured information and lack a common coding
system, for example for labeling interventions. The amount of protocol information
registered is often insufficient to judge the validity of reported results and the prob-
lem of identifying all relevant studies has not yet been solved [Zarin et al., 2007]. In
addition, the publicly available information may be incomplete or even “largely in-
comprehensible” [Wood, 2009]. The call for federated, open access, mandatory results
databases continues [Kaiser, 2008, Ghersi et al., 2008, Zarin and Tse, 2008, Chan, 2008,
Sim et al., 2009], and it is likely that the trend toward open and complete registration
of results will continue.

2.3.3 Systematic review

The process of systematic review produces data and meta-data that is potentially
useful for future reviewers and decision makers (see Section 2.1.2). The following
assesses whether the existing information systems enable the dissemination of this
information.

The Cochrane Collaboration provides several databases to support reviewers. Be-
sides the CENTRAL database of clinical trials (see Section 2.3.1) the most relevant
ones are the Cochrane Database of Systematic Reviews, in which Cochrane reviews
are published [Starr and Chalmers, 2003], and the DARE database of other reviews.
Table 2.1 provides statistics regarding the scope of the library. In contrast to the tra-
ditional journal publications of systematic reviews, which usually provide data in
tables or figures, the Cochrane Reviews incorporate descriptions and results of the
original studies. However, the published dataset has many data elements removed
and the use of the data is restricted by license.

There are several software programs to aid in systematic review and meta-anal-
ysis, such as Comprehensive Meta-Analysis, MetaWin, MetaStat and MetaAnalyst.
Moreover, many general-purpose statistical programs, such as SPSS Statistics, SAS
Statistics, Stata, and R, have meta-analysis functionality. In general, dedicated meta-
analysis software will provide easier data entry and management, while statistical
programs will offer more powerful tools for analysis. The Cochrane Collabora-
tion also provides the Review Manager software for performing systematic reviews
(http://ims.cochrane.org/revman). Review Manager is unique in that it provides
not only data analysis and management features, but includes functionality to write
the full systematic review report. Indeed, the Review Manager file itself is submitted
to the Cochrane library for review and eventual publication. Unfortunately, all of
these systems lack sufficient meta-data to enable automated processing.

Finally, published systematic reviews are usually presented in a textual format
without the underlying dataset, making it difficult to perform additional analyses
that may be required for decision making. Thus, the inclusion of data on a new trial
or new compound, as would be required for regulatory decision making, is also im-
possible. In conclusion, systematic review currently represents a missed opportunity
to introduce additional structure to the available clinical trials information.

http://ims.cochrane.org/revman
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2.3.4 Regulatory assessment

After a pharmaceutical company develops a drug, it compiles the evidence collected
from the discovery and development processes into a dossier that is submitted to the
regulators who decide upon its market authorization. Submissions to the EMA and
the national medicines boards in Europe are mainly text-based, containing aggregate-
level results of clinical trials based on the applicant’s statistical analysis. The FDA
requests the submission of patient-level data, which is unlikely to become publicly
available and as such is out of scope for this paper. The dossier forms the basis on
which regulators assess the benefit-risk profile of a new drug. Although the clinical
trial results are pivotal in this assessment, the decision is only indirectly based on
them, as the decision making process is based on informal discussion between ex-
perts. While the decision may still be of high quality, this informal framework does
not allow pharmaceutical companies or patients to discern how different pieces of the
evidence weigh in on it.

The EMA publishes the European Public Assessment Reports (EPARs) of all cen-
trally approved or refused medicines on its website. Note that this does not include
all applications submitted to the EMA, as they can be withdrawn before a decision
is reached [Eichler et al., 2010]. The EPAR contains information on all trials, but is
completely textual without a semantic structure. Moreover, its information is directly
derived from the submission by the applicant, while there is no standardization con-
cerning what information should be provided, or in which format. Trials submitted to
the EMA are required to be registered in EudraCT and will thus also be made known
to the public through the EU Clinical Trials Register.

2.3.5 Standards and data models

A common standard of how clinical trials are performed and how their results are pre-
sented would make the process of systematic review more reliable and less laborious
[Sim et al., 2000]. Some progress has been made by ClinicalTrials.gov, which currently
registers and displays aggregate results. To do so, ClinicalTrials.gov has developed
their own model, the Data Element Definitions (DED) [ClinicalTrials.gov, 2009a,c].
This model allows the reporting of aggregated outcome data and statistical analyses
to some extent, but the information cannot be processed automatically because most
fields are free text. This also means that finding all trials that are relevant to a specific
patient condition is inaccurate, and thus requires overly broad search terms [Tu et al.,
2011]. This lack of standardization and interoperability among registries and other
databases should be addressed in the near future.

Several projects aim to enable general purpose re-use of clinical trials informa-
tion, e.g. for cross-study analyses. We identified three such projects. The first is the
Biomedical Research Integrated Domain Group (BRIDG) project, a collaboration be-
tween the Clinical Data Interchange Standards Consortium (CDISC), Health Level
7 (HL7), the National Cancer Institute (NCI) and the FDA that aims to bring together
the common elements of their various standards into a complete data model for clini-
cal trials [Biomedical Research Integrated Domain Group (BRIDG), 2010]. The BRIDG
model is implementation-independent in the sense that it specifies the problem do-
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main, not a specific solution. For example, unlike some other CDISC standards it
does not specify the format in which to submit data to the FDA. BRIDG is subdi-
vided between the protocol representation, study conduct, adverse event and regula-
tory perspectives. Unfortunately, a data analysis perspective is currently missing as
there is no adequate standard for the modelling of statistical analyses. In short, the
BRIDG model is accurate as regards the management of a single clinical trial, but not
as regards cross-study analysis [Sim et al., 2010]. For example, the study population
and eligibility criteria, outcomes and the measures used to assess outcomes do not
have a sufficiently deep semantic structure.

To enable cross-study analyses and efficiently finding relevant trials, the Human
Studies Database (HSDB) project aims to share fully machine understandable repre-
sentations of study design information between institutions [Sim et al., 2010]. HSDB
is developing the Ontology of Clinical Research (OCRe), which defines the concepts
that should be accessible across the individual institutions’ databases. At the time
of writing, OCRe included a study design representation derived from BRIDG [Sim
et al., 2010], a study design typology [Carini et al., 2009], the ERGO formal machine
readable representation of eligibility criteria [Tu et al., 2011], and a model of study
outcomes that separates the phenomena of interest from the variables that encode
them [Sim et al., 2010]. While OCRe is a promising effort, its representation of study
design is far from comprehensive, and it completely lacks a model for trial results.

Finally, the Ontology Based Extensible Conceptual Model (OBX) is another ontol-
ogy for representing clinical trials [Kong et al., 2011, Scheuermann, 2010]. Its aim is
to make the results of immunology studies available for data re-use and re-analysis.
The OBX also incorporates study design representation ideas from BRIDG and the
ClinicalTrials.gov DED [Kong et al., 2011]. While it appears successful in developing
a broadly applicable data model for biomedical studies, and also allows the inclusion
of trial results, it would appear that OBX suffers from similar shortcomings as regards
the depth of modelling as BRIDG does.

All of the discussed models rely on an external coding system for their clinical
content. Such coding systems, known as controlled terminologies of clinical terms,
are an important first step in the application of information technology to medicine
[Cimino, 1996]. There are many controlled terminologies for medicine, often de-
veloped for specific applications, but unfortunately there is as yet no standardiza-
tion of which ones should be used, and there is no accurate mapping between them
[Nadkarni and Darer, 2010, Vikstrom et al., 2007]. For example, in clinical research
the Medical Dictionary for Regulatory Activities (MedDRA) is used to code ADEs,
while the healthcare area prefers the Systematized Nomenclature of Medicine, Clini-
cal Terms (SNOMED CT) dictionary. This hinders the interoperability of the various
information systems being used.

2.4 Discussion

Having reviewed the information systems and standards dealing with the informa-
tion from clinical trials, we will now summarize their deficiencies concerning the in-
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tegration of clinical trials information from different resources, discuss how the status
quo could be improved and identify directions for future research.

2.4.1 Identified deficiencies

Systems and standards oriented towards the management of single studies are rela-
tively mature, but this is not the case for cross-study analysis. There are no known
large, successful, and publicly available data warehouses, nor any standards that
would enable cross-study analyses of aggregate level results. Considerable effort is
required to harmonize the current clinical research standards. Important areas that
require standardization are the representation of statistical analyses and aggregate re-
sults, as well as complex semantic structures such as patient eligibility criteria. None
of the general purpose data models being developed are yet in widespread use, and
from the perspective of capturing the designs and results of clinical trials in a reusable
way, none of them are close to completion.

Although much effort is spent to publish the results of clinical trials, the current
systems do not facilitate optimal use of the information. The journals and abstract
databases that publish the trial results do not preserve the results’ structure and thus
require manual data extraction. Moreover, relevant articles are hard to identify and
the retrieval of all available studies cannot be guaranteed. Public registries are meant
to improve the efficiency and reliability of the identification of relevant studies, but
the available data is not sufficiently structured to realize this. Moreover, the systems
that currently deal with clinical trials results are not interlinked nor do they use inter-
operable standards. In short, there is not yet a comprehensive system of structured
machine-understandable databases that contains descriptions of the design, execu-
tion, and summary-level results of individual trials. This situation hinders systematic
review and makes cross-study analyses and data-mining prohibitively difficult. Thus,
current infrastructure is focused on text-based reports of single studies, whereas effi-
cient evidence-based medicine requires the automated integration of multiple clinical
trials from different information resources.

Moreover, while systematic review collects and appraises the available evidence
that is relevant to a certain question, the results are published in an unstructured
format. This makes it hard to use the underlying data to inform evidence-based deci-
sions, to verify the analyses, to update the review or to perform a combined analysis
of several reviews for an umbrella review. The effort spent on literature screening and
data extraction does not result in availability of this information for future reviewers,
leading to duplication of effort.

Therefore, the current systems are unnecessarily burdensome and do not suffi-
ciently facilitate reuse of the information. Figure 2.2 visualizes the current results
dissemination process. Due to these shortcomings, decisions are not explicitly linked
to the underlying evidence, leading to a lack of transparency, traceability, and repro-
ducibility that is harmful for all stakeholders.

Importantly, the perceived lack of transparency in regulatory decision making
may erode public trust in drug regulation and the pharmaceutical industry. More
explicit quantitative decision models would enable a more transparent and repro-
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Figure 2.2: In the current system of clinical trials results dissemination, data are col-
lected in three separate systems (not including the organization that performs the
trial).

ducible regulatory process, as well as a clearer communication of the requirements to
the industry. However, for most real-world decisions it is currently too expensive to
include all the evidence. This difficulty of accessing existing data is not only relevant
to regulators and the industry, but also to reimbursement organizations, prescribing
physicians and patients.

2.4.2 Proposed future situation

Now, we consider how these deficiencies might be addressed. Let us assume for a
moment that a comprehensive machine-understandable standard were available for
the design and aggregate level results of clinical trials. Then, it would be better for
those submitting the data if both regulators and registries used this format, rather
than a number of disparate formats. In addition, journal publications could easily be
supplemented with data in this format.

Availability of a standard alone, however, is not enough to enable efficient access
to the evidence. The data sets also need to be collected and made available in such
a way that relevant clinical trials are easily identified. For this a collaborative (fed-
erated) system of databases should be established to capture all clinical trials data.
Some of the stakeholders (e.g. regulators and registries) may require that data be
submitted to a database that they control so that they can ensure the integrity of the
data. This is fine as long as (1) the databases are interoperable and enable access to
the information in the same format, (2) there is a single point of access through which
the different databases can be identified and located, and (3) duplicate entries can be
easily identified. It seems more likely for such a combination of databases to emerge
from the current registries than a single centralized system.
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Figure 2.3: The alternative solution for clinical trials results dissemination proposed
in this paper: harmonization of the different systems to create a unified platform
for evidence-based decision making. Regulatory assessment has been merged into
general policy decision making.

A comprehensive record of clinical trials in a machine-understandable format
would make systematic review and consequently evidence-based decision making
much more efficient. Decisions could then finally be explicitly linked to the underly-
ing data (traceability). In addition, this could also enable a new generation of decision
support systems for health care policy decision makers. The proposed future situa-
tion is visualized in Figure 2.3.

However, a suitable general-purpose data model is not likely to become available
in the near future. Further, the usefulness of any data model should be demonstrated
to the industry and other stakeholders before putting it into practice. We argue that
the requirements for a general purpose data model for cross-study analysis and de-
cision making are not sufficiently well known at the moment. Therefore, analysis
tools and decision support systems that ensure data extraction done for the analysis
can be shared with other researchers should be developed first, to illuminate these
requirements.

2.4.3 Research directions

In order to attain the desired future system for aggregate-level clinical trial results
dissemination, we identify concrete research directions for medical informatics, deci-
sion making and statistics researchers. Progress on each of these topics can be made
in parallel.

• Computer-supported decision models for policy decision making based on clin-
ical trials – to enable a direct and explicit link between the decision and the
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supporting evidence in drug regulation, reimbursement policy and guideline
formulation

• Development of a platform to share structured systematic review data sets

• Discovery or creation of incentives for systematic reviewers to share the results
of literature screening and data extraction

• Identification of the core data elements and modeling that are needed to in-
crease the accuracy of literature searches

• Automated tagging and data extraction to facilitate transition to more struc-
tured data sets

• Development of search tools to integrate querying of abstract databases and
registries

• Development of methods to identify duplicate trial publications and registra-
tions

• Development of a comprehensive data model for clinical trials and their aggre-
gate level results

2.4.4 Limitations

As with any review paper, there is a risk that relevant publications have not been
identified, either because the search terms were not broad enough, or because rele-
vant studies were not identified as such based on their title and abstract. We acknowl-
edge that the broad scope of this particular review increases that risk.

The nature of the collected information necessitates a qualitative synthesis, and
the identified deficiencies are at least partially subjective. The future that we propose
is based on the premise that a standard for aggregate clinical trial data will become
available. Unfortunately, it is unclear how and when this could be realized. Finally,
the list of proposed research directions is sure to be incomplete, and we hope the
present paper will ignite discussions on this topic.

2.4.5 Conclusions

We reviewed the existing systems and standards dealing with aggregate level results
of clinical trials. The transfer of evidence to scientific journals, public registries, and
regulators is a largely ad hoc and text-based affair. In part, this is because there are
currently no data standards that enable cross-study analyses. We have argued that the
lack of a standardized, federated system for results dissemination leads to gaps in the
transfer and availability of evidence to the relevant decision makers. As long as such
a system does not exist, systematic review will remain an incredibly inefficient ad-
hoc process, and evidence-based decision making will remain unnecessarily difficult.
We believe that these difficulties lead to a lack of transparency in health care policy
decision making, which threatens public trust in the decision makers.
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In the future, results registries and regulatory systems should be harmonized and
federated to create a system of databases that forms the core of a more automated and
efficient process of systematic review and evidence-based decision making. In addi-
tion, systematic reviews are currently a missed opportunity to introduce additional
structure to the domain of clinical trials information, which should be addressed by
more complete dissemination of their results. Although this vision is still far from
realized, current trends seem to support this direction. Future work should not only
focus on developing the ‘ideal’ data model for all of clinical research (justly called a
monumental task) but start by creating useful tools to decision makers and systematic
reviewers. Availability of such tools will lead to increased demand for an accessible
evidence base and to a better understanding of its requirements.
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Abstract

Mixed Treatment Comparison (MTC) (also called network meta-analysis) is
an extension of traditional meta-analysis to allow the simultaneous pool-
ing of data from clinical trials comparing more than two treatment options.
Typically, MTCs are performed using general purpose Markov Chain Monte
Carlo (MCMC) software such as WinBUGS, requiring a model and data to
be specified using a specific syntax. It would be preferable if, for the most
common cases, both could be derived from a well-structured data file that
can be easily checked for errors. Automation is particularly valuable for
simulation studies in which the large number of MTCs that have to be es-
timated may preclude manual model specification and analysis. Moreover,
automated model generation raises issues that provide additional insight
into the nature of MTC. We present a method for the automated genera-
tion of Bayesian homogeneous variance random effects consistency mod-
els, including the choice of basic parameters and trial baselines, priors, and
starting values for the Markov chain(s). We validate our method against the
results of five published MTCs. The method is implemented in freely avail-
able open source software. This means that performing an MTC no longer
requires manually writing a statistical model. This reduces time and effort,
and facilitates error checking of the data set.
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3.1 Introduction

Meta-analysis refers to statistical methods that combine evidence from multiple clin-
ical trials in order to derive a pooled estimate of the relative effect of treatments.
Traditional meta-analysis [Hedges and Vevea, 1998, Normand, 1999] has focused on
pair-wise comparisons of treatments based upon summary measures of relative effect
as reported in the original trials. Mixed Treatment Comparison (MTC) is a recently
developed method that allows the simultaneous comparison of more than two treat-
ments [Lu and Ades, 2004, Salanti et al., 2008a]. MTCs allow the use of both direct and
indirect evidence for comparisons. In this paper, we focus on the Bayesian approach
to MTC, which also allows the straightforward calculation of the rank-probabilities
of a set of alternative treatments.

Specifying a Bayesian MTC model involves writing a Directed Acyclic Graph
(DAG) model for general purpose Markov Chain Monte Carlo (MCMC) software
such as WinBUGS [Lunn et al., 2000] or JAGS [Plummer, 2009]. In addition, prior dis-
tributions have to be specified for a number of the parameters and the data have to be
supplied in a specific format. Together, the DAG, priors and data form a Bayesian Hi-
erarchical Model (BHM). Moreover, due to the nature of MCMC estimation, over-dis-
persed starting values have to be chosen for a number of independent chains so that
convergence can be assessed [Gelman and Rubin, 1992, Brooks and Gelman, 1998].
Currently, there is no software that automatically generates MTC models, although
there are some tools to aid in the process. For example, the UK National Institute for
Health and Clinical Excellence (NICE) Decision Support Unit offers a technical sup-
port document [Dias et al., 2011] that includes example WinBUGS code that applies
to a broad range of data sets. However, most of the decisions mentioned above still
have to be made, and having a fixed default value in the example code may lead to
misleading results if the user is not aware of the need to modify this value for the
situation at hand. Moreover, the format in which data are presented to BUGS can
be hard to read (especially for large data sets) and does not facilitate error checking.
For example, treatments are referred to by number rather than a name and data can
be presented either in tabular format, in which it is difficult to keep track of which
column corresponds to which variable, or in list format, in which one has to check
that indices match between several lists.

The effort that is required to manually specify MTC models is for the most part
unnecessary, and automated model generation would enable the analyst to focus on
more interesting aspects of the problem. The input data can then be presented in a
more structured format that facilitates error checking. Moreover, in some cases, the
number of MTCs to be carried out may necessitate such an approach, for example in
simulation based studies where each iteration requires estimating an MTC, or in deci-
sion support applications where many criteria need to be considered. To address this,
we present how Bayesian MTC models can be generated automatically, an endeavor
that also provides insight into the nature of MTC. Specifically, we show how homo-
geneous variance random effects consistency models for both dichotomous and con-
tinuous outcomes can be generated. To fully automate model generation, we show
how to specify the DAG, priors that limit bias, and starting values that are unlikely to
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lead to misdiagnosing convergence. Generating the DAG for inconsistency models is
discussed in van Valkenhoef et al. [2012d].

Note that what we present in this paper is the automated generation of MTC mod-
els that can be run in WinBUGS or JAGS. The analyst is still expected to choose the
run length of the MCMC simulation, check whether the posterior has converged (and
increase the run length if needed), assess the model fit, and interpret the results. For
application in simulation studies our methods can easily be combined with an auto-
mated convergence checking routine that extends the run length as needed. However,
there is always the risk of erroneously concluding that convergence has been reached
so, if feasible, convergence checking is best done by visual inspection of the relevant
plots [Brooks and Gelman, 1998].

3.2 Background

In the Bayesian framework, an MTC is implemented as a BHM and estimated using
MCMC simulation [Lu and Ades, 2006, Salanti et al., 2008a]. This section explains the
structure of the BHM and the considerations that have to be made when estimating it
through MCMC simulation. MTC models are an extension of a Bayesian formulation
of pair-wise meta-analysis. For clarity, we initially limit the discussion to random-ef-
fects homogeneous variance consistency models for dichotomous variables [Lu and
Ades, 2004, 2006, Salanti et al., 2008a]. The extension to continuous variables [Salanti
et al., 2008a] is discussed thereafter. We will assume that the outcome data are re-
ported per arm, rather than as treatment contrasts against a common baseline.

3.2.1 Consistency models for dichotomous variables
For a dichotomous variable (the occurrence or non-occurrence of an event), for every
clinical trial i, for each included treatment x, we have the sample size ni,x, and the
number of events ri,x that occurred. The events are assumed to arise from a binomial
process with success probability pi,x:

ri,x ∼ Bin(pi,x, ni,x) . (3.1)

The success probability can be transformed to the log odds scale through the

logit(p) = log
p

1− p

function. On the log odds scale, relative effects are assumed additive and normally
distributed, drastically simplifying the model. The inverse transformation, logit−1, is
used to define pi,x in terms of log odds scale random variables:

logit(pi,x) = µi + δi,b(i),x ⇔ pi,x = logit−1(µi + δi,b(i),x) , (3.2)

where b(i) is the baseline arm chosen for i, µi is the effect of b(i) in i and δi,b(i),x is the
random effect of x relative to b(i) in i. If b(i) = x, we set δi,b(i),x = 0. Otherwise,

δi,b(i),x ∼ N (db(i),x, σ
2) , (3.3)
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ni,x ri,x ni,y ri,y

pi,x pi,y

µi δi,x,y

dx,yσ

dx,z dy,z

Figure 3.1: The basic structure of an MTC model is a DAG, here shown graphically for
a subset of a full MTC model. Elliptical nodes represent density functions, whereas
rectangular nodes represent deterministic functions. Nodes with a double border
have data associated with them. Here, one study (study i) that includes two treat-
ments (x and y) in a model with three treatments (x, y and z) is shown. The param-
eter dx,y is a functional parameter, defined as a deterministic function of the basic
parameters dx,z and dy,z .

where db(i),x is the relative effect of x compared to b(i), the quantity of interest, and σ2

is the random effects variance, a measure of the heterogeneity between trials. Because
we assume σ to be the same for all dx,y , this is a homogeneous variance model. In such
a model, the covariances between comparisons in multi-arm trials work out to σ2/2
[Salanti et al., 2008a]: δi,b(i),x

...
δi,b(i),z

 ∼ N

 db(i),x

...
db(i),z

 ,

 σ2 σ2/2 · · ·

σ2/2
. . . σ2/2

· · · σ2/2 σ2


 . (3.4)

Finally, we assume that comparisons are consistent (or, more fundamentally, we
assume that trials are exchangeable conditional on the true value of the hyper pa-
rameters d·,· and σ, and consistency is implied [Lu and Ades, 2009]). That is, if we
compare x and y indirectly through z, the result will be consistent with the direct
comparison:

dx,y = dx,z − dy,z . (3.5)

The right hand side parameters are called the basic parameters, for which we estimate
probability distributions. Any other relative effect can be calculated using the consis-
tency assumption. Hence dx,y , a functional parameter, is completely defined in terms
of the basic parameters on the right hand side. There are ways to test whether consis-
tency holds [Lumley, 2002, Lu and Ades, 2006, Dias et al., 2010, Lu et al., 2011], but
these are beyond the scope of this paper.
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Figure 3.2: The process of running an MTC with two parallel chains. Notation: UML-2
activity diagram [Fowler, 2003].

The model as discussed above forms a DAG, as shown in Figure 3.1, with the ri,x
nodes at the very bottom (these are sinks) and ni,x, dx,y , µi and σ at the top (sources).
Now, because the model is Bayesian, we have to specify prior distributions for the
source nodes (except ni,x, which have a fixed value), that reflect our beliefs before
seeing the data. In addition, to perform MCMC estimation of the BHM, we have to
specify a starting point for each of the stochastic nodes. Stochastic nodes are nodes
that have probability distributions such as (3.3) and unlike (3.2). The MCMC simu-
lation then proceeds by making random jumps in the parameter space using a pro-
cedure that is guaranteed to converge (under certain regularity assumptions) on the
posterior distribution in the limit of infinitely many iterations. Most MCMC software
includes a tuning or adaptive phase [Spiegelhalter et al., 2003, Plummer, 2009, Graves,
2008], during which the sampling algorithms are optimized to ensure efficient explo-
ration of the parameter space. While tuning, the MCMC simulation will not converge,
so after this initial phase tuning is turned off to allow the model to converge. Then,
we run the model only as long as is needed to accurately estimate the quantities of
interest, discarding an initial sub-sequence of the samples called the burn-in period.
In that case, we say approximate convergence has been reached.

To assess approximate convergence using the Brooks-Gelman-Rubin diagnostic
[Brooks and Gelman, 1998], the model is run NC times in parallel, with distinct start-
ing points, each for 2NI iterations. The starting points have to be over-dispersed
relative to the target distribution for the assessment to be valid. The results of the
last NI iterations of all NC runs (called chains), are then analyzed and the within-
chain and between-chain variance are compared to estimate the Potential Scale Re-
duction Factor (PSRF). A PSRF close to 1 indicates approximate convergence has
been reached. The first NI iterations are called burn-in iterations, and are discarded.
To conclude that approximate convergence has been reached in MTC, all of the pa-
rameters of interest (source nodes) should have a PSRF below a certain threshold α,
and visual inspection of plots of the PSRF and time series should not contradict this
conclusion. If this is not the case, the simulation phase should be extended. Although
it has been suggested that values below 1.2 are acceptable [Brooks and Gelman, 1998],
we suggest to set 1 < α ≤ 1.05 to be conservative. For the type of model discussed
here, that condition is usually achieved reasonably quickly (i.e. within 50,000 itera-
tions), and so we can afford to be conservative. The full process of estimating an MTC
is shown in Figure 3.2. Note that there are valid alternative work flows, that will not
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be described here.

3.2.2 Continuous variables
When considering continuous outcomes, the Equations 3.1 and 3.2 are replaced by a
normal likelihood [Salanti et al., 2008a]. Now, for a trial i and treatment x we take the
sample mean mi,x, sample standard deviation si,x, and sample size ni,x:

mi,x ∼ N (µi + δi,b(i),x, s
2
i,x/ni,x) . (3.6)

Where, again, we model the observed effect in each arm in terms of a baseline effect
µi for the trial and a random effect δi,b(i),x. This model requires that all studies have
measured the outcome on comparable scales, or that they have been transformed onto
a common scale, for example the standardized mean difference.

3.2.3 Maximum likelihood estimators in single trials
Now, we briefly review the maximum likelihood estimators for both types of data, as
they will be needed later on. First, define estimators θ̂ for the log odds and v̂2 for its
variance:

θ̂i,x = logit(
r′i,x
n′i,x

) ; v̂2
i,x =

1

r′i,x
+

1

n′i,x − r′i,x
; (3.7)

r′i,x = ri,x +
1

2
; n′i,x = ni,x + 1 ,

where r′i,x and n′i,x are corrected to ensure ratios are always defined. Usually the cor-
rection is only applied when the uncorrected ratio is undefined but, since we don’t
use these estimators for inference, the difference is not relevant. For continuous out-
comes the estimators are:

θ̂i,x = mi,x ; v̂2
i,x =

s2
i,x

ni,x
. (3.8)

For the relative effect of y when compared to x the estimators (for dichotomous or
continuous data) are [DerSimonian and Laird, 1986]:

δ̂i,x,y = θ̂i,y − θ̂i,x ; ŝ2
i,x,y = v̂2

i,y + v̂2
i,x . (3.9)

3.3 Methods

To automatically generate MTC models, the BHM has to be specified, consisting of the
DAG, prior distributions and data. Moreover, over-dispersed starting values have to
be chosen for NC independent chains. In the following, we show how to specify the
DAG for consistency models and how priors that limit bias, and starting values that
are unlikely to lead to misdiagnosing convergence can be chosen to fully automate
MTC model generation. Finally, we provide a worked example of the methods.
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3.3.1 Generating the model structure

Generating the DAG for inconsistency models has previously been discussed [van
Valkenhoef et al., 2012d], and involves finding the formulation that maximizes the
number of potential inconsistencies that can be estimated, the Inconsistency Degrees
of Freedom (ICDF). However, the problem is considerably simpler for consistency
models, and rather than being forced to search for a DAG that maximizes the ICDF,
we can try to specify one that has an easily understandable structure. Arguably, the
most easily understood structure is the one where we parameterize each treatment
effect relative to a common baseline (e.g. placebo). In such a model, the basic pa-
rameters form a star shaped graph, and all functional parameters are a linear com-
bination of just two basic ones. The algorithm proposed for inconsistency models
[van Valkenhoef et al., 2012d] does exactly the opposite: due to the specific search
algorithm it uses to find a suitable parametrization, it is likely to end up with a line
graph, or something close to it.

It has been shown that for inconsistency models, an incorrect choice of baseline
treatments for the individual studies may result in some of the parameters being un-
der-constrained [Lu and Ades, 2006, van Valkenhoef et al., 2012d]. In Appendix 3.7,
we show that this problem cannot occur for consistency models. Thus, regardless of
how the basic parameters and study baselines are chosen, the model is always well
defined. Therefore, we are completely free to choose a parametrization that is easily
understandable. In fact, in a consistency model it is not even necessary for the basic
parameters to have been measured directly, and thus we could choose a star shaped
graph for the basic parameters. However, the method we propose below to choose
starting values depends on the basic parameters being measured directly as a simpli-
fying assumption, so we restrict the basic parameters to the directly measured com-
parisons. Note that after the samples for the basic parameters have been obtained, it
is straightforward to express the result relative to any of the included treatments by
post-processing the samples, so this restriction does not hamper inference.

Given that the basic parameters are restricted to directly measured comparisons,
and that they must form a spanning tree of the evidence graph, we would like for the
linear equations that define the functional parameters to involve as few basic param-
eters as possible. The diameter of a spanning tree is the length of the longest of the
paths between its vertices. Thus, the minimum diameter spanning tree provides the
parametrization that minimizes the length of the longest equation. The minimum di-
ameter spanning tree can be found efficiently [Hassin and Tamir, 1995]. This provides
an automated way of specifying the basic parameters even if the evidence structure
does not have a common comparator. For the study baselines, we just choose (in each
study) the treatment that has the most connections in the spanning tree of the basic
parameters, again with the aim of minimizing the length of equations. If there is more
than one such treatment we may choose an arbitrary one, e.g. alphabetical ordering
of the treatments can be used to break ties.
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3.3.2 Choosing priors

Prior distributions have to be specified for all the basic relative effect parameters dx,y ,
the baseline effects µi and the random effects variance σ2. For the variance parame-
ters, either a uniform or an inverse-Gamma prior may be chosen [Lu and Ades, 2004].
However, the uniform prior is more commonly used [e.g. Lu and Ades, 2006]:

σ ∼ U(0, u) ,

where u has to be appropriately chosen so that it is larger than the standard deviation
that may exist. But how to do this has not been discussed in the literature. Normally,
the analyst should provide this value, but doing so is often difficult: what would con-
stitute an unreasonably large deviation in the log odds ratio for treatment response?
No single value of u will be appropriate for every situation, and thus a simple heuris-
tic that over-estimates the measurement scales based on minimal information is a
reasonable compromise. It should be noted that in most cases the posterior is not
sensitive to the variance prior, as long as it is sufficiently wide [Lu and Ades, 2004].
A simple technique is to calculate the maximum likelihood estimators δ̂i,x,y (Equa-
tion 3.9) for all possible combinations of i, x, and y and find the maximal one, δ+.
Setting u = δ+ guarantees u > σ and this choice of u does not depend on the chosen
DAG, so that alternative DAGs have the same prior.

For the relative effect parameters and the baseline effects, independent identical
normal priors are usually specified [Lu and Ades, 2004, 2006, Salanti et al., 2008a],
i.e.:

dx,y, µi ∼ N (ν, η2) ,

where ν = 0 and η2 = 1000 is often used for dichotomous outcomes [Lu and Ades,
2004, 2006, Salanti et al., 2008a]. The large variance is chosen so that the data will dom-
inate the prior information in the final result (i.e. we specify a vague prior). Again,
what constitutes a large variance depends on the scale of the data, and therefore we
set η2 = (ku)2. Choosing 0 as the prior mean for dx,y is done so any bias due to the
prior is conservative: the bias is in the direction of no effect. For µi a prior mean of 0 is
more arbitrary. For dichotomous data, it introduces a slight bias towards pi,b(i) = 0.5,
which means values near 0 and 1 will be (slightly) shrunk towards 0.5. For contin-
uous data, the bias is towards 0. Thus, it is important that η2 is sufficiently large to
minimize this bias.

To choose a value for the scaling factor k, we looked at a number of studies in the
literature [Lu and Ades, 2004, Welton et al., 2009, Dias et al., 2010]. In those studies,
η2 was either 103 or 104, and the upper bound for the variance prior ranged from 2
to 50. If the η2 were generated using a scaling factor k, the value of k would range
from 3.16 to 15.8. Somewhat arbitrarily, we choose k = 15 as the default, which is
in the upper range of values seen in published analyses, since the goal is to ensure
the variance is large enough, regardless of the measurement scale. This choice is
validated in Section 3.5 by comparing the posteriors we obtain against those reported
in the original analyses.
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Figure 3.3: Undesirable and desirable convergence behaviour illustrated. In (a), after
1,500 iterations we might incorrectly conclude the simulation has sufficiently con-
verged. The more gradual but consistent decline of (b) is preferable.

3.3.3 Choosing starting values

Starting values have to be over-dispersed relative to the target density in order to
ensure complete exploration of the parameter space and assess convergence. They
have to be chosen for all stochastic nodes that are not bound to data (i.e., δi,x,y , µi,
dx,y and σ). Note that for the dx,y this includes only the basic parameters and not
the functional ones. Starting values can be generated by creating an over-dispersed
approximate distribution from which they are drawn [Gelman and Rubin, 1992]. Our
strategy is to use analytic techniques for pair-wise comparisons [DerSimonian and
Laird, 1986] to get a maximum likelihood estimate ξ and standard error τ for each
node, then sample that node’s starting values from N (ξ, cτ2) with c� 1. To estimate
µi, take ξ = θ̂i,b(i) and τ2 = v̂2

i,b(i) (Equations 3.7, 3.8). For δi,x,y , ξ = θ̂i,y − θ̂i,x and
τ2 = v̂2

i,y + v̂2
i,x (Equation 3.9). For the dx,y , we do a pair-wise random effects pooling

[DerSimonian and Laird, 1986] of all trials that include x and y to find ξ and τ2.
Note that in our generated models, the basic parameters are always directly measured
(Section 3.3.1), and that we use a correction to account for zero cells (Section 3.2.3).
When only one trial measures the basic parameter in question, the pooling method
will estimate the between-trials error to be equal to the standard error of the mean
of that one trial. Starting values for σ can be obtained by sampling from its prior
distribution.

It is important that the starting values are sufficiently over-dispersed so that the
PSRF is not close to 1 before approximate convergence has been reached, in which
case it will increase later on when an unexplored part of the parameter space is found
(see Figure 3.3). We also don’t want c to be too large, as this would slow down the
exploration of the parameter space significantly. However, we need not be overly
concerned with this issue, as the models considered here tend to converge quickly,
even if the starting values are not ideal. The value c is configurable in our implemen-
tation, but we set c = 2.5 by default.
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Study Treatment Mean Std. dev. sample size
1 A -1.22 3.70 54

C -1.53 4.28 95
2 A -0.70 3.70 172

B -2.40 3.40 173
3 A -0.30 4.40 76

B -2.60 4.30 71
D -1.20 4.30 81

4 C -0.24 3.00 128
D -0.59 3.00 72

5 C -0.73 3.00 80
D -0.18 3.00 46

6 D -2.20 2.31 137
E -2.50 2.18 131

7 D -1.80 2.48 154
E -2.10 2.99 143

Table 3.1: Mean off-time reduction data from 7 trials studying 5 treatments form
Parkinson’s disease [Dias et al., 2011].

C

D EA

B

Figure 3.4: Evidence network for the Parkinson’s disease trials, with basic parameters
shown as solid lines and the functional parameters as dashed lines

3.3.4 Worked example

We now illustrate the methods with a worked example of 5 treatments for Parkinson’s
disease [Dias et al., 2011]. There is data on mean off-time reduction from 7 trials (see
Table 3.1). The evidence network is shown in Figure 3.4. First, to determine the
basic parameters, we find the minimum diameter spanning tree (the solid lines in
Figure 3.4). In this case, the basic parameters are dD,A, dD,B , dD,C , and dD,E . This
is the only paremeterization in which all functional parameters can be expressed in
terms of at most two basic ones (i.e. treatment D is a common comparator). Then, we
choose the study baselines by identifying the treatment with the most connections in
the spanning tree (basic parameters). In this case, treatment D is connected to all four
other treatments, so any trial that includes D will have D as the baseline treatment.
For example, study 3 would be parameterized as:(

δ3,D,A
δ3,D,B

)
∼ N

((
dD,A
dD,B

)
,

(
σ2 σ2/2
σ2/2 σ2

))
.
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For the remaining trials, we choose the alphabetically first treatment as the baseline.
For example, trial 1 would be parameterized as:

δ1,A,C ∼ N (−dD,A + dD,C , σ
2) .

Then, to choose the prior distributions, we calculate a maximum likelihood esti-
mate for all relative effects in all studies, including δ̂1,A,C = −0.31, δ̂1,C,A = 0.31, etc.
For three-arm studies, there are six such relative effects. In this case, the maximum is
2.3, so we set u = 2.3 and η2 = (15 · 2.3)2 = 1.2 · 103, leading to the priors:

σ ∼ U(0, 2.3) ; dx,y, µi ∼ N (0, 1.2 · 103) .

Finally, we use maximum likelihood estimators to derive sampling distributions
from which to draw starting values. For the baseline effect µ1 in study 1, where A is
the baseline, we draw starting values from

N (θ̂1,A, c · v̂2
1,A) = N (−1.22, 2.5 · 3.72/54) .

For the relative effect δ1,A,C we draw starting values from

N (θ̂1,C − θ̂1,A, c · (v̂2
1,A + v̂2

1,C)) = N (−0.31, 2.5 · (0.25 + 0.19)) .

Finally, for the basic parameters we perform random effects pooling of the relevant
studies. For example, to determine the distribution of starting values for dD,C , we
pool studies 4 and 5. Then, the distribution is N (−0.04, 0.45).

3.4 Implementation

The methods presented in this paper are implemented in GeMTC (http://drugis.
org/gemtc), enabling generation of JAGS and BUGS models. The data are stored in
an XML format, an example of which is shown in Figure 3.5.

A simple graphical user interface is provided to facilitate data entry and manip-
ulation of data files, as well as model generation. The main screen (see Figure 3.6)
enables the user to create, load, and save datasets in the GeMTC XML format. Each
dataset is opened in a tab named after the dataset (‘cipriani-efficacy.gemtc’
in Figure 3.6). In the left panel there are two tabs where the user can add, edit, and
remove treatments and studies. A treatment consists of a short identifier and an op-
tional description. A study consists of an identifier and at least two included treat-
ments. At the top of the right panel, the user chooses the type of data (dichotomous
or continuous), and a description for the dataset. The rest of the right panel consists
of the data table, where data for each arm can be input in the appropriate format.
For dichotomous measurements, this is the number of events and the sample size;
for continuous measurements, the mean, standard deviation, and sample size. In the
current version of GeMTC (0.12.1), data have to be input manually, as copy-paste
support and import from various formats are not yet available.

After the dataset is complete, the statistical model can be generated by clicking
‘Generate’ in the tool bar. If the studies do not form a connected evidence network,

http://drugis.org/gemtc
http://drugis.org/gemtc
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<network description="Response to treatment">
<treatments>

<treatment id="Pla">Placebo</treatment>
<treatment id="Flu">Fluoxetine</treatment>

</treatments>
<studies>

<study id="Fictional et al, 2009">
<measurement treatment="Pla" responders="38" sample="97" />
<measurement treatment="Flu" responders="42" sample="95" />

</study>
</studies>

</network>

Figure 3.5: The MTC input data format (XML) illustrated with an artificial data set con-
taining one (fictional) study “Fictional et al, 2009” comparing two treatments (Placebo
and Fluoxetine) on a dichotomous outcome (response to treatment)

Figure 3.6: Creating and editing an MTC data file using the GeMTC GUI
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Figure 3.7: Configuring the model generation using the GeMTC GUI

Figure 3.8: Generating BUGS model files using the GeMTC GUI

the user is advised of this and asked to correct the dataset. Otherwise, the user is
presented with a settings dialog (Figure 3.7). Here, various parameters can be config-
ured, such as the syntax type (BUGS or JAGS), the model type (only the consistency
model is described in this paper), the scaling factor c for the initial values, and the
number of chains, tuning iterations and simulation iterations for the MCMC simu-
lation. Unfortunately, priors are currently not configurable from this screen, and the
user will need to modify the generated BUGS or JAGS code to change the priors.

After configuring the parameters for model generation, the user can click ‘OK’ to
generate the model. This opens a new window, which shows the various components
of the model in separate tabs (see Figure 3.8). JAGS users can use the ‘save’ button
to save these components to a series of files, after which the ‘*.script’ file can be
used to run the model in JAGS (some BUGS versions also support this). BUGS users
can copy-paste the contents of each tab to BUGS and run the model from the BUGS
user interface.

Generating the BUGS or JAGS models entails taking the data, applying the meth-
ods discussed in the previous section to determine the basic parameters and study
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baselines, choose the priors and generate starting values, and then generating BUGS
or JAGS syntax code from that abstract representation. A number of files have to
be generated: the model code, a data file, an initial values file for each chain and a
script file that specifies how the model should be run (this last file is not necessary
for WinBUGS). To generate the model code, we use a template based on [Dias et al.,
2011], which we generalized to also apply to inconsistency models (though that is
outside the scope of this paper). The template and an example of the resulting code
are shown in Figure 3.9. The BUGS and JAGS model specification languages are not
fully compatible, but we have been careful to ensure that the template is compatible
with both. The data and initial values files are output in S-Plus/R format for both
BUGS and JAGS, structured according to [Dias et al., 2011]. For BUGS, care has to be
taken with matrices, since it stores matrices in row-major order, whereas JAGS (like
S-Plus and R) stores matrices in column-major order. Generating the script file is,
again, a simple matter of variable substitution on a template. However, in this case,
separate templates are required for JAGS and BUGS since their scripting languages
are entirely different.

3.5 Results

In this section, we validate the approach presented above by reproducing a num-
ber of previously published analyses. The first MTC is a smoking cessation network
comparing three forms of counseling with self-help consisting of 24 trials [Lu and
Ades, 2006]. The second MTC consists of 28 trials comparing 8 thrombolytic treat-
ments after acute myocardial infarction [Lu and Ades, 2006]. The third, a comparison
of the efficacy of 12 second-generation anti-depressants, includes 111 clinical trials
with 24,693 patients in total [Cipriani et al., 2009]. These three MTCs synthesize di-
chotomous data on the log odds ratio scale. The remaining two MTCs were selected
to evaluate our methods for continuous datasets. The fourth dataset concerns the
effect of psychological interventions on coronary heart disease, and assessed eight
outcomes, three of which were expressed as mean change from baseline: diastolic
blood pressure, systolic blood pressure and total cholesterol [Welton et al., 2009]. The
fifth MTC compares 5 treatments for Parkinson’s disease on mean off-time reduction
using 7 trials [Dias et al., 2011], which was included because there is relatively little
data, meaning that priors may have a greater influence on the result. The first two
MTCs (smoking cessation and thrombolytic treatments) were also analyzed by Dias
et al. [2010].

In Table 3.2 we contrast the priors specified for the original analyses with those
generated using the heuristics described in Section 3.3.2, using k = 15. As can be
seen, the priors used in the literature vary widely, and the ones generated by our
algorithm appear to be no less reasonable. In two cases (systolic blood pressure and
total cholesterol) the generated priors are much narrower than those reported in the
original paper, but the posterior is unaffected (see below).

