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Introduction 

  



Shock is defined as global tissue hypoxia secondary to an imbalance between 

systemic oxygen delivery (DO2) and oxygen demand (VO2). Unrecognized and untreated 

global tissue hypoxia increases morbidity and mortality. Accurate detection of global tissue 

hypoxia is therefore of vital importance. Physical findings, vital signs, measuring central 

venous pressure (CVP) and urinary output are important, but insufficient for accurate 

detection of global tissue hypoxia [1-3]. Measurement of mixed venous oxygen saturation 

(SvO2) from the pulmonary artery (PA) has been advocated as an indirect index of tissue 

oxygenation [4]. However, as a result of an extensive debate in literature [5-7], the use of the 

pulmonary artery catheter (PAC) has become, justifiable or not [8], somewhat unpopular. In 

contrast, insertion of a central venous catheter in the superior vena cava via the jugular or 

subclavian vein is considered standard care in critically ill patients. Just as SvO2, the 

measurement of central venous oxygen saturation (ScvO2) has been advocated as a 

derivative of global tissue hypoxia. Venous oxygen saturations have been subject of 

research for over fifty years, but especially over the last decade the amount of literature 

describing changes in ScvO2 and SvO2 in critically ill patients increased substantially.  

The main reason for the revival of interest in venous oxygen saturations was the 

publication of the so-called Early Goal-Directed Therapy (EGDT) study by Rivers et al [9]. In 

this study an impressive mortality reduction was achieved in favour of the patients treated 

according to the EGDT protocol which included ScvO2-guided therapy. This led to high 

expectations with respect to the use of central venous oxygen saturation as a therapeutic 

goal. In a strict sense the goal would be a ScvO2 value ≥70% which deems a lower ScvO2 at 

patient presentation. After a literature search on the clinical use of venous oxygen 

saturations in various settings, chapter 2 describes the occurrence of low ScvO2 and SvO2 

values in 340 critically ill patients at intensive care unit (ICU) admittance. Central question: is 

EGDT still commonly indicated as suggested by the Surviving Sepsis Campaign Guidelines 

[10], if a minority of septic patients reveals low venous oxygen saturations? 



The PAC, together with the defining variables it provides including SvO2, has been a 

fundamental hemodynamic monitoring tool in ICUs for over 40 years. Consequently, 

replacement of SvO2 by ScvO2 in diagnostic and therapeutic strategies asks not only for 

arguments but also for nuance. In other words, are both values equal or interchangeable, in 

septic shock especially, and is this clinically relevant? In chapter 3 the generally adopted 

difference of 5% between SvO2 and ScvO2 is addressed [11-13], also paying attention to the 

question on the use of both variables in patients with septic shock. 

In clinical practice, when insertion of a central venous catheter in the superior vena 

cava via the jugular or subclavian vein is impossible, the alternative central venous access is 

the femoral vein. Unfortunately, monitoring ScvO2 is then out of the question. However, as 

shown in a recent survey, femoral venous oxygen saturation (SfvO2) is used during the first 

hours of treatment [14]. Femoral access is quick and relatively safe and potentially very 

useful in the care of acutely ill patients, especially if SfvO2 would provide diagnostic 

information in accordance with ScvO2. The question whether SfvO2 is such an attractive 

alternative is addressed in chapter 4. In 3 different populations the statistical agreement is 

described: stable cardiac outpatients, patients undergoing high-risk surgery, and critically ill 

ICU patients. 

Venous oxygen saturations are the best surrogates for global tissue hypoxia at this 

point and when used appropriately they are both useful diagnostic tools and of prognostic 

value. However, venous oxygen saturations do not have the exclusive right to these 

entitlements, because lactate has to be considered too. This product of metabolism, i.e. 

glycolysis, has been monitored in ICUs for many years. It is known that in anaerobic 

conditions lactate concentrations increases. As a consequence hyperlactataemia may serve 

as a marker for tissue hypoxia as well. But the pathophysiology of hyperlactataemia is 

complex and the meaning of hyperlactataemia in critically ill patients remains under debate 

[15,16]. This controversy includes the use of lactate as a marker of hypoxia [17]. 



Nevertheless, the prognostic value of lactate in this context has not been questioned as 

extensively.  

Clinical application of point-of-care measurements of arterial blood gas, glucose and 

lactate has been spread over the years in the emergency department (ED), operating room 

(OR) and ICU. With the introduction of hand held lactate metres it became possible to 

measure lactate outside these facilities or even outside the hospital. In chapter 5, the results 

are reported of a feasibility study on the use of such hand held metres in a prehospital 

setting. We compared the prognostic value of lactate with the prognostic value of vital signs 

in both shock and non-shock patients. This is relevant because if lactate would outperform 

vital signs, in non-shock patients especially, then lactate could be added to the current 

diagnostic pallet available to paramedics. 

In a later stage, i.e. after ICU admittance, persistence of hyperlactataemia could be a 

sign of on-going disease without apparent improvement. Hyperlactataemia is associated with 

multiple organ dysfunction syndrome (MODS) [18-21], which in turn influences the outcome 

of the septic patient [10]. Additionally, persistence of lactate levels above normal is 

associated with higher mortality rates in patients with severe sepsis or septic shock 

[20,22,23]. Therefore, it is possible that duration of hyperlactataemia  outperforms single 

lactate measurements in predicting outcome. In chapter 6 the relationship between 

hyperlactataemia  and organ failure as described by the Sequential Organ Failure 

Assessment (SOFA) is described in an ICU population of 2251 patients [24-26], in particular 

in relation to final outcome. 

Both ScvO2 and lactate are, to a greater or lesser extent, a reflection of a possible 

oxygen debt in critically ill patients. Above that, both values have been used in a diagnostic 

and therapeutic manner. However, normal values do not guarantee adequate tissue 

oxygenation and other circulatory parameters are needed to evaluate either treatment with 

catecholamines or resuscitation efforts altogether. One parameter that has been described in 



this context is the central venous-to-arterial carbon dioxide difference (pCO2 gap) [27]. The 

pCO2 gap reflects adequacy of blood flow [28,29], i.e. cardiac output (CO). CO, combined 

with other variables such as vital signs and ScvO2, gives us an idea on cardiac performance 

and physiological reserve of the patient. Hence, the pCO2 gap may be of additional value 

during resuscitation of critically ill patients. The final chapter of this thesis explores the place 

of the pCO2 gap in the resuscitation of patients with severe sepsis or septic shock during the 

first 24 hours after ICU admittance. 
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Abstract 

 Shock is defined as global tissue hypoxia secondary to an imbalance between 

systemic oxygen delivery and oxygen demand. Venous oxygen saturations represent this 

relationship between oxygen delivery and oxygen demand and can therefore be used as 

additional parameter to detect an impaired cardiorespiratory reserve. However, before 

appropriate use of venous oxygen saturations one should be aware of its physiology. This 

article describes the physiology of venous oxygen saturations and the use of both mixed 

venous oxygen saturation and central venous oxygen saturation in a variety of clinical 

settings.  

 Although venous oxygen saturation has been subject of research for many years, 

increasing interest arose especially in the last decade for its use as a therapeutic goal in 

critically ill patients and during the perioperative period. Also, there has been debate on 

differences between mixed and central venous oxygen saturation and their 

interchangeability. Both mixed and central venous oxygen saturation are clinically useful but 

both variables should be used with insightful knowledge and caution. In general, low values 

warn the clinician about cardiocirculatory or metabolic impairment and should urge for further 

diagnostics and appropriate action, whereas normal or high values do not rule out persistent 

tissue hypoxia. The use of venous oxygen saturations seems especially useful in the early 

phase of disease or injury. Whether venous oxygen saturations should be measured 

continuously remains unclear. Especially continuous measurement of central venous oxygen 

saturation as part of treatment protocol has shown to be a valuable strategy in the 

emergency department and in cardiac surgery. In clinical practice venous oxygen saturations 

should always be used in combination with vital signs and other relevant endpoints. 



Methods 

 We performed a search of the PUBMED database from 1980 to 2010 using 

combinations of the following terms: [SvO2, ScvO2, venous oxygen saturation, venous 

saturation, critically ill, shock, septic shock, high risk surgery, surgery, operation]. The articles 

published in English were included when published in a peer-reviewed journal. The clinical 

investigations had to concern adults. Additionally, bibliographies of relevant articles were 

screened as well. 

 

Physiology 

Understanding the physiology of venous saturations is essential for its effective 

application in critically ill patients and during the perioperative period. 

SvO2 depends on arterial oxygen saturation (SaO2), the balance between oxygen 

demand (VO2) and cardiac output (CO), and hemoglobin levels. According to the Fick 

principle [8], SvO2 can be described by the following formula: 

   SvO2  =  [SaO2  –   VO2 / CO ] [1 / Hb x 1,34] 

Increased VO2 will be compensated by increased CO. If this is not adequate, i.e. if O2 

demand is not met, elevated oxygen extraction in the peripheral tissues occurs and 

consequently SvO2 will drop. Thus, SvO2 reflects the balance between oxygen delivery and  

oxygen demand [9]. The normal range for SvO2 is 65 to 75% [4,10]. Low SvO2 is predictive of 

bad outcome [4,11], whereas normal or supra normal SvO2 (or ScvO2) values do not 

guarantee adequate tissue oxygenation [12,13]. If tissue is not capable of extracting oxygen, 

e.g. in case of shunting and cell death, venous return may have high oxygen content despite 

persistent cellular hypoxia. 



A variety of physiological and pathological changes may influence venous saturation 

(figure 1) and thus require different therapeutic interventions. Recognition of the aetiology of 

any derangement is obligatory for the safe use of venous saturation as therapeutic goal. 

