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Preface

In the four years since I joined the MD-group1 it has always been a very ”dynamic”
bunch. Dynamic in the sense of the many events that were always organized (in-
cluding but not limited to: groupoutings, parties, spontaneous dinners, the many
conferences, WABSes, VrijMiBo’s and, very important, lunchtime running.), but also
dynamic in the almost infinite number of people that have joined the group for shorter
or longer periods. It was very much fun to work with all of them and many have con-
tributed in some way to the realization of this thesis. It will be virtually impossible
to thank everybody and not forget a single person, but I’ll try. In case you find your
name missing, I’ve left over some space for this to be corrected. Please help yourself
out and don’t feel obliged to be honest.

Dear ............, you are one of the most ............ people I have ever known. With-
out your contributions this thesis would have been nonexistent/marginalized/much
better*. Via this way would like to express my gratitude and I hope we will have
many inspiring discussions/sportive moments/wild nights* to come.

*Cross what’s not applicable.

Allereerst Siewert Jan, als mijn promotor niet geheel onbelangrijk voor dit proef-
schrift. Siewert, ontzettend bedankt voor de vrijheid en het vertrouwen dat je mij
altijd hebt gegeven. Daardoor wordt werken in de MD-group een van de leukste
dingen die er zijn. Bedankt!

Xavier, thank you for everything you have learned me as my daily supervisor and
copromotor. Thank you for learning me how to be a critical and thorough scientist,
how to properly drink coffee, the importance of recycling coffee cups, how to be
grumpy without being serious, how to be serious without being grumpy and most of
all, thank you for bringing all the fun into the office.

Lars, you really kick-started my PhD and were the perfect source to learn about
MD. Without you there would definitely be a few chapters less in this thesis. Ik hoop
dat het oefenen van het Nederlands voor jou net zo nuttig was.

Alex, als (bijna?) oneindige bron van kennis heb jij meestal een antwoord op al
mijn vragen over MD, en anders wel een boek om het in op te zoeken.

1It has actually been 7 years since I first joined to group, counting my bachelor and master
projects in the NMR-group.
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Helgi, if I ever get fat and obese it will be because of all the chocolate cookies you
brought to the lab. If you have someone in your office with a strong appetite for good
food, who also happens to have a well founded opinion on virtually anything, life at
the office becomes a real treat.

Clement, from listening to your stories I understand all the French are bad-
mooded, rebelling criminals. From knowing you I discovered the opposite is true.
With you, everything one does seems to be fun and relaxed. Special thanks from Sir
Ritchfield!

Jaakko, even though you only joined the group a year ago, we have been running
and discussing together quite a bit. I really enjoyed it and I hope we ever get the
opportunity train for a marathon that we both finish below 3:30h. Next time Ill beat
you!

Manel, when thinking of you two things come to mind: stokslobberjen and food.
I’m glad I have contributed a little bit to your knowledge of the Frisian language and
you’ve made me try some excellent (Portugese) dishes.

Cesar, since you were the PdD-student that started in the group before me, you
were a great example in many ways. I could use your work in many places (hence our
faraday paper), I could ask you advice when writing this thesis and, very important,
I could get a feel for how it is to be a young father.

De meest ingewikkelde problemen die een PdH-student moet oplossen zijn de in te
vullen reisdeclaraties en andere bureaucratische rompslomp. Hilda, jij was onmisbaar
in het oplossen van die puzzels, bedankt!

Floris, als ”Photosystem”-expert doe jij veel van het werk dat ik misschien eigenlijk
had moeten doen. Ik hoop dat we daardoor nog veel kunnen samenwerken in de
komende maanden. Bedankt dat je de organisatie van de Dutch MD Day van me
hebt overgenomen, als het zo blijft groeien als nu is dat in no time een begrip!

Juan Juan, you have barely joined our group but are already involved in so many
things, amongst which the continuation of the work on the softer potentials in this
thesis. You spotted some serious error in that chapter just hours before I was going
to send it to the printer. Thanks for that! I hope you haven’t proven it completely
useless by now...

Ruud en Pieter, ik vind het altijd erg gezellig als jullie langs komen, wat helaas
niet erg vaak gebeurt (maar toch altijd nog vaker dan dat ik bij jullie langs kom).
Misschien kun je meer koffie gaan drinken (Ruud) of vaker de spectrometer bij ons
in het gebouw komen bijvullen (Pieter)?

Alia, we seem to be doing things in parallel all the time. We did our master project
in the MD-group at the same time, we started our PhD at the same time and now you
are expecting (”gave birth” by the time you read this) at the same time as Jorieke.
I find it truely heroic how you manage to finish your PhD and prepare to become a
mom at the same time!

Tsjerk, dat wittenskip net oan in taal bûn is bewize wy eltse dei: Frysk, Hollânsk
of Ingelsk it makket foar us diskusjes neat út. Ik hoopje dast snel in mear ”stabyl”
karriêre paad fynst en o ja, you’re a SIMPLETON!! (Smart and Infintely More
Python-oriented Explorer of Tons of Original New scripts),

Marcelo, you’ve been cast in mysteries. The first few years we never met, although
we were formally part of the same group (right?), later it was always a question at
which floor you would be. Besides that it never became clear to me whether or not
you speak Dutch.
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1

Introduction to Molecular Dynamics: A brief history and
overview

The field of Molecular Dynamics (MD) can be defined as the study of the interactions
between and the movements of molecules. However, in recent decades, and certainly
in this thesis, the term molecular dynamics has become a synonym for molecular dy-
namics computer simulations. The interactions between and movements of molecules
have been studied extensively since the 19th century, for example in the fields of ther-
modynamics and statistical mechanics by people like Clausius, Gibbs, Boltzmann
and Van der Waals. The field of computational molecular dynamics, due to its de-
pendence on extensive, iterated computation, had to wait for the invention of the
electronic computer halfway of the 20th century to be feasible. Despite this relative
short history, the field has expanded at an amazing pace and found applications in
a wide range of research areas. Several papers giving a short historical overview of
the field have been written. Both Levitt[1] and Karplus[2], have written down the
developments in light of their personal careers. Furthermore, some papers provide a
combination of a short historical overview and an outlook to the future[3, 4]. How-
ever, no comprehensive work on the history of molecular dynamics has been written,
but that is also not what this chapter aspires to. It pinpoints those studies that played
a pioneering role in the field treated in the rest of this thesis: molecular dynamics
simulations of bio-molecules.

1.1 First molecular dynamics computer simulations

In 1955 Fermi, Pasta and Ulam published the first results of what one could call a
Molecular Dynamics simulation:

”A one-dimensional dynamical system of 64 particles with forces between
neighbors containing nonlinear terms has been studied on the Los Alamos
computer MANIAC I.”[5]

A one-dimensional string of beads can hardly be considered a set of molecules
and thus the step to higher dimensional systems was quickly made. In 1957 Alder
and Wainwright published the results of a two-dimensional system of ’spheres’[6],
which is often considered to be the first MD-paper. The first extensive description
of the MD-method and the algorithms used, were published two years later[7] by the
same authors. The method of (computational) molecular dynamics was preceded by

1



1. Introduction to Molecular Dynamics

a few years by the very related method of Monte Carlo simulations[8, 9]. In those
early studies, the method was mostly applied at studying physical phenomena such
as the phase transitions and equations of state of simple spheres. In those early
papers, many of the present concepts (Periodic Boundary Conditions, Lennard Jones
potentials) were already present, as well as the present concerns:

”It is sometimes a worry whether a system is in equilibrium or whether it
is in a meta stable state[6].”

1.2 Towards realistic molecules

The first simulations of actual molecules were published in 1964 by Rahman, who
simulated a system of 864 liquid argon atoms[10]. Seven years later it was also
Rahman who reported the first molecular dynamics simulation of water[11]. Again,
MD was preceded by two years by Monte Carlo simulations by Barker and Watts[12].
The interactions in their water model were described as:

”a) the electrostatic interaction of four charges on one molecule with four
on another, b) a Lennard-Jones 6:12 function of the distance between the
charge centers of the molecules, with parameters ε = 0.707 kcal/mole,
sigma = 2.725 Å. The charges are +0.3278e at 0.5944a ± 0.76166b and
−0.3278e at ±3.2539c; e is the electronic charge and a, b and c are or-
thogonal unit (Å) vectors fixed in the molecule. The origin is the oxygen
nucleus and the charge center is 0.2922a. We imposed a hard-sphere cut-
off: at 2Å and neglected interactions beyond 6.2 Å.”

A significantly improved model was introduced in 1974[13] dubbed the ST21 model,
which was widely used until the introduction in 1981 of the two most used water
models of today: the Simple Point Charge (SPC) model[15] and the Transferable
Inter-molecular Potential functionS (TIPS)[16] by the groups of Berendsen and Jor-
gensen, respectively. Both apply a simple, 3-site topology and fairly well reproduce
properties of water such as density and oxygen radial distribution function. In later
years different refinements were published for both the SPC and TIP series[17, 18, 19],
further tweaking the properties of the water model.

One of the motivations behind developing potentials for water models, was the
desire to simulate bio-molecules, like proteins[20]. The first simulations of proteins
were lacking solvent water, mostly due to large computational cost related to the
still very limited computational power. The first atomistic simulation of a protein in
1977 contained four water molecules, strongly bound inside the structure[21]. In this
study McCammon et al. used an atomistic interaction potential, derived in earlier
work to minimize the energy of X-ray structures, to simulate the 58 amino acid
Bovine Pancreatic Trypsin Inhibitor (BPTI) for 8.8 ps. In the potential no explicit
hydrogen atoms were present (a so called ’united atom’ model) and bonds, bond
angles, dihedral angles, hydrogen bonds, van der Waals, and electrostatic interactions
were all explicitly described.

1No explanation for the acronym is given in the original article. However, the ST2 model is
a successor of the BNS model [14]. These letters are the first letters of the name of the authors
of that paper (Ben-Naim and Stillinger). Apparently the first letters of the authors of the second
paper (SR, Stillinger and Rahman) were deemed less suitable then the initials of the first author.
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1.2. Towards realistic molecules

Figure 1.1: Randomly oriented copies of Bovine Pancreatic Trypsin Inhibitor (BPTI).
Different secondary structure elements have been colored differently.

The simulated protein, BPTI (Figure 1.1), was very often the subject of choice in
the early days of MD computer simulations. First because of its small size and second
because it was one of the first proteins for which a high resolution crystal structure
was available. In another study using BPTI, two years before McCammon published
his atomistic simulations, Levitt et al. published[22] the results of what is arguably
an even earlier MD simulation of a protein. However, in this study every residue was
represented by only one or two interaction sites, instead of one interactions site for
every atom. This does make it the first ’coarse grain’ simulation of a protein, though.

Different papers might be honored as the first simulation of a water solvated pro-
tein, all of them using BPTI. The 1988 paper by Levitt [23] is often quoted to be the
first, simulating BPTI solvated in 2607 water molecules for 210 ps. However, Van
Gunsteren et al. simulated BPTI in a truncated octahedron surrounded by 1467 wa-
ter molecules for 20 ps already in 1984[24] and Wong et al. simulated BPTI in 4785
water molecules for 42 ps in 1987[25]. In his paper Levitt dismisses the other two
papers by arguing that the simulations were either to short and showed a too high
root mean square deviation of the atoms positions (2.7 Å compared to 1.1 Å in his
simulations) in the case of the work by Van Gunsteren, or they where not properly
analyzed and gave a too high diffusion constant for bulk water in the case of the work
by Wong.

Around the same time as these simulations of proteins, the first simulations of
another type of bio-molecule were published: lipids and the complex structures they
form. In 1976 a first onset to the simulations of lipid bilayers was given by Cotterill[26]
using a highly abstract model of a monolayer: a two dimensional system of 240
dumbbell shaped ’molecules’. These abstract simulation were only a crude exploration
and were followed in 1980 by the first atomistic simulation of a monolayer[27] and of
the first atomistic simulation of a bilayer in 1982[28], both omitting explicit water. In
1986 the first study of a micelle in explicit water was published by Jönsson et al.[29]
They simulated 15 sodium octanate molecules surrounded by 1094 water molecules
for 260 ps (taking 19 minutes of CPU time per picosecond simulation time on a
Cray-1 computer). Two years later Egberts et al. reported the first bilayer with
explicit water: 52 decanoate, 76 decanol, and 526 water molecules, and 52 sodium
ions were simulated for 180 ps[30]. All these systems were rather simple model systems

3



1. Introduction to Molecular Dynamics

for lipid membranes. The first study of an atomistic phospholipid (DPPC) bilayer
was published in 1994[31]2. These bilayers were pre-assembled at the start of the
simulation. Only seven years later, in 2001, the first simulation of the self-assembly
of a lipid bilayer was published. Marrink et al. [33] described how in a simulation of
64 randomly oriented DPPC-molecules a bilayer spontaneously formed. Additionally,
they studied other lipids (POPC, DOPC and DOPE) and larger systems, all forming
stable bilayers.

A logical next step, combining lipids and proteins, was made by Edholm et al.
in 1995 by simulating bacteriorhodopsin in a lipid bilayer[34]. Although this was
the first simulation of an integral membrane protein, several examples of (integral)
membrane peptides and soluble proteins interacting with a membrane were published
in the preceding years. Good reviews on membrane (protein) simulations are given
in [35, 36].

One of the main focus areas of molecular dynamics simulations has been the (ab-
initio) folding of proteins. The large interest in this area makes it hard to define the
first successful atomistic simulation of a protein in explicit solvent at physiological
temperature. There are many examples of protein unfolding, partial folding or folding
of small peptides, however the first simulation successfully folding a natural and
complete protein is hard to pinpoint. The earlier mentioned work by Levitt [22]
used a coarse grain model and was only marginally successful in folding, but is the
first attempt to fold a protein using molecular dynamics. In 1998, Daura et al.
simulated the reversible folding a β-heptapeptide in methanol at atomistic resolution,
and the obtained results were in good agreement with experiment[37, 38]. However it
concerned a designed, non-natural peptide folded into only a very short left-handed
31-helix. Also in 1998 Duan et al. published the results of the first 1 µs simulation,
showing the folding of the Villin Headpiece[39]. The peptide studied is considerably
larger then the heptapeptide, it concerns a domain of a natural protein and was
simulated in water. However, Villin Headpiece is not a complete protein and, in the
words of the authors, only ”A marginally stable state, which has a lifetime of about
150 nanoseconds, a favorable solvation free energy, and shows significant resemblance
to the native structure” is reached.

In 2002, Snow et al. reported on studies of the folding of a 23 residue (designed)
protein[40], consisting of a β-hairpin, a turn and an α-helix (using implicit solva-
tion). In this study the concept of distributed computing was used, where not one
single long simulation was done to see multiple folding and unfolding events, but tens
of thousands of simulations of 5-20 ns that yielded several folding events. The sim-
ulations were done at the 30,000 PC’s of volunteers all over the world participating
in the folding@home project[41]. The protein simulated was ”complete” in that it
contained all the major secondary structure elements, however it still concerned a
designed protein and was simulated in implicit water.

In 2011, in the first molecular dynamics study reaching the millisecond for a single
trajectory[42], the reversible folding was reported, using a 23 residue WW-domain
designed to have fast folding and unfolding times. In the same study BPTI could
only be studied in its folded state, since no complete unfolding events took place

2In 1993 Marrink et al. published a paper[32] describing full atomistic bilayer simulations.
However this paper refers ’back’ to the 1994 paper by Egberts et al.[31] (as ”in press”). The work
in this second paper was already part of the thesis of Egberts published in 1988[32]. This makes
the work described in the 1994 paper the first simulations of an atomistic bilayer
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within one millisecond (in agreement with experiment). The long time scales assessed
in this study could be reached by the use of a computer specifically designed for
MD simulations[43]3, affectionately called Anton (named after the inventor of the
microscope, Antonie van Leeuwenhoek).

In later papers[46, 47] from the two previously mentioned groups, they utilize
their vast computer power (either distributed in folding@home or specifically built as
Anton) to fold several larger, fast folding proteins with varying success. If anything,
this shows that although the first atomistic simulations of the folding of small peptides
were published over 14 years ago, the folding of real proteins by MD-simulations is
not an every day activity yet and we have yet to fully understand protein folding.

Besides water, proteins and lipids, MD computer simulations have been extensively
used to simulate many other (biological) molecules, such as DNA[48], carbohydrates[49]
and small (organic) molecules. Since these molecules play only a minor role in this
thesis, the reader is referred to the given references for reviews on the work in these
fields.

1.3 Ingredients of a MD computational model.

In the 70s and 80s more and more effort started going into the derivation of the
interaction potentials of different molecules and the development of new algorithms.
Because of this the force fields and software grew more sophisticated and complex,
however the main components never changed. Figure 1.2 schematically shows the
ingredients brought together by combining software and forcefields: the molecular
coordinates (top left) are inputted by the user (this might be a protein, bilayer or
any other molecule). The force field (bottom left) describes the interactions between
all atoms in the molecules. The software has implemented algorithms to integrate the
laws of motion and evolve the system time (bottom right) while maintaining system
properties such as temperature and pressure (top right).

The force field (Figure 1.2, bottom left) consists of a set of parameters for in-
teraction potentials of a specific form. Some of the most notable and most used
atomistic force fields are AMBER (Assisted Model Building with Energy Refine-
ment), CHARMM (Chemistry at HARvard Macromolecular Mechanics), GROMOS
(GROningen MOlecular Simulation) and OPLS (Optimized Potentials for Liquid Sim-
ulations). These force fields all date back to the 1980s and different versions have
been published since then. Despite the many differences, they also share some basic
characteristics: interaction sites are positioned at atoms only, interacting with other,
non-bonded atoms via a Lennard-Jones potential (Van der Waals interactions) and
a 1/r electrostatic term (charge-charge interactions). Interactions with atoms in the
same molecule are propagated via harmonic springs (bonds, for first neighbor inter-
actions and angles, for second neighbors), or cosine based functions (dihedral angles,
for third neighbors). It is beyond the scope of this chapter to give an extensive review
of the inner workings of, and differences between those force fields. A comparison is
given by Guvench et al.[50].

3Although most MD simulations are these days ran on general purpose (super-)computers,
Anton is not the first machine specifically designed for MD simulations. Notable examples are the
MDGRAPE[44] developed by the RIKEN institute in Japan and the GROMACS[45] (Groningen
Machine for Chemical Simulations) built at the university of Groningen.
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F=m·a

v'=v+a·∆t

r'=r+v'·∆t

Model

Figure 1.2: Main ingredients of molecular dynamics computation model. Starting from
the upper left in counter-clockwise direction: Atomistic positions. The positions of all
atoms of all molecules, including solvent. Protein positions are often taken from the PDB-
database. Forcefield. Definition of the interactions between atoms. Red and yellow arrows
indicate bonded (bond-stretching, angle-bending and dihedral rotations) and non-bonded
interactions. Physics algorithms. The laws of physics and the algorithms handling them,
ranging from Newtons laws of motion and the leap frog integrator to schemes to handle
electrostatics and alchemical calculations. Input parameters. Simulations conditions,
such as temperature, pressure and boundary conditions.

6



1.3. Ingredients of a MD computational model.

The laws of physics and the algorithms handling them are combined in simulation
packages. These packages mostly appeared around the same time as the force fields
and are often co-developed. The software contains implementations of the most
used algorithms to run MD simulations together with programs to setup and analyze
simulations. Well known examples are GROMACS, GROMOS, NAMD (Not (just)
Another Molecular Dynamics program), AMBER and CHARMM. An overview of
these packages is given in the same review[50]. These software packages, together
with the force fields make it possible to perform molecular dynamics studies without
any knowledge of programming algorithms and parametrization protocols.

The sampling during simulations is subject to the ergodicity principle: the proper-
ties of a system are the same when averaged over time as averaged over many systems.
The set of all states of the system is called an ”ensemble”, the mathematical space
in which it is described is called ”phase-space”. Depending on which constraints are
applied to the system different ensembles can be obtained. Some examples are the
microcanonical ensemble (with the particle number (N), system volume (V) and total
energy (E) imposed), the canonical ensemble (with N, V and system temperature (T)
imposed) and the isobaric-isothermal ensemble (with N, system pressure (p) and T
imposed)[51].

The ergodicity principle also implies that, for systems in equilibrium, running
one long simulation, will give the same result as running multiple short simulations.
This way one can do multiple simulations at the same time at different computers.
However, this assumes that the separate systems are in equilibrium, which for some
processes might not be feasible in short simulations. For these cases most software
packages mentioned above have implemented parrallelization schemes (e.g see [52])
that allow a single simulation to run on multiple processors, by distributing the
calculations. In this way longer simulations of larger systems can be simulated in the
same time by using very large computers.

Another possibility to improve sampling is to influence which parts of phase-space
are sampled, by adding terms to the potential. Thus one can limit the time a system
spends on sampling certain areas of phase-space. One of the simplest examples is a so
called ”pulling experiment”: in order to determine the interaction strength between
two molecules, the molecules are constrained (or restrained) at a defined distance.
This is much more effective than letting the molecules sample space freely and only
use the frames where they are at the distance of interest. (see chapter 2 and 3 for
extensive description and comparison of both methods).

Another example to circumvent slow sampling is an alchemical simulation, where
the potential is altered in a way that would be physically impossible, for example
by turning off the interactions between two specific molecules. By doing this step-
wise following an interaction parameter λ and integrating over the derivative of the
energy to this interaction parameter, the energy cost of going from the starting state
(λ = 0) to the final state (λ = 1) is obtained. The method, called Thermodynamic
Integration (TI)[53], can be used to calculate energies differences between two states
of a system, even if the difference is very large (which would require long sampling
in a ”free” simulation.) An excellent formal description of the method is given in
[51]. Even more efficient alternatives to these simple examples of sampling schemes,
pulling and thermodynamic integration, are constantly being developed. Examples
are algorithms like reaction pathway sampling[54] or local elevation[55]. An extensive
overview and categorization of many of these methods is given in [56].
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1. Introduction to Molecular Dynamics

Figure 1.3: (A) Growth in the timescale accessible to molecular dynamics simulations of
proteins. (B) Growth in the size (in number of atoms) of the protein systems studied by
all-atom molecular dynamics simulations. The blue line is a theoretical limit derived by
assuming that the growth in system size goes as the square root of the increase in timescale,
as the number of interactions scales as the square of the number of atoms. (C) Change
with time in the limits of the timescales and system sizes accessible by molecular dynamics
simulations. The blue and red diagonal lines define the boundaries at given times. Figure
from [4], reproduced with permission.

1.4 Moore’s law.

As described at the beginning of this chapter MD computer simulations are strongly
dependent on the availability of computational power. It is in this light interesting to
compare the progress of the field to ”Moore’s law”[57]. It was postulated by Gordon
E. Moore in 1965 and is often referred to as:

”The performance of computer chips at an affordable price will double
every 24 months.”

If the length of molecular dynamics simulations doubles faster than every 24 months,
this means new developments in the field add extra value on top of the ever increasing
speed of computers. Vendruscolo and Dobson looked at exactly that in 2011[4], after
the publication of the first millisecond all-atom simulations, by analyzing the length
and system size of simulations published over the last three decades. Figure 1.3 shows
the trends they found. The first panel shows the increase in length of simulations
against time, whereas the second panel looks at the increase of system size. It can
be seen that the length of computer simulations doubles approximately every year,
while the system size (number of particles) that can be simulated doubles every two
years. Combining the growth rate of simulation size and length (third panel), the
authors predict that the first bacterial cell can be simulated on relevant timescales
around 2050. This is significantly later than predicted by Van Gunsteren et al., who
in a similar manner predicted that an (E. coli) bacteria can be simulated in 2034[58].
In both cases the increase of simulation length has been faster than that predicted
by Moore’s law.

It is however important to note that with the growing of system size, longer time
scales are necessary to observe phenomena of interest. Deserno[59] has elegantly
quantified this point for a bilayer patch: if one has studied a lipid bilayer of size
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20×20 nm and now wants to study a bilayer with ten times longer sides, it takes 100
times more computer power to obtain the same simulation time. However, undulation
modes present in a membrane patch, decay with λ4, where λ is the wave length. In
a box of 10 times the size, ten times longer wave lengths are possible and thus one
has to simulate 10,000 times longer to properly sample all the modes. The total
computational time needed to obtain interesting results for a system of ten times
the width and length is thus 1,000,000 times more. Similar effects will occur when
simulated proteins grow in size, or multiple different components are combined in one
system, allowing for more different mutual interactions.

The above comparison to Moore’s law is a simple way to monitor the progress
in MD simulation length. However, improvements have not only been made in the
length and size of simulations. First, the quality4 of the simulations has improved,
partially due to the developments in water models and force fields described earlier
and partially due to the development of new, more accurate algorithms, such as inte-
gration schemes, thermo- and barostats and new models for non-bonded interactions5.
Second, large improvements have been made in the form of methods that allow for
better sampling without increasing the required simulations time and thus computer
power. In this category fall the sampling methods discussed earlier and a different
kind of force fields, known as coarse grain (CG) force fields. Since the development
of the different algorithms plays only a minor role in the rest of this thesis, the reader
is referred to the references mentioned above for an overview. Coarse graining will
be treated in the next section.

1.5 Coarse Graining.

Coarse graining concerns omitting irrelevant degrees of freedom of a system, in order
to simplify the model. Every potential used for MD simulations is in some sense a
coarse grain potential. For example, in all-atom force fields the dynamics of electrons
and nuclei are not explicitly considered and united-atom force fields do not explicitly
consider carbon-bound hydrogens. Here however, we will refer to CG force fields as
those that do not explicitly consider every heavy atom as a separate interactions site.
This is also reflected by the term coarse grain, as it implies the existence of a fine
grain resolution. In other words, the term coarse grain can only be used for these
force fields in comparison to atomistic models, which are still the gold standard in the
field of molecular simulations. This does not mean that CG force fields are always
derived from an atomistic force field.

As discussed earlier, CG force fields have been around since the early days of
MD simulations: Levitt used a protein model with one or two interaction sites per
amino acid residue[22] and Cotterill represented lipids by simple dumbbell shaped
objects[26]. These examples show that CG force fields can have a wide range of
different resolutions (the number of heavy atoms mapped to one CG site) and very
different methods can be used to construct the potential energy function. An excellent
compendium of many different methods, force fields and applications is given in [60].

Roughly three categories of methods to obtain a CG potential can be distinguished:
those that are entirely based upon an atomistic force field, those that are entirely inde-

4Quality here relates to how faithfully a model reproduces nature.
5New algorithms can also greatly influence the speed of simulation, both in a positive and a

negative manner.
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1. Introduction to Molecular Dynamics

pendent of any atomistic force field and combinations of these two. The first category
includes methods like inverse Boltzmann[61] and force matching [62, 63], where both
bonded and non-bonded terms are directly derived from atomistic simulations. The
second category includes force fields that have been purely parametrized to match
macroscopic properties of the system to experimental quantities, like bilayer proper-
ties or protein packing data derived from the Protein Data Bank. Examples of this
type of force fields are described in [64, 65]. Methods in the third category often derive
non-bonded interaction from experimental quantities, like partitioning free energies
or liquid properties, while they (partially) rely on atomistic simulations for bonded
interactions. Examples of this last category are the force field derived by DeVane and
coworkers[66] and the Martini force field, which is more extensively described in the
next section.

1.6 Martini force field

         


 

 

 


























Figure 1.4: Plots of all 10 Martini interactions
between. The different interaction levels are: O,
ε=5.6 kJ mol−1; I, ε=5.0 kJ mol−1; II, ε=4.5 kJ mol−1;
III, ε=4.0 kJ mol−1; IV, ε=3.5 kJ mol−1; V,
ε=3.1 kJ mol−1; VI, ε=2.7 kJ mol−1; VII,
ε=2.3 kJ mol−1; VIII, ε=2.0 kJ mol−1; IX,
ε=2.0 kJ mol−1. σ = 0.47 nm for all levels except IV
for which σ = 0.62nm.

The Martini CG force field ap-
plies a mapping of (on av-
erage) four heavy atoms to
one CG interaction site. Four
CG bead types have been de-
fined: charged (Q), polar (P),
non-polar (N) and apolar (C),
which in turn are subdivided
in four or five levels, giving a
total of 18 bead types. For
the interactions between these
bead types, 10 different inter-
actions levels are defined (O-
IX)[67]. The interactions be-
tween these beads are Lennard-
Jones[68] potentials at ten dif-
ferent levels, corresponding to
different ’well depths’ as de-
fined by the interaction param-
eter ε. Figure 1.4 shows the
shifted LJ potentials for the
10 different levels. Which in-
teraction is used between two
beads has been parametrized
by matching the free energies
of vaporization, hydration and
partitioning between water and

apolar solvents for model compounds. These model compounds are chemical entities
covering a wide range of molecules. They are each represented by one bead type and
serve as building blocks for larger molecules.

This modular setup and relatively small number of pre-parametrized bead types
make it easy to build new molecules compatible with the Martini force field. The ini-
tial publication contained parameters for water, organic solvents, surfactants, lipids
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and cholesterol[69, 67]. In later publications parameters were added for more types of
molecules, including proteins[70], carbohydrates[71], dendrimers[72], and fullerenes[73].

The loss of resolution in the Martini model compared to atomistic force fields
brings along different limitations and challenges while parameterizing. Except for the
obvious loss in structural detail, there are a few problems especially worth mentioning.

First, the grouping together of 4 heavy atoms reduces the entropy in a molecule.
In order to obtain correct free energies, this is corrected for by adapting the en-
thalpic interactions[74]. As a result, the balance between entropy and enthalpy will
be disturbed and separating these two contributions has to be done with the greatest
care.

Second, a mapping of four heavy atoms to one CG interaction site, means four
water molecules are grouped together in one bead. This works fine, unless one wants
to study the behavior of single water molecules, for example water inside water chan-
nels in proteins or interfacial water at protein interfaces. Note that grouping four
water molecules to one bead leads to a decrease in the number of interaction sites by
a factor of 12 and is also responsible for the mass used for beads in Martini: 72 amu.

Third, coarse grain beads do not explicitly represent a possible polar nature of
the underlying molecular building block. The polar nature is mimicked by a slightly
stronger interaction between polar beads and polar and charged beads. In the case
of a four water cluster also the polarizability is lost. For water this has been solved
by introducing polarizable Martini water[75] and for polar amino acids a solution is
introduced in chapter 3.

Fourth, for proteins the secondary and ternary structure are not stable due to
the lack of detail in the (backbone) interactions and the resulting lack of polarity
mentioned above. For the secondary structure this has been solved by constraining α-
helices and β-strands by angles, dihedrals and local elastic networks[70]. The ternary
structure can be kept stable by using an global elastic network, the so called Elnedyn
approach, which connects backbone beads in different parts of the protein by long,
elastic bonds[76].

Compared to united atom models, the coarse grain mapping decreases the number
of interaction sites by four, and for water even by 12. The resulting, total speed-up
of a simulation, as compared to a united-atom force field is between a factor 100 to
1000. There are three contributions to the speed-up. First, a reduced number of
interactions sites means less calculations to be performed per time step. Notice that
this goes roughly with the square of the reduction in the number of particles, since
not only the number of particles for which the interactions have to be calculated is
reduced, but also the number of interactions to other particles. For Martini, this
would be on average 42 = 16, although for water it is a lot more (122 = 144). Second,
coarse graining leads to a smoother energy landscape due to the omission of fast
modes in the molecules. The smoother energy landscape allows for larger time steps
without making large integration errors. For Martini, typically a time step between
20 and 40 fs can be applied[77], 4 to 40 times longer than those used in atomistic
simulations. Last, the smoother energy surface is also responsible for a faster progress
of dynamic processes, for example diffusion. In others words, in the same simulation
time a system will sample a larger part of phase space.

To test the actual speed-up a comparison between two 10 ns simulations of a 128
lipid DOPC bilayer with 37.75 waters per lipid at 303 K was made. One simulation
was run using the CG Martini force field, the other using (united-atom) GROMOS
parameters. The number of particles in both systems was 3000 and 21387, a factor
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of 7 difference. For the CG system a time step of 40 fs was used, with a neighbor
update every 10 steps and a neighbor list cutoff of 1.2 nm. Atomistically, a 2 fs time
step was used, with a twin-range cutoff: the neighbor list extended up to 1.4 nm
and was updated every 5 steps, forces between 0.9 and 1.4 nm were only recalculated
every 5 steps. The simulations were run sequentially on the same machine6 using
Gromacs (version 4.5.5) with 8 threads for each simulation. The runs produced 4935
and 17.2 ns per day for the CG and atomistic simulations, respectively, equal to a
speed-up of 287 times. The diffusion speeds (calculated over longer trajectories) were
0.053 cm2s−1 and 0.005 cm2s−1 for CG and atomistic, respectively, a speed-up of
approximately 10 times. Thus the total speed-up is 2870 times.

Table 1.1: Diffusion rate of different molecules obtained us-

ing Martini (CG) and atomistic level (AL) simulations and ex-

periments (Exp). All values are given in cm2s−1. The val-
ues for DOPC:DOPE mixtures and the transmembrane peptides
concern lateral diffusion. Simulation values have been obtained
using the Martini or Gromos 45A3 force fields at 300 K and
parameters similar to those described before, unless otherwise
indicated. a. One coarse grain bead accounts for 4 real water
molecules, therefore the obtained value has been multiplied by
4 to obtain the water diffusion[78]. b. Value from [15]. c. Val-
ues from [67]. d. Simulations were ran in NVT ensemble to
ensure the correct liquid density. e. Value extrapolated from
temperature dependent data in reference [79]. f. Values from
references [80, 81, 82]. g. Bilayer thickness of 2.38 and 2.2 nm
for experimental and simulation, respectively. h. Bilayer thick-
ness of 3.31 and 3.4 nm for experimental and simulation, respec-
tively. i. Values from [83]. In the paper simulations values have
been multiplied by the often applied factor 4, to correct for the
speed-up of Martini simulations. Here the factor 4 is removed.

Molecule CG AL Exp
Water 5.6a 3.6b 2.3c

Butane 6.1 6.3 >5c

Octane 2.3 2.9 2c

Dodecane 1.2 1.3 -
Hexadecane 0.7 0.7 -
Propanol 2.4d 1.7d 0.24e

Octanol 2.2 0.2 0.1c

1:0 DOPC:DOPE 0.053 0.005 0.006-0.017f

3:1 DOPC:DOPE 0.048 0.005 -
1:1 DOPC:DOPE 0.054 0.004 -
1:3 DOPC:DOPE 0.051 0.003 -
WALP23g 0.048i - 0.0078i

WALP27g 0.035i - 0.0065i

WALP23h 0.016i - 0.0042i

WALP27h 0.013i - 0.0036i

The computational speed-up
will depend on the composition
of the system, since the ratio of
atoms per bead differs slightly
per molecule. Also the speed-
up of the diffusion depends on
the type of molecule. Table 1.1
gives an overview of the diffu-
sion speeds calculated for dif-
ferent molecules. The speed-
up will not only depend on
the force field, also the choice
of integrator and thermostat
will be important. The val-
ues reported here are all simu-
lated with a leap frog integra-
tor and a Berendsen[84] or ’Ve-
locity Rescale’[85] thermostat.
The factor four often used to
correct diffusion rates obtained
with the Martini model, has not
been used here: the actually
measured diffusion rates are re-
ported (values taken from lit-
erature that did use the con-
version factor, were converted
back to the measured diffusion
rates).

The speed-up ranges be-
tween 1.2 and 22 comparing
Martini to experiments and

0.79 and 17 comparing Martini to atomistic simulations. The speed-up is depen-
dent on the type of molecule, e.g.: Martini alkanes have a small speed-up compared
to experiments or even a slow-down compared to atomistic simulations, whereas al-
cohols show large speed-up factors). However, what defines the speed-up of a CG
model is not understood quantitatively, despite recent studies[86]. The values in ta-

6Intel i7 920 with four multithreaded CPU cores running at 2.67 GHz. The machine was not
otherwise used during the runs.
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ble 1.1 may be used to derive some qualitative rules of thumb. CG polar liquids, like
propanol and octanol, show a large speed-up factor (≈10). This might be caused by
the lack of explicit hydrogen bonds in the CG model. Water, although highly polar,
only shows a relatively lower speed-up (≈2.5), possibly due to the bundling together
of four molecules. CG apolar liquids show no speed-up. Lipids show a large speed-
up, suggesting that their diffusion is mainly controlled by the polar head groups. For
small transmembrane peptides the speed-up is essentially that of the (lipid) solvent.
If water soluble proteins also follow the speed-up of water remains to be seen.

In summary, if one wants to study diffusion related processes in the Martini model,
this can only be done in a qualitative way or quantitatively by comparing to a ref-
erence (e.g. the diffusion of a solute compared to the solvent) or by calibrating the
timescales by comparison to experiment or atomistic simulations.

1.7 Thesis Overview

The rest of this thesis is organized in three main topics. In the first two chapters we
test the performance of the Martini forcefield by investigating the dimerization free
energies of amino acid side chains. Chapter 2 describes a method to calculate bind-
ing free energies of molecules in molecular dynamics systems, which is subsequently
applied in chapter 3 to compare these binding free energies of amino acid sidechains
in the Gromos, OPLS and Martini force fields. The next two chapters are applica-
tions of the Martini force field. Chapter 4 studies the segregation of simple peptides
between different coexisting membrane domains. In chapter 5 this segregation is fur-
ther explored by adding different membrane constituents, such as anchored peptides,
larger proteins and GM1 lipids, to the system. The final three chapters concern new
force field developments. The chapter 6 describes the parameterization of thylakoid
cofactors in the Gromos and Martini 2.1 force fields. Chapter 7 describes a new set
of parameters for Martini amino acids, dubbed Martini 2.2. The final chapter (chap-
ter 8) explores different potential shapes that might be used for future releases of the
Martini force field (Martini 3.x).
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[75] S.O Yesylevskyy, L.V Schäfer, D Sengupta, and S.J Marrink. Polarizable water
model for the coarse-grained martini force field. PLoS Comput. Biol., 6:e1000810,
2010.

[76] X Periole, M Cavalli, S.J Marrink, and M.A Ceruso. Combining an elastic
network with a coarse-grained molecular force field: Structure, dynamics, and
intermolecular recognition. J. Chem. Phys., 5:2531–2543, 2009.

[77] S.J Marrink, X Periole, D.P Tieleman, and A.H de Vries. Comment on “on using
a too large integration time step in molecular dynamics simulations of coarse-
grained molecular models” by m. winger, d. trzesniak, r. baron and w. f. van
gunsteren, phys. chem. chem. phys., 2009, 11, 1934. Phys. Chem. Chem. Phys.,
12:2254, 2010.

[78] M Fuhrmans, B.P Sanders, S.J Marrink, and A.H de Vries. Effects of bundling
on the properties of the spc water model. Theor. Chem. Acc., 125:335–344, 2010.

[79] N ShakerGaafar, N Karger, S Wappmann, and H-D Lüdemann. p, tdependence
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Determining Equilibrium Constants for Dimerization
Reactions from Molecular Dynamics Simulations

This chapter is based upon the manuscript:
Determining Equilibrium Constants for Dimerization Reactions from

Molecular Dynamics Simulations by Djurre H. de Jong, Lars V. Schäfer,
Alex H. de Vries, Siewert J. Marrink, Herman J. C. Berendsen, Helmut

Grubmüller, J. Comput. Chem., 2011, 32 (9), 1919-1928

Abstract

With today’s available computer power, free energy calculations from equi-
librium molecular dynamics simulations ’via counting’ become feasible for an
increasing number of reactions. An example is the dimerization reaction of
transmembrane alpha-helices. If an extended simulation of the two helices covers
sufficiently many dimerization and dissociation events, their binding free energy
is readily derived from the fraction of time during which the two helices are ob-
served in dimeric form. Exactly how the correct value for the free energy is to be
calculated, however, is unclear, and indeed several different and contradictory
approaches have been used. In particular, results obtained via Boltzmann statis-
tics differ from those determined via the law of mass action. Here we develop a
theory that resolves this discrepancy. We show that for simulation-systems con-
taining two molecules, the dimerization free energy is given by a formula of the
form ∆G ∝ ln(P1/P0). Our theory is also applicable to high concentrations that
typically have to be used in molecular dynamics simulations to keep the simula-
tion system small, where the textbook dilute approximations fail. It also covers
simulations with an arbitrary number of monomers and dimers and provides
rigorous error estimates. Comparison with test simulations of a simple Lennard
Jones system with various particle numbers as well as with reference free energy
values obtained from radial distribution functions show full agreement for both,
binding free energies as well as dimerization statistics.

2.1 Introduction

The computation of free energy differences is the aim of many molecular simulation
studies. As a thermodynamic state function, the free energy provides insights into the
molecular driving forces for the studied process, and often enables a direct and quan-
titative comparison to experiments. However, in many cases, it is not trivial to obtain
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2. Equilibrium constants for dimerization Reactions

free energy differences from simulations of large condensed-phase systems, because it
requires proper and extensive sampling of the underlying thermodynamic ensemble,
for example through Monte Carlo (MC) or molecular dynamics (MD) techniques.

A number of MD-based simulation protocols for calculating free energy differences
have been devised. Thermodynamic integration and free energy perturbation ap-
proaches, based on an alchemical transformation of one group of atoms into another,
are frequently used. [1, 2, 3, 4] Also non-equilibrium methods have been successfully
applied to calculate free energies of molecular systems.[5, 6, 7, 8, 9, 10] To study the
energetics of self-assembly processes, such as the binding of two (or more) molecules,
the umbrella sampling technique[11] is often applied, in which harmonic (umbrella)
potentials drive the system along a pre-defined reaction coordinate, for example the
distance between the molecules.

Today, the increasing available computer power and ongoing development of ef-
ficient algorithms and coarse-grain force fields enables longer simulations of large
systems, thus opening the way to a straightforward alternative: To carry out an ex-
tended equilibrium MD simulation and obtain the free energy difference from directly
counting the fractions of simulation time spent in the respective states. Such an ap-
proach has been applied to, for example, the dimerization of chirally related organic
molecules,[12] folding / unfolding of small peptides,[13, 14] dimerization of methane
molecules[15] as well as of charged[16] and hydrophobic[17] amino acid pairs in water,
and a dimer of transmembrane helices in a lipid bilayer[18].

However, contradicting approaches and formulae have been employed to calculate
free energy differences. In particular, as further explained in the Theory section,
directly using the ratio of the observed Boltzmann probabilities [13, 14, 16, 17, 19]
yields different results compared to approaches adopting the law of mass action to
simulations of two dimerizing molecules.[12, 15, 18] For example, if the system is
found in a dimerized state during a fraction P1 of the total simulation time, and in
a monomeric state during a fraction P0 = 1− P1, the free energy difference would in
the first case be given by an equation of the form ∆G ∝ ln(P1/P0), whereas in the
latter case, it is ∝ ln(P1/P 2

0 ). Which of the two approaches is correct? Furthermore,
it is not trivial to provide a generalized formalism as well as reliable error estimates
for simulations with more than two molecules, which may provide better sampling.

Here, we develop a rigorous theory for dimerization reactions involving an ar-
bitrary number of molecules, including only two, and derive how dimerization free
energies can be calculated from simulations by direct counting. First, we will use
thermodynamic arguments to show that an equation of the form ∆G ∝ ln(P1/P0) is
the correct formula for simulations of two dimerizing molecules. Second, we present
a general statistical mechanical treatment of dimer association / dissociation reac-
tions of any number of molecules, and demonstrate how the law of mass action is
recovered. Third, we discuss how the counter-intuitive disagreement between the
Boltzmann treatment and the naive application of the law of mass action is resolved
by careful consideration of the respective ensembles. We finally test our theoreti-
cal results against MD simulations, and compare free energies obtained from direct
counting with those from radial distribution functions.
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2.2 Theory

A

B B

0 1

configuration space

monomeric (’0’) dimeric (’1’)

A

a

b

Figure 2.1: Dimerization of two
molecules A and B within a given vol-
ume (a). The configuration space (b) is
divided into two parts, monomeric (no
dimer, ’0’) and dimeric (one dimer, ’1’).

As shown in Figure 2.1, we consider the
dimerization of two molecules in solution, A
and B,

A + B ! AB , (2.1)

for which the law of mass action reads

Ka =
[AB]c∅

[A][B]
, (2.2)

with association constant Ka, concentra-
tions [X], and c∅ an agreed standard con-
centration, usually 1 mol l−1. Eq. (2.2) as-
sumes that the system is sufficiently diluted,
such that concentrations can be used instead
of activities.

Two particles

For a mixture of ni mol of species i, the
Gibbs free energy is related to the thermo-
dynamic (chemical) potentials through

G =
X

i

niµi . (2.3)

Thus, for two molecules,

G1 =
1

NAv
µAB +

Ns

NAv
µs (2.4)

and

G0 =
1

NAv
µA +

1
NAv

µB +
Ns

NAv
µs (2.5)

for the dimer and monomer states, 1 and 0, respectively. Here, Ns is the number
of solvent molecules, µs the thermodynamic potential of the solvent, and NAv is
Avogadro’s number. Thus,

NAvG1 = µ∅

AB + RT ln
1

c∅NAvv
+ Ns ·

ˆ

µ∅

s + RT ln xs,1

˜

(2.6)

and

NAvG0 = µ∅

A + µ∅

B + 2RT ln
1

c∅NAvv
+ Ns ·

ˆ

µ∅

s + RT ln xs,0

˜

, (2.7)

where R = kBNAv is the gas constant, v is the total volume of the system, and
xs,1 and xs,0 are the mole fractions of the solvent (assuming ideal solution) for the
dimer and monomer, respectively. Taking the difference of Eqs. (2.6) and (2.7) and
neglecting the small difference between xs,1 and xs,0 yields

NAv(G1 − G0) = µ∅

AB − µ∅

A − µ∅

B + RT ln
`

c∅NAvv
´

. (2.8)
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We now assume an MD simulation of two molecules A and B, surrounded by
solvent molecules in a simulation box. The monomers can form a dimer according to
Eq. (2.1), defined by an unambiguous definition (for example a distance criterion).
The system is observed to be in its dimeric state during a fraction P1 (’one dimer’)
of the total simulation time and in its monomeric state (’zero dimers’) during a
fraction P0 = 1− P1. We further assume that the simulation time is long enough for
sufficiently many transitions to occur between the two states, such that the system
can be considered to be in thermodynamic equilibrium. Our aim is to calculate the
equilibrium constant Ka for the association reaction Eq. (2.1), or, equivalently, the
(standard) association free energy

∆G∅ = −kBT ln Ka (2.9)

from the simulation, i.e., from P0 and P1.
To derive an expression for the free energy difference, the configuration space

is divided into two parts 0 and 1, representing the monomeric and dimeric states,
respectively (Figure 2.1b). For simulations at constant v, T , the probability to be
in a defined state is proportional to exp(−A/kBT ), where A is the Helmholtz free
energy of that state. Thus,

P1

P0
= exp

»

−(A1 − A0)
kBT

–

. (2.10)

To obtain ∆G, the difference between the Gibbs functions,

G1 − G0 = −kBT ln
P1

P0
+ (p1 − p0)v (2.11)

is desired. The pv term is small for most reactions in solution and is therefore disre-
garded here; however, it can be determined from the pressures during the simulation if
needed. For simpler notation, all partition functions further below refer to simulation
ensembles at constant v, T .

Combining Eq. (2.8) and Eq. (2.11) yields the expected Boltzmann relation be-
tween the standard free energy change and the probability ratio observed in the
simulation,

∆G∅ = −RT ln
P1

P0
− RT ln

`

c∅NAvv
´

= ∆G − RT ln
`

c∅NAvv
´

. (2.12)

Alternatively, the equilibrium constant can be expressed using Eq. (2.9),

Ka =
P1

P0
c∅NAvv . (2.13)

Subsequently, we will omit explicit reference to the standard state; it can easily be
reintroduced via the above Eqs. (2.12) and (2.13).

Generalization for many particles

We now assume an equilibrium between N molecules, NA of which are of type A,
and NB = N − NA of which are of type B. We further assume that particles of the
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same type do not dimerize, and that polymerization does not occur. For example,
for N = 4 and NA = NB = 2, the relevant states are

A + A + B + B ! AB + A + B ! AB + AB . (2.14)

Generalizing Eqs. (2.12) and (2.13), we aim at relating the statistics of observed
dimers AB in the MD simulation to the (macroscopic) association constant Ka and
free energy ∆G for the dimerization reaction Eq. (2.1). As in Figure 2.1, the config-
uration space of the N molecules within the (3-dimensional) volume v is divided into
(3N-dimensional) subvolumes V0 (only monomers), V1 (1 dimer, N − 2 monomers),
. . ., Vm (m dimers, N − 2m monomers).

From the respective Helmholtz free energies, Eq. (2.10), the probability of finding
the system in a fully monomeric state reads

P0 =
Z0

Z
=

R

V0
e−U/kBT dV

R

V
e−U/kBT dV

, (2.15)

and that of finding exactly m ≤ min(NA, NB) dimers is

Pm =
Zm

Z
=

R

Vm
e−U/kBT dV

R

V
e−U/kBT dV

, (2.16)

with configurational partition functions Zm, integrated over those regions of config-
uration space with m dimers and N − 2m monomers, interaction potential U , and
partition function Z =

Pmin(NA,NB)
m=0 Zm. We note that the kinetic part of the parti-

tion functions can always be factored out and therefore cancels in the above equations.
From these probabilities, the average number 〈m〉 of dimers is readily obtained,

〈m〉 =
1
Z

min(NA,NB)
X

m=1

mZm . (2.17)

Neglecting the interaction energy of distant (unbound) particles, the above par-
tition functions can be expressed in terms of an excess free energy per dimer (with
respect to the ideal gas term),

G∗ = kBT ln〈eU/kBT 〉V1 , (2.18)

which is independent of the box volume. With this abbreviation, one obtains

Z0 =

Z

V0

e−U/kBT dV = V0 (2.19)

and

Z1 =

Z

V1

e−U/kBT dV = V1e
−G∗/kBT . (2.20)

Assuming additive interaction potentials, the partition function for m dimers then
reads

Zm =

Z

Vm

e−U/kBT dV = Vme−mG∗/kBT , (2.21)
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which reduces the problem to estimating the configuration space volumes Vm.
To determine the configuration space volume V0 for which the system consists

of only monomers, note that the first molecule can be placed anywhere within the
simulation box volume v. For the second molecule, only those positions are allowed
for which it does not form a dimer with the first molecule, which yields the reduced
volume v − vD. Here, vD denotes the dimerization volume. Further, molecules A and
B are assumed to occupy the same volume, i.e., the dimerization volume vD equals
the volume excluded by the repulsive interaction between AA or BB, respectively.
For the third molecule, similarly, only a volume v − 2vD remains, etc.

With x = vD/v, one thus obtains to second order in the particle concentrations
[A] + [B] = N/(NAvv),

V0 = v(v − vD)(v − 2vD) · . . . · (v − (N − 1)vD) = vN
N−1
Y

j=1

(1 − jx) . (2.22)

For the configuration space volume Vm of all states of m dimers and N − 2m
monomers, from similar but somewhat more involved reasoning

Vm = vNm!

 

NA

m

! 

NB

m

!

xm
m−1
Y

j=1

(1 − jy)
N−2m−1
Y

j=0

(1 − my − jx) (2.23)

follows, where vAB is the (average) volume excluded by each dimer AB (Figure 2.2b),
and y = vAB/v. To see why Eq. (2.23) holds true, first place m molecules to form
a monomeric state, which yields the first product term as in Eq. (2.22). Next, place
further m molecules to form m dimers, such that each of these molecules is restricted
to a volume vD, thus yielding the xm-term. Finally, place N − 2m further monomers
within the remaining volume fraction vN (1 − my), with each monomer further re-
ducing the available volume fraction by x. To verify the combinatorics note that
this procedure yields only one out of all possible ways to select m molecules from
the NA molecules of type A and from the NB molecules B, hence the two binomials.
Finally, having selected m molecules of each type for dimerization, there are m! ways
of joining those into m dimers.

Note that with the convention that products for which the final value of the running
index is smaller that the starting value equal unity (i.e.,

Q0
j=1 = 1), Eq. (2.23) reduces

to Eq. (2.22) for m = 0.
Eqs. (2.22) and (2.23) are independent of the shapes of the volumes. However,

vD and vAB (and thus x and y) may in general be hard to determine. For spherical
particles, a useful estimate is obtained by assuming a constant (average) interaction
energy between the particles (Figure 2.2). In this case, the distance distribution
between overlapping spheres is p(r) ∝ r2, yielding an average overlap of vD/8 and,
hence, y = x · 15/8. For the general case, it is important to realize that by choosing
a criterion to define the dimer state, for example a distance cut-off, one implicitly
determines the dimer volume, vD. It is thus also possible to determine Vm numerically,
without prior knowledge of vD or vAB by placing N non-interacting particles in a
volume through a Monte Carlo run, as is demonstrated in section 2.3.
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Figure 2.2: Definition of (a) dimerization volume vD and (b) average dimer exclusion
volume vAB for the special case of spherical particles. If the center of particle B falls within
the dimerization volume (grey) centered at particle A, the two particles are considered a
dimer. The average volume of two combined overlapping dimerization volumes defines the
dimer exclusion volume, within which a third particle is not considered monomeric.

Limiting cases

It is noteworthy to consider the case of moderately large N and low concentrations
(i.e., NvD ) v and, therefore, x < y ) 1). In this case, using

`

N
m

´

≈ Nm/m! and
expanding the logarithm of the result to first order, Eq. (23) simplifies to, Eq. (2.23)
simplifies to first order to

Vm ≈ vN (NANBvD/v)m

m!
e−

1
2 N2vD/v . (2.24)

Combining Eq. (2.24) with Eq. (2.16) and (2.21), after proper normalization , a
Poisson distribution follows for the probabilities of finding m dimers:

Pm =
λme−λ

m!
, (2.25)

with
λ = NANB

vD

v
e−G∗/kBT . (2.26)

For very large N , Eq. (2.23) can be approximated by a Gaussian function in m of
width m1/2 and with a maximum at m = mmax given by

mmax

(NA − mmax)(NB − mmax)
=

vD

v
e−G∗/kBT . (2.27)

Because the relative width of this function tends to zero for large m, and with [A] =
(NA −m)/(NAvv), [B] = (NB −m)/(NAvv), and [AB] = m/(NAvv), the law of mass
action is readily recovered,

Ka =
[AB]
[A][B]

= vDNAve−G∗/kBT . (2.28)
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2. Equilibrium constants for dimerization Reactions

Ka from counting and error estimate

The above framework enables to determine Ka from the number of dimers and
monomers observed during a simulation.

For N = 2, Eqs. (2.17) and (2.21), and using Eqs. (2.22) and (2.23), yield

n1

n0
≈

P1

P0
=

V1

V0
e−G∗/kBT =

1
v/vD − 1

e−G∗/kBT , (2.29)

or

G∗ = −kBT ln

»

n1

n0

„

v
vD

− 1

«–

, (2.30)

where n1 and n0 are the number of snapshots from the trajectory containing one
dimer or two monomers, respectively. As can be seen, for simulation volumes v that
are small compared to the molecular volumes vD, an estimate for the latter is required.
The association constant is then obtained by combining Eqs. (2.28) and (2.30),

Ka = NAv
n1

n0
(v − vD) . (2.31)

For the general case of N particles, proceeding along similar lines, Eq. (2.17)
serves to relate the average number of dimers 〈m〉 to G∗. Hence, G∗ can be obtained
from the dimer frequencies observed in a simulation of few particles — either via
the second order approximations Eqs. (2.22) and (2.23), or via numerical integration,
e.g., through Monte Carlo approaches, as demonstrated further below.