Figure 3.10 shows the evidence graphs of the smoking cessation, thrombolytics,
Parkinson and anti-depressants data sets. The basic parameters chosen by our algo-
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model {
for (i in 1:ns) {
# Likelihood for each arm
for (k in 1:na[i]) {
%armLikelihood%

}

# Study-level relative effects
w[i, 1] <- 0
delta[i, 1] <- 0
# parameterize multi-arm trials using a trick
# to avoid using the multi-variate normal
for (k in 2:na[i]) {
delta[i, k] ˜ dnorm(md[i, k], taud[i, k])
md[i, k] <- d[t[i, 1], t[i, k]] + sw[i, k]
taud[i, k] <- tau.d * 2 * (k - 1) / k
w[i, k] <- delta[i, k] - d[t[i, 1], t[i, k]]
sw[i, k] <- sum(w[i, 1:k-1]) / (k - 1)

}
}

# Relative effect matrix
%relativeEffectMatrix%

# Study baseline priors
for (i in 1:ns) {
mu[i] ˜ dnorm(0, %priorPrecision%)

}

# Variance prior
sd.d ˜ dunif(0, %upper%)
tau.d <- pow(sd.d, -2)

# Effect parameter priors
%parameters%

}

(a) Template

model {
for (i in 1:ns) {
# Likelihood for each arm
for (k in 1:na[i]) {
r[i, k] ˜ dbin(p[i, k], n[i, k])
logit(p[i, k]) <- mu[i] + delta[i, k]

}

# Study-level relative effects
w[i, 1] <- 0
delta[i, 1] <- 0
# parameterize multi-arm trials using a trick
# to avoid using the multi-variate normal
for (k in 2:na[i]) {
delta[i, k] ˜ dnorm(md[i, k], taud[i, k])
md[i, k] <- d[t[i, 1], t[i, k]] + sw[i, k]
taud[i, k] <- tau.d * 2 * (k - 1) / k
w[i, k] <- delta[i, k] - d[t[i, 1], t[i, k]]
sw[i, k] <- sum(w[i, 1:k-1]) / (k - 1)

}
}

# Relative effect matrix
d[1, 1] <- 0
d[1, 2] <- d.A.B
d[2, 1] <- -d.A.B
d[2, 2] <- 0

# Study baseline priors
for (i in 1:ns) {
mu[i] ˜ dnorm(0, 9.0*10ˆ2)

}

# Variance prior
sd.d ˜ dunif(0, 2.0*10ˆ0)
tau.d <- pow(sd.d, -2)

# Effect parameter priors
d.A.B ˜ dnorm(0, 9.0*10ˆ2)

}

(b) Example

Figure 3.9: General BUGS/JAGS model template used to generate BUGS/JAGS code
(a). Template variables (written as %variableName%) are replaced with the appro-
priate text by our code generation procedure. The resulting BUGS/JAGS code is
illustrated for a pair-wise meta-analysis with dichotomous data (b). Note that the
shown model (b) is specific to JAGS, as the priors are written in scientific notation as
9.0*10ˆ2, whereas for BUGS they would be written as 9.0E-2.
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Figure 3.10: Evidence graphs of the various data sets, with the basic parameters (span-
ning tree) shown as solid lines and the functional parameters as dashed lines
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Parameter Theirs Ours MC Error
dAB 0.494 (0.399) 0.494 (0.405) 0.002
dAC 0.844 (0.236) 0.838 (0.240) 0.001
dAD 1.101 (0.437) 1.100 (0.442) 0.002
σ2 0.731 0.751 0.003

Table 3.3: Results for the smoking cessation dataset [Lu and Ades, 2006], homoge-
neous variance consistency model. ‘Theirs’ are the posterior mean and standard devi-
ation for the log odds ratio, as reported in the original paper. ‘Ours’ are the equivalent
calculated based on our generated model for the same data. ‘MC Error’ is the Monte
Carlo error of our estimates. The analysis was done using 4 independent chains, with
20,000 tuning (adaptive), 20,000 burn-in and 20,000 inference iterations.

Parameter Theirs Ours MC Error
SK–AtPA -0.219 (0.126) -0.224 (0.136) 0.003
SK–tPA -0.010 (0.088) -0.020 (0.093) 0.002
SK–SK+tPA -0.056 (0.134) -0.057 (0.141) 0.001
SK–Ten -0.212 (0.199) -0.218 (0.214) 0.003
SK–Ret -0.167 (0.142) -0.171 (0.154) 0.003
SK–UK -0.236 (0.232) -0.233 (0.240) 0.008
SK–ASPAC 0.040 (0.102) 0.037 (0.107) 0.002
σ2 0.020 0.023 0.001

Table 3.4: Results for the thrombolytics dataset [Lu and Ades, 2006], homogeneous
variance consistency model. ‘Theirs’ are the posterior mean and standard deviation
for the log odds ratio, as reported in the original paper. ‘Ours’ are the equivalent
calculated based on our generated model for the same data. ‘MC Error’ is the Monte
Carlo error of our estimates. The analysis was done using 4 independent chains, with
20,000 tuning (adaptive), 20,000 burn-in and 20,000 inference iterations.

rithm are shown as solid lines, and the functional ones as dashed lines. The coronary
heart disease data sets are not shown, as they were analyzed in a pair-wise fashion.
In most cases, the algorithm finds a single comparator against which all other treat-
ments are compared. In the thrombolytics data set, however, no single comparator
exists and a different solution is identified: some treatments are parameterized rela-
tive to ASPAC and others relative to AtPA.

Fixing k = 15 and c = 2.5, and using 4 chains with 20,000 tuning, 20,000 burn-in
and 20,000 inference iterations, we reproduced the five published MTCs. The results
are shown in Tables 3.3 through 3.7, where we show the posterior summaries reported
in the original paper side by side with the results of our analysis. Convergence was
assessed using the Brooks-Gelman-Rubin diagnostic and was adequate for all models.
In all cases, the results of our generated models are very similar to those of the original
analyses, and they are almost identical for the anti-depressants data (Table 3.5), as is
to be expected since the priors should have very little influence on the posterior in
such a dense dataset. There were no cases where our choice of prior led to truncation
of the density for the variance parameter or to biased estimates for the relative effects,
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Parameter Theirs Ours MC Error
Fluoxetine–Bupropion 1.08 (0.90, 1.29) 1.08 (0.90, 1.30) 0.002
Fluoxetine–Citalopram 1.10 (0.93, 1.31) 1.10 (0.93, 1.31) 0.001
Fluoxetine–Duloxetine 0.99 (0.79, 1.24) 0.99 (0.78, 1.24) 0.002
Fluoxetine–Escitalopram 1.32 (1.12, 1.55) 1.32 (1.12, 1.55) 0.002
Fluvoxamine–Fluoxetine 1.02 (0.81, 1.30) 1.02 (0.80, 1.29) 0.003
Milnacipran–Fluoxetine 0.99 (0.74, 1.31) 0.99 (0.74, 1.32) 0.003
Mirtazapine–Fluoxetine 0.73 (0.60, 0.88) 0.73 (0.60, 0.88) 0.002
Paroxetine–Fluoxetine 0.98 (0.86, 1.12) 0.99 (0.86, 1.13) 0.002
Reboxetine–Fluoxetine 1.48 (1.16, 1.90) 1.48 (1.15, 1.91) 0.002
Sertraline–Fluoxetine 0.80 (0.69, 0.93) 0.80 (0.69, 0.94) 0.002
Venlafaxine–Fluoxetine 0.78 (0.68, 0.90) 0.78 (0.68, 0.90) 0.001

Table 3.5: Results for the efficacy of second-generation anti-depressants dataset
[Cipriani et al., 2009]. ‘Theirs’ are the posterior median and 95% credibility interval
for the mean difference, as reported in the original paper. ‘Ours’ are the equivalent
calculated based on our generated model for the same data. ‘MC Error’ is the Monte
Carlo error of our estimates. The analysis was done using 4 independent chains, with
20,000 tuning (adaptive), 20,000 burn-in and 20,000 inference iterations.

Outcome Theirs Ours MC Error

Diastolic BP d -1.377 (-3.312, 0.6232) -1.382 (-3.340, 0.617) 0.004
σ 1.966 (0.223, 5.085) 1.966 (0.215, 5.088) 0.014

Systolic BP d -1.316 (-4.24, 2.326) -1.318 (-4.184, 2.176) 0.008
σ 3.438 (1.042, 8.21) 3.407 (1.063, 7.288) 0.016

Cholesterol d -0.3197 (-0.4975, -0.1316) -0.320 (-0.498, -0.131) 0.000
σ 0.277 (0.154, 0.4982) 0.277 (0.154, 0.495) 0.001

Table 3.6: Results for the blood pressure (BP) dataset [Welton et al., 2009], pair-wise
random effects model. ‘Theirs’ are the posterior median and standard deviation for
the mean difference, as reported in the original paper. ‘Ours’ are the equivalent cal-
culated based on our generated model for the same data. ‘MC Error’ is the Monte
Carlo error of our estimates. The analysis was done using 4 independent chains, with
20,000 tuning (adaptive), 20,000 burn-in and 20,000 inference iterations.

Parameter Theirs Ours MC Error
dAB -1.84 (-2.91, -0.85) -1.84 (-2.86, -0.88) 0.004
dAC -0.50 (-1.78, 0.75) -0.50 (-1.74, 0.71) 0.007
dAD -0.53 (-1.77, 0.71) -0.53 (-1.76, 0.67) 0.008
dAE -0.83 (-2.35, 0.69) -0.84 (-2.31, 0.63) 0.009
σ 0.28 (0.01, 1.55) 0.28 (0.01, 1.39) 0.006

Table 3.7: Results for the Parkinson dataset [Dias et al., 2011], homogeneous variance
consistency random effects model. ‘Theirs’ are the posterior mean and standard devi-
ation for the log odds ratio, as reported in the original paper. ‘Ours’ are the equivalent
calculated based on our generated model for the same data. The analysis was done
using 4 independent chains, with 20,000 tuning (adaptive), 20,000 burn-in and 20,000
inference iterations.
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nor did we detect slow convergence or spuriously low PSRFs.

3.6 Discussion

In this paper, we described how to generate MTC consistency models fully automat-
ically based solely on the data set. We showed that parametrization of consistency
models is indeed easy, and thus that we can optimize for understandability of the
model (this is a marked difference with inconsistency models). Moreover, we pro-
posed heuristics to safely choose defaults for priors and starting values. The methods
were validated against published MTCs and the generated models give nearly iden-
tical results, but at a significant reduction in effort for the analyst.

The methods have been implemented in GeMTC (http://drugis.org/gemtc),
which provides a graphical interface to manipulate data sets and can generate MTC
models for either JAGS or BUGS. The software can also generate inconsistency mod-
els (based on previous work), and is used in the ADDIS decision support system
(http://drugis.org/addis). An R package is being worked on, and is currently
available in experimental form (http://drugis.org/gemtc). All of this software
has been released under an open source license, and the datasets referred to in this
paper are distributed with the software.

The presented results, though encouraging, do not guarantee correct results for
all problem instances. Specifically, priors are chosen heuristically, and can not in any
sense be shown to be ‘correct’. But if default values are to be given, we can at least
try to ensure that they don’t result in overly precise estimates. This is what the given
heuristics do and arguably that is an improvement over template code that gives a
fixed default value. The prior for the random effects variance σ may be problematic
in sparse datasets, as it can lead to over-estimation of the variance. Thus, one should
be careful when using the software with sparse data sets. Naturally, if real prior
information is available, the defaults should be replaced. Moreover, human judgment
is still needed to choose the appropriate run length, assess convergence, and interpret
the results. For use in simulation studies where each iteration requires the estimation
of one or more MTCs, our methods can be combined with automated convergence
checking to run the MTCs fully unsupervised. Wrongly concluding that convergence
is adequate is a real risk in that case, but running a larger number of chains with
properly over-dispersed starting values can help to minimize that risk.

The software vastly simplifies the task of performing an MTC by automating the
process of model specification. Compared to existing ‘generic’ code for MTCs, the
software presented in this paper facilitates error-checking of the data set, specifies
vague priors appropriate for the problem rather than giving a fixed default, and auto-
matically specifies multiple chains with over-dispersed starting values. The mvmeta
package for the Stata statistical software enables MTC in a frequentist framework
[White, 2011]. However, if there is no common comparator in the MTC this has to
be handled by augmenting the data set with fictional arms with high variance, which
is not very elegant and requires a decision as to what constitutes a sufficiently high
variance. Moreover, one might prefer the Bayesian approach, and thus an automated

http://drugis.org/gemtc
http://drugis.org/addis
http://drugis.org/gemtc
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solution for Bayesian MTC is still desirable.
The presented methods are limited to specific types of MTC model, and future

work should address this limitation. First, we have assumed that arm-level outcome
data is available, but this is often not the case. Continuous outcomes are often re-
ported as relative effects compared to a control treatment, in which case the relative
effects are correlated and these correlations have to be modelled in the likelihood
function for multi-arm trials [Dias et al., 2011]. There are various formats in which
such data may be reported, and the correlations may or may not be reported. This
gives rise to some challenges in the data modeling and user interface, and several
new variants of the likelihood function. We showed that study baselines can be cho-
sen arbitrarily, so whether data are arm-based or contrast-based should not affect the
basic model structure for consistency models. However, contrast-based data will cre-
ate additional problems for inconsistency models.

Second, we did not discuss fixed effects models, but generating them entails a triv-
ial modification of the template. A greater challenge lies in heterogeneous variance
random effects models, as problems arise in sparse data sets, where some compar-
isons are informed by only one study. For those comparisons, the random effects
variance can not be estimated, and the model generation code should detect these
cases and potentially offer a solution. Moreover, for some datasets more special-
ized likelihoods are needed, such as for time-to-event data [Lu et al., 2007] and in
some cases it may be necessary to adjust for covariates using a meta-regression model
[Salanti et al., 2009]. Future work should investigate how these types of model can be
generated automatically.

Finally, it has not been discussed in the literature how node split models for the
assessment of inconsistency [Dias et al., 2010] can be generated. Automatically gener-
ating these models would be useful, as for each MTC analysis there will be a relatively
large number of node split models that have to be specified: potentially one model
for each comparison present in the dataset.

3.7 Appendix: proof

Theorem 3.1. The choice of basic parameters and study baselines is arbitrary in consistency
models

Proof. A parameter is under-constrained if either (a) it is never used to define any
random effect (Equation 3.3) or (b) it always co-occurs with another variable. We
show here that this problem cannot occur for consistency models.

Let Gi = (Ti, Ei) be the (fully connected) evidence graph for trial i, and G =⋃
iGi = (T,E) the (possibly sparse) evidence graph of the treatment network. Now,

ifR is any spanning tree ofG (determining the |T |−1 basic parameters), and whatever
b(i) ∈ Ti we choose as the baseline in the individual trials, the basic parameters are
fully constrained. To see this, note that a trial i is expressed as a star-shaped graph
Hi in which all included treatments are compared to b(i). If we take the union H =⋃
iHi = (T,EH), this represents all comparisons that are explicitly expressed in the

model. Since H is the union of spanning trees of the graphs that G is the union of,
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H is connected. Each contrast {x, y} ∈ EH generates a (unique, undirected, simple)
path between x and y in R, denoted as pathR({x, y}). Because H is connected, the set
P of these paths visits all treatments T and thus uses all the basic parameters at least
once. Now, if {x, y} and {y, z} are basic parameters, there is at least one path p ∈ P
that contains one, but not the other: for {y, w} ∈ H , pathR({y, w}) contains {x, y} or
{y, z}, but not both. Finally, if any two treatment contrasts co-occur, the entire path
in R between them must co-occur. However, for any adjacent contrasts we can find
a p ∈ P so that they don’t co-occur, so for any two basic parameters we can find a
p ∈ P so that they don’t co-occur. In summary: each basic parameter is used at least
once and no two basic parameters always co-occur.



CHAPTER 4

Automated generation of network meta-analysis
inconsistency models

G. van Valkenhoef, T. Tervonen, B. de Brock, and H. Hillege. Algorithmic parameterization of
mixed treatment comparisons. Statistics and Computing, 22(5):1099–1111, 2012d. doi: 10.1007/
s11222-011-9281-9

Abstract

Mixed Treatment Comparisons (MTCs) enable the simultaneous meta-
analysis (data pooling) of networks of clinical trials comparing ≥ 2 alterna-
tive treatments. Inconsistency models are critical in MTC to assess the over-
all consistency between evidence sources. Only in the absence of consider-
able inconsistency can the results of an MTC (consistency) model be trusted.
However, inconsistency model specification is non-trivial when multi-arm
trials are present in the evidence structure. In this paper, we define the
parameterization problem for inconsistency models in mathematical terms
and provide an algorithm for the generation of inconsistency models. We
evaluate running-time of the algorithm by generating models for 15 pub-
lished evidence structures.
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4.1 Introduction

Meta-analysis refers to statistical methods that summarize evidence from multiple
studies (most commonly: clinical trials). Traditional meta-analysis [Hedges and Ve-
vea, 1998, Normand, 1999] has focused on pair-wise comparisons of treatments based
upon summary measures of relative effect as reported in the original studies. Several
models to simultaneously compare more than two treatments have recently appeared
in the literature [Sutton and Higgins, 2008], also leading to reported applications of
the methodology [see Salanti et al., 2008b]. Such simultaneous comparisons are called
Mixed Treatment Comparisons (MTCs), or network meta-analyses. MTCs allow the
use of both direct and indirect evidence for comparisons, and to calculate the rank-
probabilities of a set of alternative treatments with regard to a single evaluation crite-
rion.

An MTC is implemented as a Bayesian hierarchical model and estimated using
Markov Chain Monte Carlo (MCMC) simulation [Lu and Ades, 2006, Salanti et al.,
2008a]. As in pair-wise meta-analysis, the goal is to combine evidence from multiple
studies in order to derive a best estimate of the relative effect of treatments. MTC ex-
tends pair-wise meta-analysis by simultaneously estimating the relative effects of all
possible pairs of the included treatments. Normally consistency is assumed, i.e., that
direct and indirect evidence are in agreement. For example, if we have different stud-
ies comparing treatments a versus b, b versus c and a versus c, we add the constraint
dac = dab + dbc to the model [Lu and Ades, 2006], where the dxy are relative effects.
This assumption of consistency does not necessarily hold and needs to be tested. To
do this, an inconsistency model is formulated by relaxing the consistency constraint
by introducing an Inconsistency Factor (IcF): dac = dab + dbc + wabca. Evidence can
only be inconsistent if there are closed loops in the evidence structure [Lumley, 2002]:
the IcF wabca corresponds to the loop abca. Evidence consistency can be tested by
individually assessing the null hypothesis that wC = 0 for each IcF wC [Salanti et al.,
2008a], and further comparison of consistency and inconsistency models can be based
on global goodness of fit [Lu and Ades, 2006].

No general formula or algorithm exists for evidence structures with multi-arm
trials (trials with three or more arms – i.e., treatment groups) to determine the con-
sistency equations that must be relaxed with IcFs to achieve correct model parame-
terization [Lu and Ades, 2006, Salanti et al., 2008a]. In addition, baseline treatments
have to be chosen for the individual studies, which can prove to be problematic in the
presence of multi-arm trials [Lu and Ades, 2006]. The absence of an algorithmic solu-
tion causes MTC model construction to be error prone and only applicable by experts
in Bayesian modeling. Thus, MTC model generation would enable wider adoption
of MTC and should allow greater confidence in the correctness of subsequently pub-
lished MTCs. In this paper, we formally define the model generation problem for
MTC inconsistency models and provide an algorithmic solution.

The remainder of the paper is structured as follows. First, an overview of MTC
models and a mathematical formulation of their evidence structure is given in Sec-
tion 4.2. Then, we give a precise definition of the parameterization problem as the
problem of finding the spanning tree of the evidence structure that maximizes the
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Figure 4.1: Two examples of evidence structures used throughout the paper. Evidence
structure I (a) contains three trials, where trial 1 compares a, b, and d, trial 2 compares
a and b, and trial 3 compares b, c, and d. Evidence structure II (b) also contains three
trials, but differs in that trial 1 compares only a and d. Both structures have an iden-
tical evidence graph (c).

number of IcFs, the Inconsistency Degree (IcD), while satisfying the constraint that
every relevant parameter must be informed directly by at least one trial (Section 4.3).
An algorithmic solution to the problem is given in Section 4.4. We give a detailed ex-
ample of how parameterization is done in Section 4.5. In Section 4.6, we evaluate the
feasibility of our algorithm on a number of published evidence structures. Finally, in
Section 4.7, we discuss our results.

4.2 Mixed treatment comparison models

The Bayesian hierarchical model for an MTC evidence structure is specified follow-
ing the general formulation in Lu and Ades [2006], which in turn extends that by
Higgins and Whitehead [1996]. We shall only introduce the concepts that are rele-
vant to the parameterization problem, and refer the interested reader to Lu and Ades
[2006] for a full discussion. The evidence structure for any MTC consists of a num-
ber of studies, that together determine an undirected evidence graph in which the
treatments are the vertices and the available comparisons are the edges. Since a trial
Si provides evidence for all possible comparisons between the included treatments
T (Si), each study can be considered to provide a fully connected evidence graph
G(Si) = (T (Si), E(Si)). Here, E(Si) represents the estimates of relative effects that
can be made based on the trial data. So a two-arm trial is a pair, a three-arm trial a
triangle, a four-arm trial a fully connected 4-treatment graph, and so on.

Denote by S = {S1, . . . , Sn} the set of n studies included in the MTC. The evi-
dence graphs G(Si), Si ∈ S form an evidence structure, as illustrated in Figure 4.1(a)
and Figure 4.1(b). These figures introduce two hypothetical examples that will be
used throughout the paper to illustrate the introduced concepts. Structure I consists
of two overlapping three-arm trials and one two-arm trial, while structure II has only
one three-arm trial and two two-arm trials. The union of the individual study evi-
dence graphs forms the MTC evidence graph:

Definition 4.1 (evidence graph). The graph G(S) of all comparisons made in at least one
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of the trials in S is defined as:

G(S) = (T (S), E(S)) =

( ⋃
Si∈S

T (Si),
⋃
Si∈S

E(Si)

)
.

For example, the evidence structures I and II have the same evidence graph,
shown in Figure 4.1(c). A graph corresponding to an MTC problem has to be con-
nected. If it is not, S must be decomposed into two or more independent problems,
corresponding to connected subgraphs of G(S) that can be analyzed separately.
Given the (connected) evidence graph G(S), every edge in E(S) becomes an effect
parameter in the MTC model:

Definition 4.2. Given the MTC problem S and an arbitrary ordering ≺ on T (S) (e.g., al-
phabetical order of treatments), the set of effect parameters D(S) is given by:

D(S) = {d({x, y}) | {x, y} ∈ E(S)}

where d(·) identifies a unique parameter with the set {x, y}:

d({x, y}) =

{
dxy if x ≺ y
dyx if y ≺ x .

Furthermore, for directed edges (x, y), we define a signed function, that takes into account the
direction of (x, y) relative to the parameter d({x, y}):

d((x, y)) =

{
d({x, y}) if x ≺ y
−d({x, y}) if y ≺ x .

For example, if we adopt alphabetical ordering for ≺, we have

d((a, b)) = dab

d((b, a)) = −dab

meaning we do not have to worry about the direction in which the evidence graph is
traversed.

4.2.1 Study level effects
We first discuss how the relative effects at the study level are parameterized in terms
of the parameters D(S). For each Si ∈ S, for each treatment t ∈ T (Si), we have a
certain absolute effect µit. The way these absolute effects are defined depends on the
type of model, and is not important for the current discussion; Salanti et al. [2008a]
gives the formulation for both dichotomous and continuous data. Now, because we
are interested in the relative effects, we choose a baseline treatment x ∈ T (Si). The
baseline effect µix is then a random variable for which we assume some prior dis-
tribution π(µix). For every other treatment u ∈ T (Si), u 6= x the treatment effect
is:

µiu = µix + δixu ,
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where δixu is the random effect of treatment u relative to x. The distribution for the
random effects is:  δixu

...
δixw

 ∼ N

 d((x, u))

...
d((x,w))

 ,Σ

 ,

where Σ is an appropriately defined variance-covariance matrix. For a full discussion
of the study level absolute and relative effects, see [Lu and Ades, 2006, Salanti et al.,
2008a].

From the definition of the relative effects, it is clear that they are transitive [Lu and
Ades, 2009]: if u, v, w ∈ T (Si) are distinct treatments, then

δiuv = δiuw + δiwv . (4.1)

Based on this we conjecture that if a triangle of treatments is included in precisely the
same set of studies, then this relation also holds for the estimates of the effect sizes:

Conjecture 4.3 (internal consistency). Write f((u, v), S′) for the estimate of d((u, v))
based solely on the studies S′ ⊂ S. Then if u, v, w ∈ T (Si) ; ∀Si ∈ S′,

f((u, v), S′) = f((u,w), S′) + f((w, v), S′) .

Note that this implies that each of the studies in S′ has at least three arms.

4.2.2 Consistency models
Normally conclusions are drawn under the assumption of evidence consistency. Ba-
sically, this is a generalization of the conjecture in the sense that we assume that it
holds regardless of the supporting studies:

Definition 4.4 (consistency). Let u, v, w ∈ T (S) be distinct treatments, then assuming
consistency,

d((u, v)) = d((u,w)) + d((w, v)) .

This can be justified by assuming exchangeability of the study level relative ef-
fects and taking expectations on both sides of Equation 4.1 [Lu and Ades, 2009]. The
consistency assumption is essential, as it models the relationships between treatment
contrasts and allows the model to borrow strength across the evidence structure [Lu
and Ades, 2009]. More generally, a consistency equation can be written for any cycle
and reference effect, as shown by the following lemma and corollary.

Lemma 4.5. Given the evidence graph G(S), let (w1, wn) be any pair of vertices of G(S)
and p = (w1, . . . , wn) a path of length n− 1 between them, n > 2 (see Appendix 4.8). Then,
under the assumption of consistency,

d((w1, wn)) =

n−1∑
i=1

d((wi, wi+1)) (4.2)
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Proof by induction. If p = (u,w, v), then the lemma is just a restatement of the assump-
tion. Now let the lemma hold for (w2, wn) and p′ = (w2, . . . wn), i.e.,

d((w2, wn)) =

n−1∑
i=2

d((wi, wi+1)) .

Then for p = (w1, w2, . . . , wn), we get

d((w1, wn)) = d((w1, w2)) + d((w2, wn))

=

n−1∑
i=1

d((wi, wi+1)) .

The first equality by the consistency assumption and the second by the induction
hypothesis.

Corollary 4.6 (consistency relation). Given the evidence graphG(S), a (simple) cycle C ⊆
E(S), then if we take any edge {u, v} ∈ C, u ≺ v as a reference effect, we can write a
consistency equation as follows:

duv = d((u, v)) =

n−1∑
i=1

d((wi, wi+1)) ,

where (w1, . . . , wn) is the directed path from w1 = u to wn = v consisting of the edges
(C − {u, v}).

Thus, in a consistency model, the consistency relation defines duv completely in
terms of the other comparisons in the cycle. In that case, duv is called a functional pa-
rameter [Lu and Ades, 2006]. For each functional parameter there must be a cycle in
which it is the only one, otherwise a circular definition would result. Moreover, each
cycle should have at least one functional parameter, or we do not assume full con-
sistency. The right hand side parameters are called basic parameters and are defined
through suitable distributions. The division of parameters into basic and functional
ones is not arbitrary; it has previously been stated that the basic parameters should
form a spanning tree [Lu and Ades, 2006]. This is proven by the following theorem.

Theorem 4.7 (basic parameters). If we divide the parameter edges E(S) into a set of basic
parameters Eb and a set of functional parameters Ef , such that Eb ∪ Ef = E(S) and Eb ∩
Ef = ∅, the basic parameters form a spanning treeGb = (Tb, Eb) of the evidence graphG(S).

Proof. It is sufficient to show (Appendix 4.8) that

1. Gb is a connected graph

2. Gb is acyclic

3. Tb = T (S)
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(b) Spanning tree
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(c) Cycle I
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Figure 4.2: Choosing a spanning tree (b) for an evidence graph (a) determines the par-
tition into basic and functional parameters. The spanning tree induces a set of fun-
damental cycles, (c) and (d), that determine the equations that define the functional
parameters.

Proof of 1. Assume Gb is not connected. Then, since G(S) is connected, there is an
edge e ∈ E(S), e 6∈ Eb that connects two vertices not connected in Gb. Since e = (u, v)
does not correspond to a basic parameter, it must be a functional parameter. Hence,
there must be a simple directed path from u to v in Gb, and therefore Gb must be
connected.

Proof of 2. If C ⊆ Eb is a cycle in Gb, then for an edge e = (u, v) ∈ C, u ≺ v, Corol-
lary 4.6 lets us write a consistency equation in terms of the other (basic) parameters
in the cycle. Thus, if there would be a cycle in Gb, we would not be assuming full
consistency.

Proof of 3. From the proof to the first part and Eb ∪ Ef = E(S).

Corollary 4.8. The functional parameters Ef are the non-tree edges (Appendix 4.8) corre-
sponding to the spanning tree Gb, and the (simple) cycle C created by adding e ∈ Ef to Gb
generates a consistency relation, as considered in Corollary 4.6.

The theorem and corollary imply that for any valid parameterization of G(S), we
will have dim(G(S)) = |T (S)|−1 basic parameters and nul(G(S)) = |E(S)|−|T (S)|+1
functional parameters (Appendix 4.8). For example, in Figure 4.2 we show a spanning
tree of the evidence graph in Figure 4.1(c). Specifically, it is made up of |T (S)|− 1 = 3
basic parameters:

Eb = {{a, b}, {a, d}, {d, c}} ,

and thus there are 5− 3 = 2 functional parameters:

Ef = {{b, d}, {b, c}} .

Corresponding to the first functional parameter, {b, d}, we identify the cycle badb.
This implies that:

d((b, d)) = d((b, a)) + d((a, d)) ,

and for the second functional parameter we get:

d((b, c)) = d((b, a)) + d((a, d)) + d((d, c)) .
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4.2.3 Inconsistency models
The assumption of consistency does not necessarily hold and should be tested. Incon-
sistency can only occur if there are closed loops in the evidence structure [Lumley,
2002]. An inconsistency relation is obtained by expanding a consistency relation with
an IcF, e.g., for a loop abca, we add wabca [Lu and Ades, 2006]:

dac = dab + dbc + wabca , (4.3)

for which we again assume some distribution [Lu and Ades, 2006]. If multi-arm trials
are included, some of the comparisons may be informed by only multi-arm trials,
and evidence within a multi-arm trial is consistent by definition. For example, if we
replace trials of a versus b, b versus c and a versus c with a three-arm trial a versus b
versus c, the inconsistency model would not includewabca. As we show in Section 4.3,
the choice of basic parameters determines the number of IcFs that are included in the
model.

4.3 Problem definition

The parameterization of an evidence structure requires partition of the parameters
into basic and functional parameters, as presented in Theorem 4.7. However, when an
inconsistency model is constructed for an evidence structure with multi-arm trials,
the choices of the spanning tree and the individual study baselines are not arbitrary.

4.3.1 Spanning tree selection
If S contains only two-arm studies, then we may choose any spanning tree of G(S)
[Lu and Ades, 2006, Salanti et al., 2008a]. By contrast, when multi-arm studies are
present, the choice of spanning tree is not arbitrary as some contrasts may be in-
formed by only multi-arm trials, and the measurements within a multi-arm trial can
not be inconsistent. For a cycle to potentially be inconsistent, it must be supported
by at least three independent sources of evidence [Lu and Ades, 2006], which is for-
malized below in Theorem 4.13. To be able to do this, we introduce the concept of the
partition of a cycle into comparisons with their supporting studies and the operation
of reduction, which allows us to simplify a partition.

Definition 4.9 (elementary partition of C). Let C be a directed cycle in G(S), represented
by its set of (directed) edges. The elementary partition of C is (P, r), where P = {e | e ∈ C},
and r(e) = {Si ∈ S | e ∈ E(Si)}.

Note that there are, for each (undirected) cycle, two possible elementary parti-
tions, depending on the direction in which the cycle is traversed. Again using the
evidence structure of Figure 4.1(a), an elementary partition of the cycle abcda is (P, r),
where:

P = {(a, b), (b, c), (c, d), (d, a)} ,
r((a, b)) = {1, 2} ,

r((b, c)) = r((c, d)) = {3} ,
r((d, a)) = {1} .
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Given an elementary partition (P, r) of an evidence cycle C, the inconsistency
equation is given by:

wC = F (P, r) =
∑

(u,v)∈P

f((u, v), r((u, v))) , (4.4)

with f((u, v), S′) defined as in Conjecture 4.3. This is a generalization of Equation 4.3.
Based on the conjecture, it seems that if two adjacent comparisons have the same
set of supporting studies, we should be able to simplify the equation. We call this
reducing the partition:

Definition 4.10 (reduction). Let (P, r) be a partition of C and ek = (u,w1), . . . , el =
(wn, v) ∈ P a sequence of pair-wise adjacent edges, such that r(ek) = · · · = r(el). Then we
may reduce this partition to (P ′, r′); where P ′ = (P − {ek, . . . , el}) ∪ {(u, v)}, and

r′(e) =

{
r(e) if e 6= (u, v)
r(ek) if e = (u, v)

Note that the numbering of the ei is arbitrary and that for any specific reduction
step, we can always choose the numbering scheme such that the reduced sequence
ek, . . . , el does not contain the subsequence en, e1. Given this definition, it is natural to
think of two edges ei and ej as independent if r(ei) 6= r(ej) (and dependent otherwise).
For convenience, we will call any pair (P, r) that was obtained from the elementary
partition of C by (repeated) application of reduction, a partition of C. For example,
the previously discussed elementary partition (P, r) of the cycle abcda can be reduced,
because r(b, c) = r(c, d) = {3}. We get (P ′, r′), where

P ′ = {(a, b), (b, d), (d, a)} ,
r′((a, b)) = {1, 2}, r′((b, d)) = {3}, r′((d, a)) = {1} .

The following lemma shows that the inconsistency equation (Equation 4.4) is pre-
served under reduction of partitions:

Lemma 4.11. Assume (P, r) is a partition of the cycle C, and (P ′, r′) is obtained from (P, r)
by a single reduction step. Then F (P, r) = F (P ′, r′).

Proof. Let e1, . . . , ek be the edges reduced to e′, then r′(e′) = r(e1) = · · · = r(ek).
Now, if P has n edges:

F (P, r) =

n∑
i=1

f(ei, r(ei))

=

k∑
i=1

f(ei, r(ei)) +

n∑
i=k+1

f(ei, r(ei))

= f(e′, r′(e′)) +

n∑
i=k+1

f(ei, r
′(ei))

= F (P ′, r′) .
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Here, f(e′, r′(e′)) =
∑k
i=1 f(ei, r(ei)) holds by the same induction argument used for

Lemma 4.5, but this time using Conjecture 4.3.

Lemma 4.12. If a partition (P, r) of C contains k > 1 independent pairs of adjacent edges
(ei, ej), then there is a reduced partition (P ′, r′) composed of k adjacently independent edges,
such that F (P, r) = F (P ′, r′).

Proof. By the previous lemma, a single reduction step will preserve F (P, r), thus so
will repeated reduction. It remains to be shown that there is a reduction with ex-
actly k edges, each independent of its adjacent edges. To see this, number the edges
e1, . . . , en so that r(e1) 6= r(en). Create a strictly increasing index list i(1), . . . , i(k − 1)
so that r(ei(j)) 6= r(ei(j)+1);∀1≤j≤k−1. Then if we set i(k) = n, this list enumerates all
independent pairs of adjacent edges. We can reduce e1, . . . , ei(1) to e′1, ei(1)+1, . . . , ei(2)

to e′2 and so on, until ei(k−1)+1, . . . , ei(k) to e′k. Then (P ′, r′) with P ′ = {e′1, . . . , e′k} and
r′(e′j) = r(ei(j)) consists of k adjacent independent edges. The reduction is unique up
to the numbering of the e′j .

The lemma leads to a simple test of when an inconsistency can occur in an ev-
idence cycle, as given in the following theorem. We make the distinction between
potentially inconsistent, which is a property of the evidence structure, and actually in-
consistent, which depends additionally on the data. A cycle is potentially inconsistent
if we can devise data so that it becomes actually inconsistent.

Theorem 4.13 (inconsistency cycle). Let C be a cycle of length n and suppose that the
elementary partition (P, r) of C has m independent pairs of adjacent edges. Then, C is poten-
tially inconsistent iff m ≥ 3.

Proof. Case I (m < 3) The first possibility is that all studies include the complete set of
vertices in C (m = 0), and through internal consistency we have:

F (P, r) =
∑
e∈P

F (e, r(e)) = 0 .

From Lemma 4.12, if m = 1, C is not a cycle. If m = 2, we derive, using Lemma 4.12:

F (P, r) = F ({(u, v), (v, u)}, r) ;

r((u, v)) = R1, r((v, u)) = R2 .

Thus, F (P, r) 6= 0 reduces to

f((u, v), R1) + f((v, u), R2) 6= 0

f((u, v), R1) 6= f((u, v), R2) ,

which is just inter-study heterogeneity.
Case II (m ≥ 3) Using Lemma 4.12, reduce the elementary partition to a partition

where each pair of adjacent edges is independent. Since there are at least three distinct
sets of supporting studies, the equations cannot be reduced as was done for m < 3,
and this gives us sufficient freedom to choose data so that wC 6= 0 without reducing
to heterogeneity. Thus, C is potentially inconsistent.
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Figure 4.3: An evidence structure (a) and spanning tree (b) in which two fundamental
cycles reduce to the same set of equations. The bcd path in (d) collapses (through
reduction) and leaves the same cycle as in (c), because (b, c), (b, d) and (c, d) are all
supported only by study 3.

In evidence structure II (repeated in Figure 4.3(a)), if we consider the cycle bcdb,
each of the comparisons is supported only by study 3, and hence m = 0, so according
to the theorem, bcdb is not potentially inconsistent. On the other hand, each of the
comparisons in abda is supported by a different study, so m = 3, making this cycle
potentially inconsistent. The same holds for the longer cycle abcda, in which (b, c)
and (c, d) are both supported by study 3, (d, a) by study 1 and (a, b) by study 2, also
giving m = 3.

It would appear that this theorem allows us to count the number of inconsistency
cycles for a given spanning tree. However, although the fundamental cycles for any
spanning tree are independent, some may reduce to the same set of linear equations.
An example of this is shown in Figure 4.3, where the cycles abda and abcda discussed
previously have the same reduced partition, namely (P, r) with:

P = {(a, b), (b, d), (d, a)}
r((a, b)) = {2}, r((b, d)) = {3}, r((d, a)) = {1} .

Hence, to count the number of inconsistencies, we should count the number of dis-
tinct reduced partitions among the fundamental cycles. Moreover, any cycles that
reduce to the same set of linear equations should be assigned the same IcF. The fol-
lowing definitions and lemma make this notion precise:

Definition 4.14. Let g((u, v)) = (u, v) or g((u, v)) = (v, u) be a one-one correspondence
P1 → P2. Then the partitions (P1, r1) and (P2, r2) are equivalent if

r1(e) = r2(g(e)) ; ∀e ∈ P1 .

Lemma 4.15. Let (P1, r1) and (P2, r2) be equivalent partitions under g. Then F (P1, r1) =
F (P2, r2) or F (P1, r1) = −F (P2, r2), for g((u, v)) = (u, v) or g((u, v)) = (v, u) respec-
tively.

Proof. Assuming g((u, v)) = (u, v), we have

f((u, v), r1((u, v))) = f(g((u, v)), r2(g((u, v)))) ,
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and thus

F (P1, r1) =
∑
e∈P1

f(e, r1(e))

=
∑

g(e)∈P2

f(g(e), r2(g(e))) = F (P2, r2) ,

where the second equality holds because g is a one-one correspondence. If g((u, v)) =
(v, u), we have that

f((u, v), r1((u, v))) = −f((v, u), r2((v, u)))

= −f(g((u, v)), r2(g((u, v)))) ,

since d((u, v)) = −d((v, u)). Then clearly

F (P1, r1) = −F (P2, r2) .

Definition 4.16 (S-equivalence). Two cycles C1 and C2 are S-equivalent (C1 ∼S C2) iff
their maximally reduced elementary partitions (in the evidence structure S) are equivalent.

By this definition the cycles abda and abcda shown in Figure 4.3 and discussed
above are S-equivalent. This means that if we assign the inconsistency factor w to
abda:

d((b, d)) = d((b, a)) + d((a, d)) + w ,

we should assign the same one to abcda:

d((b, c)) = d((b, a)) + d((a, d)) + d((d, c)) + w .

Note that according to Lemma 4.15, the direction in which we go around the cycle
matters. In the above case the equivalence is due to g((u, v)) = (u, v), so we use +w.
If we traverse it in the other direction, g((u, v)) = (v, u), we should use −w:

d((c, b)) = d((c, d)) + d((d, a)) + d((a, b))− w .

Definition 4.17 (inconsistency degree). For an evidence structure S and spanning tree
Gb, let C = C(G(S), Gb) be the set of fundamental cycles. Then, C/ ∼S is the set of
equivalence classes under ∼S in C. The IcD of Gb is the number of equivalence classes that
contain inconsistency cycles:

icd(S,Gb) =
∑

X∈C/∼S

icc(S,C) ; C ∈ X ,

where C ∈ X may be chosen arbitrarily and

icc(S,C) =

{
1 if C is an inconsistency cycle
0 otherwise .
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Figure 4.4: An evidence structure in which a non-obvious choice of IcFs is required
to arrive at the correct IcDF. The structure (a) contains three trials, where trial 1
compares a, b and d, trial 2 compares a and b and trial 3 compares b, c and d. The
subfigures give an incorrect (b) and a correct (c) parameterization.

To clarify the meaning of the quotient set C/ ∼S , consider again the situation of
Figure 4.3. Since both cycles are equivalent, we have

C/ ∼S= {{abda, abcda}} .

On the other hand, for the evidence structure in Figure 4.4(a) and the spanning tree
of Figure 4.4(b), the cycles abda and bcdb are clearly not equivalent, so then

C/ ∼S= {{abda}, {bcdb}} .

Definition 4.17 allows us to count the inconsistency degree of a spanning tree. For
example, consider the evidence structure in Figure 4.4(a). Clearly, both Figure 4.4(b)
and Figure 4.4(c) are parameterized so that the dim(G(S)) = 3 basic parameters (solid
edges) form a spanning tree, and the remaining nul(G(S)) = 2 edges become the
functional parameters. This implies that the IcDF is at most 2, the number of func-
tional parameters. The spanning tree G1 in Figure 4.4(b) has two fundamental cycles,
namely abda and bdcb. The first cycle is partitioned into e1 = (a, b), e2 = (b, d) and
e3 = (d, a), with support r(e1) = {1, 2}, r(e2) = {1, 3} and r(e3) = {1}. Since the
sets of supporting studies are all distinct, Theorem 4.13 leads us to conclude that
icc(abda) = 1. For the latter cycle, we have e1 = (b, d), e2 = (d, c) and e3 = (c, b), for
which the supporting studies are r(e1) = {1, 3}, r(e2) = {3} and r(e3) = {3}. Thus,
using Theorem 4.13, this reduces to heterogeneity on (b, d), so icc(bdcb) = 0. Hence,
in this parameterization icd(S,G1) = 1.

Now, consider the tree G2 in Figure 4.4(c), with fundamental cycles abda and
abcda. We already know that icc(abda) = 1. The partition of abcda reduces to e′1 =
(a, b), e′2 = (b, d), and e′3 = (d, a) with r′(e′1) = {1, 2}, r′(e′2) = {3}, and r′(e′2) = {1}.
All three edges are independent, and hence icc(abcda) = 1. Moroever, the partitions
of abda and abcda are not equivalent and thus icd(S,G2) = 2, the maximum possible.
Hence, the choice of spanning tree determines the IcD:

Lemma 4.18. The IcD icd(S,Gb) depends on the chosen spanning tree Gb.

Theorem 4.19 (spanning tree selection problem). To parameterize the model correctly, we
need to find a spanning tree Gb that maximizes icd(S,Gb). Then, icdf(S) = icd(S,Gb).
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Figure 4.5: An evidence structure in which the choice of study baselines is not arbi-
trary. The subfigures (b)–(c) give an incorrect and a correct choice of baselines. The
solid edges connect to the study baseline. In (b) baselines are 1:b, 2:a, 3:c and in (c)
1:d, 2:a, 3:c. The dotted edges are not connected to the baseline for that study and are
thus not informed by direct evidence from that study.

Proof. icd(S,Gb) determines the number of independent inconsistency factors in the
model. It has previously been shown that the IcFs w under one parameterization
can be represented as linear combinations of the IcFs w′ under another [Lu and Ades,
2006], assuming equal icd. However, from Lemma 4.18, not all spanning trees result in
the same icd. Therefore, in order to be able to express any IcF as a linear combination
of the chosen IcFs, a maximal set of independent IcFs must be chosen.

Only one IcF should be created for each equivalence class of inconsistency cycles.
Thus, whereas Lu and Ades [2006] claim that each IcF corresponds to exactly one
functional parameter, actually each IcF may correspond to several. Their assertion
that not every functional parameter need correspond to an IcF is confirmed by our
work.

4.3.2 Baseline selection

The individual studies have to be parameterized in such a way that every comparison
for which there is direct evidence (and which can be inconsistent) is expressed in the
parameterization of at least one trial [Lu and Ades, 2006]. Again, this problem occurs
only for multi-arm trials. For example, consider the structure in Figure 4.5(a); we
might parameterize trial 1 with b as the baseline and trial 3 with c as the baseline
(Figure 4.5(b)), having δ1ba, δ1bd, δ2ab, δ3cb, and δ3cd as study parameters. Consider
the cycle abda, where we have the inconsistency relation dad = dab + dbd + wabda.
Now, dad is not informed directly by any of the study parameters δixy , and hence
the choice of dad is free, meaning that wabda is also unconstrained. Hence, given
this parameterization of the individual studies, the IcF wabda cannot be estimated. A
correct choice of baselines, covering all edges, is given in Figure 4.5(c).

Thus, in addition to choosing the basic parameters correctly, the study baselines
must be chosen so that at least one study provides direct evidence where needed.
That is, every cycle C for which icc(C) = 1, all |C| parameters should have direct
evidence, while for cycles where icc(C) = 0, only |C| − 1 need direct evidence. In
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case of an equivalence class of inconsistency cycles, only one of the cycles needs all
|C| parameters to have direct evidence. This is formalized as follows:

Definition 4.20 (evidence cover constraint). Let X ∈ C/ ∼S be an equivalence class of
cycles. Let every cycle C ∈ X be represented by its edge-set. Define the indicator function
ϕX that is 1 if the direct evidence constraint is satisfied by the edge set E:

ϕX(E) =

 1 if ∀C∈X(|C ∩ E| ≥ |C| − 1)∧
∃C∈X(icc(C) = 0 ∨ |C ∩ E| = |C|)

0 otherwise

The individual studies are parameterized by choosing a baseline, and the effect
parameters are the relative effects of all other treatments compared to the chosen
baselines:

Definition 4.21 (baseline study graph). Given a study Si and a baseline bi ∈ T (Si), the
baseline study edge set is:

E(Si, bi) = {{bi, x} | x ∈ (T (Si)− bi)}

And the baseline study graph is given by G(Si, bi) = (T (Si), E(Si, bi)).