 

 

 

Figure 1. Multiple physiologic, pathologic and therapeutic factors may influence the value 

of central venous oxygen saturation. 

 

Central versus mixed venous oxygen saturation (table 1) 

In general there has been considerable debate on equality or interchangeability of 

ScvO2 and SvO2 [14-16]. In critically ill patients substituting SvO2 by ScvO2 results in large 

variability [16-21]. This could in part be explained by modifications of blood flow distribution 
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and oxygen extraction by brain and splanchnic tissue. In this situation, ScvO2 may provide 

the false impression of adequate body perfusion. Also, whether a positive ScvO2 – SvO2 

gradient can be used as a marker of greater O2 utilization and predictor of survival remains 

subject of debate [20,22,23]. 

In contrast, others have stated that ScvO2 could indeed be used as a substitute for 

SvO2 [24-26]. For example, Reinhart et al. [24] performed continuous measurements of 

venous oxygen saturations in anesthetized dogs over a wide range of hemodynamic 

conditions, including hypoxia, haemorrhage and resuscitation, and described close tracking 

between ScvO2 and SvO2 [24]. However, correlation was lowest during hypoxia, one of the 

areas of greatest clinical interest. Nevertheless, precise determination of absolute values for 

SvO2 from ScvO2 was not possible, as was seen before [21,27-29]. 

 Additionally, the relationship between cardiac output (CO) or cardiac index (CI) and 

venous saturations has been evaluated in critically ill patients. So far, for both SvO2 and 

ScvO2 the results were inconclusive. Larger trials are needed before clinical 

recommendations can be made regarding their clinical use [19,30-33]. 

  



Table 1. Studies comparing mixed venous oxygen saturation and central venous oxygen saturation 

study design and subjects results conclusions 

 

Varpula et al [14] n=16; septic shock; ICU 

72 paired samples 

mean SvO2 below mean ScvO2 at all time points; 

 bias of difference 4.2%; 

95% limits of agreement -8.1 to 16.5%; 

difference correlated with CI and DO2 

difference between ScvO2 and SvO2 varied highly; 

SvO2 cannot be estimated on basis of ScvO2 

 

 

 

Martin et al [16] n=7; 580 comparative measurements; 

critically ill patients; ICU 

with and without interventions 

 

difference were equal or greater than 5%  

in 49% during periods of stability and 

in 50% during periods with interventions 

ScvO2 monitoring not reliable 

Chawla et al [17] n=32 postsurgical, n=21 medical; 

ICU 

SvO2 consistently lower than ScvO2; 

mean (±SD) bias -5.2 ± 5.1% 

SvO2 and ScvO2 not equivalent; substitution of ScvO2 

for SvO2 in calculation of VO2 resulted in  

unacceptably large errors 

 

Kopterides et al [18] n=37; septic shock mean SvO2 below mean ScvO2;  

mean bias -8.5%; 

95% limits of agreement -20.2 to 3.3% 

 

ScvO2 and SvO2 not equivalent in septic shock; 

calculation of VO2 resulted in unacceptably  

large errors 

Ho et al [19] n=20; cardiogenic or septic shock ScvO2 overestimated SvO2 with mean bias 6.9%; 

95% limits of agreement -5.0 to 18.8%; 

changes did not follow the line of perfect agreement 

 

ScvO2 and SvO2 are not interchangeable numerically 

van Beest et al [20] n=53; 265 paired samples;  

sepsis; ICU 

multi centre 

mean SvO2 below mean ScvO2 at all time points;  

bias of difference 1.7% 

95% limits of agreement -12.1 to 15.5%;  

identical results for change in ScvO2 and SvO2 

 

ScvO2  does not reliably predict SvO2 in sepsis 

trend of ScvO2 not superior in this context 

 

Scheinmann et al [21] n=24; critically ill cardiac patients; 

CCU 

ScvO2 > SvO2 in shock 

changes in ScvO2 reflect changes in SvO2 (r=0.90); 

ScvO2 from right atrium is similar to SvO2 (r=0.96) 

SvO2 consistently lower than ScvO2 

poor correlation in heart failure or shock 

changes in ScvO2 reflect changers in SvO2 

 

Dueck et al [25] n=70; 502 comparative sets; 

neurosurgery 

95% limits of agreement 6.8% to 9.3% for single values 

correlations between changes of SvO2 and ScvO2:  

r=0.755, p < 0.001 

 

numerical ScvO2 values not equivalent to SvO2 in 

varying hemodynamic conditions; trend of ScvO2 

may be substituted for the trend of SvO2 

Reinhart et al [26] n=32; critically ill patients; ICU 

continuous parallel measurements 

ScvO2 closely paralleled SvO2; 

ScvO2 averaged (±SD) 7±4% higher than SvO2 

ScvO2 changed in parallel in 90% when SvO2 changed > 5% 

 

continuous fiberoptic measurement of ScvO2 

potentially reliable tool to rapidly warn of acute 

change in the oxygen supply / demand ratio 

Ladakis et al [28] n=31 surgical and n=30 medical; 

critically ill patients; ICU 

significant difference between mean ScvO2 and SvO2 

r=0.945 for total population 

 

ScvO2 and SvO2 are closely related and  

interchangeable for initial evaluation 

Tahvanainen et al [29] n=42; critically ill patients; ICU 

ScvO2 as representative of real 

changes in pulmonary shunt 

 

correlation between PA blood samples and both  

superior vena cava and right atrial blood samples 

ScvO2 can replace SvO2; 

exact SvO2 value can only be measured from PA 

 

CCU, cardiac care unit; ScvO2, central venous oxygen saturation; SvO2, mixed venous oxygen saturation; ICU, intensive care unit; VO2, oxygen consumption; CI, 

cardiac index; DO2, oxygen delivery; PA, pulmonary artery. 

  



Clinical use of venous oxygen saturations (table 2) 

Cardiac failure 

Venous oxygen saturations have been shown to have diagnostic, prognostic, and 

therapeutic qualities in critically ill patients having an acute myocardial infarction. Mixed 

venous oxygen saturation was particularly reduced in patients with cardiogenic shock or left 

ventricular failure. Patients with cardiac failure are unable to increase cardiac output during 

periods of increased oxygen need. Changes in oxygen demand will therefore only be 

compensated by changes in oxygen extraction in the same direction and indicated by inverse 

changes in venous oxygen saturations. Consequently, a drop in venous oxygen saturations 

will be a marker of cardiac deterioration. Patients with low venous oxygen saturations in early 

disease stage may considered to be in shock [34,35]. Also, patients with sepsis and known 

decreased left ventricular function seem to benefit from early goal-directed therapy (EGDT) 

when treated for sepsis [36] according to the Surviving Sepsis Campaign guidelines [37]. 

Finally, in the setting of cardio pulmonary resuscitation (CPR) a ScvO2 of 72% is highly 

predictive of return of spontaneous circulation [38]. 

Trauma 

In the initial assessment of trauma patients an adequate judgement of possible blood 

loss is essential. Compared to conventional parameters venous oxygen saturations are 

superior in predicting blood loss [39,40]. Moreover, after major trauma with brain injury ScvO2 

values below 65% in the first 24 hours are associated with higher mortality (28-days 

mortality; 31.3% vs. 13.5%) and prolonged hospitalization (45 vs. 33 days) [41].  

  



Table 2. Studies describing central venous oxygen saturation in clinical settings 

study design and subjects results conclusions 

 

Rady et al [1] n=36; critically ill patients; ED additional therapy is needed after hemodynamic 

stabilization to normal blood pressure and heart rate 

 

ScvO2 and can be utilized to guide 

thearpy  

Pope et al [13] n=619 registries treated with EGDT 

observational study 

groups: ScvO2 < 70%, ScvO2 71-89%, ScvO2 > 90% 

multivariate analysis: initial high ScvO2 higher mortality 

 

also high ScvO2 values predictive for 

mortality 

Ander et al [35] controls n=17, high-lactate group 

n=22, low lactate group n=5; 

chronic congestive heart failure; 

ED 

ScvO2 lower in high lactate group than in low lactate group 

(32±12% vs. 51±13%) and control (60±6%); after treatment 

significant decrease of lactate and increase in ScvO2  

in the high lactate group compared to low lactate group 

 

once patients with decompensated  

end-stage congestive heart failure 

are identified, aggressive alternative 

management is needed 

Scalea et al [40] n=26, trauma patients with 

suggested blood loss 

despite stable vital signs 39% of the patients had ScvO2 <65%;  

these patients required more transfusions; 

superiority ScvO2 to predict blood loss  

 

ScvO2 reliable and sensitive method for  

detecting blood loss; 

it is a useful tool in the evaluation 

 

Di Filippo et al [41] n=121 brain injury after trauma; 

non-controlled study 

nonsurvivors showed higher lactate, lower ScvO2 values; 

patients with ScvO2 ≤65% showed higher 28-day mortality, 

ICU LOS and hospital LOS than patients with ScvO2 >65% 

 

ScvO2 <65% in first 24 hours in patients 

with major trauma is associated with  

prolonged LOS and higher mortality 

 

Pearse et al [65] n=118, major surgery after multivariate analysis lowest CI and lowest ScvO2 were 

associated with post-operative complications;  

optimal ScvO2 cut-off for morbidity prediction:64.4% 

oxygen consumption is also an important 

determinant of ScvO2; reductions in 

 ScvO2 independently associated with 

post-operative complications 

 

Rivers et al [73] n=263; RCT; EGDT vs. controls 

severe sepsis, septic shock; ED 

EGDT (goal: ScvO2 ≥ 70%) showed better survival  

(absolute 16%), lower lactate; more fluids,  

red cell transfusion and inotropics 

 

