

 University of Groningen

An Embedded Multiple-Case Study on OSS Design Quality Assessment across Domains
Ampatzoglou, Apostolos; Gkortzis, Antonios; Charalampidou, Sofia; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ampatzoglou, A., Gkortzis, A., Charalampidou, S., & Avgeriou, P. (2013). An Embedded Multiple-Case
Study on OSS Design Quality Assessment across Domains. In EPRINTS-BOOK-TITLE University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/9b47fae8-a95c-4177-9948-ea76222230ba

An Embedded Multiple-Case Study on OSS Design Quality Assessment across
Domains

Apostolos Ampatzoglou, Antonios Gkortzis, Sofia Charalampidou, Paris Avgeriou
Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands

e-mails: a.ampatzoglou@rug.nl; a.gkortzis@rug.nl; s.charalampidou@rug.nl; paris@cs.rug.nl

Abstract - Context: Investing on Open Source Software (OSS)
as a “code reuser”, involves certain risks, such as the difficulty
in understanding the level of OSS design quality Aim: We
investigate the levels of design quality of OSS projects, across
different application domains. Method: We conducted a case
study, which is the most fitting research method for observing
a phenomenon in its real context, which is active for a long
period of time, and for which variables cannot be controlled.
Results: We present the values for seven design quality metrics
of 546 OSS projects, as well as the statistically significant
differences across application domains. Conclusions: The
results of the study suggest that OSS application domains
correlate with several design quality characteristics, in the
sense that projects within one application domain appear to
have similar levels of design quality. In addition to that, the
results reveal application domains with high and low levels of
design quality.

Keywords — design quality; open source; application domain

I. INTRODUCTION
Open source software (OSS) projects can be utilized in

many ways, one of the most important being the white-box
reuse of open source code. Mockus suggests that 53% of
OSS projects have performed reuse activities in 30% of their
development process and that 49% of projects have reused
more than 80% of their code. Additionally, it is suggested
that most reused units have gone through major or minor
modifications in order to be adopted in the target project [1].
However, investing on OSS, as a “code reuser”, involves
certain risks, partly because understanding OSS projects’
quality and predicting the way this quality evolves is
extremely difficult [2]. The main reasons for this is that
developers are not under strict supervision, there are many
feature requests and bug reports that come from different
people, who might use the software under different
perspectives and there are many changes in the community.

In this paper we attempt to shed some light on the level
of OSS projects’ design quality, across different application
domains, using an established metric suite for assessing the
quality of object-oriented designs [3]. With the term design
quality we refer to quality characteristics of classes, objects
and relationships that are measurable at implementation
level, such as size, coupling, complexity and cohesion. To
achieve our goal, we conducted an embedded multiple-case
study that included 546 OSS projects from eight different
application domains. To the best of our knowledge, no other
work compares the quality of OSS projects across

application domains. The rest of the paper is organized
according to a variation of the linear analytic reporting
structure presented by Runeson et al. [4].

II. CASE STUDY DESIGN
In order to assess OSS projects’ design quality we

performed a case study for two reasons. First, Runeson et al.
suggests that case studies, in the software engineering
domain, are observational and used for monitoring projects
and activities in a real-life context [4]. Second, case studies
are used in environments that cannot be controlled, where
the attribute under study is related to many factors [4]. This
study fits the above reasons, because OSS projects are
examined in a real-life context, they cannot be monitored in
isolation and their environment cannot be controlled. The
case study of this paper has been designed according to the
guidelines from Runeson et al. [4].

A. Objectives and Research Questions
The goal of this study, described using the Goal-

Question-Metrics (GQM) approach [5] is to analyze open
source projects for the purpose of evaluation with respect to
the level of design quality on multiple open source
application domains from the point of view of software
developers in the context of OSS white-box reuse.

According to the abovementioned goal we extracted and
stated two research questions that will guide the case study
design and the reporting of the results. The metrics used to
answer the questions are discussed in detail in section II.D.

RQ1: What are the levels of design quality across open
source software domains?
RQ2: Are there statistically significant differences
among the levels of design quality of the studied open
source software domains?

B. Case and Unit Analysis
Case studies are distinguished between single-case or

multiple-case studies and holistic or embedded case studies
[4]. In this paper we performed an embedded multiple-case
study, where the involved contexts are the OSS domains,
the cases are the OSS projects and the units of analysis are
their classes.