Any given choice of baselines results in a graph representing the relative effects
supported by at least one source of direct evidence:

Definition 4.22 (baseline evidence graph). Given a baseline assignment

B = {(Si, bi) | Si ∈ S} ,

the baseline evidence graph is:

G(S,B) = (T (S), E(S,B)) =

(
T (S),

⋃
Si∈S

E(Si, bi)

)
.

Thus, the baseline selection problem is to find the baseline assignment that simul-
taneously satisfies the evidence cover constraint (Definition 4.20) for all equivalence
classes of fundamental cycles:

Definition 4.23 (baseline selection problem). Given S and a spanning tree Gb for S, the
baseline selection problem is to find a baseline assignment B, that satisties the constraint

ϕX(E(S,B)) = 1 ; ∀X ∈ C(G(S), Gb)/ ∼S

4.3.3 Parameterization problem
Together, the problems of maximizing the IcDF and selecting the baselines form the
parameterization problem:

Definition 4.24 (Parameterization Problem). To choose a spanning tree Gb of S that max-
imizes icd(S,Gb), while allowing a solution B to the baseline selection problem.
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Algorithm 1 find-baseline-assignment, procedure to find a baseline assignment satis-
fying a certain goal condition.
Input: Evidence structure S, goal condition ϕ(·)
Output: Baseline assignment, or undefined if none exists

1: b← ∅, p← ∅
2: for Si ∈ S do
3: if |T (Si)| = 2 then
4: b← b ∪ {(Si, some-element-of(T (Si)))}
5: else
6: p← p ∪ {Si × T (Si)}
7: end if
8: end for
9: A← p1 × · · · × pn × b1 × · · · × bm

10: for B ∈ A do
11: if ϕ(B) then
12: return B
13: end if
14: end for
15: return undefined

4.4 The algorithm

With the problem precisely defined, we developed a naive, inefficient algorithm that
is sufficiently fast to solve all problem instances encountered in practice. An open
source implementation is available from http://drugis.org/mtc.

The baseline selection sub-problem (Definition 4.23) is solved through an exhaus-
tive search over the space of possible assignments, as is shown in Algorithm 1. Before
the search, an arbitrary baseline is assigned for the two-arm studies since either base-
line will cover all included comparisons (lines 3–4). For the multiple arm studies, all
possible baseline choices are constructed (lines 5–6). Then, these are combined with
the two arm study assignments (line 9) to construct the space A of possible baseline
assignments. Then, an exhaustive search over the space A is performed (lines 10–14).
As soon as a valid baseline assignement is found, the search is terminated. Note that
in practice the set A is not constructed beforehand, but the space of baseline assign-
ments is explored with e.g. a depth-first search [Cormen et al., 2001].

The algorithm to solve the full parameterization problem is described as pseudo
code in Algorithm 2. We start by trying to solve the baseline selection problem for the
maximally constrained case in which all edges need direct evidence. The indicator
procedure required in find-baseline-assignment for checking whether all edges are
covered is presented in Algorithm 3. If no solution exists, any solution Gb to the
parameterization problem will have icd(S,Gb) < nul(G(S)) (see Appendix 4.8).

Then, we use the standard algorithm presented in Gabow and Myers [1978] to
iterate over all spanning trees of the evidence graph G(S) (Definition 4.1). For each
generated tree g, we determine the IcD icd(S, g) (Definition 4.17). The procedure

http://drugis.org/mtc


4.4. The algorithm 61

Algorithm 2 Parameterization of a mixed treatment comparison model as finding the
spanning tree that maximizes the IcD while having a valid baseline assignment.
Input: Evidence structure S
Output: Solution (Gb, B) to the parameterization problem

1: best-g← undefined, best-b← undefined
2: b← undefined
3: full-b← find-baseline-assignment(S, ϕS)
4: if defined(full-b) then
5: k ← nul(G(S))
6: else
7: k ← nul(G(S))− 1
8: end if
9: for g ∈ gabow-myers(G(S)) do

10: if not defined(best-g) or icd(S, g) > icd(S, best-g) then
11: if defined(full-b) then
12: b← full-b
13: else
14: b← find-baseline-assignment(S, ϕS,g)
15: end if
16: if defined(b) then
17: best-g ← g
18: best-b← b
19: end if
20: end if
21: if icd(S, best-g) = k then
22: return (best-g, best-b)
23: end if
24: end for
25: return (best-g, best-b)

for computing IcD is given in Algorithm 4. If icd(S, g) is greater than the largest so
far, we determine whether there is a solution to the baseline selection problem for
this tree. In this case the find-baseline-assignment requires an indicator procedure
for checking whether the parameterization satisfies the baseline selection constraints
(Definition 4.23); this one is presented in Algorithm 5. If there exists a solution to
the baseline selection problem, we record this spanning tree and its IcD as the best so
far. We stop if for the best tree so far icd(S, g) = k, the maximum possible, or if all
spanning trees have been enumerated. For difficult problems this will be intractable,
since there may be exponentially many spanning trees, and if the evidence structure
has lower than maximal IcDF all of them have to be enumerated. However, it seems
that most real-world problems are easy, as is shown by the computational tests in
Section 4.6.

Using an exhaustive search to identify a baseline selection solves the baseline se-
lection problem. Since the spanning tree search also (potentially) generates all pos-
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Algorithm 3 ϕS , indicator procedure for checking whether all edges are covered.
E(Si, bi) is the baseline study graph (Definition 4.21).
Input: Set B of pairs (Si, bi): (study, baseline)
Output: true, if all edges are covered, otherwise false

1: E ← ∪(Si,bi)∈BE(Si, bi)
2: return E = E(S)

Algorithm 4 icd, procedure for computing the IcD. C/ ∼S is the set of equivalence
classes of cycles (Definition 4.17), and C(·, ·) is the set of fundamental cycles (Ap-
pendix 4.8).
Input: Evidence structure S, Spanning tree g
Output: icd(S, g)

1: C ← C(G(S), g)
2: icd← 0
3: for X ∈ (C/ ∼S) do
4: icd← icd + icc(some-element-of(X))
5: end for
6: return icd

sible spanning trees and maximizes the IcD taking into account whether there is a
solution to the baseline selection problem, the algorithm outlined here solves the pa-
rameterization problem (Definition 4.24).

4.5 Example

As a full example of finding a correct parameterization for an evidence structure,
we consider a network of treatments for smoking cessation therapy comparing (a)
nicotine replacement therapy, (b) bupropion, (c) varenicline and (d) placebo or no
treatment [Wu et al., 2006]. The outcome of interest is smoking cessation at 12 months.
For this outcome there are 78 studies with 4 different treatment comparisons: Sad (66
studies), Sbd (6 studies), Sabd (3 studies) and Sbcd (3 studies). The evidence structure is

a b

cd

Figure 4.6: The evidence structure for the outcome ‘smoking cessation after 12 months’
from Wu et al. [2006]. a = nicotine replacement therapy, b = bupropion, c = vareni-
cline, and d = placebo or no treatment.
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Algorithm 5 ϕS,g , indicator procedure for checking whether the parameterization
satisfies the baseline selection constraints (Definition 4.23). E(Si, bi) is the baseline
study graph (Definition 4.21), C/ ∼S is the set of equivalence classes of cycles (Defi-
nition 4.17), and C(·, ·) is the set of fundamental cycles (Appendix 4.8).
Input: Set B of pairs (Si, bi): (study, baseline)
Output: true, if Definition 4.23 is satisfied, otherwise false

1: E ← ∪(Si,bi)∈BE(Si, bi)
2: C ← C(G(S), g)
3: for X ∈ (C/ ∼S) do
4: for C ∈ X do
5: if |C ∩ E| < |C| − 1 then
6: return false
7: end if
8: end for
9: if icc(some-element-of(X)) = 0 then

10: return true
11: end if
12: for C ∈ X do
13: if |C ∩ E| = |C| then
14: return true
15: end if
16: end for
17: end for
18: return false

shown in Figure 4.6, having |T (S)| = 4 treatments and |E(S)| = 5 comparisons. Thus,
any correct parameterization will have |Eb| = 4 − 1 = 3 basic and |Ef | = 5 − 3 = 2
functional parameters.

The first step in the algorithm is to try and find a baseline selection that covers all
edges. Given this structure, that is easy, e.g. a for the Sad studies, b for Sbd, a for Sabd
and c for Sbcd will suffice. We could also have chosen different baselines for studies
of the same type, but that is not necessary here. Then, we set k = |Ef | = 2, meaning
we will try to find an IcD equal to the number of functional parameters.

Now, we start iterating over the spanning trees of the evidence graph. Say the first
spanning tree we are given is

g1 = {{b, a}, {b, c}, {b, d}} .

Then the cycles to evaluate are badb and bcdb. For badb we get the partition

P = {(b, a), (a, d), (d, b)} ;

r((b, a)) = Sabd, r((a, d)) = Sad ∪ Sabd, r((d, b)) = Sbd ∪ Sbcd .

This partition cannot be reduced any further, and there are 3 distinct sets of studies,
so

icc(S, badb) = 1 .
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For bcdb, both (b, c) and (c, d) are supported only by Sbcd, and thus we have only 2
sets of supporting studies, so

icc(S, bcdb) = 0 .

The cycles are not equivalent, so they fall into two separate classes, and we get
icd(S, g1) = 1. This is the best so far, so we store g1.

The IcD of g1 is 1 < k = 2, so we continue iterating over the spanning trees. The
second spanning tree might be:

g2 = {{b, a}, {a, d}, {d, c}} ,

having fundamental cycles bdab and bcdab. We already know that icc(S, bdab) = 1,
and we also recognize that bcdab is a basically a longer version of bdab, so we will
have to evaluate whether they are equivalent. We also recall that (d, c) and (c, b) are
only supported by Sbcd and hence reduce to (d, b) with r′((d, b)) = Sbcd. The other two
comparisons, (b, a) and (a, d) cannot be reduced. Thus we get a reduction for bcdab
that has the same comparisons as bdab, but a different set of supporting studies for
(b, d): Sbcd for bcdab and Sbd ∪ Sbcd for bdab. Hence bdab and bcdab are not equivalent
in S: bdab 6∼S bcdab. Moreover, we also get

icc(S, bcdab) = 1 ,

so that icd(S, g2) = 2 = k. Hence we have identified g2 with the full baseline assign-
ment identified earlier as the solution to the parameterization problem.

The example structure is structure number 18 in Table 4.1, and our implementa-
tion of the algorithm actually evaluates four spanning trees before it finds the correct
one, rather than the two shown here.

4.6 Evaluation of the running-time

A review of published evidence networks [Salanti et al., 2008b] identified 18 different
networks in the literature. Three of those were star-shaped, and have a trivial solu-
tion to the parameterization problem. For the other 15 networks, we extracted the
evidence structure from the original papers and evaluated the running time of our
algorithm, as well as the IcDF of each structure and the number of spanning trees
that were generated before a solution was found. The results are summarized in Ta-
ble 4.1, and we give the exact evidence structures in an online supplement. There are
3 structures with only two-arm trials, the remaining 12 have at least one three-arm
trial. There is one structure that includes a four-arm trial.

All of the evidence structures were parameterized within 4 seconds (on a 3GHz
processor), which is negligible compared to the time usually taken by the MCMC
simulation used to estimate the models. The longest time taken was on structure 23,
which contains the largest number (6) of distinct types of three-arm trials. Only 3
structures had non-maximal IcDF (23, 26, 28), namely s− 1, one less than the number
of functional parameters. Note that if the IcDF would be< s−1, our algorithm would
need to enumerate all spanning trees to terminate. In only two cases more than one
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Structure Result
ref v e s n x2 x3 x4 i N t
18 4 5 2 78 2 2 0 2 4 0.3
19 4 5 2 34 5 0 0 2 1 0.2
20 4 4 1 12 3 1 0 1 1 0.1
21 4 4 1 10 3 1 0 1 1 0.1
22 4 5 2 21 5 0 0 2 1 0.1
23 10 21 12 43 16 6 0 11 1 3.8
24 9 14 6 54 12 3 0 6 1 0.5
25 7 16 10 22 13 4 0 10 1 0.5
26 9 16 8 18 10 3 1 7 1 1.0
3 6 9 4 14 7 1 0 4 13 0.4
27 7 8 2 25 8 0 0 2 1 0.2
28 16 22 7 34 15 4 0 6 1 0.9
29 7 8 2 10 8 1 0 2 1 0.1
30 8 10 3 14 9 1 0 3 1 0.2
31 10 12 3 14 10 2 0 3 1 0.2

Table 4.1: Performance of our algorithm on evidence structures from Salanti et al.
[2008b]. Structures are listed in the same order as Figure 1 in Salanti et al. [2008b],
omitting the first three; the first column (ref) gives the reference number in that pa-
per. v is the number of included treatments, e is the number of comparisons, s is the
number of functional parameters and n is the number of studies. The xj indicate the
number of different types of j-arm studies, e.g. if we have 2 ab studies and 3 bc stud-
ies, x2 = 2. For the results, i is the IcD of the solution, N is the number of evaluated
spanning trees and t is the time taken (seconds).
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spanning tree needed to be explored. The number of distinct spanning trees the evi-
dence graph had varied between three (structures 21 and 22) to 13611 (structure 23).
All running times of > 0.5 seconds were observed for structures with non-maximal
IcDF. In all three cases, this reflects a failed exhaustive baseline search for full evi-
dence cover.

4.7 Discussion

In this paper, we defined the parameterization problem for MTC evidence struc-
tures and we provided an algorithm which can be used for automated model gen-
eration for MTC. We refine previous work [Lu and Ades, 2006] on identifying the
IcDF by giving a precise problem definition, and point out the additional problem
of equivalent cycles. An open source implementation of the algorithm is available
(http://drugis.org/mtc). Although the worst-case complexity of our algorithm is
exponential, it seems that real-world problems can be solved quickly. We evaluated
running time of the algorithm with evidence structures from the literature, and all
were solved within 4 seconds on a standard PC.

Future work should aim to develop more efficient algorithms, and further inves-
tigate the relationship between the spanning tree and baseline selection problems.
In this paper, we took the pragmatic approach of defining the combined problem as
finding the maximal IcD for which a baseline selection can be derived. The question
remains whether there may be evidence structures for which the optimal spanning
tree does not have an associated baseline assignment, and what would be the im-
plications for the MTC method. There also seems to be a certain redundancy in the
cycles bdab and bcdab of Figure 4.6 discussed in Section 4.5, even though they are not
equivalent according to Definition 4.16. This is correct since the w-factors associated
with these cycles are not provably equal. However, the w-factors should differ only
by heterogeneity on the (b, d) comparison. Future work should address whether and,
if so, how this should be incorporated in the parameterization of the evidence struc-
ture.

4.8 Appendix: definitions from graph theory

Definition 4.25 (spanning tree). – Gabow and Myers [1978]
In a connected, undirected graphG, a spanning treeGs is a subgraph having a unique simple
path (a path containing each vertex at most once) between any two vertices of G. If G has t
vertices, Gs has dim(G) = t− 1 edges.

Definition 4.26 (fundamental cycle set). – Deo et al. [1982]
The fundamental cycle set of a connected, undirected graph G = (T,E) with respect to a

spanning tree Gs = (T, F ) is generated from the set E′ = E\F , as follows:

C(G,Gs) = {C(G,Gs, e) | e ∈ E′} ,with

C(G,Gs, {u, v}) = path(v, u) ∪ {{u, v}} ,

http://drugis.org/mtc


4.8. Appendix: definitions from graph theory 67

where path(v, u) gives the (unique simple) path from v to u in Gs. The size of the set of
non-tree edges, nul(G) = |E′| = |E| − |T |+ 1 is called the nullity of G, and determines the
number of independent cycles in G. The set C(G,Gs) consists of independent cycles and
|C(G,Gs)| = nul(G), which means that the set of fundamental cycles is also a cycle basis of
G.

Definition 4.27 (path). A path is a sequence of directed edges, such that the target of each
edge connects to the source of the next one: p = ((w1, w2), (w2, w3), . . . , (wn−1, wn)) is a
path of length n − 1, as counted by the number of edges. Often, the path p is conveniently
written as (w1, w2, . . . wn), which should be read as shorthand for the longer notation.





CHAPTER 5

A stochastic multi-criteria model for evidence-based
decision making in drug benefit-risk analysis

T. Tervonen, G. van Valkenhoef, E. Buskens, H. L. Hillege, and D. Postmus. A stochastic multi-
criteria model for evidence-based decision making in drug benefit-risk analysis. Statistics in
Medicine, 30(12):1419–1428, 2011. doi: 10.1002/sim.4194

Abstract

Drug benefit-risk analysis is based on firm clinical evidence regarding var-
ious safety and efficacy outcomes. In this paper, we propose a new and
more formal approach for constructing a supporting multi-criteria model
that fully takes into account the evidence on efficacy and adverse drug re-
actions. Our approach is based on the Stochastic Multi-criteria Acceptabil-
ity Analysis (SMAA) methodology, which allows us to compute the typical
value judgments that support a decision, to quantify decision uncertainty,
and to compute a comprehensive benefit-risk profile. We construct a multi-
criteria model for the therapeutic group of second-generation antidepres-
sants. We assess fluoxetine and venlafaxine together with placebo according
to incidences of treatment response and three common adverse drug reac-
tions by using data from a published study. Our model shows that there are
clear trade-offs among the treatment alternatives.
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5.1 Introduction

Drug Benefit-Risk (BR) analysis is daily business for health care professionals. Health
authorities, prescribing physicians, pharmacists, reimbursement policy makers, and
employees of insurance companies all more or less explicitly evaluate the safety and
efficacy of different medicinal compounds. Although the exact scope of the analyses
conducted by these evaluators is different (e.g. in clinical practice the decision con-
cerns an individual patient, whereas in policy making the general population or a
subset of the population that has some particular characteristics is considered), they
all must examine and weight the clinical evidence regarding the magnitudes of ben-
efit and risk, taking into account the quality and precision with which these magni-
tudes have been estimated.

The benefit/risk ratio (which is calculated from the difference in risk and differ-
ence in benefit between therapies) has been proposed as a simple aggregate measure
of the BR trade-off for a single efficacy criterion and a single risk criterion. Although
such a measure is easy to interpret and implement in clinical practice, drug BR anal-
ysis typically includes multiple benefit and risk criteria and consequently must in-
clude value judgments [McGregor and Caro, 2006, Claycamp, 2006, Garrison, Jr. et al.,
2007]. In such a setting, the use of Multi-Criteria Decision Analysis (MCDA) is more
appropriate as it provides a framework for systematic and replicable analyses of com-
plex decision problems involving value trade-offs.

The use of MCDA in the context of drug BR analysis was first proposed by Mussen
et al. [Mussen et al., 2007]. Their work includes a general framework for constructing
a multi-criteria decision model for BR assessment of new drugs by regulatory author-
ities. Although it is an important seminal work in the field, they score alternative
drugs on the different benefit and risk criteria solely based on point estimates. Thus,
uncertainty associated with sampling variation inherent to criteria measurements ob-
tained in experimental or observational studies is ignored. In addition, the approach
suggested by Mussen et al. [Mussen et al., 2007] requires Decision Makers (DMs) to
provide exact weights for describing the relative importance of the different criteria.
Although detailed weight elicitation during model construction can help the DMs to
understand the problem, in many real-life situations DMs are not able to (or do not
want to) give exact preference information. Also, a group of DMs may not reach a
consensus about the weights [Tervonen and Figueira, 2008]. Felli et al. [Felli et al.,
2009] provided a similar application of MCDA in drug BR analysis. Instead of us-
ing continuous measurements, they proposed to use categorical value scales for all
BR attributes included in the model. Although it makes the model easier to apply in
different contexts, there is a substantial risk of losing information by mapping mea-
surements from a continuous scale to ordinal categories.

To overcome the limitations of the two previous approaches, we propose to use
Stochastic Multi-criteria Acceptability Analysis (SMAA) [Lahdelma et al., 1998, Lah-
delma and Salminen, 2001, Tervonen and Figueira, 2008] as a new and more elaborate
approach to drug BR analysis. Our choice of the SMAA methodology is supported by
its proven applicability in risk assessment [Tervonen et al., 2009b,a] and reported real-
life analyses [Hokkanen et al., 1999, Tervonen et al., 2008, Kangas et al., 2006, 2003,
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Hokkanen et al., 1998, Kangas and Kangas, 2003, Lahdelma et al., 2002] alike. To
demonstrate its applicability in drug BR analysis, we will apply the SMAA-2 method
[Lahdelma and Salminen, 2001] to evaluate the potential benefits and risks of two
commonly prescribed second-generation antidepressants in the setting of a published
placebo-controlled trial [Nemeroff and Thase, 2007].

5.2 Stochastic Multi-criteria Acceptability Analysis

SMAA-2 [Lahdelma and Salminen, 2001] considers a discrete, multi-criteria deci-
sion problem consisting of a set of m alternatives that are evaluated in terms of n
criteria. The vector of criteria values corresponding to alternative i is denoted by
Ci = (Ci1, . . . , C

i
n), where Cik represents the performance of alternative i on criterion

k. Instead of using deterministic values, the criteria values are assumed to be random
variables with joint density function fCi(ci) in the evaluation space X ⊆ Rn.

It is assumed that the DM’s preferences for any point c ∈ X can be represented
by the real-valued value function u(c, ·). Although SMAA-2 can be applied with any
type of value function, it is generally assumed that the criteria satisfy the indepen-
dence conditions [Keeney and Raiffa, 1976] for applying the additive value function:

u(c,w) = w1 · u1(c1) + · · ·+ wn · un(cn).

The additive value function is normalized by u(c
′
,w) = 0 and u(c

′′
,w) = 1 for arbi-

trarily chosen c
′
, c

′′ ∈ X , such that
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)
�
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′
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′
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)
, ∀k ∈ {1, . . . , n}. The

symbol � denotes the strict preference relation, and (cY , cȲ ) refers to the partition of
c according to a subset Y of the criteria and its complement Ȳ . For example, if n = 5
and Y = {1, 3, 5}, cY = (c1, c3, c5) and cȲ = (c2, c4). The weights wk, normalized so
that they sum to one, rescale the values of the partial value functions, normalized by
uk(c

′

k) = 0 and uk(c
′′

k) = 1, in such a way that a unit increase in the scaled function
(i.e. the swing from c

′

k to c
′′

k ) indicates the importance of the criterion [von Nitzch
and Weber, 1993]. For example, ws > wt implies that if the DM is currently at c

′
and

could choose between moving to
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)
or
(
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′′
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¯{t}

)
, he or she would rather

move to
(
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′
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)
.

Instead of using the value function to rank the alternatives for an elicited weight
vector w, which is the traditional approach in multi-attribute value theory, the SMAA
methodology has been developed for situations where the weights are random vari-
ables with a joint density function fW(w) in the feasible weight space

Ω =

{
w ∈ Rn : w ≥ 0 and

n∑
j=1

wj = 1

}
.

Total lack of preference information is represented by a uniform weight distribution
in Ω, i.e., fW(w) = 1/vol(Ω). In practice, it may be possible to elicit some prefer-
ence information from the DM, such as a partial or complete ranking of the criteria.
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This information can easily be incorporated into the model by restricting the feasible
weight space accordingly [Tervonen and Lahdelma, 2007].

Define Ξ =
(
C1, . . . ,Cm

)
, and let fΞ(ξ) denote the joint density function of Ξ.

For given realizations ξ of Ξ and w of W, the rank of each alternative is defined as
an integer from the best rank (= 1) to the worst rank (= m) by means of a ranking
function

rank(i, ξ,w) = 1 +

m∑
k=1

ρ(u(ck,w) > u(ci,w)),

where ρ(true) = 1 and ρ(false) = 0. SMAA-2 is then based on analyzing the stochas-
tic sets of favorable rank weights

Ωri (ξ) = {w ∈ Ω : rank(i, ξ,w) = r}.

Any weight w ∈ Ωri (ξ) results in such values for the different alternatives that alter-
native i obtains rank r.

The main decision aiding measure in SMAA-2 is the rank acceptability index, de-
noted by bri . It describes the share of all possible values of the weight vector W and
the joint random vector Ξ for which alternative i is ranked at place r. Its value can
be interpreted as the probability that alternative i is ranked at place r, where 0 in-
dicates that the alternative will never obtain rank r and 1 indicates that alternative i
will always obtain rank r. The rank acceptability index bri is computed numerically
as a multidimensional integral over the criteria distributions and the favorable rank
weights as

bri =

∫
ξ∈Ξ

fΞ(ξ)

∫
w∈Ωr

i (ξ)

fW(w) dw dξ.

The preferred (best) alternatives are those with high acceptabilities for the best ranks.
In addition to the rank acceptability indices, the SMAA methods allow to describe

the typical preferences of a DM supporting each efficient alternative (i.e. all alterna-
tives with a non-zero first rank acceptability index). These so-called central weight vec-
tors can be presented to the DM to help him or her understand what kind of weights
would favor a certain alternative, without providing factual preference information.
The central weight vector of an alternative is defined as the expected center of gravity
of all possible weight vectors that rank the alternative at the first place. It is computed
numerically as a multidimensional integral over the criteria distributions and the fa-
vorable first rank weights using

wc
i =

∫
ξ∈Ξ

fΞ(ξ)

∫
w∈Ω1

i (ξ)

fW(w)w dw dξ/b1i .

The confidence factor pci is the probability for an alternative to obtain the first rank
when the central weight vector is chosen. The confidence factor is computed as a
multidimensional integral over the criteria distributions using

pci =

∫
ξ∈Ξ:rank(i,ξ,wc

i )=1

fΞ(ξ) dξ.
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Name Preference direction c
′

k c
′′

k

Efficacy ↑ 0.28 0.63
Nausea ADRs ↓ 0.50 0.04
Insomnia ADRs ↓ 0.31 0.08
Anxiety ADRs ↓ 0.17 0.00

Table 5.1: Criteria, preference directions, and scaling vectors. All criteria are measured
as incidences

Confidence factors can similarly be calculated for any given weight vector. The con-
fidence factors indicate whether the criteria values are sufficiently accurate to discern
the efficient alternatives. Alternatives with low first rank acceptability indices and
low confidence factors for their central weight vectors are unlikely to be considered
the most preferred one by any DM. In contrast, a very high confidence factor indi-
cates that if a DM finds his or her preferences to correspond to an alternative’s cen-
tral weight vector, the alternative is almost certainly the one with highest preference
[Lahdelma and Salminen, 2006a]. Central weights of alternatives with low confidence
factors (< 0.50) should be interpreted with care, as even when a DM finds his central
weight vector to correspond with his preferences, there might be other alternatives
that achieve higher first rank acceptability with those weights.

If there is no preference information, the decision making is aided mainly through
central weight vectors and confidence factors. When preference information is incor-
porated, the rank acceptability indices can be used to find the “best” alternative and
to quantify the risks related to uncertainties surrounding outcomes.

5.3 A multi-criteria model for the therapeutic group of
antidepressants

To demonstrate the applicability of SMAA in drug BR analysis, we constructed a
model for the therapeutic group of antidepressants using efficacy and safety data
from a published study [Nemeroff and Thase, 2007]. If patients are not harmed by
deferral of therapy, it is important to have a non-active control included in the anal-
ysis to put the relative performances of the different active compounds into context
with what is seen without a treatment [Temple and Ellenberg, 2000]. For depressive
disorder, there is no evidence that treatment delay or assignment to placebo results
in permanent harm [Walsh et al., 2002]. Placebo was therefore explicitly included as
one of the alternatives in the constructed BR model.

5.3.1 Criteria

The original placebo-controlled trial compared efficacy and safety of venlafaxine and
fluoxetine [Nemeroff and Thase, 2007]. From this study, we selected treatment re-
sponse, defined as an improvement from baseline of at least 50% on the Hamilton
Depression Rating Scale (HAM-D), as our benefit criterion. To obtain our risk crite-
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Criterion Placebo Fluoxetine Venlafaxine
Efficacy 37/101 45/100 51/96

RD 0.08 (-0.05, 0.22) RD 0.16 (0.03, 0.30)
Nausea ADRs 8/102 22/102 40/100

RD 0.14 (0.04, 0.23) RD 0.32 (0.21, 0.43)
Insomnia ADRs 14/102 15/102 22/100

RD 0.01 (-0.09, 0.11) RD 0.08 (-0.02, 0.19)
Anxiety ADRs 1/102 7/102 10/100

RD 0.06 (0.01, 0.11) RD 0.09 (0.03, 0.15)

Table 5.2: Incidence rates of HAM-D responders and three ADRs as reported in the
original study [Nemeroff and Thase, 2007], with their risk differences (RD, given as
mean and 95% confidence interval) versus Placebo (calculated by the authors based
on the original data)

Criterion Venlafaxine Fluoxetine Placebo
Efficacy 52, 46 46, 56 38, 65
Nausea ADRs 41, 61 23, 81 9, 95
Insomnia ADRs 23, 79 16, 88 15, 89
Anxiety ADRs 11, 91 8, 96 2, 102

Table 5.3: Beta distributions of the criteria values (parameters are given as aik, bik)

ria, we asked an expert in the field of antidepressants to select three Adverse Drug
Reactions (ADRs) that she considered to be most relevant from a drug safety perspec-
tive. The resulting criteria for evaluating the two drugs and placebo are summarized
in Table 5.1, and the data reported in the original study are shown in Table 5.2. There
is a certain overlap between efficacy and insomnia, because improved efficacy can
lead to less insomnia. For sake of simplicity, we disregarded this possible source of
double-counting and assumed the criteria to be independent.

5.3.2 Probability distributions of the criteria values

The observed incidences rik
ni
k

of treatment response and ADRs can considered to be

realizations from binomially distributed variables with success probability Cik (i.e.
rik ∼ Bin(nik, C

i
k)). Assuming independence of the m · n success probabilities, we

modeled Cik ∼ Beta(aik, b
i
k). Following a Bayesian approach with a flat Beta(1, 1)

prior, the Beta parameters aik and bik were set equal to rik + 1 and nik − rik + 1, respec-
tively. The resulting parameter values are summarized in Table 5.3.

5.3.3 Partial value functions

It is generally helpful to limit the region Z ⊆ X over which preferences must be
assessed to as small a region as possible, taking into account the observed ranges in
the criteria values [Keeney and Raiffa, 1976]. Our approach was therefore to bound Z
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Drug b1i b2i b3i
Venlafaxine 0.08 0.14 0.78
Fluoxetine 0.17 0.71 0.12
Placebo 0.75 0.16 0.09

Table 5.4: Rank acceptability indices from the analysis without preference information

by the interval hulls (the interval hull of k intervals is defined as the smallest possible
interval that contains all of these k intervals) of the 95% probability intervals of the
m success probabilities associated with each of the criteria. This ensures that even
if the underlying independence assumptions are not valid for the complete range of
theoretically achievable values in X , the additive value function will still be a good
approximation for the subset Z in which the criteria values are most likely to fall. The
two points c

′
and c

′′
required to scale the (partial) value function(s) were set equal

to the least and most preferable values in Z, respectively, and are listed in Table 5.1.
The partial value functions uk(ck) were assumed to be linear, meaning that they were

defined as uk(ck) =
ck−c

′
k

c
′′
k−c

′
k

if the preference direction is increasing and uk(ck) =
c
′
k−ck
c
′
k−c

′′
k

if the preference direction is decreasing. For example, for nausea c
′

nau = 0.50, c
′′

nau =
0.04, and the preference direction is decreasing, so unau(cnau) = 0.50−cnau

0.46 .

5.3.4 Preference information
We performed three analyses: one without preference information, and two scenarios
with criteria rankings elicited from an expert in the field of antidepressants. For the
scenario-based analyses, we considered a scenario of mild depression and a scenario
of severe depression. For both scenarios, we asked the expert to identify the criterion
that she considered to be most important, i.e. would foremost increase from the worst
to the best value, given the range of the scales as depicted in Table 5.1. Then we asked
for the second one, etc. This process is similar to swing weighting in multi-attribute
value theory [Belton and Stewart, 2002]. However, since no exact weights are elicited,
it requires less effort from the DM.

Let us denote by � the strict preference relation for unit increases in the partial
value functions of the criteria. The elicitation process resulted in the following rank-
ing for mild depression: Nausea�Anxiety� Efficacy� Insomnia. For severe depres-
sion the ranking was similar with the exception of efficacy being the most preferred
criterion (i.e. Efficacy � Nausea � Anxiety � Insomnia).

5.3.5 Analyses
The three analyses were conducted using the open source JSMAA software [Tervo-
nen, 2010] v0.8 for Monte Carlo estimation of SMAA models. All analyses were ex-
ecuted with 10,000 Monte Carlo iterations, thereby giving the results sufficient accu-
racy (95% confidence error margins of ±0.01) [Tervonen and Lahdelma, 2007].

The rank acceptability indices resulting from the analysis without preference in-
formation are listed in Table 5.4 and visualized as a column chart in Figure 5.1. These
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Figure 5.1: Rank acceptability indices for the model without preference information

wci
Drug pci Efficacy Nausea Insomnia Anxiety
Venlafaxine 0.48 0.58 0.11 0.15 0.15
Fluoxetine 0.35 0.37 0.16 0.30 0.17
Placebo 0.96 0.18 0.28 0.25 0.29

Table 5.5: Central weights and corresponding confidence factors from the analysis
without preference information
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Figure 5.2: Central weight vectors for the model without preference information

indices show that each of the drugs is the preferred one given some preferences. Thus,
all of them should be considered for further analysis. In a situation like this, the de-
cision can be aided through the central weight vectors (see Table 5.5 and Figure 5.2).
By looking at the central weights, we can see clear trade-offs among the three alter-
natives. For example, if the DM displays an a priori preference for venlafaxine, then
based on the BR profiles expressed through the central weights, apparently efficacy
has the highest relative importance. If the DM accepts the independence conditions
underlying the additive model, he or she should find increasing efficacy from the
worst scale value (0.28) to the best one (0.63) more important than improving any of
the ADR criteria from their worst to best scale values.

By contrasting a DM’s preferences for scale swings (Table 5.1) with the central
weights presented in Table 5.5, the DM can quickly decide which drug is preferable
in the current situation. For example, if the only preference information available is
that the DM considers the scale swing of anxiety (0.17 to 0.00) less important than
the scale swing of insomnia (0.31 to 0.08, see Table 5.1), then he or she should pre-
fer fluoxetine as it is the only alternative for which the central weight of anxiety is
considerably lower than the central weight of insomnia. In addition, the confidence
factors (Table 5.5) quantify the risk associated with the decision. For example, if a DM
finds fluoxetine’s central weight vector to correspond with his or her preferences, the
confidence factor (0.35) shows that the clinical data is too uncertain to make a truly
informed decision.

Rank acceptability indices from the scenario of mild (severe) depression are pre-
sented in Table 5.6 (Table 5.7) and illustrated in Figure 5.3 (Figure 5.4). Placebo obtains
a very high first rank acceptability for the scenario of mild depression, and it obtains
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Drug b1i b2i b3i
Venlafaxine 0.00 0.02 0.97
Fluoxetine 0.01 0.96 0.02
Placebo 0.99 0.01 0.00

Table 5.6: Rank acceptability indices for the scenario of mild depression
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Figure 5.3: Rank acceptability indices from the scenario of mild depression

Drug b1i b2i b3i
Venlafaxine 0.25 0.25 0.50
Fluoxetine 0.29 0.48 0.23
Placebo 0.46 0.28 0.27

Table 5.7: Rank acceptability indices for the scenario of severe depression
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Figure 5.4: Rank acceptability indices from the scenario of severe depression

a reasonable rank profile for the scenario of severe depression. The rank profiles of
fluoxetine and venlafaxine, in contrast, are very sensitive to the preferences as both of
them obtain extremely low (≤ 0.01) first rank acceptabilities for the scenario of mild
depression, but reasonable ones (0.25 and 0.29) for the scenario of severe depression.

5.4 Discussion

Drug BR analysis has multiple uses, ranging from regulatory decision making to sup-
porting decisions of a practicing physician. The MCDA-based approach suggested
in this paper can be adapted for most contexts. We constructed a stochastic multi-
attribute model for the therapeutic group of antidepressants by using data from a
published placebo-controlled trial. Despite the fact that few of the differences among
the three alternatives were significant from a frequentist perspective, our results show
that there are clear trade-offs among the two active compounds and placebo when the
uncertainty regarding the criteria measurements is taken into account. This can be
seen from the central weight vectors of the analysis without preference information,
and from the rank acceptability indices for the scenarios of mild and severe depres-
sion that differed only in the preference rank of the efficacy criterion relative to the
risk criteria.

Compared to the MCDA-based approaches proposed by Mussen et al. [Mussen
et al., 2007] and Felli at al. [Felli et al., 2009], the use of SMAA has two main advan-
tages. The first advantage of the SMAA methodology is the possibility to include the
sampling variation that is inherent in criteria measurements that are based on clinical
trials. Ignoring the uncertainty surrounding the criteria values, as is done by Mussen
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et al. [Mussen et al., 2007] and Felli et al. [Felli et al., 2009], makes it difficult to assess
how much the different drugs differ on the selected criteria. For example, a system-
atic review of 10 second-generation antidepressants [Hansen et al., 2005] concluded
that when looking at the point estimates and the corresponding 95% confidence in-
tervals, the drugs “probably do not differ substantially for the treatment of major
depressive disorder” and that choosing the most appropriate treatment is therefore
difficult. However, a more recent review [Cipriani et al., 2009] was able to provide
more concrete results through a network meta-analysis, a Bayesian approach to ev-
idence synthesis that fully takes into account the uncertainty in the effect estimates.
In addition to performing all possible comparisons, the authors provided rank prob-
ability plots that clearly showed that some drugs are “better” than others on specific
criteria. Unfortunately, rank probability plots for individual criteria provide little
guidance when more than two criteria are considered. As our results have shown,
applying the SMAA method enables one to clearly assess the existing trade-offs. In
addition, the ability of our approach to propagate uncertainty to the results (in terms
of rank acceptability indices and confidence factors) allows one to quantify the risks
associated with any decision that is based on the results of the BR analysis.

The second advantage of our approach over the two existing ones is the possibil-
ity to characterize typical trade-offs supporting a drug BR profile without knowing
or eliciting the (exact numerical) preferences beforehand. The possibility to use our
model without any preferences as well as with scenario-based ordinal preferences
lowers the effort required to apply the model in different situations, and also increases
the transparency of the decision making process. An analysis without preference in-
formation is useful when it is not feasible to elicit preferences or when the potential
merits of a drug have to be assessed across a wide range of preferences. This latter
situation occurs, for example, in policy decision making, where the policy maker’s
decision affects the complete target population. The central weight vectors could
then be used to see whether there are likely scenarios (in terms of criteria weights)
that will lead to the selection of a certain drug. The selection scenario could be, for
example, a prescription decision, and the actual decision being aided is whether the
drug should be granted a marketing authorization. The scenario-based rank accept-
ability indices can be used in operational support of decisions depending on drug BR
analysis. For example, if the BR analysis is used for aiding a prescription decision
for a patient with severe depression, our results show that both venlafaxine and flu-
oxetine are viable choices because of their relatively high acceptabilities for the best
ranks. Also, if due to external factors (local reimbursement policy, patient profile in-
cluding allergies, etc) a drug with a low first rank acceptability is prescribed (such as
either of the active compounds in case of mild depression), the prescriber should be
sensitive to changes in the external environment as drugs with “better” BR profiles
may have become available.

Although our example of the second-generation antidepressants clearly demon-
strated the usefulness of the proposed approach, in some decision making contexts
other approaches might be more appropriate. When the DMs have the time and moti-
vation to engage in decision conferencing [Phillips, 2007], a traditional multi-attribute
value/utility theory approach can be more suitable. However, although such a facil-
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itated environment might help the DMs to explore the problem in more detail, it can
also introduce additional bias as the preference elicitation is heavily guided by the
facilitator. In any case, we acknowledge that social aspects play an important role in
group decision making, and future research should explore the applicability of our
model in real-life pharmaceutical group decision making contexts, such as policy de-
cision making.

Instead of having a different model for each therapeutic group, one could also con-
sider constructing a more generic model by using the dimensions of an existing utility
instrument, such as the EQ-5D or the Health Utilities Index. Although such instru-
ments are suitable for calculating QALYs in the context of cost-effectiveness analysis,
there is an important drawback when using them for drug BR analysis: their dimen-
sions are defined in terms of generic health attributes – such as physical functioning,
social functioning, and vitality – and may therefore not be very sensitive and respon-
sive to the disease of interest. So, although our results have shown that there are clear
trade-offs among the considered alternatives, the relative differences in safety and ef-
ficacy may not be large enough to significantly change a patient’s health status when
this is measured in terms of generic health attributes.

The results from our example should be interpreted with care for three reasons.
First, ideally evidence from all existing studies should be taken into account, rather
than just a single trial. Future research should therefore consider our model together
with evidence synthesis methods. As discussed previously, an appropriate method
in such cases would be network meta-analysis (also known as the Mixed Treatment
Comparisons model) [Salanti et al., 2008a, Sutton and Higgins, 2008] as it allows to
take into account all evidence simultaneously. If a full network meta-analysis were
performed, the random samples from the full joint posterior distribution of the effect
estimates could be fed directly into the benefit-risk model. In this case, however, the
possible inconsistencies in the network of trials would have to be evaluated, which
brings additional level of complexity to the model. Second, the model is relevant only
with respect to the data within the trial. For decisions depending on comprehensive
benefit-risk profiles (e.g. drug marketing authorization decision), it can serve only
as a starting point for further discussion as there can be additional qualitative infor-
mation that is not included in the model. For example, our model excludes drug-
drug interactions that might differ among the alternatives. Finally, the preferences
were elicited from a single expert, and might not represent consensus among a larger
group of experts.

To conclude, we presented a new MCDA-based approach to drug BR analysis
with an example application to the therapeutic group of second-generation antide-
pressants. In contrast to previous models, our model is based on the SMAA method-
ology, which allows us to take into account the sampling variation that is inherent in
criteria measurements that are based on clinical trials and/or observational studies.
In addition, by making the trade-offs among the analyzed drugs explicit, we sepa-
rated clinical data from subjective judgments, thereby increasing the transparency of
the decision making process. Finally, the constructed model is specific to the thera-
peutic group of antidepressants. It would appear that the underlying concepts are
general, but future research should assess the applicability of the SMAA methodol-
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ogy to other therapeutic groups.
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CHAPTER 6

Hit-and-Run enables efficient weight generation for
simulation-based multiple criteria decision analysis
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Abstract

Models for Multiple Criteria Decision Analysis (MCDA) often separate per-
criterion attractiveness evaluation from weighted aggregation of these eval-
uations across the different criteria. In simulation-based MCDA methods,
such as Stochastic Multicriteria Acceptability Analysis, uncertainty in the
weights is modeled through a uniform distribution on the feasible weight
space defined by a set of linear constraints. Efficient sampling methods
have been proposed for special cases, such as the unconstrained weight
space or complete ordering of the weights. However, no efficient meth-
ods are available for other constraints such as imprecise trade-off ratios,
and specialized sampling methods do not allow for flexibility in combin-
ing the different constraint types. In this paper, we explore how the Hit-
And-Run sampler can be applied as a general approach for sampling from
the convex weight space that results from an arbitrary combination of lin-
ear weight constraints. We present a technique for transforming the weight
space to enable application of Hit-And-Run, and evaluate the sampler’s ef-
ficiency through computational tests. Our results show that the thinning
factor required to obtain uniform samples can be expressed as a function
of the number of criteria n as ϕ(n) = (n − 1)3. We also find that the tech-
nique is reasonably fast with problem sizes encountered in practice and that
autocorrelation is an appropriate convergence metric.
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6.1 Introduction

Multiple Criteria Decision Analysis (MCDA) methods consider a set of alternatives
that is evaluated in terms of a set of criteria in order to choose the best one, to rank
them from best to worst, or to sort them into ordered categories [Roy, 1996]. The al-
ternatives are evaluated with respect to the chosen preference model, and often some
type of preferential independence is assumed. This allows the evaluation to be de-
composed in two parts: (i) evaluation with respect to individual criteria, and (ii) ag-
gregation of the per-criterion scores to describe the alternatives’ overall attractiveness
interpreted according to the chosen preference model.

Although various MCDA methods allow criteria values to be specified in an im-
precise format, e.g., as probability distributions in Multi-Attribute Utility Theory
(MAUT) or indirectly through thresholds in ELECTRE methods, they require exact
weights to quantify the relative contribution of the individual criteria to the alter-
natives’ overall attractiveness. The Stochastic Multicriteria Acceptability Analysis
(SMAA) family of methods [Tervonen and Figueira, 2008] extends the traditional
MCDA preference models by allowing to take into account uncertainty in all model
parameters, including the weights. The indices describing the decision problem are
estimated through Monte Carlo simulation, and each iteration includes sampling
uniformly distributed weights from a convex polytope defined through a set of lin-
ear weight constraints [Tervonen and Lahdelma, 2007]. For each of the underlying
preference models, several types of constraint are available to restrict the feasible
weight space in a theoretically meaningful way. However, in practical applications
of SMAA, the use of such constraints is limited by the lack of efficient sampling algo-
rithms, which results in insufficient discrimination between the decision alternatives
for some problem instances.