Moreover, simulations with N > 3 provide an independent approach to calcu-
late G∗: For the number nm of snapshots from the trajectory containing m dimers,
Eqs. (2.17) and (2.21) yield

nm

n0
≈

Pm

P0
=

Vm

V0
e−mG∗/kBT . (2.32)

Therefore, the quantity

gm = kBT ln
n0Vm

nmV0
(2.33)

should satisfy gm = mG∗, i.e., be proportional to m. Plotting gm as a function of m
thus provides the excess free energy per dimer G∗ as the slope, and the plot yields a
straight line only for properly chosen vD.

Finally, error estimates are readily obtained from a Bayesian approach by consid-
ering the conditional probability

P (G∗′|n0, n1, n2, . . .) ∝ P (n0, n1, n2, . . . |G
∗′) · P (G∗′) (2.34)

≈ P (n0, n1, n2, . . . |G
∗′) · 1 =

min(NA,NB)
Y

m=0

"

Vme−mG∗′/kBT

P

k Vke−kG∗′/kBT

#ñm

. (2.35)

Here, a uniform a priori probability P (G∗′) for the dimer interaction free energy is
assumed, and ñm = nm ·∆t/tc is the effective (i.e., statistically independent) number
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2.2. Theory

of snapshots containing m = 0, 1, 2, . . . dimers. Several methods to determine this
number are available, which critically determines the obtained error estimate, e.g.,
correlation analysis,[20, 21, 22] block averaging,[23, 24] and bootstrap analysis.[25, 26]
For the test simulations presented below, the statistically independent number of
snapshots is estimated from the average time tc between collisions relative to the
time spacing ∆t of snapshots in the trajectory.

This probability distribution serves to calculate G∗ and an estimate of its statistical
uncertainty σG∗ via

G∗ =

Z

∞

−∞

G∗′P (G∗′|n0, n1, n2, . . .)dG∗′ (2.36)

and

σ2
G∗ =

Z

∞

−∞

(G∗′ − G∗)2P (G∗′|n0, n1, n2, . . .)dG∗′ . (2.37)

An example python program is provided in the Appendix.

Resolving the seeming contradiction

We have shown above that for dilute systems of two dimerizing molecules, the Boltz-
mann approach, ∆G ∝ ln P1/P0 [Eq. (2.12) and (2.13)], yields correct free energies,
whereas direct application of the law of mass action provides wrong results. Never-
theless, as the above results show, the law of mass action can be derived from the
Boltzmann approach and is in this sense compatible — as must be. What, then, is
wrong with the expression ∆G ∝ ln P1/P 2

0 suggested by the law of mass action? As
we will show in the following, both approaches are in fact correct; however, to apply
the law of mass action to simulations of, e.g., only two dimerizing molecules requires
a careful consideration of the relevant thermodynamic ensembles.

To demonstrate this, we again consider a two-particle MD system, and define the
concentrations [A], [B], and [AB] from the respective probabilities,

[A] =
NAP0

veffNAv
, (2.38)

[B] =
NBP0

veffNAv
, (2.39)

and

[AB] =
NABP1

veffNAv
, (2.40)

where, for our two-particle system, N = 2, NA = NB = NAB = 1, and veff is
an appropriate effective volume. Inserting these concentrations into the law of mass
action yields the puzzling result

Ka =
[AB]c∅

[A][B]
=

P1

P 2
0

c∅NAvveff . (2.41)

Note, however, that it has not yet been defined how veff relates to the volume v of
the simulation box. In contrast to what is saliently assumed by the above applica-
tion of the law of mass action in Eq. (2.41), the MD ensemble does not represent
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2. Equilibrium constants for dimerization Reactions

a (macroscopic) volume veff = v · N/2 containing N interacting molecules (Fig-
ure 2.3b). Rather, it is an ensemble of N/2 simulation systems (Figure 2.3a), i.e.,
N/2 separate (periodic) boxes, each of volume v and containing two molecules. The
crucial difference is that molecules from different boxes can never dimerize and, thus,
the association rate, k+, differs for the two ensembles. Since the dissociation rate,
k−, is unaffected, and Ka ∝ k+/k−, the equilibrium concentrations also differ for
the two ensembles. In particular, the time-averaged fraction P0 of molecules in the
monomeric state obtained from the MD simulation is, generally, not equal to the
ensemble fraction expected for the macroscopic volume.

a b

Figure 2.3: Two different ensembles are
considered. Using dimerization frequen-
cies obtained from an MD simulation of
two molecules in a periodic box implic-
itly assumes an ensemble (a) consisting
of replicas of the (microscopic) simulation
system. Accordingly, the molecules can-
not interact across the boxes (the config-
urations in a) represent snapshots at dif-
ferent time points, not periodic boxes).
Straightforward application of the law
of mass action, in contrast, refers to
a macroscopic system of molecules (b),
which can all form dimers with each other.
As a consequence, the two ensembles gen-
erate different monomer / dimer ratios.

The two different ensembles can be recon-
ciled by compensating for the fact that for
each molecule within the N/2 MD boxes, a
dimerization partner is available only during
a fraction P0 of the time. This is achieved
by decreasing the effective volume by this
factor, i.e., veff := P0vN/2 (note that prop-
erly correcting P0 instead of veff yields the
same results). Inserting this expression into
Eq. (2.41) recovers Eq. (2.13), thus resolving
the apparent contradiction.

2.3 Molecular
Dynamics Simulations

We carried out equilibrium MD simulations
to demonstrate how the above framework
can be applied to obtain association con-
stants from simulations. Our simulation sys-
tems comprised of N van der Waals particles
in a box, with N ranging from 2 to 64. N/2
of the particles were considered to be of type
A and N/2 of type B, respectively (for un-
even N , there was one excess A particle).
The systems were simulated within periodic
boundary conditions at constant volume using the Gromacs (v. 4.0.5) simulation
package.[27] The temperature was kept constant using stochastic temperature cou-
pling with an inverse friction coefficient of 5 ps. The neighbor list was updated at
every integration time step, which was set to 50 fs. Test simulations with 10 fs and
20 fs integration time steps yielded identical results within the statistical errors. The
particles had a mass of 72 amu and were interacting through a Lennard-Jones 6-12
potential

VLJ (r) = 4ε

„

“σ
r

”12
−
“σ

r

”6
«

, (2.42)

with σ = 0.47 nm and ε = 4 kJ mol−1. The potential was smoothly shifted to
zero between 0.9 and 1.2 nm. For each N , we studied three different concentrations,
corresponding to a volume per particle of v/N = 27, 54, and 108 nm3, respectively.
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Using these volumes, and at the simulation temperature of 298 K, the systems are in
the gaseous state.

To obtain comparable statistics for a given computational cost for the different
systems, each simulation was carried out for 64/N µs of simulation time. For exam-
ple, the simulation system with N = 2 particles was simulated for 32 µs, whereas
the simulation time for the system with N = 64 particles was 1 µs. These sim-
ulation times are long enough to have sufficiently many (i.e., thousands) of dimer
association / dissociation events.

To obtain Ka from the simulations, the number of particles A within a distance
rc of any particle B was counted along the trajectory using the g mindist tool of
Gromacs. Subsequently, the obtained set of contacts was filtered for higher-order
oligomers, which were discarded in order to not erroneously count them as dimers
(the average number of particles in higher order oligomers was less than 1%, even at
the highest concentration used). The dimer cut-off distance rc = 0.7 nm was chosen
such that the dimer peak observed in the radial distribution function is included. We
did not investigate the dependence of Ka on the chosen dimer cut-off rc,[28, 29] as
our aim here was to compare different approaches for the calculation of Ka using the
same cut-off.

Using the final (filtered) set of dimer contacts, G∗ and its statistical uncertainty
σG∗ were calculated using the above Bayesian approach (Eq. (2.36) and Eq. (2.37);
see Appendix for an example python program). To estimate the configuration space
volumes, we used both the analytic approximation (Eq. 2.23) and a Monte Carlo
approach (see below), which is numerically exact. Finally, the equilibrium constant
was calculated from G∗ using the standard state form of Eq. (2.28),

Ka =
vD

v∅
e−G∗/kBT , (2.43)

where v∅ = (c∅NAv)−1 is the (molecular) standard volume (1.66 nm3) and vD =
4/3 π r3

c (Figure 2.2). A uniform distribution P (G∗′) was used as a prior. To
estimate the number of statistically independent snapshots, we calculated the average
time between particle collisions according to tc = σ−1

c c̄−1/2 v/N , with collision cross
section σc = π (2σLJ )2 and mean velocity c̄. We obtained tc ≈ 25, 50, and 100 ps for
the systems with v/N = 27, 54, and 108 nm3, respectively.

2.4 Results and Discussion

Figure 2.4 summarizes the results obtained for the three different particle concentra-
tions studied. The association constant Ka should be independent of the number of
particles and of the volume of the simulation box. Figure 2.4 shows that this is indeed
the case: Averaged over all particle numbers N , the obtained association constants
(± std. dev.) are 1.730 ± 0.014, 1.748 ± 0.009, and 1.752 ± 0.011 for v/N = 27,
54, and 108 nm3, respectively. Furthermore, the statistical errors (bars in Figure 2.4)
turn out to be independent of N , due to the comparable simulation times of 64/N µs
per system.

As a check for the calculated Ka, Figure 2.5a shows a plot of gm versus m. The
linear dependence suggested by Eq. (2.33) holds, and the fit yields G∗ = −0.6951 kBT
(Ka = 1.734), in excellent agreement with Ka = 1.733 ± 0.008 obtained from counting
the number of dimers in the simulation with N = 64, v/N = 27 nm3 (Figure 2.4).
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2. Equilibrium constants for dimerization Reactions

Figure 2.5b confirms that for the simulated systems with moderately large N , the
probabilities of finding m dimers follow a Poisson distribution, as derived above,
Eq. (2.25).

2 3 4 5 6 7 12 32 64

particle number N

1.6

1.65

1.7

1.75

1.8

1.85

K
a

v/N = 27 nm
3

v/N = 54 nm
3

v/N = 108 nm
3

Figure 2.4: Association constant Ka ob-
tained from counting the snapshots containing
m dimers and N−2m monomers in equilibrium
MD simulations of a van der Waals gas. Sys-
tems with N = 2, 3, 4, 5, 6, 7, 12, 32, and 64
particles were simulated at volumes v/N = 27,
54, and 108 nm3, respectively (black, red, and
green curves, respectively); statistical errors
were estimated using Bayesian statistics. The
solid horizontal line gives Ka as obtained from
integrating over the bound and unbound parts
of the radial distribution function (Eq. 2.44);
here, the statistical error (dashed lines) is the
difference between the Ka’s obtained from sep-
arately analyzing the two halves of the trajec-
tory.

As another, independent check for
Ka, we integrated over the bound and
unbound parts of the radial distribution
function g(r), as obtained from the sim-
ulation with N = 2 particles, according
to

Ka =
4πR3

R rc

0
r2g(r)dr

3v∅
R R

rc
r2g(r)dr

. (2.44)

The thus obtained equilibrium constant
of Ka = 1.74 ± 0.02 (solid line in Fig-
ure 2.4) also agrees with the result from
counting.

To assess the accuracy of the ana-
lytical second-order approximation for
the configuration space volumes Vm,
Eq. (2.23), we placed N = NA + NB

non-interacting particles in a periodic
3-dimensional volume through Monte
Carlo (MC) sampling, and counted
the number of snapshots containing m
dimers and N − 2m monomers. As
above, a dimer was defined by a dis-
tance criterion between any two parti-
cles A and B. Trimers and higher-order
oligomers were discarded. The volume v
and particle number N were systemati-
cally varied.
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Figure 2.5: a) Plot of gm over m, obtained from the simulation with N = 64 particles in a
box with volume v/N = 27 nm3. The slope of the linear fit (solid line) yields the same G∗ as
obtained from counting. b) The bars show the distributions of snapshots containing m dimers
for the simulation systems with 12, 32, and 64 particles, respectively (v/N = 27 nm3). They
follow the corresponding Poisson distributions, Eq. (2.25), plotted as lines. The individual
distributions are slightly shifted along the m-axis for clarity.
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Figure 2.6: Comparison of dimer/monomer
frequencies as a function of particle concentra-
tion, obtained from the second-order analyti-
cal approximation Eq. 2.23 (dashed lines) and
Monte Carlo sampling (solid lines). Results
are shown for N = 2, 3, 4, 5, 6, 7, 12, 32,
and 64 (bottom to top). Statistical errors are
shown as side lines.

Figure 2.6 shows that at low concen-
trations (NvD/v ≤ 0.1), Eq. (2.23) is a
very good approximation for the ratio
of dimer/monomer configuration space
volumes, particularly for small N . For
higher concentrations 0.1 < NvD/v <
0.4, Eq. (2.23) predicts a slightly too low
ratio, whereas for even higher concen-
trations, the analytical approximation
might slightly overestimate Vm/V0, at
least for N ≤ 7. For N = 2, the re-
sults obtained from Eq. (2.23) and from
MC sampling agree along the entire con-
centration range, because the analyti-
cal formula is exact in this case: The
dimer configuration space volume Vm

only contains terms beyond the second
order for N > 2 (the monomer configu-
ration space volume V0 lacks higher or-
der terms). In summary, from Figure 2.6
we conclude that for the diluted systems
studied here (0.01 < NvD/v < 0.05),
the second order analytical approxima-
tion Eq. (2.23) yields sufficiently accu-
rate estimates of the configuration space

volumes, and no further concentration-dependent correction is required.

2.5 Summary and Conclusions

We presented a derivation of the thermodynamics of dimerization reactions, and
lay out how to calculate equilibrium constants and corresponding free energies from
simulations of a limited number of dimerizing molecules. Using thermodynamic ar-
guments, we have shown that naive application of the law of mass action, Eq. (2.41),
yields wrong results in particular for simulations of only few dimerizing molecules,
and that correct results are obtained via the Boltzmann factor of the ratio of the
observed frequencies, Eq. (2.13). The difference between the two approaches can be
significant, in particular if P0 ) 1 of course, as is the case for the systems studied in
[12, 18].

We further derived through statistical mechanics the thermodynamics of dimer-
ization reactions of any number of particles, and a Bayesian statistics approach to
estimate equilibrium constants and free energies with their statistical errors from
simulations. Finally, we showed that the two approaches can be reconciled by care-
fully considering the different underlying thermodynamic ensembles. We applied our
approach to extract equilibrium constants from molecular dynamics simulations of
systems containing different numbers of dimerizing particles.

One may ask whether there is an optimal system size to obtain statistically accu-
rate free energies of dimerization from MD simulations through direct counting, given
a certain available amount of computer time. From our results, we would argue in fa-
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vor of simulating systems with N = 2 dimerizing molecules, for the following reasons.
First, Eq. (2.23) is exact for the two-particle case, thus no concentration-dependent
correction needs to be applied. Second, no trimers (or higher order oligomers) can
occur, thus simplifying the analysis. Third, the computer time grows at least linearly
with N , while our results show that simply having a larger number of molecules in
the simulation box does not per se improve the statistical accuracy as compared to a
simulation with two dimerizing molecules and correspondingly longer sampling time.
For example, it would be better to carry out, e.g., four independent simulations with
N = 2 molecules instead one single simulation with N = 8, as the latter would suffer
from non-optimal parallel scaling.

Another question of practical importance is the choice of the simulation volume.
One might argue that a large volume is desirable, because in that case concentrations
can be used instead of activities, and second order effects (and thus the dimerization
volume vD) can be neglected. However, such an approach would suffer from a low
statistical accuracy due to the small number of associations / dissociations. In addi-
tion, for simulations with explicit solvent, one seeks to reduce the number of solvent
molecules as much as possible, since their treatment is computationally usually the
most expensive part of the simulation. This discussion also underscores the impor-
tance of including vD within our theory for obtaining free energies from counting in
MD simulations.

Finally, we would like to discuss the advantages of running extended equilibrium
simulations over biased simulations, such as umbrella sampling. From the latter,
Ka can be calculated from the obtained potential of mean force Vmf (r) according to
Eq. (2.44), with g(r) = exp(−Vmf (r)/kBT ). This approach may seem more straight-
forward. However, it has the disadvantage that the system needs to be driven along
a pre-defined reaction coordinate. This may be, for example, distances, angles, di-
hedrals, or (linear) combinations of these — even curvilinear coordinates may be re-
quired in certain cases. In general, the definition of a proper reaction coordinate may
not always be straightforward and, furthermore, involve the derivation of Jacobian
corrections that can become cumbersome for more complicated reaction coordinates.
In such cases, it appears more convenient to run an unbiased simulation and choose
the parameters to define the different states in an a posteriori manner during the
analysis.

2.6 Supplementary information

Example python program using Bayes statistics for calculating G∗ from an MD sim-
ulation. The configuration space volumes are estimated using Eq. (2.23).

from numpy import *
from math import factorial

def VM(na,nb,m,v,vd,y=None):
’’’Returns VM as a function of #particles (na,nb),\
#dimers(m), volume(v), dimer volume(vd), excl.volume(y)’’’
x = vd/(1.0*v)
if y == None: y = 15.*x/8.
n = na + nb
prod=1.0*factorial(m)*v**(1.0*n)
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prod=prod*factorial(na)/(factorial(m)*factorial(na-m))
prod=prod*factorial(nb)/(factorial(m)*factorial(nb-m))
prod=prod*x**m
for j in range(1,m):

prod=prod*(1.0-y*j)
for j in range(1,n-2*m):

prod=prod*(1.0-m*y-x*j)
return prod

def bayes(vmarr,nf,na,nb,v,vd):
’’’A probability distribution for Gd is calculated, \
given vmarr (array containing the # monomers,\
single dimers (m=1), double dimers (m=2), etc \
for every sample set, e.g. obtained with g_mindist) \
and nf, the effective nr of samples (dt/tcoll), and na/nb.’’’
# Define the range and resolution of Gd
gdmax = 2.; res=2000
gdarr=2*gdmax*.arange(res)/(1.0*res)-gdmax
#Choose a flat prior
parr=ones(res)/(1.0*res)
for n in range(len(vmarr)):

for i in range(0,res):
norm =0.0
max_M=len(vmarr[n,:])
for k in range(0,max_M):

norm = norm + VM(na,nb,k,v,vd) * exp(-k*gdarr[i])
prod=1.0
for m in range(0,max_M):

VMc=VM(na,nb,m,v,vd)
prod=prod*(VMc*exp(-m*gdarr[i])/norm)**(1.0*nf*vmarr[n,m])

parr[i]=prod*parr[i]
parr = parr/(sum(parr*gdarr))
gd = sum(gdarr * (parr/sum(parr)));
print gd

gdsigma = sum((gdarr -gd)**2 * (parr/sum(parr)));
print ’gd = %.8f +/- %.8f’%(gd,sqrt(gdsigma))
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Dimerization of amino acid side chains: lessons from the
comparison of different force fields

This chapter is based upon the manuscript:
Dimerization of Amino Acid Side Chains: Lessons from the Comparison of

Different Force Fields by Djurre H. de Jong, Xavier Periole, Siewert J.
Marrink, J. Chem. Theory Comput., 2012, 8, 1003-1014

Abstract

The interactions between amino acid side chains govern protein secondary,
tertiary as well as quaternary structure formation. For molecular modeling ap-
proaches to be able to realistically describe these phenomena, the underlying
force fields have to represent these interactions as accurately as possible. Here
we compare the side chain-side chain interactions for a number of commonly
used force fields, namely the all-atom OPLS, the united-hydrogen Gromos, and
the coarse grain Martini force field. We do so by calculating the dimerization
free energies between selected pairs of side chains and structural characterization
of their binding modes. To mimic both polar and non-polar environments, the
simulations are performed in water, n-octanol, and decane. In general, reason-
able correlations are found between all three force fields, with deviations of the
order of 1 kT in aqueous solvent. In apolar solvent, however, significantly larger
differences are found, especially for charged amino acid pairs between the OPLS
and Gromos force fields, and for polar interactions in the Martini force field in
comparison to the higher resolution models. Interestingly, even in cases were the
dimerization free energies are similar, the binding mode may differ substantially
between the force fields. This was found to be especially the case for aromatic
residues. In addition to the inter force field comparison, we compared the various
force fields to a knowledge based potential. The two independent approaches
show good correlation in aqueous solvent with an exception of aromatic residues
for which the interaction strength is lower in the knowledge based potentials.

3.1 Introduction

For the last couple of decades molecular dynamics (MD) computer simulations have become
a valuable tool to study proteins, from their dynamics and folding into a functional structure
to their assembly into complexes. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] The correct formation of
these structures critically depends on a delicate balance between attractive and repulsive
forces of the constituent amino acids. Together, these interactions determine the secondary,
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3. Dimerization of Amino Acid Side Chains

tertiary and quaternary structures formed, giving rise to biological function. For molecular
modeling approaches to be successful, it is therefore essential to describe these interactions
as accurately as possible. It is a continuous challenge to improve the molecular force fields,
in order to capture more and more realistic behavior. Much efforts have recently been
devoted to the improvement of the protein backbone conformational preferences, which has
an important contribution to protein folding. [11, 12, 13] Tests on the performance of the side
chain interactions, however, are less abundant. In this work we focus on the performance of
side chains (SC) by looking at association constants and kinetics of SC amino acid analogues
(SCA). Three different force fields (FF) are compared: two atomistic, the OPLS and Gromos
53, and one coarse-grain (CG), Martini 2.1.

The parametrization of the SC non-bonded interactions in MD force fields might follow
different strategies leading to different accuracies and resolutions. The OPLS FF has been
parameterized against conformational energies and properties of organic liquids. [14, 15] In
this FF hydrogen atoms do not carry van der Waals interactions but are represented by
a Coulomb interaction site. The Gromos 53A5/53A6 FF has been parameterized against
free enthalpies of solvation of small molecular building blocks in water and cyclohexane. [16]
Gromos is a united-atom (UA) FF where aliphatic hydrogens are not explicitly modeled,
i.e. they have no non-bonded interactions. This reduces the number of interaction sites to
compute and thus leads to a speed up of simulations. The CG Martini FF has even less
interaction sites: on average four heavy atoms are mapped into one bead. This leads to a
significant computational speed up, but at the cost of simulation details. The Martini FF has
been parameterized primarily targeting the partitioning free energies of model compounds
between polar and apolar phases. [17, 18]

To assess amino acid SC parameters, we report on the interaction strength of SCA as
characterized by their dimerization (or binding, association) free energies, ∆Gdimer . Earlier
studies looked at the dimerization free energies of a limited set of SC pairs in water, [19] or
at all SC combinations in water in order to derive effective residue-based contact energies for
the development of CG potentials. [20] Here we systematically calculated ∆Gdimerfor pairs
of SCA in polar (water) as well as apolar solvents (n-octanol and decane) in order to probe
the SC in a mimic of the diversity of biological environments. While for soluble proteins the
values of ∆Gdimerobtained in water will be most relevant, in lipid membranes the dielectric
screening much more resembles that of apolar solvents and consequently the values obtained
in octanol and decane are more relevant. For all solvents we analyzed the structural binding
modes found in the different force fields and looked at the kinetics of the association process
through calculation of the survival correlation times of the SCA pairs, in order to better
explain possible differences in ∆Gdimer .

The comparison of different force fields can only address the consistency between the force
fields. While a strong similarity between force fields that have been parameterized against
different experimental data, would certainly increase the confidence in the force fields, only a
comparison to experimental data can give a direct assessment of the quality of the force fields.
To the best of our knowledge, experimental binding free energies of SCAs in solution are not
available in the literature. The only data we found pertains to the backbone analogue. [21]
However an indirect measure of the affinity of SCAs for each other can be obtained from a
population analysis of their contacts in proteins, which has been used to estimate effective
binding free energies. [22] Thus, as an independent check for the side chain interactions we
compare the results obtained for the molecular dynamics FFs to a knowledge based potential.

The chapter is organized as follows. In section 3.2, a description of the FF parameters
and methods to obtain ∆Gdimer is given. In section 3.3, ∆Gdimer for 21 different amino
acid SCA pairs are reported and compared. This section is split into the comparison of
the high resolution FFs, OPLS and Gromos (section 3.3), followed by the comparison of
the Martini CG FF to both OPLS and Gromos FF (section 3.3), the analysis of structural
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binding modes (section 3.3) and finally the comparison of all three FFs to a knowledge based
potential (section 3.3). In section 3.3 we analyze the dimerization kinetics of the different
FFs in water. A short concluding section ends this chapter.

3.2 Methods

System set-up

All systems simulated consisted of two amino acid SCA solvated either in water, n-octanol
or decane. The systems contained 880, 113, and 80 solvent molecules for water, octanol and
decane, respectively, in a cubic unit-cell of ≈ 3.0 nm. For the CG system, 880 water molecules
corresponds to 220 water beads, of which 10% were replaced by antifreeze particles. [17]

Table 3.1: Three letter amino acid abbrevia-
tions and side chain analogs used.

Side chain Analogue
Leu iso-butane
Val propane
Lys butyl amine
Glu propionic acid
Phe toluene
Asn acetamide
Trp 3-methylindole
Tyr p-cresol
Ser methanol
Met methyl ethyl sulfide
Arg propyl guanidine
Asp acetic acid
Gln propion amide
His 4-methyl imidazole
BB see text

The dimerization free energies, ∆Gdimer ,
were calculated for 21 selected amino acid
SCA pairs (See tables 3.1 and 3.2) and were
classified into five groups: charged (Lys-
Glu, Lys-Lys, Arg-Asp), polar (Asn-Asn,
Ser-Ser, Gln-Asn, Gln-Gln), apolar (Leu-
Leu, Val-Val, Leu-Val), mixed (Leu-Asn,
Leu-Gln, Leu-Lys, Asn-Lys, Met-Ser) and
aromatic (Trp-Trp, Tyr-Tyr, Phe-Phe, His-
Phe, Trp-Tyr). The SCAs were constructed
by replacing the Cα in the Cβ -Cα bond by
a hydrogen and omitting the rest of the
backbone. Backbone-backbone dimeriza-
tion free energies were also calculated. A
backbone (BB) analogue was defined by a
Gly residue as found in a continuous protein
backbone. In other words, the C-terminus
only has a carbonyl oxygen attached, not a
complete acid group. Although this is not
a chemically realistic and stable molecule,
it best mimics the interactions found in a
protein.

The SCAs were initially randomly placed in the solvent box. The systems were then
minimized and equilibrated for 20000 steps, followed by a 240 ns production run during
which frames were saved every 500 steps for analysis. All simulations were performed using
version 4.0.x of the Gromacs [23] simulation package.

Simulation and force field parameters

All simulations were performed using three levels of description: the all-atom (AA), the
united-atom (UA), and the coarse-grain (CG) level. For the AA simulations, the OPLS
FF [14][15] was used, as implemented in the Gromacs 4.0.x package [23]. The SPC model [24]
was used to represent water. Although the TIP3P model is a more common choice in com-
bination with OPLS, we decided upon SPC, to ensure that we were comparing properties
of the protein FFs and not variations of the solvents. Parameters for n-octanol and decane
compatible with the OPLS FF were taken from Garrido et al.[25] The Lennard-Jones (LJ)
and Coulombic interactions were cutoff at 1.4 nm with a neighbor list update every 5 steps.
To correct for the truncation of electrostatic interactions beyond the cutoff a reaction-field
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(RF) correction was applied. [26] The relative dielectric constant for the RF, εrf , was set to
54, 8.8 and 2 for water, n-octanol and decane, respectively.

For the UA simulations, the Gromos FF [16] was used, as implemented in the Gromacs
4.0.x package. [23] For version 53 of the Gromos FFs two parameter sets have been used. For
the apolar solvents 53A5 was used, for which the amino acid parameters have been derived
in cyclohexane. For polar solvents 53A6 is used, which is the same as 53A5, except for the
partial charges, that have been adjusted to reproduce the hydration free enthalpies in water.
The SPC model [24] was used to represent water. Parameters for n-octanol and decane
compatible with the Gromos FF were taken from Garrido et al. [25] The LJ interactions and
Coulombic interactions were handled as done in the AA simulations. The relative dielectric
constant for the RF, εrf , was set to 54, 8.8 and 2 for water, n-octanol and decane, respectively.

For the CG simulations, the Martini FF [17] and its extension to proteins [18] was
used. The parameters for the SCAs and the solvents were as reported in these publications.
Simulations were also performed with the recently parameterized polarizable Martini water
model. [27] For the backbone analogue, the ’P5’ particle type was used, which represents the
backbone in an unstructured peptide. Following the standard protocol for Martini, the LJ
interactions were smoothly shifted to zero between 0.9 and 1.2 nm, using the switch potential
implemented in Gromacs. The coulombic interactions were shifted between 0 and 1.2 nm,
for both regular and polarizable Martini. The neighbor list was updated every 10 steps.
Effective dielectric constants εr = 15 for regular Martini and εr = 2.5 for polarizable Martini
water were used to screen the Coulombic interactions.

In all simulations the temperature was kept close to its target value, 298K, using Berend-
sen’s weak coupling algorithm (τT = 0.1, 0.1 and 0.3 ps for AA, UA, and CG, respectively).
The SCAs and the solvents were coupled separately. The pressure was maintained close to 1
bar using an isotropic weak coupling scheme (τP = 1.0, 1.0 and 3.0 ps for AA, UA, and CG,
respectively). [28] The integration time step was 2 fs for both AA and UA simulations and
30 fs for the CG systems. All bonds in the AA and UA systems, as well as the bonds of the
aromatic residues in the CG systems, were constraint with the LINCS-algorithm. [29]

Calculation of dimerization free energies

The free energy of dimerization, ∆Gdimer , was calculated using the formula derived for two
particle systems, as explained in chapter 2 of this thesis:

∆Gbind = ∆G∅ = −kBT ln

„

vdn1

v∅n0

»

v

vd
− 1

–«

(3.1)

where kB is Boltzmann’s constant, T the temperature, vd the dimer volume (calculated as
the sum of the experimental SC volumes[30]), v∅ the standard volume of 1.66 nm3 (equivalent
to a concentration of 1 mol/l), v the volume of the system and n0 and n1 are the respective
number of monomers and dimers counted in the trajectory. The discrimination between the
bound and unbound states was based on the distance between the center-of-mass (COM) of
the SCs. A SC pair was considered in a bound state if the distance between their COMs was
less than a cutoff. The cutoff was different for each pair, chosen to equal the distance of the
first minimum of the SC-SC radial distribution function (RDF). Most simulations showed
hundreds to thousands of association and dissociation events. Errors are calculated using
the Bayesian statistics approach as previously described (see chapter 2.

In order to calculate statistically reliable free energy of dimerization at least 50 association
and dissociation events are needed. For the amino acid SC pairs that did not show sufficient
spontaneous events, a potential of mean force (PMF) was calculated as a function of the
SC’s COM distance. Simulations were run for distances constrained in the range 0.24-1.50
nm with a 0.02 nm interval. At each distance the system was simulated for 2 ns from which
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the first 500 ps were discarded as equilibration period. Over the remaining simulation time
the mean constraining force was calculated using the constraint pulling code implemented in
Gromacs and integrated as described by Hess et al. [31]

Analysis of structural binding modes

The structural modes of dimerization of the SCAs were analyzed on the basis of their relative
orientation at short distances (¡ 0.75 nm). The SCAs relative orientation was described by
a set of simple geometrical reaction coordinates described here. The distance between the
center-of-masses (COM) of the SCAs was used in all cases. For aromatic side chains both
the angle between the normals of the ring planes (’angle’) and the dihedral angle between
two vectors through SCA rings (’dihedral’) were used. The ring plane was defined by the
triangle of three atoms in the ring. The dihedrals were defined using two atoms on each
ring. For non-aromatic SCAs we used the angle between vectors describing the long axis of
the molecules, where the vector was defined by two atoms of the side chain. Both the angle
and the dihedral where plotted against the distance between the SCAs. The probability
distributions for each reaction coordinate were calculated, normalized and converted into
free energy surfaces using:

∆G = −kBT ln(P ) (3.2)

where kB is boltzman’s constant, T is the temperature and P is the normalized probability.
Analyses were performed using standard Gromacs analysis tools and local scripts. Visual
analysis of the trajectories was performed using VMD [32].

Calculation of complex lifetimes

The lifetimes of the bound state of amino acid SCs pairs was calculated using the following
time-correlation function also called survival correlation function [33]:

SL(t) =
1

(ttot − ∆t)

ttot−∆t
X

t=0

p(t, t + ∆t) (3.3)

where p(t, t + ∆t) is set to 1 if the SCs are bound for a period of time ∆t after their initial
dimerization at time t and ttot is the length of the trajectory analyzed. To speed up the
analysis, the 240 ns trajectories were split into 50 blocks of 4.8 ns, which is still about two
orders of magnitude longer than the observed lifetimes (see Results). A running average of
5 ps was applied to filter out fast association-dissociation events. The lifetime of a complex,
τL, was obtained by a weighted (with the standard deviation) least squares fit of the mean
of SL(t) over the 50 blocks using the following expression:

< SL(t) >≈ exp[−(t/τL)] (3.4)

3.3 Results and Discussion

We present the analysis of the dimerization behavior of a representative set of amino acid
side chain pairs. Table 3.2 lists the complete set of dimerization free energies, ∆Gdimer ,
calculated for 21 pairs, in three different solvents (water, n-octanol, and decane) and for
three different force fields (OPLS, Gromos, and Martini). For pairs that showed insufficient
dimerization events, PMFs were determined and the depth of the well at contact distance of
these PMFs is reported instead (Table 3.3). The results are presented and discussed in more
detail in the following sections. First
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3.3. Results and Discussion

Figure 3.1: Comparison of dimerization free energies for the OPLS and Gromos FFs in
water (left panel), n-octanol (middle panel) and decane (right panel). Blue circles represent
charged SC pairs, black circles polar SC pairs, red circles apolar SC pairs, green circles
mixed SC pairs, cyan circles aromatic SC pairs and magenta circles the backbone-backbone
pair. The black line represents a regression of one. r is the Pearson correlation coefficient,
calculated over n data points.

the AA OPLS FF is compared to the UA Gromos FF, followed by a comparison of both
atomistic FFs to the CG Martini FF. The modes of binding are structurally characterized.
The ∆Gdimerobtained with the three FFs are then compared to contact energies obtained
from a knowledge-based potential. Finally the lifetimes of the bound SCA pairs in water for
the different FF are discussed.

OPLS versus Gromos

The correlation between the SCAs ∆Gdimerobtained using the Gromos 53A5/53A6 and
OPLS FF in the three different solvents is shown in Figure 3.1. The raw data together with
error estimates are listed in tablee 3.2.

In water, the ∆Gdimeraveraged over the 21 pairs is −0.22 ± 0.51 and −0.42 ± 0.81 kBT
for the Gromos and OPLS FFs, respectively. The root mean square difference (RMSD)
between the two FFs is 0.68 kBT . The oppositely charged amino acid (Arg-Asp and Lys-
Glu, blue circles) show much stronger interaction (more negative ∆Gdimer) for the OPLS

Table 3.3: Deepest well points obtained from potentials of mean force, given in kBT . PMFs
were only calculated for amino acid pairs that showed insufficient association-dissociation
events in the free simulations.

Octanol Decane
Pair Martini Gromos OPLS Martini Gromos OPLS

Asn & Asn − − − −2.7 ± 0.1 −7.5 ± 0.5 −11.7 ± 0.1
Gln & Gln − − − −2.7 ± 0.1 −8.0 ± 0.2 −9.2 ± 0.2
Gln & Asn − − − −2.8 ± 0.1 −7.8 ± 0.2 −10.1 ± 0.6
Asn & Lys − − − −4.5 ± 0.1 −24.6 ± 0.2 −29.3 ± 0.3
Arg & Asp −5.0 ± 0.1 −19.2 ± 1.1 −18.8 ± 2.2 −11.7 ± 0.1 −118.7 ± 0.2 −134.3 ± 0.2
Lys & Glu −4.5 ± 0.1 −18.5 ± 1.7 −17.0 ± 1.9 −11.2 ± 0.1 −127.6 ± 0.2 −149.8 ± 0.3
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3. Dimerization of Amino Acid Side Chains

FF. Omitting these two pairs, the RMSD decreases to 0.23 kBT . The RMSDs for the polar,
apolar, aromatic and mixed SCA groups are 0.24, 0.11, 0.17 and 0.06 kBT , respectively.
The correlation coefficient, r, is 0.60 over 21 pairs and 0.92 when omitting the charged pairs
(Figure 3.1).

In n-octanol, for the 18 pairs that showed sufficient association-dissociation events, there
is a considerable, inter FF spread of the ∆Gdimer . The averaged ∆Gdimerare −0.35 ± 0.63
and −0.09±0.56 kBT for the Gromos and OPLS FF, respectively. RMSDs are 0.72 kBT for
all 18 pairs and 0.42, 0.30, 1.12 and 0.41 kBT for the polar, apolar, aromatic and charged
SC groups. The correlation coefficient over the 18 pairs was r = 0.35 (Figure 3.1). For
pairs that did not show sufficient association-dissociation events, the PMF was calculated to
characterize the interaction strength. This was the case for Lys-Lys, Arg-Asp and Lys-Glu
pairs. The well’s depth in the PMF for the oppositely charged SCA pairs (Arg-Asp and
Lys-Glu) is similar for the OPLS and Gromos FFs (cf. Table 3.3). For the equally charged
pair (Lys-Lys) no well depth could be determined since the PMF does not show a minimum.
Both PMFs show a good agreement (data not shown).

Note that simulations of n-octanol have shown that it may adopt local structure. [34]
These structures are more pronounced in hydrated octanol as compared to dry octanol,
which we choose for our simulations. Careful examination of the trajectories showed that
no macroscopic structure (micelles or inverse micelles) formed. The local structure was
characterized by calculating the oxygen-oxygen and oxygen-hydrogen RDFs, which described
similar structure as shown in the figure 4 of MacCallum et al. [34] (data not shown). As
far as we could determine the local structure observed did not impair the sampling of the
SCA-SCA interactions.

In decane, only 14 pairs showed sufficient association-dissociation events and their aver-
aged ∆Gdimerare −1.80 ± 2.01 and −0.92 ± 0.77 kBT for Gromos and OPLS, respectively.
The RMSDs are 1.71 kBT for the 14 pairs and 2.28, 0.16, 2.43 and 0.34 kBT for the polar,
apolar, aromatic and charged SC groups. The correlation coefficient over the 14 pairs is
r = 0.80 (Figure 3.1). The depth of the well in the PMF for the pairs that showed insuf-
ficient association-dissociation events in decane (i.e. Lys-Lys, Arg-Asp, Asn-Lys, Gln-Gln,
Asn-Asn, Gln-Asn, Arg-Asp and Lys-Glu) are indicated in table 3.3. Two PMFs (Lys-Glu
and Lys-Lys) are shown in Figure 3.3. In the case of the polar pairs (Asn-Asn, Gln-Gln
and Asn-Gln) the wells are considerably deeper for the OPLS FF (∼ 1 − 4 kBT ), consistent
with the lack of association-dissociation events in the free simulations of these pairs using
the OPLS FF. In the case of the oppositely charged and mixed pairs (Arg-Asp, Lys-Glu and
Asn-Lys) a similar trend is observed although the differences are larger (∼ 5− 22 kBT ). For
the equally charged Lys-Lys pair the interaction is virtually the same in both the Gromos
and the OPLS FF (Figure 3.3).

The RMSD between the FFs over all pairs that showed sufficient association-dissociation
events are 0.68, 0.72, and 1.71 kBT for water, n-octanol and decane, respectively and
1.10 kBT averaged over all three solvents. The fact that their performance is most alike
in water (smallest RMSD) is to be expected, given that amino acids parameters have been
primarily derived for aqueous solutions. Larger differences between the two FFs are found
in n-octanol and decane. Especially the difference in dimerization free energies for aromatic
and charged side chains is worrisome, with a RMSD exceeding 2 kBT . The discrepancy
may partly result from the difference in solvent models (absence of aliphatic hydrogens and
corresponding partial charges in the Gromos FF). The interactions between charged SCAs
are stronger in the OPLS FF in all solvents. We attribute this to the difference in the dis-
tribution of partial charges on charged groups between both FFs. The OPLS FF has larger
partial charges when compared to the Gromos FF, leading to larger dipoles in the molecules
and therefore stronger interactions, especially in solvents of low polarity. The aromatic SCs
correlate well in water, yet some stronger interaction is observed with the Gromos FF in
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3.3. Results and Discussion

Figure 3.2: Comparison of
dimerization free energies between
Martini and OPLS or Martini
and Gromos FFs in water (top
left panel), polarizable water (top
right panel), octanol (bottom
left panel), and decane (bottom
right panel). Circles (◦) rep-
resent Gromos-Martini compari-
son, triangles (!) represent OPLS-
Martini comparison. Lines con-
nect the same pair in each of the
two atomistic models. Blue are
charged, black are polar, red are
apolar, green are mixed and cyan
are aromatic SC pairs and ma-
genta is the backbone-backbone
pair. The black line represents a
regression of one. r is the Pear-
son correlation coefficient, calcu-
lated over n SC pairs.

both n-octanol (Trp-Trp, Tyr-Tyr) and decane (all except Trp-Trp). In these cases the dis-
tribution of charge difference between the ring carbons and protons is larger in the Gromos
FF than in the OPLS FF, leading to larger local dipoles.

Backbone-backbone interactions are also stronger for the Gromos FF. This is true in
all solvents, and again most pronounced in decane. Experimental data on the dimerization
free energy of the backbone analogue molecule n-methylacetamide (NMA) point to an even
larger difference between dimerization in water versus organic solvent. Values in the range
of 7-9 kBT are listed by Ben-Tal et al. [21], compared to ∆Gdimer(water-decane) of 3.7
and 2.0 kBT for Gromos and OPLS, respectively. However, the authors also note that the
interpretation of the experimental data is far from trivial.

Martini versus atomistic

Figure 3.2 shows the correlation plots between the ∆Gdimerobtained for amino acid SCAs
using the Martini CG FF and the joint data obtained for the atomistic FFs discussed above.
The raw data and associated error estimates are given in table 3.2. To ease the comparison,
the results for the atomistic FFs were averaged and are referred to as AT in the following.

In water, the average ∆Gdimerover the 21 pairs is −0.44±0.85, −0.42±0.81 and −0.22±
0.51 for the Martini, OPLS and Gromos FFs, respectively. The RMSD over these pairs and
between the Martini FF and AT is 0.54 kBT . It should be noted that for the charged residues
there is a large spread between OPLS and Gromos (cf. the connecting lines in Figure 3.2).
Omitting the charged SC yields a RMSD value of 0.52 kBT . The small difference reflects a
cancellation between the Gromos and OPLS FFs, with the average dimerization free energy
close to the value obtained for the Martini FF. The groups of polar, apolar, aromatic, and
mixed SCAs have RMSDs of 0.27, 0.46, 0.58 and 0.69 kBT , respectively. The Pearson
correlation coefficient over all pairs is r = 0.79 (Figure 3.2). The average ∆Gdimerover the
21 pairs is not affected when switching to the polarizable Martini water model: −0.45±0.74.
The RMSDs change to 0.66 kBT for all pairs and 0.42, 0.84, 0.70, and 0.46 kBT for polar,
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3. Dimerization of Amino Acid Side Chains

apolar, aromatic, and mixed SCAs, respectively. The correlation of the dimerization free
energies with respect to the AA models becomes slightly worse (Pearson coefficient drops
to 0.55, Figure 3.2), however, this is largely attributed to the effect of the charged pairs.
Whereas with standard Martini water the AT value is closely matched, the polarizable model
matches Gromos very closely, but not OPLS.

In n-octanol, the averaged ∆Gdimerover the 18 pairs showing sufficient association-
dissociation events are −0.22± 0.49, −0.09± 0.56 and −0.35± 0.63 kBT for Martini, OPLS
and Gromos FFs, respectively. The RMSDs between Martini and AT are 0.40 kBT for all
pairs and 0.63, 0.24, 0.27, and 0.38 kBT for the polar, apolar, aromatic, and mixed SCAs,
respectively. The correlation coefficient over these 18 pairs is r = 0.67 (Figure 3.2). For
the charged pairs, insufficient sampling was achieved to determine ∆Gdimer . The PMFs,
however, show that the Martini FF systematically underestimates the attraction between
unlike-charges when compared to both atomistic FFs, as evidenced by the well depths of
Lys-Glu and Arg-Asp pairs (Table 3.3). Similarly, the repulsion between like-charges is
underestimated (Lys-Lys pair, data not shown).
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Figure 3.3: Potential of mean force for Lys-Lys (left) and Lys-Glu (right) SC pairs in
decane. Solid lines are PMF plotted against the center of mass distance, dashed lines are
PMFs plotted against charge group minimum distance. Black lines are Martini, green lines
are Gromos, red lines are OPLS, blue lines are polarizable water Martini (εr = 2.5), brown
lines are Martini without dielectric screening (εr = 1.0), cyan lines are an alternative model
for charged residues in Martini (drude-like, see text) with εr = 2.5, orange lines are the same
model with εr = 1.0. Errors do not exceed the thickness of the lines.

In decane, for the 14 pairs that showed sufficient association-dissociation events the aver-
aged ∆Gdimerare −0.61± 0.61, −0.92 ± 0.77, and −1.80± 2.01 kBT for the Martini, OPLS
and Gromos FFs, respectively. The RMSDs are 1.36 kBT for all pairs and 2.57, 0.29, 1.70,
and 0.82 kBT for the polar, apolar, aromatic, and mixed SCAs, respectively. Over these
14 pairs the correlation coefficient is r = 0.54 (Figure 3.2). The PMFs calculated for the
charged SCA pairs indicate much weaker Coulombic interactions in the Martini FF than in
the atomistic ones (table 3.3). The examples of the Lys-Glu and Lys-Lys pairs are shown in
Figure 3.3. The Lys-Lys pair exhibits a slightly attractive interaction with the Martini FF,
while the atomistic FFs are purely repulsive. The behavior of the charged SCA interactions
in the Martini FF is improved with the polarizable version of the water model, also shown in
Figure 3.3. The depth of the well of the Lys-Glu pair PMF decreases from −11 to −25 kBT ,
albeit still much smaller than the −120/ − 140 kBT value when using the atomistic models.
In the case of the Lys-Lys pair, the attractive range observed with the standard Martini
water disappears with the polarizable model.

The RMSDs of ∆Gdimerbetween the Martini FF and AT are 0.54, 0.40 and 1.36 kBT
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3.3. Results and Discussion

for water, n-octanol and decane, respectively and 0.86 kBT averaged over the three solvents.
Comparing the Martini FF used with polarizable water to AT in water gives a RMSD of
0.65 kBT . Thus, the difference between Martini and Gromos/OPLS is of the order of kBT ,
comparable to the difference between the two atomistic FFs. Main outliers to this last
observation are the interaction between Phe side chains in water, which is more attractive in
the Martini FF, and interactions involving charged and polar SCAs in the apolar media.

In the case of polar SCs this discrepancy is due to the lack of an explicit representation of
the polarity. The introduction of partial charges, in line with the polarizable water model [27],
may improve this behavior.

For the charged residues, the large difference observed between the atomistic and CG
apporaches results from two factors. First, in Martini a high implicit dielectric screening
(εr = 15) is used, while in the atomistic models no dielectric screening is used (εr = 1).
Reducing the dielectric screening used in Martini simulations does increase the interaction
strength between the charged SCs (See Figure 3.3): i) in the polarizable Martini model
(εr = 2.5) the interaction strength is increased by a factor of 2; ii) when no dielectric
screening is used (εr = 1.0), the interaction strength increases further by another factor of
two (not shown). Second, the size of the CG beads (defined by the van der Waals potential),
which limits the approach of the charged beads to ∼ 0.5 nm, whereas the charges in the
atomistic models can come much closer. Because the coulombic interactions fall off as 1/r,
the total interaction strength between the charged atomistic side chains is also affected and
is much more attractive. This effect becomes evident when the PMFs are plotted against the
minimum distance between the charges instead of the COM distance of the SCAs (dashed
lines in Figure 3.3). To increase the binding strength in the Martini force field, we designed
an alternative model for charged side chains in which the electrostatic and van der Waals
interactions are carried by two different particles connected by a constrained bond of length
0.11 nm (drude-like). The van der Waals center and the charge both have a mass of 36
amu. Using this setup, the charges may approach each other much closer and the interaction
increases by approximately a factor of 5 for the lysine/glutamate pair as compared to normal
Martini (cf. Figure 3.3). Combining this appraoch with an absence of implicit dielectric
screening (εr = 1) increases the interaction strength by a factor 18 compared to the normal
Martini topology. The latter setup yields SCA pair interactions stronger than when using
the Gromos and OPLS force fields. This is due to the spread of the charge over multiple
atoms in the atomistic force field. In chapter 7 a new model for charged side-chains in the
Martini force field is developed that fixes this problem.

Structural analysis

To further characterize the binding of SCAs in different force fields and solvents, we analyzed
the structural binding modes of the SCA pairs. To do so we build 2D probability distributions
correlating different reaction coordinates. For the aromatic pairs, both the angle between
the ring normals (’angle’) and the dihedral angle between two axes within the ring planes
(’dihedral’) are correlated with the COM distance. For the non-aromatic pairs the angle
between the SCAs long axes was correlated with the COM distance. In the Martini FF
only the aromatic pairs have sufficient beads to define the angle and dihedral. Therefore
for the other pairs only OPLS and Gromos could be compared. The analysis of the angles
was combined with a careful visual inspection of the trajectories. The results are shown in
Figure 3.4 and Figure 3.5 for the case of the Phe-Phe pair; plots for the other pairs can be
found in the supporting information of [35], figure 1 to 22.

Phenyl rings in general and phenylalanines residues in particular are known to bind in
mainly three different modes: T-stacking, straight-stacking and shifted-stacking. T-stacking
and shifted-stacking are most abundant in proteins [36]. For water and octanol Figure 3.4 and
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3. Dimerization of Amino Acid Side Chains

Figure 3.4: Two dimensional histograms showing the free energy profiles of the interactions
between two phenylalanine side chains in different solvents and different force fields. The
angle between the normal of the ring plains is plotted against the center of mass distance.
The normal of the ring plains is defined by Cγ , Cε1 and Cε2 for Gromos and OPLS and all
three ring beads for Martini. Colors indicate free energy levels in kJ/mol.

Figure 3.5 show some typical characteristics, that are seen in all of the aromatic pairs. First,
the lower free energy around a 90◦ angle is due to entropic reasons: more conformations
are possible for a perpendicular orientation as compared to parallel orientations. Second,
the position of the free energy minimum in the distance dimension corresponds to the first
minimum of the radial distribution function. And third the lower free energy at low distance
and angles around 0 and 180◦ is due to the flat stacking of the rings that is preferred at small
distances. Except for those general characteristics, in water and octanol no specific binding
mode is found in either of the force fields. In decane, Gromos shows a strong preference for
the shifted stacking, where the methyl groups are located straight above the ring of the other
side chain. In Figure 3.5 this orientation corresponds to the the lower free energy at 0◦. A
cluster analysis showed that this conformation accounted for ∼ 40% of the bound state. For
OPLS in decane no strongly specific orientation was observed. For Martini, orientations in
all three solvents are governed by optimal packing of the LJ spheres, leading to a preferred
binding in the ridges between the coarse grain beads.

For Gromos and OPLS, two tyrosine rings in water are often in a stacked conformation,
where there is no preferred orientation for the ring substituents (Supplementary Information
of de Jong et al.[35], figures 1 and 2). In decane, the interaction is mainly guided by the
hydrogen bond between the alcohol groups for OPLS and Gromos. Gromos has a second
conformation at closer distance in which the alcohol group points to the middle of the ring
of the second molecule. In octanol, this latter conformation is observed for both Gromos
and OPLS, however less pronounced. Using Martini, in decane and octanol the rings are
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3.3. Results and Discussion

Figure 3.5: Two dimensional histograms showing the free energy profiles of the interactions
between two phenylalanine side chains in different solvents and different force fields. The
dihedral angle between the vectors in the plane of the ring is plotted against distance between
the centers of mass of the SCAs. The vectors are defined by Cγ and Cζ for Gromos and
OPLS and the first two ring beads for Martini. Colors indicate free energy levels in kJ/mol.

mainly found in a stacked conformation. In water, orientations are again governed by sphere
packing.

The histidine-phenylalanine pair has no specific binding mode in water for any of the force
fields ([35], SI, figures 3 and 4). In decane, OPLS and Gromos favor a conformation where
the ε2 hydrogen is pointing to the middle of phenyl ring, leading to a 90◦ angle between the
rings. This orientation very strongly preferred for Gromos compared to OPLS. The difference
is less pronounced in octanol. For Martini, orientations in all three solvents are governed by
the packing of the CG beads.

The tryptophan-tryptophan pair preferably binds with the amine hydrogen of one molecule
pointing to the six ring of the second molecule in both Gromos and OPLS FFs ([35], SI, fig-
ures 5 and 6). This orientation is strongly present in decane and, for OPLS, in octanol. In
water no specific binding mode is observed. In Martini there is a specific binding mode where
the rings stack parallel, in that way maximizing the total contact surface.

Using Gromos and OPLS, the Trp-Tyr pair has two main conformations: either the Tyr
alcohol group is pointing towards the middle of the Trp 5-ring or the Trp amine group is
pointing towards the middle of Tyr 6-ring ([35], SI, figures 7 and 8). In OPLS the former
conformation is more abundant (equivalent to the 90◦ dihedral angle, see supplementary
information), while in Gromos the latter is (equivalent to the ±180◦ dihedral angle). In
water there is no preferred orientation, except for small distances (< 0.5nm) where the rings
are mainly found in a stacked orientation. This orientation is preferred for Martini in all
three solvents.
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3. Dimerization of Amino Acid Side Chains

For the four polar pairs (Ser-Ser, Asn-Asn, Gln-Gln and Gln-Asn) OPLS and Gromos
behave very similar in all solvents ([35], SI, figures 9, 10, 11, and 12). Interactions in octanol
and decane are governed by hydrogen bonds . In decane this effect is the most pronounced,
leading to only a small number of structural arrangements being sampled and a strong
binding energy (table 3.2 and table 3.3). For the Ser-Ser pair the hydrogen bond is between
the alcohol groups, which leads to an average angle between the molecules around 90◦. For
the other polar pairs a molecule angle around 180 degrees, corresponding to the hydrogen
bond between the oxygen and either of the amine hydrogens, is most prevalent. In octanol
the partial charges are more strongly screened and the interactions are consequently weaker
and less specific, although the hydrogen bond is still most prevalent. The pairs involving Asn
or Gln also sample the hydrogen bond between both amine groups. In water the screening
of charges is even stronger and no specific binding is observed.

All three pairs of apolar molecules as well as the mixed pairs (Leu-Asn, Leu-Gln, Leu-
Lys and Met-Ser) show no specific binding mode in any of the solvents when using a high
resolution force field ([35], SI, figures 13 to 19). The angles wobble around 90 degrees due to
entropic reasons. Valine-valine has a slightly smaller minimum distance when in contact.