EGDT provides benefits to outcome 

Trzeciak [74] n=16 pre-EGDT 

n=22 EGDT 

 

less PAC utilization; more fluids and dobutamine used;  

similar costs 

EGDT endpoint can reliably be achieved 

Kortgen [75] n=30 controls; n=30 septic shock 

implementation procedure 

septic shock 

use of dobutamine, insulin, hydrocortisone and aPC 

increased; amount of fluids and packed bloods cells 

unaffected; mortality in lower after implementation 

 

implementation of sepsis bundle feasible 

survival benefit 

Jones [76] n=79 pre-intervention 

n=77 post-intervention 

ED 

controls: more renal failure at baseline 

greater crystalloid volume and vasopressor infusion 

mortality 18 vs. 27% 

 

mortality reduction 

Micek [78] n=60 before implementation  

n=60 after implementation 

ED 

more appropriate antimicrobial regimen 

more fluids, more vasopressors 

less vasopressor by time of transfer to ICU 

 

shorter hospital LOS  

lower 28-day mortality 

Shapiro [80] n=51 historical controls 

n=79 septic shock 

patients received more fluids, earlier antibiotics, 

more vasopressors, tighter glucose control; 

not more packed blood cells 

 

implementation sepsis protocol feasible 

no survival benefit 

Jones et al [94] multicentre, randomized; n=300 

severe sepsis, septic shock 

goals: lactate clearance vs. ScvO2 

 

higher in hospital mortality ScvO2;  

no significant difference (predefined -10% threshold) 

no significant different mortality 

between normalization of lactate 

clearance compared to normalization 

ScvO2 

ED, emergency department; ScvO2, central venous oxygen saturation; EDGT, early goal-directed therapy; RCT, randomized controlled trial; ICU LOS, length of stay in 

intensive care unit; hospital LOS, length of stay in hospital; CI, cardiac index; SAPS II, simplified acute physiology score; ICU, intensive care unit. 



High-risk surgery 

In cardiac surgery patients, SvO2 has been shown to be superior to mean arterial 

pressure (MAP) and heart rate as qualitative warning sign of substantial hemodynamic 

deterioration. However, results on predictive value of SvO2 for CO in clinical settings are 

inconsistent [42-44]. Nevertheless, continuous SvO2 monitoring enables the early diagnosis 

of occult bleeding or could show poor tolerance of a moderate anaemia due to the inability of 

the patient with chronic heart dysfunction or preoperative negative inotropic treatment (e.g. 

beta-blockers) to increase CO in the face of anaemia. Furthermore, temporary decreases of 

SvO2 values after cardiac surgery are of prognostic value and may predict the development 

of arrhythmias [45-47]. Also, probably due to increased oxygen extraction ratio (O2ER) 

decreased SvO2 values during weaning from mechanical ventilation are predictive for 

extubation failure [48-50]. Finally, good predictive values of SvO2 for mortality have been 

described [51,52]. This suggests beneficial effects of SvO2 monitoring, at least during and 

after cardiac surgery. 

Goal Directed Therapy (GDT) has been shown to improve outcome after major 

general surgery [53] Originally, the goals in the protocol group were supra-normal 

hemodynamic and oxygen transport values (CI > 4.5 L/min/m2, DO2 > 600 ml/min/m2, VO2 > 

170 ml/min/m2). In this group a significant reduction of complications, hospital stay, duration 

of mechanical ventilation and mortality was achieved when the PAC was placed 

preoperatively [54]. However, such strict predefined concept holds certain risks and should 

not be translated to all patients [55-57]. Meta-analyses of hemodynamic optimization in high 

risk patients revealed hemodynamic optimization to be beneficial only when interventions 

were commenced before development of organ failure [58,59]. Several of the studies 

described showed improved outcome, possibly including long-term survival, when GDT was 

commenced before surgery [54,60-62]. Maybe due to methodological shortcomings, a multi-

centre trial that randomised surgical patients to PAC guided or conventional management 

failed to show a difference in outcome [63,64]. More recently a reduction in post-operative 



complications and duration of hospital stay was described when GDT was used post-

operatively [65-67]. However, the abovementioned findings do not provide definite answers 

on how to use venous saturations as a therapeutic goal. Only one interventional trial used 

ScvO2 as a therapeutic goal in perioperative care [68]. After achieving predefined goals for 

arterial pressure, urine output, and central venous pressure, the intervention group received 

therapy to achieve the additional goal of an estimated oxygen extraction ratio < 27%. Fewer 

patients developed organ failure in the ScvO2 group [68]. 

. 

Sepsis and septic shock 

In a large multi-centre study 3 different cohorts of a very heterogeneous population of 

critically ill patients were compared for survival after different strategies for hemodynamic 

therapy had been applied: control vs. supra-normal values for the cardiac index (> 

4.5L/min/m2) or normal values for mixed venous saturation. In total, the anticipated goal was 

only achieved in one third of the patients. There was no significant reduction in morbidity or 

mortality in any group [69]. An important reason for this may be the late timing of the 

intervention, i.e. after occurrence of organ failure, implying that all patients suffered severe 

damage and received significant treatment before inclusion. 

Global tissue hypoxia as a result from systemic inflammatory response or circulatory 

failure is an important indicator of shock preceding multiple organ dysfunction syndrome 

(MODS). The development of MODS predicts outcome of the septic patient [37]. Treatment 

strategies aimed at restoring the balance between DO2 and VO2 by maximizing DO2 have not 

been successful [57,69,70]. 

 In line with studies over several decades [1,21,27,35,40,71] and based on 

recommendations [72] Rivers et al. randomized 263 patients with severe sepsis or septic 

shock to standard therapy or EGDT. Compared with the conventionally treated group, the 

ScvO2 guided group received more fluids, more frequently dobutamine, and more blood 



transfusion during the first 6 hours. This resulted in an absolute reduction in 28-day mortality 

of 16% [73]. 

A large amount of studies that implemented certain treatment protocols at the 

emergency department, including antibiotic therapy and tight glucose control for example, 

[74-79] showed significant decrease in mortality. EGDT endpoints (CVP 8-12 mmHg, MAP ≥ 

65 mmHg, and ScvO2 ≥ 70%) can well be achieved in an ED setting suggesting that a 

multifactor approach is a useful strategy in the treatment of sepsis [74-80]. Of note, three of 

these studies described similar populations with high percentage end-stage renal disease in 

the control group being prone for higher mortality [76,77,79,81]. Although attainment of an 

ScvO2 >70% has been reported as prominent factor for survival [82] several studies in which 

EGDT without that specific target was used were able to achieve a survival benefit as well 

[83-85]. In summary, as shown by Nguyen et al [86], the use of (modified) EGDT implies 

early recognition of the critically ill patient and enforces continuous reassessment of 

treatment. This seems to be the greatest gain in the treatment of patients with severe sepsis 

or septic shock over the last decade. 

Earlier studies that enrolled patients admitted at the intensive care unit (ICU) were 

unable to show a decrease in mortality after aggressive hemodynamic optimization [57,69]. 

In contrast, more recent studies that used modified EGDT protocols were able to show an 

significant decrease in mortality [85,87,88], suggesting that compliance to dedicated sepsis 

bundles after the ED stage can still be useful. 

However, low incidences of low ScvO2 values at ICU admission [89] or emergency 

department (ED) presentation [90] do occur together with baseline mortality compared to the 

original EGDT study [73,89,90]. For clinical appreciation of the abovementioned results a 

thorough look into the data is needed. Interestingly, in the EGDT study [73] less patients 

were intubated before first ScvO2 sampling and this could partially explain the difference of 

initial ScvO2 values between both studies [73,89]: due to higher DO2 (pre-oxygenation) and 



lower VO2 (sedation, paralysis; lower work of breathing) ScvO2 may very well improve in 

response to emergency intubation in the majority of patients [91]. This partially explaines the 

differences between populations [73,89,90] and provides another piece in the puzzle on the 

value of ScvO2 [93]. Nevertheless, applicability of the results of the EGDT trial may be 

dependent on geographical setting and underlying health care system [92,93]. 

Additionally, no difference in outcome was found between a resuscitation protocol 

based on lactate clearance and a ScvO2 based protocol [94] and ScvO2 optimization does 

not always exclude a decrease in lactate levels [95]. Also, the pursuit of ScvO2 values >70% 

does not always seem to be the optimal solution. Recent data suggest that also patients with 

initially high ScvO2 values may have adverse outcomes [12,13], probably due to impaired 

oxygen utilization. High ScvO2 values may thus represent an inability of the cells to extract 

oxygen or microcirculatory shunting in sepsis [96]. 

Finally, as a reflection of increased respiratory muscles O2ER a reduced ScvO2 or 

SvO2 predicts extubation failure in difficult-to-wean patients [48,97]. However, a successful 

intervention to increase ScvO2 in this context is not known yet. Nevertheless, it is 

conceivable that in the future ScvO2 will be used as a parameter in weaning protocols for a 

subset of patients [97,98]. 

 

Continuous measurement 

 Should continuous measurement be considered when venous saturations are used 

as a therapeutic goal? It may be argued that changes in venous saturations may occur 

rapidly, particularly in hemodynamically instable patients, and that discontinuous spot 

measurements by drawing intermittent blood samples may miss these changes. Accordingly, 

continuous measurement of SvO2 in septic shock patients revealed a higher frequency of 

short-term changes in SvO2 in nonsurvivors. Thus, variations in SvO2 could be of prognostic 



importance [99]. However, lack of therapeutic guidelines and cost effectiveness issues 

[5,7,58] question the clinical use of continuous measurement of SvO2 in critically ill. 

Continuous measurement in perioperative care allows detection of fluctuations. Low SvO2 

values have been associated with increased complications and morbidity, especially in 

cardiac surgery [100] and myocardial infarction and use of a SvO2>70% as a target seemed 

promising [38,43]. 