One approach to sample from a uniform distribution over the target polytope is
to draw samples from a uniform proposal density over a polytope that approximates
the target, such as a uniform density over a rectangular hyperbox or a Dirichlet distri-
bution. The Dirichlet distribution is uniform over the simplex when the concentration
parameter is set to 1, and has been applied in the MCDA setting by [Jia et al., 1998].
However, since the proposal density only approximates the target density, such meth-
ods require a rejection step. In general, the rejection rate increases exponentially with
the dimension of the sampling space, thus making this approach infeasible for higher
dimensions. Alternatively, it is possible to simulate weights using different Markov
Chain Monte Carlo (MCMC) methods. There is often a trade-off between the mix-
ing rate and the acceptance rate of the sampler. For uniform joint and conditional
distributions, a standard single-state Gibbs sampler is applicable. The rejection rate
in this case is 0 by definition and weights can be simulated iteratively satisfying lin-
ear bounds and ratio constraints. This iterative sampling method typically leads to
high correlations between draws and slow mixing [Amit and Grenander, 1991, Besag
et al., 1995]. It is possible to improve the mixing properties by simulating the weights
jointly using random walk algorithms.

Hit-And-Run (HAR) is an MCMC sampling algorithm that, unlike other random
walk algorithms, is known to mix rapidly from any interior point [Lovász, 1999,
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Lovász and Vempala, 2006]. HAR has two clear advantages over the alternatives.
First, it provides block samples from the uniform weight distribution, typically lead-
ing to high mixing rates. Second, application of HAR on the transformed parame-
ter space avoids the rejection step in the standard block samplers under linear con-
straints. The rejection rate of the algorithm is 0 by definition. Both the mixing rate and
the acceptance rate are improved compared to the existing samplers in this context.
However, using HAR for efficient MCMC sampling from the restricted weight space
as encountered in SMAA is not trivial as the weight space needs to be transformed
before the algorithm can be applied.

In this paper, we consider the application of HAR sampling to weight generation
in SMAA and other simulation approaches in MCDA that require uniform sampling
from a restricted weight space [Butler et al., 1997, Jia et al., 1998]. Our contribution
is twofold. First, we present a technique for transforming the n dimensional weight
space to an n − 1 dimensional sampling space. We then evaluate through computa-
tional tests how the thinning factor required to obtain a sample equivalent to 10,000
uniform draws depends on the dimensionality of the problem. A thinning factor ϕ in-
dicates that from the sequence of generated samples, we store only the ϕ-th sample.
Because HAR sampling generates a series of dependent samples, thinning reduces
the memory required to store the samples by accepting a relatively small loss of in-
formation about the target density.

The remainder of this paper is structured as follows. In Section 6.2 we discuss
the weight constraints that are typically encountered in SMAA analyses and further
motivate the value of efficient weight sampling methods for interactive decision aid-
ing. Section 6.3 describes the HAR algorithm and discusses its application to weight
generation. Section 6.4 discusses metrics to assess sample uniformity. Section 6.5
presents the results from the computational tests, and Section 6.6 concludes and pro-
vides directions for future research.

6.2 Weight constraints in SMAA

Consider a discrete multi-criteria decision problem consisting of a set of m alterna-
tives that are evaluated in terms of n criteria. The vector of criteria values correspond-
ing to criterion j is denoted by xj = (x1

j , . . . , x
m
j )T , where xij denotes the performance

of alternative i on criterion j.
Generally, the alternatives are first evaluated with respect to the individual cri-

teria to obtain criterion-specific attractiveness scores, after which some kind of ag-
gregation procedure is applied to combine the criterion-specific scores into an over-
all measure of preference or value [Choo et al., 1999]. Let the functions fj(xij) and
gj(x

i
j , x

k
j ) give the criterion-specific score of alternative i on criterion j (value or util-

ity based approaches) and the criterion-specific score of the pair (i, k) on criterion j
(outranking based approaches), respectively. For the purpose of this paper, we as-
sume that the evaluation of the alternatives with respect to the individual criteria has
already been completed, so that we can focus on specifying the aggregation functions
f(f1(xi1), . . . , fn(xin)) and g(g1(xi1, x

k
1), . . . , gn(xin, x

k
n)).
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To simplify the assessment of f() and g(), it is generally assumed that these func-
tions are additive:

f(f1(xi1), . . . , fn(xin)) =

n∑
j=1

wjfj(x
i
j)

g(g1(xi1, x
k
1), . . . , gn(xin, x

k
n)) =

n∑
j=1

wjgj(x
i
j , x

k
j ),

where wj denotes the weight of criterion j. Although the algebraic shape of f() and
g() is the same, the meaning of the weights depends on the underlying preference
model. In compensatory approaches such as Multi-Attribute Value Theory (MAVT)
or MAUT, the weights are scaling factors that ensure that unit increases in the func-
tions fj() are commensurate [Keeney and Raiffa, 1976]. In non-compensatory ap-
proaches such as ELECTRE or PROMETHEE, by contrast, the weights do not repre-
sent value trade-offs between criteria scale swings but should rather be interpreted
as the amount of voting power that is allocated to each of the criteria [Vansnick, 1986,
Belton and Stewart, 2002]. For a more thorough discussion of the interpretation of
weights in MCDA, we refer to Choo et al. [1999].

The traditional approach in MCDA is to establish exact values for the weights by
applying a dedicated weight elicitation technique, such as SWING weighting, which
is then followed by extensive sensitivity analyses to explore how robust the obtained
results are to small changes in the weights and the criteria values. In many real-
life decision making contexts, however, decision makers do not feel confident with
providing exact numerical values for the weights and/or the criteria values. In such
situations, a method from the SMAA family can be applied to compute, for a wide
range of weights and criteria values, the probability that an alternative is placed at a
certain rank (ranking problems; Lahdelma and Salminen, 2001) or that it belongs to
a certain category (sorting problems; Tervonen et al., 2009a). The estimation of these
indices is achieved through Monte Carlo simulation, and in each iteration criteria
weights sampled from their joint probability distribution are required. To generate
these values, it is typically assumed that the weights are uniformly distributed within
the convex polytope defined through a set of weight constraints.

Without loss of generality, we assume that the weights are non-negative and nor-
malized so that they sum to one. When no preference information is available, the
feasible weight space is an n− 1 dimensional simplex in n dimensional space:

Wn =

w ∈ Rn : w ≥ 0 and
n∑
j=1

wj = 1

 .

In practice, it is often possible to elicit some preference information from the decision
maker, such as a partial or complete ranking of the criteria weights. Such information
can be included in the model by restricting the feasible weight space accordingly (see
Figure 6.1 for an example). Weight constraints in SMAA models should be elicited by
taking into account the underlying preference model. In MAVT or MAUT, meaning-



6.2. Weight constraints in SMAA 87

w
1

w2

w
3

●

●

●

w1 > w2

w2 w3 > 0.5

w2 w3 < 2

W'

Figure 6.1: The feasible weight space W ′ (gray polygon) for a 3-criteria problem with
the partial ranking w1 > w2 and the trade-off ratio constraint w2/w3 ∈ [0.5, 2]. The
solid triangle is the feasible weight space without preference information (W3).

ful constraints are ordinal rankings of the weights (wi > wj) and intervals for trade-
off ratios between weights (wi/wj ∈ [(wi/wj)

min, (wi/wj)
max]). In case of ELECTRE,

lower- and upper bounds (wminj ≤ wj ≤ wmaxj ) may be considered as well.

Although efficient weight generation techniques exist for sampling from the un-
constrained weight space as well as from the weight space constrained through a
complete ordering of the weights or weight lower-bounds [Tervonen and Lahdelma,
2007], no methods have been proposed for sampling weights constrained with im-
precise trade-off ratios or with a combination of constraints. While the use of ordinal
rankings of the weights or weight lower-bounds may result in high discrimination
for some problem instances, for others the preference information portrayed by these
constraints may not be precise enough to sufficiently differentiate the decision al-
ternatives. For small problem instances, a lack of discrimination with the currently
included weight constraints can be resolved in an iterative and interactive way by
first eliciting more precise preference information from the decision maker and then
applying rejection sampling to sample the weights accordingly. However, for rejec-
tion sampling the hit rate decreases exponentially with the number of criteria, so it is
intractable even for a moderate number of criteria (i.e. ≥ 10). Hence, the ability to
efficiently sample weight vectors for arbitrary combinations of the different types of
weight constraint is critical to the real-world application of SMAA to larger problem
instances. The HAR sampler introduced in the next section is particularly suited for
this purpose.
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6.3 Hit-And-Run (HAR) for weight generation

In HAR sampling [Smith, 1984], the Markov chain is initialized with a starting point
within the polytope. At each iteration a random direction is generated by sampling
from the unit hypersphere, implemented efficiently by generating independent nor-
mal variates and normalizing them to form the sample point [Marsaglia, 1972]. The
random direction together with the current position generates a line set, and its inter-
section with the boundary of the polytope generates a line segment from which the
next point is drawn uniformly. The generated Markov chain converges on the uni-
form distribution over the polytope in nondeterministic polynomial time O∗(n3). So
to apply the HAR sampler to weight generation in the constrained weight space, the
sampling space must be defined appropriately, line intersections must be computed,
and a starting point contained in the polytope must be chosen. The HAR sampler
and the transformations described here are implemented as a package for the R sta-
tistical software, and are available at http://cran.r-project.org/web/packages/
hitandrun/.

6.3.1 Sampling space transformation

The feasible weight space with constraints defines a convex polytope W ′ ⊆ Wn. The
(n−1)-simplexWn is coincident with the hyperplaneW ∗n =

{
w ∈ Rn :

∑n
j=1 wj = 1

}
.

Thus, the volume of the feasible weight space is essentially 0, which means that if we
perform MCMC sampling in n dimensions, the probability of hitting insideW ′ is also
0. Therefore, we transform the simplex so we can sample directly in n−1 dimensions.

In the following, let In be the n × n identity matrix. The centroid of Wn is at
(1/n, . . . , 1/n)T , so if we translate the plane W ∗n by (−1/n, . . . ,−1/n)T , it forms an
n− 1 dimensional subspace V ⊂ Rn. We obtain an orthonormal basis {v1, . . . , vn−1}
of V by first defining a basis of V and then performing orthogonalization and nor-
malization. A basis can be defined by choosing n−1 vectors, so that for the kth vector
the nth component is−1, the kth component is 1, and the others are 0. For a 2-simplex
in R3 (as shown in Figure 6.1) such a basis would be {(1, 0,−1)T , (0, 1,−1)T }. Now,
to map an arbitrary point x ∈ Rn−1 to a point in the target space w ∈ W ∗n , we apply
an affine transformation: a change of basis followed by a translation. To do this, we
use the homogeneous coordinate representation x = (x1, x2, . . . , xn−1, 0, 1)T :

w = TBx

where B is the (n + 1) × (n + 1) augmented change-of-basis matrix and T the (n +
1)× (n+ 1) translation matrix:

B =


v1

1 · · · vn−1
1

√
1/n 0

...
...

...
...

v1
n · · · vn−1

n

√
1/n 0

0 · · · 0 0 1

 ; T =

 In
1/n

...
1/n

0 · · · 0 1



http://cran.r-project.org/web/packages/hitandrun/
http://cran.r-project.org/web/packages/hitandrun/
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To preserve the uniform distribution of the samples, we need the transformation
to preserve distances between points: it must be isometric. Specifically, in Euclidian
space, a transformation f is isometric if ||y−x|| = ||f(y)−f(x)|| for all x, y. First note
that B is unitary (BTB = In+1) because it is the homogeneous coordinate represen-
tation of an orthonormal change of basis matrix. As (i) unitary matrices are isometric
[Berberian, 1999], and (ii) translation is isometric, it follows that the proposed trans-
formation is also isometric. Therefore uniform samples obtained in Rn−1 are also
uniform when transformed to W ∗n .

To complete the transformation, we show how the linear constraints that define
the polytope W ′ ⊆ Wn are defined in n− 1 dimensions. Let us denote the constraint
set defining Wn as follows:

Cw ≤ b ; C = −1In, b = (0, 0, . . . , 0)T

n∑
i=1

wi = 1

Since we sample directly from the plane W ∗n , the equality constraint is satisfied by
definition. The weight constraints presented in Section 6.2 are linear and can therefore
be represented as additional rows in C and b. Then the constraints can be expressed
in n− 1 dimensions as:

Ax ≤ b ; A = CTB

since Ax = C(TBx) = Cw.
The transformation is illustrated for a three-dimensional weight space with ordi-

nal constraints (w1 > w2 > w3) in Figure 6.2. First, the linear constraints that define
the polytope in the n dimensional weight space are transformed to the n − 1 dimen-
sional sampling space. Then, HAR is applied to generate an (approximately) uniform
sample in the sampling space. Finally, the sampled points are mapped to the weight
space.

6.3.2 Line intersection
Given a point x (in homogeneous coordinates) in the polytope and a direction vector
d = (d1, . . . , dn−1, 0), the line through x along d is x+ ld. We want to find the interval
L = [L0, L1] such that A(x + ld) ≤ b iff l ∈ L. Then lAd ≤ b − Ax, where either side
is a vector: lu ≤ v. Since all vi are non-negative, positive ui give the upper bound L1

and negative ui the lower bound L0. If ui is zero the direction d is parallel to the i-th
constraint and provides no information on the bounds. The lower and upper bound
are thus given by:

L0 = max
i:ui<0

vi
ui

; L1 = min
i:ui>0

vi
ui

.

6.3.3 Starting point
The starting point can be defined in several ways, either deterministically or in a
pseudo-random manner. The underlying principle is the same for all techniques:
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Figure 6.2: The sampling space transformation illustrated in 3D space. The preference
information (expressed as linear constraints) defines a 2D convex polytope in the 3D
weight space (a). The linear constraints are transformed to a 2D space (b). Then, HAR
is used to sample from the polytope (c). Finally, the samples are transformed back to
the 3D weight space (d).
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we first determine a set of points within the polytope, and then take their weighted
average. Extreme points along each dimension k ∈ {1, . . . , n − 1} can be found by
solving the following linear programs:

maximize xk
subject to Ax ≤ b

minimize xk
subject to Ax ≤ b

The obtained solutions are not necessarily the vertices of the polytope; if such are
desired, they can be efficiently enumerated using the Avis-Fukuda pivoting algorithm
[Avis and Fukuda, 1995].

If we choose a deterministic starting point, a point close to the centroid can be
approximated by taking the mean of the extreme values along a subset of the dimen-
sions. The exact centroid is the mean of all the vertices. To generate a pseudo-random
starting point, we can use any set of interior points and take their weighted average
with randomly generated weights.

6.4 Convergence metrics

With HAR, as with all MCMC samplers, it is important to assess whether a gener-
ated sample is representative of the target distribution, and this is determined by the
mixing of the chain together with the number of iterations. We assume that the sam-
ples drawn from the restricted weight space will subsequently be used in simulation-
based decision analysis, where the computed indices are insensitive to sample au-
tocorrelation: as long as the draws uniformly cover the restricted weight space, the
mixing itself is irrelevant for the computation of the indices describing the results of
the decision analysis. In most MCMC applications, it is important to disregard an
initial subsample from the Markov chain because the starting values may have been
very unlikely, meaning that the initial iterations may have been used to move away
from a low density region, leading to disproportionate representation of that part of
the space and thus to biased results. This is not an issue in our setting as the sam-
pling distribution is uniform and HAR mixes fast from any starting point [Lovász
and Vempala, 2006].

Many commonly used convergence diagnostics for MCMC perform poorly be-
cause they are based on the first and second moments of the distribution (for each
dimension separately) and depend on the target distribution being continuous. The
constrained weight polytope can be quite irregularly shaped, and the target distri-
bution is discontinuous at its boundaries. Moreover, these diagnostics do not assess
uniformity of the samples directly, but rather the stability of certain moments or quan-
tiles. Thus, to measure convergence to the target distribution, a metric is needed that
takes into account the geometry of the polytope and measures the uniformity of the
samples.

Our main metric for assessing convergence to the target distribution is the Fried-
man-Rafsky two-sample Minimum Spanning Tree (MST) test [Friedman and Rafsky,
1979, Smith and Jain, 1984] that compares the obtained sample Y with a sample X
from the target distribution. Thus, this test is useful for evaluating the convergence
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of HAR when a sample from the target distribution can be obtained efficiently, but
cannot be used to assess convergence in a general setting. The test assesses whether
X and Y were drawn from the same distribution by constructing a MST for X ∪ Y
and counting the number of within- and across-sample edges. Finally, a z-value for
the null-hypothesis that both samples are from the same distribution is computed,
which can be compared against quantiles of the normal distribution. A z-value in the
lower tail indicates that Y is concentrated in sub-regions of the polytope (aggrega-
tion), whereas a z-value in the upper tail indicates Y is more regularly spaced than
expected (regularity). For our purposes, only the lower-tail alternative hypothesis of
aggregation is relevant.

Because the MST-based metric is not generally applicable, we also evaluate three
other metrics for assessing convergence. The first is the Coefficient of Variation
(COV), σ/µ, of the nearest-neighbour distances Γ = {minj 6=i |yi − yj | : yi ∈ Y },
where µ and σ are the mean and standard deviation of the corresponding distance
for draws from the sample distribution. Lower values of COV indicate more regular
spacing of the sample points. The second metric, the Standardized Component-wise
Error (SCE), is based on the fact that the mean of a sample from the target distribution
will closely approximate the centroid h. Thus, e = µ − h is a measure of how close
Y is to the target distribution. The component-wise errors ei depend on the shape
and dimension of the polytope, so they need to be standardized in order to be useful
as a convergence metric. Thus, we define the SCE as ei/si, where si is the sample
standard deviation of the i-th vector component in Y . Finally, we use the sample
autocorrelation at a given lag τ as a convergence metric. This measure is defined as:

R(τ) =
E[(yt − µ)(yt+τ − µ)]

σ2
,

where t ∈ {1, . . . , |Y |−τ}. Like the SCE, autocorrelation is calculated individually for
each component of the weight vector. Both metrics are scale invariant, and therefore
the component-wise scores can be aggregated into an overall score simply by taking
the maximum.

6.5 Computational tests

We assessed the thinning factors ϕa(n) required to achieve uniformity of HAR sam-
pling with constraints representing complete ordinal preference information (w1 >
w2 > · · · > wn). This class of problem instances enables generating the sample X as
required by the MST test by using an efficient algorithm [Tervonen and Lahdelma,
2007] and calculating the centroid h = (h1, . . . , hn) as required by the SCE test as

hi =
1

n

n∑
j=i

1

j
.

The amount of thinning required depends on the shape of the convex polytope W ′,
with more conical shapes requiring higher thinning. The ordinal information causes
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W ′ to be at least as conical as what is expected with other realistic weight constraints
because the decision makers often express imprecise weight information with similar
precision for all criteria / pairs of criteria.

As an initial exploratory test, we constructed a large chain for n ∈ {3, . . . , 15}
and recorded the minimum sufficient thinning factors required to obtain a z-value
≥ −1.64 from the MST test and a maximum SCE < 0.05. Previous research suggests
that HAR mixes withO∗(n3) iterations [Lovász, 1999]. Because the algorithm reduces
to uniform sampling for n = 2 (since we sample in n − 1 dimensions), the required
thinning for n = 2 should be 1. Thus we fitted ϕa(n) = a(n − 1)3 + (1 − a) to our
exploratory test data, which suggested that a ≥ 0.2. However, there was a large
degree of uncertainty in this estimate because we used only a single chain for each
dimension and censoring occurred for some dimensions. Based on visual inspection
of autocorrelation plots of the exploratory test data, we chose to use a lag of τ = 25 for
the autocorrelation metric in the validation tests. We also performed the exploratory
tests with the standard Gibbs sampler, and found it to exhibit slower convergence
than HAR.

We subsequently generated 20 HAR samples of 10, 000 weight vectors (sufficient
for SMAA analyses; Tervonen and Lahdelma [2007]) for each n ∈ {3, . . . , 25} and for
each thinning factor ϕa(n) with a ∈ {0.125, 0.25, 0.5, 0.75, 1.0}. For the MST test, a
separate benchmark sample X was generated for each HAR sample Y to marginalize
the impact of random properties of a single benchmark sample. This led to respec-
tively 68%, 38%, 14%, 7% and 8% of the HAR samples being rejected (Figure 6.3).
Thus, either a = 0.75 or a = 1.0 could be appropriate, as they are close to the optimal
5% rejection rate. As the shape of the sampling space affects the rate of convergence,
we recommend to use a = 1.0. The running times that were required to generate
10, 000 samples with thinning factors ϕ1.0(n) on an Intel Xeon X3440 2.53GHz CPU
are shown in Figure 6.4. To illustrate the necessity of an MCMC approach, running
times for rejection sampling are also shown: with n = 3 criteria, one in three samples
are accepted; with n = 10 criteria one in 1.8 million, giving a running time of several
hours for our implementation. The plotted sampling times show that using HAR rea-
sonably high dimensionality problems can be analyzed almost interactively, i.e. the
median sampling times for 5, 10, and 15 dimensions were 0.92, 22, and 136 seconds,
respectively.

We also computed the other test metrics (COV, SCE, and autocorrelation at lag
τ = 25) for both the HAR samples and the benchmark samples. The COV metric con-
verged to stable values long before the sample converged to uniformity and therefore
it is not useful, so we omit the detailed results for this metric. Figure 6.5 shows how
the SCE values for the HAR samples compared to those for the benchmark samples.
The autocorrelation is plotted in Figure 6.6. The SCE and autocorrelation metrics ap-
pear to be useful and are correlated with the MST z-value (ρ = −0.60 and ρ = −0.79,
respectively). Since autocorrelation can be calculated based on the sample alone,
while computation of the SCE requires enumerating the vertices of the polytope, the
former is potentially the most useful metric. Figure 6.7 shows a scatter plot of the
autocorrelation value against the MST z-value, the Receiver Operating Characteristic
(ROC) curve of autocorrelation as a predictor of z < −1.64. An autocorrelation cutoff
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Figure 6.3: Boxplot of MST z-values from validation tests with 20 sets of 10,000 sam-
ples for each n. The horizontal line at z ≈ −1.64 corresponds to p-value 0.05, below
which the null hypothesis of uniformity is rejected. Subfigure (a) shows how the MST
test performs when comparing two uniform samples.
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Figure 6.5: Box plot for the SCE metric, for both the benchmark sets and the test sets
generated with thinning ϕ1.0(n). The horizontal axis shows the number of criteria n.
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Figure 6.6: Box plots for autocorrelation at lag τ = 25 for test sets generated with
thinning ϕ1.0(n). The horizontal axis shows the number of criteria n.

value of 0.05 correctly rejected 82% of the samples that failed the MST test. Note that
the samples that passed the autocorrelation test but failed the MST test are still likely
to be sufficiently uniform to be used in simulation-based decision analysis as small
deviations from uniformity are unlikely to affect the model outcomes. The code used
to generate all the test results and the complete set of summary statistics are available
as online supplements.

6.6 Conclusions

In this paper, we considered the application of HAR to sample uniformly from a sub-
set of the n-simplex defined by linear constraints. Our contribution was in presenting
the transformation to n−1 dimensions for efficient MCMC sampling and in assessing
the thinning factor required to achieve acceptable deviation from a uniform distribu-
tion over the constrained weight space. The transformation is not specific to HAR,
and can also be used to apply other MCMC samplers to the weight sampling problem.
The computational tests showed that HAR is quite fast in small (n ≤ 15) problems for
10,000 samples. The tests also showed that a thinning factor of ϕ(n) = (n − 1)3 is
almost always sufficient to be unable to reject the null hypothesis of uniformity with
the MST-test at the 0.05 confidence level. We also assessed other measures of con-
vergence to the target distribution and found that the autocorrelation at lag 25 is the
most appropriate to use in absence of a representative sample from the target distri-
bution (meaning that the MST test is inapplicable). However, autocorrelation does
not measure convergence directly and future research could yield better tests.

When used in the context of simulation-based decision analysis, HAR is slower
than the techniques presented by Tervonen and Lahdelma [2007] for sampling
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Figure 6.7: Autocorrelation at delay τ = 25 is predictive for failing the MST test.

weights representing missing or ordinal preferences. However, HAR is far more
flexible as it also allows for polynomial-time generation of upper bounded and ra-
tio interval constrained weights that previously had to be generated with rejection
sampling. Especially the ratio interval weights are important, as the meaning of a
weight in MAVT models is that of trade-off ratios, and imprecision should therefore
be modeled in a compatible manner.

The sampling technique evaluated in this paper assumes that the sampling space
is convex, and this is fulfilled by all weight constraints within the additive model.
However, some preference models include other parameters as well, and in that case
the space of feasible preference parameters can be concave, e.g. the general monotone
value functions of robust ordinal regression [Greco et al., 2008, 2010]. Future research
should investigate whether MCMC sampling can be applied for the efficient sampling
of the preference parameters in such spaces as well.





CHAPTER 7

Complex preference information in benefit-risk assessment

Abstract

The previous chapter showed how, using hit-and-run, weights can be effi-
ciently sampled from the feasible weight space restricted by arbitrary linear
constraints. This enables new constraints to be considered, and allows more
flexible combining of constraints. This chapter illustrates how this can be
used to better support drug benefit-risk decision making. To this end, pos-
sible preference scenarios are explored in the context of an existing study of
the benefit-risk profile of two anti-thrombolytic drugs. In this case study, the
anti-thrombolytic may have the beneficial effect of reducing the risk of deep
vein thrombosis (DVT), but it may have the harmful effect of increasing the
risk of a major bleed. The simple 2 × 2 structure of this case study allows
a simple illustration of the methods. However, we argue that the case has
a more natural interpretation as a 2 × 3 or even 3 × 3 problem, and show
how Stochastic Multicriteria Acceptability Analysis (SMAA) with imprecise
preferences can be used to aid a decision in that case. It will be discussed
how the strengths of using SMAA and hit-and-run become clear in higher
dimensional problems.



100 7. Complex preference information in benefit-risk assessment

7.1 Introduction

The benefit-risk assessment of medicines is a complex problem often involving mul-
tiple criteria that represent efficacy and safety concerns. Clinical trials provide the
pivotal evidence for such assessment, and therefore the criteria measurements are in-
herently uncertain. Moreover, it may be difficult to precisely articulate preferences.
For simple problems with two criteria and two alternatives (i.e. a 2 × 2 problem), a
simple approach based on stochastic simulation and two-dimensional plotting that
allows for full uncertainty in the criteria measurements and preferences can be ap-
plied [Lynd and O’Brien, 2004]. However, when more criteria and alternatives need
to be considered, an approach based on Multiple Criteria Decision Analysis (MCDA)
is more appropriate. Early applications of MCDA to benefit-risk analysis [Mussen
et al., 2007, Felli et al., 2009] ignored the uncertainty inherent in the domain. The
Stochastic Multicriteria Acceptability Analysis (SMAA) model proposed in this the-
sis (Chapter 5) combines the problem structuring approach of MCDA with stochastic
simulation for taking into account uncertainty in the criteria measurements as well as
partial or imprecise preference information.

While SMAA in theory enables arbitrary preference information to be used, in
practice this was limited by the lack of an efficient sampling algorithm. The hit-and-
run algorithm enables the efficient sampling of weights with arbitrary linear con-
straints (Chapter 6). This enables much greater flexibility in dealing with partial,
imprecise, or complex preference information.

In this chapter, we will first illustrate the SMAA approach in a 2×2 decision prob-
lem. This helps to clarify the meaning of different weight constraints by explicitly
visualizing them. Next, we extend the analysis to a 2 × 3 problem to show how the
SMAA analysis generalizes to multi-dimensional problems. The implications of dif-
ferent types of preference information are illustrated by visualizing the weight space
and by analyzing the SMAA decision metrics. Finally, we discuss the implications of
the more flexible approach to preference information.

7.2 Two-dimensional analysis

The case study is based on an analysis of the benefit-risk profile of two drugs for
the prophylaxis of deep vein thrombosis (DVT) following major trauma [Lynd and
O’Brien, 2004]. The analysis was based on the results of a clinical trial comparing
heparin and enoxaparin for both efficacy and safety [Geerts et al., 1996]. The safety
concern is that administering anticoagulants to trauma patients already at an elevated
risk of bleeding might cause additional major bleeding episodes. The benefits can be
assessed as either prevention of proximal DVT, or of all DVT (i.e. both proximal and
distal) [Lynd and O’Brien, 2004]. Proximal DVT is more often associated with the
development of serious complications.

In the original analysis, the authors derive beta distributions for the risk of a major
bleed, the risk of any DVT, and the risk of proximal DVT for both heparin and enoxa-
parin from the original trial data. The original trial data as well as the parameters



7.2. Two-dimensional analysis 101

Data Beta distribution
Event r r/n α β median (95% CI)
Heparin (n = 136)

Any DVT 60 0.441 60 76 0.441 (0.359–0.525)
Proximal DVT 20 0.147 20 116 0.145 (0.093–0.211)
Distal DVT 40 0.294 40 96 0.293 (0.221–0.373)
Major bleeds 1 0.007 1 135 0.005 (0.000–0.027)

Enoxaparin (n = 129)
Any DVT 40 0.310 40 89 0.309 (0.233–0.392)
Proximal DVT 8 0.062 8 121 0.060 (0.027–0.109)
Distal DVT 32 0.248 32 97 0.247 (0.178–0.326)
Major bleeds 5 0.038 5 124 0.036 (0.013–0.078)

Table 7.1: The original trial data given as number of events r and proportion of events
r/n. Estimated beta distribution parameters α and β and the characteristics of the
estimated beta distribution given as the median and 0.025 and 0.975 quantiles.
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Figure 7.1: The benefit-risk plane showing incremental benefit (reduction in risk of
proximal DVT) versus incremental risk (increase in risk of major bleeds). Enoxaparin
is associated with an increase in benefit as well as an increase in risk.
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and characteristics of the estimated beta distributions are given in Table 7.1, where
we have additionally calculated the values for distal DVT. They sampled points from
these distributions, and for each event they calculated the difference between the risk
for enoxaparin compared to heparin, the incremental risk. A plot of the incremental
risk of proximal DVT versus the incremental risk of a major bleed was used to show
that there is a clear trade-off between the criteria (reproduced in Figure 7.1).

To illustrate different types of constraint, we show how SMAA can be applied to
this case. The alternatives and criteria, as well as the measurements (beta distribu-
tions) are the same as for the original analysis (Table 7.1). To construct the partial
value functions, we determine bounds for the likely values of the criteria measure-
ments from the confidence intervals given in Table 7.1. For proximal DVT, we set
the range from 0.0 (best value) to 0.25 (worst value), and for major bleeding from 0.0
(best value) to 0.1 (worst value). The partial value function ub(cb) for major bleeding
then maps the extremes of the scale to ub(0.0) = 1.0 and ub(0.1) = 0.0, and linearly
interpolates between the two: ub(0.05) = 0.5. The partial value function up(cp) does
the same for proximal DVT. For fixed weights w and criteria measurements c, the
overall utility is then determined by

u(w, c) = wbub(cb) + wpup(cp) ,

where wb = 1−wp. The ratio wp/wb expresses how much more important is decreas-
ing the incidence of proximal DVT from 0.25 to 0.0 than decreasing the incidence of
major bleeding from 0.1 to 0.0. Then, by fixing wp to a certain value (between 0.0 and
1.0) and sampling from the measurement distributions, we can determine for what
proportion of the samples heparin has higher utility than enoxaparin. This is what is
done for a SMAA analysis with exact weight information. The first-rank acceptability
of enoxaparin is plotted for different values of wp in Figure 7.2.

In a preference free SMAA analysis the first-rank acceptability for enoxaparin
is 0.54, shown as a dotted line in Figure 7.2. This value is derived by integrating
the ranks over all possible weight vectors, as well as the probability distributions
of the criteria measurements, using Monte Carlo sampling. The central weight vec-
tor of enoxaparin without preference information is (0.7, 0.3), confidence factor 0.89,
whereas that for heparin is (0.28, 0.72), confidence factor 0.84. In this case, there is
a large difference between the first-rank acceptability of enoxaparin (0.54) and the
confidence factor of its central weight vector (0.89). This indicates that the ranking
of the alternatives is sensitive to the preference information, and that the low first-
rank acceptability of enoxaparin can not be attributed to poor performance of enoxa-
parin, nor to uncertainty in the measurements. Thus, precise preference information
is clearly needed to make a decision.

As an initial step in analyzing the decision maker’s preferences, we apply ordinal
swing weighting to obtain a ranking of the criteria. We confront the decision maker
with a hypothetical ‘worst case’ scenario:

• 25% proximal DVT, 10% major bleeding

and offer the choice to improve one of the two criteria to the best possible value:
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Figure 7.2: Plot of rank probability versus weight given to the benefit criterion (pre-
vention of proximal DVT). The dotted line indicates the rank probability integrated
over all feasible weights. For the analysis without preference information, the wp
varies freely (shaded area).
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Figure 7.3: Plot of rank probability versus weight given to the benefit criterion (pre-
vention of proximal DVT). The dotted line indicates the rank probability integrated
over all feasible weights. For the analysis with ordinal preferences, wp > wb (shaded
area).
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Figure 7.4: Plot of rank probability versus weight given to the benefit criterion (preven-
tion of proximal DVT). The dotted line indicates the rank probability integrated over
all feasible weights. For the analysis with ratio bound preferences, 1.79 < wp/wb <
2.08.

• 0% proximal DVT, 10% major bleeding

• 25% proximal DVT, 0% major bleeding

The decision maker indicates that proximal DVT is more important, so we add the
weight constraintwp > wb, which reduces the range of possible weights to the shaded
area in Figure 7.3. With ordinal preferences, the first-rank acceptability of enoxaparin
is 0.88. The central weight vector of enoxaparin with ordinal preferences is (0.77,
0.23), confidence factor 0.94. The confidence factor indicates that more precise pref-
erences could potentially increase the confidence with which we are able to choose
enoxaparin. In this two-dimensional case, this is obvious if we look at Figure 7.3.

To further refine the preferences, we must establish the trade-off ratio wp/wb. To do
this, we apply swing weighting. In swing weighting, we compare two hypothetical
scenarios:

• DVT has the worst possible value, and major bleeding has the best possible
value:

(0.25, 0.0)

• DVT has an unknown value, and major bleeding has the worst possible value:

(x, 0.1)
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We manipulate the value x (by asking whether the first alternative is better or worse
than the second) until the decision maker is indifferent between the two. In normal
swing weighting, we would be looking for an exact value of x. However, it is well
known that precise weights elicited from decision makers will vary between pref-
erence elicitation sessions. Therefore, we explicitly attach uncertainty to the ratio.
This can be done by decreasing and increasing x from the initially found indifference
value, until one of the alternatives is likely to be preferred. In this case, x could vary
between 0.11 and 0.13. This implies that 1.79 < wp/wb < 2.08.

With ratio bound preferences, the first-rank acceptability of enoxaparin in 0.84,
shown as a dotted line in Figure 7.4. The central weight for enoxaparin is (0.66, 0.34),
confidence factor 0.84. Based on the negligible difference between the first-rank ac-
ceptability of enoxaparin and the confidence factor of its central weights, no impor-
tant changes to the rank acceptability should be expected if we refine the preferences
further. It is interesting to note that although using ratio bound preferences allowed
us to more precisely determine the first-rank acceptability of enoxaparin, the esti-
mated first-rank acceptability for enoxaparin was reduced. This underlines the im-
portance of assessing stability of the first-rank acceptability over the feasible weight
space, which can be achieved by inspecting the central weights and their confidence
factors.

7.3 Higher-dimensional problems

The two-dimensional analysis presented above, and the original analysis [Lynd and
O’Brien, 2004], take the prevention of proximal DVT to be the relevant benefit, and
ignore the impact on distal DVT. However, both drugs do have an impact on dis-
tal DVT. The solution proposed in the original analysis [Lynd and O’Brien, 2004]
is to combine both proximal and distal DVT into a single criterion. However, since
proximal and distal DVT have different clinical implications, this makes the decision
less concrete for the decision maker. Therefore, the decision problem should prop-
erly be viewed as a three-criterion problem, with proximal and distal DVT included
separately.

To include distal DVT in the SMAA analysis, we set its measurement scale as 0.15
(best value) to 0.4 (worst value), by inspection of Table 7.1. With the addition of distal
DVT, a third weight wd is added to the weight vector: w = (wp, wd, wb). In that
case, the weight space is a 2-simplex in three-dimensional space, spanned by (1, 0, 0),
(0, 1, 0), and (0, 0, 1), as shown in Figure 7.5.

In a preference free SMAA analysis the first-rank acceptability for enoxaparin is
0.65, shown as a dotted line in Figure 7.2. The central weight vector of enoxaparin
without preference information is (0.41, 0.36, 0.23), confidence factor 0.89, whereas
that for heparin is (0.19, 0.28, 0.53), confidence factor 0.66. From this, it is clear that if
the decision maker chooses enoxaparin, he should find the DVT criteria more impor-
tant than major bleeding.

Again, we start by eliciting ordinal preferences. In this case, the criteria scale
swings are ranked from most to least important as: proximal DVT � major bleeding
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Figure 7.5: The triangle represents the full weight space. The grey polygon shows the
feasible weight space given the ordinal constraints w1 > w2 > w3 (shown as dashed
lines).

� distal DVT. The shaded region of Figure 7.5 shows the feasible weight space given
these constraints. With ordinal preferences, the first-rank acceptability of enoxaparin
is 0.86. The central weight vector of enoxaparin with ordinal preferences is (0.63, 0.11,
0.27), confidence factor 0.91. The confidence factor indicates that more precise pref-
erences could potentially increase the confidence with which we are able to choose
enoxaparin. On the other hand, the central weight vector of heparin is (0.52, 0.12,
0.35), confidence factor 0.19, which shows that heparin is unlikely to be preferred.

The ratio bounds for proximal DVT and major bleeding are the same as in the two-
dimensional example: 1.79 < wp/wb < 2.08. In addition, we elicited ratio bounds
for major bleeding and distal DVT, giving 1.67 < wb/wd < 2.00. These preferences
are visualized in Figure 7.6. Using ratio bound preferences increases the first-rank
acceptability of enoxaparin to 0.89.

7.4 Discussion

We took a published analysis of the benefit-risk profile of two anti-thrombolytics and
argued that this should properly be considered a problem with three criteria: proxi-
mal DVT, distal DVT and major bleeding. The original analysis considered only prox-
imal DVT and major bleeding because the method used is not applicable to problems
with more than two criteria. Our analysis using SMAA showed that the analysis in-
cluding all three criteria leads to similar results as the analysis including only two.
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Figure 7.6: The triangle represents the full weight space. The grey polygon shows the
feasible weight space given the ratio bound constraints 1.79 < wp/wb < 2.08 and
1.67 < wb/wd < 2.00 (shown as dashed lines).

This is due to the preferene information, which identified distal DVT as the least im-
portant criterion by a relatively large factor. Thus, this is not an a priori fact, but
emerges only after we take into account the decision maker’s preferences. To the
authors’ credit, this is a clinical judgment that they appear to have made correctly.

The case study has shown how a SMAA generalizes to multiple criteria, and how
more precise preference information enabled by hit-and-run sampling can enhance
the confidence with which a decision can be made. The SMAA analysis can also eas-
ily be generalized to take into account additional alternatives. In many-dimensional
problems involving uncertainty, SMAA has two important advantages. First, the flex-
ible approach to preference information allows one to incrementally refine the pref-
erences. For example, if a ranking of the criteria from most to least important, with
the addition of bounds on the trade-off ratio between the two most important criteria
provides sufficient certainty on the best alternative, no further preference elicitation is
needed. Secondly, by sampling from the full set of weights compatible with the pref-
erence information, a multi-dimensional sensitivity analysis is automatically carried
out. The central weights and confidence factors of lower-ranked alternatives provide
important information of the robustness of the alternative with highest first-rank ac-
ceptability.

In conclusion, SMAA can conceptually be seen as an extension of simple stochastic
simulation techniques to many-dimensional decision problems. The strong theoreti-
cal underpinnings of MCDA ensure founded and rational decision support, while the
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stochastic approach of SMAA enables a natural way of assessing uncertainty and ro-
bustness. Finally, using hit-and-run weight sampling enables a flexible and iterative
approach to weight elicitation.





CHAPTER 8

Multi-criteria benefit-risk assessment using network
meta-analysis

G. van Valkenhoef, T. Tervonen, J. Zhao, B. de Brock, H. L. Hillege, and D. Postmus. Multi-
criteria benefit-risk assessment using network meta-analysis. Journal of Clinical Epidemiology,
65(4):394–403, 2012e. doi: 10.1016/j.jclinepi.2011.09.005

Abstract

Objective: To enable multi-criteria benefit-risk assessment of any number of
alternative treatments using all available evidence from a network of clinical
trials.
Study design and setting: We design a general method for Multiple Cri-
teria Decision Analysis (MCDA) with criteria measurements from Mixed
Treatment Comparison (MTC) analyses. To evaluate the method, we apply
it to benefit-risk assessment of four second-generation anti-depressants and
placebo in the setting of a published peer reviewed systematic review.
Results: The analysis without preference information shows that placebo
is supported by a wide range of possible preferences. Preference informa-
tion provided by a clinical expert showed that while treatment with anti-de-
pressants is warranted for severely depressed patients, for mildly depressed
patients placebo is likely to be the best option. It is difficult to choose be-
tween the four anti-depressants, and the results of the model indicate a high
degree of uncertainty.
Conclusions: The designed method enables quantitative benefit-risk analy-
sis of alternative treatments using all available evidence from a network of
clinical trials. The preference-free analysis can be useful in presenting the
results of an MTC considering multiple outcomes.
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8.1 Introduction

The pharmaceutical regulatory authorities and pharmaceutical health care decision
makers increasingly request an explicit Benefit-Risk (BR) analysis of drugs as it can
provide a basis for rational decisions when choosing a particular therapy [Holden,
2003]. Drug BR analysis can be used to identify trade-offs between benefit and risk,
where benefit is the efficacy of a drug and risk relates to its safety [Victor and Hasford,
1987]. If there is only one measure of efficacy and one measure of safety, the BR
analysis can be conducted by plotting the joint density of the benefit and risk criteria
on a plane [Lynd and O’Brien, 2004]. However, there is a growing need for evidence-
based pharmacotherapy to consider more than two criteria, such as multiple safety
criteria, the patient’s quality of life, and costs. In these cases, the two-dimensional
visualization technique cannot be applied.

Multiple Criteria Decision Analysis (MCDA) methods can help by structuring
the decision problem and making the underlying value trade-offs explicit. Specifi-
cally, Tervonen et al. [2011] proposed a Stochastic Multicriteria Acceptability Analysis
(SMAA) model for analyzing BR. Their model allows taking into account the prob-
ability distributions of the criteria measurements and is able to quantify the uncer-
tainty surrounding a decision. Moreover, measurements and value judgments (pref-
erences) are clearly separated. However, the model relies on a single trial to evaluate
the comparative BR profiles of the alternatives. In most cases, a BR assessment will
need to be based on evidence synthesized from multiple trials or possibly a complex
network of trials.

Although evidence synthesis is most often done through pair-wise meta-analyses,
they are ill-suited as a basis for a computational BR method for a number of reasons.
First, relative effects have to be assessed against a common comparator, and not all
evidence structures have a single treatment against which all others are compared
[Salanti et al., 2008b]. Second, choosing a common comparator introduces a selec-
tion bias by excluding studies that do not include the comparator. Sensitivity anal-
yses would have to be carried out for every possible choice of comparator and even
then some studies might be excluded. Finally, when a large number of treatments is
available, the majority of evidence may be indirect regardless of the chosen common
comparator. Traditional meta-analysis does not allow these indirect comparisons to
be taken into account.

The recently proposed Mixed Treatment Comparison (MTC) method (also known
as network meta-analysis) synthesizes all the available evidence through application
of a Bayesian evidence network [Salanti et al., 2008a, Lu and Ades, 2004]. The rel-
ative effects of all included treatments are estimated using both direct and indirect
evidence. In this way, the results are consistent regardless of the chosen comparator,
and it is not necessary that one of the treatments has been compared with all others.
Graphical summaries of MTC results have been proposed as an informal decision aid
in trading effectiveness against other factors [Salanti et al., 2011]. To enable the for-
mal BR analysis of a number of alternative treatments taking into account all relevant
studies, this paper proposes to apply MTC for evidence synthesis in SMAA-based
multi-criteria drug BR analysis. We call this method MTC/SMAA, and for illustra-
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tion, we constructed a model to evaluate the comparative BR profiles of four second-
generation anti-depressants and placebo using 25 studies from the literature, selected
on the basis of an existing systematic review [Hansen et al., 2005].

8.2 Stochastic Multicriteria Acceptability Analysis

SMAA-2 [Lahdelma and Salminen, 2001] considers a discrete, multi-criteria decision
problem consisting of a set of m alternatives that are evaluated in terms of n crite-
ria. The vector of criteria measurements corresponding to alternative i is denoted by
ξi = (ξi1, . . . , ξ

i
n), where ξik is a random variable representing the performance of al-

ternative i on criterion k, modeled using some density function. For each criterion,
a partial value function vk(ξik) is defined to normalize the criteria measurements, so
that they are represented by values between zero (the worst value) and one (the best
value). The overall value function is then defined as a weighted additive combination
of the partial value functions:

v(ξi,w) =

n∑
k=1

wk · vk(ξik) ,

where v(ξi,w) > v(ξj ,w) implies that alternative i is preferred to alternative j given
the weight vector w. The weights define relative importances of the scale swings
(changes from the worst to the best criterion values), and wk > wl implies that if the
Decision Maker (DM) would have to choose between improving either criterion k or
criterion l from the worst to the best value, he or she would increase the performance
on criterion k.