The charged-polar mixed pair Asn-Lys has a strongly preferred binding mode where one
of the (charged) amine protons forms a hydrogen bond with the Asn oxygen ([35], SI, figure
20). The two minima found in the plot result from the presence of two conformations of the
lysine carbon tail (either stretched or U-shaped).

The charged Lys-Glu pair in decane and octanol always bind via their charged groups. A
large range of angles and associated change of COM-COM distance is sampled and results
from the change of conformation of the carbon tails of both molecules ([35], SI, figure 21). In
water, using the OPLS force field the side chains show the same mode of binding, although
less pronounced. In Gromos, potentially due to the down scaling of the charges in the 53A6
compared to the 53A5 version there is no specific binding mode in water.

For the charged Arg-Asp pair, there are strong differences between force fields and solvents
([35], SI, figure 22). In decane, using OPLS the charged Asp oxygens are strongly coordinated
by the η1 and η2 hydrogens of Arg, while in octanol they are coordinated by η2 and ε
hydrogens. In water both conformations are found. In decane, using 53A5, Asp binds in
between the η2 and ε carbons of Arg, with the planes of the molecules being perpendicular. In
octanol, Asp binds Arg at both η1/η2 and η2/ε positions, with the molecule planes primarily
in a perpendicular orientation. In water, using 53A6, no specific binding mode is observed.

Comparison to knowledge-based potentials

Unfortunately there is no experimental data that could be used to directly compare the cal-
culated ∆Gdimeragainst. There is, however, a long history of extracting side chain-side chain
contact energies for amino acid pairs from their occurrence in protein structures. [37][38][39]
These contact energies have been used to derive energy functions for CG FFs, the so called
knowledge-based potentials (KBP), [40] as well as to test existing FFs. [41] Although the
environment of an amino acid buried in a protein is different than free in solution (e.g. dif-
ferent orientational freedom and screening of electrostatics) and the methods used to extract
such KBPs are not flawless, [20] these contact energies provide us with a useful independent
benchmark. We use the set of contact energies obtained by Miyazawa and Jernigan [22]
(MJ). It was extracted from a set of 20000 SC contacts from which a delicate balance of
terms was carefully derived and corrected for potential biases.

The comparison of the dimerization free energies obtained from our simulations to the
contact energies obtained by MJ is shown in Figure 3.6. The correlation coefficients, r,
between the data from MJ and the OPLS, Gromos, regular and polarizable Martini FFs and
over 20 SCA pairs are 0.48, 0.67, 0.72, and 0.87, respectively. Note that in MJ the backbone
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3.3. Results and Discussion

Figure 3.6: Comparison of calculated SC dimerization free energies to knowledge-based
potentials (KBP) derived by Miyazawa and Jernigan [22]. In the left panel, KPB is compared
to the atomistic FFs Gromos (circles (◦)) and OPLS (triangles (!)). In the right panel, KPB
is compared to the CG FFs Martini (circles (◦)) and polarizable Martini (triangles (!)). Lines
connect equal SC pairs. Blue are charged, black are polar, red are apolar, green are mixed,
and cyan are aromatic SC pairs. The black line represents a regression of 1. Dashed and
dashed-dotted lines represent regression fits for Gromos and OPLS (left panel) and Martini
and polarizable Martini (right panel). r is the Pearson correlation coefficient, calculated over
n data points of the average of Gromos and OPLS (left panel) and of Martini and polarizable
Martini (right panel).

was not considered. The slope, a, of a linear regression fit of the MJ data versus the Gromos,
OPLS, regular and polarizable Martini FFs data was 0.53, 0.25, 0.35 and 0.49, respectively.
The correlation and regression coefficients are in line with those found by Betancourt et
al. [20] in their comparison of the Gromos 43A1 FF to the data from MJ (r = 0.55 and
a = 0.30, fitted including all possible amino acid pairs). It is also notable that the correlation
with an earlier set of contact energies derived by MJ [40] is much lower (data not shown),
suggesting that the additional corrections were valuable.

Overall the two Martini FFs compare better to the MJ SC-SC contact energies than the
atomistic ones. Notably the OPLS and the polarizable Martini FFs have stronger unlike
charge-charge interactions in comparison to the data from MJ. The correlation coefficients
become 0.70 and 0.88, respectively, when these interactions are omitted from the analysis.

In all four FFs the interactions between aromatic SCs are stronger than those obtained by
MJ, in line with the observation that values of interaction energies below −1 kBT (the case
for the rings) estimated by the method used by MJ might be underestimated (too weak). [20]
The deviation of these side chains primarily leads to regression coefficients smaller than one
for all FFs, as was also found by Betancourt et al. It is interesting to note that no significant
configurational preference for ring-ring interactions and persistent over FFs was found in
our simulations. This is in great contrast with first principle (ab initio) calculations and
protein structure analysis. This suggests that ring-ring interactions in an aqueous solvent
might be less specific than buried in a protein and/or in a non-polar environment. It was
also notable that in most cases simulated the SC-SC interactions experienced an increase
of conformational sampling with the increase of the polarity of the solvent (from decane to
water).

Considering that the KBP was obtained from structures of soluble proteins, [22] the choice
to compare to ∆Gdimerobtained from simulations in water seems reasonable. However, the
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3. Dimerization of Amino Acid Side Chains

Table 3.4: Complex lifetimes of amino acid side chain complexes in ps. Pairs have been
grouped according to chemical properties: charged, apolar, polar, aromatic, mixed, and back-
bone. Statistical errors were obtained as the fit error in the least squares fitting procedure.

Pair Pol.Mart. Martini Gromos OPLS
Charged

Lys & Glu 24.3 ± 0.7 68 ± 2 12.9 ± 0.3 (1.5 ± 0.2) × 102

Lys & Lys 12.8 ± 0.3 9.9 ± 0.8 20 ± 3 18 ± 2
Arg & Asp 38 ± 2 68 ± 1 12.2 ± 0.2 (7 ± 5) × 102

Polar
Ser & Ser 20.9 ± 0.6 16 ± 1 12.8 ± 0.5 9.6 ± 0.2
Gln & Asn 19.5 ± 0.3 24 ± 2 16 ± 4 16 ± 3
Asn & Asn 22 ± 1 16.1 ± 0.6 16.0 ± 0.7 20 ± 1
Gln & Gln 18.7 ± 0.6 25 ± 2 23.1 ± 0.9 28 ± 3
Mixed

Leu & Asn 14.3 ± 0.5 8.4 ± 0.4 17 ± 1 16 ± 2
Leu & Gln 14.2 ± 0.2 13.4 ± 0.7 23.6 ± 0.7 31 ± 2
Leu & Lys 18.5 ± 0.4 16.1 ± 0.8 18.3 ± 0.6 21.6 ± 0.6
Asn & Lys 17.0 ± 0.3 20 ± 1 20.9 ± 0.7 17.4 ± 0.4
Met & Ser 17.1 ± 0.2 13.3 ± 0.3 15.3 ± 0.3 15.8 ± 0.7
Apolar

Leu & Leu 25.7 ± 0.1 20.3 ± 0.1 27.5 ± 0.8 27.3 ± 0.8
Val & Val 29.5 ± 0.5 17.6 ± 0.5 21.2 ± 0.4 19.7 ± 0.8
Leu & Val 28.7 ± 0.5 16.5 ± 0.5 24 ± 1 27.8 ± 0.8
Aromatic
Trp & Trp 124 ± 7 110 ± 9 65 ± 2 58 ± 2
Tyr & Tyr 71 ± 4 67 ± 3 56 ± 4 52 ± 2
Phe & Phe 102 ± 2 84 ± 3 36 ± 2 40 ± 2
His & Phe 67 ± 4 56 ± 4 34 ± 1 33.0 ± 0.8
Trp & Tyr 119 ± 8 64 ± 3 53 ± 2 41.0 ± 0.6
Backbone
BB & BB 22 ± 1 16.1 ± 0.6 24.6 ± 0.5 16.9 ± 0.8

dielectric environment inside a protein is not the same as in aqueous solution. We therefore
also calculated the correlation coefficients between the KBP and the ∆Gdimercalculated in
n-octanol and decane for the different FFs. The correlation coefficients were systematically
lower than those obtained in water and always below 0.2 (data not shown).

Kinetics of side chain association

To assess the variations between the FFs with respect to the association kinetics of the
various SCAs, the lifetimes of the SCA bound complex, τL, were computed using Eqs. 3.1
and 3.2. Only the aqueous solvent case was considered, for which the results are listed
in table 3.4. The data show that, for most SCA pairs, the lifetime of the complex is of
the order of 10-50 ps, irrespective of the nature of the side chains. Since the lifetimes are
expected to be proportional to exp(−∆Gdimer), the differences between the FFs are largely
reflecting differences in dimerization free energy. To appreciate if there are additional effects,
we calculated a residual lifetime defined as τ∗ = τL/ exp(−∆Gdimer). Since the lifetimes
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Figure 3.7: Comparison of residual lifetimes of amino acid SCAs in water between different
force fields. In the first pane, circles indicate a SCA pair. In the second and third pane
circles compare Gromos to Martini and triangles compare OPLS to Martini. Black represents
polar SC pairs, red represents apolar SC pairs, green represent mixed pairs, cyan represents
aromatic SC pairs and magenta represents the backbone-backbone pair. The inset in the
first pane shows the charged pairs (blue circles). Charged pairs have been omitted for the
second and third plot. Errors in both dimensions are shown as error bars. The black line
represents a regression of one.

are inversely proportional to the dissociation constant, τL ∝ k−1
off ∝ exp(−∆Gdimer)k−1

on ,
the residual lifetimes will be inversely proportional to kon. Figure 3.7 shows the correlation
of these residual lifetimes between the FFs.

The comparison between the residual lifetimes obtained using the OPLS and Gromos FFs
shows a clear correlation (Figure 3.7). Within the error bounds, for most pairs the residual
lifetimes are the same. The average residual lifetimes for all but the charged pairs are 19±3ps
and 18 ± 4ps for Gromos and OPLS respectively. Thus, for the OPLS and Gromos FFs the
variations in ∆Gdimerare mainly affecting koff . Given the small variations in the residual
lifetimes, both within and between force fields kon is the same for different residues in both
force fields.

Comparing residual lifetimes obtained using OPLS and Gromos with those obtained using
Martini and polarizable Martini show a larger residual spread in the values obtained with the
CG FFs (Figure 3.7). There is a strong influence of the type of amino acid: the apolar pairs
have low residual lifetimes (9±1ps for Martini and 10±1ps for polarizable Martini), the polar
pairs have the highest residual lifetimes (23 ± 3ps for Martini and 23 ± 3ps for polarizable
Martini), and the mixed and aromatic pairs are intermediate (18 ± 3ps and 18 ± 3ps for
Martini and 17 ± 3ps and 22 ± 5ps for polarizable Martini).

The residual spread in the data points indicates that there is a difference in kon. Assuming
that kon will be mainly influenced by diffusion of the molecules in the solvent, our results can
be explained by the faster diffusion of apolar residues with respect to polar ones. (Compare
for example the diffusion coefficient of 1.4× 10−5cm2s−1 for glutamine to 1.9× 10−5cm2s−1

for leucine, data not shown). Why diffusion of apolar beads in Martini is somewhat faster
than polar beads is not entirely clear, however.
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3.4 Conclusions and Outlook

To assess the performance of both atomistic and coarse grain force fields, we have determined
the dimerization free energies, ∆Gdimer , of 21 amino acid side chain analogue (SCA) pairs
in solvents with different degrees of hydrophobicity (water, n-octanol and decane). Overall
good correlations were found between the all-atom OPLS and united-atom Gromos FFs, and
notably also with the Martini FF which uses a lower resolution. The charged SCAs proved
to be the most variable over the FFs, especially in the low dielectric solvents. This was
the case not only when comparing the CG Martini FF to the atomistic FFs, but also when
comparing OPLS and Gromos. The use of the polarizable Martini water model improved the
agreement of the charge-charge interactions between the Martini FF with the atomistic FFs,
while not affecting the other interactions. Concerning the difference between the atomistic
FFs, the OPLS FF has stronger Coulomb interactions than the Gromos FF, leading to larger
dimerization free energies in apolar solvents.

The high correlation and deviations found in the FFs contribute to define the areas
where one may be confident in the force fields and the points that need be taken with care
and improved. For instance, the structural analysis of the binding modes of the respective
SCA pairs points to significant differences in the packing of, especially, aromatic residues
between the force fields. One would expect that this will also affect the way aromatic residues
pack inside a protein. Furthermore, the differences in interaction energies between charged
and polar residues in apolar solvents is a serious point of worry. The choice of force field
will have consequences for processes such as membrane poration by charged aggregates and
peptides (e.g dendrimers and antimicrobial peptides), the cooperativity of charged amino
acids penetrating in membranes, binding of ligands in hydrophobic pockets inside proteins
and membrane protein complexation. In order for a force field to better cover those kind
of phenomena, membrane proteins should be used in addition to soluble proteins for the
validation of the force field.

On the basis of the deviations of the MARTINI FF with respect to the atomistic FFs,
a few recommendations could be made for future improvements. The phenylalanine residue
pair seems to bind too strongly in the MARTINI FF. The Phe SC should be made slightly
more attractive toward water than it is currently. A similar conclusion was recently reached
by Singh and Tieleman[42] comparing the binding of WimleyWhite pentapeptides to lipid
bilayers. The oppositely charged and polar SCs were found to bind too weakly in the apolar
solvents. For the charged SCs, this is slightly improved by using the polarizable MARTINI
model, which reduces the screening of Coulombic interactions, and improved further by
adding an extra, charge carrying bead to the model. In the case of the polar SCs, it could be
advantageous to introduce polarizable particles in the line of the polarizable water model. In
chapter 7 these solutions are further developed into a new set of parameters for the Martini
forcefield.

The side chain contact energy pairs obtained by Miyazawa and Jernigan from the occur-
rence of the SC pairs in a large set of protein structures correlated remarkably well with
the ∆Gdimer in water obtained with the various FFs. This is even more striking considering
the completely different approaches used to derive the potentials. It is worth mentioning
that the comparison with contact energies derived earlier by a different method [40] did not
correlate as well as with the current [22] set. The larger deviations observed for the aromatic
SCs suggest that they may involve more effects difficult to account for, or that the FFs are
not parameterized to the same level of accuracy as the other SCs.

The current work demonstrates the capability of modern large scale computational power
to systematically assess the quality of side chain interactions in molecular dynamics force
fields and identifies some possible improvements to be made with respect to these interactions.
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Lipid packing drives the segregation of transmembrane
helices into disordered lipid domains in model membranes
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Abstract

Cell membranes are comprised of multicomponent lipid and protein mix-
tures that exhibit a complex partitioning behavior. Regions of structural and
compositional heterogeneity play a major role in the sorting and self-assembly
of proteins, and their clustering into higher-order oligomers. Here, we use com-
puter simulations and optical microscopy to study the sorting of transmembrane
helices into the liquid-disordered domains of phase-separated model membranes,
irrespective of peptide-lipid hydrophobic mismatch. Free energy calculations
show that the enthalpic contribution due to the packing of the lipids drives the
lateral sorting of the helices. Hydrophobic mismatch regulates the clustering
into either small dynamic or large static aggregates. These results reveal im-
portant molecular driving forces for the lateral organization and self-assembly
of transmembrane helices in heterogeneous model membranes, with implications
for the formation of functional protein complexes in real cells.

4.1 Introduction

The heterogeneity of biological membranes plays an important role in cellular function [1] [2].
Despite experimental progress in recent years [3] , the characterization of lateral organization
in biological membranes, however, remains challenging due to the lack of tools to study
fluctuating nanoscale assemblies in living cells [4, 5, 6]. Model membranes [7, 8, 9, 10] as well
as isolated plasma membranes [11, 12] are more frequently studied, because large-scale phase
separation can be observed in these systems. In particular, at cholesterol concentrations
reminiscent of biological membranes (10-30 mol% cholesterol), ternary mixtures of saturated
and unsaturated lipids can segregate into coexisting lipid domains of different fluidity, a
liquid-ordered (Lo) and a liquid-disordered (Ld) phase. Probing the structural and dynamical
properties of these fluid domains has received a lot of attention, as it is presumably linked
to the formation of lipid nanodomains (”rafts”) in real cells [13, 14].
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Figure 4.1: Simulation of the sorting and clustering of WALP peptides in a model bilayer
with coexisting fluid domains. (A) WALP peptides (colored spheres) embedded in a ternary
mixture of di-C16:0PC (green), di-C18:2PC (red), and cholesterol (gray), solvated by water
(blue). (B) Coarse grain representation of WALP23 (cyan and yellow), di-C16:0PC (green),
di-C18:2PC (red), and cholesterol (gray), shown as spheres and sticks. The atomistic struc-
ture of the peptide is also shown (sticks). (C and D) Sorting and clustering of WALP23 (C)
and WALP31 peptides (D) in the disordered lipid domain.

The structure and function of membrane proteins is intimately connected with their lipid
environment [15, 16]. Because of the heterogeneity of the cell membrane, proteins partition
between different lipid domains, are recruited to specific locations, and form functional com-
plexes [17, 18, 19]. This lateral organization is very important for various cellular processes,
such as membrane fusion [20, 21], protein trafficking [22], and signal transduction [23, 24, 25].
Although lipids and integral membrane proteins are well studied by themselves, the molecular
properties that determine the specific interactions between them remain poorly understood.
Interactions important for protein sorting and self-assembly are (specific) protein-protein
and protein-lipid forces, and indirect lipid-mediated forces. The latter category includes,
for instance, forces due to entropic confinement of lipid chains and forces arising from the
mismatch between the hydrophobic parts of the protein and the bilayer. Recent computa-
tional studies highlight the importance of lipid-mediated interactions for membrane protein
clustering [26, 27, 28, 29].

Integral membrane proteins have a large structural variety, but all contain hydrophobic

62



4.2. Results

regions that span the bilayer; these regions are often single α-helices or α-helical bundles.
Many properties of membrane proteins are thus determined by the interactions between
these transmembrane (TM) helices and the surrounding lipids. Here, we investigate the
molecular interactions between TM helices, specifically WALP peptides, and heterogeneous
model membranes with coexisting Lo and Ld lipid domains. Synthetic WALP peptides were
designed as probes to study the behavior of TM domains in model systems, such as their
mode of insertion, aggregation, and partitioning [30, 31].

WALPs form α-helical TM domains comprised of alternating alanine and leucine residues,
flanked by tryptophanes to anchor the peptide at the membrane interface. Varying the
length of the peptide’s hydrophobic stretch allows for tailoring of desired properties, such as
the hydrophobic mismatch. WALPs and other TM peptides were observed to be excluded
from Lo domains in model membranes, irrespective of the hydrophobic mismatch, see, e.g.,
refs. [32] and [33]. It was speculated that the TM peptides disturb the tight packing of lipids
and cholesterol in Lo [14]; however, the underlying thermodynamic driving forces are not
well understood. Our study combines both large-scale molecular dynamics (MD) computer
simulations of planar membranes and confocal fluorescence microscopy of giant unilamellar
vesicles (GUVs) to investigate peptide sorting under different hydrophobic mismatch condi-
tions. In addition, the simulations yield insight into the clustering of the peptides and the
thermodynamic driving forces for lateral sorting.

4.2 Results

Simulations Show Partitioning of TM Helices into Ld Domain.

Figure 4.1 A and B shows the simulation system, consisting of 12 WALP peptides inserted
into a lipid bilayer patch and solvated by explicit water. All molecules are represented at a
coarse grain (CG) level, retaining near-atomic resolution. The bilayer consists of a ternary
mixture of dipalmitoylphosphatidylcholine (di-C16:0PC), dilinoleoylphosphatidylcholine (di-
C18:2PC), and cholesterol in a 0.42:0.28:0.30 molar ratio, about 2,000 lipids in total. The
membrane is separated into two coexisting fluid domains that can spontaneously form from a
random lipid distribution, as evidenced in previous simulations [34]. Characterization of these
domains revealed that the Lo membrane domain is mainly composed of the fully saturated di-
C16:0PC lipid and cholesterol, whereas the Ld domain is enriched in the doubly unsaturated
di-C18r:2PC lipid and has a reduced cholesterol content. The Lo domain is thicker (PC
headgroup-headgroup distance, d0 ≈ 4.6 nm) than the Ld domain (d0 ≈ 3.8 nm). In
the current chapter, we studied the partitioning of two different peptides, namely WALP23
[AW2L-(AL)8-W2A] and WALP31 [AW2L-(AL)12- W2A] in these domains. The shorter
WALP23 (peptide length lp ≈ 3.4 nm) is expected to fit well into the Ld domain, whereas
the longer WALP31 (lp ≈ 4.6 nm) could span the Lo domain and thus would display a rather
large positive hydrophobic mismatch in the Ld domain. As shown in Figure 4.1A, monomeric
peptides were initially inserted into the membrane. CG-MD simulations using the Martini
force field [35, 36] were then carried out for 80 µs for the WALP23 and WALP31 systems,
respectively.

Figure 4.1 C and D shows that the peptides adopt a distinct non-homogeneous distribution
during the simulation. Both the WALP23 and WALP31 peptides are expelled from the Lo
domain and partition into the Ld domain, irrespective of their length. For the membrane
studied here, in which the Ld domain spans about 10 nm, this sorting process is completed
within 2 µs, after which most peptides are incorporated into the Ld phase. We never observed
that peptides (transiently) returned to the Lo phase during the time span of our simulations,
suggesting a rather large driving force for peptide sorting into the Ld phase. Attaching two
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palmitoyl anchors to the N -terminus of WALP23 does not alter the partitioning, in agreement
with experiments[32]. The addition of eight palmitoyl anchors, however, leads to preferential
binding to the domain boundary (see section 4.5). The lateral segregation of the peptides
leads to an increase of the effective peptide/lipid ratio to about 150 in the disordered domain,
where dynamic self-assembly of the peptides into oligomeric aggregates is observed. The size
and stability of the aggregates depends on the mismatch, as is addressed below.

Figure 4.2: Confocal images of GUVs
containing Alexa Fluor 488-labeled
WALP peptides. (A and B) The
vesicles were composed of di-C18:1PC/
cholesterol/egg-sphingomyelin (1:1:1) and
WALP23 (blue fluorescence channel) and
DiD-C18:0 (red). (C and D) The vesicles
contained di-C14:1PC/cholesterol/egg-
sphingomyelin (1:1:1) and WALP27
(blue) and DiD-C18:0 (red).

Confocal Microscopy Verifies That
TM Helices Prefer the Ld Domain.

Next, we experimentally tested the predictions
of our simulations by optical fluorescence mi-
croscopy. We incorporated Alexa Fluor 488-
labeled WALP peptides into GUVs composed of
cholesterol, di-C181PC, and egg-sphingomyelin
(1:1:1). The fluorescent lipid dye DiD-C180
was added as a marker for the Ld phase[8,
11]. First, we incorporated labeled WALP23
into the GUVs and recorded fluorescence im-
ages (Figure 4.2A, blue channel). The con-
focal image in Figure 4.2B shows the fluores-
cence of the Ld marker DiD-C18:0 (red chan-
nel), confirming the phase separation. The
colocalization of the WALP23 and DiD-C18:0
fluorescence indicates that the peptides parti-
tion into the Ld domains (containing mainly
di-C18:1PC) and are expelled from the Lo
domains (composed of mainly cholesterol and
egg-sphingomyelin). In a next step, we re-
peated the experiments with a membrane in
which di-C18:1PC was replaced by di-C14:1PC,
thereby decreasing the hydrophobic thickness of
the Ld phase by about 0.6 nm. To maximize
the hydrophobic mismatch, we incorporated the

WALP27 peptide, which is 0.6 nm longer than WALP23. Thus, taken together, the differ-
ence is 1.2 nm, identical to the length difference between the WALP23 and WALP31 peptides
used in our MD simulations. Also here, the Lo domains match the hydrophobic length of
the longer peptide much better than the thinner Ld domains. The confocal images shown in
Figure 4.2C and D reveal that Alexa Fluor 488-labeled peptides and DiD-C18:0 still colocal-
ize, demonstrating that WALP peptides prefer the Ld phase over the Lo phase irrespective
of the hydrophobic mismatch. These confocal images confirm our MD simulations and agree
with previous detergent extraction experiments[32].

Free Energy Calculations.
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Table 4.1: Free energies, enthalpies, and entropies at
300 K of partitioning of single peptides between the Lo
and Ld phases. All values are in kJ mol−1. a ∆GLo/Ld

was obtained from TI simulations. b ∆HLo/Ld was
estimated from the system’s potential energy, and
−T∆SLo/Ld = ∆GLo/Ld − ∆HLo/Ld. Standard errors
are given (see section 4.5). Note, the decomposition of
the free energy into enthalpy and entropy, and thus the
absolute values of ∆HLo/Ld and ∆SLo/Ld should be in-
terpreted at a qualitative level (see section 4.5).

∆Ga
Lo/Ld ∆Hb

Lo/Ld T∆Sb
Lo/Ld

WALP23 -63±8 -594±47 531±48
WALP31 -58±8 -276±33 531±34

To roughly understand the un-
derlying molecular driving forces
for the observed lateral sorting of
the peptides, we calculated, by
means of thermodynamic integra-
tion (TI), the partitioning free en-
ergies of a single WALP peptide
between the Lo and Ld phase (for
details, see section 4.5). The re-
sults are summarized in Table 4.1.
The free energies of transferring
a peptide from the Lo to the Ld
domain are ∆GLo/Ld = 63 ±

8 kJ mol−1 and 58±8 kJ mol−1 for
WALP23 and WALP31, respec-
tively. The strong preference of
both peptides for the Ld phase ex-
plains why during the free simulations, peptides once incorporated into the Ld domain never
returned to the Lo domain. The transfer free energies ∆GLo/Ld result from large counteract-
ing enthalpic and entropic contributions (Table 4.1). The enthalpy favors partitioning into
the Ld phase, whereas the entropy would favor partitioning into Lo. This can be rational-
ized by the disorder introduced when a TM peptide is accommodated in the well-ordered Lo
phase. However, lipid-lipid and lipid-cholesterol packing is optimal in the Lo phase, and any
foreign inclusion comes with a large enthalpic penalty that is not outweighed by this increase
in entropy. By contrast, the lipids in the Ld domain are already strongly disordered, and
incorporation of a TM helix thus does not yield a significant increase in entropy in this case.
At the same time, due to the less densely packed lipids in Ld, the inclusion of the TM helix
is enthalpically more favorable in Ld than in Lo, again outplaying the entropic contribution.

The length of the peptide, and hence mismatch, does also play a role. The enthalpic gain
of moving the shorter WALP23 peptide from the Lo to the Ld domain is significantly higher
compared to that of the longer WALP31 peptide, which shows no hydrophobic mismatch
with respect to the Lo phase (594 kJ mol−1 and 276 kJ mol−1 for WALP23 and WALP31,
respectively; see Table 4.1). These results are backed up by the calculation of lipid tail order
parameters from CG and atomistic simulations; see section 4.5. Taken together, for both
peptides, the free energy gain upon moving from Lo to Ld results from the strong enthalpic
contribution due to peptide-induced breaking up of the tight lipid packing in the Lo domain,
which cannot be overcome by the entropic preference for the Lo phase.

Clustering of Peptides Depends on Mismatch.

Figure 4.3A and B quantifies the cluster formation of the WALP23 and WALP31 peptides,
respectively, revealing the distinct aggregation behavior of the two peptides. The shorter
WALP23 peptides display a very dynamic clustering behavior. After an initial equilibration
phase of ca. 15 µs, WALP23 peptides are mostly present as monomers, dimers, and trimers,
and clusters continuously reorganize by exchanging peptides, with average cluster lifetimes of
a few microseconds. Calculating the average number of monomers, dimers, and trimers over
the last 60 µs of the trajectory yields nmon:ndim:ntrim =2.8:2.0:1.0. Thus, the populations
of monomer and dimer are similar at the effective peptide/lipid ratio of about 150 in the Ld
phase. For the dimers as the most abundant aggregate, and assuming that the law of mass
action can be applied, we estimate the equilibrium association constant according to [37]: K
= (ndim/ntot)(nmonn2

tot), where ni is the average number of moles of species i in the Ld
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Figure 4.3: Clustering of WALP peptides during simulations. The number of WALP23
(A) or WALP31 (B) peptides that are present as a monomer, or part of a dimer, trimer, or
a larger cluster are plotted over time. Two WALPs were considered bound if the distance
between any two particles of the peptides was smaller than 0.7 nm.

domain. Using ntot = 540 (number of lipids in the Ld domain), we obtain K = 140 ± 60.
The dimerization free energy is then ∆G = RT ln K = 12 ± 2 kJ mol−1, in agreement with
experiments [38] and other simulations [39]; see section 4.5 for details. Under experimental
conditions, WALP peptides are found to be monomeric at low peptide concentrations [31].
However, at peptide/lipid ratios of about 125 to 150, clustering (dimerization) was observed,
a process that is additionally fostered by the presence of cholesterol [40]. Thus, the presence
of weakly bound WALP23 dimers as found in our simulations is in agreement with the
available experimental data.

Most of the WALP23 dimers observed in the simulation adopt a right-handed configura-
tion, with a negative helix crossing angle (see section 4.5). Although left-handed packing of
helices is more abundant in known membrane protein structures [41, 42], right-handedness is
also found, for example, in the glycophorin A (GpA) dimer [43]. Similar to WALP, GpA is
a single transmembrane α-helix, and its dimer has a rather small interface that does not in-
volve hydrogen bonds or salt bridges. In the WALP23 trimers formed during the simulation,
we mostly observed a linear arrangement of the peptides (i.e., the two outermost peptides
within a trimer are not in direct contact with each other), again with a preference for a
right-handed configuration. Left-handed helix-helix contacts are also occasionally present
during the simulation; however, such aggregates are rather short-lived and rapidly dissociate
again.

In contrast to WALP23, the longer WALP31 tends to form large clusters. In addition,
the clustering behavior is much less dynamic as compared to WALP23, with fewer associa-
tion / dissociation events observed. After 13 µs, a heptameric and a tetrameric cluster are
formed, and a single WALP31 is not yet incorporated into the Ld domain (orange peptide,
Figure 4.1D); this peptide joins the heptameric cluster after 50 µs (Figure 4.3B). Because
the growing size of the clusters slows down their lateral diffusion, it takes until t = 70µs for
the encounter of the two clusters to occur, yielding a 12-mer that is stable for the rest of the
simulation time. The large WALP31 cluster is rather unstructured; that is, it has no clear
tertiary structure or long-range order. As shown in Figure 4.1, the clusters occasionally ap-
proach the domain boundary, but get reincorporated into the core of the disordered domain,
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Figure 4.4: Proteins mov-
ing lipids moving proteins. A
WALP23 (orange spheres), ini-
tially located in the Lo phase
(green), gets incorporated into the
Ld phase (red) through concerted
peptide and lipid motion. (A)
A peninsula of di-C18:2PC lipids
bridges the peptide to the core of
the Ld domain. (B) The peptide
gathers an island of di-C18:2PC
lipids (red) in its environment. (C
and D) The di-C18:2PC island
merges with the Ld domain, and
the peptide subsequently diffuses
away from the domain boundary.

demonstrating that the clusters, like the monomers, also prefer the Ld over the Lo domain.
To check and validate our coarse grain simulations, we transformed a snapshot (after

t = 40µs) from the CG-MD simulation of the WALP23 system to its underlying atomistic
representation [44] and carried out a 100-ns atomistic MD simulation (see section 4.5). During
this simulation, the majority of the WALP23 clusters stay bound (a single dimer dissociates),
consistent with the behavior shown in Figure 4.3. The atomistic simulations thus support
the clustering observed in the coarse grain simulations.

4.3 Discussion

Our computational modeling data as well as the confocal microscopy results reveal that
model transmembrane helices, such as the WALP peptides, do not like to be embedded in the
liquid-ordered phase. Rather, they are observed to spontaneously partition into the liquid-
disordered phase. The near-atomic resolution of our simulation approach allows us to study
the sorting process in molecular detail. This is further illustrated in Figure 4.4, showing
a time series of the incorporation of a particular WALP23 peptide into the Ld domain.
Although most peptides are rapidly expelled from the Lo domain, this particular peptide
gets temporarily trapped and enters the Ld domain only after 10 µs. The incorporation
of this peptide is facilitated by the transient formation of an island of unsaturated lipids
pervading the ordered domain, emphasizing that it is the collective motion of both lipids and
peptides that plays a role in the lateral sorting process.

Thus far, no TM peptides or proteins that partition into Lo domains in model membranes
were reported [33, 45, 46, 47, 48, 49], irrespective of the amino acid sequence. However, the
underlying molecular mechanisms and thermodynamic driving forces were poorly understood.
Our simulations reveal that the driving force for this observed sorting is the enthalpic cost
associated with the presence of a cylindrical object (the TM helix) inside the ordered lipid
phase. Thus, although we used synthetic WALP peptides as generic models, our proposed
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mechanism is general and likely to be relevant for protein sorting, also in vivo. To test
the generality, we additionally studied the partitioning of the α-helical TM domain of the
syntaxin 1A protein (TM-Sx1A, residues 259-288) and of the linker for activation of T cells
(TM-LAT, residues 2-32); see section 4.5. LAT is frequently used as a raft marker, but dif-
ferential partitioning behavior in model membranes and in plasma membranes was reported
[48, 50]. In our simulations, TM-Sx1A partitions into the Ld domain, in agreement with
experimental findings [21, 45, 51, 52, 53]. TM-LAT also prefers Ld, in agreement with ex-
periments on model membranes [48]. However, unlike TM-Sx1A, we find the larger TM-LAT
clusters to be located close to the domain boundary interface.

In living cells, the differences between Lo and Ld domains are less pronounced than they
can be in model membranes, due to the more complex lipid composition and high protein
concentration in the plasma membrane, which may hamper the tight lipid packing in Lo
[49, 50]. In particular, in the model membrane used in our simulations, the almost complete
depletion of unsaturated lipids from Lo yields a very ordered domain. Furthermore, the Ld
domain is rather strongly disordered due to the doubly unsaturated di-C18:2PC, explaining
the observed large free energy differences (Table 1). McIntosh and coworkers [54] measured
through detergent extraction experiments much smaller transfer free energies of TM peptides
between lipid domains in bilayers comprised of dioleoylphosphatidylcholine, cholesterol, and
sphingomyelin (1:1:1), which are closer to the critical point and might thus more closely
resemble the situation in cell membranes. They report transfer free energies of only about
25 kJ mol−1 for the peptides P-23, P-29, and P-31 (α-helical peptides with a hydrophobic TM
part and charged residues at the termini). However, such a quantitative analysis of detergent
extraction experiments has to be taken with care [55], and larger free energy differences were
estimated based on elastic theories [56].

For integral membrane proteins, a widely accepted assumption is that sorting is controlled
by the length of the TM domains [18]. This mechanism is supported by the finding that the
TM parts of proteins in the Golgi membrane (enriched in unsaturated lipids) are on average
spanned by 15 amino acids, whereas TM domains of plasma membrane proteins comprise
on average 20 amino acids [22]. We observed a preference for the Ld phase regardless of the
length of the peptide and hence the degree of hydrophobic mismatch. One key difference
between single TM helices, such as WALP peptides, and large integral membrane proteins
is that the former can alleviate the energetic penalty due to positive hydrophobic mismatch
through adopting a large tilt angle (according to our simulations, the average tilt angle of
WALP31 in the Ld domain is indeed substantial, around 45◦; see section 4.5). The tilting of
large integral membrane proteins as a whole is energetically unfavorable. Rather, they may
induce stronger local bilayer deformations than single α-helices or adapt their hydrophobic
thickness through structural rearrangements, such as changing the tilt of individual α-helices
relative to each other. The associated free energy costs influence partitioning. To probe the
effect of helix tilt, an additional simulation was carried out in which we restricted tilting
of WALP31. The peptide preferentially adsorbs at the Lo/Ld domain interface (see sec-
tion 4.5). This result confirms that hydrophobic mismatch also plays an important role for
the sorting of integral membrane proteins, and we predict that proteins that do not fit well
into the Ld domain may display ”linactant” [57, 58] behavior at the Lo/Ld interface. Also
TM peptides with several palmitoyl anchors can accumulate at the domain interface (see
section 4.5). However, specific lipid factors, such as raft gangliosides, can also be important
for sequestering into the Lo phase [12]. Finally, protein-protein interactions can further alter
the driving forces for LoLd partitioning [59, 60] by modulating the number of lipidprotein
contacts. Clustering of transmembrane proteins and peptides may occur as a response to
hydrophobic mismatch, as it reduces the number of lipids bound to the nonmatching mem-
brane inclusion. This was confirmed by experiments on various transmembrane proteins and
peptides [31]. The increased tendency to cluster observed for WALP31 supports this idea of
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mismatch driven self-aggregation.
By combining molecular dynamics simulations and confocal microscopy, we show why

transmembrane helices partition into disordered lipid domains in heterogeneous model mem-
branes, irrespective of helix-lipid mismatch. Our study demonstrates that computer simu-
lations, in combination with experiments, can not only contribute to unravel the molecular
forces driving complex phase behavior in biological systems, they are also poised to become
a powerful tool for predicting the localization of proteins and lipids in heterogeneous cellular
environments and foster the design of bioinspired molecules with tailored properties.

4.4 Materials and Methods

Molecular Dynamics Simulations.

All simulations were carried out with the Gromacs package, version 4.0.5 [61]. In the coarse
grain simulations, the Martini force field [35, 36] was used. An integration time step of 20 fs
was applied, together with the standard settings for the nonbonded interactions. Constant
particle number, pressure, temperature ensembles were simulated within periodic boundary
conditions, with peptides, lipids, and water coupled separately to a heat bath at 295 K
(τT = 0.3 ps). The system was semi-isotropically coupled to a pressure bath at 1 bar
(τp = 3 ps). As the starting structure for the membrane platform, we took the phase-
separated bilayer obtained after 20 µs of coarse grain simulation from ref. [34]. Subsequently,
TM peptides were inserted, regularly distributed on a lateral grid. For the WALP simulations,
12 peptides were inserted (Figure 4.1A), with neighboring peptides inserted in an alternating
manner (i.e., 6 peptides were inserted ”head up,” and 6 peptides ”head down”). For TM-Sx1A
and TM-LAT, 9 peptides were inserted in a parallel manner (see section 4.5 for details). The
final systems comprised of TM helices, 828 di-C16:0PC, 540 di-C18:2PC, and 576 cholesterol
molecules, solvated by 12,600 CG water beads (one water bead represents four real water
molecules). Prior to the free MD simulations, the systems were energy-minimized (1,000 steps
steepest descent), followed by 1 ns of MD with positional restraints on the peptide beads
(force constant = 1,000 kJ mol−1 nm−2). For details about the resolution transformation
and atomistic simulations, see section 4.5. To convert simulation times to real times, a factor
of 4 was used, obtained by comparing the lateral diffusion coefficient of a single WALP23
peptide in a bilayer to experimental data; see section 4.5 and ref. [62]. All times reported in
the text are real times.

Confocal Microscopy.

Cys-WALP23/27 [Acetyl-CGWW(LA)810LWWA-amide] were synthesized using Fmoc/tBu
peptide solid-phase synthesis as described previously for related KALP peptides [63]. The
peptides were labeled with Alexa Fluor 488 C5-maleimide (Molecular Probes, Invitrogen
Corp.) using procedures similar to the ones for another thiol-reactive fluorophore [64]. A
lipid mixture of cholesterol, sphingomyelin (extracted from egg-yolk), and 1,2-dimyristoleoyl-
sn-glycero-3-phosphocholine (di-C14:1PC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (di-
C18:1PC) was prepared from lipid stock solution in chloroform with molar ratio 1:1:1 (lipids
were purchased from Avanti Polar Lipids). The labeled peptides dissolved in trifluoroethanol
and the fluorescent lipid marker DiD-C180 (solid, 1,1’-di-octadecyl-3,3,3’,3’-tetra- methyl-
indodicarbocyanine, 4-chlorobenzene-sulfonate salt, Molecular Probes, Invitrogen Corp.),
dissolved in methanol, were added to the lipid mixture at a ratio of 1:100,000. The pep-
tide/lipid mixture was applied to indiumtin oxide-coated microscope glasses (thickness 0.13−
0.16 mm; 15-30 Ω, SPI Supplies), and solvents were evaporated. GUVs were produced using
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a homemade electroformation chamber assembled of a pair of indiumtin oxide-coated glasses
filled with buffer (10 mM KPi, pH 7.0), to which an alternating current with 10 Hz and 2
V (corresponding to ca. 400 V/m) was applied for at least 2 h. For imaging, the electro-
formation chamber was directly mounted on the sample stage of a laser scanning confocal
microscope equipped with two lasers. A blue argon ion laser (488 nm) and a red He-Ne laser
(633 nm) were used to excite the Alexa 488 fluorophore and the lipid marker DiD-C18:0,
respectively.

4.5 Supplementary Information.

Lateral diffusion of WALPs: Comparing experimental and
simulation time scales

Simulation times from coarse grain molecular dynamics (CG-MD) simulations can be com-
pared to real times by accounting for the smoother energy landscape of CG models as com-
pared to atomistic models: Since CG models lack (part of) the friction due to motion of the
atoms, the dynamics observed in CG-MD simulations is faster than at the atomistic level.
For the Martini CG model, a time conversion factor of 4 was found adequate to match the
simulated and experimental diffusion coefficients of both bulk water and DPPC lipids in a
bilayer. However, this time conversion factor cannot a priori be expected to be applicable
to other processes as well, since it depends on the energy barriers and the relevant mass
and length scales involved in the process under study. Here, to convert the simulation times
from our CG-MD simulations of membrane-embedded WALP peptides to experimental time
scales, we simulated a WALP23 peptide in dioleoylphosphatidylcholine (DOPC) bilayers, and
compared the obtained lateral diffusion coefficient to experiments[62, 65].

Figure 4.5: Mean square displacement of a
single WALP23 in a 12-bead (dashed line) and
a 14-bead (solid line) DOPC bilayer. The lat-
eral diffusion coefficient was obtained from a
linear fit to the msd curve in the time interval
10 to 100 ns (simulation time).

MD simulations. Two CG-MD simula-
tions using the Martini model were carried
out, in which a single WALP23 peptide was
embedded into a pre-equilibrated bilayer of
476 DOPC molecules solvated by 6816 CG
water beads (one CG water bead represents
4 water molecules). In the first simulation, a
14-bead Martini model was used for DOPC,
in which each lipid chain comprised 5 beads.
In the second simulation, DOPC comprised
12 beads, i.e., only 4 beads per chain. In
both cases, the lipid chains contained a C3-
type bead (in the third position), which
together with the appropriate bonded pa-
rameters models the double bond. These
two different models were used, because the
measured thicknesses of DOPC bilayers can
vary substantially (depending on the exper-
imental conditions), with a typical range
between 3.7 and 4.3 nm. The 12- and 14-
bead DOPC models yield a bilayer thickness
of about 3.90 and 4.35 nm, respectively, a
range comparable to that observed in ex-

periments. The systems were equilibrated for 200 ns prior to data collection. NpT ensembles
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were simulated at 300 K, with the simulation parameters as described in Methods. The
simulation time was 4 µs for each system.

Lateral diffusion. The lateral diffusion coefficient of the peptide was calculated from the
long time mean square displacement (msd) of the peptide over time according to

Dlat = limt→∞

〈|r(t + t0) − r(t0)|2〉

4t
(4.1)

where r is the center of mass vector of the peptide in the membrane plane. The time window
averaging was done over all initial time origins t0. The overall center of mass motion was
removed. The statistical error was obtained by separately analyzing the two halves of the
trajectory. The obtained msd curves, shown in Figure 4.5, are to a good approximation
linear over the time interval 10 to 100 ns. Linear fits yield Dlat = 15.6±2.4 µm2s−1 and
23.2±2.0µm2s−1 for WALP23 in the 14-bead and 12-bead DOPC bilayers, respectively, which
are about 3 to 4.4 times larger as compared to the value of Dlat = 5.3µm2s−1 measured in
giant unilamellar vesicles composed of pure DOPC[62] or of a 3:1 mixture of DOPC and
DOPG[65]). Thus, we conclude that a factor of about 4 is appropriate to convert the peptide
diffusion time observed in our CG-MD simulations to the experimental time scale. Unless
stated otherwise, all times reported in section 4.2 are effective times, that is, simulation times
multiplied by a factor 4.

TI calculations of partitioning free energy

Here we describe the details of the free energy calculations presented in section 4.2. The full
results of the thermodynamic integration (TI) simulations are summarized in Table 4.5.

System setup. For the TI simulations, we used two bilayer patches with lipid compositions
corresponding to the Lo and Ld domains, respectively. The Lo bilayer patch comprised 368
di-C16:0PC and 224 cholesterol molecules, corresponding to a 0.62:0.38 molar ratio. The
Ld bilayer patch comprised 336 di-C18:2PC, 32 di-C16:0PC, and 72 cholesterol molecules,
corresponding to a 0.76:0.08:0.16 molar ratio. These mixtures closely match the equilibrium
compositions in the core of the Lo and Ld domains, respectively[34]. Initially, the PC and
cholesterol molecules were randomly distributed in the membrane plane (with equal amounts
of each molecule type in both monolayers), and the bilayers were solvated by 5328 CG water
beads (one CG water bead represents 4 atomistic water molecules). Then, into both bilayers,
a single WALP peptide was inserted in its transmembrane orientation. To generate starting
structures for the subsequent simulations, the systems were energy minimized (steepest de-
scent, 1000 steps) and equilibrated for 4 µs in free MD simulations, using the Martini force
field and simulation parameters as described in Methods.

TI procedure. As shown in Figure 4.6, the free energies of extracting a peptide from the
membrane bilayer to the gas phase were determined by thermodynamic integration with a
coupling parameter λ. This was done in two steps: First, all non-bonded interactions of the
peptide with the surrounding bilayer and water as well as within the peptide were turned off;
second, the interactions were turned back on in vacuo. Thus, λ = 0 and λ = 1 correspond to
the fully coupled and uncoupled states, respectively. Note, the helicity of the WALP peptides
is imposed by the dihedral (bonded) interactions, and is thus not affected during the TI. From
the free energies of extracting a peptide from the bilayer to the gas phase, the transfer free
energy between the Lo and Ld domains was calculated as ∆GLo/Ld = ∆GLo/vac−∆GLd/vac.
In the TI simulations, NpT ensembles were simulated using stochastic temperature coupling
to T = 300K and an inverse friction coefficient of 5 ps. This friction coefficient yields a
similar lipid lateral diffusion coefficients as observed in the MD simulations of the large
2000-lipid bilayer. The center of mass of the peptide was kept close to the center of the
bilayer by means of a harmonic position restraint along the bilayer normal (force constant
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Figure 4.6: a) Results from thermodynamic integration simulations for WALP23. The
green and red curves show the TI in the Lo and Ld bilayers, respectively. Statistical errors
are plotted as dashed sidelines. Similar curves were obtained for WALP31. b) Convergence
of the errors of the potential energy (used to estimate the enthalpy, see text) as a function of
block size (solid lines), together with the analytical estimate (bi-exponential function, dashed
lines) for the Ld bilayer without (black) and with WALP23 embedded (red).

1000 kJ mol−1 nm−2). This restraint prevents the peptide from slipping out of the bilayer
at λ close to 1, while still allowing it to diffuse, reorient, and tilt in the bilayer. A soft-core
potential was used for the nonbonded Lennard-Jones interactions (the WALP peptides bear
no (partial) charges in the Martini force field), with potential height α = 1.3, λ-power = 1,
and interaction-range σ = 0.47 nm[66]. We used a basic spacing between the λ-points of 0.05;
additional λ-points were added at λ = 0.375, λ = 0.425, and λ = 0.475, where the curvature
of dG/dλ is maximal (see Figure 4.6a), yielding a total of 24 λ-points. At each λ-point, the
system was simulated for 500 ns (which, using the time conversion factor of 4 observed for
DOPC bilayers, see above, may correspond to about 2 µs of atomistic simulation time). The
first 20% of each simulation were considered equilibration and excluded from the analysis.
Error estimates were obtained by fitting a bi-exponential function to the block average of
dG/dλ as a function of block size, as implemented in the g analyze tool of Gromacs and
described in Ref.[67].

Enthalpy estimation. To obtain the enthalpies, we carried out long MD simulations of
the Lo and Ld bilayer patches with and without the peptides, and of the individual peptides
in vacuo. The systems were simulated for 40 µs and 16 µs for the Lo and Ld bilayer patches,
respectively, in addition to an initial equilibration phase of 4 µs. The vacuum systems were
simulated for 100 ns. The enthalpies were calculated by subtracting the potential energy
of the pure bilayer and the peptide in vacuo from the potential energy of the membrane-
embedded peptide. We neglected the contribution p∆V, as it is small for condensed liquid
phase systems at ambient pressures (here, p∆V ≈ 0.3 kJ mol−1 for WALP31). We also
neglected the contribution due to the liberation of the solute[68] , as it is (i) smaller than the
statistical error, and (ii) cancels out in the calculation of ∆HLo/Ld. Error estimates (shown
in Figure 4.6b) were determined by block averaging, see above.

Enthalpy - entropy compensation. As stressed in Table 1, the absolute numbers of the
enthalpy and the entropy obtained with a coarse grain model should be interpreted with
care. However, the Lo/Ld partitioning free energy differences should be accurate. This may
in particular be expected for the Martini model, because it was parameterized against ex-
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perimental partitioning free energies. In general, coarse grain models have a smaller entropy
than atomistic models due to the reduced number of degrees of freedom. Thus, to arrive at
the desired correct free energy, this smaller entropy has to be compensated for by a corre-
sponding change in enthalpy For more details on this topic, we refer to the work of Baron
et al.[69, 70] . For the dimerization of WALP23 in DOPC, a direct comparison of enthalpies
and entropies obtained from experiment and simulation is possible: Yano et al.[38] measured
values of ∆H = 31 kJ mol−1 and T∆S = +19 kJ mol−1, which can be compared to the
respective values of 30 kJ mol−1 and +15 kJ mol−1 obtained by Ash and coworkers using
the Martini force field[39]. Thus, not only is the dimerization free energy difference ∆G
obtained with the Martini model in good agreement with experiment, but also the enthalpic
and entropic parts.

Table 4.2: Free energies, enthalpies, and entropies obtained
from TI simulations. All values in kJ mol−1. Results are ob-
tained at T=300 K. ∆GLo/vac and ∆GLd/vac are the free ener-
gies of transferring a single peptide from the Lo and Ld bilayer
patches, respectively, to the vacuum. ∆GLo/Ld was obtained as
∆GLo/vac∆GLd/vac. Standard errors are given. The statistical
errors in Lo/Ld were obtained by assuming that the values in
Lo/vac and Ld/vac are independent.

∆GLo/Ld ∆GLo/vac ∆GLd/vac

WALP23 −63 ± 8 678 ± 5 741 ± 5
WALP31 −58 ± 8 855 ± 5 913 ± 6

∆HLo/Ld ∆HLo/vac ∆HLd/vac

WALP23 −594 ± 47 71 ± 45 665 ± 14
WALP31 −276 ± 33 500 ± 32 776 ± 10

−T∆SLo/Ld −T∆SLo/vac −T∆SLd/vac

WALP23 531 ± 48 607 ± 46 76 ± 15
WALP31 218 ± 34 354 ± 32 137 ± 12

Our main conclusion
here is that the pep-
tide sorting is enthalpy-
driven. This conclusion
is of qualitative nature,
independent of the ex-
act values. It is based
on the observation that
the inclusion of a TM
helix introduces substan-
tial disorder (increases
entropy) in the Lo do-
main, but not in Ld (see
Table 4.5). Thus, solely
in terms of entropy, the
peptides would segregate
into Lo, which is not ob-
served. Our free energy
calculations show that in
Lo, the entropy gain is
outplayed by an enthalpy
loss, which is thus the driving force for the overall process. Also at the atomistic level, the
degree of disorder introduced by inserting a TM peptide into the Lo domain can be expected
to be larger than in the Ld domain, and again the entropic driving force towards Lo will
have to be over-compensated by enthalpy. Of course, this only holds if the resulting free
energy upon moving a peptide from Lo to Ld is negative not only at the CG but also at the
atomistic level. This can be safely assumed to be the case, because it is also observed in the
experiments.

To test our hypothesis, we calculated lipid chain order parameters using both CG and
atomistic MD simulations. The results, given in the following section, support the idea that
the peptide sorting is enthalpy-driven.

Lipid chain order parameters

We calculated lipid chain order parameters to substantiate the interpretation of our TI cal-
culations, and further investigate the configurations of the lipids around the peptides, both
using CG and atomistic simulations. Peptide-bound lipids are compared to bulk lipids.

P2 =
1

2
(3〈cos2θ〉 − 1) (4.2)
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Method. The second-rank order parameter, was computed for consecutive bonds in the
CG lipids, with the angle between the bond vector and the bilayer normal. The square
brackets denote an ensemble average. Perfect alignment with the bilayer normal is indicated
by P2 = 1, perfect anti-alignment by P2 = -0.5, and a random orientation by P2 = 0. Order
parameters were calculated by averaging over 100 evenly spaced snapshots taken from the
last µs of the free simulations of the bilayer systems used in the TI simulations (see above).
Figure 4.5 compares the order parameters of the lipids that are bound to the peptide to
those of unbound lipids. A lipid was considered bound to the peptide if the distance between
its phosphate head group bead and any bead of the peptide was smaller than 0.8 nm. On
average, 6 lipids were bound to a peptide. For the unbound lipids, the order parameters were
averaged over all 368 and 336 di-C16:0PC and di-C18:2PC lipids present in the Lo and Ld
peptide-free bilayers, respectively. In Ld, di-C18:2PC preferentially binds to the peptides,
and thus the di-C16:0PC molecules in Ld were excluded from the analysis.

To obtain order parameters from atomistic simulations, two snapshots of WALP23 in the
Lo and Ld bilayers, respectively (taken after 1000 ns of CG simulation) were back-mapped
to their underlying atomistic representations using the reverse transformation procedure
detailed below. For both systems, a 60 ns atomistic MD simulation was carried out; the
first 30 ns of each simulation were discarded as equilibration time (for simulation details,
see below). Prior to analysis, the atomistic trajectories were converted to the Martini CG
representation to enable a comparison to the order parameters directly obtained from the
CG simulations (Figure 4.5).

Results. Figure 4.5 shows that in the Lo domain, peptide-bound lipids have a lower order
parameter as compared to lipids in the bulk. This effect is more pronounced for CG di-
C16:0PC lipids in the vicinity of WALP23 (Figure 4.5a, black line) than for those close to
WALP31 (Figure 4.5a, blue line): The average chain order parameter (averaged over bonds
4-7) drops from 0.793 for CG di-C16:0PC in the bulk Lo phase to 0.645 for CG lipids bound
to WALP23, a decrease of 19%. CG lipids bound to WALP31 have an average chain order
parameter of 0.728, which is only 8% lower than in the bulk. In addition, lipids bound
to WALP23 show a decreased P2 for bond 2 in the PC head group, which is not the case
for lipids bound to WALP31. Although P2 order parameters cannot be straightforwardly
translated into entropies, the observed decrease of P2, which is about two times stronger
for WALP23 than for WALP31, agrees very well with the entropy differences obtained from
the TI calculations, see Table 4.5. In contrast to the ordered domain, inclusion of WALP23
or WALP31 into the Ld domain does not substantially influence the order parameters as
compared to the peptide-free case (Figure 4.5b). Thus, the high degree of disorder already
intrinsic to Ld is not further decreased by the peptide, in line with the small entropy gain
upon peptide inclusion (Table 4.5).