 There are currently two commercially available devices to measure ScvO2 

continuously. Continuous ScvO2 measurement as part of treatment protocol has shown to be 

a valuable strategy in the ED [71,73] and in cardiac surgery [101]. Additionally, Reinhart et al. 

concluded that continuous ScvO2 measurement in the ICU setting is potentially reliable [26]. 

However, continuous and intermittent measurements of SvO2 or ScvO2 have never been 

compared systematically. 

 

Conclusions 

 The on-going debate on differences between SvO2 and ScvO2 and their 

interchangeability should focus on well defined populations. Both SvO2 and ScvO2 are 

clinically useful but both variables should be used with knowledge and caution. Evaluating 

the available evidence in a clinical setting, we conclude that low venous oxygen saturations 

are an important warning sign of the inadequacy of systemic oxygen delivery to meet oxygen 

demands. Low values may warn the clinician about cardiocirculatory or metabolic impairment 

and should urge for further diagnostics and appropriate action, whereas normal or high 

values do not rule out persistent tissue hypoxia. Based on the numerous clues for its 

usefulness referred in this article the use of venous oxygen saturations seems especially 

useful in the early phase of disease or injury. In clinical practice venous oxygen saturations 

should always be used in combination with vital signs and other relevant endpoints.  
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Abstract 

Introduction Low mixed or central venous saturation (S(c)vO2) can reveal global tissue 

hypoxia and therefore can predict poor prognosis in critically ill patients. Early goal directed 

therapy (EGDT), aiming at a ScvO2 ≥ 70%, has been shown to be a valuable strategy in 

patients with sepsis or septic shock and is incorporated in the Surviving Sepsis Campaign 

guidelines. 

 

Methods We determined central venous pressure (CVP), hematocrit, pH, lactate and ScvO2 

or SvO2 in a heterogeneous group of critically ill patients early after admission to the 

intensive care units (ICUs) in 3 Dutch hospitals.  

 

Study design Prospective observational multicenter study. 

 

Results Data of 340 acutely admitted critically ill patients were collected. The mean SvO2-

value was > 65% and the mean ScvO2 was >70%. With mean CVP of 10.3 ± 5.5 mmHg, 

lactate plasma levels of 3.6 ± 3.6 and APACHE II-scores of 21.5 ± 8.3, the in-hospital 

mortality of the total heterogeneous population was 32.0%. A subgroup of septic patients (n = 

125) showed a CVP of 9.8 ± 5.4 mmHg, mean ScvO2 values of 74.0 ± 10.2% - where only 

1% in this subgroup revealed a ScvO2-value < 50% - and lactate plasma levels of 2.7 ± 2.2 

mmol/L with APACHE II-scores 20.9 ± 7.3. Hospital mortality of this subgroup was 26%. 

 

Conclusion The incidence of low ScvO2 values on acutely admitted critically ill patients is 

low in Dutch ICUs. This is especially true for patients with sepsis / septic shock. 



 Introduction 

Global tissue hypoxia as a result from systemic inflammatory response or circulatory 

failure is an important indicator of shock preceding multiple organ dysfunction syndrome 

(MODS). The development of MODS predicts outcome of the septic patient [1]. 

Unrecognized and untreated global tissue hypoxia increases morbidity and mortality. 

Accurate detection of global tissue hypoxia is therefore of vital importance. Physical findings, 

vital signs, measuring central venous pressure (CVP) and urinary output are of the utmost 

importance, but not always sufficient for accurate detection of global tissue hypoxia [2,3]. 

It is now generally accepted that a decreased central venous saturation (ScvO2) 

obtained from a central venous catheter, can reveal a mismatch between oxygen supply and 

oxygen demand, hence global tissue hypoxia [1]. Decreased values predict poor prognosis 

after cardiovascular surgery [4], in severe cardiopulmonary disease [5], and in septic or 

cardiogenic shock [6,7]. ScvO2 and SvO2 (mixed venous oxygen saturation) therefore can be 

used as hemodynamic goals during resuscitation. According to Rivers et al. [8] hemodynamic 

optimization demands ‘early goal-directed therapy’ (EGDT), including ScvO2-guided 

treatment. It was concluded that goal-oriented manipulation of cardiac preload, afterload and 

contractility, to achieve a balance between systemic oxygen delivery and oxygen demand is 

a valuable strategy in patients with sepsis or septic shock during the resuscitation period in 

the emergency department (ED) [8]. More recently, as a result of this study, an EGDT 

treatment protocol was included in the ‘Surviving Sepsis Campaign’ guidelines [1]. Also, 

several studies on implementation of such a protocol, partially in combination with other 

recommendations, have been published over the last years [9-11]. 

Based on clinical experience it seemed that the syndrome targeted in the EGDT study 

[8], was not very common in our ICUs and thus EGDT not being commonly indicated. Main 

purpose of this study was to determine the incidence of low ScvO2 values in our geographical 

setting. We monitored a heterogeneous group of critically ill patients during unplanned 



admission in 3 Dutch multidisciplinary ICUs. Also, illustratively, we compared the subgroup of 

septic patients with the population of septic patients as described by Rivers et al [8], with 

respect to ScvO2 and other base-line characteristics. 

 

Methods 

Study centers 

We studied ICU populations in one academic ICU [Academic Medical Center (AMC) 

in Amsterdam, The Netherlands] and two nonacademic ICUs [Gelre Hospital (GH) location 

Lukas in Apeldoorn, The Netherlands; Medical Center Leeuwarden (MCL) in Leeuwarden, 

The Netherlands]. The AMC is a large teaching hospital where the ICU is a 28-bed “closed 

format” department in which medical/surgical patients, including cardiothoracic and 

neurosurgical patients, are being treated. The GH is an affiliated teaching hospital where the 

ICU is a 10-bed “closed format” department. The MCL is a large general teaching hospital in 

the north of The Netherlands, with a 14-bed “closed format” mixed medical / surgical ICU, 

including cardiothoracic patients. 

 

Patients and data collection 

Between January 2006 and March 2007 a total of 340 patients, all 18 years or older, 

with a clinical indication for a central venous catheter (CVC) [BD Medical Systems, 

Singapore], pulmonary artery catheter (PAC) [Edwards Lifesciences LLC, Irvine, CA, USA] or 

Continuous Cardiac Output (CCO) catheter [Arrow Deutschland GmbH, Erding, Germany] 

(which measures SvO2 continuously) were recruited. Indication for a central venous, PAC or 

CCO catheter was left to the discretion of the attending physician. The patients arrived at the 

ICU either directly from the ED, from the general ward, or after acute surgery with severe 

sepsis, septic shock or cardiogenic shock, respiratory failure, central nervous problems, and 



other acute conditions. In the EDs there was no standardized protocol for hemodynamic 

treatment of septic patients. Fluid resuscitation was mostly guided by blood pressure 

monitoring. Inotropes were given scarcely at our EDs. Intubation on the ED was also 

uncommon. In the operating theatres no ScvO2 / SvO2 measurements took place, nor any 

kind of goal directed therapy was implemented. All patients were treated according to 

standard practice for the ICU. Exclusion criteria were elective surgery and age < 18 years. 

Collecting data for observational study without informed consent was approved by the 

Medical Ethics Committees of all 3 hospitals. 

Measurements of systolic arterial pressure (SAP), mean arterial pressure (MAP) and 

central venous pressure (CVP) were recorded immediately after arrival at the ICU. 

Hematocrit (Hct), lactate plasma levels and pH were determined from the first obtained 

arterial blood sample at the ICU. 

APACHE II-score [12] and SOFA-score [13] at the time of admission at the ICU were 

collected. 

 

Statistical analysis 

The statistical package for the social sciences (SPSS 15.0.1 for Windows) was used 

for statistical analysis. All data were tested for normal distribution with the Kolmogorov-

Smirnov test before further statistical analysis. Differences between both populations were 

assessed using Student’s paired t-test (normally distributed data). Data were displayed as 

mean ± SD. Statistical significance was assumed at p < 0.05. 

  



Results 

Patients 

A heterogeneous population with a total of 340 critically ill patients was evaluated in 

the three participating ICUs (table 1). The patients arrived at the ICU either directly from the 

ED (n=135; 40%), from the general ward (n=126; 37%) or after acute surgery (n=79; 23%). 

To determine ScvO2 or SvO2, central venous or mixed venous oxygen saturation was 

measured as early as possible after insertion of a central venous catheter (n=263) or 

pulmonary artery / CCO catheter (n=77). The vast majority (93%) of the patients were 

enrolled within 6 hours after presentation in the ER. More than 99% of all the data was 

obtained within 2 hours after ICU admission. The numbers of measurements of central or 

mixed oxygen venous saturation were not normally distributed between the three ICUs. In all 

three hospitals the mean SvO2 was higher than 65% and mean ScvO2 was higher than 70%. 

Overall in-hospital mortality of our population was 32.0%. 

In 263 patients venous oxygen saturation was measured centrally (table 2). Mean 

ScvO2 was 72.0 ± 12.3%. Thirty-eight patients (14%) had a ScvO2 < 60%, and only 14 (5%) 

patients had a ScvO2 < 50%. While only 1 patient of the latter was in septic shock, in-hospital 

mortality of these 14 patients was 57% (8/14). 

 

Septic patients 

In patients with sepsis or septic shock (n = 150) central venous oxygen was 

measured in 125 patients and mixed venous oxygen saturation was measured in 25 patients. 

The in-hospital mortality of our septic patients was 27%. Seventy-three patients arrived at the 

ICU from the general ward (n=73; 49%). The mean ScvO2 value was normal: 74.0 ± 10.2%. 