The DM’s preferences may be unknown or partially known, and therefore the
weights w are also represented by a probability density. Total lack of preference in-
formation is represented by a uniform distribution in the feasible weight space. Par-
tial information, such as importance ranking of the criteria, can easily be included by
restricting the feasible weight space accordingly [Lahdelma and Salminen, 2001].

For given (exact) values of ξ and w, the rank of each alternative is defined as
an integer from the best rank (= 1) to the worst rank (= m) by means of a ranking
function rank(i, ξ,w). The main decision aiding measure is the rank acceptability index,
denoted by bri . It describes the share of all possible values of the weight vector w and
criteria measurements ξ for which rank(i, ξ,w) = r. For example, b52 = 0.3 means
alternative 2 has 5th-rank acceptability 0.3. The preferred (best) alternatives are those
with high acceptabilities for the best ranks.

Instead of using the value function to rank the alternatives for an elicited weight
vector w, which is the traditional approach in multi-attribute value theory, the SMAA
methods allow computing the weights a ‘typical’ DM supporting each alternative
might have. This so-called central weight vector wci can be presented to the DM to
help him or her understand what kind of weights would favor a certain alternative
i. The confidence factor pci is the probability for alternative i to obtain the first rank
when its central weight vector is chosen. The confidence factors indicate whether the
criteria measurements are sufficiently accurate to discern the efficient alternatives.
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Low confidence factors (< 0.50) should be interpreted with care, as then even if a DM
finds the central weight vector corresponding to his or her preferences, there might be
another alternative that achieves a higher first rank acceptability with those weights.

8.3 Mixed treatment comparison

The MTC method (also called network meta-analysis) synthesizes all available clin-
ical evidence through application of a Bayesian hierarchical model [Lu and Ades,
2004, Salanti et al., 2008a]. It enables the detection of heterogeneity (differences in
studies comparing the same treatments) and inconsistency (differences between di-
rect and indirect comparisons) in the evidence [Salanti et al., 2008a, Lu and Ades,
2006, Dias et al., 2010]. In this section, we briefly introduce the structure of a random
effects MTC model for dichotomous data, as this type of model will be used in the
case study (Section 8.5). For other model types and the handling of multi-arm trials,
we refer to [Salanti et al., 2008a, Lu and Ades, 2006].

Let i be a clinical trial. For each included treatment x we are given the sample size
ni,x and the number of events ri,x, modelled as a binomial process:

ri,x ∼ Bin(pi,x, ni,x) ,

where pi,x is the success probability (i.e. the absolute risk of an event). The risk pi,x of
an effect observed in the individual studies is transformed to log odds θi,x through:

θ = logit(p) = log

(
p

1− p

)
.

The inverse transformation is given by:

p = logit−1(θ) =
1

1 + e−θ
.

The advantage of this transformation, also used in logistic regression, is that θi,x can
be assumed to be normally distributed. Moreover, if θi,x and θi,y are the log odds for
x and y, then θi,x− θi,y is the log odds ratio of y compared to x in trial i (and eθi,y−θi,x
is the odds ratio).

Synthesis in MTC models is done in terms of treatment contrasts (relative effects)
and not the absolute effects, as this leads to a more robust model that preserves the
randomization in the trials [Lu and Ades, 2004]. To do this, we choose a baseline
treatment b(i) for every trial i, and express the effect of b(i) as:

θi,b(i) = logit(pi,b(i)) = µi ,

and for every other treatment y 6= b(i) the effect is:

θi,y = logit(pi,y) = µi + δi,b(i),y ,

where δi,b(i),y is the random effect of y relative to b(i) in trial i. The random effects are
related to the relative effect as follows:

δi,x,y ∼ N (dx,y, σ
2
x,y) ,
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where dx,y is the relative effect of y compared to x, the parameter of interest, and σ2
x,y

is the random effects variance. If we set σ2
x,y to be identical for all x and y, σ2

x,y = σ2, the
model is a homogeneous variance model. Otherwise it is a heterogeneous variance
model.

The model discussed so far is just a Bayesian formulation of pair-wise random
effects meta-analysis. MTC enables the simultaneous synthesis of a network of trials
through the additional assumption of consistency. Suppose we have three treatments,
say A, B, and C, and studies comparing AB, AC, and BC. The consistency assumption
then defines the relation between the relative treatment effects as

dAC = dAB + dBC .

A model that includes this assumption between all relative effects is a consistency
model. Conclusions based on an MTC model are always derived using the consis-
tency model. The model is estimated through stochastic simulation, e.g. using the
BUGS [Spiegelhalter et al., 2003] or JAGS [Plummer, 2009] software. This enables the
derivation of a point estimate and 95% credibility interval (CrI, the Bayesian analog
to a confidence interval) for each of the relative effects, as well as the derivation of
any other statistics of interest.

The assumption of consistency may be violated by the data at hand, in which case
there exists inconsistency. As with pair-wise meta-analyses, the first step in dealing
with inconsistency should be assessing whether the included studies are sufficiently
similar to be combined. Statistical means of detecting inconsistency provide an addi-
tional safeguard against drawing conclusions from inconsistent datasets, though the
lack of demonstrable inconsistency does not prove that the results are free of bias and
diversity.

There are two competing methods for detecting inconsistency: inconsistency
models [Lu and Ades, 2006] and node splitting models [Dias et al., 2010]. Inconsis-
tency models assess inconsistency by adding inconsistency factors to closed loops in
the evidence graph, whereas in node splitting models a single comparison is chosen
for which the direct and indirect evidence are contrasted. Inconsistency models have
the advantage that only a single model needs to be run, but the results are often diffi-
cult to interpret. Node splitting models are easier to interpret, but require a different
model to be run for each of the potentially inconsistent comparisons. Which method
should be preferred is not yet clear and, in this paper, we will present the results of
the node-splitting analysis because they are easier to interpret and verify them with
an inconsistency model.

Inconsistency within an evidence network could reflect genuine diversity, bias or
a combination of both [Salanti et al., 2008a]. If there is inconsistency, the reason for the
inconsistency must be determined, and a clinically sound explanation must be given.
If the explanation is sufficient, the offending studies are removed [Lu and Ades, 2006],
a new inconsistency model is constructed and inconsistency evaluation is repeated
until no relevant inconsistency remains. If there is considerable inconsistency that
cannot be eliminated, the consistency model cannot be used. It is difficult to judge
whether a certain amount of inconsistency should be considered relevant, and the
debate on how to do this is ongoing [Salanti et al., 2008a, Lu and Ades, 2006, Dias
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et al., 2010].

8.4 MTC/SMAA for BR analysis

The process of performing an MTC/SMAA analysis is shown in Figure 8.1. Ana-
lyzing BR based on clinical studies starts with a systematic review of the available
studies relevant to the clinical domain for which BR should be assessed. In this step,
which should be carried out with experts in the clinical domain, the relevant studies
and important issues are identified. In the ideal case, a relevant high-quality system-
atic review can be found in the literature. Based on the review, the criteria to be con-
sidered are agreed upon and operationalized. Then, for each criterion, the relevant
outcomes are extracted from the individual studies and inconsistency is evaluated.
If there is no relevant inconsistency, a consistency model is subsequently constructed
and used to create the measurements for the SMAA model. If no reasonable explana-
tion of inconsistency is found, the whole process has to be terminated.

8.4.1 Measurement scales
For reasons of statistical robustness, evidence synthesis methods estimate only rela-
tive effects, while absolute measures are more suitable for applying evidence to con-
crete decisions [Egger et al., 1997]. In a multi-criteria model, the use of absolute mea-
sures is desirable since explicit trade-offs must be made between unit increases in the
scaled criteria. The problem is especially salient for dichotomous criteria, as the re-
sult in these cases is expressed as an odds ratio, which is difficult to interpret when
assessing the relative importance of the scale swings between criteria. To solve this,
the log odds ratio can be converted to (absolute) risk by assuming a distribution for
the log odds of a baseline treatment 1:

θ1 ∼ N (µ, σ2) .

Note that θ1 is an overall estimate for treatment 1, and should not be confused with
the trial-level log odds θi,1. It does not matter which of the m included treatments is
selected as the baseline. For every non-baseline treatment j 6= 1, the MTC analysis
gives us the log odds ratio: d1,2

...
d1,m

 ∼ N

 ν2

...
νm

 ,Σ

 ,

which can be used to obtain the distribution of the non-baseline treatments’ log odds
conditional on θ1:  θ2

...
θm

 | θ1 ∼ N


 θ1 + ν2

...
θ1 + νm

 ,Σ

 .



8.4. MTC/SMAA for BR analysis 117

choose criteria

run incons. model

investigate

run cons. model

construct SMAA model

k  :=  1

[cons.]

[incons.]

[inconsistency explained]

[unexplained]estimate baseline

identify or perform
systematic review

[all criteria done (k = n)]

select criterion k
k := k  + 1

[k  <  n ]

Figure 8.1: The process of performing an MTC/SMAA analysis (UML activity diagram
notation). n is the number of criteria



118 8. Multi-criteria benefit-risk assessment using network meta-analysis

Then, for any treatment i the risk is

pi = logit−1(θi) ,

as discussed in Section 8.3. The pi are the measurements used in the SMAA analysis
(thus ξik = pi, where pi is obtained for criterion k). In the SMAA simulation, to obtain
samples of the pi’s, we first sample the baseline log odds θ1 and then sample the
log odds θi for all other alternatives based on θ1, and transform them to risk, as given
above. Note that ranking the treatments based on the pi is equivalent to ranking them
based on the d1,i (with d1,1 = 0), and will thus result in the same rank probabilities
as from the MTC analysis if the d1,i accurately reflect the posterior distribution. The
rank probabilities in MTC [Salanti et al., 2011] are calculated for a single criterion and
are therefore distinct from the rank acceptabilities discussed in Section 8.2, which
incorporate trade-offs between multiple criteria.

Different methods can be used to arrive at a sensible assumption for the baseline
log odds θ1. One could use an observational effectiveness study with a suitable pop-
ulation, let a clinical expert provide estimates, or attempt to derive them from the
included trials. In this paper, we will apply arm-based pooling of the placebo arms.
This is supplemented by a visual assessment (through a forest plot) of the effects
found in the individual studies.

Since the risk scale is bound to [0, 1], either vk(ξik) = ξik or vk(ξik) = 1 − ξik can
be used as the partial value function vk for any dichotomous criterion k, respectively
when more or less events are preferred (see Section 8.2). We will return to the advan-
tages and disadvantages of this approach in the discussion.

8.5 Application to anti-depressants

To illustrate the use of MTC/SMAA, we used an existing systematic review [Hansen
et al., 2005] to create a model for evaluating the comparative BR profiles of four sec-
ond-generation anti-depressants (fluoxetine, paroxetine, sertraline and venlafaxine)
and placebo. The application is meant as an example, and the results should be in-
terpreted with care. A full BR analysis of anti-depressants should ideally be based on
a more recent systematic review that explicitly includes placebo-controlled studies.
This is even more important in the light of recent doubt on the efficacy of anti-depres-
sants [Pigott et al., 2010]. Even if we consider the efficacy of anti-depressants to be
proven, in the context of a multi-criteria decision model consideration of other factors
may imply that placebo is the best option, as the placebo response in depression trials
is considerable [Storosum et al., 2004].

8.5.1 Previous work
The review included 46 studies comparing 10 second-generation anti-depressants on
the Hamilton Rating Scale for Depression (HAM-D) or Montgomery-Asberg Depres-
sion Rating Scale (MADRS). In total, 20 comparisons were made in the included
studies (out of 45 possible comparisons). Meta-analysis was applied for just 3 com-
parisons using 16 studies in total. All meta-analyses assessed efficacy (50% or greater



8.5. Application to anti-depressants 119

Placebo

Fluoxetine

Paroxetine

Sertraline

Venlafaxine

Figure 8.2: Evidence network of studies comparing the four included second-gener-
ation anti-depressants and placebo. The width of the lines indicates the number of
studies that include that comparison (the minimum is 1 and the maximum 6)

improvement from baseline on the HAM-D or MADRS scale) relative to fluoxetine,
and studies between the other drugs (paroxetine, sertraline and venlafaxine) were not
considered. Meta-analysis yielded risk ratios relative to fluoxetine, with a significant
but small additional effect for sertraline and venlafaxine. The authors concluded that
the four anti-depressants did not differ substantially for treatment of major depres-
sive disorder. A more recent review [Cipriani et al., 2009] used an MTC analysis to
show that there are differences among second-generation anti-depressants in terms
of efficacy and the proportion of patients completing the study.

8.5.2 Methods

An MTC/SMAA analysis was performed to compare fluoxetine, paroxetine, sertra-
line, venlafaxine, and placebo on one benefit criterion (efficacy) and five risk criteria.
Efficacy was assessed by means of treatment response, defined as a 50% or greater
improvement on the HAM-D rating scale for depression. The five risk criteria corre-
sponded to the most common Adverse Drug Reactions (ADRs): diarrhea, dizziness,
headache, insomnia, and nausea. All of the criteria were measured in terms of abso-
lute risk, based on dichotomous data from the included trials.

As Hansen et al. [2005] did not include sufficient information to construct the
MTC models, we did not take the measurements directly from the review, but used
the included individual studies to perform our own analysis. Although the review
did not consider placebo, sufficient studies with a placebo arm were present to in-
clude it in the analysis. The papers included in the review were retrieved and the
data extracted. We used the drugis.org MTC software (http://drugis.org/mtc)
[van Valkenhoef et al., 2012d] to generate MTC models for the 25 studies (see Ta-

http://drugis.org/mtc
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Criterion Placebo Fluoxetine Paroxetine Sertraline Venlafaxine Total
HAM-D 8 18 9 8 9 24
Diarrhea 5 11 7 8 5 17
Dizziness 3 9 4 5 6 12
Headache 5 12 8 8 6 19
Insomnia 7 12 8 6 6 18
Nausea 6 15 9 8 8 22
Total 8 18 10 9 9 25

Table 8.1: The number of studies included in the network meta-analysis for each cri-
terion

ble 8.1 and Figure 8.2) comparing fluoxetine, paroxetine, sertraline, venlafaxine, and
placebo. We used the homogeneous variance assumption and specified a uniform
prior σ ∼ U(0, 4) for the random effects variance. For the trial baseline effects µi and
random effects δi,b(i),y we specified a N (0, 103) prior. Markov Chain Monte Carlo
simulation with 4 parallel chains of 30,000 tuning and 20,000 simulation iterations
each was used to estimate each MTC model, and the computations were done using
JAGS [Plummer, 2009] and R [R Development Core Team, 2008]. Inconsistency was
primarily assessed using node-splitting models [Dias et al., 2010] and inconsistency
models [Lu and Ades, 2006] were run as a secondary analysis. Convergence was as-
sessed using the Brooks-Gelman-Rubin diagnostic [Brooks and Gelman, 1998], where
a potential scale reduction factor of 1.05 or lower was considered sufficient if visual
inspection of the convergence plots and time-series also indicated convergence.

We constructed a SMAA model with the measurements derived from the con-
sistency models, and baseline estimates derived from the trials and discussed with
an expert. The SMAA model was computed using R with 10,000 Monte Carlo itera-
tions giving sufficient accuracy for the indices [Tervonen and Lahdelma, 2007]. The
SMAA analyses were performed for three scenarios: one with missing preference in-
formation and two with a criteria ranking elicited from the expert: mild and severe
depression. The data files are available online at http://drugis.org/network-br.
There we also provide a JSMAA [Tervonen, 2010] v0.8.4 model that allows the reader
to explore the trade offs in an interactive graphical user interface.

8.5.3 Results

Inconsistency analysis The node-splitting analysis of inconsistency revealed two
potential problems at the α = 0.05 significance level, though given that there were 56
comparisons, it is to be expected that some are significant due to chance. However,
we chose not to correct the threshold a priori, but rather to investigate these two cases.
One occurred in the headache network, where one split node was significant, and the
other in the nausea network, where two directly related split nodes were significant.
In neither of these cases could we identify any systematic differences between the
studies, and as the number of significant findings is compatible with chance, we de-
cided to continue on the basis of consistency models including all studies. The studies

http://drugis.org/network-br
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Criterion Parameters Risk (95% CrI)
HAM-D −0.17± 0.11 0.46 (0.40, 0.51)
Diarrhea −2.19± 0.21 0.10 (0.07, 0.14)
Dizziness −2.23± 0.61 0.10 (0.03, 0.26)
Headache −1.20± 0.29 0.23 (0.15, 0.35)
Insomnia −2.61± 0.19 0.07 (0.05, 0.10)
Nausea −2.02± 0.19 0.11 (0.08, 0.16)

Table 8.2: Baseline measurements derived from the placebo trials, given as mean ±
standard error for the log-odds and the corresponding median and 95% CrI of the
resulting logit-normal distribution for the absolute risk

involved in these comparisons did not lead to inconsistencies in the other evaluated
networks, and the secondary analysis using inconsistency models did not indicate
any inconsistencies.

Consistency analysis The results of the consistency analysis are visualized as forest
plots for the odds ratio relative to placebo in Figure 8.3. Including indirect evidence
leads to somewhat smaller 95% credibility intervals for treatment response than pair-
wise meta-analysis. Therefore the evidence from the studies additionally included in
the MTC model discriminate the drugs better with respect to efficacy.

Preference-free model Baseline estimates were derived by random-effects pooling
of the placebo arms (Table 8.2) and discussed with an expert, who compared them to
sources known to him and did not contest the values or the method used to derive
them. He did note that these values are expected to vary greatly between trials, and
that this fact is reflected in the width of the confidence intervals.

The rank-acceptabilities with missing preferences are shown in Figure 8.4. There
is a large share of the possible preferences for which placebo attains rank 1. From
the central weights (Figure 8.5), it is estimated that the preference scenarios that are
favorable to placebo have a low weight for efficacy, and that a ‘typical’ DM that would
choose placebo implictly finds each of the ADRs to be about twice as important as
efficacy. Placebo is also the only alternative to attain a confidence factor close to 1
(Table 8.5).

Fluoxetine has a low confidence factor (0.12) for its central weights, and in fact
given its central weights, other alternatives have a higher first-rank acceptability.
Thus, fluoxetine is likely to be dominated by the other alternatives. In general, if
efficacy is highly valued, placebo is unlikely to be the best option, but it is difficult to
choose a drug based on the data.

Mild depression Preferences for the mild depression scenario were elicited from
the expert using ordinal swing weighting. This resulted in the following ranking of
the criteria: Insomnia�HAM-D�Dizziness�Nausea�Diarrhea�Headache. The
rank acceptabilities for this scenario are shown in Figure 8.6. Placebo obtains the high-
est first-rank acceptability (0.56), followed by paroxetine (0.28), while venlafaxine has
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Figure 8.3: Network meta-analysis results: odds ratios relative to placebo, with 95%
CrI. Results to the right of the no-effect line indicate a higher incidence for the active
treatment

Alternative CF HAM-D Diarrhea Dizziness Headache Insomnia Nausea
Fluoxetine 0.12 0.21 0.09 0.28 0.12 0.09 0.20
Paroxetine 0.57 0.30 0.18 0.12 0.12 0.14 0.14
Placebo 0.99 0.09 0.18 0.18 0.16 0.20 0.20
Sertraline 0.55 0.28 0.08 0.30 0.13 0.10 0.12
Venlafaxine 0.63 0.29 0.18 0.08 0.25 0.12 0.09

Table 8.3: Central weights and confidence factors (CFs) for the preference-free model
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Figure 8.6: Rank acceptabilities for the mild depression scenario

the highest last-rank acceptability (0.62), followed by sertraline (0.24). Clearly, the
high incidence of both insomnia and dizziness are unfavorable to venlafaxine given
the preferences. Only placebo, fluoxetine, and paroxetine have > 0.5 probability of
being among the best 3, and only placebo and paroxetine have < 0.5 probability of
being among the worst 3.

Severe depression The preferences elicited for this scenario differed only in that the
Insomnia and HAM-D criteria were swapped. The rank acceptabilities for severe de-
pression are shown in Figure 8.7. As would be expected based on the central weights
analysis with missing preferences, ranking HAM-D as the most important criterion
reverses the situation for placebo, which now has only 0.09 first-rank acceptability,
and 0.56 last-rank acceptability. Placebo is also the only alternative to have < 0.5
probability of being among the best 3. Paroxetine has the highest first-rank accept-
ability (0.47) and paroxetine and sertraline are the only alternatives that have < 0.5
probability of being among the worst 3.

8.6 Discussion

Pharmacological decision making is a complex domain in which decisions regarding
multiple criteria are informed by complex evidence networks consisting of hetero-
geneous clinical studies. This paper introduced MTC/SMAA, which uses the MTC
evidence synthesis method together with SMAA to assess multi-criteria BR trade-offs
while taking into account all available evidence from clinical trials.

The MTC/SMAA method has four main advantages. First, MTC/SMAA allows
taking into account all the available evidence no matter whether the treatments are
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Figure 8.7: Rank acceptabilities for the severe depression scenario

directly or indirectly related. Second, a group of treatments without a common com-
parator can be analyzed, which is impossible with pair-wise evidence synthesis meth-
ods. Third, inconsistencies in the evidence structure due to incompatible study design
can be detected early in the analysis and systematically removed if the inconsistency
is judged to be clinically relevant. Fourth, application of SMAA enables explicit as-
sessment of trade-offs that exist between the criteria and provides valuable insights
even if the DMs are not willing or able to provide exact preferences.

8.6.1 Case study

We illustrated the MTC/SMAA method with a case study on second-generation anti-
depressants. Although the case study is indicative of the method’s feasibility, further
work should evaluate the model in other therapeutic groups.

As we demonstrated in the case study, a preference-free analysis of the central
weight vectors can provide substantial insight into trade-offs between the treatments
under consideration. As such, a SMAA central weights analysis of the most impor-
tant outcomes could be a valuable addition to any (network) meta-analysis. It allows
drawing firmer conclusions on which treatments are likely to be most suited to spe-
cific situations, and which treatments are unlikely to be the best in any situation. The
mild and severe preference scenarios showed that for severe depression, treatment
with an anti-depressant is warranted, but for mild depression this is not clear. Recent
research suggests that placebo may be effective even without deception [Kaptchuk
et al., 2010] (in irritable bowel syndrome), so it may be worthwhile to explore this
option for mildly depressed patients. The analyses also suggest that fluoxetine is
unlikely to be the best among the five alternatives.

However, the data do not conclusively distinguish the alternatives, especially the
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active treatments, and given the amount of data it is likely that much of this un-
certainty is inherent to the field, especially when distinguishing the active treatment
options. Some improvement may be possible by eliciting more precise weights. How-
ever, except for placebo in the mild depression scenario, making the weights more
precise within the constraints imposed by the ordinal preferences elicited from the
expert would not allow much more conclusive results as the data have a high degree
of uncertainty.

Compared to the systematic review on which we based the case study, the MTC/-
SMAA analysis explicitly takes into account the ADRs in addition to efficacy and
gives a clearer picture of the strengths and weaknesses of the alternatives. Including
placebo in the analysis provides further insight into the trade-offs. Moreover, the
model can quantitatively support the statement, also made in the original review,
that it is difficult to choose among the four considered anti-depressants.

8.6.2 Limitations and future work

The main challenges in applying MTC/SMAA are the evaluation of inconsistency
and estimation of baseline effects. Assessing inconsistency is especially difficult in
cases where many potential inconsistencies have to be considered (large evidence
networks or many different criteria) since significant results may also arise by chance.
Different methods to assess inconsistency have been proposed [Lu and Ades, 2006,
Salanti et al., 2008a, Dias et al., 2010], and general consensus on the best method
has not yet been reached. The second concern is the scale employed for the criteria
measurements. We developed a procedure for converting the relative scales from
evidence synthesis to absolute ones to be used in decision making using minimal
information. However, baseline effects have to be estimated, and further work is
necessary to identify the best way to do this.

Another consideration is the scale on which criteria are evaluated in preference
elicitation. In contrast to the previous work on SMAA for BR analysis [Tervonen
et al., 2011], we choose to use the full [0, 1] scale instead of the hull of the 95% confi-
dence intervals. This has the advantage that trade offs are easier to evaluate, and that
introducing additional alternatives does not require re-eliciting the preferences. The
disadvantage of this approach is that a stronger linearity assumption on the partial
value functions is required [see Tervonen et al., 2011]. This limitation is especially im-
portant when the observed frequencies differ greatly, e.g. when a trade off between
high efficacy and rare but serious adverse events needs to be made. In those cases
the scales should be assessed using the confidence interval hull. Of course, for scales
that do not have natural bounds (e.g. weight gain in kg) the confidence interval hull
approach is the only viable option.

In the current work we applied a SMAA decision model based on additive value
functions. Although the additive model is widely applied and reasonably easy to
understand, we acknowledge that other approaches are possible. For example, Data
Envelopment Analysis (DEA) models have been commonly applied in cost-benefit
analyses outside the area of healthcare, and there is also a SMAA variant for DEA, the
SMAA-D [Lahdelma and Salminen, 2006b]. Future work should assess whether other
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simulation-based decision models are applicable in the context of drug BR analysis.
Finally, our model is based only on criteria that are measured in clinical trials,

which is appropriate in the context of health policy decision making. However, other
criteria may need to be considered, such as cost in reimbursement decisions, or the
route of administration in prescription decisions. While we did not consider such
criteria, they would not be difficult to include in an MTC/SMAA analysis.
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Abstract

Clinical trials are the main source of information for the efficacy and safety
evaluation of medical treatments. Although they are of pivotal importance
in evidence-based medicine, there is a lack of usable information systems
providing data-analysis and decision support capabilities for aggregate clin-
ical trial results. This is partly caused by unavailability (i) of trial data in a
structured format suitable for re-analysis, and (ii) of a complete data model
for aggregate level results. In this paper, we develop a unifying data model
that enables the development of evidence-based decision support in the ab-
sence of a complete data model. We describe the supported decision pro-
cesses and show how these are implemented in the open source ADDIS
software. ADDIS enables semi-automated construction of meta-analyses,
network meta-analyses and benefit-risk decision models, and provides vi-
sualization of all results.
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9.1 Introduction

Two kinds of decision support systems for evidence-based medicine can be distin-
guished: rule-based systems for supporting operational decisions of practising physi-
cians and strategic decision support systems. The rule-based systems represent clin-
ical knowledge and include inference rules for aiding professional decision mak-
ing in clinical practice. They have been in existance since the 1970s [Shortliffe and
Buchanan, 1975]. The most common of these are Computerized Physician Order
Entry (CPOE) systems which contain evidence-based rules that enable issuing warn-
ings when an inappropriate combination of medicines is prescribed. To the best of
our knowledge, there are no established systems that inform strategic (rather than
operational) decisions such as identifying the best treatment practices based on the
consideration of benefit-risk trade-offs.

Strategic health care decision making, with or without a supporting system, de-
pends heavily on the availability of unbiased evidence from controlled clinical tri-
als [Evidence-Based Medicine Working Group, 1992]. One of the core activities and
sources of information in evidence-based medicine is the systematic review [Sutton
et al., 2009], a literature review that attempts to identify and synthesize all empirical
evidence that fits pre-specified eligibility criteria in order to answer a specific research
question [Higgins and Green, 2009]. Currently the process of systematic review is ex-
tremely labor intensive and error prone due to the lack of a comprehensive source
of clinical trials, the inaccuracy of literature searches, interpretation issues, tedious
manual data extraction and, importantly, the duplication of effort that is necessary
for every review [Sim et al., 2000]. The emergence of clinical trial registries [Zarin
et al., 2007] and the move towards a more open clinical research community [Sim
et al., 2006, Ghersi et al., 2008], as well as the initiatives of the Cochrane foundation
[Grimshaw et al., 2006] to share and update meta-analysis data sets offer opportuni-
ties for more efficient approaches to evidence synthesis. Still, to date there is no single
complete collection of performed clinical trials and outcome data, and importantly
none of the available sources store results in a format that is suited for re-analysis
[Wood, 2009, Zarin et al., 2007].

Thus, although suitable methods for evidence-based strategy decision support ex-
ist [Tervonen et al., 2011, Coplan et al., 2011, Mussen et al., 2007, van Valkenhoef et al.,
2012e], evidence-based decision making is difficult to implement because of the sub-
stantial effort required to systematically review the literature for relevant studies and
to manually extract the data from these studies, which has to be done on a case by
case basis. Even when a relevant published systematic review exists, evidence-based
decision making including multiple (possibly conflicting) objectives is difficult and
in practice often done ad hoc due to a lack of supporting information technology. In
addition, sometimes it will be necessary to incorporate additional studies to the body
of evidence present in the systematic review, e.g. in the regulatory context where the
manufacturer sponsors studies to prove the efficacy and safety of a newly developed
drug. Moreover, the analyses reported in the published systematic review may not
be valid for the decision at hand, so re-analysis of the included clinical trials may
be needed. Text-based reports of systematic reviews do not support such use cases.
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There do exist methods for automated extraction of trial design and results from the
literature, but although the field is rapidly evolving [see e.g. Kiritchenko et al., 2010],
their accuracy is not yet sufficient to be directly used in systems supporting strategic
decisions.

In this paper, we present ADDIS (Aggregate Data Drug Information System,
http://drugis.org/addis), an open source evidence-based drug oriented strat-
egy decision support system. It is an integrated software application that provides
decision support for strategic decisions such as guideline formulation, marketing
authorization, and reimbursement. ADDIS stores aggregate clinical trial results with
a unifying data model, and implements semi-automated evidence synthesis and
benefit-risk modeling. These use cases were derived from direct discussion with ex-
perts from pharmaceutical industry, regulatory authorities, and academia, and from
their feedback to early prototypes of the system. Before the models can be applied,
trial results must be available in the system; for this, we present an assisted proce-
dure for importing study designs from an existing database. The evidence synthesis
and decision models of ADDIS allow decision makers to visualize and understand
the available evidence and the trade-offs between different treatment options, thus
addressing information overload and reducing the complexity of strategy decisions
informed by clinical evidence. We stress that ADDIS does not aim at operational
decision support, but aids in strategic decision making and provides a platform for
computational methods in clinical trial informatics. In addition, the generation of
the models cannot be completely automated: some steps require decisions from a
domain expert, but can be supported by ADDIS as will be shown in this paper. To
the best of our knowledge, ADDIS is the first system to allow on demand generation
and use of the evidence synthesis and decision support models in a suitable way for
strategic decision making.

We start by discussing existing systems and standards for clinical trial design and
results in Section 9.2. The unifying data model is presented in Section 9.3. After that,
in Section 9.4, we present ADDIS and the assisted procedures of study import and
generation of evidence synthesis and benefit-risk models. In Section 9.5 we summa-
rize our principal findings and propose directions for future research.

9.2 Background

Several systems and standards dealing with clinical trial information exist. We pro-
vide an overview of these systems and standards in Sections 9.2.1 and 9.2.2, respec-
tively. Subsequently, in Section 9.2.3, we briefly describe the current state of methods
for extraction of information from predominantly text-based sources of clinical trial
designs and results. Finally, Sections 9.2.4 and 9.2.5 give an overview of the most
relevant evidence synthesis and decision modeling approaches for strategic decision
making.

http://drugis.org/addis
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9.2.1 Clinical trial information systems

In this section we briefly summarize the information systems that deal with clinical
trials information, first those in operational management of trials and the regulatory
environment, then the dissemination to the scientific community through publication
in journals and registration, and finally how the results are summarized in systematic
reviews.

Operational management and regulatory submission

Operational management refers to the administrative and data-gathering activities
for a single trial. The operational management of clinical trials can be automated by
using a Clinical Trial Management System (CTMS). Until circa 2000, the management
and data collection of the vast majority of clinical trials were paper-based activities
[CDISC, 2005], but the use of a CTMS has quickly become the norm [El Emam et al.,
2009, Tufts, CSDD and CDISC, 2007]. The automation of operational management is
now a mature field, and increasingly standardized (see also Section 9.2.2). However,
CTMSs are data-centric single study systems that are focused on enabling the effi-
cient operation of the trial and, often, submission of data to the US Food and Drug
Administration (FDA). As of yet these systems do not enable cross-study analyses,
data integration and data sharing.

After drug development, the pharmaceutical company compiles the evidence col-
lected from clinical trials (and other research) into an electronic dossier that is sub-
mitted to the regulators who decide upon its market authorization. The dossier, espe-
cially the clinical trial results, forms the basis on which regulators assess the benefit-
risk profile of a new drug. Submissions to the European Medicines Agency (EMA)
and most other regulatory agencies worldwide are mainly text-based, containing
aggregate-level results of clinical trials based on the applicant’s statistical analyses.
The FDA, on the other hand, requires an electronic submission of individual patient
data to be able to perform independent analyses [FDA, 2009], and is currently build-
ing JANUS, a standards-based clinical data repository specifically designed for the
integration of data [CDISC and FDA, 2005].

Results dissemination

Pharmaceutical companies and clinical research organizations may choose to pub-
lish the results of clinical trials in peer-reviewed scientific articles that do not include
the underlying data set. Abstracts of publications are indexed in databases such as
PubMed (http://pubmed.com/), which includes over 20 million citations from over
5,000 journals, of which more than 600,000 were published in 2009 [PubMed, 2011-05-
02]. Although large in size, PubMed contains only a selected subset of the biomed-
ical literature [Mulrow, 1994]. Abstract databases include meta data that might be
incomplete due to being provided by external parties; for example, to achieve high
sensitivity in searching for clinical trials in PubMed, restricting the search to the ‘clin-
ical trial’ publication type is too restrictive [Haynes et al., 2005], and a broader query
is recommended [Higgins and Green, 2009]. The Cochrane CENTRAL database of

http://pubmed.com/
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clinical trials is dedicated to indexing reports of clinical trials only, and contains refer-
ences to 645,086 publications of clinical trials, of which 286,418 have been published
since 2000 [Cochrane Library, 2011-05-02].

Until recently journal publications were the only non-confidential source of trial
designs and results. This led to insufficient or inaccurate trial reporting and publica-
tion bias [Dickersin and Rennie, 2003] as e.g. over half of the clinical trials supporting
successful new drug submissions made to the FDA had still not been published 5
years after the medicines’ market approval [Lee et al., 2008]. Publication bias is a seri-
ous problem that can lead to incorrect conclusions in a systematic review. As early as
in 1986 the registration of trials in advance was proposed as a solution to publication
bias [Simes, 1986]. In 1997 the US became the first country to make trial registration a
legal requirement, leading to the development of the ClinicalTrials.gov registry [Mc-
Cray and Ide, 2000]. In 2004, both the World Health Organization (WHO) and the
International Committee of Medical Journal Editors (ICMJE) released statements in
support of the prospective registration of clinical trials. This policy has been widely
adopted [ICTRP, 2010] and now assures that the existence of in any case most (recent)
trials is known [Zarin et al., 2007]. Registries primarily focus on providing a record
of trials for enabling patient recruitment and investigator accountability. Various or-
ganizations, including the WHO, have called for a full disclosure of the trial protocol
(including amendments) and results [Krleza-Jeric et al., 2005, Sim et al., 2006, Kaiser,
2008, Ghersi et al., 2008, Zarin and Tse, 2008, Chan, 2008, Sim et al., 2009], but only
the US have adopted legislation that requires registering results in ClinicalTrials.gov
[FDA, 2007, Wood, 2009]. Study protocols can be retrieved from ClinicalTrials.gov
in a (semi-structured) XML format [ClinicalTrials.gov, 2009b], while the retrieval of
results is only possible in a text-based format. Other registries provide protocol infor-
mation as semi-structured text, and do not include results.

In order to unify trial registration worldwide the WHO Registry Network was
established in 2007. Twelve national and international registries are now part of the
network. The European Union clinical trials registry, EudraCT, was opened to the
public only recently, on 22 March 2011 [European Medicines Agency, 2011b], and is
not part of the WHOs Registry Network. Table 9.1 gives an overview of the WHO
primary registries, ClinicalTrials.gov, and EudraCT. ClinicalTrials.gov is by far the
largest registry, containing more than 8 times the number of trials recorded in the
second largest registry (EudraCT).

Systematic review

Evidence-Based Medicine (EBM) tries to use the best available evidence in assess-
ing the benefits and risks of a treatment [Evidence-Based Medicine Working Group,
1992]. The most frequently implemented methods to assess the available evidence
are the systematic review and meta-analysis of published research results [Sutton
et al., 2009]. Systematic reviews are usually presented in a textual format without
the underlying dataset. Given the effort required to perform a systematic review,
fragmented reports regarding an indication are common [Caldwell et al., 2010]. The
rapidly growing number of systematic reviews published each year [Honig, 2010]
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Register Studies Results
ClinicalTrials.gov (United States) 106,649 yes (3,441)
EudraCT, the European Union Clinical Trials Register 12,990 no
ISRCTN register (international) 9,645 no
Japan Primary Registries Network 6,193 no
Australian New Zealand Clinical Trials Registry 5,221 no
The Netherlands National Trial Register 2,728 no
Clinical Trials Registry - India 1,704 no
Chinese Clinical Trial Register 1,319 no
Iranian Registry of Clinical Trials 1,291 no
German Clinical Trials Register 482 no
South Korea Clinical Research Information Service 108 no
Cuban Public Registry of Clinical Trials 105 no
Sri Lanka Clinical Trials Registry 60 no
Pan African Clinical Trial Registry 48 no

Table 9.1: ClinicalTrials.gov, EudraCT, and the 12 WHO primary registries. The ‘stud-
ies’ column indicates the number of registered trials (per 2 May 2011) and the ‘results’
column whether the registry also enables results publication.

has led to the ‘overview of reviews’ or ‘umbrella review’ to summarize the results of
the existing reviews for an indication [Ioannidis, 2009]. Umbrella reviews generally
merely repeat the pooled summaries of treatment effects from the original reviews,
but it has been argued that they may lead to misleading and inconsistent conclusions
[Caldwell et al., 2010].

The flagship of systematic reviewing is the Cochrane Library, kept up-to-date
by the non-commercial Cochrane Collaboration (http://www.cochrane.org/). It is
composed of three main components: the CENTRAL literature database of trial pub-
lications [Dickersin et al., 2002], the Cochrane Database of Systematic Reviews [Starr
and Chalmers, 2003], and software for conducting and reporting on meta-analyses
(http://ims.cochrane.org/revman). The Cochrane Library provides reviews of
effects of healthcare interventions generated and updated by medical researchers,
which are on average regarded to be of better quality than the corresponding studies
published in traditional journals [Jadad et al., 1998]. Compared with the traditional
journal publications that usually provide data in tables or figures, the Cochrane Re-
views incorporate descriptions and results of the original studies, while the software
enables making odds-ratio diagrams that can also include the newest studies. How-
ever, the available datasets are not complete and they are structured according to the
reviews rather than the included studies. Moreover, due to the inaccessibility of clin-
ical trials information, systematic reviews are static entities that only reflect the state
of knowledge at the time of the literature search.

http://www.cochrane.org/
http://ims.cochrane.org/revman
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9.2.2 Standards and data models

The information systems discussed above, especially those in operational manage-
ment, are enabled by standards and data models that have been developed over the
last two decades. Two main standardization bodies in the field are the Clinical Data
Interchange Standards Consortium (CDISC) and Health Level 7 (HL7). The CDISC
develops vendor-neutral and freely available standards that enable information sys-
tem interoperability in the operational management and regulatory submission of
clinical trials. HL7 develops standards that apply broadly to clinical and adminis-
trative data in health care, and thus do not focus on any specific clinical domain.
The foundation of HL7 standards development work is the Reference Information
Model (RIM), a high level object model of the health care domain. Several standards
are derived from the RIM, such as V3 Messages for the meaningful interchange of
data between health care systems, GELLO for rule-based decision support, and the
Clinical Document Architecture for semantically structured documents. HL7 also
maintains the Arden Syntax that enables rule-based expert systems that support op-
erational decision making in health care.

The Biomedical Research Integrated Domain Group (BRIDG) project aims at
bringing together the common elements of their various standards to a shared view
of semantics of the domain of protocol-driven research and its associated regulatory
artifacts [Biomedical Research Integrated Domain Group (BRIDG), 2010]. The model
is intended to be implementation independent in the sense that it models the problem
domain, and not any specific solution. For example, unlike some other CDISC stan-
dards it does not specify the format in which to submit data to the FDA. The BRIDG
model is subdivided into several sub-domain views: the protocol representation,
study conduct, adverse event and regulatory perspectives. While the operational
aspects of clinical trials are well covered by these perspectives, a data analysis per-
spective is currently missing as there is no adequate standard for statistical analysis.

The ClinicalTrials.gov registry has developed their own model, the Data Element
Definitions (DED) [ClinicalTrials.gov, 2009a,c]. They allow the reporting of aggre-
gated outcome data and statistical analyses to some extent, but the semantic depth of
the information is limited as most fields are free text. For example, since eligibility
criteria are free text fields, searching for a trial relevant to a specific patient condition
is inaccurate [Tu et al., 2011].

The Human Studies Database (HSDB) project aims to share fully machine un-
derstandable representations of study design information between institutions [Sim
et al., 2010]. To enable this, they develop the Ontology of Clinical Research (OCRe),
which defines the concepts that should be queried across the individual institutions’
databases. The creators of OCRe have argued that while the BRIDG model accurately
captures the operational semantics of clinical trials, its modeling of many aspects rel-
evant to cross-study analyses is weak [Sim et al., 2010]. The main contributions of
OCRe at this time are a study design topology [Carini et al., 2009], the ERGO formal
machine readable representation of eligibility criteria [Tu et al., 2011], and a model
of study outcomes that separates the phenomena of interest from the variables that
code them [Sim et al., 2010]. It also contains a study design representation derived
from BRIDG [Sim et al., 2010]. While OCRe is a promising effort, it is still far from
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Model Study design Aggregate results Semantic depth Completeness
BRIDG ++ - +/- +
DED +/- +/- - +
OCRe + - + -
OBX + +/- +/- +

Table 9.2: Approximate scoring of data models on several dimensions relevant to au-
tomated processing of aggregate clinical trials results. ‘Study design’ is the extent
to which complex study designs can be accurately represented, ‘aggregate results’
refers to the inclusion of aggregate results and description of the means by which
they were derived, ‘semantic depth’ refers to the level of semantic structure achieved
(e.g. contrast the text-based eligibility criteria in the DED to the ERGO model used
in OCRe), while ‘completeness’ refers to the extent to which the model in its current
state achieves its stated goals. Note that these dimensions are difficult to assess and
the assigned ratings are subjective.

comprehensively representing study design and lacks results completely.
The Ontology Based Extensible Conceptual Model (OBX) is another ontology for

representing clinical trials [Kong et al., 2011, Scheuermann, 2010]. It is specifically
aimed at making available the results of immunology studies for data re-use and re-
analysis. The OBX also incorporates study design representation ideas from BRIDG
and the ClinicalTrials.gov DED [Kong et al., 2011]. While it appears successful in
developing a broadly applicable data model for biomedical studies, and also includes
results, it would appear that the objections raised by HSDB researchers about the
depth of modeling in BRIDG also apply to OBX, and the results are represented in a
way similar to the ClinicalTrials.gov DED.

We rate the four major models in Table 9.2 on how well they represent study
design and aggregate results, as well as their semantic depth and completeness.
Table 9.3 gives a summary of the main goal as well as the strengths and weak-
nesses of each model. One common property of all models is that they rely on an
external terminology for their clinical content. Controlled terminologies (synony-
mously: controlled vocabularies, coding systems) of clinical terms are an important
first step in the application of information technology to medicine [Cimino, 1996].
Controlled terminologies predate information technology, e.g. the International Clas-
sification of Diseases (ICD) was already introduced in 1893. The ICD formally codes
diseases and enables, for example, the assessment of disease incidence from medi-
cal records. Other terminologies fill other niches, for example the Medical Subject
Headings (MeSH) [Nelson et al., 2004] is used to index the medical literature (e.g.
PubMed meta data is coded in MeSH), and the Medical Dictionary for Regulatory
Activities (MedDRA) is used for coding safety data (e.g. adverse events). Many of
these specialized terminologies are organized into a strict hierarchy, which means
that some specific terms may fit in multiple places [Cimino, 1996]. The Systematized
Nomenclature of Medicine, Clinical Terms (SNOMED CT) terminology is an impor-
tant attempt to create a clinical terminology with comprehensive coverage [Schulz
et al., 2006]. It currently contains around 311,000 concepts and 800,000 terms [The In-
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Model Purpose Strengths Weaknesses
BRIDG Operational man-

agement, regulatory
submission

Standardization pro-
cess, practical appli-
cations

No aggregate data,
limited depth of
modeling (some
aspects)

DED Limit publication
bias, enable disclo-
sure of results

Completeness,
working system,
US trials required
to register (data
available)

Limited semantic
structure

OCRe ‘Computable’ repre-
sentation of human
studies

Broad scope, seman-
tic depth

Not finished, not
implemented, results
not represented

OBX Make available data
from immunology
studies

Balance of the depth
of modeling and the
practical feasibility,
working system

Limited depth of
modeling (some
aspects)

Table 9.3: The purpose of each of the data models as well as their strengths and weak-
nesses from the perspective of enabling automated evidence synthesis and decision
support.

ternational Health Terminology Standards Development Organisation, 2011]. It also
goes beyond a simple hierarchical structure and provides the logical relationships
that hold between terms; over 1.3 million such relationships are currently modeled
[Schulz et al., 2006, The International Health Terminology Standards Development
Organisation, 2011]. The Unified Medical Language System (UMLS) [Lindberg et al.,
1993, Bodenreider, 2004] ‘Metathesaurus’ brings together over 60 biomedical termi-
nologies and their relationships. The ICD, SNOMED CT and MeSH are among the
integrated terminologies.