The order parameters obtained from the atomistic simulations are shown in Figure 4.5c,d.
In the Lo domain, bonds in peptide-bound di-C16:0PC chains have lower order parameters
than in bulk lipids: The average chain order parameters (averaged over bonds 4-7) are 0.704
and 0.814 for peptide-bound and bulk lipids, respectively, a difference of 0.11. For di-C18:2PC
lipids in the Ld domain, the respective values are 0.200 and 0.240, a difference of only 0.04.
Thus, in agreement with the CG simulations, also in the atomistic simulations WALP23 does
introduce substantial disorder in the Lo, but not in the Ld domain. Hence, also the atomistic
simulations show that there is an entropic driving force for peptide sorting into Lo that has
to be overcompensated by an enthalpic preference for Ld.

Crossing and tilt angles of WALP23 dimers and trimers

Here we present details about the clusters formed by the WALP23 peptide.
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Figure 4.7: P2 order parameters for consecutive bonds in PC lipids with respect to the
bilayer normal. The data for bonds 4-7 are averaged over both lipid chains. The bond
numbers are shown in c, inset. P2 of CG di-C16:0PC in Lo (a) and CG di-C18:2PC in Ld
(b) bound to WALP23 or WALP31 (black and blue lines, respectively), are compared to P2

of bulk lipids in (peptide-free) Lo and Ld bilayers (green and red lines, respectively). Panels
(c) and (d) show the respective order parameters obtained from atomistic simulations.

Table 4.3: Tilt angles of monomeric WALP peptides
in Lo and Ld. Statistical errors (obtained from block
averaging, see above) are below 1◦.

Peptide Tilt in Lo Tilt in Ld
(± std. dev.) (± std. dev.)

WALP23 8.8◦ ± 4.7◦ 20.9◦ ± 9.3◦

WALP23 13.7◦ ± 5.3◦ 45.3◦ ± 7.8◦

Crossing angles. Figure 4.8
shows that the crossing angle dis-
tributions for the right-handed
dimers are rather broad, with a
mean value at θ = −26.7◦ and a
standard deviation of 6.6◦ (solid
line). For trimers, θ = −24.4θ and
a standard deviation of 6.5◦ was
found (dashed line). These cross-
ing angles are slightly smaller than
the −40◦ observed in the right-handed glycophorin A dimer[43]. The inset of Figure 4.8b
shows a representative crossing angle time trace for a WALP23 dimer (stable between 8 and
24 µs). The crossing angle displays transitions to values around −55◦ and −5◦ on the µs
time scale, emphasizing the large conformational flexibility. To observe these rare events
requires long time scales, as enabled by the use of CG models.

Tilt angles. The tilt angles (Figure 4.8) of single peptides were obtained from the extended
simulations of the small bilayer patches used in the TI calculations and are summarized
in Table 4.3. As expected, the WALP23 peptide in Lo (negative mismatch) adopts the
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smallest tilt angle (8.8◦). This tilt is very small, as it falls almost within the tilt due to
thermal fluctuations. Under hydrophobic matching conditions, intermediate tilt angles of
about 15◦ to 20◦ are observed, in very good agreement with data from experiments and
other simulations[71, 72]. WALP31 in Ld reacts on the extreme mismatch conditions by
adopting a very large tilt angle of about 45◦.

Figure 4.8: Crossing-angles of WALP23
dimers and trimers. a) Snapshot from CG-
MD simulation showing a right-handed dimer
of WALP23 molecules (side view). The two
peptides are shown as orange and blue spheres,
respectively; grey cylinders represent α-helices
with an arrow along the helix axis. The white
arrow shows the membrane normal. The inter-
helix crossing-angle, θ and helix tilt-angle, Ω
are indicated by dashed lines. di-C16:0PC and
di-C18:2PC lipids are shown in green and red,
respectively; cholesterol is colored grey; wa-
ter is shown in purple. b) Distributions of
crossing angles for WALP23 dimers (solid line)
and trimers (dashed line). Inset: Representa-
tive crossing angle time- trace for individual
WALP23 dimer.

Parallel vs. anti-parallel WALP23
dimers. In FRET experiments of Sparr and
coworkers, a clear preference for an antipar-
allel arrangement of the WALP helices in
a dimer was observed[40]. In our simu-
lations, we found a 4:1 ratio of antiparal-
lel (AP) and parallel (P) WALP23 dimers,
in qualitative agreement with the experi-
ments (Table 4.3). It was speculated that
AP is preferred over P due to the favor-
able interaction between antiparallel helix-
macrodipoles. Although the Martini model
does not have explicit dipolar interactions
between the helix backbones, the model dif-
ferentiates between backbone beads close to
the C- and N-termini of the helix in such a
way that cross-interactions between C- and
N-terminal backbone beads are more favor-
able than those between the same termini.

Partitioning
of WALP31 with restricted tilt

Here we show that a WALP31 peptide
that is restrained to an upright orientation
prefers to reside at the domain boundary.

System setup. To study the partition-
ing of WALP31 in the absence of tilting,
a single WALP31 transmembrane peptide
was energy-minimized in vacuo (100 steps,
steepest descent), and subsequently incor-
porated into the core of the Lo domain,
such that it was not tilted with respect to
the membrane normal. After 1000 steps
of steepest descent energy minimization, a
20 µs MD simulation (Martini force field)
was carried out, during which the motion
of the backbone beads of residues 2 and 30
along the membrane normal (z-axis) was re-
stricted through harmonic potentials (force
constant 1000 kJ mol−1 nm−2). This pro-
cedure yielded a reduced tilting of the pep-
tide (mean tilt angle of about 10◦).

Results. Within the first 4 µs the
WALP31 peptide diffuses to the domain boundary, where it stays for the rest of the simulation
time.
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Table 4.4: Peptide clusters in WALP23 sys-
tem after t = 40 µs of CG-MD simulation. P
= parallel; AP = antiparallel; RH = right-
handed; LH = left-handed. Cα-rmsd is the
value after 100 ns of atomistic MD.

Cluster P/AP RH/LH Cα-rmsd
dimer1 AP RH 0.24 nm
dimer2 P RH 0.41 nm
dimer3 AP RH 0.29 nm
dimer4 P LH 0.29 nm
trimer AP,P LH,RH 0.23 nm

monomer - - 0.22 nm

Atomistic simulation

To test whether the peptides clustering be-
havior might have been affected by the
coarse grain representation of the molecules,
we also performed an MD simulation using
an atomistic force field.

Methods. In the atomistic simulation,
the peptides were described with the 53A6
parameter set of the Gromos force field[73] ,
with the latest update on peptide backbone
dihedral angle parameters that enhance the
stability of α-helices[74]. For the phos-
phatidylcholine lipids we used an in-house
version of a new Gromos53A6-based lipid force field; parameters and additional informa-
tion are obtainable from the authors upon request. Parameters for cholesterol were taken
from Marrink et al.[75] and the SPC water model[76] was used. To obtain the starting
structure for the atomistic simulations, a snapshot from the CG simulation of the WALP23
system was transformed to the underlying atomistic representation using our recent reso-
lution transformation algorithm[44]. During the resolution transformation, the system was
cooled down from an initial temperature of 1300 K to the desired target temperature of
295 K by 100 ps of simulated annealing, during which the atomistic particles were coupled
to their corresponding CG beads through harmonic restraints. Subsequently, the coupling
was gradually removed within a time span of 10 ps. These annealing simulations were car-
ried out in the NVT ensemble. No constraints were applied, and an integration time step
of 1 fs was used. To control the temperature, stochastic coupling with an inverse friction
constant τT = 0.1 ps was applied. The other parameters for the resolution transformation
were set to the standard values[44]. During the subsequent free atomistic MD simulations,
application of the Lincs[77, 78] and SETTLE[79] algorithms allowed for an integration time
step of 2 fs. Temperature and pressure coupling was applied similar to the CG simulations,
with time constants τT = 0.1 ps and τp = 1 ps, respectively. Non-bonded interactions within
0.9 nm were updated at every time step, and interactions between 0.9 and 1.4 nm every 10
steps. A reaction field contribution[80] was added to the electrostatic interactions beyond
this long-range cutoff, with εrf = 54. System details. The snapshot after t = 40 µs from the
CG-MD simulation of the WALP23 system was transformed to the atomistic representation,
followed by a free 100 ns atomistic MD simulation. Including peptides, lipids, and water
molecules, the system comprised of about 241,000 particles. As summarized in Table 4.4,
at the beginning of the atomistic simulation, there were four WALP23 dimers, one trimer,
and one monomer. Two of the dimers contain antiparallel helices, whereas the other two
dimers consist of parallel peptides (averaged over the CG simulation, the AP/P dimer ratio
is 4:1, see above). There is one left-handed dimer (dimer4), whereas the other three dimers
adopt the right-handed configuration. The peptides in the trimer form the typical linear
arrangement: The central helix forms an antiparallel left-handed pair with one of the outer
helices, and a parallel right-handed pair with the other.

Results. Figure 4.9a shows a zoom-in on the antiparallel right-handed dimer3 (Table 4.4)
after 100 ns of atomistic simulation; the Cα-rmsd time traces of the peptides during the
atomistic simulation are shown in Figure 4.9b. The final rmsd of the oligomers with respect
to their starting configuration (the back-mapped CG configuration) is summarized in Table
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Figure 4.9: Atomistic molecular dynamics simulation of WALP23 system. a) Snapshot (side
view) showing a zoom-in on an antiparallel right-handed WALP23 dimer (dimer3, Table 4.4)
after 100 ns of simulation. The peptides are shown in ball-and-sticks representation with
α-helices colored orange. Lipid molecules are shown as thin sticks, water molecules are not
shown for clarity. The color code is the same as in Figure 4.1b) Root-mean-square deviation
(rmsd) of peptide Cα-atoms with respect to starting configuration.

4.4. All peptides stay α-helical during the simulation. Three of the dimers (dimer1, dimer3,
and dimer4) as well as the trimer stay bound, as indicated by an rmsd < 0.3 nm. Such low
rmsd values are typical for atomistic MD simulations of small proteins (i.e., of comparable size
to the WALP peptides) in the absence of large-scale conformational changes. The parallel
dimer2, however, dissociates, and the two peptides become separated by lipid molecules.
This single dissociation event shows that the simulation time of 100 ns, although considered
short, can in principle be sufficient to probe the stability of the oligomers. This conclusion
is also supported by the rmsd curves in Figure 4.9, which do not show a steady rise over the
simulation time. Although the atomistic simulations are computationally too demanding to
be able to yield a fully equilibrated ensemble, the results are consistent with the conclusions
drawn from our CG simulations: WALP23 peptides in the Ld phase form stable dimers and
trimers, with occasional dissociation (and, on longer time scales, re-association) events.

Coarse grain MD simulation of TM domain of syntaxin 1A

We carried out an additional CG-MD simulation of the α-helical transmembrane region of
the syntaxin 1A (Sx1A) protein. Sx1A partitions into the Ld domain and forms weakly
bound clusters.

System Setup. An atomistic α-helical structure of the TM domain of murine syntaxin 1A
(TM-Sx1A, residues 259-288, sequence SKARRKKIMIIICCVILGIIIASTIGGIFG) was con-
structed using the pepbuild webserver
(www.imtech.res.in/bvs/pepbuild) and converted into its CG representation. The sub-
sequent MD simulation protocol used was very similar to the one applied for the WALP
peptides: Initially, nine TM-Sx1A proteins were inserted into the same phase-separated lipid
bilayer that was used for the WALP simulations; the TM-Sx1A helices were regularly dis-
tributed on a lateral grid. All nine proteins were inserted in a parallel manner, such that the
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basic amino acids at the N-terminus are located at the same side of the membrane. After
energy minimization and a short MD with positional restraints on the protein beads, the
system was simulated for 8 µs (simulation time) using the Martini force field (simulation pa-
rameters identical to those applied in the WALP simulations). The C-terminus was capped
with a negative charge, whereas the N-terminus was capped with an uncharged P4-type bead.
The helicity of TM-Sx1A[80] was kept stable by dihedral potentials, similar to the WALPs.

Figure 4.10: Representative snap-
shot after 5 µs of simulation time for
Syntaxin 1A. Proteins are shown as
colored spheres. Color code the same
as in Figure 4.1.

Results. The observed partitioning and cluster-
ing of TM-Sx1A closely resembles that of WALP23
in that TM-Sx1A segregates into the Ld domain and
forms small clusters, with frequent association / dis-
sociation events on the µs time scale. Figure 4.10
shows a typical configuration, taken after 5 µs of sim-
ulation time. All proteins are located in the Ld do-
main, where they form (mostly) dimers and trimers
that are in equilibrium with monomeric proteins.

Coarse grain
MD simulations of TM domain of the
linker for activation of T cells (LAT)

Additional CG-MD simulations of the transmem-
brane domain of the linker for activation of T cells
(LAT) protein[81] were carried out, using both palmi-
toylated and non-palmitoylated forms.

System Setup. An atomistic α-helical structure
of the TM domain of LAT (EADWLSPVGLGLL-
LLPFLVTLLAALCVRCRE, residues 232 of murine
LAT, with substitution Trp for Ala4) was con-
structed using the pepbuild webserver
(www.imtech.res.in/bvs/pepbuild) and converted
into its CG representation. Two MD simulations were carried out. In the first simulation,
palmitoyl anchors were attached to both terminal Cys residues[82], whereas in the second
simulation, non-palmitoylated LAT was used. The simulation protocol was identical to the
one applied for TM-Sx1A (see above): Initially, nine LAT proteins (regularly distributed on
a lateral grid) were inserted into the bilayer, in a parallel manner. After energy minimiza-
tion and a short MD with positional restraints on the protein beads, both the palmitoylated
and non-palmitoylated LAT systems were simulated for 11 µs (simulation time), using the
Martini force field (same simulation parameters as used above). Both termini were capped
with uncharged P4-type beads; the helicity of residues 3-28 was kept stable through dihedral
potentials.

Results. In agreement with experiments on model membranes[48], LAT TM domains
partition into the Ld domain, irrespective of bound palmitoyl anchors. Due to the initial
placement of monomeric proteins in the membrane, the LATs first sequester as monomers into
Ld, where they form clusters. The clustering behavior is different for palmitoylated and non-
palmitoylated LAT: For the former, occasional dissociations of clusters are observed, whereas
non-palmitoylated LAT clusters do not break up again within the simulation time. The
stronger clustering of LAT is similar to WALP31, due to the comparably long hydrophobic
stretches. The monomeric LATs sample both the Lo/Ld interface and the bulk Ld domain.
The LAT clusters also prefer Ld, but remain close to the interface (see Figure 4.11) and do
not return to the core of the Ld domain on the time scale of our simulations.
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Figure 4.11: Representative snapshots (after 9 and 11 µs of simulation time) from CG-MD
simulation of palmitoylated LAT TM domain (left) and octa-palmitoylated WALP23 (right).
Proteins are shown as colored spheres. Color code the same as in Figure 4.1.

Coarse grain MD simulations of palmitoylated WALP23 peptides

Two additional CG-MD simulations were carried out. In the first simulation, two palmitoyl
anchors were attached to WALP23, whereas in the second simulation, eight palmitoyl anchors
per peptide were used. The doubly palmitoylated peptides partition into the Ld domain, as
was also observed in experiments[32], whereas the octa-palmitoylated WALP23 peptides are
located at the domain boundary interface. In chapter 5 the influence of adding lipid anchors
to proteins is further investigated.

System Setup. The system setup and simulation parameters were the same as for the
non-palmitoylated WALPs described above. For the doubly palmitoylated WALP, both
palmitoyl anchors were attached to the side chain of an additional Glu residue attached to
the N-terminus of the peptide. To generate the octa-palmitoylated peptides, four palmitoyl
tails were attached to the N- and C-terminal residues, respectively. The simulation times
were 9 µs for both simulations.

Results. The partitioning and clustering of the doubly-palmitoylated WALP23 peptides
does not substantially differ from that of their non-palmitoylated counterparts. Peptides
carrying eight palmitoyl anchors also preferentially partition into the Ld domain, however,
they are bound to the domain boundary interface (see Figure 4.11). The fluctuations of the
interface are enhanced, suggesting a reduced line tension. Such poly-palmitoylated peptides
are thus potential line-active molecules, a prediction that can be tested experimentally.

Dimerization free energy of WALP23: Statistical error, comparison
to literature

As described in section 4.2, we estimated the association constant K of WALP23 in the Ld
domain form the average number of monomers and dimers observed during the simulation.
For this analysis, the first 20 µs of the 80 µs simulation were discarded as equilibration
time. To obtain the statistical error σK, we calculated the time autocorrelation function
of monomer-monomer contacts, which displays a single-exponential decay with τ ≈ 4µs.
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We then applied a block averaging procedure, using 7 independent blocks of length 2τ , to
calculate the standard error in K. The error in the dimerization free energy ∆G = −RTlnK
is then obtained using σ∆G = RT/KσK .

The dimerization free energy of −12± 2 kJ mol−1we obtained for WALP23 in Ld can be
compared to Martini simulations of W.L Ash and coworkers[39]. From potential of mean force
calculations of WALP23 dimers in DOPC, a dimerization free energy of -15 kJ mol−1 was ob-
tained, in good agreement with our value. In addition, both values also agree with the value of
∆G = −12.7±0.4 kJ mol−1obtained fromFRETexperimentsofverysimilarpeptidesinDOPC[38].
The peptides used in the experiments were X-(AALALAA)3-Y, with X = 7-nitro-2-1, 3-
benzoxadiazol-4-yl (NBD) and Y = NH2 (I), or X = Ac and Y = NHCH2CH2-S-N-[4-[[4-
(dimethylamino)phenyl]azo]-phenyl]maleimide (DABMI) (II), and FRET from I to II was
measured.
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Molecular view on protein sorting into liquid-ordered
membrane domains mediated by gangliosides and lipid

anchors

This chapter is based upon the manuscript:
Molecular view on protein sorting into liquid- ordered membrane domains
mediated by gangliosides and lipid anchors by Djurre H. de Jong, Cesar A.

Lopez, Siewert J. Marrink, Faraday Discussions, 2012, In Press, DOI:
10.1039/C2FD20086D

Abstract

We present results from coarse grain molecular dynamics simulations of mixed
model membranes consisting of saturated and unsaturated lipids together with
cholesterol, in which lipid-anchored membrane proteins are embedded. Mem-
brane proteins studied are the peripherally bound H-Ras, N-Ras, and Hedgehog,
and the transmembrane peptides WALP and LAT. We provide a molecular view
on how the presence and nature of these lipid anchors affects partitioning of
the proteins between liquid-ordered and liquid-disordered domains. In addition,
we probed the role of the ganglioside lipid GM1 on the protein sorting, show-
ing formation of GM1-protein nano- domains that act as shuttles between the
differently ordered membrane regions.

5.1 Introduction

The organisational principles of the cell membrane are amongst the great open questions
in biology[1, 2, 3]. The cell membrane (or plasma membrane) consists of a mixture of dif-
ferent lipids, transmembrane proteins and membrane anchored soluble proteins. In order
to bring together functional components in such a complex mixture the plasma membrane
is believed to be compartmentalized, thus restricting the conformational search problem.
These membrane compartments, or domains are typically known as lipid rafts[4] and are
enriched in sphingolipids, cholesterol and specific proteins. The current view describes these
rafts in vivo as nanoscale assemblies that may condense into larger platforms under relevant
conditions[2]. In vitro, the segregation of ternary lipid mixtures into a liquid ordered (Lo)
and liquid disordered (Ld) membrane is considered to be a good model for membrane com-
partmentalization [5, 6, 7]. In such model systems, transmembrane proteins are typically
found segregated into the Ld phase, even in the case of raft-associated proteins. This leaves
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us with a fundamental question how cells are able to regulate protein sorting into more or-
dered regions of the membrane. In order to target proteins towards rafts, lipids are believed
to play an important role.

The lipid-protein interaction could be chemically enforced, i.e. via lipid anchors, or oc-
cur through either specific or non-specific binding. Different types of lipid anchors include
glycophosphatidylinositol (GPI), palmitoyl, isoprenyl or sterol anchors, and are found for
both peripheral and transmembrane proteins[8]. These anchors have a natural affinity for
the raft domains and may drag the protein along. Binding of proteins to raft lipids could
be another mechanism by which proteins are being sorted. Specific lipid binding sites are
found, for example, for the p24 transmembrane protein recognizing certain sphingolipids[9] or
the influenza virus M2 protein binding cholesterol[10]. Besides sphingolipids and cholesterol,
ganglioside lipids are an important component of rafts[11, 12, 13, 14, 15]. Gangliosides are ce-
ramide based lipids with an oligosaccharide head group. GM1 and GM3, two well known gan-
glioside lipid species, bind different proteins (both soluble[16, 17] and transmembrane[18, 19])
and promote formation of extended raft domains upon crosslinking with antibodies[20]. De-
spite the vast amount of research effort in the last decade, the underlying organising princi-
ples of cell membranes are not yet fully understood. To gain molecular insight in the driving
forces of membrane protein segregation, coarse grain (CG) molecular dynamics simulations
are a promising technique[21, 22, 23, 24]. The CG Martini model[25, 26] has proven to work
well in this respect. Applying the Martini model, we recently were able to correctly predict
the partitioning of transmembrane (TM) helices between domains in Lo-Ld phase separated
model membranes consisting of ternary mixtures of saturated lipids, unsaturated lipids, and
cholesterol[27, 28]. These simulations allowed us to evaluate the underlying mechanism by
which small proteins are sorted into the Ld phase. The driving force for partitioning into the
Ld phase was shown to originate from lipid packing effects. Here we extend these studies in
order to investigate the role of lipid anchors in steering the sorting of membrane proteins.
The proteins considered are the peripheral proteins H-Ras and N-Ras, which have a farnesyl
anchor together with two or one palmitoyl anchors, respectively, and Hedgehog, a cholesterol
anchored peripheral protein. We also studied the TM peptides WALP and linker for activa-
tion of T-cells (LAT) with two palmitoyl anchors attached. Additionally, we simulated the
ability of small amounts of GM1 gangliosides to affect the sorting process in case of the TM
peptides.

5.2 Methods

System setup

All systems are based upon a spontaneously demixed bilayer consisting of 828 dipalmitoyl-
phosphatidylcholine (di-C16:0PC, DPPC), 540 dilinoeoyl-phosphatidylcholine (di-C18:2PC,
DLiPC), and 144 cholesterol CG molecules, solvated by 12600 CG water beads representing
50,400 real waters. The simulation cell measures approximately 21.7 by 21.7 nm in the lateral
(x,y) dimensions and 7.5nm in the perpendicular z-direction. Domanski et al.[28] found this
mixture to be weakly phase separating into Ld and Lo domains with a line tension of 2±2 pN.
Additionally, the systems contained either four copies of anchored peripheral proteins (H-
Ras, N-Ras, or Hedgehog) or twelve lipid anchored transmembrane peptides (WALP23 or
LAT). In some systems 32 ganglioside lipids (GM1) were added. An overview of the systems
simulated is given in Table 5.1 and a graphical overview of the membrane constituents is
shown in Figure 5.1.

In systems containing the anchored peripheral proteins H-Ras, N-Ras, or Hedgehog, the
four proteins were initially positioned on a regular grid. The globular domains were put
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Table 5.1: Overview of simulated bilayer systems.

System Composition Simulation Number of
time (µs) simulations

Reference
A DPPC:DLiPC:Chol 10 1

(828:540:144)
Peripheral
proteins

B A + 4 H-Ras 12 1
C A + 4 H-Ras (no Pal.) 12 1
D A + 4 N-Ras 12 1
E A + 4 Hedgehog 12 1

Transmembrane
peptides

F A + 12 WALP 12 1
G A + 12 WALP (no Pal.) 12 1
H A + 12 LAT 12 1

Gangliosides
F A + 4% GM1 12 1
G F + 4% GM1 12 2
H H + 4% GM1 12 2

approximately 2 nm above the membrane, all on the same face of the membrane. To accom-
modate the lipid anchors, one of the membrane lipids was replaced by either one (N-Ras) or
two (H-Ras) of the palmitoyl anchors (effectively lowering the amount of lipids in a mono-
layer by ∼ 1% for the four proteins in total). The farnesyl tail was inserted in the membrane
separately. For Hedgehog, a membrane cholesterol was substituted. The system size in the
z-direction was enlarged by 6 nm to ensure that periodic images would not interact and sub-
sequently 24043 additional water beads were added to solvate the system. In case of the Ras
proteins, 24 sodium counter ions were added to neutralize the system, equivalent to four times
the minus 6 charge of a single protein. For the systems containing LAT-peptides, 12 peptides
were inserted in a parallel manner on a regular grid. The parallel orientation is consistent
with in vivo systems where membrane proteins are oriented with positively charges residues
towards the cytoplasm, the so called positive inside rule[29]. The WALP peptides were in-
serted in a similar manner, except they were positioned in an alternating parallel-antiparallel
fashion, mimicking the random up-down orientation found in experiments[30]. Both LAT
and WALP peptides were initially placed overlapping with the membrane, and overlap was
subsequently removed by energy minimization (see below). Addition of 12 sodium counter
ions assured neutralizing the charge of the 12 LAT peptides.

In systems containing GM1 lipids, 16 lipids were added to both monolayers, equivalent
to ∼ 4 mol% lipids. The GM1 lipids were initially positioned on a regular grid. In systems
containing both peptides and GM1 lipids the peptide and ganglioside grids were shifted with
respect to each other, in order to have no initial overlap between the GM1 lipids and peptides.
One additional sodium ion per GM1 lipid was added as counter ion.
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Figure 5.1: Coarse grain representation of membrane constituents considered in this work.
The Martini model is used, which maps on average four heavy atoms into a single CG bead.
Secondary structure of the proteins is constraint in this model. Molecules are depicted at
different scales. The color scheme is corresponding to the one used in the remaining figures.
The N-Ras protein is similar to H-Ras, but lacks one of the palmitoyl anchors. HVR stands
for hyper variable region, an unstructured part of the Ras protein.

Molecular parameters

The Martini CG force field[25, 26] was used for all systems. The parameters for DPPC,
DLiPC and cholesterol, as well as those for water and ions, can be found in previous
publications[25, 31]. The CG representation of all membrane constituents is shown in Fig-
ure 5.1. All parameters used in this study can be downloaded from http://cgmartini.nl.

For H-Ras and N-Ras, structures were taken from the PDB-database (121P[32] & 3CON[33]).
H-Ras is crystallized in its activated state, bound to the GTP mimicking inhibitor GCP, and
N-Ras is crystallized in its inactive state, bound to GDP. The soluble domain is connected to
the membrane via lipid anchors that reside in an unstructured stretch of amino acids known
as the hyper variable region, HVR (cf. Figure 5.1). The C-terminal HVR, residues 166-186,
was modelled as a random coil using Pymol[34]. The missing residues in the structure of
N-Ras were modelled based upon homology to H-Ras. The complete protein was converted
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to CG based on the Martini protein force field[26] and using the martinize-script[35]. Lig-
ands were left out and the ternary structure was kept stable using an elastic network36. The
Cα-root mean square deviation (RMSD) of the soluble protein domain (excluding the flexible
HVR) never exceeds 0.3 nm for both H-Ras and N-Ras due to the elastic network. Palmitoyl
anchors, using the standard Martini mapping for palmitoyl chains Na-C1-C1-C1-C1, were
connected to cysteine 181 and 184 (H-Ras) or 184 (N-Ras) side chains using a harmonic bond
with equilibrium distance r0=0.39 nm and force constant fc=5000 kJ mol−1 nm−2. The C-
terminal cysteine residue 186 was farnesilated. Our model of the farnesyl tail consisted of a
linear sequence of three C3 beads, all connected via harmonic bonds with r0 = 0.49 nm and
fc=8000 kJ mol−1 nm−2. The angle bending is restricted by harmonic potentials with a 140◦

equilibrium angle and fc=200 kJ mol−1. The first C3 bead was connected to the cysteine
side chain bead using a harmonic bond with r0 = 0.39 nm, fc=5000 kJ mol−1 nm−2.

The Hedgehog protein structure was taken from the PDB-database (1VHH[36]). The three
missing residues (Ser196, Gly197, Gly198) were modelled as a random coil. The atomistic
structure was converted to CG based on the Martini protein force field[26] and using the
martinize-script[35]. For the cholesterol anchor the standard Martini cholesterol parameters
were used. The hydroxyl bead of the cholesterol was connected to the C-terminal glycine
residue by a harmonic bond with r0 = 0.35 thus creating two carboxylic acid groups, one on
the side chain and one on the backbone C-terminus.

Topologies for the WALP23 (GW2L-(AL)8-W2A) peptides[37] were also generated using
the Martini protein parameters[26], thus constraining the α-helicity for the whole peptide.
A glutamic acid is connected to the N-terminal glycine via a succimide moiety[38]. This
reverses the N-to-C terminus direction of the glutamic acid backbone, thus creating two
carboxylic acid groups, one on the side chain and one on the backbone C-terminus. Palmitoyl
anchors are connected to both carboxylic acids (see Figure 5.1). Succinimide is modelled as
a polar P5 particle and connected to the glycine and glutamate backbone beads by relatively
weak harmonic bonds with r0 = 0.47 nm, fc=200 kJ mol−1 nm−2. The palmitoyl tails
are connected to the glutamate backbone and side chain bead by a harmonic bond with
r0 = 0.34 nm, and fc=1250 kJ mol−1 nm−2. No angle or dihedral potentials involving either
the succinimide or glutamate beads were defined.

The LAT peptide (EADWLSPVGLGLLLLPFLVTLLAALCVRCRE, residues 232 of
Murine LAT, with substitution Trp for Ala4) was modelled in a similar way as the WALP
peptide. Palmitoyl anchors were connected to both cysteine residues side chains using har-
monic bonds with r0 = 0.39 nm, fc=5000 kJ mol−1 nm−2.

The GM1 ganglioside lipids were parameterized based upon the extension of the Martini
model towards carbohydrates[39]. A detailed description of the parameterization of GM1
can be found in the supplementary information of [40].

Simulation parameters

All systems were simulated using the Gromacs MD package[41] (version 4.5.3). After mini-
mizing the system energy by 500 steps steepest descent, the systems were simulated using a
leap-frog integrator with a time step of 20 fs. A constant particle number, pressure and tem-
perature (NpT) ensemble was applied. Pressure in the lateral (xy) and normal (z) dimensions
was coupled separately to a 1 bar external bath with coupling time constant, τp = 3.0 ps
and compressibility, χ = 3.0 · 10−5 bar−1. Temperature is kept constant at 295 K by cou-
pling to an external temperature bath with a coupling time constant, τT = 1.0 ps. Three
groups of molecules were coupled separately to avoid heat flow: water and ions, lipids and
proteins, and cholesterol. Most systems were run for more than 10 µs, see Table 5.1 for total
simulation times. Note that we report actual simulations times; due to the smoothing of the
potential energy surface in CG models, the effective time is longer. For lipids and proteins
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in the Martini model, the speed-up factor is about fourfold[42], i.e. 10 µs simulation time
would correspond to 40 µs real time.

Analysis

The preferential partitioning of membrane components is calculated as the relative number
of contacts of a lipid species with each of the other lipid constituents, corrected for the total
number of lipids in the system:

pA =
cA/nA
P

x cx/nx
(5.1)

where pA is the preferential partitioning with membrane component A, cA the number of
contacts with component A and nA the number of molecules of component A. Using this
formula random mixing would give an equal preferential partitioning with all components
(e.g. 0.50 for a two component comparison). Note that Eq. 5.1 does not take into account
the number of contacts per molecule of the different membrane constituents. Since in this
chapter we only compare lipids of equivalent size, this effect will be negligible. Contacts were
defined with respect to the GL1 and GL2 beads for lipids, all anchor beads for the soluble
proteins and either the peptide with the anchor or just the anchor for the TM peptides.
Two molecules were counted in contact if they were within 1.1 nm, roughly corresponding to
the second solvation shell. The second solvation shell was chosen to obtain better statistics.
Using only the first solvation shell (< 0.8 nm) gave comparable results. The Gromacs analysis
tool g mindist was used to calculate the number of contacts, analysing a trajectory frame
every 1 ns. The first part of each of the simulations was omitted as equilibration phase.
The system was considered equilibrated if the number of DPPC-DPPC contacts became
constant, typically requiring between 2 and 5µs. Comparing the number of contacts between
various components showed the number of DPPC-DPPC contacts to be in general a good
indicator for the state of equilibration of the system. Density profiles were calculated by first
centering the bilayer in the box based upon the last tail bead of all lipids over the course of
the simulation. Subsequently the number density profiles were calculated using the Gromacs
analysis tool g density and normalized afterwards.

5.3 Results and discussion

We study the preferential partitioning of several bilayer constituents in a phase separated
model membrane. Our reference system (mixture A) is a weakly phase separated membrane
containing DPPC, DLiPC, and cholesterol in a 828:540:144 molar ratio, approximating 6:4:1.
It consists of a liquid ordered (Lo) domain enriched in DPPC and cholesterol and a liquid
disordered (Ld) domain enriched in DLiPC. The highly dynamic domain behavior and a line
tension of 2 ± 2 pN of this system resemble the characteristics of in vivo systems[2, 20] and
thus our system is very suitable to study the preferential partitioning of different bilayer
constituents. The remainder of the results section is split into three parts. First, we describe
simulations of the partitioning of peripheral proteins, which are anchored to the membrane
by either palmitoyl and farnesyl anchors or a cholesterol anchor. Next we consider single helix
transmembrane peptides, with two palmitoyl anchors. Finally, we look at the partitioning
behavior of gangliosides and their ability to influence the partitioning of membrane lipids and
transmembrane peptides. Table 5.1 gives an overview of the contents and total simulation
time of the simulated systems. To quantify the preferential partitioning we calculated the
normalized number of contacts with DPPC and DLiPC lipids. We compare against DPPC
and DLiPC as they are the main constituents of the Lo and Ld phase, respectively, and serve
as a marker for these phases.
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Table 5.2: Normalized number of contacts pA of bilayer systems containing peripheral
proteins. The values for a system in one row are normalized (add up to one). Errors in pA,
based on block-averaging and assuming independent blocks over 500 ns, are of the order of
0.03.

Reference H-Ras N-Ras
DPPC DLiPC DPPC DLiPC DPPC DLiPC

DPPC 0.79 0.21 0.78 0.22 0.78 0.22
DLiPC 0.19 0.81 0.20 0.80 0.20 0.80
anchor 0.68 0.32 0.41 0.59

H-Ras (no Pal.) Hedgehog
DPPC DLiPC DPPC DLiPC

DPPC 0.79 0.21 0.80 0.20
DLiPC 0.19 0.81 0.18 0.82
anchor 0.22 0.78 0.74 0.26

Partitioning of peripheral proteins into Lo domain mediated by
lipid anchors

To investigate the partitioning of membrane anchored soluble proteins we added four copies
of a Ras protein to the reference mixture. The Ras proteins are peripheral membrane proteins
belonging to the family of GTPases and are involved in signal transduction pathways that
control cell growth and proliferation[43]. Here we study both N-Ras and H-Ras (mixture B
and D), which have a high sequence identity (>90%) over the 165 N-terminal residues (G-
domain) and much lower sequence identity (10-15%) in the C-terminal[24] residues forming
the HVR[44]. The membrane anchors are found in the HVR, and consist of a farnesyl tail
at the terminal cysteine residue (Cys 186), and either one or two palmitoyl chains in N-Ras
(Cys 181) and H- Ras (Cys 181 and 184), respectively[44], see Figure 5.1. We also simulated
a system containing depalmitoylated H-Ras (mixture C), i.e. H-Ras with one farnesyl but no
palmitoyl tails. Starting from a regular distribution over the membrane, the three different
Ras proteins show distinct behavior. H-Ras is observed to partition into the Lo phase over a
time scale of several µs, whereas N-Ras and depalmitoylated H-Ras have a preference for the
Ld phase, as shown in Figure 5.3. The soluble G-domains form an aggregate within 5 µs of
simulation time for all three proteins. Once the cluster has formed only minor reorientations
of the monomers with respect to each other are observed. Table 5.2 shows the normalized
number of contacts of the Ras proteins with DPPC and DLiPC. The addition of the anchored
protein does not affect the (de)mixing of the DPPC and DLiPC lipids as visible from the
normalized number of contacts which stay close to the corresponding values in the reference
system. The H-Ras protein anchors have more contacts with the DPPC lipids, in other words
they preferentially partition to the Lo phase consistent with the images shown in Figure 5.2.
N-Ras and de-palmitoylated H-Ras have more contacts with DLiPC, most pronounced for
the latter. Especially N-Ras can be considered as line-active, i.e. spending most time at the
border between Lo and Ld domains (bottom row Figure 5.2).

Our data on partitioning of Ras proteins are in agreement with recent in vitro studies,
showing a preference for N-Ras to accumulate at the domain boundaries45. K-Ras, which
only has a farnesyl anchor in addition to a polybasic membrane unit, is found[45] to partition
into the Ld domain consistent with our results for depalmitoylated H-Ras. Recent results
from CG simulations by Janosi et al. [46] who studied the partitioning of the isolated Ras
anchors, are consistent with our data, and confirm the antagonistic action of farnesyl and
palmitoyl tails.
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Figure 5.2: Anchor driven partitioning of Ras proteins into membrane domains. Top
view snapshots from a simulation of four copies of the H-Ras (top), de-palmitoylated H-
Ras (middle) and N-Ras (bottom) peripheral proteins in a DPPC:DLiPC:cholesterol lipid
mixture. The different copies of the proteins are colored pink, purple, blue and light blue.
DPPC, DLiPC and cholesterol are colored red, green and white, respectively. The black line
shows the simulation box.

Interestingly, in vivo data[47, 48] show the partitioning of H-Ras to either the raft or non-
raft phase to be regulated by additional factors. In particular, GTP loading (i.e. activation)
segregates H-Ras from the raft phase to the non-raft phase while the GDP bound form
(i.e. inactive) segregates to the Lo domain. This different behavior upon GTP binding is
hypothesized to be caused by a structural change of the soluble N-terminal domain, coupling
to a different orientation or conformation of the HVR to which the anchors are attached[49].
A change in membrane insertion of the Lo-phase-preferring palmitoyl anchors versus the, Ld-
phase-preferring farnesyl anchors could thus be achieved, changing the relative propensity
for either phase. Our observation that the GCP bound (activated) H-Ras partitions to the
Lo phase, appears in contradiction with this. Apparently, in our simulations, the driving
force provided by the lipid anchors is insufficiently modulated by the structural differences

94



5.3. Results and discussion

Figure 5.3: Positioning of palmitoyl and farnesyl anchors of Ras proteins inside the mem-
brane. Top: sideview of the H-Ras (left) and N-Ras (right) protein complexes after 10 µs.
The different copies of the proteins are colored pink, purple, blue and light blue. DPPC,
DLiPC and cholesterol are colored red, green and white, respectively. Bottom: Normalized
density profiles along the z-axis for H-Ras (left) and N-Ras (right) lipid anchors. Density
profiles are plotted for the last tail beads of the farnesyl (red) and palmitoyl (blue and pink)
anchors and DPPC (black) and DLiPC (green) lipids. Solid and dashed lines indicate the
inner and outer monolayer, respectively.

due to activation or deactivation. This might be explained by several factors: first, the
H-Ras structure used here was determined using GCP as a (inhibiting) ligand instead of
the natural GTP. Possible small structural changes as a result of this might influence the
partitioning behavior. Second, the HVR region is modelled as a random coil, which might be
inappropriate for the activated state of Ras. Third, the relative partitioning of the palmitoyl
versus farnesyl anchors might be depending on the overall lipid composition of the membrane.

To study the role of the lipid anchors and the HVR in more detail, we characterized the
lateral position of the lipid anchors and fluctuations of the HVR region. For the anchors we
analyzed their particle density along the bilayer normal. The result is shown in Figure 5.3
together with a graphical snapshot of the final configuration of the systems. When comparing
the position of the last tail bead of the membrane lipids, it can be seen that the palmitoyl
and farnesyl anchors are not inserted as deeply into the bilayer as DPPC lipids. This is true
for both H-Ras and N-Ras. In other words the attachment of lipid anchors to the protein
backbone slightly pulls the anchors out of the membrane. The farnesyl tail is inserted less
deeply into the membrane compared to the palmitoyl anchors which can be attributed to
the shorter length of the farnesyl unit. In all-atom simulations, Gorfe et al.[49] found the
farnesyl tail of H-Ras to be inserted deeper into the membrane as compared to the palmitoyl
tails, however in their model the farnesyl tail is modelled by a longer (saturated) hexadecyl
unit, which affects the membrane insertion. The HVR does not adopt a stable, well defined
structure, comparable to the work of Gorfe et al.[49] and experimental results[50]. The
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fluctuations, measured by the pairwise RMSD (mean: 0.14, 0.13 and 0.18 nm for H-Ras,
depalmitoylated H-Ras and N-Ras, respectively), are similar to those reported by Gorfe et
al.[49] for the HVR with G-domain connected.

Figure 5.4: Anchor driven partitioning of
Hedgehog proteins into the Lo domain. Top
(left) and side (right) view of a simula-
tion of 4 Hedgehog peripheral proteins in a
DPPC:DLiPC:cholesterol lipid mixture after
12 µs. The different copies of the proteins
are colored pink, purple, blue and light blue.
DPPC, DLiPC and cholesterol are colored red,
green and white, respectively. The black line
shows the simulation box.

A much less abundant membrane an-
choring mechanism is via the attachment
of a sterol moiety, found in the Hedgehog
protein family[36]. Although the complete
form of the human Hedgehog protein is both
C-terminally sterolated and N-terminally
palmitoylated[51], it was found that the N-
terminal sterol anchor is sufficient for the
protein to partition to detergent-resistant
membrane patches[52]. Here we study the
partitioning of the N-terminally sterol an-
chored Hedgehog protein, by placing four
protein copies in the reference mixture
(mixture E, Table 5.1). Similar to the
palmitoyl anchors of the Ras proteins, also
the cholesterol anchor is able to drive the
peripheral protein into the Lo domain. Fig-
ure 5.4 shows the final snapshots from
the simulation, with the Hedgehog protein
clearly residing in the Lo domain. Once in
the Lo phase the proteins form a cluster and
never enter the Ld phase again.

Analysis of the normalized number of
contacts of the four cholesterol anchored
Hedgehog proteins with the other mem-
brane components, shown in Table 5.2,
underlines the strong preference for satu-
rated lipids. Partitioning of cholesterol-
anchored Hedgehog into the Lo phase is in
agreement with the experimentally known
behavior[52]. Together, our data on periph-
eral membrane proteins show that lipid an-
chors provide a strong driving mechanism
for selective partitioning. The anchors con-
sidered, either palmitoyl or sterol anchors,
show a strong preference for the Lo phase
in line with expectations. The ability of the
farnesyl anchor of the Ras proteins to pro-
vide a counter force toward the Ld phase is
also apparent from our simulations.

Lipid anchors also modulate partitioning behavior of TM peptides

Both the synthetic WALP transmembrane peptide and the linker for activation of T-cells
(LAT) have been extensively studied with respect to domain partitioning. WALP peptides
were specifically designed to study the behavior of TM proteins in lipid bilayers[53] and
have been shown to partition into the Ld phase in model membranes, both with[38] and
without[27] palmitoyl anchors. Palmitoylated LAT has been both reported to partition to
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Figure 5.5: Anchor driven partitioning of TM peptides toward the Lo-Ld phase boundary.
Top view of bilayer systems containing 12 LAT peptides (top) or 12 WALP peptides (middle)
with anchors and 12 WALP peptides without anchors (bottom). Green is the saturated
DPPC lipids, red the unsaturated DLiPC lipids, white is cholesterol, and yellow the TM
peptides.

the Lo and Ld domain, depending on the method of preparation of the membrane system. In
synthetically devised lipid mixtures palmitoylated LAT prefers the Ld phase[54], whereas in
plasma membrane spheres, obtained from real cells, it prefers the Lo domain[8]. It has been
hypothesized that this contrasting behavior in the differently prepared membranes systems
can be attributed to a degree of order difference between the Lo and the Ld phase in the
two systems. To study the behavior of these lipid anchored TM peptides, we added either
12 WALP23 or 12 LAT peptides with two palmitoyl chains each to the reference mixture
(mixtures F,H, Table 5.1). For comparison, a system containing WALP without palmitoyl
anchors was also simulated (mixture G). Figure 5.5 shows snapshots from these simulations.
Both LAT and WALP peptides are segregated out of the bulk of the Lo phase within 1 µs.
Once the peptides have segregated from the Lo phase, they show very different behavior.
For the WALP peptides the behavior is very dynamic. First, they form peptide-peptide
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clusters that constantly form and break up again, consistent with earlier observations[27].
Monomers, dimers and trimers are observed throughout the simulation. Second, the WALP
peptides do not remain in the bulk of the Ld phase but often reside close to the domain
boundary and in transiently formed lipid peninsulas or lipid islands. The addition of the
transmembrane peptides does not notably change the mixing of the lipids (Table 5.3). The
normalized number of contacts indicates a strong preference of the WALP peptide for the Ld
phase, but not as strong as in the case of WALP without anchors. To study the orientation
of the peptides we calculated the number of contacts of the anchor to DPPC and DLiPC.
The preference for the Ld phase remains, although less strong, indicative of an orientation,
and consecutive dragging force, of the (saturated) lipid anchors towards the Lo phase. In
experiments[38] on artificial lipid mixtures, single or double palmitoylation is not sufficient
to bring WALP into the Lo phase, matching our current results.

Table 5.3: Normalized number of contacts pA of bi-
layer systems containing TM peptides. The values for
a system in one row are normalized (add up to one).
Errors in pA, based on block-averaging and assuming
independent blocks over 500 ns, are of the order of 0.03.

Reference WALP
DPPC DLiPC DPPC DLiPC

DPPC 0.79 0.21 0.80 0.20
DLiPC 0.19 0.81 0.19 0.81
anchor 0.40 0.60
peptide 0.22 0.78

LAT WALP (no Pal.)
DPPC DLiPC DPPC DLiPC

DPPC 0.79 0.21 0.80 0.20
DLiPC 0.19 0.81 0.19 0.81
anchor 0.67 0.33
peptide 0.27 0.73 0.09 0.91

In contrast to WALP, the LAT
peptides form a constantly grow-
ing cluster: once a peptide binds
to a partner, they never break up
again (Figure 5.5). The lipid an-
chors of the clustered peptides are
oriented towards the same side of
the cluster and towards the Lo do-
main, but the peptides still re-
side in the Ld domain. This leads
to a higher normalized number of
contacts of the anchors to DPPC
compared to the combination of
peptides and anchors (Table 5.3).
The LAT peptides show a slightly
higher normalized number of con-
tacts to DPPC lipids compared
to WALP, but the preferred con-
tact is with the unsaturated lipids
found in the Ld region. The parti-
tioning of palmitoylated LAT into

the Ld phase agrees with the experimental results using artificial membranes[54], and not
those in plasma membrane spheres[8]. This indicates that the difference in order between
the Lo and Ld domains in the current mixture is larger than that of real membranes, assum-
ing that the plasma spheres more closely resemble the in vivo situation. We conclude that
the palmitoylation of TM peptides indeed provides a driving force toward the more ordered
membrane domains. Two saturated lipid anchors, however, are not sufficient to allow the
peptides to dissolve into the Lo domains. The orientation of the lipid anchors towards the
Lo domains endorses the important role of lipid anchors; in fact the anchored peptides show
linactant behaviori[55], residing most of the time at the domain boundaries.

Gangliosides are able to shuttle proteins into the Lo phase

Ganglioside lipids are strongly amphiphilic lipids due to their large carbohydrate head group
and their ceramide based lipid tails. They are enriched in detergent resistant membrane
domains and are thought to play an important role in the formation of those domains[12,
13, 20]. Here we investigate the effect of GM1 gangliosides (see Figure 5.1) on membrane
domain formation and their interaction with TM peptides. We first looked at the partitioning
of GM1 lipids between the Lo and Ld domains of our ternary lipid system. In order to do so
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Figure 5.6: Ganglioside mediated shuttling of TM peptides toward the Lo domains. Top
view of bilayer systems containing 4 mol% GM1 lipids (top), 4 mol% GM1 lipids and 12
WALP peptides (middle) or 4mol% GM1 and 12 LAT peptides (bottom). Green is used to
depict the saturated DPPC lipids, red the unsaturated DLiPC lipids, white the cholesterols,
blue the GM1 and yellow the TM peptides.

we added 4 mol% GM1 lipids to our reference mixture (mixture I). The top row of Figure 5.6
illustrates the time evolution of this system. Placed initially on a homogeneous grid, the
GM1 lipids are observed to aggregate into a single domain in about 10 µs. These nano-
domains are registered over both monolayers and dynamic, i.e., the gangliosides remain in
a fluid state. To quantify the extent of mixing in this quarternary membrane mixture, the
normalized number of contacts of the different system components with respect to DPPC
(Lo) and DLiPC (Ld) were calculated. The data are gathered in Table 5.4, from which a
number of conclusions can be drawn. First, the extent of demixing of DPPC and DLiPC does
not change significantly upon addition of the small amount of GM1 (compare to reference
mixture in Table 5.2). Second, GM1 shows a very strong preference for DPPC lipids over
DLiPC lipids, implying GM1 associates with the Lo lipids; this is also evident from the
snapshots in Figure 5.6. Third, when preferential partitioning parameters are calculated
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Table 5.4: Normalized number of contacts pA of lipids in GM1 containing bilayers. The
values for a system in one row are normalized (add up to one). Errors in pA, based on
block-averaging and assuming independent blocks over 500 ns (No peptide) or based on the
differences between two simulations (WALP and LAT) are of the order of 0.03.

No Peptides
DPPC DLiPC DPPC DLiPC GM1

DPPC 0.78 0.22 0.49 0.14 0.37
DLiPC 0.19 0.81 0.18 0.78 0.04
GM1 0.94 0.06 0.06 0.0 0.94

cholesterol 0.30 0.05 0.65
peptide
anchor

WALP
GM1 DPPC DLiPC DPPC DLiPC GM1
DPPC 0.78 0.22 0.57 0.16 0.27
DLiPC 0.20 0.80 0.17 0.68 0.15
GM1 0.66 0.34 0.07 0.03 0.90

cholesterol 0.50 0.09 0.41
peptide 0.44 0.56 0.05 0.05 0.90
anchor 0.65 0.35 0.05 0.05 0.90

LAT
DPPC DLiPC DPPC DLiPC GM1

DPPC 0.77 0.23 0.54 0.17 0.29
DLiPC 0.21 0.79 0.19 0.68 0.13
GM1 0.69 0.31 0.06 0.03 0.91

cholesterol 0.39 0.09 0.52
peptide 0.34 0.66 0.03 0.07 0.90
anchor 0.61 0.39 0.07 0.04 0.90

with respect to three groups, DPPC, DLiPC and GM1, GM1 shows the strongest preference
for self-association, consistent with the formation of a nano-domain. Finally, the number
of contacts for cholesterol indicates an enrichment of the GM1 domain in cholesterol with
respect to the surrounding Lo domain. Experimental data on the phase behavior of GM1
containing membranes are limited (see recent reviews[12, 13]). Besides, interpretation of
these data is not straightforward due to the fact that GM1 lipids can have either saturated
and unsaturated tails next to the sphingosine moiety. In our simulations, we use a fully
saturated tail. Experimentally, fully saturated GM1 shows a high affinity for Lo phases, in
line with our results. Moreover, there is growing evidence[12, 13] that GM1 can form laterally
separated Lo nano-domains, and this corroborates our findings. Based on measurements on
mixtures of GM1, sphingomyelin (SM), and cholesterol, a depletion of cholesterol from the
ganglioside domain was concluded[56]. This is in contrast to our observation, which indicates
a small but significant cholesterol enrichment of the GM1 domain. The difference might be
explained by the difference in lipid mixtures. SM lipids are known to have a higher affinity for
cholesterol than DPPC lipids do, therefore cholesterol depletion of GM1 domains is expected
with respect to SM but not DPPC. Realizing that GM1 lipids also have a ceramide backbone,
the condensation of GM1 and cholesterol into a single domain seems rather plausible.

Next we address the question to which extent GM1 can have an effect on the partitioning
of TM peptides. To do so, we added 4 mol% GM1 to the membranes containing 12 doubly
palmitoylated WALP or LAT peptides (mixtures J,K, Table 5.1). Snapshots from these

100



5.3. Results and discussion

Figure 5.7: Molecular view of a raft-embedded nano-domain composed of gangliosides and
LAT peptides. The snapshot shows a cluster of GM1 lipid (blue) and LAT peptides (yellow)
with lipid anchors (cyan). Cholesterol molecules are shown in white. Of the DPPC and
DLiPC lipids only the head groups are shown as green and red spheres, respectively.

simulations are shown in Figure 5.6, together with the GM1 containing membrane without
peptides discussed above. Initially, the peptides and GM1 lipids were added on overlapping
grids. Due to the larger number of GM1 lipids (16) compared to peptides (12), this placement
results in some close peptide-GM1 contacts right from the beginning, as well as some isolated
peptides and gangliosides. Within a few µs, however, almost all of the peptides and GM1
lipids are binding to each other, forming small, mixed clusters which merge to form larger
clusters. The mixtures with WALP or LAT peptides show comparable behavior. At the
end of the simulations, no clusters containing only GM1 lipids or TM peptides are observed.
It is likely that the simulations have not yet reached equilibrium at this stage, and that
eventually the few remaining clusters at 10 µs will coalesce into one nano-domain. In contrast
to the GM1 clusters in the systems containing no peptides, the clusters are depleted of
cholesterol (with respect to the Lo domain), but do contain DLiPC, as can be inferred
from the increased normalized number of contacts for GM1 and cholesterol with the other
constituents (Table 5.4). Closer inspection of the organization of the GM1/peptide clusters
reveals a tendency to remain at the Lo/Ld domain boundary, which explains the apparent
substitution of cholesterol for unsaturated lipids. The presence of the GM1/peptide clusters
also leads to slightly more mixing of DPPC and DLiPC, which again would point to linactant
behavior. Comparing systems that contain 4 mol% GM1 to systems without GM1 (cf.
Tables 5.2 and 5.3), both WALP and LAT peptides show a higher affinity for the DPPC rich
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Lo domain in presence of the gangliosides. This is in support of the hypothesized role of
GM1 as helping proteins to sort into Lo domains[11, 12, 13].

Taken together, our results underline the important role that gangliosides in general, and
GM1 in particular, may have in the overall organization of the cell membrane. GM1 seems
to have the remarkable combination of properties that i) makes them readily partition into
Lo domains, and ii) allows them to bind to TM peptides. These features provide them with
the ability to act as nano-shuttles for sorting of membrane embedded proteins into ordered
membrane regions. Although we did not attempt to further unravel the driving forces for
the GM1-peptide association, it appears that the large oligosaccharide head group plays
an important role in this process the membrane embedded WALP or LAT peptides leave
room for the GM1 head group, if it were, to embrace the peptides. The organization of
the GM1 induced nano-domain is illustrated in Figure 5.7 by a snapshot from the simulation
involving LAT peptides, showing the ganglioside coat around the TM helices. Whether or not
a similar embracement can take place with larger proteins remains to be seen. It would also
be interesting to investigate what effect a higher concentration of cholesterol has on the GM1
conformation in our model, and consequently on the binding of GM1 to membrane proteins,
since it is known that cholesterol effects both the head group orientation and binding of
soluble proteins[57]. However, this is outside the scope of the current study.