Only eight (6%) patients had a ScvO2 < 60%, and 1 (1%) < 50% (table 2). 

 



Table 1. Distribution of clinical problems in the three ICUs 

admission diagnosis MCL 

(n=93) 

GH 

(n=138) 

AMC 

(n=109) 

total 

(n=340) 

Sepsis/septic shock 47 (51) 64 (46) 39 (36) 150 (44) 

Cardiac failure, 

         cardiac arrest 

28 (30) 

10 

36 (26) 

10 

31 (28) 

17 

95 (28) 

 

Respiratory failure 7 (8) 13 (10) 12 (11) 32 (9) 

CNS 5 (5) 7 (5) 10 (9) 22 (7) 

Other 6 (6) 18 (13) 17 (12) 41 (12) 

 

Data are presented as numbers (percentage); CNS, central nervous system; MCL, Medical Center 

Leeuwarden; GH,Gelre Hospital; AMC, Amsterdam Medical Center. 

 

Comparison with the EGDT population [8] 

Compared to the Rivers study group our septic patients revealed a significantly higher 

ScvO2 (74.0 ± 10.2 vs 48.9 ± 12.3%; p < 0.01), lower lactate plasma levels (2.7 ± 2.2 vs. 7.3 

± 4.6 mmol/L; p < 0.01), and lower hematocrit (30.3 ± 6.9 vs. 34.7 ± 8.5%; p < 0.01). Eighty-

three percent (83%) needed endotracheal intubation versus 55% in the EGDT study. 

APACHE II-scores were equal (20.9 ± 7.0 vs. 20.9 ± 7.2; p = 1.0). The in-hospital mortality of 

this subgroup was 26% (table 2). 

Mixed venous oxygen saturation 

Measurement of mixed venous oxygen saturation took place in 77 patients. Mean 

SvO2 was 68.2 ± 11.8%. Mean lactate was 4.3 ± 4.2 mmol/l; arterial pH was 7.30 ± 0.11. 

With mean APACHE II scores of 21.8 ± 7.3 and mean SOFA scores of 9.3 ± 3.6, the in-

hospital mortality was 37% (table 3). 



Table 2. Demographic data, variables and outcome data. Comparisons of sepsis patients with 

EGDT-study [8] data 

variable present cohort 

(n=263) 

sepsis 

(n=125) 

EGDT-study 

(n=263) 

P value
a,b

 

age (yr) 67.3 ± 14.2 68.9 ± 13.5 65.7±17.2 0.01
*
 

sex (%) 

female 

male 

 

41 

59 

 

38 

62 

 

49.4 

50.6 

 

heart rate (beats/min) 107 ± 27 115 ± 26 115 ± 29 1.0 

CVP (mmHg) 9.8 ± 5.4 10.8 ± 4.9 5.7 ± 8.5 <0.01
*
 

MAP (mmHg) 58 ± 16 60 ± 13 75 ± 25 <0.01
*
 

ScvO2 (%) 72.0 ± 12.3 74.0 ± 10.2 48.9 ± 12.3 <0.01
*
 

lactate (mmol/l) 3.3 ± 3.3 2.7 ± 2.2 7.3 ± 4.6 <0.01
*
 

arterial pH 7.33 ± 0.12 7.35 ± 0.10 7.32 ± 0.18 0.42 

hematocrit (%) 31.0 ± 7.0 30.3 ± 6.9 34.7 ± 8.5 <0.01
*
 

APACHE II score 21.5 ± 8.5 20.9 ± 7.3 20.9 ± 7.2 1.0 

SOFA score 9.5 ± 3.6 9.6 ± 3.0   

in-hospital mortality (%) 

standard therapy 

EGD therapy 

31.0 

 

26.0  

46.5 

30.5 

 

 

Data are presented as means ± SD. 
a 

Unpaired T-test, 
b
 sepsis subgroup vs. EGDT study. 

*
 Statistically 

significant difference. CVP, central venous pressure; MAP, mean arterial pressure; ScvO2, central 

venous oxygen saturation. 

  



Of the 25 patients in whom mixed venous oxygen saturation was measured in the 

subgroup of septic patients, four (16%) patients showed a SvO2 value <60% on admission. 

One patient (4%) had a SvO2 <50%. In this relatively small subgroup mean Hct was 28.2 ± 

5.4%, mean MAP 61.0 ± 13.4 mmHg and mean CVP 13.7 ± 4.6 mmHg, while 80% (20/25 

patients) needed mechanical ventilation. Mean APACHE II score was 22.2 ± 5.4 and mean 

SOFA score10.3 ± 3.7. The in-hospital mortality of this subgroup was 28% (table 3). 

Table 3. Demographic data, variables and outcome data; mixed venous 

saturations 

Variable present cohort 

(n=77) 

sepsis 

(n=25) 

age (yr) 61.7 ± 14.0 65.4 ± 10.4 

sex (%) 

female 

male 

 

39 

61 

 

52 

48 

heart rate (beats/min) 102 ± 21 102 ± 21 

CVP (mmHg) 13.0 ± 4.9 13.7 ± 4.6 

MAP (mmHg) 61 ± 15 61 ± 13 

SvO2 (%) 68.2 ± 11.8 72.1 ± 10.8 

lactate (mmol/l) 4.3 ± 4.2 3.3 ± 2.3 

arterial pH 7.30 ± 0.11 7.32 ± 0.08 

hematocrit (%) 29.9 ± 7.1 28.2 ± 5.4 

APACHE II score 21.7 ± 7.3 22.2 ± 5.4 

SOFA score 9.3 ± 3.6 10.3 ± 3.7 

in-hospital mortality (%) 37.0 28.0 

Data are presented as means ± SD. CVP, central venous pressure; MAP, mean 

arterial pressure; SvO2, mixed venous oxygen saturation. 



Discussion 

The main result of this present multicenter observational study is the low incidence of 

low ScvO2-values (<50%) in septic patients being only 1%. Secondary findings are the 

normal mean ScvO2 values and normal mean SvO2 values in critically ill patients, including 

patients with severe sepsis or septic shock, on admission in the three ICUs. 

Development to severe sepsis and septic shock involves several pathogenic 

changes, including global tissue hypoxia as a result of circulatory abnormalities [14]. 

Especially hemodynamic optimization as a therapeutic target has been studied over the last 

decade [2,8,9,15,16]. Based on promising results of earlier studies [2], Rivers et al. 

randomized patients with severe sepsis or septic shock to standard therapy or EGDT. The 

latter resulted in an absolute reduction in 28-day mortality of 16% [8]. Improvement of the 

balance between oxygen delivery (DO2) and oxygen demand (VO2) played an important role. 

Other studies however found no reduction of morbidity or mortality as a result of aggressive 

hemodynamic optimization, despite higher central venous oxygenation or lower lactate 

concentrations [15,16]. Studies that enrolled patients admitted at the ICU were unable to 

show decrease in mortality after aggressive hemodynamic optimization [16,17], in contrast to 

studies that implemented certain treatment protocols, including antibiotic therapy, at the 

emergency department [8,9,11]. In this ICU study we found mean ScvO2 and SvO2 values in 

the normal range. Similar figures are described previously in the later stage of sepsis and in 

ICU patients [18,19]. This is in concordance with the findings by Gattinoni et al.(67,3-69,7%) 

[15] and Bracht et al. (70%) [20]. 

ScvO2 is a surrogate for SvO2: a significant correlation between the two has been 

described21. Although it might still be debatable whether central venous and mixed venous 

oxygen saturation are equivalent or not [18,19,21], the clinical importance of both 

measurements seems not to be an issue. The Surviving Sepsis Campaign recognizes such 



in the resuscitation portion of its severe sepsis and septic shock bundle [1]. Our study design 

does not allow any statistical evaluation of ScvO2 compared to SvO2. 

APACHE II-scores were similar in comparison to the population described in the 

EGDT study [8]. This suggests equal mortality rate predictions. However, physiologic scores 

such as APACHE II are dependent on variables that reflect the progression or reversal of 

organ dysfunction. Treatment in the ED or operating theatre prior to ICU admission 

influences calculation of the physiologic scores. Consequently, the physiologic scores at our 

ICUs could partially be underestimated. The significantly higher lactate plasma levels in the 

EGDT study suggests a more severe tissue hypoperfusion in that group. However, it is the 

clearance rate that is associated with less organ failure and improved survival [22]. 

Unlike significantly lower mean arterial pressures, the higher CVP and the lower 

hematocrit suggest that the septic patients were less hypovolemic compared to the EGDT 

population. Relatively high mean blood pressure in the EGDT population suggests an earlier 

stage of sepsis with predominating vasoconstriction, or pre-existing hypertension. The higher 

CVP in the subgroup with septic patients (n = 125) is partially the result of high percentage of 

endotracheal intubation and thus increased intrathoracic pressure before measurement 

(83%). In the EGDT study less than 55% needed intubation at admission. 

As mentioned earlier, in the present study the patients were treated in the ED, or 

elsewhere, before admission at the ICU. This treatment was different from the treatment 

given in the EGDT study. Nevertheless, our patients received some fluid therapy. 

Transfusion of red blood cells in our EDs was based on clinical suspicion or evidence of 

severe blood loss and not on low hematocrit only. Also, a main principle of treatment is to 

improve oxygen delivery and this could contribute to higher ScvO2 values in the ICU 

population compared to the patients described in the EGDT study and other ED studies. 

Other interventions such as sedation and analgesia, most often to facilitate endotracheal 

intubation and ventilation might have been beneficial for the balance between oxygen 



delivery and oxygen demand. Also the trend of changing ScvO2- and other physiological 

values, influencing outcome [23,24], is not taken into account in our study. Of course, all 

these factors are important differences between ER populations and ICU populations, but are 

not predominating. We are aware that comparison between those populations is limited by 

the abovementioned differences. 