C. Case Selection
As mentioned in II.B the cases of our study are open

source projects. In order to gather as many cases as possible,
we have chosen to use a web repository that documents

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.48

255

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.48

255

design quality measurements, namely percerons1 which was
created by one of the authors [6 and 7]. The repository was
initially created in 2009, as a catalogue of design pattern
instances, which were accompanied by quality assessment
data for the design pattern participating classes. Later, the
repository was extended by adding a search engine for open
source software components and by exploring the design
quality of additional OSS projects. At this moment, the
repository is available through a list of web services that
help open source software developers and software
development companies in general to adopt open source
software in their product development. At this point there
are two main service categories that are available inside
Percerons: Percerons Source Code Search Engine and
Percerons Open Source Software Quality Assurance.

From that repository, we have been able to extract data
about eight different open source software application
domains2. In total, the repository shares data on 546 open
source projects, of different types of release (alpha, beta,
stable) spread across the eight software application
domains2. The selected cases of our study conform to the
four propositions on case selection by Verner et al. [8]:
measurements on the design quality of an OSS project can
be taken at any time; they are precise, because of the clarity
in the definition of used metrics and they are clearly
relevant to the case study research questions.

D. Data Collection
The dataset that was created after selecting the cases

consisted mainly of numerical data. Each project was
characterized by 10 variables: [A01] name, [A02] version,
[A03] application domain2 and [A04] - [A10] metric scores
on design quality characteristics. We adopted the metrics on
design quality from the Chidamber & Kemerer suite [4],
which is one of the best known metric suites for measuring
object-oriented design quality. The suite involves one
coupling (CBO: Coupling between objects), one cohesion
(LCOM: Lack of Cohesion of Methods), two inheritance
(DIT: Depth of Inheritance Tree, NOCC: Number of
Children Classes) and two complexity metrics (WMC:
Weighted Method per Class, RFC: Response For a Class),
that are described next in this order.

CBO measures the number of classes that the class is
connected to, in terms of method calls, field accesses,
inheritance, arguments, return types and exceptions. High
coupling is related to low maintainability and
understandability [9]. LCOM measures the dissimilarity of
pairs of methods, in terms of the attributes being accessed.
High Lack of Cohesion is an indicator of violating the single
responsibility principle [10], which suggests that each class
should provide the system with only one functionality. DIT
and NOCC quantify the maximum depth and the average
width of each hierarchy in the system. High values of these
metrics imply structures that are difficult to understand and

1 http://www.percerons.com
2 The software domain names are derived from sourceforge.net, where the open source
projects are being developed and maintained. The domains are (in the parenthesis we
remark the number of OSS projects considered from each application domain): Audio
and Video (50), Games (135), Business & Enterprise (50), Home & Education (32),
Science & Engineering (40), Communications (59), Development Tools (125) and
Graphics (55).

maintain [9]. On the other hand, low or zero metric scores,
imply that the designers have not benefited from one of the
main object-oriented advantages. WMC is calculated as the
average Cyclomatic Complexity (CC) among methods of a
class. High WMC results in difficulties in maintaining and
understanding the system [9]. RFC calculates how many
methods an object can call (including the methods of the
class itself), as an indication of the amount of functionality
that this method can provide. High RFC values, indicate
classes that provide much functionality to the system, but
are considered complex [11].

Finally, we examine an additional design metric related
to size, i.e. Number of Classes (NOC), in the sense that it
provides an estimation of the amount of functionality
offered by the system [11]. The size of the system needs to
be taken into account, since smaller systems are expected to
be less coupled, less complex, to have less classes as leafs in
hierarchies and use less inheritance trees. For example, the
range of values of the CBO metric is [0, NOC-1] and the
range of values for the RFC is [0, class methods + coupled
class methods], where the range of value of coupled class
methods is again [0, NOC-1]. Thus, assessing quality
characteristics (apart from cohesion), without taking into
account the size of the system would be unfair for
application domains with larger projects.

E. Data Analysis
The analysis phase of our study has employed

descriptive statistics and non-parametric hypothesis testing,
because none of the variables [A04] – [A10] follow a
normal distribution or are homogenous and because non-
parametric tests are less affected by outliers. In order to
explore RQ1, we use descriptive statistics on variables [A03]
(for grouping) and [A04]-[A10]. In order to make the charts
more readable, variables [A04]-[A10] have been
normalized. More specifically, variables have been
transformed in order for their range value to be [0, 1], by
subtracting the minimum value and dividing with the
maximum value. Finally, in order to investigate the
existence of possible statistical differences in design quality
across different domains, we performed Kruskal-Wallis
tests, with the domain [A03] as grouping variable, and the
metric scores [A04] – [A10] as testing variables.