Limitations

For a proper interpretation of the results described in the preceding sections, it is important
to discuss some of the limitations of our model. An important simplification is the fixation of
secondary protein structure in the Martini protein model[26]. Due to the limited resolution of
the protein backbone, realistic folding is out of reach and the secondary structure is restrained
to that of the initial (e.g. crystal) structure. In the current application, this limitation
might have affected the partitioning behavior of the Ras proteins, which are anchored in the
membrane via a flexible loop (the HVR, see Figure 5.1). As the structure of this loop is not
resolved we modelled it as a random coil, a questionable assumption. Besides, activation of
the Ras protein may affect the secondary structure of this loop in vivo, but this we obviously
cannot take into account. A similar restriction applies to the conformational flexibility of the
GM1 oligosaccharide head group, which was restrained using an elastic network as explained
in the supporting material. A further point of concern is the oligomerization we observe in
case of the soluble proteins. Both Ras variants as well as the Hedgehog protein form linear
aggregates that do not dissociate once formed. Although it is not clear from experimental
data to what extent this clustering is realistic or not, it could be that the Martini model
overestimates the binding affinity of soluble proteins. We recently showed that, on the level
of individual amino acids, dimerization free energies of amino acid side chain pairs are well
reproduced in comparison to atomistic data[58]. This would point to a collective effect
arising between protein surfaces, possibly related to the dewetting of these surfaces by the
CG water beads which are large compared to real water molecules (recalling that a CG
water represents four real waters). Eventually, some of the results obtained here with the
Martini model will have to be checked using atomistic models. Considering the three orders
of magnitude speed-up of the CG model with respect to atomistic models, this is not yet
possible due to computational limitations.

Another point worth discussing is our choice of membrane composition. We face two
challenges: on the one hand we need a lipid mixture that undergoes strong enough phase
separation to result in well distinguishable Lo and Ld domains on a length scale of ∼20 nm,
the size of our simulation box. On the other hand we like to resemble the in vivo situation,
which is closer to a near critical mixture characterized by fluctuating nano-domains rather
than macroscopic phase separation[2]. The mixture of DPPC, DLiPC, and cholesterol at
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approximately 6:4:1 ratio used in this study fulfils these criteria it is weakly phase separating
resulting in distinct regions of Lo and Ld domains that are yet very dynamic and able to
rearrange on the sub-microsecond time scale of our simulations. Still, the partitioning of
lipid anchored proteins in such a mixture will be determined by the difference in chemical
potential of these proteins in either the Lo or Ld phase, and this may depend critically on the
composition of the respective domains. Systematic exploration of the partitioning behavior
of membrane proteins as a function of lipid composition is clearly needed. To arrive at a
more realistic description of compartmentalization in real membranes, a few more steps are
required. The current model membranes are yet lacking the complex composition of in vivo
plasma membranes. Some important differences are: i) the asymmetry between the inner and
outer monolayers is lacking, ii) the use of DPPC as saturated lipid, instead of sphingomyelin
found in vivo, iii) the lack of minor membrane constituents, both lipids and proteins, and
iv) the lack of cytoskeleton interacting with the membrane. We are currently working on a
complex, more realistic lipid-protein mixture to further study the organizational principles
in cell membranes.

5.4 Conclusion

We have simulated the partitioning behavior of several membrane constituents that are
thought to be involved, or even play an important role, in the domain formation of the
plasma membrane. We find that peripheral Ras proteins partition to the Lo or Ld phase
depending on the type of anchor. Double palmitoylated H-Ras prefers the Lo phase, whereas
single palmitoylated N-Ras resides at the domain boundaries. Depalmitoylated H-Ras, with
only a farnesyl anchor remaining, partitions into the Ld phase. Our results for the Hedgehog
protein show that a single cholesterol anchor is sufficient to bring the protein in the Lo phase.
Transmembrane peptides partition to the Ld phase, but saturated lipid anchors drive them
toward the Lo-Ld domain boundary. Addition of GM1 ganglioside lipids does decrease the
preference of the transmembrane peptides for the Ld even further. Interestingly, we find
that the GM1 and peptides are capable of forming small nano-domains with high affinity for
the Lo phase. This indicates that GM1 might play an important role in the recruiting of
transmembrane proteins to membrane rafts.
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6

Parameterization of thylakoid cofactors at atomistic and
coarse grain resolution

Abstract

The thylakoid membrane, responsible for the conversion of sunlight to chem-
ical energy in green plants, algae and cyano bacteria, is a complex mixture of
special lipids, proteins and a number of different cofactors. Many of the pro-
cesses of interest in the thylakoid membrane are on length scales that are difficult
to study experimentally, but accessible using (coarse grain) molecular dynam-
ics simulations. In this chapter we parameterize the most important cofactors,
namely plastoquinone, plastoquinol, heme b, chlorophyll A , pheophytin and
β-carotene. The parameters obtained at atomistic resolution are consistent with
the Gromos force field and at coarse grain resolution with the Martini force
field. The atomistic parameters are based upon the building blocks available for
the Gromos force field and ab initio calculations. Simulations using the atom-
istic topologies serve as the basis for the coarse grain model. Thermodynamic
properties of the molecules using the topologies are compared to experimental
values when available. Finally, the cofactor topologies are tested, either in a
DPPC or thylakoid membranes, or in complex with the heme binding protein
bacterioferritin.

6.1 Introduction

Most life on earth is dependent on sunlight for its energy. The conversion of sunlight into
chemical energy happens largely in the chloroplasts of green plants, algae and in cyano
bacteria. In these organisms the conversion is taking place in the thylakoid membrane:
a densely packed membrane mostly consisting of thylakoid lipids[1] and four large protein
complexes. The complexes, Photosystem I and II (PSI and PSII), cytochrome b6f and F-
ATPase perform the light conversion. PSII absorbs photons to oxidize water and reduce
the cofactor plastoquinone into plastoquinol. The plastoquinol is reoxidized by cytochrome
b6f, which uses the released energy to reduce plastocyanin. The reduced plastocyanin is
reoxidized by PSI. The released energy, together with the energy from the uptake of another
photon by PSI, is used to reduce ferredoxin, which is released to the cell stroma. During
these steps a proton gradient is created over the membrane, which is ultimately used by
F-ATPase to create ATP[2].

The whole process is a complex interplay between many proteins, the thylakoid membrane
and a large number of cofactors. In the remainder of the chapter we will focus on PSII and
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more specifically the cofactors that are involved in its function. In recent years several high
resolution structures of PSII have been published[3, 4], which opened the way for molecular
dynamics (MD) simulation studies to investigate its inner dynamics[5, 6, 7, 8]. However,
given the current computational power the large size of the complex makes the study of the
system at time scales relevant for most processes well beyond the reach of standard atom-
istic computer simulations. A possible way to reduce the computational cost for molecular
simulations is the use of coarse grain (CG) models. In those models the resolution is reduced
as compared to atomistic models by grouping together several atoms in CG interaction sites.
A reduced number of interaction sites leads to a lower number of calculations performed and
hence faster simulations (see also Chapter 1).

In this study the Martini CG force field is used[9]. The Martini force field applies a
mapping of four heavy atoms to one coarse grain bead and is mainly parametrized against
thermodynamic data such as partitioning free energies between polar and apolar phases. For
the Martini force field, parameters are already available for proteins[10], simple lipids[9] and
specific thylakoid lipids[11]. Here we aim to obtain parameters for a number of cofactors
found in PSII and the thylakoid membrane: plastoquinone (PL9one), plastoquinol (PL9ol),
heme (HEM), chlorophyll A (CLA), pheophytin (PHO) and β-carotene (BCR) (see Figure 6.1
and 6.2).

Atomistic parameters for some of the cofactor molecules compatible with the OPLS or
AMBER force fields have been published before [12, 13, 14, 15, 16, 17]. Here we derive a set
of parameters consistent with the Gromos force field[18], for the same cofactors except for
heme; parameters for heme are already available for Gromos[18]. The Gromos parameters
form a basis for the parametrization of the CG parameters and can be used in atomistic and
multiscale simulations[19].

In the next section the protocols used to obtain and test both the united atom Gromos
and the coarse grain Martini models are described. Next, the final topologies are described
and critical steps in the parameterization process are detailed. Results derived with the new
topologies are discussed in section 6.3. Finally, a summary concludes this chapter.

6.2 Methods

The parametrization was done in a two step process: first, atomistic topologies consistent
with the Gromos force field were obtained. Second, coarse grain topologies for the Martini
force field were obtained, partially based on the atomistic parameters. Both steps will be
described separately.

Simulation parameters

All simulations were run using the Gromacs simulation package[20], version 4.5.x. For the
atomistic simulations a timestep of 2 fs was applied and the coordinates and system energies
were written out every 10 ps. A twin-range cut-off scheme was used, where the neighborlist
extended to 1.4 nm and was updated every 5 steps. Electrostatic interactions were treated
using the reaction-field algorithm[21] with εrf=2, van der Waals interactions were cut-off after
1.4 nm. Temperature and pressure were kept constant at 303 K and 1.0 bar by coupling to
an external bath[22] with coupling parameters τt and τp being 0.1 and 0.5 ps−1, respectively.
All bonds were constraint using the LINCS algorithm[23, 24]. Atomistic trajectories were
mapped to CG trajectories using the reverse transformation tool[25].

For the CG simulations similar parameters as for the atomistic simulations were used,
except for the van der Waals interactions which were smoothly shifted to zero between 0.9
and 1.2 nm, the electrostatic interactions were explicitly screened by a screening parameter
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Figure 6.1: Molecular structure of the PSII cofactors. Rounded shapes encircle atoms that
are mapped together to one CG bead. A) Chlorophyll A (CLA). The CG eight bead ring
topology is shown. Pheophytin (PHO) has the same topology, lacking the central magnesium.
B) Plastoquinone (PL9one). Plastoquinol (PL9ol) has the same topology, except for the
carbonyl ring substituents, which are replaced by alcohol groups. C) Heme b (HEM). The
CG eight bead ring topology is shown. D) β-Carotene (BCR).

(εr) of 15 and were smoothly shifted to zero between 0.0 and 1.2 nm. The neighbor list of
1.4 nm was updated every 10 steps. Pressure and temperature coupling parameters, τt and
τp were set to 1.0 and 3.0 ps−1. Bonds were not constrained, unless explicitly set in the
topology.
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Figure 6.2: CG structure of the PSII cofactors. The colors are indicative of the bead type:
Red, charged; Yellow, polar; Green, intermediate; Blue, apolar. A) Chlorophyll A (CLA).
The CG eight bead ring topology is shown. Pheophytin (PHO) has the same topology,
lacking the central magnesium. B) Plastoquinone (PL9one). Plastoquinol (PL9ol) has the
same topology, except for the SNa ring beads, which are replaced by more polar SP2 beads.
C) Heme b (HEM). The CG eight bead ring topology is shown. D) β-Carotene (BCR).

Parametrization of atomistic models

An initial guess for the topology of all six molecules was obtained using either the PRODRG-
server[26] or the Automated Topology Builder[27]. The atom types (defining the non-bonded
interactions) and bonded interactions in these topologies were checked and adjusted if neces-
sary based upon the Gromos force field building blocks[18] and the force field definitions[28].
To obtain partial charges, first the optimal geometry of an all-atom structure was obtained
using the Restricted Hartree-Fock (HF) method implemented in GAMESS-US[29] with a
6-31G∗ basis set. Second, using the optimized structure, atom-centered charges were cal-
culated using the same method and fitting the electric potential to a Connolly surface with

a density of 71.4 points per Å
2

while constraining the total monopole and dipole of the
molecules obtained in the HF calculations.
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For the elongated shape of CLA this protocol resulted in unrealistic high partial charges
in the (aliphatic) tail. In order to avoid this issue, we calculated the partial charges for CLA
using an in-house implementation of the Dipole Preserving Analysis[30] (DPA) in GAMESS-
UK[31].

The sets of partial charges were subsequently adjusted as follows: charges for CHx groups
that are not part of an aromatic system were summed and assigned to the carbon atom,
since the Gromos force field has no explicit hydrogens; charges were adjusted to respect the
symmetry of a molecule; finally, all charges were rounded to two decimal places.

Parameterization of coarse grain models

The mapping of atoms to CG interactions sites and the choice of bead types was based on the
building blocks described in Table 3 in Marrink et al.[9] and following the recipe described
in [32]. Although no absolute rules can be given for the choices made, we followed a few
general guidelines: 1) Atoms were grouped in order to include chemical groups in one bead;
2) The number of atoms in a bead should be close to four for normal type beads, and close to
three for S-type beads. An exception was made for the much heavier metal centers of CLA
and HEM, which are represented by a single S-type bead; 3) Ring motifs should consist of
at least three beads; 4) Repeated patterns should be modeled using a repeated topology and
symmetric parts of the molecules should have a symmetric topology; 5) Similar molecules
should share similar topologies and therefore differences between molecules, for example the
magnesium bead in CLA that is not present in PHO, should be concentrated at the last beads
of the topology for simplicity. In this way the numbering of beads and bonded interactions
are the same for most of the molecule.

In general, coarse grain interaction sites contain no partial charges. Exceptions are the
central bead (iron and magnesium) in HEM (+0.4 e) and CLA (+1.0 e) and the four sur-
rounding beads (-0.1 e and -0.25 e for HEM and CLA respectively). This strategy was
adopted in order to mimic the strong polar nature of the metal center. Note however that
the polarizing effect of these (partial) charges is limited in Martini 2.1, since other polar
groups do not have any partial charges. It will effect interactions with charged beads such as
ions and charged amino acids, but its effect will be stronger when combined with polarizable
water[33] and the recently released parameters for Martini with explicit polar amino acids
(Chapter 7).

Bonded interactions were obtained by mapping atomistic systems to CG resolution. In
order to do so an atomistic simulation of a single cofactor molecule was simulated using the
Gromos topologies for 10 ns in a system containing 133 decane molecules. In general, the
conformations sampled will, to some extend, depend on the solvent used and it might not
be possible to find a CG topology that optimally mimics the conformations sampled in all
solvents. Here we choose to base the CG topology on a simulation in (apolar) decane, since
the cofactors are rather hydrophobic and will spend most time in apolar environments.

Atomistic parameters obtained in the first step of the parametrization were used for the
solute, while the model of decane was taken from [34]. Distributions for all bonds, angles
and dihedrals were extracted from atomistic trajectories mapped to CG resolution and from
these distributions initial guesses for the bonded parameters were obtained. Next, in an
iterative procedure the parameters were adjusted to obtain optimal distributions from a CG
simulation, while maintaining numerical stability. For every iteration a 10 ns simulations of
the CG cofactor molecule in 133 CG decane molecules was run, using the currently obtained
parameters. Distributions for all bonded interactions were obtained and compared to distri-
butions from the mapped atomistic simulations. These steps were repeated until satisfactory
distributions were obtained.
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Setup of test systems

Heme b. HEM was simulated bound to the protein bacterioferritin. A structure was obtained
from the model with PDB entry 3E2C and converted to a CG model using the martinize.py
script[35]. The Martini parameters for proteins [10] are used in combination with an Elnedyn
elastic network[36]. The interactions between the proteins and the heme b are purely non-
bonded, e.g. no bonds are used to keep the heme b in place. The system was solvated by
5007 CG water beads (equivalent to 20,028 water molecules) and neutralized by adding 22
sodium ions. It was energy minimized for 500 steps using the steepest descent algorithm and
simulated for 10000 steps (100 ps) with position restraints on the protein backbone and a
smaller (10 fs) time step. Finally, the system was simulated for 1.5 µs, using the settings as
describe above for Martini simulations.

Plastoquinone and plastoquinol. Plastoquinone and plastoquinol were simulated in a 128
lipid DPPC bilayer, using both coarse grain and atomistic models and at a coarse grain
resolution in a thylakoid membrane. The CG simulations of a DPPC bilayer were started
from a pre-equilibrated bilayer, obtained from www.cgmartini.nl. The bilayer consisted
of 128 lipids solvated in 2000 CG water beads, equivalent to 8000 water molecules. Four
plastoquinone molecules were placed in the water phase. The systems were energy minimized
for 500 steps using the steepest descent algorithm and simulated for 10000 steps at a small
time step (5 fs) to properly relax possible overlap between water and plastoquinone. Since
the two molecules have the same number of beads, plastoquinone is converted plastoquinol
by simply changing the molecular topology.

The CG simulations in a thylakoid membrane with a composition representative of a bac-
terial thylakoid membrane[37] were started from a preformed bilayer. The bilayer consisted
of 72 phosphatidylglycerol (PG) lipids, 180 digalactosyldiacylglycerol (DGDG) lipids, 288
monogalactosyldiacylglycerol (MGDG) lipids, 180 sulfoquinovosyl diacylglycerols (SQDG)
lipids. The lipids have an oleoyl tail at the sn-1 position and a palmitoyl tail at sn-2 po-
sition, except for 72 of the SQDG lipids that had two palmitoyl tails. The bilayer was
solvated in 21258 CG water beads (equivalent to 85032 water molecules) and neutralized
by 252 sodium ions. Parameters for the CG thylakoid lipids have been developed by Lopez
et al.[11]. Plastoquinones were included in the system in the same way as for the DPPC
systems.

The CG simulations were performed with simulation parameters as described above for
CG systems, except that the temperature was set to 310 and 324 K for the thylakoid and
DPPC membranes, respectively and the pressure coupling, was switched to a semi-isotropic
scheme.

The atomistic systems were obtained from a CG structure in which the plastoquinones
had already moved into the bilayer, using the reverse transformation tool[25]. The simulation
used the PL9one parameters obtained in this study in combination with the Berger lipids[38]
incorporated in the Gromos53A6 force field. Simulations were performed with simulation
parameters as described above for atomistic systems, except that the temperature was set
to 324 K (10 degrees above the phase transition temperature of DPPC) and the pressure
coupling, which was switched to a semi-isotropic scheme in order to decouple the pressure in
the bilayer plane and the pressure perpendicular to it.

β-carotene BCR was simulated in a 128 DPPC lipid bilayer using both CG and UA
models. The systems contained four BCR molecules and were setup in the same way and
using the same simulation parameters as the PL9 simulations.

Analysis The conformations sampled by cofactors simulated in a bilayer system were
analyzed using a cluster analysis algorithm described by Daura et al.[39] and implemented
in the Gromacs tool g cluster. An RMSD cut-off of 0.15 nm was used in the analysis. The
electron densities were calculated along the Z-axis of the box using the Gromacs analysis
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tool g analyze. The electrons of the atoms mapped to one CG bead were added together. To
properly compare the densities obtained from UA and CG simulations, the UA trajectories
were mapped to CG using the reverse transformation tool[25] prior to the calculations of
the electron densities. Diffusion rates were calculated from the mean square displacements
(MSD) averaged over all molecules in the system. The linear regime of MSD curve in one
dimension was fitted to:

MSD = 2 · D · t + c (6.1)

The diffusion in the X and Y direction (Dx and Dy) diffusion are calculated separately to
check for anisotropy. The final value is the mean of the Dx and Dy, the error is the standard
error calculated over all molecules.

6.3 Results and Discussion

Figure 6.1 shows the atomistic structures and coarse grain mappings of PL9one, HEM, CLA
and BCR. Figure 6.2 shows the CG beads types and molecule geometries.

Parameterization of the atomistic force field

For all molecules only modest changes were made with respect to the initial topologies gener-
ated by the Automated Topology Builder[27]. All final topologies were stable in simulations
using an integration time step of 2 fs, with all bonds constrained. The full topologies in
Gromacs format can be found in section 6.5.
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Figure 6.3: Energy distribution of
the dihedral connecting the plastoquinone
head and tail. The energy distribution
has been calculated for PL9et (solid line)
where the poly-prenyl tail has been re-
placed by an ethyl group, PL9one in vac-
uum (dotted line) and PL9one in decane
(dashed line).

Chlorophyll A and pheophytin. The bonded
and non-bonded interactions for both molecules
are equal, except for atoms bound to the cen-
tral magnesium. The topology contains three
explicit hydrogens connected to the porphyrin
ring. These hydrogens carry a +0.1 e charge and
no van der Waals potential. The magnesium ion
in chlorophyll A carries a +1.0 e charge, which
is compensated for by partial positive charges in
the porphyrin ring, yielding a neutral molecule.
In pheophytin, the magnesium is replaced by
two hydrogen atoms, each with a +0.1 e partial
charge. Partial charges in the porphyrin ring are
lower in PHO compared to CLA. Overall PHO
is a neutral molecule as well.
β-Carotene. The topology for BCR was

largely based on the existing topology for
retinol[18]. Retinol consists of a head group
equal to BCR with a tail of two repeated units
and an alcohol group connected to the last tail
unit. The model for BCR was created by remov-
ing the alcohol group and repeating the topology
in reverse direction. The two retinol based parts
of the topology are connected by a double bond. The topology contains no explicit hydrogens
and no partial charges.

Plastoquinone and plastoquinol. The bonded and non-bonded interactions for both molecules
are equal, except for the ester or alcohol substituents of the ring. The distribution of the
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partial charges are taken from the charge calculations (see 6.2) for both molecules separately.
The prenyl repeats all have the same atom types, bonded interactions and partial charges.
The hydrogen connected to the carbon involved in the prenyl double bond is explicitly repre-
sented, and carries a +0.185 e partial charge to mimic the strong polarization of the double
bond. In addition these hydrogens carry a small repulsive van der Waals term to avoid
clashes with other atoms.

We calculated the potential energy distribution of the dihedral connecting the PL9one
head group with the first prenyl tail unit (Figure 6.3). Zhang et al. [17] and Himo et al. [40]
calculated this energy distribution using a quantum mechanical model for plastoquinone in
vacuum and semi-plastoquinone radical in vacuum where the first tail unit was replaced by
a ethyl group (PLQet−), respectively. When comparing the distribution obtained here for
PLQet to the one obtained by Himo et al. for PLQet− it can be seen that the position of
the global maximum is correct, although too low. The positions of the secondary maxima
are slightly off at 10 and 350 degrees (against 50 and 310 by Himo et al) and too low. The
distributions obtained for PL9one in vacuum reproduces the main features of the distribution
found by Zhang et al., however the height of all barriers is off by approximately a factor 2
and the position of the secondary minima or shifted. When simulated in decane the global
maximum becomes higher whereas most other features are tuned down. Although for both
molecules the energy profiles do no perfectly match the QM energy profiles, the overall feature
are sufficiently well reproduced to give a proper united atom topology.

Parametrization of CG force fields

The following CG topologies give stable simulations with a time step up to 20 fs. Full Martini
topologies in Gromacs format can be found in section 6.6.

Table 6.1: LogP values for partitioning of CG cofactors between
water (W) and octanol (Oct) or water and cyclohexane (Chx).
Subscript numbers indicate the tail lengths of plastoquinone and
plastoquinol: either 1 or 9 prenyl tail units. a. Eight bead ring
topology. b. Four bead ring topology. c. Ref.[41] d. Ref.[42]
e. Ref.[43] f. Octanol-water partitioning. g. Cyclohexane-water
partitioning. h. Ref.[44]

Log10PW→Oct/Chx

Molecule CG UA Literature
Chlorophyll A 15.8a,12.1b 27.0 2.12c

Pheophytin 16.9a - -
Heme b 6.7a - 0.95c

β-carotene 17.2 - 17.62d, 2.88e

Plastoquinone9 20.2f, 27.9g - -
Plastoquinone1 5.1f, 4.7g - > 3f,h, > 3g,h

Plastoquinol1 2.6f, 0.56g - > 3f,h, 0.23g,h

Chlorophyll A and pheo-
phytin. Topologies using
four, six or eight beads
were tested to model the
CG topology of the con-
jugated ring structure.
The 6-bead variant was
not preferred because it
does not maintain the
fourfold symmetry of the
ring in contrast to the
4 and 8 bead ring vari-
ants. Figures 6.1 and
6.2 only show the 8 bead
mapping scheme. The
water-octanol partition-
ing of both topologies
with a 4 and 8 bead
ring was calculated and
compared to the experi-
mental value[41](See Ta-
ble 6.1). The LogP val-

ues for CLA (15.8) and PHO (16.9) indicate that both topologies are much too hydrophobic.
To investigate the origin of the difference, we also calculated the water-octanol partitioning
using the atomistic topology obtained in this work. We obtained ∆G = −159± 11kJ mol−1,
LogP = 27, which is also too hydrophobic when compared to the experimental value (LogP

116



6.3. Results and Discussion

   
  










    
  
















    
  




















Figure 6.4: Distribution of bonded interactions obtained from a simulation of CG chloro-
phyll (solid lines) and a UA simulation of chlorophyll A mapped to CG (dashed line). The
three plots show bond angles (left), proper dihedrals (middle) and improper dihedrals (right).
The numbers in the legend define for which beads the distributions are measured, following
the bead numbering in Figure 6.1.

= 2.12). Additionally, for pheophytin we calculated the LogP using a number of on-line
available LogP predictors[45, 46, 47, 48]. The mean value over four different predictors is
10.24±1.85, which is lower than the LogP obtained from the simulations, but considerably
higher than the experimental value.

It is very well possible that both the atomistic and CG force fields and the predictor
algorithms do not properly reproduce the partitioning of chlorophyll A and pheophytin. Both
the ring conjugation and the magnesium center are challenging features. The partitioning
free energy for pheophytin might also not be representative of chlorophyll A. However, the
large differences observed between the partitioning free energies we obtained shed enough
doubt on the experimental values to settle with the CG topologies. We favor the 8-bead ring
variant since it is thinner due to the use of S-beads, thus better representing the flat nature
of the porphyrin ring.

This topology consists of 23 beads for chlorophyll A and 22 for pheophytin, mainly S-
type particles in the ring and normal particles in the tail. In order to optimally maintain
the symmetry of the molecule eight atoms have been doubly mapped: they are used in the
determination of the center of mass (COM) of two adjacent beads. The masses of these
atoms have to be halved for the COM calculation. The ring structure is very rigid and
closely packed, giving rise to a high amount of stress. This stress is partially removed by
defining mutual exclusions (from the non-bonded interactions) between all of the ring beads.
The central magnesium is modeled by a single SQ0 bead and has a +1.0 e charge. The
charge is equal to the charge on the Mg in the atomistic topology and mimics the strong
polar nature of this atom. The four beads surrounding magnesium have a -0.25 e charge,
thus neutralizing the structure. The magnesium ion is the last bead in the topology, allowing
it to be removed without renumbering any interactions. Upon removal of the magnesium
and all partial charges the topology represents pheophytin.

All CG bonded interactions were obtained by adjusting the parameters to give a satisfying
reproduction of the distributions obtained from the atomistic simulations. The mean and
standard deviations of distributions for all bonded interaction are given in the CG topolo-
gies in section 6.6. In order to obtain a synoptic measure for the bonded interactions in
the different cofactors, the root mean square deviation (RMSD) of both the mean and stan-
dard deviation of the probability distributions averaged over all bonds, angles, proper and
improper dihedrals have been calculated. Over 37 bonds, 26 angles, 3 proper and 13 im-
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proper dihedrals the mean and standard deviation RMSDs were 0.006±0.003 nm, 9.3±3.8◦,
37.3±11.7◦ and 9.4±4.0◦, respectively. These RMSDs are relatively high for the angles and
dihedrals due to a few interactions that strongly deviate from target distributions. For those
interactions the distributions are shown in Figure 6.4. The deviation of a single angle (7-
17-18) is most likely caused by the steric repulsion between beads later on in the tail and
the ring (for example bead 19 with 17). Defining an angle potential over beads 7-17-18 does
not improve the poorly reproduced distribution as shown in Figure 6.4. The deviation in
the means of the four proper dihedrals is large, however their distributions are virtually flat,
which makes a mean rather arbitrary. The four deviating improper dihedrals all involve the
central magnesium. The large stress in the porphyrin ring makes it impossible to influence
those distributions by defining a dihedral potential.

Heme b. The ring structure of heme is very comparable to that of chlorophyll A. Therefore
a similar topology was used for both molecules, using eight beads to model the porphyrin ring.
Heme is modeled to carry two negative charges, as both propionate sidechains (pKa=5.0)
are deprotonated at physiological pH∼7.0. Like for chlorophyll the CG topology models a
compound (LogP = 6.7) that is too hydrophobic compared to experiment (LogP = 0.95)
(Table 6.1)[41]. The HEM is more hydrophilic than CLA, and the ratio of their LogP values
closely matches the ratio of the experimental LogP values (LogPHEM/LogPCLA = ∼2.4).

Figure 6.5: Distribution of bonded in-
teractions obtained from a simulation of
CG heme b (solid lines) and a UA simu-
lation of heme b mapped to CG (dashed
lines). The plot shows proper dihedrals.
The numbers in the legend define for
which beads the distributions are mea-
sured, following the bead numbering in
Figure 6.1. Dihedral 4-5-14-15 is symmet-
rical with 8-7-17-18, 15-14-5-6 symmetri-
cal with 18-17-7-6.

The topology of heme b contains 19 beads,
of which all but two are small, S-type beads (see
Figure 6.1). In heme double mapping and bead
exclusions are applied as is the case for CLA to
obtain the correct symmetry and partially relax
strain in the ring.

All CG bonded interactions were obtained
by adjusting the parameters to give a satisfying
reproduction of the distributions obtained from
the atomistic simulations. The mean and stan-
dard deviations of distributions for all bonded
interaction are given in the CG topologies in sec-
tion 6.6. Over 40 bonds, 20 angles, 4 proper and
12 improper dihedrals the mean and standard
deviation RMSDs were 0.005±0.004nm, 2±2◦,
93±96◦ and 1±4◦, respectively. In the CG
model, the dihedrals concerning the propionate
sidechain beads (15-14-5-6, 4-5-14-15 and 18-17-
7-6, 8-7-17-18) do not flip between both sym-
metric orientations visited by these dihedrals in
the mapped UA trajectory (see Figure 6.5). Al-
though the individual lobes of the bi-modal tar-
get distribution are reasonably well reproduced,
the total RMSD is still high. Defining a dihedral
potential over those atoms did not resolve this
issue.
β-Carotene. The molecule has been modeled

by 10 beads (see Figures 6.1 and 6.2. The two rings and its constituents are modeled by three
beads, of which two are a S-type. The linker between the beads is divided in five equal parts,
each modeled by a C4 bead with a five-to-one mapping. Non-bonded interactions between
all beads in the ring and the first bead in the linker are excluded.

The LogP values for BCR found in literature diverge greatly. Cooper et al.[42] reported
a value of 17.62 based on calculations and Liao et al.[43] found LogP = 2.88 based upon
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UV-measurements. The average value for a series of on-line available LogP predictors[45, 46,
47, 48]was 6±1. The value obtained for our model (LogP=17.23) is close to the value found
by Cooper et al. but high compared to most other reported values.

Figure 6.6: Distribution of bonded interactions obtained
from a simulation of CG β-carotene (solid line) and a UA
simulation of β-carotene mapped to CG (dashed line). The
two plots show proper dihedrals (left) and improper dihedrals
(right). The numbers in the legend define for which beads the
distributions are measured, following the bead numbering in
Figure 6.1.

Over 11 bonds, 8 angles,
7 proper and 2 improper di-
hedrals the mean and stan-
dard deviation RMSDs were
0.007±0.02 nm, 12.6±3.5◦,
94.0±57.5◦ and 21.1±12.3 ◦.
Figure 6.6 shows the CG
proper and improper dihe-
drals that do not give a well
matching distribution. For
symmetric pairs of dihedrals
only one is shown. For the
proper dihedrals this is due
to the extended nature of the
linker: if one or both of the
angles contained in the di-
hedral is close to 180◦ this
gives rise to a large force be-
ing exerted on the dihedral
(if the angle is exactly 180◦

the dihedral is not calculated
in Gromacs), leading to numerical instabilities. A solution for this problem has been
devised[49], but has not been implemented in the main release of Gromacs yet. Testing
with an in-house version of Gromacs (based upon version 4.0.7) gave dihedral distributions
better matching the target distribution. However, in what follows, we will only consider a
topology that can be simulated in the current releases of Gromacs. The CG improper di-
hedrals (3-4-1-2 and 8-7-9-10) do deviate from mapped UA distributions, however given the
width of both distributions this is reasonable.

Plastoquinone and plastoquinol. Both molecules have the same mapping (see Figure 6.1).
The ring is represented by one C3 bead and two SNa particles in the case of plastoquinone. In
the case of plastoquinol the SNa beads are replaced by more polar SP2 particles. The tail is
modeled by 9 C3 beads, approximately a 1:5 mapping. The C3 bead was chosen based upon
the water-octanol partitioning of iso-prenyl (-13 kJ mol−1)[50], similar to the partitioning
of C3 beads (-14 kJ mol−1)[9]. Note that the iso-prenyl unit differs from the repeated unit
in β-carotene by one double bond, giving iso-prenyl a slightly more apolar nature.

Partitioning free energies have been calculated for PL9one, PL1one, and PL1ol between
water and cyclohexane, and water and octanol. Experimentally, the partitioning free en-
ergy for PL1ol between water and cyclohexane has been accurately determined and rough
estimates for PL1ol water-octanol partitioning and PL1one water-cyclohexane and water-
octanol partitioning are available[44]. The current model reproduces these values fairly well:
LogPsim=0.56 vs LogPexp=0.23 for PL1ol water-cyclohexane partitioning. Between water
and octanol PL1ol is slightly too hydrophilic (LogPsim = 2.6 vs LogPexp > 3.0). PL1one
correctly has a LogP higher than 3.0 for the partitioning between water and both apolar
solvents.

Non-bonded interactions between all beads in the ring and the first bead in the tail are
excluded. Over 12 bonds, 10 angles, eight proper and two improper dihedrals the mean and
standard deviation RMSDs were 0.007±0.007 nm, 6.1±5.1◦, 7.9±26.1◦ and 0.18± 34.9◦. All
distributions are properly reproduced.
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Figure 6.7: Snapshot of a heme molecule in between two bacterioferritin subunits after
1.5 µs of simulation. Proteins are shown in red, the heme uses the same coloring scheme as
used in Figure 6.2. The inset gives a detailed view of the heme being coordinated by the
methionine side chain.

Test system simulations

In order to investigate the behavior of the parametrized CG cofactors in a physiological
environment we simulated the cofactors bound in a protein complex (HEM) or inside lipid
bilayers (BCR, PL9one and PL9ol). The results were compared to the crystal structure or
results from atomistic simulations, respectively.

Heme b. Inside the PS-II complex, heme b is bound in between the α and β subunits of
cytochrome B559 or inside a pocket in cytochrome C550[4]. The central iron is coordinated
by amino acid side chains of these proteins. To test if the CG heme b fits inside a protein
binding pocket and the interactions with protein ligands are correctly modeled we simulated
it in between two bacterioferritin proteins. Bacterioferritin is a homodimer of two 158 amino
acid proteins that together encapsulate one heme (PDB entry: 3E2C). The heme iron is
coordinated on both sides by a methionine. Simulating heme in between two seperate proteins
means it is easier to escape, and thus a harder test, compare to when it would be simulated in
complex with a cytochrome, where Heme b is largely surrounded by the protein. Although
this test does not proof that the cofactor has been properly parametrized, it does give a
strong indication that the molecule can be successfully simulated while ligated to a protein.

Over 1.5 µs of simulation the complex remains stable and the heme stays doubly coor-
dinated. Omitting the first 100 ns of the simulation as equilibration period, the Cα RMSD
of protein subunits A and B and the complex including the heme were 0.13±0.01, 0.15±0.02
and 0.24±0.02 nm, respectively. The distances between the heme iron and the coordinating
methionines in the coarse grained crystal structure are 0.27 and 0.29 nm respectively. How-
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Figure 6.8: Comparison of residue-residue contact maps between chain A and B in the
crystal structure (left) and the mean over the last 500 ns of the simulation(right).

ever, due to the large van der Waals radius of the CG beads, those small distances can not be
maintained during the simulation. The average distace over the simulations are 0.48±0.03
and 0.53±0.03 nm, which is close to the minimum distance between two CG beads. The
contact maps of the coarse grained crystal structure and the average over the last 500 ns of
simulation (see Figure 6.8), show very similar patterns. Overall the analysis shows that the
complex is very stable.

Plastoquinone and plastoquinol. The organization and dynamics of the CG PL9one and
PL9ol in the thylakoid membrane (the ”plastoquinone-pool”) is of great importance for
the transport between different protein complexes in the photosynthetic pathway. To test
if our CG model properly models the behavior of PL9one and PL9ol in the membrane,
we simulated PL9one and PL9ol inside a DPPC bilayer and inside a more complex lipid
mixture, representative of the cyano bacterial thylakoid membrane. The location along the
membrane normal, the conformations sampled by the molecule, the flip-flop rates and the
lateral diffusion rates in DPPC are compared to atomistic simulations.

The systems containing four CG PL9one or PL9ol molecules were simulated for 4.0 µs
each. In the analysis the first 200 ns were omitted as equilibration. The cofactors were
initially placed in the water phase, but segregated into the lipid bilayer within tens of
nanoseconds. At atomistic resolution a DPPC bilayer containing four PL9one molecules
was simulated for 250 ns, of which the first 10 ns were omitted as equilibration. At the
start of the simulation two PL9one molecules were placed inside each monolayer in order to
shorten the slow equilibration phase.

Figure 6.9 shows the electron densities of UA PL9one and CG PL9one and PL9ol in a
DPPC bilayer. In order to properly compare the CG and atomistic densities, the atomistic
trajectory was mapped to CG before the analysis. For reference also the electron density
distributions of the lipid phosphate bead are shown. The thickness of the coarse grain and
atomistic bilayers is equal as reported by the distance between these PO4 peaks (red lines in
Figure 6.9). At both resolutions, the head groups reside just below the head group region of
the bilayer (green lines), however the (mapped) atomistic head groups are buried ∼ 0.3 nm
deeper into the bilayer. This difference indicates that the CG PL9one head groups are slightly
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Figure 6.9: Normalized electron density
plots for plastoquinone (PL9one) and plasto-
quinol (PL9ol) in a DPPC bilayer. Densities
obtained with the coarse grain model (PL9one,
solid lines; PL9ol, dotted lines) are compared
to those obtained for the atomistic model
mapped to coarse grain resolution (PL9one,
dashed lines). Densities for the DPPC phos-
phate bead (red) are compared to those for the
plastoquinone head group (green) and plasto-
quinone tail bead (black). Phosphate bead
densities from the CG PL9ol simulation are
similar as those obtained from the CG PL9one
simulation and omitted for clarity. -3 -2 -1 0 1 2 3
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too hydrophilic.
Using a SN0 particle in the head group gave slightly lower water-octanol and water-

cyclohexane LogP values were smaller, but still larger than the lower bound given by exper-
iments (LogPexp >3). In addition the headgroups were slightly (∼0.1 nm) deeper buried,
in better agreement with atomistic model, however the headgroups spend a considerable
amount of the simulations time at the bilayer midplane, in contrast to atomistic model.
Considering this, together with the fact that the SN0 particle does not mimic the hydrogen
acceptor properties of the molecule by stronger binding to hydrogen donors and positively
charged molecules, we decide to settle with the SNa. The end of the tail of both UA and
CG PL0one resides mostly at the bilayer midplane. The CG PL9ol head group is on average
found slightly closer to the bilayer interface, as would be expected from the more hydrophilic
head group. The secondary maxima in the density distribution of the last tail bead are due to
the higher occurrence of tail back folding (see below). Both PL9one and PL9ol are in contact
relatively a large part of the time due to the high solute to lipid ratio (1:32 for both CG and
UA), however the contact is mostly via the long tails. There is no particular preference for
the head groups to stack.

A cluster analysis of the molecular conformations sampled, showed three preferred orien-
tations in both the CG and UA simulations: 1) the PL9one head group in the lipid head
group region of one monolayer with the tail in a L-shape with the last part of the tail at
the bilayer midplane (L-conformation), 2) the tail being extended with the tail ends in the
opposite monolayer, sometimes with slight S-turn at the bilayer midplane (I -conformation)
and 3) the tail curling back up to the head group region (U -conformation). Figure 6.10
shows examples of the these conformation for UA (left) and CG (right) systems. In the
CG and UA simulations containing 4 PL9ones the ratios L:I:U were 53(1):16(2):13(2)% and
46(14):18(3):13(3)%. The values between brackets indicate the standard deviation calculated
over the four solutes. The L,I and U conformation together are found in 82% of the time;
the remaining 28% and 23% consist of less well defined, often less extended, conformations.
For CG PL9ol the L:I:U ratio is 47(1):10(1):19(1)%, a significantly higher occurrence of the
U conformation. This stronger tendency of the tail to fold towards the lipid head group is
consistent with the electron density of the last tail bead of PL9ol (see above) and is most
likely due to the position closer to the water phase, due to the more hydrophilic head group
as compared to PL9one.

During the simulation the PL9one head group was observed to flip from one monolayer to
the other, a so called flip-flop event. In the CG simulation 164 flip-flop events were observed,
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giving a flipflop rate of 1.1 × 107s−1. In the UA simulation the head group of one PL9one
molecule was observed to flip twice from one monolayer to the other. Although two events
are insufficient to obtain a statistically reliable number, it indicates a flipflop rate in the order
of 2 × 106 s−1. This gives speed-up of a factor of five for the CG model, in accordance with
the speed-up typically found in Martini systems[51]. For CG PL9ol eight flops are observed,
a flip-flop rate of 0.05 × 107 s−1. This much lower flip-flop rate as compared to PL9one is
due to the more hydrophilic headgroup of PL9ol.

Figure 6.10: Side-by-side comparison of atomistic
(left) and CG (right) plastoquinone in different confor-
mations inside a DPPC lipid bilayer. Shown are the
L-conformation (top), the I-conformation (middle) and
the U-conformation (bottom).

The systems containing four
CG PL9ones or PL9ols in the
cyano bacterial thylakoid mem-
brane model were simulated for 3
and 3.5 µs, respectively. The ra-
tios of L, I and U conformations
are very similar to those observed
in DPPC: 58(1):14(3):15(4)% and
61(1):10(3):17(2)% for the systems
containing PL9ones and PL9ols
respectively. For the system con-
taining four PL9ones 18 flipflop
events were counted, resulting in
a flipflop rate of 1.5 ×106 s−1,
respectively, considerably slower
than in a DPPC bilayer. For
the simulations containing PL9ol
no flipflop events were observed.
Although it is not immediatly
clear why the flip-flop rates in the
thylakoid membrane are lower, a
possible explanation might be a
stronger binding to the less hy-
drophylic headgroups of the lipids
in the thylakoid membrane as
compared to DPPC.

β-carotene. In the PSII,
BCR protects nearby chlorophyll
molecules against excess light
energy[52]. Although it is mostly
buried inside the protein complex,
its properties have been studied
before in bilayer environments[53].
In order to compare the behavior
of our CG model to these previous
results, we also simulated BCR in
a DPPC bilayer. For compari-
son we also simulated a system us-
ing the UA parameters obtained in
this work.

The four CG BCR molecules
were initially placed in the water phase. The system was simulated for 4 µs. One cofac-
tor enters the bilayer in less than 10 ns. The other molecules cluster together and enter
the bilayer together as a trimer. Inside the bilayer the trimer breaks up and the monomers
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Figure 6.11: Side-by-side comparison of CG of four (left) and atomistic (right) β-carotenes
in a flat orientation in the (DPPC) bilayer midplane.

do no cluster. They adopt a straight conformation and stay at the bilayer midplane (see
Figure 6.11). The atomistic starting structure was reverse transformed from the last CG
snapshot, in order to shorten the long equilibration phase. The system was simulated for
200 ns. The molecules remain in a elongated conformation on the bilayer midplane and show
no specific clustering. The CG and UA BCR molecules reside approximately in the same
region of the bilayer, as measured by the normalized head group electron density, shown
in Figure 6.12. The difference between density distribution obtained for both head groups
obtained for the UA model is indicative that the simulation has not yet reached equilibrium.

Due to their flat orientation in between the two monolayers, the BCR molecules are
expected to diffuse faster than the surrounding DPPC lipids. The diffusion rates of CG
BCR and DPPC were 0.15±0.015 and 0.078±0.002×10−5 cm2 s−1, respectively. The errors
have been calculated as the standard error over all molecules. In the atomistic systems the
diffusion rates were 0.032±0.006 and 0.014± 0.003 × 10−5 cm2 s−1. At both resolutions
BCR diffuses a factor ∼2 faster. Both BCR and the lipids diffuse faster at CG resolution
(4.7 and 5.6 times faster, respectively), in agreement with the speed-up generally observed
for the Martini force field[51]. Experimentally, no diffusion rates for BCR in lipid bilayers
are known, however Jemioa-Rzemiińska et al.[53] estimated the diffusion of BCR in a POPC
bilayer to be 0.052·10−5 cm2 s−1 from atomistic simulations using the OPLS force field. This
diffusion rate is slightly higher than the one obtained for Gromos, which could be due to the
different type of lipids used (the authors estimate the diffusion of POPC to be between 0.040
and 0.045 ×10−5 cm2 s−1 based on values that had previously been reported in literature).

6.4 Conclusions

Topologies at atomistic and coarse grain resolution have been obtained for plastoquinone,
plastoquinol, heme b, chlorophyll A, pheophytin and β-carotene. The behavior of these
molecules at both resolutions has been tested in different systems. The topologies showed
reasonable to good behavior, however all topologies have some weaker points.

CLA and HEM could be modeled by four or eight beads in the ring. Irrespective of the
number of ring beads the molecules were too hydrophobic compared to values from literature.
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Figure 6.12: Normalized elec-
tron density plots for β-carotene
in a DPPC bilayer. Densities
obtained with the CG model
(dashed lines) are compared to
those obtained with the atom-
istic model mapped to coarse
grain resolution (solid lines).
Densities for the DPPC phos-
phate bead (green) are com-
pared to those for both BCR
head groups (red and black
lines).

The eight bead ring model is slightly flatter due to the use of more S-type particles. Therefor
we choose the eight bead model. In CG CLA all but one angle and four improper dihedrals
reproduced the bonded interactions of the mapped atomistic very well. In HEM only two
dihedrals showed less good behavior. In a simulation in a test system HEM was found to
remain bound in the crystal structure binding site of bacterioferritin.

CG BCR reproduces the water-octanol partitioning behavior found in literature. Most
bonded interactions show excellent behavior compared to the reference system. Dihedrals
in the elongated tail were difficult to model using the currently in Gromacs implemented
dihedral functions. Nonetheless does the CG BCR properly mimic the behavior of the UA
BCR inside a DPPC bilayer.

Atomistic PLQ qualitatively mimics energy profiles for the head tail dihedral obtained by
QM calculations. CG plastoquinone and plastoquinol with different tail lengths show good
correspondence to experimental partitioning behavior and excellent agreement between UA
and CG bonded interactions. In a DPPC bilayer CG PLQ behaves similar as UA PLQ.

The parametrized molecules are the most important cofactors present in the thylakoid
membrane. Together with recently published parameters for lipids found in the thylakoid
membrane[11] and high resolution crystal structures of the thylakoid proteins[4], these pa-
rameters open the way to detailed simulations of the thylakoid membrane.