As a result from the study design, statements about cut-off S(c)vO2 values for 

outcome prediction [20,24] or impact on therapeutic intervention, are not possible. Also, we 

did not look at the use of vital signs as indicator of tissue oxygenation in comparison to mixed 

or central venous saturation. Lack of clear insight of treatment and time spent at the different 

EDs, operating theatres or wards is a limitation of our study as well. Nevertheless, since we 

also aimed at the usefulness of measuring ScvO2 or SvO2 on ICU admission, we think these 

factors are not pertinent to the results. For example, Bracht et al. [20] found no correlation 

between ScvO2 values and length of hospital stay before unplanned ICU admission. 

Comparing our sepsis population with the ED population described in the important 

study by Rivers [8] is purely ment to be illustrative. Obviously, as we described, there are 

differences between ED and ICU populations in general. But there are also, depending on 

geographical setting, important differences between populations and health care systems. 

And so, we subscribe to the view of Ho et al. [25] that the syndrome described in the EGDT 

trial may be relatively uncommon depending on geographical setting and health care system. 

However, this does not undermine the importance of early identification of patients at high 

risk for cardiovascular collapse. For example, in our study of the fourteen patients with a 

ScvO2 < 50% the in-hospital mortality was 57%.Finally, the in-hospital mortality in our study 

was 32.0% for the total population and 27.0 % for the patients with severe sepsis or septic 

shock. Again this reflects recent findings by others: Ho et al. (30.2%) [25] and Shapiro et al. 

(26.9%) [26]. 



In conclusion, the incidence of low ScvO2 values on acutely admitted critically ill 

patients is low in Dutch ICUs. This is especially true for patients with sepsis / septic shock. 
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Abstract 

Introduction We tested the hypothesis that central venous saturation (ScvO2) does not 

reliably predict mixed venous saturation (SvO2) in sepsis. Additionally we looked at the 

influence of the source (splanchnic or non-splanchnic) of sepsis on this relation. 

 

Methods We concurrently determined ScvO2 and SvO2 in a group of 53 patients with severe 

sepsis during the first 24 hours after admission to the intensive care units in 2 Dutch 

hospitals. We assessed correlation and agreement of ScvO2 and SvO2., Additionally, we 

compared the mean differences between ScvO2 and SvO2 of both splanchnic and non-

splanchnic group. 

 

Study Design Prospective observational two-center study. 

 

Results A total of 265 paired blood samples were obtained. ScvO2 overestimated SvO2 by 

less than 5% with wide limits of agreement. For changes in ScvO2 and SvO2 results were 

similar. The distribution of the difference (ScvO2 - SvO2) (< 0 or ≥ 0) was similar in survivors 

and nonsurvivors. The mean (ScvO2 - SvO2) in the splanchnic group was similar to the mean 

(ScvO2 - SvO2) in the non-splanchnic group (0.8 ± 3.9% vs. 2.5 ± 6.2 %; p = 0.30). Oxygen 

extraction ratio (O2ER; p=0.23) and its predictive value for outcome (p=0.20) was similar in 

both groups. 

 

Conclusions ScvO2 does not reliably predict SvO2 in patients with severe sepsis. The trend 

of ScvO2 is not superior to the absolute value in this context. A positive difference (ScvO2 - 

SvO2) is not associated with improved outcome. 



Introduction 

Global tissue hypoxia as a result of systemic inflammatory response or circulatory 

failure is an important indicator of serious illness preceding multiple organ failure. The 

development of organ failure predicts outcome of the septic patient [1]. Unrecognized and 

untreated global tissue hypoxia increases morbidity and mortality: decreased mixed venous 

saturation (SvO2) values predict poor prognosis in septic shock [2-4]. 

Controversy however remains: there is no clear evidence that guiding hemodynamic 

optimization by monitoring central venous saturation (ScvO2) or SvO2 is useful in all patients 

with sepsis or septic shock, especially in intensive care unit (ICU) setting. The controversy 

includes their interchangeability [5,6]. 

Also, in patients with a splanchnic cause of sepsis, ScvO2 may be normal, while the 

SvO2 may be decreased due to elevated metabolic demand. On the other hand, due to 

sepsis related vasodilatation, also in the digestive tract, leading to diminished oxygen 

consumption, mixed venous saturation may be normal [7]. This could mean that the 5% 

difference between ScvO2 and SvO2 is not as consistent in sepsis as postulated earlier [8,9]. 

Nevertheless, recently an association between a positive gradient O2 gradient (ScvO2 – SvO2 

≥ 0) and ICU survival in critically ill patients was described [10]. Therapy aimed at increasing 

this gradient is could mean improved survival. However, this demands measurement of both 

ScvO2 and SvO2. 

We tested the hypothesis that ScvO2 does not reliably predict SvO2 in sepsis, i.e. a 

consistent 5% difference between ScvO2 and SvO2 does not exist. We also looked at the 

possible relationship between a positive difference between ScvO2 and SvO2 (ScvO2 - SvO2) 

and ICU survival. In a secondary analysis we tested the hypothesis whether the relationship 

between ScvO2 and SvO2 is independent of sepsis origin or not. 

 



Methods 

Setting 

We studied ICU populations in two teaching hospitals. The Martini Hospital 

[Groningen, The Netherlands] (MH) where the ICU is a 14-bed “closed format” mixed medical 

/ surgical ICU department and The Medical Center Leeuwarden [Leeuwarden, The 

Netherlands] (MCL) where the ICU is a 16-bed “closed format” mixed medical / surgical ICU, 

including cardiothoracic patients. The study was approved by both Local Ethics Committees. 

Informed consent was obtained in all cases from the patient or from the patient’s legal 

representative. 

 

Patients and data collection 

This prospective observational study included patients, all 18 years or older, with 

sepsis or septic shock according to international criteria [11], between January and 

September 2009. Only patients were included in whom there was a clinical indication for 

additional hemodynamic monitoring using a pulmonary artery catheter (PAC) [Criticath SP 

5507H TD, Becton Dickinson, Singapore] or a Continuous Cardiac Output (CCO) catheter 

[Arrow Deutschland GmbH, Erding, Germany]. The catheter was inserted into an internal 

jugular vein or subclavian vein according to standard procedure. Position was confirmed by 

the presence of pulmonary artery pressure tracings and chest radiography. No complications 

other than transient arrhythmias were observed during the insertion of any catheter. Primary 

data, including hemodynamic parameters, were collected at 6-hour interval (T0, T1, T2, T3, 

T4) during the first 24 hours after acute ICU admission. Standard blood samples of 2 ml were 

drawn simultaneously from distal (pulmonary artery; PA) and proximal / side portal (superior 

caval vein; SCV) from PAC or CCO catheter. To avoid falsely high readings due to aspiration 

of pulmonary capillary blood, aspiration was done gently to avoid high negative pressure 



when blood samples were taken. We took blood from the proximal port of the catheter as 

representative of central venous blood [6,8,10]. We did not use any continuously measured 

values of the catheter itself in the cases where a CCO catheter was used. Only patients with 

a complete series of 5 paired measurements were finally included. Also, arterial blood 

samples were obtained, including serum lactate. All blood samples were analyzed by a co-

oximeter (Radiometer ABL800 flex, Copenhagen, Denmark). The Acute Physiology, Age and 

Chronic Health Evaluation (APACHE) II-score after 24 hours of ICU admission was collected 

[12]. 

 

Statistical analysis 

Analysis was done for the total population and for secondary analysis the population 

was divided into two groups: patients with splanchnic source of sepsis and patients with a 

non-splanchnic source of sepsis. We calculated a sample size of 200 paired samples to 

detect an absolute difference between ScvO2 and SvO2 in a two-sided test with a 0.05 type I 

error and a 95% probability in case of standard deviation of 10% [13,14]. Statistical tests 

were two-tailed and performed by the statistical package for the social sciences (SPSS 

16.0.1 for Windows, Chicago, IL, USA) or MedCalc software (version 11.2.1, Mariakerke, 

Belgium), the latter for comparing ROC curves. GraphPad software (Prism 5.0, La Jolla, CA, 

USA) was used for graphics. Measurements were not independent but clustered within each 

patient. All data were tested for normal distribution with the Kolmogorov-Smirnov test before 

further statistical analysis. Differences between both groups were assessed using Student’s 

t-test in case of normal distribution or χ2 test. For each time point, T0 toT4, (ScvO2 - SvO2) 

was calculated including the average difference per patient. The agreement between 

absolute values of ScvO2 and SvO2 and the agreement of the changes of these values were 

assessed by the mean bias and 95% limits of agreement (mean bias ± 1.96 x standard 

deviation) as described by Bland and Altman [15]. χ2 test was used to establish significance 



between the number of survivors and non-survivors. Spearman correlations for assessing 

possible factors affecting (ScvO2 - SvO2) were determined: at each time point (ScvO2 - SvO2) 

was compared to hemodynamic and perfusion variables. 

For secondary analysis we also calculated the mean (ScvO2 - SvO2) per group and 

they were compared using Student’s unpaired t-test. Additionally, the influence on outcome 

of O2ER was determined because (ScvO2 - SvO2) did correlate with O2ER in the secondary 

analysis. SvO2 and arterial oxygen saturation (SaO2) were used in the calculation of the 

systemic oxygen extraction ratio (O2ER). Receiver Operating Characteristic (ROC) curves 

were used for the assessment of sensitivity and specificity of O2ER in predicting in-hospital 

mortality. Data were displayed as mean ± SD. Statistical significance was assumed at p < 

0.05. 