III. RESULTS
In this section we present and discuss the results of the

case study. In Figure 1 we present error bars for every design
quality metric that has been considered. This provides
indications on the mean value of each metric across different
application domains and at the same time depicts
information on the 95% confidence interval (CI) of the
corresponding variables.

Next, in order to provide a more holistic presentation,
we combine the seven metrics into one radar chart per
application domain. In the radar chart of Figure 1 the axes
represent the normalized value of the metric scores, whereas
the two series represent the OSS application domain under
study and the average values from all studied OSS projects.

256256

 Figure 1 Design Quality Metrics Across different OSS Domains

The most important results concerning RQ1 are:
• The application domain with the best levels of design

quality appears to be Communications, whose average
metrics scores are better (i.e. lower) than the average
OSS project. However, Communication projects are
among the smallest in terms of size.

• The application domain with the worst levels of design
quality appears to be Home and Education, whose
projects, although not among the largest, appear to be
the most complex, the least coherent and among the
most coupled systems. However, it consistently had the
largest variance in metric values, which is an indicator
that this category is too broad and should be
decomposed for further analysis. In fact in Sourceforge
the category consists of four very diverse sub-categories.

• The largest systems are Science and Engineering,
Development Tools and Business and Enterprise
projects. Among them, the best levels of design quality
are provided by Development Tools, which can be due to
the fact that they are created by developers with strong
software engineering background.

• Games, Graphics, Audio and Video applications that are
all in the field of entertainment, and are expected to
share some common modules, present similar metrics
(size, complexity and inheritance).

• OSS Games seems to exhibit good design quality
metrics, with respect to the average OSS project, which
is rather surprising, in the sense that literature suggests
that games are usually poorly designed [12].
The above observations are only valid for our sample

and not the population of OSS projects, since the statistical
significance has not been examined. In order to identify if
the above mentioned differences are statistically significant
we conducted seven independent Kruskal-Wallis tests, and
present their results in Table I.

TABLE I. STATISTICAL SIGNIFICANCE (KRUSKAL-WALLIS TESTS)

Null Hypothesis (H0) Sig Decision
Distribution of NOC is the same across different domains 0.000 Reject H0

Distribution of WMC is the same across different domains 0.696 Retain H0

Distribution of DIT is the same across different domains 0.000 Reject H0

Distribution of NOCC is the same across different domains 0.005 Reject H0

Distribution of CBO is the same across different domains 0.089 Retain H0

Distribution of RFC is the same across different domains 0.012 Reject H0

Distribution of LCOM is the same across different domains 0.692 Retain H0

The main findings from RQ2 are summarized below:
• OSS projects classified under the same application

domain are similar with respect to some design quality
attributes, e.g. size, inheritance and response for a class.

257257

• Complexity, cohesion and coupling appear to be uniform
across different OSS application domains.

• The main design quality metrics that are related to
maintainability and understandability [9 and 10], i.e.
CBO, WMC, LCOM appear not to differ across domains.

• The main design quality metrics that are related to the
provided functionality [11], i.e. NOC, RFC appear to
differ across domains. This result makes sense as
projects within the same application domain should more
or less handle similar requirements. For example, in
terms of functionality a CRM is expected to be more
similar to an ERP, than a First Person Shooter game.

IV. DISCUSSION

The results of this study can provide useful information
both to researchers and practitioners. Concerning
researchers, more and more empirical studies use OSS
projects as objects. The results of the study can guide
researchers in searching for appropriate projects as objects
in their studies. For example, a research on refactoring
opportunities can use objects from the Home and Education
application domain, as they are more likely to be poorly
designed. Furthermore, the results point out potential
weaknesses in the open source development process, that
are uniform in almost all projects, i.e. high complexity, low
cohesion and high coupling. Methods that enhance these
quality characteristics, such as design patterns and
refactorings should be further studied by researchers.
Concerning practitioners, the results indicate application
domains, where it is more possible to extract more
maintainable and reusable components. Moreover, the
results indicate application domains, whose projects are
more understandable, and can be used from developers as a
way for understanding past design solutions. For example, a
software engineer can use the know-how inside a well-
designed development tool, so as to understand how java
byte code can be accessed in a metric tool.