9.2.3 Data extraction

The free-text nature of clinical trial publications is an important obstacle to the ap-
plication of data mining and other automated knowledge discovery and decision aid
uses [Sim et al., 2000]. There are many existing approaches to extract some of this
data from abstracts or full texts of journal articles or health records, as reviewed in
[Cohen and Hersh, 2005, Meystre et al., 2008]. However, the potential benefits are
currently not fully realized due to lack of directly applicable tools [Cohen and Hersh,
2005] and text mining approaches for supporting research [Meystre et al., 2008].

Text mining of articles describing clinical trials could support researchers in per-
forming a systematic review. Information extraction, on the one hand, attempts to
create structured datasets from unstructured text by identifying entities and relation-
ships between entities in the text. Most current approaches focus on the abstract
rather than the full text as it provides a more controlled environment, and they tend
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to focus on only a few information elements [Kiritchenko et al., 2010]. The ExaCT
system [Kiritchenko et al., 2010] assists systematic reviewers in extracting 21 key trial
characteristics from full text articles. The system is accurate enough to save a con-
siderable amount of time in extracting these elements, but systematic reviewers do
have to verify the extracted information manually. Text analytics, on the other hand,
identifies patterns in large collections of texts in order to classify documents and un-
lock relationships between documents. Text analytics can help systematic reviewers
in structuring large sets of search results from abstract databases (e.g. PubMed) and
increase the efficiency of finding the relevant clinical trials. However, to be able to re-
liably perform evidence synthesis and decision modeling based on the extracted clin-
ical trials data, a higher level of accuracy and generality is needed than is currently
offered by text mining methods. Thus, although automated methods can lower the
workload, manual data extraction remains necessary.

9.2.4 Evidence synthesis

The most commonly applied evidence synthesis method is pair-wise meta-analysis,
in which a number of studies comparing the same pair of treatments A and B are
synthesized to assess their relative performance δAB on a specific outcome [Nor-
mand, 1999]. For example, do more depressed patients respond to treatment with
paroxetine than with fluoxetine (both antidepressants)? Or, do more patients treated
with paroxetine experience nausea during the studies than those treated with fluox-
etine? The observed treatment differences δ̂ABi in the individual studies i are used
to estimate the overall difference δAB . Network meta-analysis, a recent extension of
pair-wise meta-analysis, synthesizes evidence on the relative effects of a whole net-
work of treatments simultaneously [Lumley, 2002, Lu and Ades, 2004, Salanti et al.,
2008a]. It incorporates both direct and indirect evidence on the relative effects, and
allows a statistical analysis of evidence consistency [Lu and Ades, 2006, Salanti et al.,
2008a, Dias et al., 2010]. Except for the possible inconsistency between direct and
indirect evidence, the assumptions underlying network meta-analysis are the same
as those underlying pair-wise meta-analysis [Caldwell et al., 2005]. The method has
gained acceptance, and applications are being published in top medical journals [e.g.
Cipriani et al., 2009, Stettler et al., 2008]. However, application of the method has so
far remained the work of a select few experts, as model specification is difficult and
no automated tools are available. Many other evidence synthesis methods exist [Sut-
ton and Higgins, 2008], but pair-wise and network meta-analysis are by far the most
important ones for decision support.

9.2.5 Decision models

Although evidence synthesis is an important tool for evidence-based medicine as it
helps to summarize the available evidence, it does not help the decision maker to take
into account the trade-offs of the risks of a treatment and its related benefits. There is
an increasing interest in evidence-based multi-criteria decision models [Haynes et al.,
2002, Cooper et al., 2005] taking into account efficacy and safety of alternative treat-
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ments. The target domains of model-based decisions include marketing authoriza-
tion for new drugs, development of guidelines concerning recommended treatments,
and prescription decisions such as which anti-depressant to subscribe, for example, in
a setting where besides efficacy specific safety issues are also of interest, e.g. dizziness
could be life-threatening given the specific patient’s occupation. Many such decisions
have to take into account trade-offs between different decision criteria (e.g. efficacy
and safety), and can be aided through multi-criteria decision models [Guo et al., 2010]
or application-specific ways of mapping benefits and risks to a single scale [Ouellet,
2010]. Multi-criteria decision models can structure the decision problem and make
trade-offs between the alternative medical treatments explicit. In general, Multiple
Criteria Decision Analysis (MCDA) methods compare m alternatives on n criteria.
The performance of each of the alternatives is measured in terms of the criteria, and
explicit trade-offs (preferences) between the criteria may be specified by the decision
maker. The decision is aided by finding the optimal alternative (choice problem), by
ranking the alternatives from best to worst, or by classifying the alternatives into dis-
crete classes, such as good, acceptable and bad alternatives [Roy, 1996]. An inverse
approach, in which typical preferences that favor each of the alternatives are derived
using the decision model, is also possible [Lahdelma et al., 1998].

There exists benefit-risk models based on point estimates of the criteria measure-
ments [Mussen et al., 2007, Felli et al., 2009]. However, taking into account deci-
sion uncertainty is necessary in the medical context as the data might not distinguish
the alternatives with sufficient certainty to make an informed decision. In that case,
a decision has to be postponed until more or higher quality information becomes
available. Therefore, we focus on stochastic methods, where the performances are
measured using probability distributions rather than with point estimates. Stochas-
tic methods based on single studies [Tervonen et al., 2011, Lynd and O’Brien, 2004]
model the ‘absolute’ treatment effects and use those as performance measures (e.g.
the binomial success probability of a treatment response can be modeled using a Beta
distribution for each of the treatments). Using absolute measures has the advantage
that the observed differences in performance have an immediate clinical implication,
and thus eliciting preferences from the decision maker is relatively easy. For example,
one could ask ‘Would you consider improving the probability of treatment response
from 0.73 to 0.80 to be more important than reducing the probability of the side effect
dizziness from 0.12 to 0.09?’. However, the generalizability of a model using absolute
measures is questionable, as the absolute treatment effect and the incidence of side
effects depends heavily on the design and specific population of the study. Models
based on evidence synthesis [van Valkenhoef et al., 2012e] are preferable from this
perspective, as measurements would be based on relative effects estimated using all
available studies. Thus, such a method is more robust and generalizable, but the rel-
ative scales make the interpretation of the clinical implications more difficult [Egger
et al., 1997]. A hybrid approach, in which the (relative) measurements are derived
using evidence synthesis, but framed in clinically meaningful (absolute) terms using
(assumed or estimated) baseline risk for the population of interest may be the best
one [van Valkenhoef et al., 2012e].

So far, only benefit-risk models based on Stochastic Multi-criteria Acceptability
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Figure 9.1: The current and future flow of information into the ADDIS system, and the
role of the unifying data model in supporting evidence synthesis and decision sup-
port. The dashed rectangle indicates the scope of the functionality currently imple-
mented by ADDIS. The solid arrows show the current situation, while dotted arrows
indicate how future developments will benefit ADDIS.

Analysis (SMAA) [Lahdelma et al., 1998, Lahdelma and Salminen, 2001, Tervonen
and Figueira, 2008] allow taking into account the full uncertainty surrounding the
measurements from clinical trials as well as imprecise preferences, while enabling the
comparison ofm ≥ 2 treatments on n ≥ 2 outcomes through Monte Carlo simulation.
A two-dimensional visual approach (also based on Monte Carlo simulation) may be
preferable if m = 2 and n = 2 [Lynd and O’Brien, 2004]. This model is based on
standard cost-effectiveness analysis techniques, and we shall refer to it as the “Lynd
& O’Brien” model. Both methods enable the inverse approach, where the preferences
supporting specific decisions are derived using the model.

9.3 The unifying data model

We developed a unifying data model to enable evidence-based decision support
methods based on either individual studies or evidence synthesis. As discussed
before, the most important methods are pair-wise meta-analysis, network meta-
analysis, and stochastic multi-criteria benefit-risk assessment. The data model is
aimed at supporting these use cases. As was shown in Section 9.2.2, several worth-
while data modeling efforts are underway. Unfortunately none of them have the
needed level of modeling to be directly applicable to our use cases. It is clear that
while very precise representations (such as are being created for OCRe) will be
needed for the reuse of clinical trial data for general purposes, they will not translate
directly to the application of evidence synthesis.

In addition, the data model is intended to be a well defined data extraction tar-
get to enable health strategy decision support. Data extraction is currently based
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Figure 9.2: The unifying data model for common types of aggregate analysis of clinical
studies in UML2 class notation.

on manual and assisted import from clinical trial registries and journal publications,
and in the future on automated rule-based import from structured databases or semi-
automated data extraction from the medical literature. This vision is shown in Fig-
ure 9.1. The data model is not intended to fully model clinical trials, as we believe
BRIDG and OCRe are better positioned to eventually fill this gap. Rather, there is a
need for a unifying data model that captures the invariants of the domain from the
perspective of evidence synthesis. Such a data model provides clear requirements for
more fine-grained models, a target for text mining and (sub-)domain-specific rules for
data conversion, and a basis on which to build decision support systems. Thus, our
data model represents the structure of trials only to a limited extent and appropriate
(domain-specific) mapping is required to enable its use. Mapping rules from more
fine-grained data models such as OCRe can be developed once these models have
matured. The unifying data model is described below and illustrated in Figure 9.2.
In the text, we will refer to entities in the domain model using capitalized words (e.g.,
Study and OutcomeMeasure).

Clinical trials are represented by the class Study. The data model may also apply
to other studies with human populations, such as observational studies, but it was
primarily designed to represent clinical trials. Each Study is identified by a name (e.g.,
“Coleman et al. 2001” or “NCT00296517”). A Study considers a single (therapeutic)
Indication. Each Indication is identified by a definition (e.g., “Depression” or “Type
2 Diabetes”). A Study consists of (two or more) Arms. An Arm within the context of
a clinical trial can be seen as a group of patients within a Study who all receive the
same medical Treatment. Within a Study there can exist different Arms for the same
medical Treatment (e.g., receiving different dosages). Each Treatment is identified
by a definition (e.g., “Placebo”, a simulated medical intervention, “Fluoxetine”, an
anti-depressant, or “Rosiglitazone”, an anti-diabetic).

An OutcomeMeasure is identified by a definition, referring to an endpoint (e.g.,

http://pubmed.com/11519769
http://clinicaltrials.gov/ct2/show/NCT00296517
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“Responders on the HAM-D rating scale” or “Change from baseline triglycerid levels
(mg/dL)”) to be measured in studies, or an adverse event (e.g., “Headache”, “Nau-
sea” or “Chest pain”) that can occur in studies. An OutcomeMeasure has a beneficial
direction (higher is better or lower is better). There are two Types of OutcomeMea-
sures in terms of how they are measured: rate or continuous (see below). A Study can
have (zero or more) OutcomeMeasures and an OutcomeMeasure can apply to (zero
or more) Studies. Such a combination is called a StudyOutcomeMeasure (identified
by the OutcomeMeasure and Study). Note that the BRIDG model discussed before
also uses the term StudyOutcomeMeasure in this context.

A Measurement refers to a combination of a StudyOutcomeMeasure and an Arm
within the same Study. Each such combination can have at most one Measurement.
A Measurement has a sample size (e.g. 98 patients). The sample size is associated
with the Measurement and not with the Arm, as the relevant sample size depends
on the way the outcome measure is analyzed, and may change over time due to pa-
tients dropping out of the study. Each Measurement is either a RateMeasurement or a
ContinuousMeasurement, depending on the type of OutcomeMeasure the measure-
ment refers to. A RateMeasurement describes the number of individuals in the Arm
for whom the OutcomeMeasure occurred. A ContinuousMeasurement describes the
result by a mean and a standard deviation (two real numbers).

The entities described above form the core of the unifying data model. Gener-
ation of evidence synthesis and decision models is based on Studies, Arms, Treat-
ments, OutcomeMeasures, and Measurements. In addition, the data model includes
Characteristics for more descriptive information. The Characteristics are identified by
a name (e.g. for StudyCharacteristics “Study size”, “Group allocation”, “Treatment
blinding” or “Patient eligibility criteria”, for ArmCharacteristics “Arm size”, “Dos-
ing” or “Gender distribution”, for OutcomeCharacteristics “Is primary outcome” or
“Assessment time”) and include the type of the characteristic. The type is used for
validating the values input for the actual characteristic values, and is useful in gen-
erating Graphical User Interface (GUI) components for input of characteristic values.
The object diagram in Figure 9.3 includes an example instantiation of the data model.

If the characteristics are left out, the data model contains the minimal informa-
tion for generation of the evidence synthesis and decision models described in the
previous section. The minimal representation makes it easier to import data to a sys-
tem implementing it, and increases applicability of the model from being specific to
a certain subfield (e.g. cancer treatments) to being general for all. However, the min-
imality causes the data model to be specific for the chosen types of analysis models.
If, for example, meta-regression techniques should be applied, the data model would
need to be extended accordingly. We allow descriptive extensions by including the
characteristics. The characteristics also serve for storing the information that is un-
necessary for analysis model generation, but necessary for expert judgment on which
studies should be included in the analysis (e.g. based on the type of dosing). They
also serve for specialization of the data model in that, if the need arises, new ones can
be added without breaking the functionality of analysis model generation.
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Figure 9.3: An example instantiation of the unifying data model as UML2 object di-
agram. The example instantiation depicts one Study including two Arms with two
different Treatments. For both of the arms, a measurement on one OutcomeMeasure
is shown. For the Arm, StudyOutcomeMeasure, and Study, there is each one Charac-
teristic presented together with the associated value.

9.4 ADDIS decision support system

The unifying data model together with a semi-automated analysis generation system
are implemented in the open source decision support software ADDIS1. It provides
an easy interface to enter, import and manage study design and outcome information
from clinical trials, and is specifically aimed at supporting the user in creating (net-
work) meta-analyses and (multi-criteria) benefit-risk models. The main components
of the software are:

• Implementation of the unifying clinical trial data model,

• GUI for managing trials and analyses,

• Semi-automated import of studies from ClinicalTrials.gov,

• GUI ‘wizards’ for semi-automated generation of analyses,

• External packages for computing the analyses,

• GUI components for results visualization, and

• Links to external databases (PubMed, ATC database, drug compendium).

1 http://drugis.org/addis. Screen casts are based on version 1.6, http://drugis.org/
addis1.6.

http://drugis.org/addis
http://drugis.org/addis1.6
http://drugis.org/addis1.6
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ADDIS integrates an external network meta-analysis library2 [van Valkenhoef et al.,
2012d] and JSMAA [Tervonen, 2010] for computation of SMAA benefit-risk mod-
els. The ADDIS data format is represented by an XML schema3 that instantiates
the unifying data model. Evolution of the format is supported by versioned XML
schemas that are forward-compatible through XSL transformations (XSLT). ADDIS
supports the coding of drugs with their Anatomical Therapeutic Chemical Classifi-
cation System (ATC) code and uses them to link to drug compendia. The ATC codes
can be filled in automatically by ADDIS through integration with an online database,
when given the compound name. A coding system for outcome measures and ad-
verse events will be integrated in the future. A number of study characteristics are
supported by default in ADDIS to enhance the user experience. For studies, these
include the study title, randomization, treatment blinding, the study objective, the
in- and exclusion criteria, the start and end date of the study, PubMed IDs of relevant
publications and several others.

9.4.1 Study import from ClinicalTrials.gov

The ClinicalTrials.gov registry is by far the most comprehensive clinical trials registry
in the world, currently containing information on over 100,000 trials (see Table 9.1).
ClinicalTrials.gov has a simple and easy to use interface to programmatically search
for trials and retrieve their protocols in XML format (according to their own DED)
[ClinicalTrials.gov, 2009b]. Unfortunately, the results are currently not available as
XML and it is unclear when this will be remedied.

In ADDIS, we use this XML interface to semi-automatically import studies from
ClinicalTrials.gov. The user inputs the NCT-ID of the trial that should be imported,
and the software will retrieve the XML, from which it automatically fills in fields.
For example, many of the study characteristics, such as randomization and treatment
blinding are matched from DED fields using simple rules. However, those fields that
form the core of our data model, such as the indication, treatments and outcome
measures, have to be manually mapped to entities in the database. This is so because
accurately mapping the free-text descriptions given in the ClinicalTrials.gov records
would require (1) deep semantic modelling of the entities in our database, and (2)
natural language processing of incredibly high accuracy. While both fields are rapidly
evolving, neither of these problems have a fully satisfactory solution at the moment.
This mapping step is critically important to the correctness of subsequent analyses
and thus inaccurate automatic mapping could degrade the decision makers’ trust in
the system. Hence, for the time being, the mapping is deliberately left to the user.
Figure 9.4 shows examples of the user interface for study import. The original source
text is preserved as a note that is kept with the relevant field, and the user can also
enter additional notes. Due to the lack of an XML interface for study results, those
have to be entered manually, and can not be linked to the source text.

2http://drugis.org/mtc
3http://drugis.org/files/addis-1.xsd

http://drugis.org/mtc
http://drugis.org/files/addis-1.xsd
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Figure 9.4: Example screens from the study input/import wizard. The top screen
shows how study characteristics are input. Most of these are matched automatically
from the source text. The bottom screen shows that endpoints must be mapped to
entities in the database by the user.
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9.4.2 Evidence synthesis

ADDIS assists generation of pair-wise and network meta-analyses in a step-wise fash-
ion; the process is presented in Figure 9.5. To start, the user needs to select an indi-
cation. Based on the selected indication, the system selects and presents all outcome
measures included in the different available studies in the system considering the in-
dication. After the user selects the desired outcome measure for analysis, the system
selects the studies and their included treatments based on the selected (indication,
outcome measure) tuple, and constructs the evidence graph. The graph is presented
visually and has the vertices labelled with treatment definitions and the edges la-
belled with the number of studies including that comparison (see Figure 9.6). The
user can pick the treatments to be compared. For a pair-wise analysis, exactly two
treatments have to be selected, and for network meta-analysis two or more treatments
can be selected. The software will not allow the user to continue unless the selected
treatments form a connected graph. Following the treatment selection, the system
presents the set of studies together with their characteristics, and non-desired studies
can be easily removed by the user on a case by case basis. The chosen treatments and
studies must form a connected evidence graph. Finally, if studies include a specific
treatment in more than one arm (e.g. in various doses), the user must choose which
arm to use in the analysis (see Figure 9.7).

Visualization of results is of crucial importance for applicability of methods used
in evidence-based medicine. ADDIS provides visualization of the odds ratios, mean
differences, risk ratios, and risk differences of standard meta-analyses in terms of
forest plots (Figure 9.8). The network meta-analysis rank probabilities are presented
as bar charts as shown in Figure 9.9.

9.4.3 Benefit-Risk models

The creation of benefit-risk models in ADDIS can be based on either an individual
study or (previously created) meta-analyses. The user first selects an indication, and
chooses whether to base the analysis on a single study or evidence synthesis. If the
analysis is based on a single study, the system selects studies belonging to the selected
indication and allows the user to choose one. Then, the user is presented with the
available criteria (outcome measures in the selected study) and alternatives (arms in
the selected study), and may select two or more of each to include in the benefit-
risk model. If the analysis is based on evidence synthesis, the available criteria are
the outcome measures for which a (network) meta-analysis exists within the selected
indication. If multiple analyses exist for an outcome measure, one must be chosen.
The available alternatives are the intersection of the sets of treatments included in the
selected analyses. Two or more criteria and alternatives can be selected to include in
the benefit-risk model. The final step in the creation of a benefit-risk model based on
evidence synthesis is shown in Figure 9.10.

Benefit-risk decision models were already broadly discussed in Section 9.2.5. AD-
DIS supports decision makers using several different methods (see Table 9.4). These
methods are organized along three axes: the number of alternatives, the number of
criteria and the number of clinical trials in the evidence base. For a single-criterion
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Figure 9.5: The process of meta-analysis creation as an activity diagram. The activities
on the right-hand side are automated in the system, and the steps on the left require
input and conscious decisions from the user. The process is identical for pair-wise
and network meta-analysis, except that for pair-wise meta-analysis the number of
treatments is restricted to exactly two.
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Figure 9.6: An evidence graph for a network meta-analysis. The treatments are the
vertices, and the number of studies for each comparison label the edges (e.g., six
studies compare fluoxetine and paroxetine). The green treatments are included in the
analysis, the grey ones excluded.
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Figure 9.7: If several matching arms are available, the user must select an appropriate
one based on the arm’s characteristics. If the available arms are not appropriate, the
user can go back to exclude the study.

Figure 9.8: Visualization of standard meta-analysis results as a forest plot [Lewis and
Clarke, 2001]. Here, odds-ratios (95% confidence intervals) are plotted on a logarith-
mic scale, with the pooled estimate shown last.
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Figure 9.9: Network meta-analysis results. The table gives (posterior) odds-ratios (95%
credibility interval) for all treatments relative to each other. The bar chart visualizes
the (posterior) probability for each treatment to be best, second-best, etc. given the
analysis model and the data.
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Figure 9.10: Criteria selection screen for construction of a benefit-risk model with syn-
thesized evidence.
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criteria 1 2 ≥ 2
treatments

2 PMA L&O (S/PMA/NMA) SMAA (PMA/NMA)
≥ 2 NMA SMAA (S/NMA) SMAA (S/NMA)

Table 9.4: Supported methods. Abbreviations: S = Single-study, PMA = Pair-wise
meta-analysis, NMA = Network meta-analysis, L&O = Lynd & O’Brien benefit-risk,
SMAA = SMAA-based benefit-risk.

decision between two alternatives based on a single study, standard statistical meth-
ods are sufficient. When there are several studies, pair-wise meta-analysis [Normand,
1999] can be used to pool the evidence, and for more than two alternatives network
meta-analysis is needed [Lu and Ades, 2006]. When two criteria (e.g. one benefit
and one risk) and two alternatives are to be considered, the “Lynd & O’Brien” model
[Lynd and O’Brien, 2004] based on either a single study or two meta-analyses (one
for each criterion) can be used. For more than two alternatives or criteria Stochastic
Multicriteria Acceptability Analysis (SMAA) based models are available [Tervonen
et al., 2011, van Valkenhoef et al., 2012e]. The SMAA methods used are described in
[Lahdelma et al., 1998, Lahdelma and Salminen, 2001] and their computational de-
tails in [Tervonen and Lahdelma, 2007]. These can be based on either a single study,
pair-wise meta-analyses (limited to 2 alternatives), or network meta-analyses (for ≥
2 alternatives).

The results of a “Lynd & O’Brien” benefit-risk analysis are visualized both through
plotting points from the probability distributions of incremental benefit and risk on
the benefit-risk plane, and through the benefit-risk acceptability curve [Lynd and
O’Brien, 2004]. The SMAA models are visualized using the JSMAA visualization
components and tables, showing the rank acceptabilities (Figure 9.11) to indicate how
likely the alternatives are to obtain a certain rank (from best to worst) and the central
weights to indicate what preferences typically support specific alternatives.

9.5 Discussion

In this paper we introduced ADDIS, a decision support system for evidence-based
medicine. ADDIS was developed in the context of a scientific project aimed to en-
able better use of information technology in the transfer and analysis of clinical trials
design and results. The long term vision was developed in collaboration with a steer-
ing group composed of experts from the pharmaceutical industry, academia and the
regulatory environment. Short term plans were developed with our ‘customer’, a
regulatory assessor who oversaw the development. The design was further informed
by several (completed and ongoing) case studies, such as a study of the benefit-risk
profiles of second generation anti-depressants. Although the software has been pre-
sented to and used by experts in the field, no formal validation or usability studies
have been conducted so far.

We presented a unifying data model for aggregate trial results, which is at the
core of ADDIS. The model enables semi-automated generation of evidence synthesis
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Figure 9.11: SMAA benefit-risk analysis results. The bars indicate the probability that
each treatment is the best, second best, etc., given the preferences specified by the
decision maker. In this case, the results indicate that there is a lot of uncertainty
regarding which alternative is the best, but sertraline and paroxetine are somewhat
more likely to be than venlafaxine and fluoxetine.
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and benefit-risk models implemented in ADDIS. All these components together allow
for re-usable, re-analyzable repositories of trials and analyses to be maintained and
shared among users. The value of the unifying data model is not to model the domain
in detail, but to provide a uniform basis for automated evidence synthesis and deci-
sion modeling. As such, specific decision support systems may use domain specific
information to further assist the decision maker. ADDIS makes use of some domain
knowledge to support its primary goal: to enable the direct and indirect assessment of
the comparative benefits and risks of different drugs based on all available evidence
from clinical trials. For example, Arms always have a Dosing characteristic, and stud-
ies have a fixed list of characteristics that are relevant for clinical trials comparing the
efficacy and safety of drugs.

Multiple data models have been proposed for comprehensively storing informa-
tion on the design and outcomes of clinical trials, e.g. the ClinicalTrial.gov DED and
the CDISC standards. The minimal unifying data model implemented in ADDIS is
not competing with these, but rather provides a target for conversion from them in or-
der to enable semi-automated generation of evidence synthesis and decision models
operating on the trial results. Traditionally the systematic reviewing process to per-
form a (network) meta-analysis takes a considerable amount of time and effort. While
ADDIS does not address this problem directly, it does provide a uniform platform for
analysis and data sharing that obviates the need for repeated data extraction.

To the best of our knowledge, ADDIS is the first system to implement decision
models that are directly and explicitly based on the (synthesis of) clinical trials re-
sults. By making the involved trade-offs and the link between trial results and deci-
sion model recommendations visible, ADDIS can enable more transparent strategic
health care decision making. ADDIS can also help in improving the reporting of sys-
tematic reviews since the included trials are represented explicitly, rather than only in
data tables pre-processed for the purpose of evidence synthesis. The decisions made
in mapping the data and applying the evidence synthesis models are thus clearly
represented.

9.5.1 Limitations and future work

The decision modeling in ADDIS is based on the assumption that a structured da-
tabase of relevant clinical trials is available. However, to acquire such a database
is a difficult and time consuming. The initial phase of development has focused on
drug regulation – a use case for which it is reasonable to assume that the data will
be provided in whatever format requested. For other use cases, such as guideline
formulation, this assumption is not justified. If the data is not available in a suit-
able format, a systematic review will have to be performed and the data input into
ADDIS mostly manually, although the ClinicalTrials.gov import functionality can re-
duce the required work. However, once the input is done, the data is more valuable
than the same set of trials extracted for e.g. Cochrane RevMan, as they can be reused
for different types of analyses. To make ADDIS a useful tool for a wider audience,
functionality that further increases the efficiency of systematic reviewing should be
added, possibly by implementing automated information extraction methods.
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Until now, approximately 100 clinical trials were entered for the case studies. To
assess the usefulness of ADDIS in various medical domains more trials should be
entered. However, as their input is mostly manual, this is an expensive and time-
consuming process. Also, as the trial database gets larger, the study selection step
for evidence synthesis can get cumbersome with the current implementation. More
intelligent study matching/filtering (e.g. with the different characteristics) should
be explored for lowering the user’s work load. This may require explicit modeling of
some of the aspects that are currently stored as plain text, such as the patient eligibility
criteria.

The scope of the unifying data model could be extended to support other types
of evidence synthesis, such as meta-regression and stratified analyses. These possible
extensions may introduce covariates at different levels, e.g. the time at which an out-
come measure was assessed, the dosage level for a treatment, the baseline severity of
illness in an arm, the length of the placebo washout phase of a study, or within-arm
correlation of two or more outcome measures. As such, it will be a challenge to intro-
duce these rather complex distinctions without making the generation of (network)
meta-analyses impossible.

ADDIS enables generation of benefit-risk decision models that use aggregate
level, possibly synthesized, clinical trial data as part of their input. However, health
care decisions can include evaluation dimensions not reported in clinical trials (e.g.
convenience of administration or storage), which consequently can not be included in
ADDIS. Also, economical decision models applied in health technology assessment
often do take into account the primary clinical endpoints of interest with high qual-
ity evidence, but seldom include high-quality adverse event sources [Cooper et al.,
2005]. We acknowledge that adverse event reporting in general is inferior to clinical
endpoint reporting due to various reasons. These include the rareness of some ad-
verse events, the fact that most clinical trials are powered to show efficacy (which
typically requires smaller sample size than detecting adverse events) and inconsis-
tent reporting of adverse event data [Eichler et al., 2008]. Decision models based on
evidence synthesis can help improve the included evidence on adverse events, but it
may be necessary to include other evidence sources to consider the rarest events. To
consider these and other use cases, future research should address semi-automated
generation of a wider range of decision models and their implementation in ADDIS.





CHAPTER 10

Discussion

There is a clear gap between the evidence from clinical trials as published in various
journals on the one hand, and the integrated view of the evidence required by deci-
sion makers on the other. Finding the evidence and applying it to the decision in hand
is difficult and time-consuming. Aggregate Data Drug Information System (ADDIS)
was developed to bridge this gap by automating the three steps of evidence-based
decision making: data acquisition, evidence synthesis, and decision modeling. By
starting from a structured database of aggregated clinical trial results, decision sup-
port can be provided in an on-demand setting. Once structured data are more widely
available, ADDIS will be a powerful knowledge system for health care policy decision
makers.

This thesis discusses the methods underlying the ADDIS decision support system
for evidence-based drug benefit-risk decision making, as well as the ADDIS system
itself. This chapter evaluates the developed methods by assessing how they answer
the research questions posed in Chapter 1, and identifies their limitations. Then, the
work that is currently ongoing is briefly described and directions for future work are
given. Finally, some overall conclusions and recommendations are provided.

10.1 Answers to research questions

The central question of this thesis is:

How can a network of clinical trials be used to inform benefit-risk assess-
ment in a formal decision modeling framework, and how can information
systems support such decision modeling?
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The proposed ADDIS decision support system gives the answer to this question
(Chapter 9). Several novel algorithms, methods, and data models were developed to
make this possible (Chapters 3–7). These will now be briefly reviewed according to
the sub-questions posed in Chapter 1.

10.1.1 Automating network meta-analysis

Comprehensive decision making regarding alternative treatment options must take
into account all available evidence. In many cases more than two treatment options
need to be considered, and the available clinical trials form a complex network of
evidence. Network meta-analysis provides a framework for the coherent or consistent
assessment of the (relative) effects of the treatment options based on a network of
clinical trials. In the past conducting a network meta-analysis required the manual
specification of a complex statistical model which is an obstacle when using network
meta-analysis in decision making, and especially for an automated decision support
system such as ADDIS.

Therefore, we set out to identify the problems that must be addressed to automate
Bayesian (network) meta-analysis (Chapter 3). The problems are (1) to generate the
model structure based on the nature of the data and the structure of the evidence
network, (2) to specify adequate (vague) prior distributions in case no informative
prior can be given, and (3) to generate over-dispersed starting values for indepen-
dent Markov chains to enable the assessment of convergence. We provide solutions
to these problems and automatically generate the basic random effects consistency
model for both continuous and dichotomous data. The methods do not currently al-
low for other types of data such as time-to-event data, but could be easily extended
to incorporate these. The data are also assumed to be available in absolute (per-arm)
format, but in some cases only relative effect data is available. Again, the proposed
methods could be easily extended to overcome this limitation. The limitation to con-
sistency models is more fundamental, and while the solution to problems (2) and (3)
are easily transferable to inconsistency and node-splitting models, problem (1) will
require a different solution for each of these models.

Chapter 4 attacks the problem of generating an adequate model structure for in-
consistency models. It formulates the problem of identifying the correct parameteri-
zation in a graph theoretic framework, and derives an algorithm from that formula-
tion. While the algorithm gives appropriate parameterizations, there are several limi-
tations. First, and most importantly, a certain definition of what constitutes ‘potential
inconsistency’ was used, but other definitions are possible. The question which def-
inition is the most appropriate still needs to be answered. The question can even
be asked whether a solution to the parameterization problem under that definition
always exists. Second, the algorithm has exponential worst-case complexity, and al-
though it produces a model quickly on the evidence networks encountered thus far,
sooner or later networks will be found on which it takes exceedingly long to come up
with a result.

The work presented in this thesis represents the first method for automated model
generation of (Bayesian) network meta-analysis. As such, it is an important innova-
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tion that enables a larger group of researchers to perform a reliable network meta-
analysis. The developed software takes the tedious, time-consuming, and error-prone
aspects of network meta-analysis model specification out of the hands of the re-
searcher. At the same time, it provides an opportunity to draw the analyst’s atten-
tion to important issues such as choice of prior distributions and problems with the
data set that might otherwise not be noticed. Unfortunately, easy to use software
also presents an opportunity for misuse of the methods by those unaware of its lim-
itations, but hopefully this can be addressed by adequate documentation and safe-
guards against common mistakes.

10.1.2 Decision analysis for drug benefit-risk assessment

In decision analysis for drug benefit risk assessment we must distinguish the differ-
ent alternatives (i.e. drugs), multiple criteria (i.e. assessments of efficacy and safety),
the measurement of the performance of each alternative on the criteria, and the pref-
erences of the decision maker. Criteria measurements are most often derived from
clinical trials data and are therefore inherently uncertain. Any reliable decision mak-
ing framework for drug benefit-risk assessment must take into account these dif-
ferent aspects. In Chapter 5, we show how the Stochastic Multicriteria Acceptabil-
ity Analysis (SMAA) methodology can be applied to the assessment of benefit-risk.
SMAA is an Multiple Criteria Decision Analysis (MCDA) method, and to apply it
the MCDA approach to decision structuring has to be followed: (1) define the crite-
ria (e.g. efficacy, adverse events), (2) define the alternatives (e.g. competing drugs),
(3) measure the performance of each alternative on each criterion, (4) find a lower
and an upper bound for each criterion, and (5) define partial value functions for each
criterion. In step 3, we find probability distributions for the criteria values through
statistical analysis of the underlying trial(s). We assumed these distributions to be in-
dependent, but they could be correlated across alternatives (Chapter 8), across crite-
ria, or both. Because the probability distributions derived in step 3 could have infinite
support, finding the scale bounds in step 4 is (strictly speaking) impossible. Instead,
we use the upper and lower bounds of the 95% confidence interval to ensure that
the decision metrics are at least valid for the 95% most likely values. As we argued in
Chapter 5, this approach to defining the criteria scale bounds can be useful even if the
support is not infinite, because this ensures that the scales are representative of the
true range of values present in the data rather than the theoretically possible range of
values. To define the partial value functions (step 5), we used simple linear scaling
from the scale lower bound to the upper bound. However, this may not always be
appropriate, and in those cases alternative partial value functions must be defined.
This is more difficult in the probabilistic setting, as some values may fall outside the
range defined by the scale upper and lower bound, and these cases must be handled
in some way. Different solutions are possible, for example mapping values outside
the defined range to the extreme values, but then it would be wise to use a wider con-
fidence interval to define the scale upper and lower bound (e.g. the 99% confidence
interval).

The above outlines the challenges of applying any MCDA method to drug benefit-
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risk assessment, and the answers to these challenges developed in this thesis. SMAA,
however, has some unique features to support the decision maker. First, it enables an
‘inverse approach’ to decision making. In this approach, the decision maker does not
provide any preference information, and SMAA derives the preferences that would
‘typically’ support each of the alternatives. This may help to exclude some alterna-
tives, as it may turn out that they are always inferior to other alternatives. In addi-
tion, it helps the decision maker to map the alternatives to their stronger and weaker
points, which may already be sufficient to make a decision. In that case, challenging
and time-consuming preference elicitation can be avoided. Second, SMAA enables
partial or imprecise preference information to be used by also defining a probability
distribution over the weights that are compatible with the given preference infor-
mation. The preference information can then be refined until a decision can be made,
avoiding unnecessary effort in eliciting precise preferences. Moreover, imprecise pref-
erences are more robust because they represent a range of compatible weights, thus
reducing sensitivity to specific and overly precise weight information. In theory, any
constraints on the weights are possible, but in practice efficient algorithms are re-
quired to sample from the probability distribution over the feasible weight space. So
far, efficient algorithms had been given only for specific types of constraints, limiting
the flexibility of the SMAA method in practice. This was addressed in Chapter 6,
which developed a method to efficiently sample weights with arbitrary linear con-
straints. As was shown in Chapter 7, this enables more flexible decision support
using SMAA.

Decision aiding using any MCDA method, and perhaps especially SMAA, is com-
plex and requires some understanding of the underlying methods and steps to be
taken in the analysis process. To implement a SMAA decision model would certainly
be too complex and time consuming for most decision makers. However, implemen-
tation of these methods in ADDIS automates most of the difficult steps and allows the
decision maker to focus on evaluating the decision problem. One important limita-
tion of the decision modelling in ADDIS is that all criteria must have been measured
in clinical trials. This may not always be the case, for example convenience of admin-
istration or cost of treatment are criteria that are externally derived. However, this is
a shortcoming of the current implementation, and not of the SMAA method.

Notwithstanding these limitations, the work presented in this thesis provides the
first decision modelling method for drug benefit-risk assessment that can take into
account an arbitrary number of alternatives and criteria as well as the uncertainty
inherent in criteria measurements taken from clinical trials and imprecise or partial
preference information. All of these aspects are important for decision modelling
in benefit-risk assessment, and the presented methods could pave the way for more
transparent and well-documented decision making by regulatory authorities. This,
in turn, will enable trust between regulatory authorities, pharmaceutical industry,
academia, patients, and the public.
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10.1.3 Using network meta-analysis in benefit-risk assessment

When making a benefit-risk decision involving multiple alternative drugs, the deci-
sion maker naturally wants to take into account all available evidence. The natural
tool to do this is network meta-analysis. Network meta-analysis estimates probabil-
ity distributions for the differences in treatment effects observed in clinical trials. Thus
it answers, for all pairs of drugs in the analysis, the question ‘how much better (or
worse) is drug X than drug Y ?’. As input for the decision analysis, we choose one
drug as the comparator, and derive a joint distribution for the relative effects of the
other drugs using network meta-analysis (Chapter 8). However, to make a clinically
relevant assessment of the trade-offs, the scales must be defined in absolute terms.
It would not make sense to ask the decision maker to choose between ‘improving
the odds-ratio for remission from 0.9 to 1.2’ and ‘improving the odds-ratio for stroke
from 1.3 to 0.8’, as these questions are meaningless without knowing the underlying
incidence for the comparator drug. Although the odds-ratios appear to be similar, if
the comparator drug has a very different incidence of stroke than of remission, the
numbers of patients affected are also very different. Therefore, we show how a dis-
tribution for the absolute incidence for the comparator drug can be used together
with the joint distribution of relative effects to derive a distribution for the absolute
incidence for all included drugs. Although the problem was illustrated using the
odds-ratio, using a relative measure of performance is problematic independent of
the specific scale being used. A similar technique for converting relative measure-
ments to absolute ones can be used for continuous outcomes.

There are two important challenges in applying the method presented in Chap-
ter 8: the assessment of consistency in the evidence network and the estimation of
baseline incidences. As was already pointed out above, the assumption of consis-
tency of relative effects across all studies in the network is central to network meta-
analysis. If this assumption is violated, the data can not be used to inform a decision.
Thus, methods to detect inconsistency must be applied before the decision model is
constructed. This was also illustrated in Chapter 8, and is facilitated by the auto-
mated network meta-analysis inconsistency models in ADDIS. To estimate baseline
incidences, a variety of techniques can be applied, such as using expert judgment,
using data from observational studies, or using the baseline arm from the trials in the
network. ADDIS currently only implements the latter, and does this automatically.
In the future, additional modes for baseline estimation should be implemented.

While the work on decision modelling based on a single trial (Chapter 5) already
enables transparent evidence-based decision modelling, it did not allow taking into
account all available evidence. Combining network meta-analysis and SMAA deci-
sion modelling makes this possible, and completes the methodological aspects of the
thesis. This combination is a non-trivial exercise that requires a deep understanding
of both methods to be performed correctly and in a generalizable way.

10.1.4 Storing aggregated clinical trial results

As demonstrated in Chapter 2, there are currently no systems that store aggregated
clinical trial results in a way that is appropriate for on demand re-analysis of the
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results. Due to this, decision modelling as proposed in this thesis is difficult and
time consuming to perform, because data must be identified and extracted manually,
a process that can take weeks or months. This is mainly caused by the lack of an
appropriate data model for storing aggregated clinical trial data in a reusable manner
(Chapter 9). As the purpose of ADDIS is to enable re-analysis of the trials stored in
the system, it must address this problem.

As outlined in Chapter 9, the approach is to define a minimal data model that
allows the on demand application of evidence synthesis and decision modelling to
the data. The ADDIS system itself implements a more elaborate version of this data
model, that makes some additional assumptions about the included clinical trial data.
The current ADDIS data model has severe limitations, including a lack of support for
coding systems commonly used in medical research, not modelling some aspects of
the trial such as patient eligibility criteria (instead representing them as text), and
not modelling the deep structure of outcome variables (instead assuming them to be
atomic). However, the distinction between the minimal data model for evidence syn-
thesis and decision modelling on the one hand and more fine-grained representations
of clinical trials on the other, is the key to enable the useful representation of data now.

10.2 Ongoing and future work

Work is currently ongoing with the Multi-Parameter Evidence Synthesis group at
Bristol University to further automate models for checking consistency in network
meta-analysis. This includes automated generation of node-splitting models Dias
et al. [2010], as well as further investigation into the definition and interpretation
of inconsistency that should lead to more insight into inconsistency models Lu and
Ades [2006]. This should enable improving upon the work presented in Chapter 4.
The development of ADDIS is continuing at the University of Groningen and the
University Medical Center Groningen, and is currently focussed on improvements
to the current functionality to best position the proof-of-concept. Additional fund-
ing is being sought to develop the proof-of-concept system into a marketable product
or service. At the same time, a commissioned project funded by TI Pharma is un-
derway to evaluate the usefulness of ADDIS for pharmaceutical companies, and to
increase compatibility of the ADDIS data model with current industry standards and
practices.

In future work, I want to automate more advanced evidence synthesis methods
Sutton et al. [2008], such as network meta-regression to take into account effect-
modifying covariates, or different types of data such as time-to-event data. This
serves three main goals: it enables a broader audience of researchers to apply these
advanced evidence synthesis models, it generalizes the decision modelling capabili-
ties of ADDIS, and it extends the minimal data model for evidence synthesis and de-
cision modelling, which in turn defines the requirements for the ADDIS data model.
This would significantly broaden the audience for ADDIS from drug regulation to re-
imbursement, guideline formulation, early drug development, and prescription de-
cisions. In addition, future work should address the data acquisition problem. This
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will likely require a combination of automated systems for abstract processing and
data extraction, manual refinement and completion of automated extractions, and an
infrastructure to share extracted datasets between researchers and institutions. Ide-
ally, this would eventually lead to all clinical trials, systematic reviews, and decision
models having their data sets published in a structured and reusable format.

10.3 Conclusions

The ADDIS decision support system developed in this thesis shows that a new and
better way of evidence-based decision making becomes feasible when trial data are
available in a more structured format. However, as was shown in Chapter 2, this sit-
uation is currently far from reality. ADDIS is not a direct solution to this problem, but
it does bring a solution closer in two fundamental ways. First, as a proof-of-concept,
ADDIS makes the benefits of a more comprehensive and structured repository of
clinical trials evidence more concrete, thereby offering a strong motivation to work
on this problem. Second, the work on ADDIS helps to identify the requirements that
data models for aggregated clinical trial results must satisfy to be useful.

To enable this proof-of-concept, a number of innovative applications of existing
methods, as well as the development of novel algorithms and data models were re-
quired. In this thesis, it was shown how a database of clinical trials can be combined
with network meta-analysis and SMAA decision modelling to support drug benefit-
risk assessment in a methodologically sound approach. That these methods can be
applied in practice was shown through a series of case studies, and their generaliz-
ability is demonstrated by their implementation in ADDIS, which allows the same
methods to be readily applied to other cases.

Because of its advanced features, the ADDIS decision support system is also use-
ful independent of the ambitions that motivate its existence. For example, it could be
used in systematic reviewing to manage the data from included clinical trials. In this
role, ADDIS is currently the only such software that enables network meta-analysis
of the clinical trials. ADDIS is also useful for decision makers that can request data
to be delivered in the ADDIS data format. This could apply to marketing authoriza-
tion decision makers, who ask the submitting pharmaceutical company to deliver the
data, and for reimbursement authorities, who can commission a systematic review to
be undertaken in order to support the decision.
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Abstract

Clinical trials provide pivotal evidence on drug efficacy and safety. The
evidence, information from clinical trials, is currently used by regulatory
decision makers in marketing authorization decisions, but only in an im-
plicit manner. For clinical trials information to be used in a transparent
and accountable way, it must be available in a format enabling efficient ac-
cess and further processing, so that decisions can be explicitly linked to the
underlying evidence. Thus, processing and management of clinical trials
information plays a critical role in enabling transparent decisions.
With the aim of identifying bottlenecks that prevent transparent decision
making based on clinical trials evidence, we review the information systems
and data standards that process clinical trials data in drug development and
regulation. We find that while systems and standards for the management
of single clinical trials are relatively mature, the transfer of information to
the public and to decision makers is still an ad-hoc and text-based affair, and
the integration of data from multiple studies remains difficult.
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A.1 Background

The drug lifecycle consists of the discovery, clinical development, market authoriza-
tion and marketing phases [Rang, 2005]. In discovery, promising candidate drugs
(leads) are identified (often using computational methods) and evaluated in several
phases using different preclinical methods. If a lead is likely to be both efficacious (i.e.
it likely has the capacity to produce a therapeutic effect) and safe in humans, it may
enter the clinical phase. In clinical development, the drug is evaluated in humans
through clinical trials, first primarily for safety (phase I), and then for efficacy (phase
II and III). The phase III clinical trials are confirmatory trials that demonstrate the ef-
ficacy and adverse event profile of the drug in comparison to placebo, another drug,
or both. In the market authorization phase, the evidence from discovery and devel-
opment presented by the pharmaceutical company is assessed by a team of experts
assembled by the regulatory authority (e.g. the Food and Drug Administration (FDA)
in the US or the European Medicines Agency (EMA) in the EU). In the end, the regu-
lators evaluate whether the drug has a favorable benefit-risk profile (i.e. the favorable
effects are likely to outweigh the unfavorable effects). The pivotal evidence in this as-
sessment is provided by the phase III trials. If the drug is approved by the regulatory
authority, it enters the marketing phase. Clinical trials are also performed in the mar-
keting phase, either by the pharmaceutical company or by others, often in the setting
of a risk management plan. The outcome of these trials may trigger a re-evaluation by
the regulatory authorities, that can lead to suspension of withdrawal of a drug from
the market.