6.5 Gromos topologies

Plastoquinone-9

[ moleculetype ]
; Name nrexcl
plq 3

[ atoms ]
; nr type resnr resid atom cgnr charge mass
; Headgroup

1 C 1 PLQ C 1 -0.417 12.0110
2 HC 1 PLQ H 2 0.242 1.0080
3 C 1 PLQ C 3 0.675 12.0110
4 O 1 PLQ O 4 -0.491 15.9994
5 C 1 PLQ C 5 -0.109 12.0110
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6. Parametrization of Thylakoid Cofactors

6 C 1 PLQ C 6 0.604 12.0110
7 O 1 PLQ O 7 -0.504 15.9994
8 C 1 PLQ C 8 0.000 12.0110
9 CH3 1 PLQ CH3 9 0.000 15.0350

10 C 1 PLQ C 10 0.000 12.0110
11 CH3 1 PLQ CH3 11 0.000 15.0350

; U1: First tail unit
12 CH2 1 PLQ CH2 12 0.292 14.0270
13 C 1 PLQ C 13 -0.594 12.0110
14 HC 1 PLQ H 14 0.185 1.0080
15 C 1 PLQ C 15 0.117 12.0110
16 CH3 1 PLQ CH3 16 0.000 15.0350
17 CH2 1 PLQ CH2 17 0.000 14.0270

; U2: First tail unit
18 CH2 1 PLQ CH2 18 0.292 14.0270
19 C 1 PLQ C 19 -0.594 12.0110
20 HC 1 PLQ H 20 0.185 1.0080
21 C 1 PLQ C 21 0.117 12.0110
22 CH3 1 PLQ CH3 22 0.000 15.0350
23 CH2 1 PLQ CH2 23 0.000 14.0270

; U3: First tail unit
24 CH2 1 PLQ CH2 24 0.292 14.0270
25 C 1 PLQ C 25 -0.594 12.0110
26 HC 1 PLQ H 26 0.185 1.0080
27 C 1 PLQ C 27 0.117 12.0110
28 CH3 1 PLQ CH3 28 0.000 15.0350
29 CH2 1 PLQ CH2 29 0.000 14.0270

; U4: First tail unit
30 CH2 1 PLQ CH2 30 0.292 14.0270
31 C 1 PLQ C 31 -0.594 12.0110
32 HC 1 PLQ H 32 0.185 1.0080
33 C 1 PLQ C 33 0.117 12.0110
34 CH3 1 PLQ CH3 34 0.000 15.0350
35 CH2 1 PLQ CH2 35 0.000 14.0270

; U5: First tail unit
36 CH2 1 PLQ CH2 36 0.292 14.0270
37 C 1 PLQ C 37 -0.594 12.0110
38 HC 1 PLQ H 38 0.185 1.0080
39 C 1 PLQ C 39 0.117 12.0110
40 CH3 1 PLQ CH3 40 0.000 15.0350
41 CH2 1 PLQ CH2 41 0.000 14.0270

; U6: First tail unit
42 CH2 1 PLQ CH2 42 0.292 14.0270
43 C 1 PLQ C 43 -0.594 12.0110
44 HC 1 PLQ H 44 0.185 1.0080
45 C 1 PLQ C 45 0.117 12.0110
46 CH3 1 PLQ CH3 46 0.000 15.0350
47 CH2 1 PLQ CH2 47 0.000 14.0270

; U7: First tail unit
48 CH2 1 PLQ CH2 48 0.292 14.0270
49 C 1 PLQ C 49 -0.594 12.0110
50 HC 1 PLQ H 50 0.185 1.0080
51 C 1 PLQ C 51 0.117 12.0110
52 CH3 1 PLQ CH3 52 0.000 15.0350
53 CH2 1 PLQ CH2 53 0.000 14.0270

; U8: First tail unit
54 CH2 1 PLQ CH2 54 0.292 14.0270
55 C 1 PLQ C 55 -0.594 12.0110
56 HC 1 PLQ H 56 0.185 1.0080
57 C 1 PLQ C 57 0.117 12.0110
58 CH3 1 PLQ CH3 58 0.000 15.0350
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6.5. Gromos topologies

59 CH2 1 PLQ CH2 59 0.000 14.0270
; U9: First tail unit

60 CH2 1 PLQ CH2 60 0.292 14.0270
61 C 1 PLQ C 61 -0.594 12.0110
62 HC 1 PLQ H 62 0.185 1.0080
63 C 1 PLQ C 63 0.117 12.0110
64 CH3 1 PLQ CH3 64 0.000 15.0350
65 CH3 1 PLQ CH3 65 0.000 15.0350

[ bonds ]
; i j funct

1 2 2 gb_3
1 3 2 gb_22
1 5 2 gb_10
3 4 2 gb_5
3 8 2 gb_26
5 6 2 gb_26
6 7 2 gb_5
6 10 2 gb_26
8 9 2 gb_26
8 10 2 gb_12

10 11 2 gb_26
; Connection head group-> U1

5 12 2 gb_26
; U1

1 14 2 gb_3
1 15 2 gb_10

13 12 2 gb_26
15 17 2 gb_26
15 16 2 gb_26

; Connection U1-> U2
17 18 2 gb_26

; U2
19 20 2 gb_3
19 21 2 gb_10
19 18 2 gb_26
21 23 2 gb_26
21 22 2 gb_26

; Connection U2-> U3
23 24 2 gb_26

; U3
25 26 2 gb_3
25 27 2 gb_10
25 24 2 gb_26
27 29 2 gb_26
27 28 2 gb_26

; Connection U3-> U4
29 30 2 gb_26

; U4
31 32 2 gb_3
31 33 2 gb_10
31 30 2 gb_26
33 35 2 gb_26
33 34 2 gb_26

; Connection U4-> U5
35 36 2 gb_26

; U5
37 38 2 gb_3
37 39 2 gb_10
37 36 2 gb_26
39 41 2 gb_26
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6. Parametrization of Thylakoid Cofactors

39 40 2 gb_26
; Connection U5-> U6

41 42 2 gb_26
; U6

43 44 2 gb_3
43 45 2 gb_10
43 42 2 gb_26
45 47 2 gb_26
45 46 2 gb_26

; Connection U6-> U7
47 48 2 gb_26

; U7
49 50 2 gb_3
49 51 2 gb_10
49 48 2 gb_26
51 53 2 gb_26
51 52 2 gb_26

; Connection U7-> U8
53 54 2 gb_26

; U8
55 56 2 gb_3
55 57 2 gb_10
55 54 2 gb_26
57 59 2 gb_26
57 58 2 gb_26

; Connection U8-> U9
59 60 2 gb_26

; U9
61 62 2 gb_3
61 63 2 gb_10
61 60 2 gb_26
63 65 2 gb_26
63 64 2 gb_26

[ pairs ]
; i j funct
; Head

1 7 1
1 9 1
1 10 1
2 4 1
2 6 1
2 8 1
3 6 1
3 11 1
4 5 1
4 9 1
4 10 1
5 8 1
5 11 1
6 9 1
7 8 1
7 11 1
9 11 1

; Connection head group-> U1
1 13 1
2 12 1
3 12 1
5 14 1
5 15 1
6 13 1
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7 12 1
10 12 1

; U1
12 16 1
12 17 1
14 16 1
14 17 1

; Connection U1-> U2
13 18 1
15 19 1
16 18 1
17 20 1
17 21 1

; U2
18 22 1
18 23 1
20 22 1
20 23 1

; Connection U2-> U3
19 24 1
21 25 1
22 24 1
23 26 1
23 27 1

; U3
24 28 1
24 29 1
26 28 1
26 29 1

; Connection U3-> U4
25 30 1
27 31 1
28 30 1
29 32 1
29 33 1

; U4
30 34 1
30 35 1
32 34 1
32 35 1

; Connection U4-> U5
31 36 1
33 37 1
34 36 1
35 38 1
35 39 1

; U5
36 40 1
36 41 1
38 40 1
38 41 1

; Connection U5-> U6
37 42 1
39 43 1
40 42 1
41 44 1
41 45 1

; U6
42 46 1
42 47 1
44 46 1
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6. Parametrization of Thylakoid Cofactors

44 47 1
; Connection U6-> U7

43 48 1
45 49 1
46 48 1
47 50 1
47 51 1

; U7
48 52 1
48 53 1
50 52 1
50 53 1

; Connection U7-> U8
49 54 1
51 55 1
52 54 1
53 56 1
53 57 1

; U8
54 58 1
54 59 1
56 58 1
56 59 1

; Connection U8-> U9
55 60 1
57 61 1
58 60 1
59 62 1
59 63 1

; U9
60 64 1
60 65 1
62 64 1
62 65 1

[ angles ]
; i j k funct

1 3 4 2 ga_30
1 3 8 2 ga_27
1 5 6 2 ga_27
2 1 3 2 ga_25
2 1 5 2 ga_25
3 1 5 2 ga_27
3 8 9 2 ga_27
3 8 10 2 ga_27
4 3 8 2 ga_30
5 6 7 2 ga_30
5 6 10 2 ga_27
6 10 8 2 ga_27
6 10 11 2 ga_27
7 6 10 2 ga_30
8 10 11 2 ga_27
9 8 10 2 ga_35

11 10 8 2 ga_35
; Connection head group-> U1

1 5 12 2 ga_27
6 5 12 2 ga_27
5 12 13 2 ga_15

; U1
13 15 17 2 ga_27
13 15 16 2 ga_27
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14 13 15 2 ga_25
14 13 12 2 ga_25
15 13 12 2 ga_27
17 15 16 2 ga_27

; Connection U1 -> U2
15 17 18 2 ga_15
19 18 17 2 ga_15

; U2
19 21 23 2 ga_27
19 21 22 2 ga_27
20 19 21 2 ga_25
20 19 18 2 ga_25
21 19 18 2 ga_27
23 21 22 2 ga_27

; Connection U2 -> U3
21 23 24 2 ga_15
25 24 23 2 ga_15

; U3
25 27 29 2 ga_27
25 27 28 2 ga_27
26 25 27 2 ga_25
26 25 24 2 ga_25
27 25 24 2 ga_27
29 27 28 2 ga_27

; Connection U3 -> U4
27 29 30 2 ga_15
31 30 29 2 ga_15

; U4
31 33 35 2 ga_27
31 33 34 2 ga_27
32 31 33 2 ga_25
32 31 30 2 ga_25
33 31 30 2 ga_27
35 33 34 2 ga_27

; Connection U4 -> U5
33 35 36 2 ga_15
37 36 35 2 ga_15

; U5
37 39 41 2 ga_27
37 39 40 2 ga_27
38 37 39 2 ga_25
38 37 36 2 ga_25
39 37 36 2 ga_27
41 39 40 2 ga_27

; Connection U5 -> U6
39 41 42 2 ga_15
43 42 41 2 ga_15

; U6
43 45 47 2 ga_27
43 45 46 2 ga_27
44 43 45 2 ga_25
44 43 42 2 ga_25
45 43 42 2 ga_27
47 45 46 2 ga_27

; Connection U6 -> U7
45 47 48 2 ga_15
49 48 47 2 ga_15

; U7
49 51 53 2 ga_27
49 51 52 2 ga_27
50 49 51 2 ga_25
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50 49 48 2 ga_25
51 49 48 2 ga_27
53 51 52 2 ga_27

; Connection U7 -> U8
51 53 54 2 ga_15
55 54 53 2 ga_15

; U8
55 57 59 2 ga_27
55 57 58 2 ga_27
56 55 57 2 ga_25
56 55 54 2 ga_25
57 55 54 2 ga_27
59 57 58 2 ga_27

; Connection U8 -> U9
57 59 60 2 ga_15
61 60 59 2 ga_15

; U9
61 63 65 2 ga_27
61 63 64 2 ga_27
62 61 63 2 ga_25
62 61 60 2 ga_25
63 61 60 2 ga_27
65 63 64 2 ga_27

[ dihedrals ]
; i j k l funct
; Head group

1 2 3 5 2 gi_1
1 5 6 10 2 gi_1
3 1 5 6 2 gi_1
3 1 4 8 2 gi_1
5 6 10 8 2 gi_1
6 10 8 3 2 gi_1
6 5 7 10 2 gi_1
8 3 9 10 2 gi_1
8 3 1 5 2 gi_1

10 8 3 1 2 gi_1
10 6 8 11 2 gi_1

; Connection head group-> U1
5 1 12 6 2 gi_1

; U1
13 14 15 12 2 gi_1
15 13 17 16 2 gi_1

; U2
19 20 21 18 2 gi_1
21 19 23 22 2 gi_1

; U3
25 26 27 24 2 gi_1
27 25 29 28 2 gi_1

; U4
31 32 33 30 2 gi_1
33 31 35 34 2 gi_1

; U5
37 38 39 36 2 gi_1
39 37 41 40 2 gi_1

; U6
43 44 45 42 2 gi_1
45 43 47 46 2 gi_1

; U7
49 50 51 48 2 gi_1
51 49 53 52 2 gi_1
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; U8
55 56 57 54 2 gi_1
57 55 59 58 2 gi_1

; U9
61 62 63 60 2 gi_1
63 61 65 64 2 gi_1

[ dihedrals ]
; ai aj ak al funct ph0 cp mult
; Connection head group-> U1

1 5 12 13 1 gd_10 ; -CH2-CR1-
15 13 12 5 1 gd_10 ; -C-CH2-

;U1
12 13 15 17 1 gd_15 ; -C-C-, double bond
13 15 17 18 1 gd_34 ; -CH2-CH2-

; Connection U1-> U2
15 17 18 19 1 gd_10 ; -CH2-CR1-
21 19 18 17 1 gd_10 ; -C-CH2-

;U2
18 19 21 23 1 gd_15 ; -C-C-, double bond
19 21 23 24 1 gd_34 ; -CH2-CH2-

; Connection U2-> U3
21 23 24 25 1 gd_10 ; -CH2-CR1-
27 25 24 23 1 gd_10 ; -C-CH2-

;U3
24 25 27 29 1 gd_15 ; -C-C-, double bond
25 27 29 30 1 gd_34 ; -CH2-CH2-

; Connection U3-> U10
27 29 30 31 1 gd_10 ; -CH2-CR1-
33 31 30 29 1 gd_10 ; -C-CH2-

;U4
30 31 33 35 1 gd_15 ; -C-C-, double bond
31 33 35 36 1 gd_34 ; -CH2-CH2-

; Connection U4-> U5
33 35 36 37 1 gd_10 ; -CH2-CR1-
39 37 36 35 1 gd_10 ; -C-CH2-

;U5
36 37 39 41 1 gd_15 ; -C-C-, double bond
37 39 41 42 1 gd_34 ; -CH2-CH2-

; Connection U5-> U6
39 41 42 43 1 gd_10 ; -CH2-CR1-
45 43 42 41 1 gd_10 ; -C-CH2-

;U6
42 43 45 47 1 gd_15 ; -C-C-, double bond
43 45 47 48 1 gd_34 ; -CH2-CH2-

; Connection U6-> U7
45 47 48 49 1 gd_10 ; -CH2-CR1-
51 49 48 47 1 gd_10 ; -C-CH2-

;U7
48 49 51 53 1 gd_15 ; -C-C-, double bond
49 51 53 54 1 gd_34 ; -CH2-CH2-

; Connection U7-> U8
51 53 54 55 1 gd_10 ; -CH2-CR1-
57 55 54 53 1 gd_10 ; -C-CH2-

;U8
54 55 57 59 1 gd_15 ; -C-C-, double bond
55 57 59 60 1 gd_34 ; -CH2-CH2-

; Connection U8-> U9
57 59 60 61 1 gd_10 ; -CH2-CR1-
63 61 60 59 1 gd_10 ; -C-CH2-

;U9
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60 61 63 65 1 gd_15 ; -C-C-, double bond

[ mapping ]
1 8 9 10 11
2 1 2 3 4
3 5 6 7
4 12 13 14 15 16 17
5 18 19 20 21 22 23
6 24 25 26 27 28 29
7 30 31 32 33 34 35
8 36 37 38 39 40 41
9 42 43 44 45 46 47

10 48 49 50 51 52 53
11 54 55 56 57 58 59
12 60 61 62 63 64 65

Plastoquinol-9

[ moleculetype ]
; Name nrexcl
plqol 3

[ atoms ]
; nr type resnr resid atom cgnr charge mass
; Headgroup

1 C 1 PLQ C 1 -0.390 12.0110
2 HC 1 PLQ H 2 0.260 1.0080
3 C 1 PLQ C 3 0.370 12.0110
4 O 1 PLQ O 4 -0.610 15.9994
5 H 1 PLQ H 5 0.430 1.0080
6 C 1 PLQ C 6 -0.110 12.0110
7 C 1 PLQ C 7 0.190 12.0110
8 O 1 PLQ O 8 -0.540 15.9994
9 H 1 PLQ H 9 0.380 1.008

10 C 1 PLQ C 10 0.000 12.0110
11 CH3 1 PLQ C 11 0.000 15.0350
12 C 1 PLQ C 12 0.000 12.0110
13 CH3 1 PLQ C 13 0.000 15.0350

; U1: First tail unit
14 CH2 1 PLQ C 14 0.292 14.0270
15 C 1 PLQ C 15 -0.59 12.0110
16 HC 1 PLQ H 16 0.185 1.0080
17 C 1 PLQ C 17 0.117 12.0110
18 CH3 1 PLQ C 18 0.000 15.0350
19 CH2 1 PLQ C 19 0.000 14.0270

; U2: First tail unit
20 CH2 1 PLQ C 20 0.292 14.0270
21 C 1 PLQ C 21 -0.59 12.0110
22 HC 1 PLQ H 22 0.185 1.0080
23 C 1 PLQ C 23 0.117 12.0110
24 CH3 1 PLQ C 24 0.000 15.0350
25 CH2 1 PLQ C 25 0.000 14.0270

; U3: First tail unit
26 CH2 1 PLQ C 26 0.292 14.0270
27 C 1 PLQ C 27 -0.59 12.0110
28 HC 1 PLQ H 28 0.185 1.0080
29 C 1 PLQ C 29 0.117 12.0110
30 CH3 1 PLQ C 30 0.000 15.0350
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31 CH2 1 PLQ C 31 0.000 14.0270
; U4: First tail unit

32 CH2 1 PLQ C 32 0.292 14.0270
33 C 1 PLQ C 33 -0.59 12.0110
34 HC 1 PLQ H 34 0.185 1.0080
35 C 1 PLQ C 35 0.117 12.0110
36 CH3 1 PLQ C 36 0.000 15.0350
37 CH2 1 PLQ C 37 0.000 14.0270

; U5: First tail unit
38 CH2 1 PLQ C 38 0.292 14.0270
39 C 1 PLQ C 39 -0.59 12.0110
40 HC 1 PLQ H 40 0.185 1.0080
41 C 1 PLQ C 41 0.117 12.0110
42 CH3 1 PLQ C 42 0.000 15.0350
43 CH2 1 PLQ C 43 0.000 14.0270

; U6: First tail unit
44 CH2 1 PLQ C 44 0.292 14.0270
45 C 1 PLQ C 45 -0.59 12.0110
46 HC 1 PLQ H 46 0.185 1.0080
47 C 1 PLQ C 47 0.117 12.0110
48 CH3 1 PLQ C 48 0.000 15.0350
49 CH2 1 PLQ C 49 0.000 14.0270

; U7: First tail unit
50 CH2 1 PLQ C 50 0.292 14.0270
51 C 1 PLQ C 51 -0.59 12.0110
52 HC 1 PLQ H 52 0.185 1.0080
53 C 1 PLQ C 53 0.117 12.0110
54 CH3 1 PLQ C 54 0.000 15.0350
55 CH2 1 PLQ C 55 0.000 14.0270

; U8: First tail unit
56 CH2 1 PLQ C 56 0.292 14.0270
57 C 1 PLQ C 57 -0.59 12.0110
58 HC 1 PLQ H 58 0.185 1.0080
59 C 1 PLQ C 59 0.117 12.0110
60 CH3 1 PLQ C 60 0.000 15.0350
61 CH2 1 PLQ C 61 0.000 14.0270

; U9: First tail unit
62 CH2 1 PLQ C 62 0.292 14.0270
63 C 1 PLQ C 63 -0.59 12.0110
64 HC 1 PLQ H 64 0.185 1.0080
65 C 1 PLQ C 65 0.117 12.0110
66 CH3 1 PLQ C 66 0.000 15.0350
67 CH3 1 PLQ C 67 0.000 15.0350

[ bonds ]
; i j funct

1 2 2 gb_3
1 3 2 gb_22
1 6 2 gb_10
3 4 2 gb_13
3 10 2 gb_26
4 5 2 gb_1
6 7 2 gb_26
7 8 2 gb_13
7 12 2 gb_26
8 9 2 gb_1

10 11 2 gb_26
10 12 2 gb_12
12 13 2 gb_26

; Connection head group-> U1
6 14 2 gb_26
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; U1
15 16 2 gb_3
15 17 2 gb_10
15 14 2 gb_26
17 19 2 gb_26
17 18 2 gb_26

; Connection U1-> U2
19 20 2 gb_26

; U2
21 22 2 gb_3
21 23 2 gb_10
21 20 2 gb_26
23 25 2 gb_26
23 24 2 gb_26

; Connection U2-> U3
25 26 2 gb_26

; U3
27 28 2 gb_3
27 29 2 gb_10
27 26 2 gb_26
29 31 2 gb_26
29 30 2 gb_26

; Connection U3-> U4
31 32 2 gb_26

; U4
33 34 2 gb_3
33 35 2 gb_10
33 32 2 gb_26
35 37 2 gb_26
35 36 2 gb_26

; Connection U4-> U5
37 38 2 gb_26

; U5
39 40 2 gb_3
39 41 2 gb_10
39 38 2 gb_26
41 43 2 gb_26
41 42 2 gb_26

; Connection U5-> U6
43 44 2 gb_26

; U6
45 46 2 gb_3
45 47 2 gb_10
45 44 2 gb_26
47 49 2 gb_26
47 48 2 gb_26

; Connection U6-> U7
49 50 2 gb_26

; U7
51 52 2 gb_3
51 53 2 gb_10
51 50 2 gb_26
53 55 2 gb_26
53 54 2 gb_26

; Connection U7-> U8
55 56 2 gb_26

; U8
57 58 2 gb_3
57 59 2 gb_10
57 56 2 gb_26
59 61 2 gb_26
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59 60 2 gb_26
; Connection U8-> U9

61 62 2 gb_26
; U9

63 64 2 gb_3
63 65 2 gb_10
63 62 2 gb_26
65 67 2 gb_26
65 66 2 gb_26

[ pairs ]
; i j funct
; Head

1 8 1
1 11 1
1 12 1
2 4 1
2 7 1
2 10 1
3 7 1
3 13 1
4 6 1
4 11 1
4 12 1
6 10 1
6 13 1
7 11 1
8 10 1
8 13 1

11 13 1
; Connection head group-> U1

1 15 1
2 14 1
3 14 1
6 16 1
6 17 1
7 15 1
8 14 1

12 14 1
; U1

14 18 1
14 19 1
16 18 1
16 19 1

; Connection U1-> U2
15 20 1
17 21 1
18 20 1
19 22 1
19 23 1

; U2
20 24 1
20 25 1
22 24 1
22 25 1

; Connection U2-> U3
21 26 1
23 27 1
24 26 1
25 28 1
25 29 1
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; U3
26 30 1
26 31 1
28 30 1
28 31 1

; Connection U3-> U4
27 32 1
29 33 1
30 32 1
31 34 1
31 35 1

; U4
32 36 1
32 37 1
34 36 1
34 37 1

; Connection U4-> U5
33 38 1
35 39 1
36 38 1
37 40 1
37 41 1

; U5
38 42 1
38 43 1
40 42 1
40 43 1

; Connection U5-> U6
39 44 1
41 45 1
42 44 1
43 46 1
43 47 1

; U6
44 48 1
44 49 1
46 48 1
46 49 1

; Connection U6-> U7
45 50 1
47 51 1
48 50 1
49 52 1
49 53 1

; U7
50 54 1
50 55 1
52 54 1
52 55 1

; Connection U7-> U8
51 56 1
53 57 1
54 56 1
55 58 1
55 59 1

; U8
56 60 1
56 61 1
58 60 1
58 61 1

; Connection U8-> U9
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57 62 1
59 63 1
60 62 1
61 64 1
61 65 1

; U9
62 66 1
62 67 1
64 66 1
64 67 1

[ angles ]
; i j k funct

1 3 4 2 ga_30
1 3 10 2 ga_27
1 6 7 2 ga_27
2 1 3 2 ga_25
2 1 6 2 ga_25
3 4 5 2 ga_42
3 1 6 2 ga_27
3 10 11 2 ga_27
3 10 12 2 ga_27
4 3 10 2 ga_30
6 7 8 2 ga_30
6 7 12 2 ga_27
7 8 9 2 ga_42
7 12 10 2 ga_27
7 12 13 2 ga_27
8 7 12 2 ga_30

10 12 13 2 ga_27
11 10 12 2 ga_35
13 12 10 2 ga_35

; Connection head group-> U1
1 6 14 2 ga_27
7 6 14 2 ga_27
6 14 15 2 ga_15

; U1
15 17 19 2 ga_27
15 17 18 2 ga_27
16 15 17 2 ga_25
16 15 14 2 ga_25
17 15 14 2 ga_27
17 15 16 2 ga_27

; Connection U1 -> U2
17 19 20 2 ga_15
21 20 19 2 ga_15

; U2
21 23 25 2 ga_27
21 23 24 2 ga_27
22 21 23 2 ga_25
22 21 20 2 ga_25
23 21 20 2 ga_27
23 21 22 2 ga_27

; Connection U2 -> U3
23 25 26 2 ga_15
27 26 25 2 ga_15

; U3
27 29 31 2 ga_27
27 29 30 2 ga_27
28 27 29 2 ga_25
28 27 26 2 ga_25
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29 27 26 2 ga_27
29 27 28 2 ga_27

; Connection U3 -> U4
29 31 32 2 ga_15
33 32 31 2 ga_15

; U4
33 35 37 2 ga_27
33 35 36 2 ga_27
34 33 35 2 ga_25
34 33 32 2 ga_25
35 33 32 2 ga_27
35 33 34 2 ga_27

; Connection U4 -> U5
35 37 38 2 ga_15
39 38 37 2 ga_15

; U5
39 41 43 2 ga_27
39 41 42 2 ga_27
40 39 41 2 ga_25
40 39 38 2 ga_25
41 39 38 2 ga_27
41 39 40 2 ga_27

; Connection U5 -> U6
41 43 44 2 ga_15
45 44 43 2 ga_15

; U6
45 47 49 2 ga_27
45 47 48 2 ga_27
46 45 47 2 ga_25
46 45 44 2 ga_25
47 45 44 2 ga_27
47 45 46 2 ga_27

; Connection U6 -> U7
47 49 50 2 ga_15
51 50 49 2 ga_15

; U7
51 53 55 2 ga_27
51 53 54 2 ga_27
52 51 53 2 ga_25
52 51 50 2 ga_25
53 51 50 2 ga_27
53 51 52 2 ga_27

; Connection U7 -> U8
53 55 56 2 ga_15
57 56 55 2 ga_15

; U8
57 59 61 2 ga_27
57 59 60 2 ga_27
58 57 59 2 ga_25
58 57 56 2 ga_25
59 57 56 2 ga_27
59 57 58 2 ga_27

; Connection U8 -> U9
59 61 62 2 ga_15
63 62 61 2 ga_15

; U9
63 65 67 2 ga_27
63 65 66 2 ga_27
64 63 65 2 ga_25
64 63 62 2 ga_25
65 63 62 2 ga_27

140



6.5. Gromos topologies

65 63 64 2 ga_27

[ dihedrals ]
; i j k l funct
; Head group

1 2 3 6 2 gi_1
1 6 7 12 2 gi_1
3 1 6 7 2 gi_1
3 1 4 10 2 gi_1
6 7 12 10 2 gi_1
7 12 10 3 2 gi_1
7 6 8 12 2 gi_1

10 3 11 12 2 gi_1
10 3 1 6 2 gi_1
12 10 3 1 2 gi_1
12 7 10 13 2 gi_1

; Connection head group-> U1
6 1 14 7 2 gi_1

; U1
15 16 17 14 2 gi_1
17 15 19 18 2 gi_1

; U2
21 22 23 20 2 gi_1
23 21 25 24 2 gi_1

; U3
27 28 29 26 2 gi_1
29 27 31 30 2 gi_1

; U4
33 34 35 32 2 gi_1
35 33 37 36 2 gi_1

; U5
39 40 41 38 2 gi_1
41 39 43 42 2 gi_1

; U6
45 46 47 44 2 gi_1
47 45 49 48 2 gi_1

; U7
51 52 53 50 2 gi_1
53 51 55 54 2 gi_1

; U8
57 58 59 56 2 gi_1
59 57 61 60 2 gi_1

; U9
63 64 65 62 2 gi_1
65 63 67 66 2 gi_1

[ dihedrals ]
; ai aj ak al funct ph0 cp mult
; Head group

1 3 4 5 1 gd_11 ; -C-OA-H
12 7 8 9 1 gd_11 ; -C-OA-H

; Connection head group-> U1
1 6 14 15 1 gd_40 ; -CH2-CR1-

17 15 14 6 1 gd_40 ; -C-CH2-
;U1

14 15 17 19 1 gd_15 ; -C-C-, double bond
15 17 19 20 1 gd_34 ; -CH2-CH2-

; Connection U1-> U2
17 19 20 21 1 gd_40 ; -CH2-CR1-
23 21 20 19 1 gd_40 ; -C-CH2-

;U2
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20 21 23 25 1 gd_15 ; -C-C-, double bond
21 23 25 26 1 gd_34 ; -CH2-CH2-

; Connection U2-> U3
23 25 26 27 1 gd_40 ; -CH2-CR1-
29 27 26 25 1 gd_40 ; -C-CH2-

;U3
26 27 29 31 1 gd_15 ; -C-C-, double bond
27 29 31 32 1 gd_34 ; -CH2-CH2-

; Connection U3-> U10
29 31 32 33 1 gd_40 ; -CH2-CR1-
35 33 32 31 1 gd_40 ; -C-CH2-

;U4
32 33 35 37 1 gd_15 ; -C-C-, double bond
33 35 37 38 1 gd_34 ; -CH2-CH2-

; Connection U4-> U5
35 37 38 39 1 gd_40 ; -CH2-CR1-
41 39 38 37 1 gd_40 ; -C-CH2-

;U5
38 39 41 43 1 gd_15 ; -C-C-, double bond
39 41 43 44 1 gd_34 ; -CH2-CH2-

; Connection U5-> U6
41 43 44 45 1 gd_40 ; -CH2-CR1-
47 45 44 43 1 gd_40 ; -C-CH2-

;U6
44 45 47 49 1 gd_15 ; -C-C-, double bond
45 47 49 50 1 gd_34 ; -CH2-CH2-

; Connection U6-> U7
47 49 50 51 1 gd_40 ; -CH2-CR1-
53 51 50 49 1 gd_40 ; -C-CH2-

;U7
50 51 53 55 1 gd_15 ; -C-C-, double bond
51 53 55 56 1 gd_34 ; -CH2-CH2-

; Connection U7-> U8
53 55 56 57 1 gd_40 ; -CH2-CR1-
59 57 56 55 1 gd_40 ; -C-CH2-

;U8
56 57 59 61 1 gd_15 ; -C-C-, double bond
57 59 61 62 1 gd_34 ; -CH2-CH2-

; Connection U8-> U9
59 61 62 63 1 gd_40 ; -CH2-CR1-
65 63 62 61 1 gd_40 ; -C-CH2-

;U9
62 63 65 67 1 gd_15 ; -C-C-, double bond

[ mapping ]
1 10 11 12 13
2 1 2 3 4 5
3 6 7 8 9
4 14 15 16 17 18 19
5 20 21 22 23 24 25
6 26 27 28 29 30 31
7 32 33 34 35 36 37
8 38 39 40 41 42 43
9 44 45 46 47 48 49

10 50 51 52 53 54 55
11 56 57 58 59 60 61
12 62 63 64 65 66 67
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Chlorophyll A

[ moleculetype ]
; Name nrexcl
CLA 3

[ atoms ]
; nr type resnr resid atom cgnr charge mass

1 CH3 1 CLA C19 1 0.000 15.0350
2 CH1 1 CLA C18 2 0.000 13.0190
3 CH3 1 CLA C20 3 0.000 15.0350
4 CH2 1 CLA C17 4 0.000 14.0270
5 CH2 1 CLA C16 5 0.000 14.0270
6 CH2 1 CLA C15 6 0.000 14.0270
7 CH1 1 CLA C13 7 0.000 13.0190
8 CH3 1 CLA C14 8 0.000 15.0350
9 CH2 1 CLA C12 9 0.000 14.0270

10 CH2 1 CLA C11 10 0.000 14.0270
11 CH2 1 CLA C10 11 0.000 14.0270
12 CH1 1 CLA C8 12 0.000 13.0190
13 CH3 1 CLA C9 13 0.000 15.0350
14 CH2 1 CLA C7 14 0.000 14.0270
15 CH2 1 CLA C6 15 0.000 14.0270
16 CH2 1 CLA C5 16 0.000 14.0270
17 C 1 CLA C3 17 0.000 12.0110
18 CH3 1 CLA C4 18 0.000 15.0350
19 CH2 1 CLA C2 19 0.000 13.0190
20 CH2 1 CLA C1 20 0.160 14.0270
21 OA 1 CLA O2A 21 -0.240 15.9994
22 C 1 CLA CGA 22 0.460 12.0110
23 O 1 CLA O1A 23 -0.380 15.9994
24 CH2 1 CLA CBA 24 0.000 14.0270
25 CH2 1 CLA CAA 25 0.000 14.0270
26 CR1 1 CLA C2A 26 0.000 13.0190
27 CR1 1 CLA C3A 27 0.000 12.0110
28 CH3 1 CLA CMA 28 0.000 15.0350
29 C 1 CLA C4A 29 0.100 12.0110
30 C 1 CLA CHB 30 -0.100 12.0110
31 H 1 CLA HB 31 0.100 1.0080
32 NR 1 CLA NA 32 -0.450 14.0067
33 C 1 CLA C1A 33 0.100 12.0110
34 C 1 CLA CHA 34 0.000 12.0110
35 CH1 1 CLA CBD 35 0.000 13.0190
36 C 1 CLA CGD 36 0.460 12.0110
37 O 1 CLA O1D 37 -0.380 15.9994
38 OA 1 CLA O2D 38 -0.240 15.9994
39 CH3 1 CLA CED 39 0.160 15.0350
40 C 1 CLA CAD 40 0.330 12.0110
41 O 1 CLA OBD 41 -0.330 15.9994
42 C 1 CLA C3D 42 0.000 12.0110
43 C 1 CLA C2D 43 0.000 12.0110
44 CH3 1 CLA CMD 44 0.000 15.0350
45 C 1 CLA C4D 45 0.100 12.0110
46 NR 1 CLA ND 46 -0.450 14.0067
47 C 1 CLA C1D 47 0.100 12.0110
48 C 1 CLA CHD 48 -0.100 12.0110
49 H 1 CLA HD 49 0.100 1.0080
50 C 1 CLA C4C 50 0.100 12.0110
51 NR 1 CLA NC 51 -0.450 14.0067
52 C 1 CLA C3C 52 0.100 12.0110
53 CH2 1 CLA CAC 53 0.000 14.0270

143



6. Parametrization of Thylakoid Cofactors

54 CH3 1 CLA CBC 54 0.000 15.0350
55 C 1 CLA C2C 55 0.000 12.0110
56 CH3 1 CLA CMC 56 0.000 15.0350
57 C 1 CLA C1C 57 0.100 12.0110
58 C 1 CLA CHC 58 -0.100 12.0110
59 H 1 CLA HC 59 0.100 1.0080
60 C 1 CLA C4B 60 0.100 12.0110
61 NR 1 CLA NB 61 -0.450 14.0067
62 C 1 CLA C1B 62 0.000 12.0110
63 C 1 CLA C2B 63 0.000 12.0110
64 CH3 1 CLA CMB 64 0.000 15.0350
65 C 1 CLA C3B 65 0.000 12.0110
66 C 1 CLA CAB 66 0.000 12.0110
67 CH3 1 CLA CBB 67 0.000 15.0350
68 MG2+ 1 CLA MG 68 1.000 24.3050

[ bonds ]
; i j func

2 1 2 gb_27
2 3 2 gb_27
2 4 2 gb_27
4 5 2 gb_27
5 6 2 gb_27
7 6 2 gb_27
7 8 2 gb_27
7 9 2 gb_27
9 10 2 gb_27

10 11 2 gb_27
12 11 2 gb_27
12 13 2 gb_27
12 14 2 gb_27
14 15 2 gb_27
15 16 2 gb_27
17 16 2 gb_27
17 18 2 gb_27
17 19 2 gb_27
20 19 2 gb_27
20 21 2 gb_18
22 21 2 gb_13
22 23 2 gb_5
22 24 2 gb_27
24 25 2 gb_27
26 25 2 gb_27
26 27 2 gb_27
26 33 2 gb_15
27 28 2 gb_27
27 29 2 gb_15
29 30 2 gb_17
29 32 2 gb_14
62 30 2 gb_17
30 31 2 gb_3
33 32 2 gb_14
33 34 2 gb_17
35 34 2 gb_15
34 45 2 gb_10
35 36 2 gb_15
35 40 2 gb_15
36 37 2 gb_5
36 38 2 gb_13
38 39 2 gb_18
40 41 2 gb_5
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40 42 2 gb_10
42 43 2 gb_10
42 45 2 gb_10
43 44 2 gb_27
43 47 2 gb_10
45 46 2 gb_9
47 46 2 gb_9
47 48 2 gb_10
48 49 2 gb_3
50 48 2 gb_10
50 51 2 gb_9
50 52 2 gb_10
57 51 2 gb_9
52 53 2 gb_27
52 55 2 gb_10
53 54 2 gb_27
55 56 2 gb_27
55 57 2 gb_10
57 58 2 gb_10
58 59 2 gb_3
60 58 2 gb_10
60 61 2 gb_9
60 65 2 gb_10
62 61 2 gb_9
62 63 2 gb_10
63 64 2 gb_27
63 65 2 gb_10
65 66 2 gb_27
66 67 2 gb_27
68 32 2 gb_35
68 46 2 gb_35
68 51 2 gb_35
68 61 2 gb_35

[ pairs ]
; i j func

1 5 1
2 6 1
3 5 1
4 7 1
5 8 1
5 9 1
6 10 1
7 11 1
8 10 1
9 12 1

10 13 1
10 14 1
11 15 1
12 16 1
13 15 1
14 17 1
15 18 1
15 19 1
16 20 1
17 21 1
18 20 1
19 22 1
20 23 1
20 24 1
21 25 1
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22 26 1
23 25 1
24 27 1
24 33 1
25 28 1
25 29 1
25 32 1
25 34 1
26 30 1
26 35 1
26 45 1
27 34 1
27 62 1
28 30 1
28 32 1
28 33 1
29 34 1
29 61 1
29 63 1
30 33 1
30 60 1
30 64 1
30 65 1
31 27 1
31 32 1
31 61 1
31 63 1
32 35 1
32 45 1
32 62 1
33 36 1
33 40 1
33 42 1
33 46 1
34 37 1
34 38 1
34 41 1
34 43 1
34 47 1
35 39 1
35 43 1
35 46 1
36 41 1
36 42 1
36 45 1
37 39 1
37 40 1
38 40 1
40 44 1
40 46 1
40 47 1
41 43 1
41 45 1
42 48 1
43 50 1
44 45 1
44 46 1
44 48 1
45 48 1
46 50 1
47 51 1
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47 52 1
48 53 1
48 55 1
48 57 1
49 43 1
49 46 1
49 51 1
49 52 1
50 54 1
50 56 1
50 58 1
51 53 1
51 56 1
51 60 1
52 58 1
53 56 1
53 57 1
54 55 1
55 60 1
56 58 1
57 61 1
57 65 1
58 62 1
58 63 1
58 66 1
59 51 1
59 55 1
59 65 1
59 61 1
60 64 1
60 67 1
61 64 1
61 66 1
62 66 1
63 67 1
64 66 1
68 26 1
68 34 1
68 27 1
68 30 1
68 42 1
68 43 1
68 48 1
68 52 1
68 55 1
68 58 1
68 65 1
68 63 1

[ angles ]
; i j k func

1 2 3 2 ga_13
1 2 4 2 ga_13
3 2 4 2 ga_13
2 4 5 2 ga_13
4 5 6 2 ga_13
5 6 7 2 ga_13
6 7 8 2 ga_13
6 7 9 2 ga_13
8 7 9 2 ga_13
7 9 10 2 ga_13
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9 10 11 2 ga_13
10 11 12 2 ga_13
11 12 13 2 ga_13
11 12 14 2 ga_13
13 12 14 2 ga_13
12 14 15 2 ga_13
14 15 16 2 ga_13
15 16 17 2 ga_13
16 17 18 2 ga_19
16 17 19 2 ga_19
18 17 19 2 ga_19
17 19 20 2 ga_19
19 20 21 2 ga_13
20 21 22 2 ga_10
21 22 23 2 ga_33
21 22 24 2 ga_19
23 22 24 2 ga_30
22 24 25 2 ga_13
24 25 26 2 ga_13
25 26 27 2 ga_13
25 26 33 2 ga_13
27 26 33 2 ga_7
26 27 28 2 ga_13
26 27 29 2 ga_7
28 27 29 2 ga_13
27 29 30 2 ga_39
27 29 32 2 ga_7
30 29 32 2 ga_27
29 30 62 2 ga_27
29 32 33 2 ga_7
26 33 32 2 ga_7
26 33 34 2 ga_39
31 30 29 2 ga_19
31 30 62 2 ga_19
32 33 34 2 ga_27
33 34 35 2 ga_39
33 34 45 2 ga_27
35 34 45 2 ga_7
34 35 36 2 ga_13
34 35 40 2 ga_7
36 35 40 2 ga_13
35 36 37 2 ga_30
35 36 38 2 ga_19
37 36 38 2 ga_33
36 38 39 2 ga_10
35 40 41 2 ga_30
35 40 42 2 ga_7
41 40 42 2 ga_30
40 42 43 2 ga_39
40 42 45 2 ga_7
43 42 45 2 ga_7
42 43 44 2 ga_27
42 43 47 2 ga_7
44 43 47 2 ga_27
34 45 42 2 ga_7
34 45 46 2 ga_19
42 45 46 2 ga_19
45 46 47 2 ga_7
43 47 46 2 ga_19
43 47 48 2 ga_39
46 47 48 2 ga_27
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47 48 50 2 ga_27
48 50 51 2 ga_27
48 50 52 2 ga_39
49 48 47 2 ga_19
49 48 50 2 ga_19
51 50 52 2 ga_19
50 51 57 2 ga_7
50 52 53 2 ga_27
50 52 55 2 ga_7
53 52 55 2 ga_27
52 53 54 2 ga_13
52 55 56 2 ga_27
52 55 57 2 ga_7
56 55 57 2 ga_27
51 57 55 2 ga_19
51 57 58 2 ga_27
55 57 58 2 ga_39
57 58 60 2 ga_27
58 60 61 2 ga_27
58 60 65 2 ga_39
59 58 57 2 ga_19
59 58 60 2 ga_19
61 60 65 2 ga_19
60 61 62 2 ga_7
30 62 61 2 ga_27
30 62 63 2 ga_39
61 62 63 2 ga_19
62 63 64 2 ga_27
62 63 65 2 ga_7
64 63 65 2 ga_27
60 65 63 2 ga_7
60 65 66 2 ga_27
63 65 66 2 ga_27
65 66 67 2 ga_13
68 32 29 2 ga_34
68 32 33 2 ga_34
68 46 45 2 ga_34
68 46 47 2 ga_34
68 51 50 2 ga_34
68 51 57 2 ga_34
68 61 60 2 ga_34
68 61 62 2 ga_34
32 68 46 2 ga_2
46 68 51 2 ga_2
51 68 61 2 ga_2
61 68 32 2 ga_2

[ dihedrals ]
; i j k l func

2 1 4 3 2 gi_2
7 6 9 8 2 gi_2

12 11 14 13 2 gi_2
17 16 18 19 2 gi_1
22 21 23 24 2 gi_1
26 25 33 27 2 gi_2
27 26 28 29 2 gi_2
29 27 30 32 2 gi_1
30 29 62 31 2 gi_1
33 26 32 34 2 gi_1
34 45 35 33 2 gi_1
35 34 40 36 2 gi_2
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36 35 37 38 2 gi_1
40 35 41 42 2 gi_1
42 45 43 40 2 gi_1
43 47 44 42 2 gi_1
45 46 42 34 2 gi_1
47 48 46 43 2 gi_1
48 50 47 49 2 gi_1
50 48 51 52 2 gi_1
52 55 53 50 2 gi_1
55 57 56 52 2 gi_1
57 51 58 55 2 gi_1
58 60 57 59 2 gi_1
60 58 61 65 2 gi_1
62 30 61 63 2 gi_1
63 65 64 62 2 gi_1
65 66 63 60 2 gi_1
42 43 47 46 2 gi_1
43 47 46 45 2 gi_1
47 46 45 42 2 gi_1
46 45 42 43 2 gi_1
45 42 43 47 2 gi_1
50 51 57 55 2 gi_1
51 57 55 52 2 gi_1
57 55 52 50 2 gi_1
55 52 50 51 2 gi_1
52 50 51 57 2 gi_1
60 61 62 63 2 gi_1
61 62 63 65 2 gi_1
62 63 65 60 2 gi_1
63 65 60 61 2 gi_1
65 60 61 62 2 gi_1
68 29 33 32 2 gi_3
68 47 45 46 2 gi_3
68 50 57 51 2 gi_3
68 60 62 61 2 gi_3
5 4 2 1 1 gd_34
6 5 4 2 1 gd_34
7 6 5 4 1 gd_34
9 7 6 5 1 gd_34
10 9 7 6 1 gd_34
11 10 9 7 1 gd_34
12 11 10 9 1 gd_34
14 12 11 10 1 gd_34
15 14 12 11 1 gd_34
16 15 14 12 1 gd_34
17 16 15 14 1 gd_34
15 16 17 19 1 gd_40
20 19 17 16 1 gd_10
21 20 19 17 1 gd_40
19 20 21 22 1 gd_24
24 22 21 20 1 gd_29
25 24 22 21 1 gd_40
26 25 24 22 1 gd_34
33 26 25 24 1 gd_34
29 27 26 25 1 gd_34
25 26 33 34 1 gd_40
26 27 29 32 1 gd_40
27 29 30 62 1 gd_15
27 29 32 33 1 gd_14
63 62 30 29 1 gd_15
34 33 32 29 1 gd_14
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45 34 33 26 1 gd_10
40 35 34 33 1 gd_40
46 45 34 33 1 gd_10
34 35 36 38 1 gd_40
34 35 40 42 1 gd_40
35 36 38 39 1 gd_29
45 42 40 35 1 gd_10
43 47 48 50 1 gd_15
52 50 48 47 1 gd_15
54 53 52 50 1 gd_40
51 57 58 60 1 gd_15
65 60 58 57 1 gd_15

[ mapping ]
; Atoms 29 33 45 47 50 57 60 62 are double mapped. Halve their atomistic mass!!
1 60 61 62
2 60 58 59 57
3 57 51 50
4 50 48 49 47
5 47 46 45
6 45 34 33
7 33 32 29
8 29 30 31 62
9 63 64
10 65 66 67
11 55 56
12 52 53 54
13 42 43 44
14 35 40 41
15 36 37 38 39
16 26 25
17 26 28
18 24 23 22 21 20
19 19 18 17 16
20 15 14 13 12 11
21 10 9 8 7 6
22 5 4 3 2 1
23 68

β-carotene

[ moleculetype ]
; Name nrexcl
BCR 3

[ atoms ]
; nr type resnr resid atom cgnr charge mass

1 CH3 1 BCR C31 1 0.000 15.0350
2 CH0 1 BCR C1 1 0.000 12.0110
3 CH3 1 BCR C32 2 0.000 15.0350
4 CH2r 1 BCR C2 3 0.000 14.0270
5 CH2r 1 BCR C3 3 0.000 14.0270
6 CH2r 1 BCR C4 3 0.000 14.0270
7 C 1 BCR C5 3 0.000 12.0110
8 CH3 1 BCR C33 3 0.000 15.0350
9 C 1 BCR C6 3 0.000 12.0110

10 CR1 1 BCR C7 3 0.000 13.0190
11 CR1 1 BCR C8 4 0.000 13.0190
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12 C 1 BCR C9 4 0.000 12.0110
13 CH3 1 BCR C34 4 0.000 15.0350
14 CR1 1 BCR C10 4 0.000 13.0190
15 CR1 1 BCR C11 5 0.000 13.0190
16 CR1 1 BCR C12 5 0.000 13.0190
17 C 1 BCR C13 6 0.000 12.0110
18 CH3 1 BCR C35 6 0.000 15.0350
19 CR1 1 BCR C14 6 0.000 13.0190
20 CR1 1 BCR C15 6 0.000 13.0190
21 CR1 1 BCR C16 6 0.000 13.0190
22 CR1 1 BCR C17 6 0.000 13.0190
23 C 1 BCR C18 7 0.000 12.0110
24 CH3 1 BCR C36 7 0.000 15.0350
25 CR1 1 BCR C19 7 0.000 13.0190
26 CR1 1 BCR C20 7 0.000 13.0190
27 CR1 1 BCR C21 8 0.000 13.0190
28 C 1 BCR C22 8 0.000 12.0110
29 CH3 1 BCR C37 8 0.000 15.0350
30 CR1 1 BCR C23 8 0.000 13.0190
31 CR1 1 BCR C24 8 0.000 13.0190
32 C 1 BCR C25 8 0.000 12.0110
33 CH0 1 BCR C30 8 0.000 12.0110
34 CH3 1 BCR C39 9 0.000 15.0350
35 CH3 1 BCR C40 9 0.000 15.0350
36 CH2r 1 BCR C29 9 0.000 14.0270
37 CH2r 1 BCR C28 9 0.000 14.0270
38 CH2r 1 BCR C27 9 0.000 14.0270
39 C 1 BCR C26 9 0.000 12.0110
40 CH3 1 BCR C38 10 0.000 15.0350

[ bonds ]
; i j funct

2 1 2 gb_27
2 3 2 gb_27
2 4 2 gb_27
4 5 2 gb_27
5 6 2 gb_27
6 7 2 gb_27
7 8 2 gb_27
9 2 2 gb_27
7 9 2 gb_10
9 10 2 gb_23

10 11 2 gb_13
11 12 2 gb_23
12 13 2 gb_27
12 14 2 gb_13
14 15 2 gb_23
15 16 2 gb_13
16 17 2 gb_23
17 18 2 gb_27
17 19 2 gb_13
19 20 2 gb_23
20 21 2 gb_13
21 22 2 gb_23
22 23 2 gb_13
23 24 2 gb_27
23 25 2 gb_23
25 26 2 gb_13
26 27 2 gb_23
27 28 2 gb_13
28 29 2 gb_27
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28 30 2 gb_23
30 31 2 gb_13
31 32 2 gb_23
32 39 2 gb_10
39 40 2 gb_27
38 39 2 gb_27
37 38 2 gb_27
36 37 2 gb_27
33 36 2 gb_27
33 34 2 gb_27
33 35 2 gb_27
32 33 2 gb_27

[ pairs ]
; i j funct

1 5 1 ; C31 C3
1 7 1 ; C31 C5
1 10 1 ; C31 C7
2 6 1 ; C1 C4
2 8 1 ; C1 C33
2 11 1 ; C1 C8
3 5 1 ; C32 C3
3 7 1 ; C32 C5
3 10 1 ; C32 C7
4 7 1 ; C2 C5
4 10 1 ; C2 C7
5 8 1 ; C3 C33
5 9 1 ; C3 C6
6 10 1 ; C4 C7
7 11 1 ; C5 C8
8 10 1 ; C33 C7
9 12 1 ; C6 C9

10 13 1 ; C7 C34
10 14 1 ; C7 C10
11 15 1 ; C8 C11
12 16 1 ; C9 C12
13 15 1 ; C34 C11
14 17 1 ; C10 C13
15 18 1 ; C11 C35
15 19 1 ; C11 C14
16 20 1 ; C12 C15
17 21 1 ; C13 C16
18 20 1 ; C35 C15
19 22 1 ; C14 C17
20 23 1 ; C15 C18
21 24 1 ; C16 C36
21 25 1 ; C16 C19
22 26 1 ; C17 C20
23 27 1 ; C18 C21
24 26 1 ; C36 C20
25 28 1 ; C19 C22
26 29 1 ; C20 C37
26 30 1 ; C20 C23
27 31 1 ; C21 C24
28 32 1 ; C22 C25
29 31 1 ; C37 C24
30 33 1 ; C23 C30
30 39 1 ; C23 C26
31 34 1 ; C24 C39
31 35 1 ; C24 C40
31 36 1 ; C24 C29
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6. Parametrization of Thylakoid Cofactors

31 38 1 ; C24 C27
31 40 1 ; C24 C38
32 37 1 ; C25 C28
33 38 1 ; C30 C27
33 40 1 ; C30 C38
34 37 1 ; C39 C28
34 39 1 ; C39 C26
35 37 1 ; C40 C28
35 39 1 ; C40 C26
36 39 1 ; C29 C26
37 40 1 ; C28 C38

[ angles ]
; i j k funct angle force.c.

1 2 3 2 109.5 520.0 ; C31 C1 C32
1 2 4 2 109.5 520.0 ; C31 C1 C2
1 2 9 2 109.5 520.0 ; C31 C1 C6
3 2 4 2 109.5 520.0 ; C32 C1 C2
3 2 9 2 109.5 520.0 ; C32 C1 C6
4 2 9 2 109.5 520.0 ; C2 C1 C6
2 4 5 2 109.5 520.0 ; C1 C2 C3
4 5 6 2 109.5 520.0 ; C2 C3 C4
5 6 7 2 109.5 520.0 ; C3 C4 C5
6 7 8 2 120.0 560.0 ; C4 C5 C33
6 7 9 2 120.0 560.0 ; C4 C5 C6
8 7 9 2 120.0 560.0 ; C33 C5 C6
2 9 7 2 120.0 560.0 ; C1 C6 C5
2 9 10 2 120.0 560.0 ; C1 C6 C7
7 9 10 2 120.0 560.0 ; C5 C6 C7
9 10 11 2 120.0 560.0 ; C6 C7 C8

10 11 12 2 120.0 560.0 ; C7 C8 C9
11 12 13 2 120.0 560.0 ; C8 C9 C34
11 12 14 2 120.0 560.0 ; C8 C9 C10
13 12 14 2 120.0 560.0 ; C34 C9 C10
12 14 15 2 120.0 560.0 ; C9 C10 C11
14 15 16 2 120.0 560.0 ; C10 C11 C12
15 16 17 2 120.0 560.0 ; C11 C12 C13
16 17 18 2 120.0 560.0 ; C12 C13 C35
16 17 19 2 120.0 560.0 ; C12 C13 C14
18 17 19 2 120.0 560.0 ; C35 C13 C14
17 19 20 2 120.0 560.0 ; C13 C14 C15
19 20 21 2 120.0 560.0 ; C14 C15 C16
20 21 22 2 120.0 560.0 ; C15 C16 C17
21 22 23 2 120.0 560.0 ; C16 C17 C18
22 23 24 2 120.0 560.0 ; C17 C18 C36
22 23 25 2 120.0 560.0 ; C17 C18 C19
24 23 25 2 120.0 560.0 ; C36 C18 C19
23 25 26 2 120.0 560.0 ; C18 C19 C20
25 26 27 2 120.0 560.0 ; C19 C20 C21
26 27 28 2 120.0 560.0 ; C20 C21 C22
27 28 29 2 120.0 560.0 ; C21 C22 C37
27 28 30 2 120.0 560.0 ; C21 C22 C23
29 28 30 2 120.0 560.0 ; C37 C22 C23
28 30 31 2 120.0 560.0 ; C22 C23 C24
30 31 32 2 120.0 560.0 ; C23 C24 C25
31 32 33 2 120.0 560.0 ; C24 C25 C30
31 32 39 2 120.0 560.0 ; C24 C25 C26
33 32 39 2 120.0 560.0 ; C30 C25 C26
32 33 34 2 109.5 520.0 ; C25 C30 C39
32 33 35 2 109.5 520.0 ; C25 C30 C40
32 33 36 2 109.5 520.0 ; C25 C30 C29
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34 33 35 2 109.5 520.0 ; C39 C30 C40
34 33 36 2 109.5 520.0 ; C39 C30 C29
35 33 36 2 109.5 520.0 ; C40 C30 C29
33 36 37 2 109.5 520.0 ; C30 C29 C28
36 37 38 2 109.5 520.0 ; C29 C28 C27
37 38 39 2 109.5 520.0 ; C28 C27 C26
32 39 38 2 120.0 560.0 ; C25 C26 C27
32 39 40 2 120.0 560.0 ; C25 C26 C38
38 39 40 2 120.0 560.0 ; C27 C26 C38

[ dihedrals ]
; i j k l func angle force.c.

7 6 8 9 2 0.0 167.4 ; imp C5 C4 C33 C6
9 2 10 7 2 0.0 167.4 ; imp C6 C1 C7 C5

12 14 13 11 2 0.0 167.4 ; imp C9 C10 C34 C8
17 19 18 16 2 0.0 167.4 ; imp C13 C14 C35 C12
23 25 24 22 2 0.0 167.4 ; imp C18 C19 C36 C17
28 30 29 27 2 0.0 167.4 ; imp C22 C23 C37 C21
32 31 33 39 2 0.0 167.4 ; imp C25 C24 C30 C26
39 40 38 32 2 0.0 167.4 ; imp C26 C38 C27 C25

[ dihedrals ]
; i j k l func

9 2 4 5 1 gd_34
4 2 9 7 1 gd_34
2 4 5 6 1 gd_34
4 5 6 7 1 gd_34
5 6 7 9 1 gd_34
6 7 9 2 1 gd_14
7 9 10 11 1 gd_34
9 10 11 12 1 gd_14

10 11 12 14 1 gd_12
11 12 14 15 1 gd_14
12 14 15 16 1 gd_12
14 15 16 17 1 gd_14
15 16 17 19 1 gd_12
16 17 19 20 1 gd_14
17 19 20 21 1 gd_12
19 20 21 22 1 gd_14
20 21 22 23 1 gd_12
21 22 23 25 1 gd_14
22 23 25 26 1 gd_12
23 25 26 27 1 gd_14
25 26 27 28 1 gd_12
26 27 28 30 1 gd_14
27 28 30 31 1 gd_12
28 30 31 32 1 gd_14
30 31 32 39 1 gd_34
31 32 39 38 1 gd_14
32 39 38 37 1 gd_34
39 38 37 36 1 gd_34
38 37 36 33 1 gd_34
37 36 33 32 1 gd_34
36 33 32 39 1 gd_34

[ mapping ]
1 1 2 3
2 4 5 6
3 7 8 9 10
4 11 12 13 14 15
5 16 17 18 19 20
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6 21 22 23 24 25
7 26 27 28 29 30
8 31 32 39 40
9 36 37 38
10 33 34 35

6.6 Martini topologies

Behind all the bonds, angles, proper and improper dihedrals the mean and standard deviations for
all distributions obtained from the coarse grain and the mapped atomistic simulation are given.
The values are in nanometers (bonds) or degrees (angles, proper and improper dihedrals).

Plastoquinone-9

[moleculetype]
; molname nrexcl
PLQ 1

[atoms]
;id type resnr residu atom cgnr charge

1 C3 1 PLQ9 PLQ1 1 0
2 SNa 1 PLQ9 PLQ2 2 0
3 SNa 1 PLQ9 PLQ3 3 0
4 C3 1 PLQ9 PLQ4 4 0
5 C3 1 PLQ9 PLQ5 5 0
6 C3 1 PLQ9 PLQ6 6 0
7 C3 1 PLQ9 PLQ7 7 0
8 C3 1 PLQ9 PLQ8 8 0
9 C3 1 PLQ9 PLQ9 9 0

10 C3 1 PLQ9 PLQ10 10 0
11 C3 1 PLQ9 PLQ11 11 0
12 C3 1 PLQ9 PLQ12 12 0

[bonds]
; i j funct length force.c CG distr. UA distr.

3 4 1 0.40 3000.0 ; 0.391(0.030) 0.402(0.023)
4 5 1 0.48 6000.0 ; 0.476(0.022) 0.483(0.015)
5 6 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)
6 7 1 0.48 6000.0 ; 0.477(0.021) 0.484(0.012)
7 8 1 0.48 6000.0 ; 0.478(0.022) 0.483(0.013)
8 9 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.014)
9 10 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)

10 11 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)
11 12 1 0.48 6000.0 ; 0.478(0.021) 0.486(0.012)

[constraints]
; i j funct length CG distr. UA distr.

1 2 1 0.290 ; 0.290(0.004) 0.297(0.003)
2 3 1 0.340 ; 0.340(0.004) 0.336(0.003)
1 3 1 0.290 ; 0.290(0.004) 0.294(0.003)

[angles]
; i j k funct angle force.c CG distr. UA distr.

1 3 4 2 145.0 60.0 ; 136.9(10.6) 140.2( 7.8)
2 3 4 2 90.0 80.0 ; 91.8(10.0) 88.9( 8.4)
3 4 5 2 130.0 30.0 ; 125.6(18.7) 128.7(16.1)
4 5 6 2 130.0 30.0 ; 126.7(18.3) 134.0(12.6)
5 6 7 2 130.0 30.0 ; 127.6(17.7) 134.8(12.1)
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6 7 8 2 130.0 30.0 ; 127.8(18.4) 134.7(11.9)
7 8 9 2 130.0 30.0 ; 127.4(18.2) 133.9(12.2)
8 9 10 2 130.0 30.0 ; 126.7(17.8) 134.2(12.2)
9 10 11 2 130.0 30.0 ; 127.2(17.6) 134.7(11.8)

10 11 12 2 130.0 30.0 ; 128.2(18.0) 134.7(11.9)

[dihedrals]
; i j k l funct angle force.c multipl. CG distr. UA distr.

2 3 4 5 1 0 1.0 2 ; -1.6(116.1) -1.8( 81.2)
2 3 4 5 1 0 2.0 1 ; -1.6(116.1) -1.8( 81.2)

; The next dihedrals were not defined, because defining
; it doesn’t improve the behavior or impairs the
; numerical stability.
; 3 4 5 6 ; 1.0(101.0) 9.2(123.2)
; 4 5 6 7 ; 2.3(102.5) 7.0(128.9)
; 5 6 7 8 ; -1.3(108.0) 2.5(125.6)
; 6 7 8 9 ; -6.4(102.9) 7.5(124.5)
; 7 8 9 10 ; -0.4(101.8) 11.1(128.2)
; 8 9 10 11 ; -3.7( 99.8) 4.3(131.1)
; 9 10 11 12 ; -1.6(102.7) 0.3(126.6)

[exclusions]
;i j
1 4
2 4

Plastoquinol-9

[moleculetype]
; molname nrexcl
PQol 1

[atoms]
;id type resnr residu atom cgnr charge

1 C3 1 PQol PLQ1 1 0
2 SP2 1 PQol PLQ2 2 0
3 SP2 1 PQol PLQ3 3 0
4 C3 1 PQol PLQ4 4 0
5 C3 1 PQol PLQ5 5 0
6 C3 1 PQol PLQ6 6 0
7 C3 1 PQol PLQ7 7 0
8 C3 1 PQol PLQ8 8 0
9 C3 1 PQol PLQ9 9 0

10 C3 1 PQol PLQ10 10 0
11 C3 1 PQol PLQ11 11 0
12 C3 1 PQol PLQ12 12 0

[bonds]
; i j funct length force.c CG distr. UA distr.