V. VALIDITY EVALUATION
This section discusses construct validity, reliability, and

external validity for this study. Internal validity is not
applicable as the study does not examine causal relations.

The main threat concerning construct validity has to do
with the fitness of selected metrics for assessing design
quality characteristics of OSS projects. The selected metric
suite has been rigorously validated with professional
software engineers and has been cited in over thirty five
hundred scientific articles; thus the suite is credible as an
indicator of the quality of object-oriented designs [5]. An
additional threat in this category, concerns OSS projects’
classification, as it is a central part of the RQs. To mitigate
this threat we did not derive the application domains on our
own but we reused the classification schema from
Sourceforge, the most well-known OSS repository. A final
threat to construct validity is the version type of release, i.e.
alpha, beta, stable. The different release strategies that might
be used among OSS projects, might provide different levels
of design quality. However, the large number of software
examined in this work provide a representative sample of

the population, with respect to the percentage of each
release type per domain.

In order to mitigate reliability two different researchers
were involved in the data collection and one double-checked
the results of the other. Furthermore, one researcher double-
checked the results of the data analysis performed by
another researcher. Finally, all primitive data are publicly
available in the percerons repository and the study design is
documented in the paper. Concerning external validity we
identify two threats. Firstly, we investigated OSS projects
hosted in only one repository. Projects of different
repositories, such as github, might have different levels of
quality. Additionally, all the OSS that have been
investigated have been written in Java and there is a
possibility that results are different for other OO languages.
An additional threat is that the projects have been selected
for the percerons repository according to their success in the
community. In that sense, unsuccessful projects have not
been examined. However, we believe that unsuccessful
projects are highly unlikely to be reused, so they can safely
be excluded from the study.

VI. REFERENCES
[1] A. Mockus, “Large-scale code reuse in open-source software”, 1st

International Workshop on Emerging Trends in FLOSS Research and
Development, IEEE, pp. 7-12, 20-26 May 2007, Minesota, USA.

[2] A. Mavridis and I. Stamelos, "Real options as tool enhancing
rationale of OSS components selection", 3rd International
Conference on Digital Ecosystems and Technologies, IEEE, pp.613-
618, Instabul, Turkey, 1-3 June 2009.

[3] S. R. Chidamber, and C.F. Kemerer, "A metrics suite for object
oriented design" Transactions on Software Engineering, IEEE, 20 (6),
pp.476-493, June 1994.

[4] P. Runeson, M. Host, A. Rainer and B. Regnell, “Case Study
Research in Software Engineering: Guidelines and Examples”, John
Wiley & Sons, 2012 .

[5] V. R. Basili, G. Caldiera and H. D. Rombach, “Goal Question Metric
Paradligm” inside book: Ensyclopedia of Software Engineering, John
Wiley & Sons, pp. 528-532, 1994.

[6] A. Ampatzoglou, A. Gortzis, I. Deligiannis and I. Stamelos, "A
methodology on extracting reusable software components from Open
Source Games", 16th International Academic MindTREK Conference,
ACM, pp. 93-100, 3-5 Octomber 2012, Tampere, Finland.

[7] A. Ampatzoglou, O. Michou and I. Stamelos, "Building and Mining a
Repository of Design Pattern Instances: Practical and Research
Benefits", Entertanment Computing, Elsevier, 4(2), pp. 131-142,
April 2013.

[8] J. M. Verner, J. Sampson, V. Tosic, N. A. A. Bakar, B. A.
Kitchenham, "Guidelines for industrially-based multiple case studies
in software engineering," 3rd International Conference on Research
Challenges in Information Science, IEEE, pp. 313-324, 22-24 April
2009, Fes, Morocco.

[9] A. Van Koten and A.R. Gray, “An application of bayesian network
for predicting object-oriented software maintainability”, Information
and Software Technology, Elsevier, 48 (1) pp. 59–67, January 2006.

[10] R.C. Martin, “Agile Software Development: Principles, Patterns and
Practices”, Prentice Hall, Upper Saddle River, USA, 2003.

[11] M. Morisio, I. Stamelos, V. Spahos, D. Romano, "Measuring
functionality and productivity in Web-based applications: A case
study", 6th International Symposium on Software Metrics, IEEE,
pp.111-118, 4-6 November 1999, Florida, USA.

[12] A. Ampatzoglou and I. Stamelos, “Software engineering research for
computer games: A systematic review”, Information and Software
Technology, Elsevier 52 (9), pp. 888–901, September 2010.

258258