The development of new pharmaceuticals is often hampered by failure in their
late-development phase, market authorization or subsequent clinical use. For exam-
ple, in 2009 40% of the drugs submitted for approval in Europe received a negative
opinion or were withdrawn before receiving an opinion [Eichler et al., 2010]. In many
cases, failure may be prevented, or development may be stopped earlier, through bet-
ter communication of the requirements for clinical evidence and the methods used to
assess benefit-risk [Liberti et al., 2010, Coplan et al., 2011, Guo et al., 2010]. The ac-
cessibility of key information on past decisions and clinical trials could facilitate this
process greatly.

However, presently there are clear information gaps with respect to the efficiency,
transparency and reproducibility of the current drug development, approval, and
regulation processes, including the secrecy surrounding data [Roberts et al., 1998],
the lack of consistency, transparency, and reproducibility of the methods used to reach
conclusions about benefit-risk [EMEA, 2007] and, finally, the insufficient communica-
tion of important information to patients and professionals [Irs et al., 2004].

Since the results of clinical trials serve as the main sources of information regard-
ing new medicines, a comprehensive overview of the various information systems
that store and process this information could identify the gaps in the information
transfer that have led to the problems mentioned above. With this aim, we provide
an overview of the existing systems and standards supporting the management and
transfer of information from clinical trials. For a brief overview of drug information
systems that considers the entire drug information life cycle, we refer to [Tervonen



A.2. Clinical trial information systems 167

et al., 2010].

A.2 Clinical trial information systems

First, in Sections A.2.1 and A.2.2, we take the industry perspective and focus on the
management of trial information within the pharmaceutical company. Section A.2.3
introduces trial registration and Section A.2.4 describes regulatory submission and
assessment. In Section A.2.5 we concentrate on the systems that provide the product
information for approved drugs, such as package inserts. Standards and data models
for clinical trials information are discussed in Section A.2.6 and controlled terminolo-
gies in Section A.2.7.

A.2.1 Operational management
Operational management refers to the administrative and data-gathering activities
surrounding a single trial. The operational management of clinical trials can be auto-
mated by using Electronic Data Capture (EDC), previously also called Remote Data
Entry/Capture [Bleicher, 2003]. EDC can be defined as a computerized replacement
for (paper-based) Case Report Forms (CRFs), in which information is entered into a
database through a computer entry form [El Emam et al., 2009]. Normally data are
validated before being accepted into a database to catch possible data entry errors
early on (validation and cleaning), while an audit trail is provided for all data en-
tries and modifications [El Emam et al., 2009]. Clinical Data Management Systems
(CDMSs) offer a comprehensive solution to trial data management by including data
from multiple sites into a single database. This may be done by means of EDC sys-
tems, but also by entering data from paper CRFs, usually through double data entry
to prevent transcription errors. Clinical Trial Management Systems (CTMSs) are an
extension of CDMSs and provide integrated solutions for the management of clinical
trials, including advanced features such as subject recruitment tracking and random-
ization as well as medication inventory tracking. Real-world systems may overlap
the distinctions between EDC system, CDMS and CTMS, and the terms are often
used interchangeably. The term EDC, for example, may generally refer to all or most
of the functionality described above [El Emam et al., 2009].

Until recently, the management and data collection of the vast majority of clinical
trials were paper-based activities. In 2000, only 12% of trials were using an EDC
system [CDISC, 2005]. However, this number has significantly increased over the
last years, to 20% in 2004 [CDISC, 2005] and 41% in 2007 [El Emam et al., 2009]. It
seems likely that this trend will continue in the foreseeable future, especially given
the fact that in 2007 96% of the pharmaceutical companies and 71% of the Clinical
Research Organizations (CROs) were to some extent using EDC technology [Tufts,
CSDD and CDISC, 2007]. Because of the increasingly international character of many
trials, it is not surprising that the advantages of web-based EDC are becoming widely
recognized [Paul et al., 2005].

Therefore there is a clear need for interoperability of the different operational man-
agement systems. In the area of electronic source data (see e.g. [EMEA, 2007, Marks,
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2004]), several technologies have gained momentum, such as Electronic Case Report
Forms (eCRFs), Electronic Patient Reported Outcomes (ePROs), and Electronic Labo-
ratory Data (eLab) [Tufts, CSDD and CDISC, 2007]. Now that data are being collected
more and more in electronic form, there are efforts underway to automatically enter
data from Electronic Health Record (EHR) systems in EDC systems in order to reduce
the amount of information that has to be entered manually [Prokosch and Ganslandt,
2009, ClinPage, 2009]. It is believed that by reducing the necessity of frustrating time-
consuming tasks such as double data entry, the reluctance of sites to participate in
clinical trials will decrease [ClinPage, 2009].

Furthermore, while statistical analyses and report generation of clinical trials have
been computer-aided for a long time now, they usually require programming of sta-
tistical routines. Analyses are performed using general-purpose statistics programs
such as SAS, SPSS, R and SPlus, and are therefore not integrated with CTMSs. Thus,
to extract data from the CTMS in a format suitable for statistics programs, intermedi-
ate processing is required. However, this approach leads to a loss of the traceability
of the summary statistics back to the underlying source data.

Market share information about CTMSs is hard to come by, but a 2001 study in-
dicated that Clinsoft Corporation (now acquired by Phase Forward) and Oracle Cor-
poration (http://www.oracle.com) dominate the market. Oracle has recently ac-
quired Phase Forward [Oracle Corp., 2010]. These commercial packages have been
criticized for only being concerned with the delivery of valid and accurate data that
conform to the Good Clinical Practice (GCP) guidelines, and neglecting end-to-end
processes as well as the usability of the interface and interoperability with other sys-
tems [Oliveira and Salgado, 2006]. Moreover, CTMSs can be prohibitively expensive,
require considerable expertise to set up, and need specialized in-house IT support to
operate [Oliveira and Salgado, 2006]. Independent groups or organizations based in
developing countries may not be able to afford CTMSs for these reasons, and there
is little to no good information about the available commercial offerings [Fegan and
Lang, 2008]. One solution that has been proposed is the development of an open
source CTMS through a collaborative effort of research organizations and funders
[Fegan and Lang, 2008]. OpenClinica (http://www.openclinica.org) provides an
open source solution for web-based clinical data management and is compliant with
the regulatory requirements. Similar functionality is provided by the caBIG Clini-
cal Trials Suite (http://cabig.nci.nih.gov/adopt/CTCF) of the National Cancer
Institute (NCI), although it is primarily focused on the cancer domain. There are sev-
eral academic clinical data management systems, e.g., TrialDB [Nadkarni et al., 1998,
Brandt et al., 2000, Nadkarni et al., 2010], COATI [Oliveira and Salgado, 2006], and
OpenSDE [Los et al., 2005].

The field of CTMSs has gradually started with the transition from data-centric sin-
gle study systems toward more interoperable, comprehensive and standards-based
systems. This development was initially spurred by a push from the FDA for elec-
tronic submissions (see Section A.2.6), but has now taken on a life of its own, with the
industry and CROs increasingly acknowledging the benefits of information technol-
ogy [Tufts, CSDD and CDISC, 2007].

http://www.oracle.com
http://www.openclinica.org
http://cabig.nci.nih.gov/adopt/CTCF
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A.2.2 Data warehousing

A data warehouse for clinical research should enable analyses between trials and
across compounds. Clinical trials data warehousing offers unique challenges ow-
ing to the diversity inherent in the domain. These challenges include establishing a
shared vocabulary of the clinical domain to ensure consistent reporting and capturing
the clinical domain in a data model that is sufficiently rich to enable data mining, syn-
thesis, and the analysis of data across different trials. Several academic clinical data
management systems have incorporated data warehousing features (e.g. TrialDB,
COATI, OpenSDE). Phase Forward, the company behind ClinTrial, offers a data ware-
housing solution under the name ‘Clinical Data Repository’ [Phase Forward, Inc.,
2010], which integrates data from different sources through a consistent audit trail,
adopting a meta-data based approach to validation. Although Oracle Clinical facili-
tates the management of multiple studies in a single database, it is primarily aimed at
reducing maintenance overhead rather than at enabling analysis across trials. Other
data warehousing projects include the academic METABASE [Swertz et al., 2010],
Organon D3W [Vervuren, 2005, Vervuren and Dietvorst, 2006], the Cancer Biomedical
Informatics Grid (caBIG) CTODS/Cactus, and the Human Studies Database (HSDB)
project [Sim, 2008]. ISO has recently published a standard for the deployment of a
clinical data warehouse [ISO TC 215 (Health Informatics), 2011], but it focusses on
health care rather than research.

A.2.3 Trial registration

When judging the merits of a treatment, it is critical that all relevant existing clinical
trials can be efficiently identified. However, until recently, the scientific literature
was the only public source of clinical trial results. This caused difficulty in finding
relevant trials and led to insufficient or inaccurate trial reporting and publication bias
[Dickersin and Rennie, 2003]. In the late 1990s and early 2000s, many countries world
wide adopted legislation that requires the design (research plan) of clinical trials to
be registered before participants are recruited. The prospective registration of clinical
trials ensures that the existence of clinical trials is known, even if their results are not
published in the peer-reviewed scientific literature. This enables publication bias to
be detected more easily. In the US, investigators are additionally required to register
the trial results in the ClinicalTrials.gov registry [Wood, 2009]. So far, other countries
do not require the registration of results.

The registration of clinical trials is now a well-established practice and has be-
come a key tool in addressing some of Evidence-Based Medicine (EBM)’s challenges
[Zarin et al., 2007]. However, the current registries contain only text-based or semi-
structured information and there is, for example, no common vocabulary for labeling
interventions. The amount of protocol information registered is often insufficient to
judge the validity of reported results and the problem of identifying all relevant stud-
ies has not yet been solved [Zarin et al., 2007]. In addition, the information publicly
available may be incomplete or even “largely incomprehensible” [Wood, 2009].
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A.2.4 Regulatory assessment

After drug development, the pharmaceutical company compiles the evidence col-
lected from the discovery and development processes into a dossier that is submit-
ted to the regulators who decide upon its market authorization. This is a critical
step, which can lead to the disqualification of a compound due to rejection or with-
drawal [Eichler et al., 2010]. Both the EMA and the FDA approve approximately 20
– 30 drugs per year [Eichler et al., 2010, Hughes, 2010, Mullard, 2011], and with a
30% failure rate, this amounts to 30 – 45 submissions per year. Submissions to the
EMA and the national medicines boards in Europe are mainly text-based, containing
aggregate-level results of clinical trials based on the applicant’s statistical analysis.
Since June 2009 the FDA has additionally required the electronic submission of in-
dividual patient data to be able to perform independent analyses [FDA, 2009]. The
dossier, especially the clinical trial results, forms the basis on which regulators assess
the benefit-risk profile of a new drug. In some cases, the regulatory authorities may
give market approval on the condition that additional studies (phase IV trials) are
conducted by the company. Such trials are most common in western Europe [Thiers
et al., 2008].

In the context of the FDA Critical Path initiative, the FDA and the NCI initiated the
JANUS project to build a standards-based clinical data repository specifically meant
for the meaningful integration of data [CDISC and FDA, 2005]. It is argued that ro-
bust, machine-readable meta-data are required to achieve the full potential of such
a repository. The construction of a suitable meta-data model is a monumental task,
especially given the modeling of the numerous decisions made during a statistical
analysis. Furthermore, this infrastructure would eventually need to be shared be-
tween the regulators and the industry, requiring a complex and sustained cooperation
effort. However, the JANUS project is increasingly enabled by standards established
by the Clinical Data Interchange Standards Consortium (CDISC) and Health Level
7 (HL7). It is built around an open source data model also called JANUS [Food and
Drug Administration, 2010a]. The latest released version of the data model is from
2005, but the JANUS project is still ongoing, and was approved as an agency-wide
initiative in 2008 [Oliva, 2009]. Eventually, JANUS should offer FDA reviewers easy
access to both raw and derived data and facilitate re-analyses [CDISC and FDA, 2005].
The wider standards-based efforts should result in interoperable tools to be used by
both the regulators and the industry [CDISC and FDA, 2005].

Since 2004, the EMA has established clinical trial registration in accordance with
the EU Directive 2001/20/EC through the EudraCT system. EudraCT was opened
to the public only recently, on 22 March 2011 [European Medicines Agency, 2011b],
and the records are being released in a staggered fashion. Due to its limited func-
tionality, EudraCT should be considered as a trials registry rather than a database
supporting evidence-based regulatory assessment. However, the EMA does publish
the European Public Assessment Reports (EPARs) of all centrally approved or refused
medicines on its website. Note that this does not include all applications submitted
to the EMA, as they can be withdrawn before a decision is reached [Eichler et al.,
2010]. The EPAR contains information on all trials, but is completely textual without
a semantic structure. Moreover, its information is directly derived from the submis-
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sion by the applicant, while there is no standardization concerning what information
should be provided, or in which format.

A.2.5 Medicinal product information

After the regulatory assessment, the information provided by the Summary of Prod-
uct Characteristics (SmPC) is made available to professionals and patients via the
drug label and package inserts. The SmPC is a text document containing impor-
tant information on the approved medicinal product, such as recommended dosage,
contra-indications, possible interactions with other medicines, and side effects. The
information is initially stored in the annex for marketing approval as governed by the
regulatory authorities [EMEA, 2005]. In Europe, the SmPC belongs to the EPAR. Al-
though most of the data contained within the SmPC originate from Phase I-III trials,
the label might be changed on the basis of new information obtained in the marketing
phase. The results of pharmacovigilance processes, in the EU summarized in Periodic
Safety Update Reports [EMEA, 1997], or the outcome of Phase IV clinical trials can
lead to such changes. This especially applies to drug profiling, which may result in
different safety instructions for patient subgroups, such as children. It must be noted
that information does not automatically go from clinical trial reports to the SmPC,
but the SmPC is the result of a dialogue between the pharmaceutical company and
the regulators, that is mainly based on the results obtained in clinical trials.

Both the EMA and the FDA have proposed initiatives for a more structured SmPC.
The EMA has introduced the Quality Review of Documents (QRD) and the Product
Information Management (PIM) standards. The QRD annotated template [European
Medicines Agency, 2010b] provides a loose verbal structure that should be followed
by the SmPCs [European Commision, 2009]. PIM is a standard for submitting data
in a structure defined by a Document Type Definition [European Medicines Agency,
2010a]. Both QRD and the more advanced PIM are designed for transferring infor-
mation in a structured format that facilitates translating the product information into
the official languages of all EU member states. The FDA has a Structured Product
Labeling (SPL) standard similar to PIM [Food and Drug Administration, 2010b] and
provides label information in SPL format; one can browse through the labels in a user-
friendly format on the DailyMed site (http://dailymed.nlm.nih.gov/dailymed/)
of the National Library of Medicine. However, QRD, PIM, and SPL do not impose se-
mantics on pharmacokinetic and pharmacodynamic properties, the main quantitative
clinical data visible in the SmPC. Some non-profit organizations provide condition-
specific drug labeling and/or trial information, for example, the Saskatchewan Lung
Association for lung diseases (http://www.sk.lung.ca/drugs) and the NCI for dif-
ferent types of cancer (http://www.cancer.gov/drugdictionary).

Although the efforts to realize publicly accessible SmPC information seem to have
paid off and both the EMA and the FDA have created very good SmPC databases,
they are not linked to any clinical trial results databases. Such functionality would
be preferable as it would enable one to trace the scientific evidence from a drug on
the market back to the original clinical trials. Moreover, the drug compendia merely
replicate the SmPC information and have been shown to lack consistency in drug-

http://dailymed.nlm.nih.gov/dailymed/
http://www.sk.lung.ca/drugs
http://www.cancer.gov/drugdictionary
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to-drug interactions due to the insufficient standardization of the terminology used
[Vitry, 2006].

A.2.6 Standards and data models

The realization that a common standard for clinical trial data would be beneficial
for the semantic interoperability of information systems gave birth to the Clinical
Data Interchange Standards Consortium (CDISC) in 1997. Currently, CDISC is a large
global non-profit organization with representatives from industry, regulatory author-
ities, and academia, all dedicated to the development of vendor-neutral, platform-
independent and freely available standards. One of the first standards established by
CDISC was the Study Data Tabulation Model (SDTM) standard. SDTM is a content
standard that describes the core variables and domains to be used when compos-
ing a clinical trial dataset to be submitted to the FDA. Other standards are the Trial
Design Model (TDM) to represent trials’ design and help interpret SDTM data sets,
the Protocol Representation Model (PRM) to standardize the content of trial proto-
cols, the Laboratory Data Model (LAB) for the exchange of clinical laboratory data,
the Analysis Data Model (ADaM) for an efficient generation, replication, and review
of statistical analysis results, the Clinical Data Acquisition Standards Harmonization
(CDASH) for identifying a basic dataset of elements that should be captured in a
CRF, and the Standards for Exchange of Nonclinical Data (SEND) for data collected
from preclinical toxicology studies. Finally, the Operational Data Model (ODM) stan-
dard defines the content and structure of CRFs and clinical databases in XML. It fa-
cilitates the acquisition, exchange, and archiving of operational data from several
sources during the course of a clinical trial. The importance of the CDISC standards
partly lies in the fact that the FDA has indicated that clinical trial data should be pre-
sented to the agency in the SDTM and ADaM formats. The operational standards
appear to be robust and well adopted, and the CDISC is expanding its activities to
establishing interoperability with EHR systems, to developing models that support
specific therapeutic areas, and to enabling cross-study analysis through the SHARE
initiative. Figure A.1 illustrates the role of the CDISC standards in the operational
management of clinical trials and in their regulatory submission. The CDISC website
(http://www.cdisc.org/) offers extensive documentation on the standards.

CDISC has engaged in several collaborations, of which the one with HL7 is of spe-
cial importance. HL7 has been developing standards for the electronic exchange of
medical, financial, and administrative data between health care information systems
since 1987. The foundation of HL7 standards development work is the Reference
Information Model (RIM), a high level object model of the health care domain. Sev-
eral standards are derived from the RIM, such as V3 Messages for the meaningful
interchange of data between health care systems, GELLO for rule-based decision
support, and the Clinical Document Architecture for semantically structured doc-
uments. CDISC has adopted the HL7 V3 Messaging standard for the exchange of
clinical trial data. For the FDA, this standard will replace the antiquated SAS trans-
port file submission format. By adopting the HL7 messaging standard, CDISC en-
sures that both the clinical trial data and their electronic exchange are standardized.

http://www.cdisc.org/
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Figure A.1: Standards in the operational management of clinical trials and their reg-
ulatory submission. Abbreviations: Analysis Data Model (ADaM), Clinical Data
Acquisition Standards Harmonization (CDASH), Clinical Trial Management System
(CTMS), Health Level 7 (HL7), Laboratory Data Model (LAB), Operational Data
Model (ODM), Protocol Representation Model (PRM), Trial Design Model (TDM),
Standards for Exchange of Nonclinical Data (SEND).

Moreover, through this collaboration, CDISC and other participating parties hope to
align the current CDISC standards for clinical trial data with the HL7 RIM standards
for healthcare. To achieve this, an overarching domain analysis model is being de-
veloped, called the Biomedical Research Integrated Domain Group (BRIDG) model,
which is intended to bridge the gap between clinical research and healthcare [Fridsma
et al., 2008]. Bridging this gap would offer new possibilities for the development of
true translational medicine, which means that data obtained in healthcare could be
more easily used in clinical research and vice versa.

The BRIDG project is a collaboration between the CDISC, HL7, the NCI and the
FDA that aims at bringing together the common elements of their various standards
to a shared view of semantics of the domain of protocol-driven research and its asso-
ciated regulatory artifacts [Biomedical Research Integrated Domain Group (BRIDG),
2010]. The model is intended to be implementation independent in the sense that
it models the problem domain, and not any specific solution. For example, unlike
some other CDISC standards it does not specify the format in which to submit data
to the FDA. BRIDG relies on external vocabularies and ontologies, but the specific
terminology used is up to the implementer. Due to the increasing complexity of the
BRIDG model, several sub-domain views are now delivered as part of the model.
These are the protocol representation, study conduct, adverse event and regulatory
perspectives. While the operational aspects of clinical trials are well covered by these
perspectives, a data analysis perspective is currently missing as there is no adequate
standard for statistical analysis. An ‘ontological perspective’ is planned in the form of
a Web Ontology Language (OWL) representation of the BRIDG model, which would
enable more formal validation, for example against the RIM. Sophisticated, highly
formalized ontologies can be used in advanced applications, such as computer-aided
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reasoning [Rubin et al., 2008], and thus might enable even broader use of the BRIDG
model.

A.2.7 Controlled terminologies

Controlled terminologies (synonymously: controlled vocabularies, coding systems)
of clinical terms are an important first step in the application of information technol-
ogy to medicine [Cimino, 1996]. Controlled terminologies predate information tech-
nology, e.g. the International Classification of Diseases (ICD) was already introduced
in 1893. The ICD formally codes diseases and enables (for example) the assessment of
disease incidence from medical records. Other terminologies fill other niches, for ex-
ample the Medical Subject Headings (MeSH) [Nelson et al., 2004] is used to index the
medical literature (e.g. PubMed meta data is coded in MeSH), and the Medical Dictio-
nary for Regulatory Activities (MedDRA) is used for coding safety data (e.g. adverse
events). Many of these specialized terminologies are organized into a strict hierarchy,
which means that some specific terms may fit in multiple places [Cimino, 1996]. The
Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) terminology
is an important attempt to create a clinical terminology with comprehensive cover-
age [Schulz et al., 2006]. It currently contains around 311,000 concepts and 800,000
terms [The International Health Terminology Standards Development Organisation,
2011]. It also goes beyond a simple hierarchical structure and provides the logical
relationships that hold between terms; over 1.3 million such relationships are cur-
rently modeled [Schulz et al., 2006, The International Health Terminology Standards
Development Organisation, 2011]. Due to this complex logical structure, SNOMED
CT could itself be viewed as an ontology.

The Unified Medical Language System (UMLS) [Lindberg et al., 1993, Bodenrei-
der, 2004] is essentially a collection of over 60 biomedical terminologies and a coding
of the relationships between them through the ‘Metathesaurus’. The ICD, SNOMED
CT and MeSH are among the terminologies integrated by the UMLS. Like SNOMED
CT, concepts in the UMLS are linked through a complex system of relationships.
Some of these relationships originate directly from the source terminologies, while
others are generated specifically for the Metathesaurus [Bodenreider, 2004]. How-
ever, the mappings between terminologies in the UMLS are far from complete [Nad-
karni and Darer, 2010] and mapping between terminologies, especially to SNOMED
CT, is an active area of research, e.g. [Nadkarni and Darer, 2010, Vikstrom et al., 2007].

Thus, there are many controlled terminologies for medicine (in fact, most were
not mentioned), but unfortunately there is as yet no standardization of which ones
should be used, and mapping between them is an open problem. For example, in
clinical research MedDRA is used to code Adverse Drug Events (ADEs), while the
healthcare area prefers the SNOMED CT dictionary. This hinders the interoperability
of the various information systems being used.
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A.3 Discussion

Over the last decades, several standardization bodies (notably CDISC and HL7) and
CTMS vendors have put great effort into automating the information-intensive as-
pects of drug development. In this area, the focus is shifting from core data man-
agement to electronic sourcing, such as linking to the EHR, and to using increasingly
advanced and standardized information flows. However, these systems and stan-
dards are still largely oriented toward the operation of single studies, while the issue
of storing the data of multiple studies in a structured and meaningful way remains
largely unsolved. Although progress has been made, there are no known large, suc-
cessful, and publicly available data warehouses, nor any standards that would enable
cross-study analyses of aggregate level results.

Figure A.2: A process view on drug development and regulation. The boxes with
round corners represent processes, and those with straight corners information prod-
ucts. The arrows indicate the transfer of evidence. The gray boxes are not discussed in
detail, but complete the picture of drug development and regulation. Abbreviations:
European Public Assessment Report (EPAR), Summary of Product Characteristics
(SmPC).

A process view on drug development and regulation (Figure A.2) shows that in
spite of the largely successful efforts to create an electronic infrastructure for infor-
mation management during the execution and regulatory submission of clinical tri-
als (top-left of the diagonal), both the dissemination and integration of the resulting
evidence to the public and the scientific community remain inefficient and ad-hoc
processes (bottom-right). The flow of information from the CTMS to the FDA in the
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US is standards-based and largely automated, but in other countries it is usually a
text-based transfer of aggregated results that does not support the independent veri-
fication or re-analysis of the submitted data.

Although the operational systems that help manage individual studies during the
development phase are mature and standardized, the subsequent transfer of evidence
to scientific journals, public registries, regulators, and (eventually) clinical practice is
a largely ad hoc and text-based affair. Consequently, a lot of effort is put into making
the results of trials public, but the current systems do not facilitate optimal use of
that information. Whereas the current system is centered on single studies, most
decision makers need a system that enables the integration of evidence across studies.
We believe that this issue is one of the root causes of the lack of transparency in the
processes of drug development and regulation.

Acknowledgements

We would like to thank Morris Swertz of the Groningen Bioinformatics Centre and
Marcel Hekking and Hans van Leeuwen of Merck, Sharp & Dohme for their insightful
comments.



APPENDIX B

Software deliverables

B.1 ADDIS

Full name Aggregate Data Drug Information System

Authors Gert van Valkenhoef, Tommi Tervonen,
Tijs Zwinkels, Maarten Jacobs, Hanno Koeslag,
Daniel Reid, Florin Schimbinschi, Ahmad Kamal,
Joël Kuiper, Wouter Reckman

Available from http://drugis.org/addis

Source code http://github.com/gertvv/addis

Releases 0.2 (2009-06-30), 0.4, 0.4.1, 0.6, 0.6.1, 0.8, 0.8.1, 0.10, 1.0, 1.2, 1.2.1, 1.4, 1.6,
1.6.1, 1.6.2, 1.8, 1.10, 1.10.1, 1.12, 1.12.1, 1.12.2, 1.12.3, 1.12.4, 1.14, 1.14.1, 1.16
(2012-10-04)

Size 69,034 lines of code (Java, XSD, XSL), 3,088 commits (2012-10-04)

Aggregate Data Drug Information System (ADDIS) provides decision support for
evidence-based benefit-risk decision making, and combines a structured database of
aggregate clinical trial results with capabilities for automated network meta-analysis
and multi-criteria decision modeling.

http://drugis.org/addis
http://github.com/gertvv/addis
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B.2 GeMTC

Full name Generate Mixed Treatment Comparisons

Authors Gert van Valkenhoef

Available from http://drugis.org/gemtc

Source code http://github.com/gertvv/mtc

Releases 0.2 (2010-05-07), 0.4, 0.6, 0.8, 0.8.1, 0.10, 0.10.1, 0.12, 0.12.1, 0.12.2, 0.12.3,
0.12.4, 0.14 (2012-10-01)

Size 22,184 lines of code (Java, XSD, R), 670 commits (2012-10-01)

GeMTC is a reusable software library (used by ADDIS), as well as a stand-alone
application and an R package for network meta-analysis (mixed treatment compari-
son) model generation. Given a data set giving the results data for a single outcome
over a network of clinical trials, the GeMTC software can generate analysis models
that can be run in the BUGS or JAGS software. It also incorporates the YADAS library
to run the analysis models directly, without the need to run BUGS or JAGS.

B.3 drugis.org common

Full name drugis.org common library

Authors Gert van Valkenhoef, Tommi Tervonen,
Tijs Zwinkels, Maarten Jacobs, Hanno Koeslag,
Daniel Reid, Florin Schimbinschi, Ahmad Kamal,
Joël Kuiper, Wouter Reckman

Available from –

Source code http://github.com/gertvv/drugis-common

Releases 0.1 (2010-09-16), 0.2, 0.4, 0.4.1, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7, 0.4.8, 0.4.9, 0.5,
0.5.1, 0.5.2, 0.5.3, 0.5.4 (2012-10-01)

Size 9,227 lines of code (Java), 223 commits (2012-10-01)

A shared library used by the ADDIS, GeMTC, and JSMAA applications. It im-
plements some common GUI components, presentation and beans functionality and
a threading model for running tasks with parallel sub-tasks, such as Markov Chain
Monte Carlo (MCMC) simulations.

http://drugis.org/gemtc
http://github.com/gertvv/mtc
http://github.com/gertvv/drugis-common
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B.4 hitandrun

Full name “Hit and Run” for sampling uniformly from convex shapes

Authors Gert van Valkenhoef

Available from http://cran.r-project.org/web/packages/hitandrun/

Source code http://github.com/gertvv/hitandrun

Releases 0.2 (2011-01-10)

Size 1,481 lines of code (C, R), 44 commits (2012-02-16)

This R package implements the “Hit and Run” method for sampling from convex
shapes defined by linear constraints. It also provides utilities to enable the easy gener-
ation of weights that can be used in simulation based multi-criteria decision analysis,
especially Stochastic Multicriteria Acceptability Analysis (SMAA).

B.5 odcread

Full name Read “.odc” Oberon Compound Documents

Authors Gert van Valkenhoef

Available from –

Source code http://github.com/gertvv/odcread

Releases –

Size 2,106 lines of code (C++), 52 commits (2012-02-16)

Most published code for network meta-analysis is provided as WinBUGS models.
These models are distributed in the binary “.odc” format, which is not easy to access
on operating systems other than Microsoft Windows (e.g. Mac OS X or GNU/Linux).
And, while the code is mostly compatible with JAGS, the binary distribution format
prevents doing this easily. This program enables converting “.odc” files to plain text.

http://cran.r-project.org/web/packages/hitandrun/
http://github.com/gertvv/hitandrun
http://github.com/gertvv/odcread
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B.6 jags-jni

Full name Java Native Interface to JAGS

Authors Gert van Valkenhoef

Available from –

Source code http://github.com/gertvv/jags-jni

Releases –

Size 1,111 lines of code (C++, Java), 14 commits (2012-02-16)

ADDIS is implemented in Java, and uses the YADAS implementation of Markov
chain Monte Carlo analysis. JAGS is a more generally accepted and advanced imple-
mentation of Markov chain Monte Carlo methods, but is implemented in C++. This
library provides a bridge between Java and JAGS using the Java Native Interface
(JNI), to enable the use of JAGS in ADDIS and other Java applications.

http://github.com/gertvv/jags-jni
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Abstract

Extreme Programming (XP) is an agile software development methodology
defined through a set of practices and values. Although the value of XP
is well-established through various real-life case studies, it lacks practices
for project management. In order to enable XP for larger projects, we pro-
vide the rolling forecast practice to support product planning, and an opti-
mization model to assist in release planning. We briefly evaluate the new
practices with a real-life case study.
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C.1 Introduction

Extreme Programming (XP) is one of the most “agile” software development method-
ologies. Unlike plan-driven methodologies (e.g. waterfall) that define software de-
velopment as a process, XP defines it through values and practices proven to work
well together in real-life software development [Beck, 1999, 2005]. A good project
management process and strong customer involvement are critical to project success
in XP [Chow and Cao, 2008]. Although XP provides a consistent set of practices, it
almost completely lacks practices for planning [Abrahamsson et al., 2003]. Therefore,
although XP has been reported to be tailorable for large-scale projects [Cao et al.,
2004], it is generally considered more suitable for small projects. Moreover, the ‘on-
site customer’ practice [Beck, 1999] is often hard to implement due to organizational
or time constraints [Rumpe and Schröder, 2002]. The XP customer is consistently
under significantly more pressure than the developers or other participants in the
project [Martin et al., 2004]. This causes the following problems (which become worse
as projects get larger):

1. Lack of management context: XP does not address the larger context in which
release planning takes place, or the long term project goals [Abrahamsson et al.,
2003]. This means that the customer or the developers may loose track of the
overall purpose of the system and consequently make sub-optimal planning
decisions.

2. User story overload: the number of user stories to be considered in release plan-
ning can make the planning process too demanding for the customer.

3. Prioritization stress: the responsibility of prioritizing user stories may cause
stress for the customer, even for a small number of stories. It is difficult to
foresee the consequences and adequacy of the prioritization [Martin et al., 2004],
and it is unclear whether the customer perceives business value in constantly
managing the development priorities [Grisham and Perry, 2005].

To address these problems, this paper proposes two new planning practices for XP.
First, we assist in product planning with the new practice of rolling forecasts (Sec-
tion C.2). This practice helps to provide management context often lacking in XP
(Problem 1 above). Second, we introduce an automated planning aid that can be used
during release planning to reduce the customer workload by generating a suggested
plan that satisfies simultaneously the constraints imposed by the customer and the
limited development resources (Section C.3). This addresses issues 2 and 3 identified
above. After introducing the practices, we demonstrate their use in a real-life study
(Section C.4), before giving concluding remarks (Section C.5).

C.2 Rolling Forecast for Product Planning

Expectation management is often the key difference between failed and succesful
software projects [Boehm and Turner, 2003]. XP originally proposes the ‘system meta-
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phor’ practice for expectation management [Beck, 1999]. However, in practice, ‘sys-
tem metaphor’ is difficult to apply and not useful, and is therefore often not im-
plemented [Rumpe and Schröder, 2002]. The ‘system metaphor’ has since been re-
moved from XP [Beck, 2005], and there is no replacement practice addressing expec-
tation management. The lack of an expectation management practice that is coherent
with the rest of the methodology can cause additional project risks, especially if the
customer is not constantly available on-site, as is often the case (see [Rumpe and
Schröder, 2002]).

Product planning should provide the context in which the release planning takes
place [Cohn, 2005]. In each release, before stories are elicited, the customers should
have a rough idea of the current state of the system and the direction of development.
This is promoted in XP by having the customer test and accept implemented stories
and by frequently giving system demonstrations. However, it is unclear how a shared
vision of the direction of future development can be established, especially when the
customer does not clearly know what (s)he wants. As a consequence, an upfront rigid
planning of the whole product in concrete terms is often almost impossible and can
also become counter productive (‘analysis paralysis’).

To support product planning, we introduce the practice rolling forecast. At project
inception, an overview of the product goals is drawn up by the customer together with
the project manager. The goals should be stated in a functional format but in such
a way that they cannot readily be broken into themes without further analysis and
elicitation. The goals serve to provide a shared vision of the system and to form a
basis for user story elicitation, but they are not requirements per se. It is advisable to
re-evaluate the overall goals periodically, e.g. after every fourth release.

After defining the product goals, a theme forecast is created by the customer, project
manager and a development team representative (e.g., an analyst or technical man-
ager). A theme forecast consists of a set of themes, their likely implementation order,
and a prediction of which themes will be realized in the coming two or three releases.
The theme forecast can be adapted in preparation of every release planning (before
story elicitation). Thus, a rolling forecast manages the expectations about the software
by iteratively developing theme forecasts based on overall product goals. Then, in re-
lease planning, the theme forecast is taken into account when deciding on the themes
and stories for the next release, while iteration planning takes into account (and ad-
justs) the release plan in choosing the stories and identifying the tasks for the next
iteration, i.e., the normal agile planning practices are applicable at the release and
iteration levels [Cohn, 2005, Beck and Fowler, 2001].

C.3 Supporting Release Planning Model

Our planning model is aimed to support release planning. The developers elicit sto-
ries from the customer and ask him/her to evaluate them with respect to their busi-
ness value on an interval scale, e.g. 1–5. Then the developers evaluate the stories’
implementation complexity in story points. The model provides a planning aid by
maximizing the implemented business value, taking into account constraints on im-
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Model 1 The optimization model as a side-constrained knapsack problem.

1. max b1x1 + . . .+ bn+mxn+m

2. s.t. c1x1 + . . .+ cn+mxn+m ≤ p
3. xj − xi ≤ 0 for all i, j where xi � xj
4.

∑n
i=1 aijxi − sjxn+j ≥ 0 for j = n+ 1, . . . , n+m

5.
∑n
i=1 aijxi − xn+j ≤ sj − 1 for j = n+ 1, . . . , n+m

6. x1, . . . , xn+m ∈ {0, 1}.

plementation complexity and precedence relations. A precedence relation is inter-
preted as a story not having value unless another (preceding) story is implemented.
Moreover, in XP, related stories are often grouped into themes that represent larger
pieces of related user functionality, and synergy effects occur when all stories within
a theme are implemented [Beck, 2005]. We model such effects by awarding extra
value to a theme of stories if they are implemented together in a single release. Note
that not all stories need to belong to a theme, and that one story can belong to more
than one theme. We don’t allow themes to span multiple releases in order to prevent
the supporting planning model being used for making longer term plans, that might
lower the overall agility of the XP development process. Longer-term product goals
should instead be handled with the other proposed practice, rolling forecast.

Our model assumes adherence to the standard best practices regarding story and
theme sizes. Stories should be small enough that they can easily be implemented in a
single iteration, and themes in a single release. Moreover, a theme should consist of
the minimal set of stories required to achieve the aforementioned synergy effect. Not
adhering to these guidelines may lead to inappropriate results from the model.

The story selection can be formulated as a knapsack problem (the complete inte-
ger programming formulation is given in Model 1). Let us denote by n the number
of uncompleted stories. Each story i has a business value of bi and implementation
complexity of ci story points. The total amount of story points that can be imple-
mented during a release is denoted by p. The decision problem is to select the most
valuable subset of stories to implement in a release (Model 1: 1), subject to a budget
constraint on the maximum implementation complexity (Model 1: 2). For each story
i ∈ {1, . . . , n}, let xi = 1 if story i is selected and xi = 0 otherwise (Model 1: 6).
Precedence of story i to story j is denoted by xi � xj and can be incorporated into
the optimization model by adding the following constraint: xj − xi ≤ 0 (Model 1: 3).

To model themes, let m be the number of themes and let sj (j ∈ {1, . . . ,m}) be
the number of stories within theme j. Theme j can be included in the model by
introducing a dummy story (n+ j), such that xn+j = 1 if and only if all stories within
theme j are implemented (Model 1: 4–5). The business value bn+j associated with
story (n + j) represents the additional value that is awarded when all stories within
theme j are implemented; its implementation complexity cn+j is set equal to zero.

We implemented the supporting release planning model using R1 and lp solve2.

1http://www.r-project.org
2http://lpsolve.sourceforge.net

http://www.r-project.org
http://lpsolve.sourceforge.net
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Figure C.1: The theme forecast for the beginning of the project (top) and the updated
forecast (bottom) before release 3 (R3). A solid arrow from A to B indicates A has
priority over B. The actually implemented themes from release 1 (R1) and 2 (R2) are
shown, as well as the expected themes for release 3 (dotted lines). The dashed arrow
indicates a high-level theme being refined as more information became available.

Our implementation is freely available online3.

C.4 Real-Life Example

We are involved in a research project with external customers that expect us to de-
velop software artifacts for the application domain of pharmacological decision sup-
port. Our development environment consists of 2 teams working part-time. In the fol-
lowing, we detail how we used the rolling forecast practice and our planning model
in the development of ADDIS4.

Rolling Forecast. Although we didn’t have clear requirements, we couldn’t wait
until the research results were present. In order to generate an overall view on the
project and the first theme forecast, we interviewed the external customers of the re-
search project. The initial forecast (Figure C.1, top) was constructed considering 16
goals, such as “the system should provide drug efficacy and safety information”. The
theme forecast consists of a detailed set of themes for the next release(s) and a more
global set of (likely) themes for the more distant releases. The forecast helped us to
elicit stories in release planning meetings with the main external customer, who also
chose the stories to implement. Figure C.1 shows how our mutual understanding of

3http://github.com/gertvv/xpplan
4http://drugis.org

http://github.com/gertvv/xpplan
http://drugis.org
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the project evolved during the first half-year of development (only the most impor-
tant themes are shown). We initially decided to focus on ‘benefit risk’ as a long-term
goal. This defined our priorities for the first two releases. We knew that to actually
implement ‘benefit-risk’, research input would be needed. As these results became
available only during the second release, the forecast was refined. Simultaneously,
we were able to identify additional themes that also support our long-term goals, as
well as two themes (’no empty screens’ and ’linkage’) that generate interest for our
software through usability.

Planning Model. We did the first release (ADDIS 0.2) as a burn-in for velocity es-
timation and to create an initial end-to-end working system5. Therefore we didn’t
estimate story business values while planning the first release. During the second re-
lease (ADDIS 0.4), we estimated story business values (scale: 1-5), story complexities
(scale: 1,2,3,5,8), technical precedence relations (none were identified) and themes. In
this release, we could identify 3 themes as being the most important. After the release
was completed, we ran our supporting optimization model for release planning. We
tested the sensitivity of the optimization model and differences between the model’s
solution and the stories we actually implemented by varying the theme value from
0 to 99. The results didn’t differ much from our manually planned implementation
order and the model showed to be robust with respect to changes in theme value: the
only differences emerged when the theme value changed from 0 to 1 and from 10 to
11. When theme values varied between 1− 10 the same two out of three themes were
included in the optimal solution whereas with theme value > 10 all three themes
were included.

C.5 Conclusions

Lack of management context, user story overload, and prioritization stress cause high
workload for the customer and hinder scalability of XP to larger projects. To over-
come these limitations, we propose two new practices: rolling forecast for product
planning and release planning support through an optimization model. We evalu-
ated the applicability of our new practices in a software development project and
found them useful. However, we do not have sufficient evidence to make claims
about their suitability for projects with different customer profiles, numbers of devel-
opers, or levels of developer competency. Our ongoing development project cannot
address these questions, and additional appropriate empirical studies should be ini-
tiated. Our future research will investigate how business value should be estimated
for themes, and how uncertainty can be made explicit in the planning process.

5Also known as a ‘walking skeleton’, http://alistair.cockburn.us/Walking+
skeleton

http://alistair.cockburn.us/Walking+skeleton
http://alistair.cockburn.us/Walking+skeleton
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Abstract

Context: Extreme Programming (XP) is one of the most popular agile soft-
ware development methodologies. XP is defined as a consistent set of val-
ues and practices designed to work well together, but lacks practices for
project management and especially for supporting the customer role. The
customer representative is constantly under pressure and may experience
difficulties in foreseeing the adequacy of a release plan.
Objective: To assist release planning in XP by structuring the planning
problem and providing an optimization model that suggests a suitable re-
lease plan.
Method: We develop an optimization model that generates a release plan
taking into account story size, business value, possible precedence relations,
themes, and uncertainty in velocity prediction. The running-time feasibil-
ity is established through computational tests. In addition, we provide a
practical heuristic approach to velocity estimation.
Results: Computational tests show that problems with up to 6 themes and
50 stories can be solved exactly. An example provides insight into uncer-
tainties affecting velocity, and indicates that the model can be applied in
practice.
Conclusion: An optimization model can be used in practice to enable the
customer representative to take more informed decisions faster. This can
help adopting XP in projects where plan-driven approaches have tradition-
ally been used.
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D.1 Introduction

Extreme Programming (XP) is an agile software development methodology. XP de-
fines software development through values and practices thought to work well to-
gether in practice [Beck, 1999, 2005]. In XP, good project management and strong
customer involvement are critical for project success [Chow and Cao, 2008]. Yet, XP
provides very little project management support [Abrahamsson et al., 2003] and the
XP customer is consistently under significantly more pressure than the developers or
other participants in the project [Martin et al., 2004]. Release planning in particular
has been characterized as a difficult problem in which many variables have to be con-
sidered and judgments are primarily relative [Carlshamre, 2002], leading to user story
overload: it is unpractical to consider everything, even with a moderate number of
stories. In addition, the customer may suffer from prioritization stress: it is difficult to
foresee the consequences and adequacy of prioritization [Martin et al., 2004], and it is
unclear if the customer perceives business value in constantly managing the develop-
ment priorities [Grisham and Perry, 2005]. Therefore, tool support for exploring the
solution space and for generating potential solutions is desired [Carlshamre, 2002].
In the distinction between art and science in release planning [Ruhe and Saliu, 2005],
planning in XP is traditionally all art [Beck and Fowler, 2001]. Easy to use low effort
planning software could enable a hybrid approach, but would need to be tailored for
the XP practices and values [Beck, 2005].