 

Results 

We enrolled 56 patients, of whom three patients were excluded due to lack of data 

(technical problems). We evaluated data from 53 patients with sepsis. Altogether 265 paired 

blood samples were obtained. Baseline characteristics and outcome of the total population 

and both groups are shown in table 1. Length of stay at the ICU (LOSICU) was 12 ± 10 days 

and length of stay at the hospital (LOSHOSP) was 25 ± 18 days. 

  



Table 1. Baseline characteristics and outcome 

variable total population 

(n=53) 

splanchnic 

(n=25) 

non-splanchnic 

(n=28) 

P value
# 

age (yr) 66 ±12 66 ± 12 66 ± 13 0.46 

CVP (mmHg) 12 ± 6 11 ± 5 14 ± 6 0.06 

MAP (mmHg) 66± 10 65± 12 66 ± 9 0.65 

ScvO2 (%) 72.0 ± 10.0 73.7 ± 10.5 70.6 ± 9.6 0.29 

SvO2 (%) 71.8± 10.6 75.2± 9.9 68.6 ± 10.5  0.03* 

lactate (mmol/L) 3.5 ± 3.5 3.8± 3.8 3.5 ± 3.2 0.33 

arterial pH 7.30± 0.10 7.29 ± 0.10 7.29 ± 0.12 0.43 

hematocrit (%) 30.1± 5.7 30.2 ± 6.1 32.1 ± 5.7 0.59 

APACHE II 26.6 ± 7.6 25.3 ± 7.3 28.7 ± 7.8 0.24 

hospital mortality (%) 26.5 29.2 24.0 0.56 

Data are presented as means ± SD or as numbers. 
#
 splanchnic group vs. non-splanchnic group. 

CVP, central venous pressure; MAP, mean arterial pressure; ScvO2, central venous oxygen 

saturation; SvO2, mixed venous oxygen saturation; APACHE II, acute physiology, age and 

chronic health evaluation; * statistically significant difference 

 

The ScvO2 overestimated the SvO2 by a mean bias (or absolute difference) of 1.7% ± 

7.1% in the total population. The 95% limits of agreement were wide (-12.1% to 15.5%; 

Figure 1A). Figure 2 illustrates this: mean ScvO2 and mean SvO2 values are shown at each 

time point. Results at time point T=0 and at different time points were similar, including wide 

limits of agreement (data and plots not shown). Bias between changes of ScvO2 and SvO2 

was 0.6% ± 7.1% in the total population with 95% limits of agreement of -13.4% to 14.6%; 

Figure 1B. Results were similar at time point T=0 and at different time points, including wide 

limits of agreement (data and plots not shown). 
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Figure 1. Bland and Altman plot showing the agreement between A. ScvO2 

and SvO2 (bias 1.7, 95% limits of agreement from -12.1 to 15.5) and in B. 

changes in ScvO2 and SvO2 (bias 0.6, 95% limits of agreement from -13.4 

to 14.6). 
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Figure 2. Mean SvO2 and ScvO2 values at different time points. ScvO2 is 

consistently higher than SvO2 without statistical difference (paired t-test; 

all p > 0.05). 

 

 

Differences between survivors and nonsurvivors 

As ScvO2 of 70% has been used as a target for guided therapy in septic patients [4], 

we evaluated the frequencies of ScvO2 values below 70% in both survivors and 

nonsurvivors. Of all ScvO2 measurements in survivors 15% fell below 70%, whereas in 

nonsurvivors 47% of all ScvO2 measurements fell below 70% (p < 0.01). 

Assuming a 5% difference between ScvO2 and SvO2 [1], we also evaluated the 

frequencies of SvO2 values below 65% in both survivors and nonsurvivors. Of all 

measurements in survivors 7% fell below 65%, whereas in nonsurvivors 27% of all SvO2 

measurements fell below 65% (p < 0.01). 
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Figure 3. Number of paired measurements resulting in either a 

(ScvO2 – SvO2) ≥0 (black bars) or in a (ScvO2 – SvO2) <0 

(white bars). There was no significant different distribution of 

(ScvO2 – SvO2) between survivors and non-survivors. 



Figure 3 shows the number of paired measurements resulting in either a (ScvO2 - 

SvO2)≥0 or in a (ScvO2 - SvO2) <0. There was no significant different distribution of (ScvO2 - 

SvO2) between survivors and non-survivors in the total population (p=0.13), splanchnic group 

(p=0.23) or non-splanchnic group (p=0.13). 

 

Influence on difference between ScvO2 and SvO2 (ScvO2 – SvO2) 

The difference between ScvO2 and SvO2 was dependent on the level of ScvO2 when 

values of <60%, 60-70%, 70-80% and >80% were analyzed separately. The mean (ScvO2 - 

SvO2) were 8.9%, 1.0%, 2.4%, and 4.2%, respectively. Due to low incidence (4.9%) of low 

ScvO2 values (< 60%) we did not assess statistics on these differences. Assessment of 

Spearman correlation coefficients did not show any relation between cardiac output (CO), 

cardiac index (CI), dopamine (μg/kg/min), norepinephrine (μg/kg/min), mean arterial blood 

pressure, arterial saturation, hemoglobin, hematocrit, pH, or lactate levels and (ScvO2 - 

SvO2) (all p > 0.05). O2ER correlated significantly with (ScvO2 - SvO2) at all time points (all p 

< 0.01). 

 

Differences between groups 

Secondary analysis showed that twenty-five patients presented with splanchnic 

source of sepsis and 28 patients presented with a non-splanchnic source of sepsis. Thirty 

patients (15 splanchnic / 15 non-splanchnic) were enrolled in the MCL and 23 (10 splanchnic 

/ 13 non-splanchnic) patients were enrolled in the MH. 

The sources of sepsis in the non-splanchnic group were mainly pneumonia (n = 16; 

57%) and infection of the urogenital tract (n = 5; 18%). Other sources were meningitis, 

arthritis, epiglottitis, endocarditis, and infected soft tissue. 

 



At baseline, SvO2 (75.2 ± 9.9% vs. 68.6 ± 10.5%; p = 0.03) was different between 

groups. There was no significant difference between the mean (ScvO2 - SvO2) of both 

groups: splanchnic, 0.8 ± 3.9% vs. non-splanchnic, 2.5 ± 6.2 % (p = 0.30). 

Bias between ScvO2 and SvO2 was 0.7% ± 6.3% (95% limits of agreement of -11.7% 

to 13.1%) in the splanchnic group and 2.6% ± 7.5% (95% limits of agreement of -12.2% to 

17.4%) in the non-splanchnic group. Bias between changes in ScvO2 and SvO2 was 0.9% ± 

7.9% (95% limits of agreement of -14.5% to 16.3%) in the splanchnic group and 0.3% ± 6.5% 

(95% limits of agreement of -12.4% to 13.0%) in the non-splanchnic group; plots not shown. 

The difference between ScvO2 and SvO2 was dependent on the level of ScvO2 when 

values of <60%, 60-70%, 70-80% and >80% were analyzed separately. The mean (ScvO2 - 

SvO2) were 12.3%, 2.1%, 1.0%, 4.3% for the splanchnic group; 4.6%, 0.1%, 3.8%, and 4.7% 

for the non-splanchnic group. 

There was no significant different distribution of (ScvO2 - SvO2) between survivors 

and non-survivors in both the splanchnic group (p=0.23) and the non-splanchnic group 

(p=0.13); Figure 4. 

Oxygen extraction ratio (O2ER) 

 The O2ER in the splanchnic group was similar to the O2ER in the non-splanchnic 

group (0.23 ± 0.07 vs 0.24 ± 0.09; p=0.23). Figure 4 shows the ROC curves of O2ER for the 

splanchnic and non-splanchnic group. Optimal value of O2ER was 0.22 (sensitivity = 0.46, 

specificity = 0.87) for the non-splanchnic group and 0.31 (sensitivity = 0.85, specificity 0.40) 

for the splanchnic group. These curves represent the reliability of the O2ER as predictor of 

in-hospital mortality. Area under the curve (AUC) in the splanchnic group was not 

significantly larger than the AUC in the non-splanchnic group (0.67 vs. 0.55; p=0.20). 

 

 



 

 

Figure 4. ROC curves of O2ER for the splanchnic 

and non-splanchnic group. AUC in the splanchnic 

group (A) was not significantly larger than AUC in 

the non-splanchnic group (B) (0.67 vs. 0.55; 

p=0.20). 

 



 

Discussion 

We could confirm our hypothesis that ScvO2 does not reliably predict SvO2 in patients 

with severe sepsis: the agreement of ScvO2 and SvO2 was clinically not adequate. The 

difference between ScvO2 and SvO2 varied according to the level of ScvO2, being the 

greatest in low (<60%) and high ranges (>80%). In patients with severe sepsis or septic 

shock the difference between ScvO2 and SvO2 appears not to be a fixed one and does not 

seem to be predictive for in-hospital mortality. Finally, the difference between ScvO2 and 

SvO2 is independent of several hemodynamic variables, with exception of O2ER. 

 The bias was small with ScvO2 being consistently larger than SvO2. However, this 

consistent bias also implies a greater relative error for SvO2 values at lower ScvO2 values. 