3 4 1 0.40 3000.0 ; 0.391(0.030) 0.402(0.023)
4 5 1 0.48 6000.0 ; 0.476(0.022) 0.483(0.015)
5 6 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)
6 7 1 0.48 6000.0 ; 0.477(0.021) 0.484(0.012)
7 8 1 0.48 6000.0 ; 0.478(0.022) 0.483(0.013)
8 9 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.014)
9 10 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)

10 11 1 0.48 6000.0 ; 0.477(0.021) 0.483(0.012)
11 12 1 0.48 6000.0 ; 0.478(0.021) 0.486(0.012)

[constraints]
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; i j funct length CG distr. UA distr.
1 2 1 0.290 ; 0.290(0.004) 0.297(0.003)
2 3 1 0.340 ; 0.340(0.004) 0.336(0.003)
1 3 1 0.290 ; 0.290(0.004) 0.294(0.003)

[angles]
; i j k funct angle force.c CG distr. UA distr.

1 3 4 2 145.0 60.0 ; 136.9(10.6) 140.2( 7.8)
2 3 4 2 90.0 80.0 ; 91.8(10.0) 88.9( 8.4)
3 4 5 2 130.0 30.0 ; 125.6(18.7) 128.7(16.1)
4 5 6 2 130.0 30.0 ; 126.7(18.3) 134.0(12.6)
5 6 7 2 130.0 30.0 ; 127.6(17.7) 134.8(12.1)
6 7 8 2 130.0 30.0 ; 127.8(18.4) 134.7(11.9)
7 8 9 2 130.0 30.0 ; 127.4(18.2) 133.9(12.2)
8 9 10 2 130.0 30.0 ; 126.7(17.8) 134.2(12.2)
9 10 11 2 130.0 30.0 ; 127.2(17.6) 134.7(11.8)
10 11 12 2 130.0 30.0 ; 128.2(18.0) 134.7(11.9)

[dihedrals]
; i j k l funct angle force.c multipl. CG distr. UA distr.

2 3 4 5 1 0 1.0 2 ; -1.6(116.1) -1.8( 81.2)
2 3 4 5 1 0 2.0 1 ; -1.6(116.1) -1.8( 81.2)

; The next dihedrals were not defined, because defining
; it doesn’t improve the behavior or impairs the
; numerical stability.
; 3 4 5 6 ; 1.0(101.0) 9.2(123.2)
; 4 5 6 7 ; 2.3(102.5) 7.0(128.9)
; 5 6 7 8 ; -1.3(108.0) 2.5(125.6)
; 6 7 8 9 ; -6.4(102.9) 7.5(124.5)
; 7 8 9 10 ; -0.4(101.8) 11.1(128.2)
; 8 9 10 11 ; -3.7( 99.8) 4.3(131.1)
; 9 10 11 12 ; -1.6(102.7) 0.3(126.6)

[exclusions]
; i j
1 4
2 4

Heme b

[ moleculetype ]
; molname nrexcl
HEME 1

[ atoms ]
;id type resnr residu atom cgnr charge
1 SP1 1 HEM NA 1 -0.10
2 SC3 1 HEM CHA 2 0.00
3 SP1 1 HEM NB 3 -0.10
4 SC3 1 HEM CHB 4 0.00
5 SP1 1 HEM NC 5 -0.10
6 SC3 1 HEM CHC 6 0.00
7 SP1 1 HEM ND 7 -0.10
8 SC3 1 HEM CHD 8 0.00
9 SC3 1 HEM C2A 9 0.00

10 SC3 1 HEM C3A 10 0.00
11 SC3 1 HEM C2B 11 0.00
12 SC3 1 HEM C3B 12 0.00
13 SC3 1 HEM C1C 13 0.00
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14 SC3 1 HEM C2C 14 0.00
15 Qa 1 HEM C3C 15 -1.00
16 SC3 1 HEM C1D 16 0.00
17 SC3 1 HEM C2D 17 0.00
18 Qa 1 HEM C3D 18 -1.00
19 SQ0 1 HEM FE 19 0.40

[ bonds ]
; i j func length force.c. CG distr. UA distr.

14 15 1 0.30 10000.0 ; 0.301(0.013) 0.287(0.017)
17 18 1 0.30 10000.0 ; 0.301(0.013) 0.283(0.015)
1 9 1 0.27 20000.0 ; 0.270(0.007) 0.274(0.003)
1 10 1 0.33 20000.0 ; 0.325(0.009) 0.326(0.006)
9 10 1 0.28 20000.0 ; 0.277(0.008) 0.278(0.010)
3 11 1 0.27 20000.0 ; 0.270(0.008) 0.274(0.003)
3 12 1 0.33 20000.0 ; 0.325(0.008) 0.326(0.006)

11 12 1 0.28 20000.0 ; 0.276(0.008) 0.277(0.010)
5 13 1 0.27 20000.0 ; 0.268(0.007) 0.274(0.003)
5 14 1 0.27 20000.0 ; 0.270(0.007) 0.272(0.003)

13 14 1 0.24 20000.0 ; 0.239(0.006) 0.238(0.005)
7 16 1 0.27 20000.0 ; 0.269(0.008) 0.274(0.003)
7 17 1 0.27 20000.0 ; 0.270(0.007) 0.272(0.003)

16 17 1 0.24 20000.0 ; 0.238(0.006) 0.238(0.005)

[ constraints ]
; i j func length CG distr. UA distr.

1 2 1 0.219 ; 0.219(0.004) 0.220(0.002)
2 3 1 0.219 ; 0.219(0.004) 0.220(0.002)
3 4 1 0.219 ; 0.219(0.004) 0.220(0.002)
4 5 1 0.219 ; 0.219(0.004) 0.220(0.002)
5 6 1 0.219 ; 0.219(0.004) 0.220(0.002)
6 7 1 0.219 ; 0.219(0.004) 0.220(0.002)
7 8 1 0.219 ; 0.219(0.004) 0.220(0.002)
8 1 1 0.219 ; 0.219(0.004) 0.220(0.002)
1 5 1 0.472 ; 0.474(0.004) 0.476(0.003)
3 7 1 0.472 ; 0.474(0.004) 0.476(0.003)
2 4 1 0.436 ; 0.436(0.004) 0.437(0.003)
4 6 1 0.436 ; 0.436(0.004) 0.437(0.003)
6 8 1 0.436 ; 0.436(0.004) 0.437(0.003)
8 2 1 0.436 ; 0.436(0.004) 0.437(0.003)
1 19 1 0.239 ; 0.237(0.004) 0.239(0.001)
3 19 1 0.239 ; 0.237(0.004) 0.239(0.001)
5 19 1 0.239 ; 0.237(0.004) 0.239(0.001)
7 19 1 0.239 ; 0.237(0.004) 0.239(0.001)

; The next bondss were not defined, because defining
; it doesn’t improve the behavior or impairs the
; numerical stability.
; 2 10 0.311(0.015) 0.319(0.011)
; 2 11 0.286(0.012) 0.286(0.005)
; 4 12 0.312(0.015) 0.319(0.011)
; 4 13 0.283(0.009) 0.286(0.005)
; 6 14 0.277(0.009) 0.287(0.004)
; 6 17 0.282(0.013) 0.287(0.004)
; 8 16 0.282(0.009) 0.286(0.005)
; 8 9 0.287(0.012) 0.286(0.005)

[ angles ]
;i j k funct angle force.c. CG distr. UA distr.

2 1 10 2 68 250 ; 66.4(3.1) 68.3( 2.8)
2 1 9 2 120 1750 ;120.1(2.2) 121.0( 1.5)
4 3 12 2 68 250 ; 66.5(3.2) 68.3( 2.8)
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4 3 11 2 120 1750 ;120.1(2.2) 121.0( 1.5)
1 10 9 2 54 1500 ; 52.7(1.6) 53.3( 1.1)
3 12 11 2 54 1500 ; 52.7(1.6) 53.3( 1.1)
5 13 14 2 64 1500 ; 52.7(1.6) 53.3( 1.1)
7 16 17 2 64 1500 ; 52.7(1.6) 53.3( 1.1)

16 7 17 2 52 1000 ; 52.4(1.6) 51.8( 1.3)
13 5 14 2 52 1000 ; 52.4(1.6) 51.8( 1.3)
6 5 14 2 68 750 ;123.8(2.3) 120.6( 1.5)
8 7 17 2 120 750 ;123.8(2.3) 120.6( 1.5)
8 7 16 2 70 1500 ; 69.8(1.9) 69.8( 1.4)
4 5 13 2 70 1500 ; 69.8(1.9) 69.8( 1.4)
1 2 3 2 99 1000 ; 99.9(2.3) 100.0( 1.2)
3 4 5 2 99 1000 ; 99.3(2.2) 100.2( 1.2)
5 6 7 2 99 1000 ; 99.6(2.2) 100.1( 1.2)
7 8 1 2 99 1000 ; 99.5(2.2) 100.2( 1.2)

13 14 15 2 113 100 ; 82.8(5.3) 92.8(11.4)
16 17 18 2 113 100 ; 82.8(5.3) 92.8(11.4)
5 14 15 2 147 300 ;123.8(9.0) 125.3(13.6)
7 17 18 2 147 300 ;123.8(9.0) 125.3(13.6)

; The next angles were not defined, because defining
; it doesn’t improve the behavior or impairs the
; numerical stability.
; 1 9 10 72.8(2.7) 72.6(2.4)
; 9 1 10 54.5(2.3) 54.2(2.5)
; 7 16 17 64.1(1.6) 63.7(1.1)
; 7 17 16 63.6(2.0) 64.6(1.2)
; 2 3 4 167.2(2.9) 167.8(2.0)
; 4 5 6 167.3(2.7) 167.5(2.2)
; 6 7 8 167.1(2.8) 167.5(2.2)
; 7 8 1 99.4(2.2) 100.2(1.2)
; 8 1 2 167.1(2.8) 167.8(2.0)

[ dihedrals ]
;i j k l funct angle force.c. CG distr. UA distr.

19 1 3 5 2 0.0 2000.0 ; 0.0(1.4) 1.2(6.6)
19 3 5 7 2 0.0 2000.0 ; -0.0(1.4) -1.2(6.6)
19 5 7 1 2 0.0 2000.0 ; 0.0(1.4) 1.2(6.6)
19 7 1 3 2 0.0 2000.0 ; -0.0(1.4) -1.2(6.6)
1 3 7 10 2 0.0 1000.0 ; 0.0(2.4) -0.1(6.7)
1 3 7 9 2 0.0 1000.0 ; 0.0(2.4) -0.3(4.7)
3 5 1 11 2 0.0 1000.0 ; 0.0(2.4) 0.5(4.5)
3 5 1 12 2 0.0 1000.0 ; -0.1(2.4) -0.0(6.7)
5 7 3 13 2 0.0 1000.0 ; 0.1(2.7) -1.9(4.3)
5 7 3 14 2 0.0 1000.0 ; 0.1(2.4) 1.3(4.4)
7 1 5 16 2 0.0 1000.0 ; 0.0(2.8) 1.9(4.2)
7 1 5 17 2 0.0 1000.0 ; -0.0(2.4) -1.4(4.3)

; The next proper dihedrals were not defined, because defining
; it doesn’t improve the behavior or impairs the
; numerical stability.
; 15 14 5 6 2.5(137.3) 110.5(17.0)
; 18 17 7 6 2.4(137.9) 113.4(14.9)
; 8 7 17 18 1.7( 75.9) -68.4(15.7)
; 4 5 14 15 1.5( 76.4) -71.6(17.3)

[ exclusions ]
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8
4 5 6 7 8 11 12 13 14
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5 6 7 8
6 7 8 13 14 16 17
7 8
8 9 10 16 17
9 11 12 16 17
10 11 12 16 17
11 13 14
12 13 14
13 16 17
14 16 17
19 2 4 6 8

; To be inserted in the atomistic Gromos topology
[ mapping ]
1 3 20 23 ;20 and 23 are shared: for proper mapping halve the mass!
2 23 27 29 ;23 and 29 are shared: for proper mapping halve the mass!
3 4 29 32 ;29 and 32 are shared: for proper mapping halve the mass!
4 32 36 38 ;32 and 28 are shared: for proper mapping halve the mass!
5 5 38 41 ;38 and 41 are shared: for proper mapping halve the mass!
6 6 8 41 ; 8 and 41 are shared: for proper mapping halve the mass!
7 2 8 11 ; 8 and 11 are shared: for proper mapping halve the mass!
8 11 18 20 ;11 and 20 are shared: for proper mapping halve the mass!
9 21 24
10 22 25 26
11 30 33
12 31 34 35
13 39 42
14 40 43
15 44 45 46 47
16 10 12
17 9 13
18 14 15 16 17
19 1 ;the iron

Chlorophyll A

[ moleculetype ]
; molname nrexcl
CLA 1

[ atoms ]
;id type resnr residu atom cgnr charge

1 SP3 1 CLA NA 1 -0.25
2 SC3 1 CLA CHA 2 0.00
3 SP3 1 CLA NB 3 -0.25
4 SC3 1 CLA CHB 4 0.00
5 SP3 1 CLA NC 5 -0.25
6 SC3 1 CLA CHC 6 0.00
7 SP3 1 CLA ND 7 -0.25
8 SC3 1 CLA CHD 8 0.00
9 SC3 1 CLA C1A 9 0.00

10 SC3 1 CLA C2A 10 0.00
11 SC3 1 CLA C1B 11 0.00
12 SC3 1 CLA C2B 12 0.00
13 SC4 1 CLA C1C 13 0.00
14 SNa 1 CLA C2C 14 0.00
15 Na 1 CLA T1 15 0.00
16 SC3 1 CLA C1D 16 0.00
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6. Parametrization of Thylakoid Cofactors

17 SC3 1 CLA C2D 17 0.00
18 Na 1 CLA T2 18 0.00
19 C3 1 CLA T3 19 0.00
20 C1 1 CLA T4 20 0.00
21 C1 1 CLA T5 21 0.00
22 C1 1 CLA T6 22 0.00
23 SQ0 1 CLA FE 23 1.00

[ bonds ]
; i j func length force.c. CG distr. UA distr.

1 9 1 0.27 20000.0 ; 0.267(0.007) 0.264(0.003)
9 10 1 0.28 20000.0 ; 0.307(0.008) 0.311(0.007)
1 10 1 0.31 20000.0 ; 0.277(0.008) 0.271(0.010)
3 11 1 0.27 20000.0 ; 0.267(0.007) 0.264(0.003)
3 12 1 0.31 20000.0 ; 0.308(0.009) 0.312(0.006)

11 12 1 0.28 20000.0 ; 0.276(0.008) 0.270(0.009)
5 13 1 0.23 20000.0 ; 0.231(0.008) 0.225(0.002)
5 14 1 0.34 20000.0 ; 0.334(0.006) 0.335(0.004)
6 14 1 0.26 20000.0 ; 0.282(0.007) 0.277(0.006)

13 14 1 0.28 20000.0 ; 0.265(0.008) 0.262(0.003)
14 15 1 0.27 10000.0 ; 0.245(0.008) 0.230(0.006)
7 17 1 0.23 20000.0 ; 0.229(0.009) 0.237(0.006)
7 16 1 0.23 20000.0 ; 0.256(0.008) 0.258(0.005)

16 17 1 0.26 20000.0 ; 0.278(0.014) 0.276(0.017)
17 18 1 0.33 5000.0 ; 0.343(0.019) 0.326(0.022)
18 19 1 0.42 8000.0 ; 0.411(0.017) 0.421(0.024)
19 20 1 0.45 8000.0 ; 0.446(0.017) 0.446(0.017)
20 21 1 0.49 4000.0 ; 0.486(0.025) 0.480(0.023)
21 22 1 0.49 4000.0 ; 0.487(0.025) 0.481(0.023)

[ constraints ]
; i j func length CG distr. UA distr.

1 2 1 0.219 ; 0.219(0.004) 0.216(0.002)
2 3 1 0.219 ; 0.220(0.004) 0.216(0.002)
3 4 1 0.219 ; 0.219(0.004) 0.216(0.002)
4 5 1 0.219 ; 0.219(0.004) 0.213(0.002)
5 6 1 0.219 ; 0.219(0.004) 0.212(0.003)
6 7 1 0.219 ; 0.220(0.004) 0.219(0.002)
7 8 1 0.219 ; 0.220(0.004) 0.227(0.002)
8 1 1 0.219 ; 0.219(0.004) 0.220(0.002)
1 5 1 0.472 ; 0.472(0.004) 0.472(0.003)
3 7 1 0.472 ; 0.471(0.004) 0.470(0.003)
2 4 1 0.436 ; 0.436(0.004) 0.430(0.003)
4 6 1 0.436 ; 0.436(0.004) 0.422(0.004)
6 8 1 0.436 ; 0.436(0.004) 0.443(0.003)
8 2 1 0.436 ; 0.436(0.004) 0.432(0.003)
1 23 1 0.239 ; 0.239(0.004) 0.237(0.001)
3 23 1 0.239 ; 0.239(0.004) 0.237(0.001)
5 23 1 0.239 ; 0.239(0.004) 0.238(0.001)
7 23 1 0.239 ; 0.239(0.004) 0.236(0.001)

[ angles ]
; i j k funct angle force.c. CG distr. UA distr.

2 1 9 2 120 2000 ; 120.4( 2.0) 121.1( 1.5)
2 1 10 2 68 250 ; 64.1( 3.2) 67.7( 2.9)
1 10 9 2 54 1500 ; 54.0( 1.6) 53.5( 1.4)
4 3 11 2 120 2000 ; 120.4( 2.1) 120.9( 1.4)
4 3 12 2 68 250 ; 64.4( 3.2) 67.6( 2.7)
3 12 11 2 54 1500 ; 53.9( 1.5) 53.3( 1.3)
1 2 3 2 99 1000 ; 99.0( 2.1) 101.2( 1.2)
3 4 5 2 99 1000 ; 98.9( 2.1) 99.8( 1.2)
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5 6 7 2 99 1000 ; 99.0( 2.2) 100.6( 1.3)
7 8 1 2 99 1000 ; 99.0( 2.1) 100.2( 1.2)
4 5 13 2 81 1000 ; 81.3( 2.3) 81.4( 1.3)
5 13 14 2 80 1500 ; 80.7( 1.5) 83.2( 1.5)

16 17 18 2 118 500 ; 120.7( 3.4) 118.6(14.9)
6 14 15 2 77 500 ; 80.2( 3.3) 77.2( 4.5)
5 14 15 2 106 300 ; 108.1( 4.1) 106.4( 7.8)

17 18 19 2 130 100 ; 116.3( 6.9) 131.3(19.4)
18 19 20 2 130 25 ; 132.2(20.0) 128.0(22.8)
19 20 21 2 130 25 ; 129.1(16.8) 131.1(18.6)
20 21 22 2 130 25 ; 127.4(17.8) 129.9(19.0)

;The next angles were not defined, because defining
;it doesn’t improve the behavior or impairs the
;numerical stability.
; 13 5 14 56.4(1.8) 55.0( 1.4)
; 7 17 16 54.5(2.6) 57.9( 1.8)
; 17 7 16 65.3(3.1) 67.0( 2.5)
; 6 5 14 52.3(2.6) 51.4( 1.0)
; 8 7 17 109.1(5.7) 114.2( 3.4)
; 8 7 16 65.4(7.7) 77.2( 2.6)
; 7 17 18 109.4(6.2) 151.5(11.2)

[ dihedrals ]
; i j k l funct angle force.c. CG distr. UA distr.

1 3 7 10 2 0.0 1000.0 ; -0.0(2.3) 0.2(6.9)
1 3 7 9 2 0.0 1000.0 ; 0.1(2.2) -0.4(3.3)
3 5 1 11 2 0.0 1000.0 ; -0.1(2.3) -0.7(3.5)
3 5 1 12 2 0.0 1000.0 ; -0.0(2.3) 2.3(7.0)
7 8 16 17 2 45.0 1000.0 ; 44.0(1.9) 42.7(4.2)

;The next dihedrals were not defined, because defining
;it doesn’t improve the behavior or impairs the
;numerical stability.
; 23 1 3 5 12.3(2.0) -1.6(7.2)
; 23 3 5 7 12.7(1.9) -0.5(7.8)
; 23 5 7 1 12.3(1.9) -1.6(7.0)
; 23 7 1 3 12.8(1.9) -0.6(8.0)
; 5 7 3 13 -7.4(9.8) 0.9(4.9)
; 6 7 3 14 -8.1(8.3) 2.3(5.8)
; 7 1 5 16 -0.3(4.4) 11.9(2.9)
; 7 1 5 17 -23.7(3.6) -15.2(2.8)
; 17 18 19 20 45.6( 85.2) -5.3( 94.5)
; 18 19 20 21 -21.3(100.9) 14.9(105.7)
; 19 20 21 22 -19.4(107.3) -3.4( 90.0)

[ exclusions ]
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8
4 5 6 7 8 11 12 13 14
5 6 7 8 14
6 7 8 13 14 15 16 17
7 8
8 9 10 16 17
9 11 12 16 17
10 11 12 16 17
11 13 14
12 13 14
13 15 16 17
14 16 17
15 17 18
16 18
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23 2 4 6 8

β-carotene

[ moleculetype ]
; Name nrexcl
BCR 1

[atoms]
; id type resnr residu atom cgnr charge

1 SC3 1 BCR R1 1 0
2 SC3 1 BCR R2 2 0
3 C4 1 BCR R3 3 0
4 C4 1 BCR T1 4 0
5 C4 1 BCR T2 5 0
6 C4 1 BCR T3 6 0
7 C4 1 BCR T4 7 0
8 C4 1 BCR R4 8 0
9 SC3 1 BCR R5 9 0

10 SC3 1 BCR R6 10 0

[bonds]
; i j funct length force.c. CG distr. UA distr.

3 4 1 0.425 10000 ; 0.423(0.017) 0.424(0.009)
4 5 1 0.501 1250 ; 0.484(0.048) 0.502(0.006)
5 6 1 0.527 1250 ; 0.516(0.048) 0.529(0.006)
6 7 1 0.501 1250 ; 0.486(0.046) 0.492(0.007)
7 8 1 0.425 10000 ; 0.422(0.016) 0.425(0.009)

[constraints]
; i j funct length CG distr. UA distr.

1 2 1 0.272 ; 0.272(0.004) 0.272(0.004)
1 3 1 0.292 ; 0.292(0.004) 0.296(0.005)
2 3 1 0.278 ; 0.278(0.004) 0.279(0.004)
8 9 1 0.278 ; 0.278(0.004) 0.277(0.004)
8 10 1 0.292 ; 0.292(0.004) 0.289(0.006)
9 10 1 0.272 ; 0.272(0.004) 0.272(0.004)

[angles]
; i j k funct angle force.c. CG distr. UA distr.

1 3 4 2 97 100 ; 97.5( 9.7) 94.8(5.2)
2 3 4 2 139 100 ; 141.1(11.4) 139.8(7.6)
3 4 5 2 148 800 ; 148.0( 6.5) 153.4(6.9)
4 5 6 2 155 700 ; 155.2( 7.7) 158.9(5.6)
5 6 7 2 155 700 ; 155.5( 7.9) 151.7(5.4)
6 7 8 2 148 800 ; 148.4( 6.3) 156.9(6.8)
7 8 9 2 139 100 ; 141.1(10.9) 141.1(5.6)
7 8 10 2 97 100 ; 97.6( 9.4) 98.5(4.6)

[dihedrals]
; normal proper dihedrals make the molecule instable due to the
; angles being close to 180deg. They have been switched of while
;waiting for a proper version of gromacs with the special dihedrals
;The distributions have been determined with the dihedrals turned off.
; i j k l funct force.c. c0 c1 c2 c3 CG distr. UA distr.
; 3 4 5 6 11 3000.0 1 -2 1 0 ; 0.7(103.2) -30.9( 40.4)
; 5 6 7 8 11 3000.0 1 -2 1 0 ; 2.2(104.3) -109.6( 95.3)
; 4 5 6 7 11 13000.0 1 2 1 0 ; 2.2(105.1) -8.8(157.3)
; 1 3 4 5 11 170.0 0.48255 1.3893 1 0 ; 0.9(101.9) 125.8( 31.0)

164



6.7. Bibliography

; 2 3 4 5 11 380.0 0.01093 0.2090 1 0 ; -1.8(102.5) 93.4( 34.2)
; 10 8 7 6 11 170.0 0.48255 1.3893 1 0 ; -1.9(102.7) -124.3( 71.7)
; 9 8 7 6 11 380.0 0.01093 0.2090 1 0 ; -4.1(102.6) -96.4( 27.1)

[improper]
;The next improper dihedrals were not defined, because defining
;it doesn’t improve the behavior or impairs the
;numerical stability.
; i j k l CG distr. UA distr.
; 3 4 1 2 ; 0.2( 27.7) 21.3(15.4)
; 8 7 9 10 ; 0.2( 27.7) 21.3(15.4)

[exclusions]
1 4
2 4
9 7
10 7
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[38] O Berger, O Edholm, and F Jähnig. Molecular dynamics simulations of a fluid bilayer
of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant
temperature. Biophys. J., 72:2002–2013, 1997.

[39] X Daura, K Gademann, B Jaun, D Seebach, W.F van Gunsteren, and A.E Mark. Peptide
folding: when simulation meets experiment. Angew. Chem. Int. Edit., 38:236–240, 1999.

[40] F Himo, G.T Babcock, and L.A Eriksson. Conformational analysis of quinone anion
radicals in photosystem ii and photosynthetic bacteria. J. Phys. Chem., 103:3745–3749,
1999.

[41] J de Vogel, D Jonker-Termont, M.B Katan, and R van der Meer. Natural chlorophyll
but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in
rat colon. J. Agric. Food Chem., 135:1995–2000, 2005.

[42] D Cooper, D Webb, and J.C Peters. Evaluation of the potential for olestra to affect the
availability of dietary phytochemicals. J. Nutr., 127:1699S1709S, 1997.

[43] K Liao and M Yin. Individual and combined antioxidant effects of seven phenolic agents
in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: im-
portance of the partitioning coefficient. J. Agric. Food Chem, 48:2266–2270, 2000.

167



6. Parametrization of Thylakoid Cofactors

[44] P.R Rich and R Harper. Partition coefficients of quinones and hydroquinones and their
relation to biochemical reactivity. FEBS Lett., 269:139–144, 1990.

[45] R Wang, Y Gao, and L Lai. Calculating partition coefficient by atom-additive method.
Perspectives in Drug Discovery and Design, 19:47–66, 2000.

[46] R Wang, Y Fu, and L Lai. A new atom-additive method for calculating partition
coefficients. J. Chem. Inf. Comp. Sci., 37:615–621, 1997.

[47] I.V Tetko and P Bruneau. Application of alogps to predict 1-octanol/water distribution
coefficients, logp, and logd, of astrazeneca in-house database. J. Pharm. Sci., 93:3103–
3110, 2004.

[48] I.V Tetko and V.Y Tanchuk. Application of associative neural networks for prediction
of lipophilicity in alogps 2.1 program. J. Chem. Inf. Comput. Sci., 42:1136–1145, 2002.

[49] M.I Bulacu. Molecular dynamics studies of entangled polymer chains. PhD thesis,
University of Groningen, 2008.

[50] R Weast. CRC handbook of chemistry and physics. CRC Press, 1986.

[51] S.J Marrink, A.H de Vries, and A.E Mark. Coarse grained model for semiquantitative
lipid simulations. J. Phys. Chem. B, 108:750–760, 2004.

[52] B.R Green and D.G Durnford. The chlorophyll-carotenoid proteins of oxygenic photo-
synthesis. Annu. Rev. Plant Biol., 47:685–714, 1996.
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This chapter is based upon the manuscript:
Improved Parameters For The Martini Coarse-Grained Protein Force Field by
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Tsjerk A. Wassenaar, Lars V. Schäfer, Xavier Periole, D. Peter Tieleman, and
Siewert J. Marrink, J. Chem. Theory Comput., 2012, DOI:10.1021/ct300646g

Abstract

The Martini coarse-grained force field has been successfully used for simu-
lating a wide range of (bio)molecular systems. Recent progress in our ability to
test the model against fully atomistic force fields, however, has revealed some
shortcomings. Most notable, phenylalanine and proline were too hydrophobic,
and dimers formed by polar residues in apolar solvents did not bind strongly
enough. In this chapter we reparametrize these residues either through reassign-
ment of particle types or by introducing embedded charges. The new parameters
are tested with respect to partitioning across a lipid bilayer, membrane binding
of Wimley-White peptides, and dimerization free energy in solvents of different
polarity. In addition, we improve some of the bonded terms in the Martini pro-
tein force field that lead to a more realistic length of α-helices and to improved
numerical stability for poly-alanine and glycine repeats. The new parameter set
is denoted Martini version 2.2.

7.1 Introduction

The use of coarse-grained (CG) models in a variety of simulation techniques has proven to be a
valuable tool to probe the spatial and temporal evolution of systems on the mesoscale, beyond
what is feasible with traditional all-atom (AA) models. A large diversity of coarse-graining
approaches is available; they range from qualitative, often solvent-free models, via more re-
alistic explicit solvation models, to models including chemical specificity (for recent overview
see Refs. [1, 2, 3, 4, 5]). Models within this latter category are typically parameterized based
on comparison to atomistic simulations, using iterative Boltzmann[6, 7], force matching[8, 9],
conditional reversible work[10], or minimization of relative entropy approaches[11]. Our own
model, coined the Martini force field[12, 13, 14], has also been developed in close connec-
tion with atomistic models, especially considering the bonded interactions. However, the
philosophy of our coarse-graining approach is different. Instead of focusing on an accurate
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reproduction of structural details at a particular state point for a specific system, we aim
for a broader range of applications without the need to reparameterize the model each time.
We do so by extensive calibration of the non-bonded interactions of the chemical building
blocks against experimental data, in particular thermodynamic data such as oil/water par-
titioning coefficients, since processes such as lipid self-assembly, peptide-membrane binding,
and protein-protein recognition depend critically on the degree to which the constituents
partition between polar and non-polar environments. The use of a consistent strategy for
the development of compatible CG and atomic-level force fields is of additional importance
for its intended use in multi-scale applications[15, 16, 17, 18, 19]. The overall aim of our
coarse-graining approach is to provide a simple model that is computationally fast and easy
to use, yet flexible enough to be applicable to a wide range of (bio)molecular systems.

The name Martini of the force field was coined in 2007 with the release of version 2.0[13]
for lipids. The subsequent extension to peptides and proteins[14] was released as version 2.1.
The Martini model is based on an approximate four-to-one mapping, i.e., on average four
heavy atoms plus associated hydrogens are represented by a single interaction center, with
an exception for ring-like molecules. The mapping of ring-like fragments or small molecules
(e.g., benzene, cholesterol, and several of the amino acid side chains) is not possible with the
general four-to-one mapping approach. Such molecules are therefore mapped with a higher
resolution of up to two-to-one. The Martini model considers four main types of interaction
sites: polar (P), non-polar (N), apolar (C), and charged (Q). Within a main type, subtypes
are distinguished either by a letter denoting the hydrogen-bonding capabilities (d = donor,
a = acceptor, da = both, 0 = none) or by a number indicating the degree of polarity (from
1 = low polarity to 5 = high polarity). Small (ring-type) particles are denoted with a prefix
S. To improve the treatment of electrostatic interactions, polarizable water models were also
recently introduced for use with Martini[20, 21].

Recently, progress in computational power has allowed for more extensive testing of the
Martini force field with respect to all-atom models. Singh and Tieleman[22] compared relative
binding free energies of the Wimley-White (WW) pentapeptides to an experimentally derived
free energy scale. Overall the Martini model predicts the relative binding of these peptides to
a lipid membrane in close agreement with the experimental data[23], with notable exceptions
for the charged residues, as well as phenylalanine and proline. The first category can be
improved by resorting to the polarizable water model, but both phenylalanine and proline
are apparently too hydrophobic. In chapter 3 we studied the dimerization free energy of
amino acid side chains in solvents of different polarity. Here, also the overall performance of
Martini is quite good in comparison to all-atom force fields such as Gromos and OPLS. Again,
exceptions are the aromatic side chains, which are too hydrophobic. In addition, charged and
polar interactions in a low dielectric medium are too weak compared to the atomistic models.
Furthermore, ongoing refinement of partitioning free energy profiles across a water/bilayer
interface by MacCallum et al.[24] reveal a significantly underestimated interfacial binding of
the polar side chains asparagine and glutamine in Martini.

In the current chapter we aim to fix some of these shortcomings, largely pertaining to the
protein force field. These include i) new topologies for proline, phenylalanine, and tryptophan
side chains to improve partitioning free energies, ii) introduction of an off-centre charge
model for a more realistic description of contact pairs of oppositely charged residues, iii)
parameterization of polarized beads for polar side chains to improve dimerization in apolar
environments and interfacial binding, and iv) some adjustment of bonded terms to improve
the length of standard α-helices and increase numerical stability for poly-alanine and glycine
repeats. The new version of the force field will be denoted Martini 2.2 (or 2.2P in combination
with the polarizable water model).

The rest of this chapter is organized as follows. In section 7.2 the methods are out-
lined, providing details about the simulation set-ups used for refining the parameters. In
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section 7.3 the results are presented, subdivided into sections dealing with apolar residues
(Phe, Trp, Pro), then charged (Glu, Asp, Arg, Lys, His) and polar ones (Thr, Ser, Asn, Gln,
His), followed by a section on the bonded terms, and a section on the new script used for
implementation. A short conclusive paragraph (section 7.4) ends this chapter..

7.2 Methods

General

The molecular dynamics (MD) simulations described in this chapter were performed using
the GROMACS software package[25], version 4.x. The scheme developed for the Martini
model[12, 13, 14] was used: non-bonded interactions are cut-off at a distance of 1.2 nm with
smooth switching of the interactions and forces from 0.0 to 1.2 nm for the Coulomb potential
and 0.9 to 1.2 nm for the Lennard-Jones (LJ) potential. The pair-list update frequency was
set to once per 10 steps. A time step of 20-30 fs was used in most cases, which is adequate for
preserving energy and temperature in Martini simulations[26]. Note, the simulation times
reported in the chapter are plain simulation times. Constant temperature and pressure was
maintained using weak coupling to a bath[27]. Standard input files as well as the newly
developed parameters can be downloaded from http://cgmartini.nl.

Partitioning free energy

Potentials of mean force (PMFs) for amino acid side chain analogues (SCAs) across a DOPC
(dioleoyl-phosphatidylcholine) bilayer were calculated using umbrella sampling as described
in MacCallum et al.[24]. Small bilayer patches were simulated with 72 DOPCs, 1200 water
beads, and one side chain. Polarizable water was used in cases of polar/charged side chains.
For each PMF, we ran 81 independent simulations with a harmonic restraint on the distance
between the side chain and the center of the DOPC bilayer in the z dimension. The distance
was varied from -4 nm to 4 nm with an 0.1 nm spacing and a 1000 kJ mol−1 nm−2 force
constant. Each simulation was run for 100 ns. The weighted histogram analysis method
(WHAM)[28] was used to calculate the free energy profiles.

Partitioning free energies of SCAs between water and oil (decane) were calculated using
thermodynamic integration. Separate boxes with a single SCA solvated by 334 CG water
beads or 122 decane molecules were set up. In both solvents 2 ns simulations were run at
each lambda point, using 11 equally spaced points. The electrostatic and van der Waals
interactions were switched off separately when charged molecules were present in the system.
The free energies and the corresponding errors were calculated using the Bennett Acceptance
Ratio as implemented in the g bar analysis tool of GROMACS. The partitioning free energy,
∆Gpart, was obtained by subtracting the free energy in oil from the free energy in water.

Dimerization free energy

The dimerization free energy, ∆Gdim, of pairs of amino acid SCAs was computed as described
in chapter 3. We prepared systems consisting of two amino acid SCAs solvated in a cubic
unit-cell with an edge length 3.0 nm, filled with either water or decane. For each pair
considered, we determined the PMF as a function of the side chains center of mass (COM)
distance. Simulations were run with the COM distances between SCAs constrained in the
range 0.3-1.5 nm with a 0.025 nm interval. At each distance the system was simulated for
2 ns from which the first 50 ps were discarded as equilibration period. Over the remaining
simulation time the mean constraining force was calculated using the constraint pulling code
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implemented in GROMACS and integrated as described by Hess[29]. From these PMFs, the
dimerization free energy, ∆Gdim, was obtained using

∆Gdim = −kBT ln
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(7.1)

where kb is the Boltzmann constant, T is the simulation temperature, r is the SCAs COM
distance, rc is the dimer-monomer cut-off (defined by the distance at which the PMF reaches
its first maximum), Rimax is the maximum distance considered, vθ is the standard volume
(1.66 nm3, equivalent to 1 mol L−1), and g(r) is the radial distribution function which is
calculated from the PMF using:

g(r) = e
−

PMF (r)
kB T (7.2)

Statistical errors are calculated using a Monte Carlo procedure: 10000 PMF profiles are
generated using mean and standard deviation of the constraining force for every distance, r.
For all profiles ∆Gdim is calculated using equation 7.1. Over all values of ∆Gdim the mean
and standard error are calculated.

Binding of WW peptides

Wimley-White (WW) peptides are pentapeptides with the sequence Ac-WLXLL, where X
denotes a variable residue. The binding of these peptides to a POPC (palmitoyl-oleoyl-
PC)/water interface was studied experimentally[23]. The relative binding free energies
∆∆GWW of these peptides[23] with respect to X=Ala provides an energy scale that is useful
as yardstick to gauge the relative surface affinity of different residues. Here we calculated
∆∆GWW to test our new parameters using a protocol recently established by Singh and
Tieleman[22]. In short, for amino acids Phe, Trp, and Pro the ∆∆GWW are obtained us-
ing a combination of free energy perturbation (FEP) and multiple Bennett acceptance ratio
(MBAR) methods, following the thermodynamic cycle as described in detail elsewhere[22].
For polar residues, the PMF profiles for translocating the entire peptide from the interface
to the bulk water were computed using the distance between the COM of the POPC bi-
layer and the COM of the peptide as the reaction coordinate. The COM of the peptide
was held at its relative position by applying a harmonic potential with a force constant of
1000 kJ mol−1 nm2. After an initial equilibration, data were collected over 600-1200 ns time
periods depending on the convergence of the PMFs. In some cases, multiple simulations
were performed to collect better statistics. The data was divided into windows of 100 ns to
compute the free energies and standard errors, using the weighted histogram analysis method
(WHAM) as implemented in GROMACS. The free energy of adsorption of residue X at the
interface from the bulk was calculated as

∆GWW = −kBT ln
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(7.3)

where zs=1.0 nm and zf =4.0 nm define the POPC/water interface and bulk water, re-
spectively. The integrations were carried out numerically using Simpson’s rule. The relative
binding free energy of residue X, ∆∆GWW(X), is obtained by subtracting ∆GWW(Ala) from
∆GWW(X).
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7.3 Results

Change of amino acid particle type for Phe, Trp, and Pro

Based on dimerization data of amino acid side chain analogues136 and interfacial binding of
Wimley-White (WW) peptides[23], it has become clear that especially Phe and Pro, and to
a lesser extent Trp, are too hydrophobic in the Martini 2.1 force field.

For Phe, the behavior can be greatly improved by changing the particle type from SC4 to
the slightly more polar SC5. The dimerization free energy in aqueous solution (∆Gdim, water)
increases from -4.5 kJ mol−1 to -3.0 kJ mol−1 which is in better agreement with the value of
-1.6 kJ mol−1 predicted using an atomistic model (table 7.3). The dimerization free energy
in less polar solvents (∆Gdim, oil) is hardly affected. The relative binding free energy of
the WW peptide (∆∆GWW) also improves and gets within kbT of the experimental value
(see Table 7.3). The partitioning of the Phe side chain analogue across the water/bilayer
interface was also computed. The new topology shows an improved overall binding profile.
For consistency, we also investigated the use of the SC5 particle type to model benzene
(note, in Martini benzene and Phe are represented the same way). The original model[13]
underestimates the partitioning of benzene in water; the partition free energy of benzene
between butane and water is 22 kJ mol−1 compared to the experimental value[30] of 12.4 kJ
mol−1 (using cyclohexane). With the new model, the value drops to 10 kJ mol−1, slightly
too hydrophilic. Note that the properties of pure benzene solvent are not affected by the
change of particle type. The SC5 self-interaction is identical to the SC4 self-interaction (see
the full interaction matrix[13]).

Although Trp performs quite well in the Martini 2.1 parameterization, the properties
can actually be somewhat improved using a similar particle reassignment as for Phe. In
changing the original SC4-SC4-SC4-SP1 to SC5-SC5-SC4-SNd, ∆Gdim (water) changes from
-4.7 kJ mol−1 to -4.0 kJ mol−1, compared to the atomistic value (table 7.3) of -3.3 kJ mol−1.
The added benefit of the new particle assignment is the presence of an explicit hydrogen
bond donor group (SNd), which better reflects the underlying chemical nature of the Trp
side chain. Considering the WW peptides, the new particle assignment for Trp does not
change the already good agreement with the experimental binding free energy (Table 7.3).
The partitioning profile along the bilayer normal shows significant improvement, in line with
the results obtained for Phe (Table 7.3). For the other aromatic residues, His and Tyr, the
agreement between atomistic data and the Martini force field is already quite good and no
further improvement was attempted.

In the case of Pro, a number of different particle assignments were tried, also involving
the backbone bead. We focussed on improving the WW peptide binding free energy. It
is clear that the original assignment Na-AC2 is too hydrophobic, and much better results
are obtained increasing the polarity of the backbone and/or the polarity of the side chain
(Table 7.3). Based on the arguments that i) the backbone polarity should be less than that of
a regular side chain due to the reduced h-bonding propensity, and ii) the side chain analogue
is actually propane that should be kept rather apolar, we settled on the P4-C3 combination.
Note that the P4 particle type for the Pro backbone only applies to the case where the residue
is part of an unstructured chain. As part of α-helix or β-strand less polar particle types are
used (see ref. [14]) which remain valid in Martini 2.2.

In summary, we reparameterized the residues Phe, Trp, and Pro, improving their self-
association behavior, binding of the respective pentapeptides, and partitioning across the
membrane. Future tests should reveal whether or not these parameters lead to a generic
improvement.
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Table 7.1: Overview of parameters and thermodynamic properties of amino acid side

chain analogues: Binding free energy difference ∆∆GWW of Wimley-White peptides to a
POPC/water interface, partitioning free energy ∆Gpart between water and oil, and dimer-
ization free energy ∆Gdim in either water or oil. All values in kJ mol−1. Standard errors
for ∆∆GWW are indicated, standard errors are about 1 kJ mol−1 for ∆Gpart and about
0.1 kJ mol−1 for ∆Gdim. b Italic font denotes results for Martini 2.1, bold font is used for
the final set of parameters of Martini 2.2. In cases of polar and charged residues, data are
obtained using the polarizable water model and Martini 2.2P. Reference (Ref.) data from:
c Experimental values[23] with partitioning free energy of Ala set to zero; d Experimental
data[31, 32]; e Atomistic MD data[33]; f In case of Pro the first CG particle type is for the
backbone.

SC Type (charge) ∆∆GWW ∆Gpart,d ∆Gdim ∆Gdim
watere oile

Phe Ref. 5.4±0.3 12 -1.6 -2.9
CG. SC4-SC4-SC4 12.2±0.1 21 -4.5 -1.3

SC5-SC5-SC5 7.7±0.1 10 -3.0 -1.7
Trp Ref. 8.5±0.4 9 -3.3 -3.3

CG. SC4-SP1-SC4-SC4 9.2±0.1 10 -4.7 -3.0
SC4-SNd-SC5-SC5 9.4±0.1 8 -4.0 -2.7

Pro Ref. -1.2±0.6 - - -
CG. Na-AC2 7.6±0.1 20 - -

P4-AC2 4.1±0.1 20 - -
P4-C3 1.9±0.1 12 - -
P4-C5 0.7±0.1 9 - -

Thr Ref. 0.1±0.4 -11 0.2 -5.8
CG. P1 -1.9±0.1 -12 0.0 -2.3

N0 (0.36) -0.3±0.3 -12 -0.5 -4.0
Nda (0.31) 2.3±0.3 -13 -0.5 -4.2

Ser Ref. 0.2±0.4 -14 1.6 -5.9
CG. P1 -1.9±0.1 -12 0.0 -2.3

N0 (0.40) -0.5±0.3 -14 -0.2 -5.2
Asn Ref. -1.0±0.4 -28 -0.1 -17.3

CG. P5 -2.7±0.1 -31 0.3 -4.2
Nda (0.51) 1.9±0.7 -28 -0.2 -20.6

Nda (0.46) 2.0±0.4 -23 -0.4 -13.9
N0 (0.54) -1.3±0.3 -27 -0.2 -18.1

Gln Ref. -1.7±0.4 -25 -1.2 -17.2
CG. P4 -2.0±0.1 -23 -0.1 -3.4

Nda (0.42) 2.4±0.2 -20 -0.2 -7.2
N0 (0.51) -1.1±0.5 -24 -0.6 -14.6

His+ Ref. - - 1.0 -
CG. C3-Qd - -66 0.4 -

C3-Qd (off-centre) - -90 0.5 -
Lys Ref. -4.2±0.7 - 1.0 -

CG. C3-Qd -3.6±0.1 -55 0.7 -
C3-Qd (off-centre) -3.0±0.3 -73 0.2 -

Glu Ref. -7.7±0.5 - 1.7 -
CG. Qa -5.2±0.1 -71 4.7 -

Qa (off-centre) -7.2±0.3 -88 4.0 -
Arg Ref. -3.4±0.7 - 1.5 -

CG. N0-Qd -3.0±0.1 -70 -0.2 -
N0-Qd (off-centre) -2.5±0.3 -89 0.2 -

Asp Ref. -4.4±0.4 - 3.9 -
CG. Qa -5.3±0.1 -71 4.7 -

Qa (off-centre) -6.4±0.4 -88 4.0 -

Improving charged residues by putting the charge off-centre

The absence of partial charges in the standard Martini water model warrants the use of a
global screening constant of εr =15. Together with the smooth shifting of the electrostatic
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Figure 7.1: Potentials of mean force (PMF) for side chain analogues across a DOPC bilayer
interface. Each PMF was set to 0 kJ mol−1 in bulk water, and to 0 nm at the peak in the
phosphate density for each bilayer. In the background, one leaflet of the DOPC bilayer is
hown, with the lipids depicted as grey lines, water as green lines, and the phosphate beads
shown by yellow spheres. Black lines denote results obtained with the OPLS all-atom force
field, and red/blue lines with Martini 2.1/2.2. In case of polar and charged side chains,
Martini 2.1P/2.2P is used. PMFs obtained with the Martini 2.2 models were obtained for
both leaflets, and are shown as independent profiles to give an estimate of the accuracy.
PMFs for neutral His modeled with the OPLS force field are obtained for both the δ and ε
protonated form (δ protonated has the lowest energy at the bilayer midplane).

interaction toward the cut-off (1.2 nm), this treatment results in a distance dependent di-
electric screening. However, charged particles feel the same screening independent of their
environment. Consequently, charge-charge interactions in an apolar medium are severely
underestimated. This effect becomes evident from Figure 7.2, which shows the PMFs for the
association of the Lys-Lys and Lys-Glu pairs in an apolar solvent, both for Martini and two
atomistic models. In Martini 2.1 a relatively shallow contact pair is observed for oppositely
charged residues, whereas the atomistic force fields show very strong binding. In contrast,
Martini 2.1 predicts a stable contact pair for like charged residues, at odds with the global
repulsion seen with the more detailed models.

Improvement of this unphysical situation is obtained using the polarizable Martini water
model (compare PMFs with Martini 2.1 to 2.1P in Figure 7.2). The Lys-Lys contact pair
disappears, and the Lys-Glu binding strength increases. However, Coulombic interactions
fall off as 1/r and thus the bigger size of the CG beads (defined by their van der Waals radius,
≈0.26 nm) limits the approach of the charged beads to ≈0.5 nm, whereas in atomistic models
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Figure 7.2: Potential of mean force (PMF) for LysGlu (left) and LysLys (right) in de-
cane. PMFs are plotted against the centre of mass distance between the side chain ana-
logue pairs. Black/red lines are obtained with the atomistic force fields OPLS/GROMOS,
green/orange/blue lines with Martini 2.1/2.1P/2.2P. Errors do not exceed the thickness of
the lines.

the charges can come much closer. Therefore, the interaction strength between the charged
atomistic side chains is still much stronger.

To remedy this issue, we designed an alternative model for charged side chains in which the
electrostatic and van der Waals interactions are carried by two different particles. The two
particles are connected by a constrained bond of length 0.11 nm, as illustrated in Figure 7.3,
and have a mass of 36 amu. Using this off-centre set-up, the charges may come closer and the
interaction increases by approximately a factor of 3 in the case of the Lys-Glu pair (compare
Martini 2.1P to 2.2P in Figure 7.2). The Lys- Lys pair, for which close contact of charges is
not favourable, is not further improved.

The new parameters do not change the already good behavior observed with Martini 2.1P
in regard to the partitioning of the charged particles along the bilayer interface. The same
is true for the binding of the WW peptides, for which the relative binding free energy is
reproduced to within 1 kBT from the experimental values for the charged residues in both
Martini 2.1P and 2.2P. Dimerization free energies of charged residues in water remain also
largely unaffected and in overall good agreement with the atomistic data.

For histidine the charged form had not been parameterized for Martini 2.1 [14]. Following
the general pattern used for the other charged amino acids in Martini 2.1 and using the
topology of neutral His, we defined a side chain topology for His+ consisting of a three bead
ring: SC4-SP1-SQd. The bonded interactions are unchanged compared to the neutral form,
the SC4 bead is bound to the protein backbone and the SQd bead carries a +1 e charge. In
addition to this topology in line with the Martini 2.1 force field, we also defined a topology for
His+ where the charge was placed off-centre. Both His+ topologies have a strongly negative
oil/water partitioning free energy (-66 and -90 kJ mol−1, respectively) and show very similar
membrane partitioning behavior (Fig. 1) and dimerization free energies in water and decane
consistent with the atomistic data (cf. Table 1).

We conclude that the charge off-centre set-up describes the behavior of charged residues
at the distance of contact more realistically. In particular there is a drastic improvement of
the SCA dimerization free energy in solvents of low polarity. The off-centre model will be
set as default in Martini 2.2P. Whether or not this approach could also improve description
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of other charged beads in Martini (e.g., lipid head groups) remains to be tested.

Figure 7.3: Schematic drawing of a Lys-Asn-
Phe peptide demonstrating the new topologies
for charged and polar amino acids in Martini
2.2P. As an example of charged residues, the
Lys side chain consists of two beads S1 and S2,
carrying the van der Waals interaction. An ad-
ditional bead is introduced, S2p, which carries
the full positive charge of Lys but has no van
der Waals interaction. It is bound to S2 using
a 0.11 nm constraint. For polar residues like
Asn, the side chain consists of one main parti-
cle S1 carrying the van der Waals interaction.
It is a virtual site positioned in the middle of
two additional sites S1n and S1p that carry a
negative and a positive partial charge and no
van der Waals interaction. Their mutual dis-
tance is constrained at 0.28 nm. The topology
of aromatic residues like Phe consists of three
beads S1, S2, S3 and remains identical to the
topology in Martini 2.1. For each side chain,
the S1 particle is bonded to the peptide back-
bone bead (BB).

Improving polar residues
using polarized particles

Just like interactions between charged
beads, interactions between polar parti-
cles (P type) in an oil-like medium are
grossly underestimated in the Martini force
field. Alternatively, we introduce embed-
ded dipoles to polar residues, in line with
the polarizable Martini water model. Fig-
ure 7.3 shows the typical set-up of a po-
larized residue. It consists of one virtual
site and two real sites. The virtual site is
the centre of the LJ interactions and is de-
fined as the geometrical centre of the two
real sites. The real sites carry equal par-
tial charges of opposite sign and interact
via a Coulomb potential, except between
each other. They do not have LJ interac-
tions. Both have a mass of 36 amu and
are bound to each other by a 0.28 nm con-
straint. This bond defines a fixed dipole
moment that can thus only contribute to
orientational polarization, in contrast to the
case of polarizable Martini water where the
charges can move independently. The mag-
nitude of the embedded charges is used as a
fitting parameter, together with the particle
type of the virtual site which determines the
strength of the LJ interactions. The result-
ing dipole moment therefore has no direct
physical meaning. Due to the addition of
electrostatic interactions, the contribution
from the LJ interactions is reduced compared to the standard Martini model.

We fitted the parameters in first instance by reproducing the experimental oil/water
partitioning free energies. The partitioning free energies are very sensitive to the magnitude
of the charges. For Thr and Ser, charges in the range 0.3-0.4 e match the experimental data.
For Asn and Gln slightly bigger charges 0.4-0.55 e are required, reflecting the higher polarity
of these side chains.

We computed the dimerization free energy of polar SCA pairs using the polarized particle
type (Table 7.3) and compared to values obtained with atomistic force fields. It is evident that
the self-association of each of the polar residues in an apolar solvent (∆Gdim, oil) is improved.
In particular Asn switches from weak (around 4 kJ mol−1) to strong (14-20 kJ mol−1) type of
association which is consistent with the atomistic data. The dimerization of Thr and Ser also
improves by about 2-3 kJ mol−1. Self-association in aqueous environment (∆Gdim,water) is
largely unaffected and remains in good agreement with the atomistic data for all polar side
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chains. Similar ∆Gdim can be obtained with Nda and N0 particle types by increasing the
dipole charges in N0 compared to Nda.

Figure 7.4: Probability distribution of the length
of a (Leu)17 α-helix obtained from all-atom simula-
tion (CHARMM27, black curve) and from Martini
2.1/2.2 CG simulations (red/green curves). The
length is estimated from the distance (d) between
the backbone of Leu3 and Leu15.

We further tested the polarized side
chains by considering their partitioning
behavior across a lipid membrane. The
profiles for Thr and Ser (Figure 7.2)
match the atomistic data very well, as
does the non-polarized version of Mar-
tini. In fact, Martini 2.1 is slightly bet-
ter in that respect. For Asn and Gln,
however, the profiles significantly im-
prove. Notably the free energy mini-
mum at the water/lipid interface is now
reproduced, although still too shallow.
Asn and Gln require the use of an Nda
particle type to observe this minimum.
In the case of Ser/Thr, the N0 particle
type is appropriate.