Quantitative models for supporting software release planning have been pro-
posed previously, but a recent systematic review concludes that there is a lack of di-
versity among the existing models [Svahnberg et al., 2010]. Quantitative approaches
for requirements prioritization based on value and effort in a plan-driven context
were developed in [Karlsson and Ryan, 1997, Carlshamre, 2002], and a general math-
ematical formulation for incremental development was proposed in [Ruhe and Saliu,
2005]. More fine-grained models that take into account resource constraints due to
developers with varying capabilities have been proposed for iterative development
[Greer and Ruhe, 2004, van den Akker et al., 2008, Ngo-The and Ruhe, 2009]. Several
approaches handle uncertainty in the parameters by generating multiple ‘good’ plans
[Greer and Ruhe, 2004, Ruhe and Greer, 2003, Ruhe and Saliu, 2005, Saliu and Ruhe,
2007, Ngo-The and Ruhe, 2008] rather than a single optimal one. Another model [Li
et al., 2010] can be used together with Scrum to deal with change, but it does not
explicitly consider uncertainty during planning.

If a high degree of requirements change is expected, agile methods are better
suited than plan-driven ones and consequently it may be necessary to adopt agile
methods outside of their home ground [Boehm and Turner, 2003]. To enable this, our
previous work introduced additional product and release planning practices for XP
[van Valkenhoef et al., 2010]. One of the introduced practices uses an optimization
model based on evaluating user stories not only on their sizes (i.e. implementation
effort), but also based on business value (on an interval scale), possible precedence
relations (i.e., story x needs to be completed before story y), and themes. In contrast
to the models described previously, our model is tailored to XP as it embraces change
by generating only a high-level global plan in terms of user stories, leaving room for
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Figure D.1: A Planning Onion [Cohn, 2005] showing the levels of granularity in XP
planning. XP core practices consider daily, iteration, and release planning.

agility in how these are realized, and which stories are left out when things do not
go according to the plan. This paper extends the model proposed in [van Valkenhoef
et al., 2010] to take into account uncertain project velocity.

There are few models that plan for uncertainty explicitly. In [Al-Emran et al.,
2010], a simulation-based approach is introduced for evaluating the impact of uncer-
tainty on the execution of release plans, but it does not enable generating a plan. Only
one of the models in the literature assumes a probability distribution for the effort
estimates and can generate plans with pre-specified completion probabilities [Ruhe
and Greer, 2003]. However, reality can (and will) deviate from the plan depending
on many other factors, and Bayesian models can aggregate these uncertainties in the
probability density of the velocity [Hearty et al., 2009]. In our model parameter un-
certainty is accounted for by assuming a probability distribution for the velocity.

The remainder of this paper is structured as follows. We start with a general
overview of the model in Section D.2. Then, in Section D.3, we give the integer pro-
gramming formulation of our quantitative planning model. Section D.4 addresses the
problem of theme value elicitation and Section D.5 introduces a simple method to es-
timate a probability distribution for the velocity. We evaluate the velocity estimation
heuristic with an example in Section D.6. Section D.7 evaluates the running time of
the model. Finally, we conclude and give directions for future work in Section D.8.

D.2 Release planning model

We present a model to assist the XP development team, especially the customer, in
the release planning process. First we briefly explain the context of planning in XP
and clarify the used terminology. Then we provide a global overview of the model
structure including the required inputs and produced outputs. Finally, we discuss
how the model fits within the XP development process and the potential caveats in
its application.
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D.2.1 Planning in XP

The central idea of planning in XP is to plan features to implement rather than the
development tasks necessary to implement these features. Planning features, repre-
sented by user stories, enables measuring progress through verifiable functionality.
When the number of stories to implement is large, functionally related stories can
be grouped into themes that form a consistent set of desirable features [Cohn, 2005].
This enables planning to take place at a higher level of abstraction before considering
the merits of individual stories. To deal with uncertainty, the planning process occurs
iteratively at release, iteration, and daily levels (see Figure D.1). In release planning,
the user stories (themes) to be developed for the next release are chosen. The devel-
opers coarsely estimate (in story points) the implementation effort required for each
story and the customer prioritizes the stories. Together they agree on a high level plan
consisting of critical stories that are likely to be implemented during the release, and
non-critical stories that may or may not be implemented. The release cycle is fixed
at 3–6 months [Cohn, 2005] and is made up of 1–4 week iterations [Beck, 1999, 2005,
Beck and Fowler, 2001, Cohn, 2005] that each result in a working system. In iteration
planning, the development team breaks stories with high priority down into tasks and
estimates the effort required to implement these tasks in order to decide which stories
can be implemented during the iteration. This also results in an updated release plan.
Work division and task scheduling takes place only at the daily planning level.

The amount of implementation effort (story points) available during a release de-
pends on the length of the release cycle, and the velocity of the development team. The
velocity is the number of story points that can be implemented during some unit of
time (e.g. an iteration). Traditionally the velocity is predicted through simple meth-
ods [Beck and Fowler, 2001], and uncertainty assessed using rules of thumb [Cohn,
2005]. However, there also exists a dynamic Bayesian network model for project ve-
locity monitoring and prediction in XP projects that explicitly quantifies uncertainty
[Hearty et al., 2009].

D.2.2 Model overview

Our model aims at supporting release planning by generating a release plan that
maximizes the implemented business value taking into account capacity constraints,
precedence relations, themes, and uncertainty in the velocity. Applying the model
results in a suggested release plan, which consists of sets of stories ordered according
to decreasing completion probability. During release planning, the team may decide
to accept the suggested plan as-is, or to amend it in any way they see fit. The release
plan serves as the main input for iteration planning.

Model inputs

Our model requires explicit elicitation of a number of parameters (responsible team
member in parentheses):

• story and theme values (customer)
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• story sizes (developers)

• preference precedences (customer)

• technical precedences (developers)

• a velocity prediction (tracker)

Story size and value elicitation should be done by analogy, so that a story’s size
and value is defined relative to the size and value of other (past and present) stories.
We propose using a 1-5 scale for story values as most customers are already familiar
with it due to its similarity with the Likert scale that is widely applied in question-
naires. If large differences in story values (i.e. more than a factor 5) exist, a wider scale
needs to be used. In some projects a metric of predicted monetary value [Hartmann
and Dymond, 2006] may be more suitable. Synergy effects should occur when all
stories within a theme are implemented. Similar to how [van den Akker et al., 2008]
implemented revenue-based dependencies, we model such effects by awarding extra
value to a theme of stories when all stories are implemented. How this extra value
can be specified is discussed in Section D.4. Story size is estimated in story points, for
which e.g. the Cohn scale [Cohn, 2005] can be used.

Two types of precedence relations exist: technical and preference. Technical prece-
dence means that a story cannot technically be implemented before another one. Al-
though stories in XP should be as independent as possible [Beck and Fowler, 2001],
sometimes dependencies are unavoidable [Carlshamre, 2002]. Preference precedence
allows the client to express preferences for stories, and is interpreted as a story not
having value unless another (preceding) story is implemented.

Imprecision in the estimated story sizes, variability in programmer productivity,
and uncertainty in other factors mean that release velocity is uncertain. This is ac-
counted for in our model by assuming a probability distribution f(v) for the total
number of story points that can be implemented during the release. Our method
can be used with any method that estimates f(v). The construction of f(v) con-
ditional on knowledge about the underlying factors is discussed further in [Hearty
et al., 2009]. We propose a simple heuristic estimation procedure for situations where
this approach is too demanding (Section D.5).

Model outputs

Due to uncertainty in velocity, the optimal planning decision is a stochastic problem.
In order to provide simple rules for release planning in practice, our model gives (dis-
joint) sets of stories with decreasing completion probabilities. Let pk ∈ (0, 1) denote
the completion probability of story set `k. Then, the story sets are ordered in such a
way that

pi > pj ; ∀i<j
Normally it is sufficient to distinguish three story sets corresponding to the Dynamic
Systems Development Method MoSCoW rules [Cohn, 2005, Stapleton, 1997]: ‘must
have’ (`1), ‘should have’ (`2), and ‘could have’ (`3). For example, we could set p1 =
0.9, p2 = 0.7, and p3 = 0.3 as the desired completion probabilities for (respectively)
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Figure D.2: The role of our proposed optimization model in the XP planning pro-
cess. Release and iteration planning are shown and the other levels of planning are
omitted.

the ‘must have’, ‘should have’, and ‘could have’ sets. Optionally a ‘won’t have’ set
can be used to store the rest of the story backlog. A similar approach is taken in [Mi-
randa, 2002], where it is proposed to plan time-bound projects in several increments
with decreasing completion probabilities. However, in our model, the story sets do
not correspond directly to iterations as the scope of an iteration is decided in iteration
planning.

D.2.3 Discussion

The model we propose fits well in the XP development process, as it assists in release
planning while leaving the other XP practices intact. Moreover, we minimize the
data elements that have to be specified. Compared to standard XP planning, we
additionally elicit the value of stories and themes, which is already implicit in the
current process because the customer prioritizes the stories. For velocity we use a
probability distribution rather than just a point estimate, but the required calculations
are based on historical data that is already available (see Section D.5). The role of the
model within the XP planning cycle is illustrated in Figure D.2.

The model is not intended for planning multiple releases, as doing so might lower
the overall agility of the XP development process. However, in some situations it may
be crucial for the project success to plan multiple releases ahead, for example due
to marketing reasons. Such long term plans can be handled otherwise, e.g. with
the rolling forecast practice [van Valkenhoef et al., 2010]. In addition, our model
assumes adherence to the standard best practices regarding story and theme sizes
[Cohn, 2005]. Stories should be small enough so that they can easily be implemented
in a single iteration. Themes should be small enough to be implemented in a single
release. Moreover, the customer should understand that a theme should consist of the
minimal set of stories required to achieve the aforementioned synergy effect, analogous
to the concept of minimum marketable features [Denne and Cleland-Huang, 2003,
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2004]. This ensures that the development team does not overcommit itself to a specific
theme, thereby missing an opportunity to create more value elsewhere.

In iteration planning, the ‘must have’ stories are considered first. Since the com-
pletion probabilities pk < 1, it is to be expected that not all planned stories will be
implemented. Stories that are unlikely to be completed in the current release will be
considered for inclusion in the next one, which is planned near the end of the current
one.

D.3 Nested knapsack formulation

Our planning model is an instance of a nested knapsack problem [Dudziński and
Walukiewicz, 1987]. It is defined by having a set of “knapsacks”, each with a limited
capacity, and a set of items, each with a size and value. The knapsacks themselves are
nested, meaning that they are ordered in such a way that each knapsack contains the
preceding one. The problem is then to maximize the value that fits into these knap-
sacks without exceeding their size limits. The problem is known to be NP-complete
[Dudziński and Walukiewicz, 1987].

Let us define an index set of stories S = {1, . . . , n} and of themes T = {n +
1, . . . , n+m}. All stories si and themes tj have a business value, respectively ui and
uj , and stories additionally have a size ci:

ui ∈ N ; i ∈ S ∪ T
ci ∈ N ; i ∈ S

Let L = {1, . . . , q} denote the index set of story sets. Define q nested knapsacks,
κ1, . . . , κq , such that

κk = ∪i≤k`i ; k ∈ L

In contrast to the story sets, which are disjoint, each knapsack contains all preced-
ing knapsacks. Associated with each knapsack κk is a budget bk ∈ N that can be
completed with a probability of at least pk:

bk = bF−1
c (pk)c ,

where Fc denotes the complementary cumulative distribution function of the esti-
mated project velocity (see Figure D.3), derived from the estimated velocity distribu-
tion f(v).

We define the decision variables for including story si in set `k and completing
theme tj by set `k as xi,k and yj,k, respectively:

xi,k ∈ {0, 1} ; i ∈ S, k ∈ L
yj,k ∈ {0, 1} ; j ∈ T, k ∈ L
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Figure D.3: Completion probabilities pi and the complementary cumulative distribu-
tion Fc(v) of the release velocity v define budgets for the ‘must have’ (b1), ‘should
have’ (b2) and ‘could have’ (b3) sets.

Now, we optimize the following objective function:

max
∑
k∈L

∑
i∈S

xi,kpkui +
∑
k∈L

∑
j∈T

yj,kpkuj

s.t.
∑
i∈S

k∑
h=1

cixi,h ≤ bk ∀k∈L (D.1)∑
k∈L

xi,k ≤ 1 ∀i∈S (D.2)

Constraint (D.2) ensures that the decision variable xi,k is set to 1 only for the set in
which story si is included. The constraints in (D.1) are formulated in such a way that
the story sizes included in sets prior to `k are included when evaluating the budget
for knapsack κk. This is illustrated in Figure D.4.

The dependencies between completing themes and completing the individual sto-
ries within themes are accounted for by introducing a dummy decision variable

zj,k ∈ {0, 1} ; j ∈ T, k ∈ L

such that zj,k = 1 iff all stories in theme tj are included in knapsack κk. To express
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Figure D.4: A two-knapsack problem with budgets b1 and b2. The shown solution has
a story s1 in the ‘must have’ set and another story s2 in the ‘should have’ set. Story
s1 is counted towards the budget of both knapsacks, and story s2 uses the left-over
capacity of the first knapsack to fit into the second.

this mathematically, we need the following constraints:(∑
i∈S

k∑
h=1

ai,jxi,h

)
− ejzj,k ≥ 0 ; ∀k∈L∀j∈T (D.3)

(∑
i∈S

k∑
h=1

ai,jxi,h

)
− zj,k ≤ ej − 1 ; ∀k∈L∀j∈T (D.4)

Where ai,j = 1 if story si is included in theme tj and ai,j = 0 otherwise, and ej is
the number of stories in theme tj (i.e. ej =

∑
i∈S ai,j). If at least one of the stories

belonging to theme j is not included in knapsack κk,
∑
i∈S
∑k
h=1 ai,jxi,h < ej , in

which case (D.3) ensures that zj,k = 0. Similarly, if all stories belonging to theme tj
are completed in knapsack κk,

∑
i∈S
∑k
h=1 ai,jxi,h = ej , in which case (D.4) ensures

that zj,k = 1. Finally, to make sure that yj,k is true iff zj,k is the first (in terms of k) for
which zj,k = 1, we add the following constraints:

yj,1 = zj,1 ∀j∈T (D.5)
yj,k = zj,k − zj,k−1 ∀j∈T∀k∈L−{1} (D.6)

To complete the model, we note that if there are precedence relations, i ≺ j (i
precedes j), they can be represented as

xj,k −
k∑
h=1

xi,h ≤ 0 ∀i≺j∀k∈L (D.7)

Both technical and preference precedence relation are implemented in the same way,
using constraint (D.7).

D.4 Theme valuation

The objective function of our optimization model combines theme and story values
to obtain the total business value. This makes the theme values difficult to evaluate
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because on the one hand the value of completing a theme is an addition to com-
pleting the contained stories, whereas on the other hand all values should be on the
same commensurable scale. We propose three theme elicitation approaches: constant
theme value, ordinal evaluation and an indifference method.

A constant value c is appropriate if all themes have approximately the same busi-
ness value to the customer. Ordinal evaluation of theme values is based on ranking
the themes in an ascending order: the theme with the lowest business value is ranked
at place 1 and the theme with the highest business value is ranked at place m. The
theme value that is subsequently assigned to each of the themes should satisfy the
ordering relationR. A simple approach would be using a linear transformation func-
tion h(π) = cπ, where π is the permutation of the theme index vector according to R
(i.e. the j-th element of π denotes the rank of theme j). For example, if we have three
themes, and our customer ranks them as t3 < t1 < t2 (i.e. t3 is least important), then
π = (2, 3, 1) and hence the value of t1 would be 2c.

The indifference method allows direct evaluation of the theme value. The idea
is to consider a theme which (hypothetically) is one story away from being com-
pleted, and ask the customer whether he would like to complete the remaining story,
or rather complete a set E of other (non-related) stories outside the theme. Such
questions are asked until the customer states that he is indifferent between the two
for some E. The theme value is then the difference of the sum of values of stories in
E and the value of the remaining story in the theme. For example, if the last story to
complete has value 3, and the customer is indifferent between completing the theme
and completing three other stories with values 2, 3, and 5, then the value of the theme
is (2 + 3 + 5) − 3 = 7. The indifference method is similar to the standard technique
used in utility function elicitation (cf. [Keeney and Raiffa, 1976]).

D.5 Velocity estimation

A formal but simple velocity estimation method is extremely important as it has been
shown that project management is often overly optimistic about the width of the 90%
confidence interval for project duration [Jørgensen et al., 2004]. We propose a method
that is consistent with software engineering literature from both the plan-driven and
agile research communities.

We measure iteration velocity with a probability distribution on a scale of [0,∞)
story points. The observed format of the distribution often corresponds to the log-
normal one [Bourque et al., 2007]. A choice of a log-normal distribution is also con-
sistent with the Bayesian model in [Hearty et al., 2009] as well as with the method of
deriving confidence intervals for velocity proposed in [Cohn, 2005] and with NASA
SEL guidelines [NASA, 1990]. The Bayesian network model [Hearty et al., 2009] can
provide good velocity estimates, but is quite complex. We propose here a simple
extension of the yesterday’s weather model [Beck and Fowler, 2001].

Let us denote by v a vector of velocity observations from previous iterations. If
we have a reasonable amount of observations, say at least five, we can estimate the
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log-normal velocity distribution through maximum likelihood with:

VI ∼ logN (µ̂, σ̂2)

where µ̂ is the mean of the log-transformed observations ln(v) and σ̂2 is the sample
variance sd(ln(v))2. To estimate release velocity, we view a release as a collection
of nR independent iterations. Then VR is the sum of nR log-normal distributions,
and can be estimated using the Fenton-Wilkinson 2-moment approximation [Fenton,
1960] simplified for equal mean and variance:

VR ∼ logN (µR, σ
2
R)

σ2
R ≈ ln(exp(σ̂2)− 1 + nR)− lnnR

µR ≈ µ̂+ lnnR +
1

2
(σ̂2 − σ2

R)

The sample variance is overly precise in the beginning of a new project where
there are only a small number (i.e. < 5) of observations, so instead of estimating
it through maximum likelihood, we should take into account prior beliefs. A full
Bayesian approach is possible but complex. We suggest using the following weighted
sum (approximating an inverse-Gamma prior with prior degrees of freedom ν0 = 2):

σ̂ =
σ0 + nsd(ln(v))

1 + n
(D.8)

where n is the number of observations and σ0 is a prior belief of sample error that has
a weight equal to one observation of true velocity. Note that (D.8) is applicable only
if n ≥ 2, otherwise the sample error is not defined. It should be expected that if σ0 is
reasonably large, σ̂ will decrease as more observations become available.

The equation (D.8) requires a prior belief to be specified. In the complete absence
of velocity observations, [Cohn, 2005] proposes using σ0 = 0.29. This falls between
the levels suggested by NASA SEL guidelines for plan-driven projects that have com-
pleted the requirements analysis (σ0 = 0.34) and preliminary design (σ0 = 0.21)
phases, respectively. We suggest to err on the safe side and take σ0 = 0.34. Ta-
ble D.1 presents rules of thumb for specifying σ0 for several levels of uncertainty, and
gives confidence intervals at the 90% level conventional in software development
[Jørgensen et al., 2004]. Note that [Cohn, 2005] suggests that the sample error should
approach 0.06 as the number of iterations increases (see Table D.1).

D.6 Example

We are involved in a research project that includes a software deliverable. In a sci-
entific setting, developers often have other tasks that overlap with the classical sep-
aration between the developer and the customer (see e.g. [Wood and Kleb, 2003]).
Despite partly being customers for ourselves, we also have external customers that
expect us to develop software artifacts that support a new way of working in the ap-
plication domain of pharmacological decision making. The ‘how’ would be discov-
ered only during the course of the project by exploring ways in which the software
can support business processes.
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Phase Suggested CI σ0

Requirements Known * [µ̂/2.0, µ̂ ∗ 2.0] 0.42
Requirements Analyzed * [µ̂/1.75, µ̂ ∗ 1.75] 0.34
< 2 Iterations Completed [µ̂ ∗ 0.60, µ̂ ∗ 1.60] 0.29
Preliminary Design * [µ̂/1.40, µ̂ ∗ 1.40] 0.21
Detailed Design * [µ̂/1.25, µ̂ ∗ 1.25] 0.14
2 Iterations Completed [µ̂ ∗ 0.8, µ̂ ∗ 1.25] 0.14
3 Iterations Completed [µ̂ ∗ 0.85, µ̂ ∗ 1.15] 0.08
> 3 Iterations Completed [µ̂ ∗ 0.90, µ̂ ∗ 1.10] 0.06

Table D.1: Rules of thumb for uncertainty in velocity, from [NASA, 1990] (marked
with *) and [Cohn, 2005]. σ0 for a log-normal distribution to produce the CIs at the
90% level is given to two decimal places.

Our development environment consists of 2 teams working part-time. We pro-
grammed in Java SE 1.5 with Eclipse. All our code is available as open source. More
information about the project and links to the code repository and to downloadable
releases can be found at http://www.drugis.org. We retrospectively evaluated our
velocity estimation techniques using data from this project.

We did the first release (ADDIS 0.2) as a burn-in for velocity estimation and for
creating an initial end-to-end working system. Therefore we did not estimate story
business values while planning the first release. During the second and third releases
(ADDIS 0.4 and 0.6), we estimated story business values (scale: 1-5), story sizes (scale:
1, 2, 3, 5, 8), technical precedence relations and themes.

In the first release we had 4-week iterations, and we planned switching to 2-week
iterations. With this in mind, the corrected velocity was v1 = (8.5, 10, 9). With
σ0 = 0.34, the estimated velocity is VI ∼ logN (2.2, 0.152). And, with 5 iterations,
VR ∼ logN (3.9, 0.0312), the complementary cumulative distribution is shown in Fig-
ure D.5(a). Velocity for the second release was v2 = (7, 16, 17, 9, 18). This irregular
sequence was the result of doubling the size of our development team after the first
iteration. Actual velocity was well outside the predicted 95% confidence interval,
showing that our decision to hire additional programmers was effective. This is re-
flected in both increased expected velocity and increased uncertainty for the third re-
lease predicted on the basis of v2: VR ∼ logN (4.3, 0.0972), as shown in Figure D.5(b).
For this release, actual velocity was slightly over b1, the ‘must have’ budget.

In case the predicted velocity distribution is like the one in Figure D.5(a), the de-
terministic model we proposed previously [van Valkenhoef et al., 2010] may be ap-
propriate due to the small budget for ‘should have’ and ‘could have’. However, with
greater uncertainty, such as in Figure D.5(b), a probabilistic method such as the one
proposed here is more suited. Note that if for some reason the actual velocity dif-
fers greatly from the predicted, replanning may be required. The planning model can
then be used to suggest a revised plan for the remaining iterations.

We applied the planning model retrospectively to the ADDIS 0.6 planning prob-
lem, obtaining a plan reasonably similar to the one actually implemented. For AD-
DIS 0.8, we used the model to create a preliminary plan that was adopted with some

http://www.drugis.org
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Figure D.5: The complementary cumulative velocity distributions estimated for re-
lease 2 (from release 1 velocity) and release 3 (from release 2 velocity). Due to higher
variability during release 2, the estimated velocity is much less certain. The ◦ shows
the velocity that was actually achieved.
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modifications by our customer. Although our planning model reduced the time and
effort required in release planning, managing the stories and entering them in the
model was quite cumbersome due to lack of usable software that would integrate
story management.

D.7 Computational tests

We implemented the supporting release planning model using R [R Development
Core Team, 2008] and lp solve [Berkelaar et al.] (using a branch-and-bound al-
gorithm). Our implementation is freely available online at http://github.com/

gertvv/xpplan. The nested knapsack problem is NP-complete, but an exact so-
lution is often feasible in practice due to small problem instance sizes. Knapsack
problems are widely analyzed in the literature (see e.g. [Pisinger, 1997]), but our
model has a non-standard structure. For this reason, we analyzed the running time
with randomly generated problem instances with different numbers of stories and
themes. The story values and sizes were sampled from {1, 2, 3, 4, 5} and {1, 2, 3, 5, 8},
respectively. The completion probabilities were p = (0.9, 0.7, 0.3), and the velocity
distribution

VR ∼ logN (0.5cT , 0.342) ; cT =
∑
i∈S

ci.

The themes were valued through ordinal evaluation (Section D.4) with random ranks
and un+j = 5π(j). Each theme contained between 3 and 10 randomly assigned sto-
ries.

We tested running times for 10 to 50 stories (step size 5) with 2 to 10 themes (step
size 2). For each problem size we ran 10 tests on an Intel Core 2 Duo 3Ghz CPU
with Ubuntu 9.10 and no relevant extra load during the tests. We set a time-out of 2
hours for running the model. Figure D.6 illustrates the minimum, maximum, mean,
and median running times of different problem sizes. The spikes in max and mean
running times are due to problems that were not solved within the time limit. This
occurred once for 35 stories with 10 themes, twice for 45 and 50 stories with 10 themes,
and twice for 50 stories with 8 themes.

The mean running times in Figure D.6 show that the problem gets harder as the
amount of themes increases. The maximum running times indicate that problem in-
stances with 2-6 themes were solvable within one hour. With 2 or 4 themes the median
running times are very low, which hints that a lot larger problems could be solved ex-
actly. The minimum running times are relatively low for all problem sizes, so some
instances are very easy to solve even for larger amounts of themes.

D.8 Conclusions

Release planning in Extreme Programming (XP) can cause prioritization stress for
the customer and is impractical in larger projects. To remedy this, we developed an
optimization model to support release planning. Our model evaluates the stories

http://github.com/gertvv/xpplan
http://github.com/gertvv/xpplan
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with regard to their size, business value, and technical and preference precedence
relations, and incorporates synergy effects among stories with themes. The model
assumes availability of a velocity distribution. We discussed simple rules of thumb
for estimating an appropriate log-normal velocity distribution and evaluated them
with an example. Our experiences suggest that the model is both feasible and useful
in practice.

It has been argued that there is a lack of diversity among the existing release plan-
ning models [Svahnberg et al., 2010]. We address this by introducing a model com-
patible with XP values and practices [Beck, 2005] that is optimized for higher levels
of requirements change and uncertainty in the velocity estimates by requiring less
‘up front’ specification and estimation. Most other models, in contrast, do not con-
sider uncertainty in release velocity and operate at a more fine-grained level of detail
(e.g. [Greer and Ruhe, 2004, Saliu and Ruhe, 2007, van den Akker et al., 2008]). One
could also consider imprecise story sizes [Ruhe and Greer, 2003], but our approach,
when combined with an appropriate velocity estimation method (e.g. [Hearty et al.,
2009]), appears to be more general. In the framework of Boehm and Turner [Boehm
and Turner, 2003], our model can be considered more ‘agile’, while the existing mod-
els exhibit more ‘discipline’. Still, the use of our model introduces some additional
discipline to enable XP outside its home ground.

The optimization model is of exponential complexity, but our computational tests
showed that problems with up to 6 themes and 50 stories can be solved exactly in less
than an hour with a standard PC. This is sufficient for practical use in up to medium
sized projects. However, [Carlshamre, 2002] suggests that for quantitative models
to be useful, running time should be minimized (immediate interaction) and several
good solutions may be more valuable than a single optimal one. Future research
should develop and evaluate approximate methods to address this. For example,
the genetic algorithm proposed in [Greer and Ruhe, 2004] solves a similar problem,
and might be adaptable to our model. In addition, we chose to model dependencies
through precedence relations and themes, although other relations (e.g. exclusion
[van den Akker et al., 2008]) could be considered as well. Future research should
address which model features are actually useful in supporting XP release planning,
and which ones just cause additional cognitive burden. Finally, usable software is
important to enable the use of quantitative planning methodologies such as the one
presented here. A simple planning model implemented in a “provotype” tool with
a graphical user interface was presented and evaluated in [Carlshamre, 2002], and
the requirements for release planning and story management software in an agile
environment were discussed in [Koponen, 2008]. Our model can be implemented
as a decision support tool in such a system. However, a planning model and soft-
ware alone cannot solve the project management problems for larger projects. Other
socio-technical aspects of agile software management should also be addressed. A
recent review [Dybå and Dingsøyr, 2008] has shown that currently there aren’t suf-
ficient empirical studies on agile software management to draw firm conclusions on
“goodness” of the methods. We acknowledge that this holds also with respect to our
work, and empirical studies should be initiated to consider the model’s applicability
on different types of development projects.
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A. Irs, T. Janse de Hoog, and L. Rägo. Development of marketing authorisation procedures
for pharmaceuticals. In N. Freemantle and S. Hill, editors, Evaluating Pharmaceuticals for
Health Policy and Reimbursement, pages 3–23. Blackwell Science Ltd, 2004. doi: 10.1002/
9780470994719.ch2.

ISO TC 215 (Health Informatics). ISO/PRF TS 29585: Deployment of a clinical data warehouse,
2011. URL http://www.iso.org/iso/catalogue_detail.htm?csnumber=45582.

A. R. Jadad, D. J. Cook, A. Jones, T. P. Klassen, P. Tugwell, M. Moher, and D. Moher. Methodol-
ogy and reports of systematic reviews and meta-analyses: a comparison of Cochrane reviews
with articles published in paper-based journals. Journal of the American Medical Association,
280:278–280, 1998. doi: 10.1001/jama.280.3.278.

J. Jia, G. W. Fischer, and J. S. Dyer. Attribute weighting methods and decision quality in the
presence of reponse error: a simulation study. Journal of Behavioral Decision Making, 11:85–
105, 1998.

M. Jørgensen, K. Teigen, and K. Moløkken. Better sure than safe? over-confidence in judgement
based software development effort prediction intervals. Journal of Systems and Software, 70:
79–93, 2004. doi: 10.1016/S0164-1212(02)00160-7.

J. Kaiser. Making clinical data widely available. Science, 322(5899):217–218, 2008. doi: 10.1126/
science.322.5899.217.

A. Kangas, J. Kangas, R. Lahdelma, and P. Salminen. Using SMAA-2 method with dependent
uncertainties for strategic forest planning. Forest Policy and Economics, 9:113–125, 2006. doi:
10.1016/j.forpol.2005.03.012.

J. Kangas and A. Kangas. Multicriteria approval and SMAA-O method in natural resources
decision analysis with both ordinal and cardinal criteria. Journal of Multi-Criteria Decision
Analysis, 12(1):3–15, 2003. doi: 10.1002/mcda.344.

J. Kangas, J. Hokkanen, A. Kangas, R. Lahdelma, and P. Salminen. Applying stochastic multi-
criteria acceptability analysis to forest ecosystem management with both cardinal and ordi-
nal criteria. Forest Science, 49(6):928–937, 2003.

T. J. Kaptchuk, E. Friedlander, J. M. Kelley, M. N. Sanchez, E. Kokkotou, J. P. Singer, M. Kowal-
czykowski, F. G. Miller, I. Kirsch, and A. J. Lembo. Placebos without deception: A ran-
domized controlled trial in irritable bowel syndrome. PLoS ONE, 5(12):e15591, 2010. doi:
10.1371/journal.pone.0015591.

S. Karimi, S. Pohl, F. Scholer, L. Cavedon, and J. Zobel. Boolean versus ranked querying for
biomedical systematic reviews. BMC Medical Informatics and Decision Making, 10:58, 2010.
doi: 10.1186/1472-6947-10-58.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements. IEEE Computer,
14(5):67–74, 1997. doi: 10.1109/52.605933.

R. Keeney and H. Raiffa. Decisions with multiple objectives: preferences and value tradeoffs. Wiley,
New York, 1976.

S. Kiritchenko, B. de Bruijn, S. Carini, J. Martin, and I. Sim. ExaCT: automatic extraction of
clinical trial characteristics from journal publications. BMC Medical Informatics and Decision
Making, 10:56, 2010. doi: 10.1186/1472-6947-10-56.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45582


214 Bibliography

Y. M. Kong, C. Dahlke, Q. Xiang, Y. Qian, D. Karp, and R. H. Scheuermann. Toward an
ontology-based framework for clinical research databases. Journal of Biomedical Informatics,
44(1):48–58, 2011. doi: 10.1016/j.jbi.2010.05.001.

J. Koponen. Agile Release Planning in a Product Backlog Tool. MSc thesis, 2008. URL http:
//www.tml.tkk.fi/˜anttiyj/Koponen-Agile.pdf.

K. Krleza-Jeric, A.-W. Chan, K. Dickersin, I. Sim, J. Grimshaw, C. Gluud, and the Ottawa Group.
Principles for international registration of protocol information and results from human tri-
als of health related interventions: Ottawa statement (part 1). BMJ, 330(7497):956–958, 2005.
doi: 10.1136/bmj.330.7497.956.

R. Lahdelma and P. Salminen. SMAA-2: Stochastic multicriteria acceptability analysis for
group decision making. Operations Research, 49(3):444–454, 2001. doi: 10.1287/opre.49.3.
444.11220.

R. Lahdelma and P. Salminen. Classifying efficient alternatives in SMAA using cross confidence
factors. European Journal of Operational Research, 170(1):228–240, 2006a. doi: 10.1016/j.ejor.
2004.07.039.

R. Lahdelma and P. Salminen. Stochastic multicriteria acceptability analysis using the data
envelopment model. European Journal of Operational Research, 170(1):241–252, 2006b. doi:
10.1016/j.ejor.2004.07.040.

R. Lahdelma, J. Hokkanen, and P. Salminen. SMAA - stochastic multiobjective acceptabil-
ity analysis. European Journal of Operational Research, 106(1):137–143, 1998. doi: 10.1016/
S0377-2217(97)00163-X.

R. Lahdelma, P. Salminen, and J. Hokkanen. Locating a waste treatment facility by using
stochastic multicriteria acceptability analysis with ordinal criteria. European Journal of Op-
erational Research, 142(2):345–356, 2002. doi: 10.1016/S0377-2217(01)00303-4.

K. Lee, P. Bacchetti, and I. Sim. Publication of clinical trials supporting successful new drug
applications: A literature analysis. PLoS Medicine, 5(9):e191, 09 2008. doi: 10.1371/journal.
pmed.0050191.

S. Lewis and M. Clarke. Forest plots: trying to see the wood and the trees. BMJ, 322:1479–1480,
2001. doi: 10.1136/bmj.322.7300.1479.

C. Li, M. van den Akker, S. Brinkkemper, and G. Diepen. An integrated approach for require-
ment selection and scheduling in software release planning. Requirements Engineering, 15(4):
375–396, 2010. doi: 10.1007/s00766-010-0104-x.

L. Liberti, A. Breckenridge, H. G. Eichler, R. Peterson, N. McAuslane, and S. Walker. Expediting
patients’ access to medicines by improving the predictability of drug development and the
regulatory approval process. Clinical Pharmacology and Therapeutics, 87:27–31, Jan 2010. doi:
10.1038/clpt.2009.179.

D. A. B. Lindberg, B. L. Humphreys, and A. T. McCray. The unified medical language system.
Methods Inf Med, 32:281–291, 1993.

R. Los, A. van Ginneken, and J. van der Lei. Extracting data recorded with OpenSDE: Possibil-
ities and limitations. Int J Med Inform, 74:473–480, 2005.

http://www.tml.tkk.fi/~anttiyj/Koponen-Agile.pdf
http://www.tml.tkk.fi/~anttiyj/Koponen-Agile.pdf


Bibliography 215

L. Lovász. Hit-and-run mixes fast. Mathematical Programming, 86(3):443–461, 1999. doi: 10.
1007/s101079900093.

L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM Journal on Computing, 35(4):985–
1005, 2006. doi: 10.1137/S009753970544727X.

G. Lu and A. E. Ades. Combination of direct and indirect evidence in mixed treatment com-
parisons. Statistics in Medicine, 23(20):3105–3124, 2004. doi: 10.1002/sim.1875.

G. Lu and A. E. Ades. Assessing evidence inconsistency in mixed treatment compar-
isons. Journal of the American Statistical Association, 101(474):447–459, 2006. doi: 10.1198/
016214505000001302.

G. Lu and A. E. Ades. Modeling between-trial variance structure in mixed treatment compar-
isons. Biostatistics, 10(4):792–805, 2009. doi: 10.1093/biostatistics/kxp032.

G. Lu, A. E. Ades, A. J. Sutton, N. J. Cooper, A. H. Briggs, and D. M. Caldwell. Meta-analysis
of mixed treatment comparisons at multiple follow-up times. Statistics in Medicine, 26(20):
3681–3699, 2007. doi: 10.1002/sim.2831.

G. Lu, N. J. Welton, J. P. T. Higgins, I. R. White, and A. E. Ades. Linear inference for mixed
treatment comparison meta-analysis: A two-stage approach. Research Synthesis Methods, 2
(1):43–60, 2011. doi: 10.1002/jrsm.34.

T. Lumley. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine, 21
(16):2313–2324, 2002. doi: 10.1002/sim.1201.

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS – a Bayesian modelling frame-
work: concepts, structure, and extensibility. Statistics and Computing, 10(4):325–337, 2000.
doi: 10.1023/A:1008929526011.

L. D. Lynd and B. J. O’Brien. Advances in risk-benefit evaluation using probabilistic simula-
tion methods: an application to the prophylaxis of deep vein thrombosis. Journal of Clinical
Epidemiology, 57(8):795–803, 2004. doi: 10.1016/j.jclinepi.2003.12.012.

R. Marks. Validating electronic source data in clinical trials. Control Clin Trials, 25(5):437–446,
2004. doi: 10.1016/j.cct.2004.07.001.

G. Marsaglia. Choosing a point from the surface of a sphere. Annals of Mathematical Statistics,
43(2):645–646, 1972. doi: 10.1214/aoms/1177692644.

A. Martin, R. Biddle, and J. Noble. The XP customer role in practice: three studies. In Agile
Development Conference (ADC2004), Salt Lake City, Utah, USA, 2004. doi: 10.1109/ADEVC.
2004.23.

A. T. McCray and N. C. Ide. Design and implementation of a national clinical trials registry.
Journal of the American Medical Informatics Association, 7(3):313–323, 2000. doi: 10.1136/jamia.
2000.0070313.

M. McGregor and J. J. Caro. QALYs: are they helpful to decision makers? Pharmacoeconomics,
24(10):947–952, 2006.

S. M. Meystre, G. K. Savova, K. C. Kipper-Schuler, and J. F. Hurdle. Extracting information
from textual documents in the electronic health record: a review of recent research. Yearbook
of Medical Informatics, pages 128–144, 2008.



216 Bibliography

E. Miranda. Planning and executing time-bound projects. Computer, 35:73–79, 2002. doi: 10.
1109/2.989933.

A. Mullard. 2010 fda drug approvals. Nature Reviews Drug Discovery, 10(2):82–85, 2011. doi:
10.1038/nrd3370.

C. D. Mulrow. Rationale for systematic reviews. BMJ, 309(6954):597–599, Sep 1994.

F. Mussen, S. Salek, and S. Walker. A quantitative approach to benefit-risk assessment of medi-
cines – part 1: The development of a new model using multi-criteria decision analysis. Phar-
macoepidemiology and Drug Safety, 16(Suppl. I):S12–S15, 2007. doi: 10.1002/pds.1435.

P. Nadkarni, C. Brandt, S. Frawley, F. Sayward, R. Einbinder, D. Zelterman, L. Schacter, and
P. Miller. Managing attribute-value clinical trials data using the ACT/DB client-server data-
base system. Journal of the American Medical Informatics Association, 5(2):139–151, 1998.

P. Nadkarni, C. Brandt, and L. Marenco. TrialDB: a clinical studies data management sys-
tem, 2010. URL http://ycmi.med.yale.edu/trialdb/. Archived at http://www.
webcitation.org/5mm4G1K1S.

P. M. Nadkarni and J. D. Darer. Determining correspondences between high-frequency Med-
DRA concepts and SNOMED: a case study. BMC Medical Informatics and Decision Making, 10:
66, 2010. doi: 10.1186/1472-6947-10-66.

NASA. Manager’s handbook for software development. Software Engineering Laboratory. NASA
Software Engineering Laboratory, Goddard Space Flight Center, Greenbelt, MD, 1990.

S. Nelson, M. Schopen, A. Savage, J.-L. Schulman, and N. Arluk. The MeSH translation main-
tenance system: Structure, interface design, and implementation. In Proceedings of the 11th
World Congress on Medical Informatics, pages 67–69, San Francisco, 2004.

C. B. Nemeroff and M. E. Thase. A double-blind, placebo-controlled comparison of venlafaxine
and fluoxetine treatment in depressed outpatients. Journal of Psychiatric Research, 41:351–359,
2007.

A. Ngo-The and G. Ruhe. A systematic approach for solving the wicked problem of software
release planning. Soft Computing, 12(1):95–108, 2008. doi: 10.1007/s00500-007-0219-2.

A. Ngo-The and G. Ruhe. Optimized resource allocation for software release planning. IEEE
Transactions on Software Engineering, 35(1):109–123, 2009. doi: 10.1109/TSE.2008.80.

S.-L. T. Normand. Meta-analysis: formulating, evaluating, combining, and reporting. Statis-
tics in Medicine, 18(3):321–359, 1999. doi: 10.1002/(SICI)1097-0258(19990215)18:3〈321::
AID-SIM28〉3.0.CO;2-P.

A. Oliva. Janus update, 2009. URL http://gforge.nci.nih.gov/docman/view.php/
142/17571/Oliva%2020090310%20DIA%20Janus%20Update.pdf. Presentation.

A. Oliveira and N. Salgado. Design aspects of a distributed clinical trials information system.
Clin Trials, 3(4):385–396, 2006. doi: 10.1177/174077450609156.

Oracle Corp. Oracle buys phase forward, 2010. URL http://www.oracle.com/us/
corporate/press/068204.

http://ycmi.med.yale.edu/trialdb/
http://www.webcitation.org/5mm4G1K1S
http://www.webcitation.org/5mm4G1K1S
http://gforge.nci.nih.gov/docman/view.php/142/17571/Oliva%2020090310%20DIA%20Janus%20Update.pdf
http://gforge.nci.nih.gov/docman/view.php/142/17571/Oliva%2020090310%20DIA%20Janus%20Update.pdf
http://www.oracle.com/us/corporate/press/068204
http://www.oracle.com/us/corporate/press/068204


Bibliography 217

D. Ouellet. Benefit-risk assessment: the use of clinical utility index. Expert Opinion on Drug
Safety, 9(2):289–300, 2010. doi: 10.1517/14740330903499265.

J. Paul, R. Seib, and T. Prescott. The internet and clinical trials: Background, online resources,
examples and issues. J Med Internet Res, 7(1):e5, 2005. doi: 10.2196/jmir.7.1.e5.

Phase Forward, Inc. Clinical data repository, 2010. URL http://www.phaseforward.com/
products/cdc/cdr/. Archived at http://www.webcitation.org/5p8AxFMwO.

L. D. Phillips. Decision conferencing. In W. Edwards, R. Miles Jr., and D. von Winterfeldt,
editors, Advances in Decision Analysis: from foundations to applications. Cambridge University
Press, 2007.

H. E. Pigott, A. M. Leventhal, G. S. Alter, and J. J. Boren. Efficacy and effectiveness of antide-
pressants: current status of research. Psychotherapy and Psychosomatics, 79:267–279, 2010. doi:
10.1159/000318293.

D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research, 45(5):
758–767, 1997. doi: 10.1287/opre.45.5.758.

M. Plummer. JAGS Version 1.0.3 manual, April 2009. URL http://www-fis.iarc.fr/

˜martyn/software/jags.

H. Prokosch and T. Ganslandt. Perspectives for medical informatics reusing the electronic med-
ical record for clinical research. Methods Inf Med, 48(1):38–44, 2009. doi: 10.3414/ME9132.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2008. URL http://www.R-project.org.
ISBN 3-900051-07-0.

H. Rang, editor. Drug Discovery and Development: Technology In Transition. Churchill Living-
stone, 2005.

I. Roberts, A. Po, and L. Chalmers. Intellectual property, drug licensing, freedom of informa-
tion, and public health. Lancet, 352(9129):726–729, 1998.

B. Roy. Multicriteria Methodology for Decision Analysis. Kluwer Academic Publishers, Dordrecht,
1996.

D. L. Rubin, N. H. Shah, and N. F. Noy. Biomedical ontologies: a functional perspective. Brief-
ings in Bioinformatics, 9(1):75–90, 2008. doi: 10.1093/bib/bbm059.

G. Ruhe and D. Greer. Quantitative studies in software release planning under risk and re-
source constraints. In Proceedings of the 2003 International Symposium on Empirical Software
Engineering (ISESE2003), pages 262–270, 2003. doi: 10.1109/ISESE.2003.1237987.

G. Ruhe and M. Saliu. The art and science of software release planning. IEEE Software, 22(6):
47–53, 2005. doi: 10.1109/MS.2005.164.
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Health care policy decision makers routinely evaluate the health impact
of alternative treatment options. Here benefit-risk assessment is key,
consisting of weighing the favorable effects (benefits) and unfavorable
effects (risks) of the alternatives. For example, before a new drug is
allowed on the market, regulators evaluate its benefit-risk balance in
comparison to placebo or competing drugs.

Ideally, benefit-risk assessments are based on the best available
evidence, typically meaning randomized controlled trials. However,
finding the evidence and explicitly linking it to the assessment is
complicated by several factors. First, the results of clinical trials are
mainly made available in text-based documents that can not be
processed automatically. Second, the data from these trials must be
combined into a consistent basis for benefit-risk analysis. Third,
quantitative decision models are required to directly link decisions to
the underlying evidence and to make trade-off decisions explicit.

This thesis addresses these topics through the development of the
Aggregate Data Drug Information System (ADDIS), an integrated
system for decision support based on databases of structured clinical
trials data. Novel algorithms are presented to automate network meta-
analysis to combine clinical trials' results and multi-criteria decision
models are developed to support benefit-risk assessment.

ADDIS is open source software, available from http://drugis.org/

Making better use of clinical trials
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