Finally, the binding free energy of
the WW peptides, ∆∆GWW, was cal-
culated using the polarized side chains.
Overall, Martini 2.1 predicts too weak
binding of these pentapeptides as com-
pared to the experimental data, al-
though the differences are less than
kBT[22]. Perfect agreement can be ob-
tained in the case of Ser and Thr using
a polarized particle of N0 type. For
Asn and Gln, the N0 particle also gives
the best results. As discussed above,
the Nda particle that is needed to re-
produce the interfacial minimum of the
PMFs across the membrane, actually
results in too strong binding of the
respective pentapeptides by about 1.5
kBT.

The art of coarse-graining is in the
compromise: one can not always get everything right at the same time. Here in the case
of Asn and Gln side chains we decide to give priority to the partitioning profiles along the
membrane normal, which show that Gln and Asn bind strongly at the lipid/water interface.
This feature is only reproduced using an Nda particle type. One may argue that the relative
weak binding of the Gln and Asn pentapeptides, suggested by the experimental data from
Wimley and White, is caused by the restricted orientational freedom of the central residues.
Whereas a free Asn or Gln SCA can align its hydrophobic moment along the membrane
normal, as part of a pentapeptide this is not possible, providing a possible explanation for
the reduced binding strength.

We also tested the use of polarized particles for the neutral form of histidine. However
this change did not improve the partitioning behavior over the membrane (data not shown),
while the oil-water partitioning free energy deviated significantly more from the experimental
value as compared to Martini 2.1. For the topology with the best cross bilayer profile (SC4-
SP1-SNda with ±0.20 e partial charges) the partitioning free energy was -15 kJ mol−1 versus
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-20 kJ mol−1 experimentally obtained. The neutral form of His was not tested with respect
to WW peptides and dimerization free energies. For these reasons, we decided to leave the
neutral His topology unchanged with respect to Martini 2.1.

In summary, in this section we introduced the concept of polarized particles to remedy
some of the shortcomings of polar residues in Martini. Due to the addition of charged
interaction sites, the new model will be slightly more expensive than the original model. In
practice the polar residues (Thr, Ser, Asn, Gln) only constitute a very small fraction of a
protein, which is itself usually only a small part of the simulation system. The additional costs
will thus be negligible. However, the polarized particles require the use of the polarizable
version of Martini water, which slows down the computation by up to a factor of three (for
systems largely composed of water). Hence, in practice, the use of polarized particles should
depend on the presumed importance of polar residues in the system of interest. Whether or
not the concept of polarized particles can be used to replace polar particles in general, i.e. also
as part of other bio-molecules, is currently under investigation. Preliminary endeavours aimed
at reproducing membrane poration energies and transition states consistent with all-atom
results, a known shortcoming of the Martini lipid model, did not show much improvement
yet.

Improving the backbone of α-helices and the stability of poly-Ala
and poly-Gly sequences

In the Martini 2.1 protein force field[14], the bonded interactions (bond lengths, bond angles,
dihedral angles) were parameterized to match as closely as possible the corresponding distri-
butions extracted from the protein data bank (PDB) for a large number of protein structures
(ca. 2000). To obtain a good agreement of the relaxed CG structures with those from the
PDB, the bonded parameters for the polypeptide backbone need to depend on the secondary
structure. This dependency was implemented in the model through the equilibrium values
and force constants of the angles and dihedrals between consecutive backbone beads, which
differ for helical, extended, or coiled structures (Table 3 in Monticelli et al.[14]). For the bond
between two neighboring backbone beads, the force constant was also made dependent on the
secondary structure, whereas the equilibrium bond length was set to 0.35 nm in Martini 2.1,
irrespective of the secondary structure. However, from the distance distribution extracted
from the PDB (Figure 3a in Monticelli et al.[14]), it is clear that this approximation may
hold quite well for extended and coiled structures, but the distribution between two backbone
beads in helices peaks at a shorter distance of about 0.31 nm. In the new Martini 2.2 force
field described in this work, the distance between two neighboring backbone beads in helical
structures is set to 0.31 nm and treated by a constraint instead of a flexible harmonic bond.
This set-up more accurately describes the length of helical structures (see below), and is also
more consistent with the secondary structure dependence of the other bonded parameters
(angles, dihedrals).

Figure 7.4 shows the length distributions obtained from 100 ns MD simulations of a
(Leu)17 α-helix (T = 300 K, gas phase). This poly-Leu repeat was used as a representative
example of a stable α-helix; however, the described effect is general and not restricted to
certain amino acids. In the CG simulations, the helicity was imposed on the entire structure
via the dihedral angles, which is the standard procedure used in the Martini force field.
In the all-atom simulation, the CHARMM27 force field[34] with the CMAP[35] correction
was used. The α-helical structure was stable throughout the 100 ns, with some transient
fraying of the terminal 1-2 residues. Thus, to compare all-atom and CG simulations, we
analyzed the distance between the backbone of residues 3 and 15. Prior to analysis, the
all-atom trajectory was converted to the CG representation, although the difference between
the backbone-backbone and Cα-Cα length distributions was negligible. Figure 4 shows that
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the Martini 2.1 force field yields too long α-helices (average distance 1.99 nm, red curve) as
compared to the all-atom simulation (1.84 nm, black curve), due to the too large distance
between neighboring backbone beads. In addition, the CG structure appears to be slightly
too flexible, with a standard deviation of the distance distribution of 0.06 nm as compared
to 0.04 nm in the all-atom simulation. Introducing a constraint bond length of 0.31 nm
in Martini 2.2 (green curve) brings both the average (1.86 nm) as well as the width of the
distribution (standard deviation 0.04 nm) into good agreement with the all-atom results.

Another issue pertains to the behavior of poly-Ala and Gly repeats. In the original
parameterization of Martini 2.1, the value of the force constant (KBB) used in the harmonic
potential of the backbone-backbone bond is a function of the secondary structure of the
residues. The relative flexibility of the loop regions (where coil, bend and turn classification
are often found) was modelled by a small KBB. This increased flexibility of the bonded
terms goes with the increased non-bonded interactions of the same secondary structure types.
For instance the coil and bend backbone particle type are P5 that has a very strong self-
interaction. This combination of bonded and nonbonded parameters led in some specific
cases to the local collapse of the protein backbone most often causing numerical instability.
The collapse of the backbone results from the 1-3 non-bonded (LJ) interactions taking over
the 1-2 and 2-3 (weakened) bonded terms. In most cases the presence of a side chain bead
prevents backbone beads to come close. However, in cases in which two Gly and Ala residues
are consecutive, the bond between them would collapse to a value of about 0.1 nm. The
solution adopted in Martini 2.2 is the systematic increase of KBB in the coil/turn/bend
secondary structure type from 200/400/500 to 1250 kJ mol−1 nm−2. This prevents the
collapse of the bonds of consecutive Gly and Ala. To compensate for the associated decrease
of flexibility the bending angle applied to three consecutive backbone beads in coil/turn/bend
is reduced from 25 to 20 kJ mol−1. The new set-up was tested on pentapeptides with
sequence AlaAlaAlaAlaAla, AlaAlaValAlaAla and AlaAlaAlaAlaVal and proved to be stable
over microsecond time scales using conventional simulation set-ups. It is important to note
that this parameterization of the flexible part of proteins applies to folded proteins and should
not be taken as general parameterization for flexible protein regions such as large unfolded
domains or intrinsically disordered proteins. In such cases we expect that a more elaborated
parameterization would be required.

Testing of new parameters on a soluble peptide

To test the behavior of the new class of polarized and charged particles in a soluble peptide,
we ran simulations of a small 16 residue helical peptide based on the N-terminal helix of the
GCN4 leucine zipper (PDB entry code: 2ZTA). Residues 8 (Lys) and 12 (Leu) were mutated
to polar Asn, bringing the total to five polar residues (Gln4, Asn8, Asn12, Ser14, Asn16)
and six charged residues (Lys3, Glu6, Asp7, Glu9, Glu10 and Lys14), modelled as polarized
and off-centre charge particles, respectively. We also used the shorter backbone bond in this
simulation. The helical conformation was restrained by using the standard Martini bonded
potentials for α-helices. Figure 7.5 shows the histograms of the COM distances between pairs
of polar (left panel) and charged (right panel) side chains. The results are compared to a
fully atomistic simulation using the CHARMM27 force field[34] with the CMAP[35] and to
Martini 2.1P. For the polar residues there are two main differences between the Martini 2.1P
and Martini 2.2P. First the peaks observed at short distance (side chains pointing towards
each other) and large distance (side chains pointing away from each other) shift to a smaller
average distance in Martini 2.2P, thus better matching the position of the peaks obtained from
the atomistic simulations. Second, the distributions of the pairs (Asn12-Ser14 and Ser14-
Asn16) become narrower. However, the peak found at d≈0.65 nm (side chains pointing in the
same direction) in the atomistic Asn8-Asn12 pair is still not observed in the CG simulations.
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Figure 7.5: Distance distribution of the side chains of pairs of polar (left) and pairs of
charged residues (right) that are part of the small helical GCN4 peptide. The distributions
for the old Martini 2.1P, the new Martini 2.2P, and the all-atom CHARMM27 force field are
compared.

In case of the charged side chains the situation is less clear. For the oppositely charged
Lys3-Glu6 and Glu11-Lys15 pairs the peak observed at short distance becomes broader or
completely disappears when using Martini 2.2P. For the oppositely (Glu6-Asp7) and equally
charged (Glu10-Glu11) direct neighbors the same orientations are sampled with the new
parameters. For the oppositely charged Asp7-Glu10 pair, a new orientation at close distance
is sampled, thus better reproducing the atomistic distribution.

Although the overall behavior of the side chains for this particular peptide appear to have
improved with our new model, it is also clear that our CG model can not capture some of the
fine details of the distributions as seen when using an atomistic model. Additional testing is
required to assess whether or not the Martini model can be further improved in this respect.

Implementation

To facilitate the use of the Martini force field, an auxiliary program was developed called
martinize.py. This program offers a one-step solution for coarse-graining atomistic structures,
yielding coarse grain structures and corresponding topologies. The program contains easily
editable tables for mapping atoms to CG beads and for assigning atom types and bonded
parameters based on residue and secondary structure type. The secondary structure of a
protein sequence can be specified explicitly or can be inferred from the structure by a call to
the DSSP program . Other features include the possibility to specify disulfide bridges, adding
arbitrary links between beads, and support for writing structures and topology files using the
Elnedyn approach. The martinize.py script can be downloaded from http://cgmartini.nl.

The user can also specify the version of the Martini force field that is used: Martini 2.1
or 2.2 with standard water, or 2.1P and 2.2P in combination with polarizable water. The
default of Martini 2.2P will be the use of polarized particles to model polar side chains and
the charge off-centre model for charged side chains. Both set-ups can be optionally reverted
to regular particle types.
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7.4 Conclusions

Bassed on recent data in which the Martini protein force field was compared to all-atom
force fields and experimental data, we reparameterized a number of side chains. For Phe
we now use the SC5 particle type that makes this aromatic residue slightly more polar.
Similarly, Trp behavior is improved with the new SC5-SC5-SC4-SNd assignment. For Pro,
the side chain is made slightly more polar (C3) and at the same time the polarity of the
backbone bead is increased (P4). Furthermore, we introduced a class of polarized particles
to model the polar but neutral Asn, Gln, Ser, and Thr residues. This greatly improves
their dimerization free energy in low dielectric solvents. We also presented a new model for
charged residues with an off-centre charge. This leads to an improvement of the potentials of
mean force between two oppositely charged residues in apolar medium. Both the polarized
particle types and charge off-set models should be used in combination with the polarizable
Martini water model. Finally we changed some of the bonded parameters to provide a better
description of the length of an α-helix and to improve on numerical stability of Gly and Ala
repeats. All systems simulated in this study are stable with time steps up to at least 20 fs.

The changes described in the current chapter, combined with the parameters from versions
2.1 and 2.1P that have not changed, define version 2.2 and 2.2P of the Martini protein force
field. The new protein force field is still fully compatible with the Martini 2.0 lipid and
carbohydrate force fields. A generic script has been developed in which these changes are
implemented, allowing for a straightforward set-up of CG simulations based on an atomistic
input structure. Further testing is required to verify whether or not the changes proposed
here are generic improvements. With the help of many Martini users around the globe,
we are constantly trying to further optimize the model. Planned changes include a change
in form of the non-bonded interaction potential to improve the surface tension of polar
solvents and reduce the general over structuring seen with the current force field, as well
as the introduction of polarized particles in the peptide backbone that will allow secondary
structure transitions to occur.
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8

On the Use of Mie Non-Bonded Coarse Grain Potentials

Abstract

Coarse grain molecular force fields used in MD simulations provide the ad-
vantage over classic force fields to allow simulations of bigger systems for longer
times. The popular Martini coarse grain force field, although extensively used,
does not perform optimal in several aspects: It has a too high freezing temper-
ature, a too low air-water surface tension and too much structure in the the
water radial distribution function. The latter of those problems also occur for
other solvent. In order to improve on those aspects we have investigated the use
of shifted Mie-potentials. We show that using a Mie 4-2 potential gives a sur-
face tension of air-water interfaces in better agreement with experiments when
compared to the Lennard-Jones potential currently used in the Martini model.
Furthermore, it gives a much lower melting temperature of water in comparison
to the current model. The correct density of water and linear alkanes are main-
tained. Using the Mie 4-2 potential thermodynamic properties are calculated
for different coarse grain beads as a first step towards an revised version of the
Martini model.

8.1 Introduction

For contemporary molecular dynamics computer simulations to reach the time and length
scales of interest for most (bio)molecular systems, coarse grain (CG) force fields have become
commonplace[1]. Several methods are available to derive a CG potential, notable examples
being inverse Boltzmann, [2] force matching [3, 4] or systematic parametrization against
thermodynamic data. The former two methods yield potentials that are strongly system
dependent. In contrast the latter method provides so called transferable force fields, which
are parametrized such that different molecules may be combined and simulated using the
same force field. A transferable force field allows one to (relatively) quickly parameterize
new types of molecules and combine those with existing molecules.

A popular example of a transferable CG force fields is the Martini model, developed
by Marrink and coworkers. For this force field parameters are available for, among others,
water[5, 6], lipids[6], proteins[7, 8], sugars[9], fullerenes[10] and polymers[11]. The Martini
force field applies on average a mapping of four heavy atoms to one coarse grain bead. The
non-bonded interactions between the beads have been parametrized against thermodynamic
data. In particular the heat of vaporization, hydration and partitioning between polar and
apolar phases have been considered. Bonded interactions are partially parametrized against
structural information, such as lipid bilayer properties, and partially based upon simulations
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using atomistic force fields. A more detailed describtion of the implementation of the Martini
forcefield can be found in chapter 1.

A major determining factors for the behavior of a force field is the choice of the interaction
potential. In the Martini force field mentioned, a Lennard-Jones potential[12] is used:

V (rij) = 4ε
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where V (rij) is the potential energy between particles i and j at the distance rij , ε the
minimum value of the potential and σij the distance at which the potential is zero. The
first term inside the brackets (the ”12-term”) represents the repulsive interactions, whereas
the second term (the ”6-term”) represents the attractive interactions. The LJ potential is a
special form of the more general Mie potential[13]:

V (rij) =

„

n

n − m

«

“ n

m

”m/(n−m)
ε

„„

σij

rij

«n

−

„

σij

rij

«m«

, (8.2)

where the exponents, n and m, are 12 and 6 in the case of the Lennard-Jones potential. Note
that both n and m should be positive integers and that n should always be larger than m.
The Lennard-Jones potential is often used in atomistic force fields[14], because it represents
the interactions between single atoms quite well: the 6-term is derived from the attractive
London-forces[15], whereas the 12-term is a reasonable representation of the repulsive forces
and is computationally cheap to calculate, by taking the square of the 6-term.

In the Martini force field the interactions are only calculated up to 1.2 nm for compu-
tational efficiency. In order to assure a continuous potential (and subsequent force) the
potential is gradually shifted to zero starting from 0.9 nm and up to 1.2 nm[16, 17]. The
Martini model shows some unwanted characteristics related to the choice of the potential.
First, due to the relative steep shape of the Lennard-Jones potential the radial distribution
function (RDF) of solvents, like water, shows too much long range structure[18](see also Fig-
ure 8.2 below). Second, due to the surplus of long range structure, the melting temperature
of Martini water is too high[5]: Tmelt = 290 ± 5K (Texp = 273K). Third, the hydration free
energy of all beads is too low in comparison to the molecular building blocks used in the
parametrization (see Table 3, Marrink et al.[6]). And fourth, due to the lack of long range
interaction (in contrast to long range structure), the water-air surface tension is too low[6].

As several studies[19, 20, 21] have pointed out, this can be solved by using a ”softer”
potential: the attractive well should have less steep flanks and the attraction at longer
distance should be stronger. Different approaches are conceivable to obtain such a potential.
Van Hoof et al. used the CUMULUS coarse graining method[20], where they obtained
tabulated (non-analytical) potentials with a 4:1 mapping for water and different solutes. The
method uses a trajectory of an atomistic simulation, in which neighboring small molecules
such as water and ions are grouped together. On the resulting mapped trajectory an iterative
Boltzmann inversion[2] procedure is applied to obtain the CG potential. Disadvantages of this
method are the non-analytical shape of the potential, which makes it less easy to implement
and the specificity of the potential: even though, as the authors note, the potentials are
similar when derived for different systems, there is no obvious way to derive a potential that
is representative for a range of molecules.

Chiu et al. obtained a softer transferable CG potential in a similar way as done for the
Martini potential[19]. They parameterized water with a 4:1 mapping against thermodynamic
data, but using a Morse potential[22] instead of a LJ-potential. In addition the authors obtain
parameters for alkanes using a mixed 4:1 and 3:1 mapping. The Morse potential has a less
steep profile and is more attractive at longer distances, which gives rise to better solvent
properties. A disadvantage of the work by Chiu et al. is the lack of a shifting function,
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which makes the potential non-zero at 1.2 nm. A much larger cut-off (1.6 nm) has to be
used, making calculations considerably slower.

He et al. have explored a wide range of Mie-potentials for water with different mapping
ratios (1 to 4 water molecules per CG bead) and different cut-off distances[21]. They pa-
rameterized the potentials against density, compressibilty and surface tension of water and
concluded that reasonable values for those three properties may be obtained with different
mappings, Mie-exponents and cut-offs. In addition they find that a mapping of more than
3:1 does not give reasonable results with any of the parameters tested. However in this study,
non-shifted potentials were used, which causes the potentials to be non-zero at the cut-off.
Because of this the authors did not explore the use of Mie-potentials with low exponents, as
they have a longer ranged interaction and consequently a too large energy gap at the cut-off.

Here we investigate the possibility to use Mie-potentials with different exponents n and m
with a 4:1 mapping in combination with a shift function. The objective is to derive a potential
that could replace the current Martini potential without the need to replace the interaction
matrix. In other words, it should be possible to simulate previously parameterized molecules
with the new non-bonded potential using the current mapping and bonded interactions. To
this end different bead-types will be parametrized, corresponding to the standard bead types
of Martini (see Table 1 from Marrink et al.[6]). The choice of Mie-exponents and ε and σ
will be determined based upon comparison to experimental data. In the first phase liquid
density, compressibility and liquid-air surface tension for water and octane will be used to
obtain parameters for the beads representative of these liquids. Next, the densities for alkanes
of differing length will be matched to obtain, on average, correct behavior for all alkanes.
And finally the heat of vaporization, hydration and partitioning between different solvents
will be matched for all the different bead types as was done for the Martini model. The rest
of this chapter is organized as follows: First, we describe the methods used (Section 8.2),
next the results will be presented and discussed following the three phases described above
(Section 8.3). The chapter will end by a short concluding section (Section 8.4).

8.2 Methods

Simulation setup

All simulations were performed using the Gromacs simulation package[23] (version 4.5.x).
The tabulated non-bonded potentials used were calculated between 0 and 1.2 nm using
equation 8.2 with a shift function as implemented in Gromacs [17] applied between 0.9
and 1.2 nm. For molecules consisting of more than one bead Martini bonded parameters
(described in [5]) were used. Coarse grain masses were set to match the molecular masses,
unless mentioned otherwise. A time step of 20 fs was used. The neighborlist is updated every
10 steps, with a neighborlist cut-off of 1.4 nm, 0.2 nm longer than the non-bonded cut-off
to ensure energy conservation. Temperature and pressure were kept constant by coupling
to an external bath[24, 25], using coupling constants τt = 1.0 ps−1 and τp = 3.0 ps−1

for temperature and pressure, respectively. All simulations were done at a temperature of
298.15 K.

Liquid properties

As representative of polar and apolar phases, water and octane were chosen. Water consists
of a single interaction site (a P4 bead), corresponding to four water molecules. Octane
(consisting of two beads each representing four carbon atoms) was preferred over butane
(one bead; four carbon atoms), since the boiling point of butane is below our simulation
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temperature, 298.15K[26]. The choice of octane was preferred over lowering the simulation
temperature, in order to parameterize everything at the same temperature. Both octane sites
are represented by a C1 bead, connected by a harmonic bond 0.47 nm and 1250 kJ nm−2

force constant.
For the determination of the optimal σ and ε for Mie-potentials with different exponents,

an approach similar to He et al.[21] was used. The protocol consisted of four steps and
was used for both water and octane. First, a solvent box containing 1000 CG water beads
(equivalent to 4000 water molecules) or 318 octane molecules at the experimental density
was created, roughly corresponding to a boxsize of 5x5x5 nm in both cases. The system was
relaxed at constant particle number, volume and temperature (NVT ensemble) for 500 ps.
Second, the relaxed system was simulated for 4 ns at constant particle number, pressure and
temperature (NPT ensemble). From this run the last 1500 ps were used to calculate the
average pressure, temperature, volume and density of the system. Third, the Z-dimension of
the relaxed system was increased threefold to create and air-liquid interface. The resulting
system was simulated for 4 ns in an NVT-ensemble. The last 1500 ps were used to calculate
the surface tension, γ, using[21]:

γ =
1

2
Z〈Pz −

(Px + Py)

2
〉, (8.3)

where Z is the length of the box in the Z dimension and P is the pressure with the subscripts
indicating the dimension along which the pressure was measured. Fourth, a system with a
volume equal to the equilibrium volume determined in the second step plus and minus 1%
(dubbed Ssmall and Slarge respectively) was simulated for 4 ns in an NVT-ensemble. From
these simulations the compressibilty, β, was calculated using[27]:

β =
Vsmall − Vlarge

Vaverage · (〈Plarge − Psmall〉)
(8.4)

where V and P are volume and pressure and the subscripts indicate the small or large system,
or the average determined in the second step.

For every combination of the Mie-exponents (n and m) these four steps were repeated
for a range of values for σ (0.45-0.55 nm) and ε (4.5-15.5 kJ mol−1) in steps of 0.005 nm
and 0.1 kJ mol−1, respectively. The calculated values for the density (second step), surface
tension (step three) and compressibility (step four) were plotted against σ and ε, together
with the experimental values. From this initial scan an approximate value for both σ and ε
was determined, around which a second series of simulations was made with a finer σ/ε-grid.
From the fine grid optimal parameter values were chosen by hand, instead of by fitting the
surfaces as done in [21]. In order to keep the model simple all beads were to have the same
van der Waals radius, and thus σ was required to be equal for water and octane. After a
value for σ and ε for water had been determined, the octane ε was adjusted to optimize the
octane properties.

Radial distribution function

Radial distribution functions (RDFs) were calculated using the Gromacs tool g rdf. A ref-
erence RDF was obtained from an atomistic simulation, for which an approach similar to
Fuhrmans et al.[18] was used. Four SPC-water molecules were simulated bundled together by
harmonic bonds between all oxygens in the cluster, while applying a slightly increased C12

parameter to maintain the correct water properties. The centers of mass of the water bundles
are mapped to coarse grain sites. An RDF is calculated for the thus obtained CG trajectory.
For octane, atomistic simulations using the Gromos 43A3 force field[27] are mapped to CG
trajectories. RDFs are calculated from these mapped trajectories as well.
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Figure 8.1: Example plots showing the density (left), compressibility (middle) and surface
tension of water as a function of sigma and epsilon for the Mie potential with exponents 4-2.
Black wire frame are values obtained from simulations. Grey wire frame is the experimental
value.

Linear alkane densities

The densities of linear alkanes were calculated for CG molecules with 1 (butane), 2 (hexane
and octane), 3 (decane and dodecane), and 4 (tetradecane and hexadecane) beads. For
the molecules with the same number of beads the bead masses were set to match the total
molecular mass and all beads in one molecule had the same mass. For these liquids a system
of approximately 5x5x5 nm was simulated for 9 ns, of which the first 5 ns were discarded as
relaxation period.

Heats of vaporization, hydration and partitioning

Based on the final choice of m and n, free energies of vaporization, hydration and partitioning
were determined for interaction strengths covering the entire range of polar to non-polar CG
beads using the free energy perturbation (FEP) method[28]. In FEP the van der Waals
interactions between a single solute bead in a box of 1000 solvent molecules, controlled by a
parameter λ, are slowly turned off. λ was switched from one (full interactions) to zero (no
interactions) in 21 windows. Each window was simulated for 500 ps. A soft-core (sc) potential
modification term was used to smooth the transition along λ. The smoothest transition curve
was found using sc-α=0.025, sc-σ=0.455 nm, and the sc-exponent=1. For each λ-window
energies were calculated for the current window and neighboring windows to either side, using
the foreign-lambda code implemented in Gromacs[23]. The total free energies were calculated
using the ”Bennet Acceptance Ratio”[29], implemented in the Gromacs tool g bar.

8.3 Results and Discussion

Our first target is to find optimal Mie potentials that could reproduce the experimental values
for the density, surface tension and compressibility of water (996 kg m−3, 71.2 mN m−1 and
4.6×10−5 bar−1, respectively) and octane (698 kg m−3, 21.8 mN m−1 and 12.9×10−5 bar−1,
respectively) at 298.15 K. Additionally the melting temperature of the model should be
sufficiently low in order to prevent the freezing of systems simulated at temperatures close
to the experimental melting temperature. To this end, we systematically varied σ and ε at
different Mie exponents n and m and measured the system properties.
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Table 8.1: List of optimal σ and ε values for water obtained for different m and n Mie-
exponents and corresponding water properties. Experimental values are obtained from [26].
Values between brackets are relative deviations from experimental values.

Pot. σ(nm)/ Dens. Surf.Ten. Compr. Melt. T.
(m-n) εkJ mol−1 (kg dm−3) (mN m−1) (10−5bar−1) (K)
Exp. -/- 0.997 72.0 4.6 273.15
5-4 0.4725/7.10 1.009(1.2%) 70.9(-1.5%) 7.8(-68.6%) 266
5-3 0.4825/5.40 1.005(0.8%) 72.1(-0.2%) 10.0(117%) 210
5-2 0.4725/6.35 1.016(2.0%) 71.5(-0.7%) 11.5(150%) 180
4-3 0.4675/9.10 0.997(0.0%) 72.4(0.5%) 10.1(120%) 213
4-2 0.4550/12.3 0.993(-0.4%) 72.5(0.7%) 11.9(159%) 193
3-2 0.4425/15.5 0.992(-0.5%) 72.7(1.0%) 14.4(212%) 163

Table 8.2: List of optimal σ and ε values for octane obtained for different m and n Mie-
exponents and corresponding octane properties. Experimental values are obtained from [26].
Values between brackets are relative deviations from experimental values.

Pot. σ(nm)/ Dens. Surf.Ten. Compr.
(m-n) ε(kJ mol−1) (kg dm−3) (mN m−1) (10−5bar−1)
Exp. -/- 0.699 21.8 12.9
5-4 0.4725/2.4 0.700 (0.3%) 14.9 (-32%) 40.7 (216%)
5-3 0.4825/3.6 0.681 (-2.6%) 21.6 (0.7%) 11.5 (11%)
4-3 0.4675/3.4 0.732 (4.8%) 21.5 (1.5%) 34.5 (170%)
4-2 0.4550/4.4 0.723 (3.5%) 20.8 (4.7%) 40.6 (216%)
3-2 0.4425/4.9 0.699 (0.0%) 17.1 (-17.1%) 54.6 (325%)

Parametrization of water and octane

Figure 8.1 shows the three dimensional plots of density, compressibility and surface tension
for the Mie 4-2 potential. Based on these plots optimal values for σ and ε were determined.
As already pointed out by He et al.[21], it was not possible to obtain correct values for
all three properties for a 4:1 mapping. Therefore, we here focused on density and surface
tension, since those properties are of key importance for many bio-molecular applications.
Tables 8.1 and 8.2 list the best values obtained for σ and ε for a few potentials with low n
and m parameters. Since we decided to use the same σ for different bead types, octane has
the same σ as water. For the Mie 4-2 potential (our final choice, see below), properties for
two values of ε are reported. Although octane has a better performance in terms of density
with ε = 4.4 kJ mol−1, the average density over all linear alkanes tested here is better when
using ε = 5.35 kJ mol−1 (see below).

Softer potential reduces over structuring

Figure 8.2 shows the RDFs of water (top panel) and octane (bottom panel) for a selected
number of potentials. For both liquids, the RDFs show less structure for potentials with
lower m & n-exponents. In water the improvement over the Martini 12-6 potential for the
first solvation shell (peak around 0.5 nm) is considerable for all Mie-potentials with lower
exponents, however the difference to the bundled atomistic water remains large. Also, all
RDFs show only a minor decrease of structure at larger distance. The improvements between
the different soft potentials are relatively small. For octane, the RDFs for the soft potentials
are much closer to the mapped atomistic RDF, and even show too little structure at larger
distance. The softest potential shown (Mie 3-2) also considerably underestimates the first
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solvation shell.
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Figure 8.2: Water (top), ethanediol (middle)
and octane (bottom) radial distribution func-
tions from simulations using atomistic (black
line), Martini 2.0 (red line) and Mie potentials
with exponents 4-2 (blue) or 3-2 (green). Wa-
ter and ethanediol are represented by the same
(P4) bead in Martini.

The lack of long range structure and rel-
atively low first solvation peak in the RDF
of water demonstrates the special nature
of water. Clusters of four water molecules
can interpenetrate each other, while CG
water beads, representative of such a clus-
ter, can not interpenetrate. Other liq-
uids with a density similar to water will
not show this interpenetration and subse-
quently show a more structured RDF. For
example for ethanediol, which in Martini is
represented by the same P4 particle as wa-
ter, the first solvation peak in the RDF of a
mapped atomistic simulation is high when
compared to bundled water (see Figure 8.2).
This difference in behavior of water makes
it difficult to model water with the same
potential form as other molecules.

Comparing
Mie 4-2 to other potentials

To obtain a reasonably unstructured water
RDF but avoid underestimating structure
in octane, in the remainder of this work we
continue using the Mie 4-2 potential. Figure
8.3 shows this potential as obtained for wa-
ter and compares it to the water potential
used by the Martini force field[5], the potential obtained by Chiu et al.[19] and the tabulated
potential obtained by Van Hoof et al.[20]. The potential by He et al. is not included in the
comparison since it uses a 3:1 mapping. Of the four potentials shown, the current Martini
LJ12-6 potentials has its minimum at the smallest distance (≈ 0.53 nm), whereas the tab-
ulated potential has it at the largest distance (≈ 0.73 nm). The Mie 4-2 and the LJ12-6
potential are comparable in depth, even though their epsilon is greatly different; due to the
shift applied to make the potential zero at the cut-off, the Mie potentials with low exponents
get shifted up strongly for any distance. At small distance (the ”repulsive regime”) the Mie
4-2, LJ12-6 and the Morse potential behave comparably, while the tabulated potential is by
far the least steep. At larger distance the LJ12-6 potential is the least attractive, and the
other potentials behave similarly. The Morse potential is not shifted, and thus requires a
longer cut-off distance (1.6 nm).

Properties of linear alkanes with Mie 4-2

Using the obtained interaction potential, we calculated the densities for a series of linear
alkanes shown in Figure 8.4. Only the densities of alkanes with an even number of carbons
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8. Mie Non-Bonded Coarse Grain Potentials

Figure 8.4: Alkanes densities. The solid
line represents experimental values ob-
tained from [26]. The dotted line is ob-
tained with the Mie 4-2 potential with
ε = 4.4 kJ mol−1. The dashed line is
obtained with the Mie 4-2 potential with
ε = 5.35 kJ mol−1. The dash-dotted
line is obtained with the original Martini
LJ12-6 potential. The zigzag pattern is
caused by two consecutive alkanes being
represented by the same number of beads
in Martini with different bead masses.       























 
 


have been measured. Since in Martini C1-beads correspond to 4 carbon atoms, two sub-
sequent alkanes in the measured series are represented by the same number of beads. The
masses of the beads are set to match the molecule mass and thus differentiate the molecules.
Together this causes the zigzag behavior seen in Figure 8.4. With octane as our original
target fluid, the average density of the alkanes is consequently too high. In order to correct
for this the density is increased by raising ε for the interaction between two C1-beads from
4.4 kJ mol−1 to 5.35 kJ mol−1 (Table 8.2 shows the corresponding density, compressibility
and surface tension for octane.) The new alkane densities (Figure 8.4, dashed line), on aver-
age, match the experimental densities and are very close to the densities obtained with the
Martini model.

Interpolating interaction strengths

In the Martini model different levels of interaction strength are defined, numbered O to IX.
The levels differ only in the Lennard-Jones ε parameter (except level IX which has a higher
value for σ). Using those 10 levels the interactions between all beads are defined. For the
Mie 4-2 potential, the same 10 levels need to be defined. The interactions strengths obtained
above by fitting to water and alkane properties, correspond to C1-C1 and P4-P4 interactions,
levels I and IV in the Martini model. In order to investigate the influence of changing different
interaction levels, three sets of ε values were obtained for the remaining levels by roughly
extra- and interpolating from levels I and IV. The three sets are denominated A, B and C,
the obtained ε values are given in Table 8.3. The shape of the potentials belonging to these
sets can be found in Figure 8.5. σ was 0.455 nm for all levels and all sets except level IX for
which σ was scaled to 0.5 nm for all sets. For all three sets ε for level I was kept the same
in order to preserve the correct water properties. Level IV was varied slightly, thus varying

Table 8.3: Three sets of ε values corresponding to 10 interactions levels. Values are in
kJ mol−1. σ is 0.455 nm for all levels and all sets except level IX where σ 0.5 nm for all
three sets.

O I II III IV V VI VII VIII IX
A 13.3 12.3 7.8 6.1 5.35 4.7 4.25 4.0 3.9 3.9
B 13.3 12.3 9.3 7.5 5.9 5.4 4.9 4.5 3.9 3.9
C 13.3 12.3 9.5 8.7 6.4 6.0 6.0 4.0 2.0 2.0
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Figure 8.5: Plots of the three sets of Mie potentials. The corresponding σ and ε parameters
can be found in Table 8.3.

the properties of the linear alkanes. Set A uses the ε value obtained by matching the alkane
densities.

Polar liquids with Mie 4-2

Except for the linear alkanes several other liquids have been parametrized in Martini. Of
those (di-ethyl)ether, chloroform and octanol are of special interest; these solvents form the
basis for the parametrization of cross interactions in Martini. Ether and chloroform are
represented by a single N0 and C4 bead, octanol is represented by one C1 and one P1
bead connected via a 0.47 nm bond with 1250 kJ mol−1 force constant. Using the values
for ε in set A (see Table 8.3) liquid properties for those solvents are measured. Note that
both the N0-N0, C1-C1, and C4-C4 interactions are level IV, and only the P1-C1 and P1-
P1 interaction levels have been obtained by interpolation. Table 8.4 shows the obtained
densities, compressibilities and surface tension (ε = 5.35 kJ mol−1 is used for the interaction
between two C1 beads in octanol).

There is no general trend for the change of density for the three liquids; the final densities
are reasonably close the experimental values. The compressibilities are increased for all three
solvents, thus worsening the comparison to experiment. However, as mentioned above, the
compressibility is not the main target in this work. The surface tension of the three liquids
increases, leading to a better match to experimental values as compared to the current
Martini force field.

Table 8.4: Properties of polar liquids. Values for density, isothermal compressibility and
air-liquid surface tension are reported for the new Mie 4-2 potential (Mie.), the Martini LJ
12-6 potential (Mar.) and experimental (Exp.). Experimental values have been obtained
from [26]. a experiment at 20◦b experiment at 0◦

Density Compressibility Surface Tension
Molecule (gr dm−3) (10−5bar−1) (mN m−1)

Mie. Mar. Exp. Mie. Mar. Exp. Mie. Mar. Exp.
Ether 805 899 713 63 32 19.70 15 12 16.4

Chloroform 1293 1445 1492 57 32 9.74 15 11 27.14a

Octanol 906 889 824 27 17 6.82b 32 19 27.53a
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8. Mie Non-Bonded Coarse Grain Potentials

Figure 8.3: Comparison of the non-bonded
potential shapes used for water. Solid line:
Shifted Mie 4-2 potential obtained in this
work. Dashed line: Shifted LJ12-6 poten-
tial used by the original Martini force field[5].
Dash-dotted line: Morse potential obtained by
Chiu et al.[19]. Dotted line: Tabulated poten-
tial obtained by Van Hoof et al.[20].

Diffusion rates

As mentioned in chapter 1 of this thesis, the
diffusion rate of molecules in coarse grain
models is not well understood and hard to
quantitatively predict. To investigate the
effect of a softer potential on the diffusion,
we calculated self-diffusion rates for differ-
ent liquids using the interactions levels of
set A defined in Table 8.3. The obtained
rates are shown in Table 8.5. The diffu-
sion rates obtained with the Mie 4-2 po-
tential are in general higher than those ob-
tained with Martini or the experimental val-
ues. The speed-up of Mie 4-2 compared to
Martini ranges from a factor 2.5 (octanol)
to 3.7 (hexadecane), a rather small range.
Compared to the experimental values the
speed-up factor ranges from 3.4 (octane) to
43.8 (octanol). This large difference is simi-
lar to that found for Martini (see chapter 1).

Table 8.5: Comparison of self diffusion rates
of liquids (10−5 cm2 s−1) obtained for the 4-2
Mie potential (Mie), the current Martini model
(Mar.) and Experiment (Exp.). Values are ob-
tained at 298 K, unless mentioned otherwise.
a. Value has been multiplied by 4 to account
for the mapping of four water molecules to one
bead. b. Values from [6]. Values were extrap-
olated from temperature-dependent data. c.
Values from [30]. d. Values from [31].

Molecule Mie Mar. Exp.
water 16a 5.6a 2.3b

octane 6.7 2.3 2b

hexadecane 2.6 0.7 -
chloroform 12.1 4.3 2.1c

ether 15.6 5.5 4.5c

octanol 5.7 2.3 0.13d

Thermodynamic properties

Tables 8.6 and 8.7 present the free en-
ergies of vaporization (∆Gvap), hydration
(∆Ghyd), and partitioning (∆Gpart) be-
tween water (W) and apolar phases (H, hex-
adecane; C, chloroform; E, ether; O, oc-
tanol) obtained for the three sets of the in-
teraction levels, A, B and C defined in Ta-
ble 8.3.

All three sets of parameters show con-
siderably better agreement with the exper-
imental free energies of vaporization and
hydration than the original Martini model.
The vaporization free energies are more neg-
ative for all bead types. Sets B and C per-
form slightly better for the Nda, Nd and Na
particles. Set B is on average for those par-

ticles a better match (-18 kJ mol-1 against -22 kJ mol-1 for set C). Set C gives slightly better
values for the more apolar particles, although the difference between B and C is small (-15
versus -14 kJ mol-1). Set C gives considerably lower values for the hydration free energies for
Nda, Nd and Na particles, in better agreement with experimental values. Also on the apolar
particles, set C has better agreement (lower energies) with experiment. Whereas the new
potentials perform better for the vaporization and hydration free energies, they on average
perform worse for the different
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8.4. Conclusions

partitioning free energies. Especially the polar (P) particles are too polar and apolar (C)
particles are too apolar. For the intermediate (N) particles set C gives results comparable
to the original Martini force field. The situation is most complicated for octanol, since it
consists of both a polar and a apolar bead. This causes the large difference between the
partitioning free energies of Q0 (-33 kJ mol-1) and P5 (-4 kJ mol-1). In octanol also the
partitioning of N-type particles of set C is too high. For the more apolar (C-type) particles,
the sets A and B perform better than set C. The too negative free energy values for the polar
beads are a direct result of the lower free energies of hydration of those beads. To correct for
this, without changing the hydration free energy, the interaction energy of apolar bead with
the apolar solvents should be increased compared to the current set C.

8.4 Conclusions

The LJ 12-6 potential used for the popular Martini force field does not perform optimal
in some aspects, among which the surface tension and melting temperature of water. In
this work we explored the possibility to replace the current potential by a softer Mie poten-
tial. Potentials have been derived based on the liquid properties and RDFs of water and
octane. Although none of the potentials perfectly reproduce the density, surface tension,
compressibility and RDF of both water and octane, the overall properties do improve when
compared to the current Martini potential. The first solvation shell in the RDF of water
is much less pronounced with all of the tested Mie potentials, albeit still higher than the
mapped atomistic RDF. The first solvation shell of atomistic octane is matched well by the
softer potentials and is even too low for the Mie potential with exponents 3 and 2. Based on
this observation the 4-2 potential was selected. Using this potential the optimal σ and ε for
the water (P4 bead) self interaction are 0.455 nm and 12.3 kJ mol−1, giving a density and
surface tension within one percent of the experimental value. This same sigma is used for all
bead types. Based on the comparison to the density of linear alkanes, ε for the C1 bead self
interaction is adjusted to 5.35 kJ mol−1.

Using the obtained sigma and epsilon values and three sets of estimates for the epsilon
values for the remaining beads, hydration, solvation and partitioning free energies were calcu-
lated for all Martini bead types. Overall the hydration and vaporization free energies improve
in comparison to the Martini force field, whereas the partitioning free energies worsen. Al-
though none of the sets gave completely satisfying free energies, the values are reasonably
close to experimental values and show variation between the sets. In other words, the two in-
teraction levels obtained from the liquid properties of water and octane seem to leave enough
room to tune the remaining interaction levels and bring the free energies in accordance with
the experimental values.

Although the current results obtained with the Mie-potentials are promising there are
many remaining issues. First, the difference between the RDF of water obtained with the
new potential and mapped SPC water, is still considerable. Since a (global) softer potential
worsens the properties of more apolar solvents, such as octane, it might be interesting to use a
separate, possibly non-analytical, potential for the water self-interactions, while maintaining
the current potential for other interactions. Second, although the much too low melting
temperature of water will have no influence on (normal) simulations at room temperature,
other phase transition temperatures, such as the fluid to gel transition of lipid bilayers, might
be affected as well. Since this transition temperature is already quite low in Martini [32],
this would be undesirable. Third, the proposed changes in non-bonded parameters might
have an indirect influence on the bonded interactions. These last two points might require
the re-parametrization of the Martini bonded interactions, a considerable amount of work.
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8. Mie Non-Bonded Coarse Grain Potentials

Currently further efforts are being made to investigate the possibility of combining a
tabulated water potential with the obtained Mie potentials, to find the optimal set of ε
parameters and investigate the influence of the new potential on previously parameterized
molecules, such as lipids and proteins.
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Outlook

The three main focus areas of this thesis (testing of the Martini forcefield, improvements to
the forcefield and application to biological problems.) offer plenty opportunities for further
investigation.

Focus areas 1 & 2: Testing and improving

The study of interactions between single amino acids in the Martini forcefield (chapter 3),
should be taken to a next level by looking at the interactions between whole proteins and
peptides. Two approaches are conceivable here: first, determining the preferred binding
interfaces of protein pairs for which a crystal structure of the complex is known [1] can
elucidate to which extent Martini correctly models the interface between proteins. This
work has recently been started in cooperation with Felipe Franco. Very interesting in this
respect is to study the effect of the new protein parameters proposed in chapter 7 of this
thesis.

Second, it should be tested if in CG models like the Martini forcefield the binding between
(soluble) proteins in general is too strong, as has previously been hypothesized [2]. Comparing
the binding free energy of a small peptide obtained using both atomistic forcefields and the
Martini forcefield could give this insight. Since obtaining a converged free energy of binding
between peptides from atomistic simulations is still a formidable task, it might be sufficient
to restrict the orientations of the proteins and focus on a single interface.

Another informative test of the Martini protein forcefield concerns the simulation of un-
structured peptides. Measuring the average radius of gyration of such a molecule and com-
paring these values to available experimental data allows for testing and improving the coil
parameters. In addition to the rough global information of the radius of gyration, more
specific data is available in the form of secondary structure propensities obtained from NMR
experiments [3]. This test might not only give a better representation of coil regions in
proteins but can even open the way to studying intrinsically disordered proteins [4].

Besides the developments mentioned above major improvements are possible by contin-
uing to look for better CG potentials, as described in chapter 8. One promising option
that deserves further investigation is the combination of (clustered water) structure based
potentials [5] for the interactions between water and thermodynamics based potentials like
the Martini forcefield for all other interactions. Optimally these two types of potentials can
be combined and can additionally be combined with the existing bonded parameters that
are readily available for the Martini forcefield. This would give the best of two types of CG
forcefields, without the need of reparameterizing a complete forcefield.

The development and testing of this next generation Martini forcefield would greatly
benefit from a comprehensive test set, comparing a spectrum of properties for systems con-
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taining some of the many different molecules that have been parametrized in Martini. At a
first glance, the set should contain: i) Vaporization, hydration and partitioning free energy
calculations for all Martini beads. These would have to reproduce the free energies that were
reported in the original Martini paper [6] and form the basis of the forcefield. ii) A set of pure
liquids (e.g.: water, octanol, hexadecane, chloroform and ether), for which properties such as
density, compressibility and self-diffusion rates should be calculated. For water and alkanes
also the surface tensions (vapor/liquid and water/alkane surface tension is of importance. iii)
Single component bilayers containing simple lipids (like DPPC, POPE) measuring properties
like bilayer thickness, area per lipid, tail order parameters, and diffusion rates. iv) Ternary,
phase-separating mixtures (e.g. DPPC:DLiPC:Cholesterol), for which system properties like
the line tension should be calculated. v) A set of small systems to measure properties such
as the binding between amino acids, the partitioning of amino acids over a bilayer and the
Wimbley-White partitioning coefficient. vi) Protein fragments to study secondary structure
characteristics such as helix length, pitch, and coil flexibility. vii) A set of proteins, simulated
with and without elastic network, to study protein stability over time, measuring properties
such as the RMSD, RMSF-profiles and principle components of the dynamics. viii) A set
of miscellaneous (small) molecules, mainly testing the numerical stability of these molecules
and possibly some molecule dependent properties, such as partitioning free energies, location
in a membrane or protein binding.

Focus area 3: Applications

The applications of the Martini forcefield to the study of membrane and protein organization
has proven successful, as described in the chapters 4 and 5. The investigation of the influence
of gangliosides on the domain partitioning of peptides and proteins (chapter 5) is currently
hampered by i) the relatively small size of the simulated systems and the resulting small
liquid ordered and liquid disordered domains. And ii) the use of DLiPC lipids in stead of
the DOPC lipids found in vivo and used in most experiments. The first problem is within
reach of the available computational power today. With respect to the second issue, Cesar
Lopez is currently developing new Martini parameters for DOPC, that will hopefully fix the
lack of domain separation between fully saturated lipids and DOPC.

The addition of more components, like gangliosides, are a first step towards in vivo com-
plexity. The real challenge lies in the simulation of a realistic plasma membrane, containing
dozens of lipids types and possibly even more different proteins. Composing and setting
up such a system will be greatly facilitated by automated tools like the martinize.py script
described in chapter 7 and the insane.py script developed by Tsjerk Wassenaar. Some of the
problems that will have to be solved before setting up such a system are the lack of Martini
parameters for the glycosylphosphatidylinositol (GPI) anchor, a common way to anchor pro-
teins to membranes, and the effect of the cytoskeleton on plasma membranes that is absent
in our current membrane simulations.

The parameters for thylakoid cofactors, presented in chapter 6, in combination with ex-
isting Martini parameters for proteins and parameters for thylakoid lipids recently developed
by Cesar Lopez [7], open the way for simulations of the photo system II in the thylakoid
membrane. For this system many interesting questions are within reach of the Martini model.
Examples are i) how plastoquinone leaves and enters the active site of the protein complex
and how it behaves inside the membrane, ii) identification of specific lipid binding sites
on the protein (similar to the work Clement Arnarez recently did on the respiratory chain
protein complex [8]) and iii) how dynamic the different protein complexes in the thylakoid
membrane are with respect to each other.
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Summary

The organizational principles of life are among the great, unsolved mysteries of today’s
science: How do small, simple molecules such as water, lipids and proteins organize to
form enormously complex organisms, like bacteria, plants or even humans? In this thesis
we studied this complexity by means of computer simulations, a well known but slightly
unorthodox technique to study biological problems. In our simulations we see the self-
assembly of lipids into membranes, the formation of domains within these membranes and,
for the first time, the recruitment of proteins into one of those domains. This domain, known
as the ”liquid ordered” or ”raft” domain, has been hypothesized to play an important role
in many processes in the cell such as signaling.

The length and time scales of these organizational processes (tens of nanometers and
microseconds) are outside the reach of most commonly used computer models. Therefore
we used a computer model, or ”forcefield”, that has been recently developed in Groningen,
dubbed the ”Martini” forcefield. This forcefield combines the required chemical specificity
with computational efficiency by grouping together multiple atoms in super-atoms. This so
called ’coarse graining’ procedure reduces the computational costs of the model by a factor
1000 as compared to atomistic models.

The novelty of this approach requires that the forcefield is constantly being tested and
improved. Therefore, in addition to the applications, this thesis also describes the testing
of the forcefield and the implementation of corrections and new developments. The thesis is
separated in four parts.

In the introductory chapter 1 an historical overview of molecular simulation techniques
is given and the inner workings of the Martini forcefield are introduced.

The second part, consisting of chapters 2 and 3, describes the critical testing of the
Martini protein forcefield. The binding constants of amino acid sidechains are compared
to those obtained with atomistic forcefields and to binding constants obtained from crystal
structures.

The third part describes the application to the study of the organizational principles
of the cell membrane. In chapter 4 we identify the driving forces of partitioning of small
peptides in simple but domain separated bilayers. In chapter 5 we study more complex
bilayer mixtures and find that lipid anchors attached to proteins influence the partitioning
behavior of these proteins. When a small percentage of special lipids, so called gangliosides,
are added, the partitioning is even inverted: peptides that initially partitioned to the liquid
disordered bilayer phase, are now being dragged into the liquid ordered phase.

The final three chapters describe new developments of the Martini forcefield. Chapter 7
details the new parameters for the current protein forcefield. Special topologies are developed
to improve the behavior of polar and charged amino acids and a script to easily setup a
Martini protein system is described. In chapter 6 parameters are developed for the cofactors
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of Photosystem II. These molecules play an important role in the conversion of sunlight into
chemical energy, taking place in the thylakoid membrane of plants ans cyano-bacteria. The
new parameters allow for the study of this system with the Martini model. Finally, chapter 8
describes the search for a better coarse grain potential. This potential will allow future coarse
grain forcefields to even more accurately describe biological molecules and enable the study
of an even wider range of systems with the Martini forcefield.
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Samenvatting

De manier waarop leven zich organiseert, behoort tot de grote, onopgeloste mysteries van de
hedendaagse wetenschap: Hoe kunnen kleine, simpele moleculen zoals water, lipiden en ei-
witten samenkomen om enorm complexe organismen, zoals bacteriën, planten of zelfs mensen
te vormen? In dit proefschrift bestuderen we deze complexiteit door middel van computer
simulaties; een beproefde maar enigzins onorthodoxe methode om biologische vraagstukken
te bestuderen. In onze simulaties zien we de self-assembly van lipiden tot membranen, het
vormen van domeinen binnen deze membranen en, voor de eerste keer, het verzamelen van ei-
witten in een van deze domeinen. Van dit domein, ook wel het ’vloeibaar geordende’ of ’raft’
domein genoemd, wordt gedacht dat het een belangrijke rol speelt bij een verscheidenheid
aan processen binnen de cel, zoals het doorgeven van signalen.

De afstanden en tijdspanne waarop deze organisatieprocessen zich afspelen (tientallen
nanometers en microseconden) vallen buiten het bereik van gebruikelijke computer mod-
ellen (de zogenaamde ’krachtenvelden’). Daarom gebruiken we het recentelijk in Groningen
ontwikkelde ’Martini’-krachtenveld. Dit krachtenveld combineert de benodigde chemische
specificiteit met computationele efficientie door het samenvoegen van meerdere atomen in
superatomen. Deze ’coarse graining’ methode reduceert de computationele kosten met een
factor 1000 in vergelijking met atomistische modellen.

Het gebruik van deze state-of-the-art methode zorgt er ook voor dat het krachtenveld aan
voortdurende testen en verbeteringen onderhevig is. Daarom beschrijft dit proefschrift naast
de eerder beshreven toepassingen ook het testen van het krachtenveld en de implementatie
van correcties en nieuwe ontwikkelingen. Het proefschrift bestaat dan ook uit vier gedeelten.

In het introductie hoofdstuk 1 wordt een historisch overzicht gegeven van moleculaire
simulatie technieken en wordt de werking van het Martini krachtenveld uitgelegd.

In het tweede gedeelte, de hoofdstukken 2 en 3, wordt het kritisch testen van het Mar-
tini eiwitkrachtenveld beschreven. De bindingsconstanten van aminozuur zijketens worden
vergeleken met atomistische krachtenvelden en met bindingsconstanten verkregen uit kristal
structuren.

Het derde gedeelte beschrijft de toepassing van het Martini krachtenveld bij het bestud-
eren van de manier waarop de celmembraan zich organiseert. In hoofdstuk 4 ontrafelen we
de drijvende krachten achter de segregatie van kleine peptiden in simpele, maar in domeinen
gescheiden bilagen. In hoofdstuk 5 bestuderen we complexere bilaag mengsels en zien we dat
het bevestigen van lipide ankers aan eiwitten segregatie gedrag van die eiwitten bëınvloed.
Wanneer een klein percentage gangliosiden, een speciaal soort lipiden, wordt toegevoegd,
inverteert het segregatie gedrag zelfs; peptiden die zich eerst in het ’vloeibaar ongeordende’
domein bevonden, worden nu het ’vloeibaar geordende’ domein ingetrokken.

De laatste drie hoofdstukken beschrijven nieuwe ontwikkelingen met betrekking tot het
Martini krachtenveld. Hoofdstuk 7 beschrijft nieuwe parameters voor het huidige eiwitkracht-
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enveld. Speciale topologieën worden ontwikkeld voor polaire en geladen aminozuren en er
wordt een script beschreven om gemakkelijk een Martini eiwit systeem op te zetten. In
hoofdstuk 6 worden parameters ontwikkeld voor de cofactoren van het fotosysteem II. Deze
moleculen spelen een belangrijke rol bij het omzetten van zonlicht in chemische energie zoals
die plaatsvindt in de thylaköıde membraan van planten en blauwalgen. De nieuw ontwikkelde
parameters maken het mogelijk om deze systemen met het Martini krachtenveld te bestud-
eren. Tot slot beschrijft hoofdstuk 8 de zoektocht naar een betere coarse grain potentiaal.
Dankzij een dergelijk potentiaal kunnen toekomstige coarse grain krachtenvelden biologische
moleculen nog beter beschrijven en kan een nog groter scala aan systemen worden bestudeerd
met het Martini krachtenveld.
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