Additionally, the wide limits of agreement between ScvO2 and SvO2 are unacceptably wide 

and independent of time point. The widely assumed 5% difference between ScvO2 and SvO2 

[1,8,9] seems not consistent in patients with severe sepsis or septic shock. A variety of 

factors influence the difference between both variables in patients with sepsis: mixing of the 

less saturated blood from the coronary sinus in the right atrium, sepsis related vasodilatation, 

heterogeneity of flow within and between organs, and decreased cerebral oxygen uptake 

during sedation. Based on the present study, the net effect of these factors seems 

unpredictable. Our results seem concordant with earlier findings [6,8,16]. The first study 

described a small heterogeneous group of patients with septic shock. ScvO2 was consistently 

higher than SvO2 and the limits of agreement were equally wide. Moreover, the difference 

between ScvO2 and SvO2 varied according to the level of ScvO2 and deviated in the extreme 

ranges (60% < ScvO2 > 80%) [6]. The lower range (venous saturations < 60%) is clinically of 

the greatest interest because the patients admitted with such low venous saturations are the 

ones who could possibly benefit from ScvO2 -guided therapy [4]. With the results of the 

present study in mind the clinician should be aware of the large variability between ScvO2 



and SvO2. Clinically important, this large variability was already present on admission (T=0). 

At this time point the first decisions are made on how to resuscitate and on what goals 

should be achieved. Such large uncertainty in estimating SvO2 by ScvO2 is unlikely to be 

suitable for protocol-guided resuscitation in which decreases in SvO2 or ScvO2 may trigger 

therapeutic interventions. Normalization of ScvO2 after resuscitation will not automatically 

imply normalization of SvO2. 

 If the individual values of ScvO2 and SvO2 do not agree could this be different for the 

trends of ScvO2 and SvO2? In anesthetized subjects who underwent elective neurosurgery 

measurement of oxygen saturations was performed in various hemodynamic conditions. It 

was concluded that for clinical purposes the trend of ScvO2 might be substituted for the trend 

of SvO2 [17]. In the present study however, we found wide limits of agreement between the 

change of ScvO2 and the change of SvO2 in critically patients. As for the absolute values of 

ScvO2 and SvO2, substitution of the change of ScvO2 for the change of SvO2 in patients with 

sepsis is therefore undesirable. This is in concordance with earlier findings in patients with 

cardiogenic or septic shock: changes in ScvO2 and SvO2 did not follow the line of perfect 

agreement and ScvO2 and SvO2 were not considered to be interchangeable [18]. 

Another issue is whether a ScvO2 of 70% as treatment goal in sepsis or septic shock 

after resuscitation may be considered useful. In a study by Reinhart et al. ScvO2 was 

measured continuously in critically ill patients for an average of 42 hours. More than 87% of 

the values in nonsurvivors and 95% of the values in survivors were above 70%. This 

difference was significant. Average time per patient below the cutoff value was twice as long 

in nonsurvivors [5]. In the present study ScvO2 values in nonsurvivors fell also more 

frequently below the cutoff value of 70% compared to survivors and SvO2 values below 65% 

were more frequently found in nonsurvivors compared to survivors. Our data suggest that 

after the first hours of resuscitation monitoring of venous oxygen saturations could still be 

clinically relevant. 



 

More recently, Gutierrez et al. described an association between a positive (ScvO2 – 

SvO2), and ICU survival in critically ill patients. A significantly greater number of survivors 

had a (ScvO2 - SvO2) ≥0 compared to non-survivors. The difference between ScvO2 and 

SvO2 became increasingly positive in survivors from initial to final measurement. They 

suggested that this might be associated with clinical recovery, perhaps reflecting a greater 

rate of O2 utilization [10]. This is in concordance with findings in post-operative cardiac 

patients which described a similar trend [19]. Although we noted that (ScvO2 - SvO2) was 

more frequently positive in survivors, and O2ER correlated with (ScvO2 - SvO2) we found no 

significant difference in distribution of (ScvO2 - SvO2) between survivors and non-survivors. 

Our results could not confirm a greater rate of O2 utilization in survivors as suggested by 

Gutierrez et al [10]. However, it is possible that the number of measurements in our study 

was not sufficient enough to detect a difference in distribution of (ScvO2 - SvO2). 

Secondary analysis showed that the inconsistent difference between ScvO2 and SvO2 

is independent of sepsis origin. There was no significant difference between the mean 

(ScvO2 - SvO2) of both groups and the limits of agreement were wide for both the absolute 

values and for the changes in ScvO2 and SvO2. SvO2 values were higher in the splanchnic 

group compared to the non-splanchnic group for a certain ScvO2 value. This phenomenon 

could be explained by sepsis related vasodilatation in the digestive tract. Despite 

heterogeneity of flow within and between various organs in patients with splanchnic sepsis 

[20] this leads to diminished oxygen consumption which results in a relatively higher SvO2. 

Apparently, a normal SvO2 does not rule out the presence of limited oxygen consumption in 

the splanchnic region [7]. Moreover, we found no difference in O2ER between the splanchnic 

and non-splanchnic group. This suggests less oxygen utilization in the digestive tract than 

could be expected based on the assumption that in all septic patients the difference between 

ScvO2 and SvO2 equals 5%. 



 

This study has limitations. First, all patients were sedated, mechanically ventilated, 

and none of them were in hemorrhagic shock. Our findings may not be generalized to 

patients less critically ill or those with hemorrhagic shock. Also, due to intubation ScvO2 

values could have been relatively high in relation to disease severity [21]. Second, we 

investigated ICU patients which could mean at a later stage of sepsis; timing of 

measurements was probably not all in the same stage of critical illness. Third, in this study 

ScvO2 and SvO2 values did not change between different time points as a result of a 

protocolled intervention: conclusions on independence of time point are of limited value. 

However, measurements took place within individual patients: each subject served as its own 

control. Finally, we used the proximal port of the used catheters as surrogate of ScvO2. 

Some ScvO2 measurements might have been influenced due to a more distal location in the 

right atrium which allows mixing of superior and inferior caval vein blood. Nevertheless, our 

results are consistent and in concordance with previous studies where a similar technique 

was used [6,8,10]. 

 

Conclusions 

We conclude that ScvO2 does not reliably predict SvO2 in patients with sepsis, 

independent of sepsis origin. Assuming a consistent 5% difference between ScvO2 and SvO2 

can lead to erroneous clinical decisions. The change of ScvO2 compared to the change of 

SvO2 is not more reliable than the exact numerical values in this context. Finally, a positive 

difference (ScvO2 - SvO2) is not associated with improved outcome in patients with sepsis. 

The abovementioned conclusions apply for sepsis originated from both splanchnic and non-

splanchnic origin. 
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Abstract 

 

Objective The purpose of our study was to determine if central venous oxygen saturation 

(ScvO2) and femoral venous oxygen saturation (SfvO2) can be used interchangeably during 

surgery and in critically ill patients. 

 

Methods We concurrently determined SfvO2 and ScvO2 in a group of 100 stable cardiac 

patients, which served as control group. Furthermore, we determined simultaneously SfvO2 

and ScvO2 in 30 surgical patients and in 30 critically ill patients and evaluated changes over 

time. Correlation and agreement of SfvO2 and ScvO2 were assessed, including the difference 

between SfvO2 and ScvO2. 

 

Results Despite significant correlation between obtained values of SfvO2 and ScvO2 (rs = 

0.55; p < 0.001), the limits of agreement (LOA) were wide in the control group (mean bias 

2.7% ± 7.9%; 95% LOA: -12.9 to 18.2%). In both the surgical and critically ill patients, LOA 

(mean bias of -1.9% ± 9.3%; 95% LOA: -20.0% to 16.3%, and mean bias of 4.6% ± 14.3%; 

95% LOA: -23.5% to 32.6%, respectively) were wide. Results for changes of SfvO2 and 

ScvO2 were similar. During initial treatment of critically ill patients, the difference between 

SfvO2 and ScvO2, including its range of variation diminished. 

 

Conclusion There is lack of agreement between SfvO2 and ScvO2 in both stable and 

unstable medical conditions. Thus, SfvO2 should not be used as surrogate for ScvO2. 



Introduction 

Shock is defined as global tissue hypoxia secondary to an imbalance between 

systemic oxygen delivery (DO2) and oxygen demand (VO2). Unrecognized and untreated 

global tissue hypoxia increases morbidity and mortality [1-3]. Measurement of mixed venous 

oxygen saturation (SvO2) from the pulmonary artery (PA), i.e. the downstream site of the 

circulation, has been advocated as an indirect index of tissue oxygenation [4]. Hence, SvO2 

reflects the balance between oxygen delivery and demand [5]. The normal range for SvO2 is 

65 to 75% [4,6] and low SvO2 is predictive of bad outcome [4,7]. However, PA catheterization 

is costly and obtaining the first SvO2 values may be relatively time consuming. As a result of 

these disadvantages and an international debate on the use of PA catheter [8-10] its use has 

become, justifiable or not [11], somewhat unpopular. 

Just as SvO2, the measurement of central venous oxygen saturation (ScvO2) has 

been described to detect global tissue hypoxia. Early goal-oriented manipulation of cardiac 

preload, afterload and contractility, to restore the balance between systemic oxygen delivery 

and oxygen demand has been shown to improve outcome [12]. Although there has been 

considerable debate on equality or interchangeability of ScvO2 and SvO2, ScvO2 has been 

used as a therapeutic goal in resuscitation protocols as a surrogate marker for SvO2 [13]. 

To monitor ScvO2, insertion of a central venous catheter in the superior vena cava via 

the jugular or subclavian vein is required. However, sometimes the femoral vein is the 

preferred (inexperienced hands) or only possible (trauma; previous attempts failed) site for 

access in acutely ill patients. As shown in a recent survey, femoral catheters are commonly 

used during the first hours of treatment of critically ill patients [14]. Apart from possible 

disadvantages compared to jugular or subclavian portal such as arterial puncture and 

thrombosis [15], the use of femoral catheters has several advantages. Femoral access is 

quick, relatively safe and radiographic control is not required [16] because there is no risk for 



pneumothorax. Hence, the femoral venous access can be very useful in the care of acutely ill 

patients. 

There is little information on the relevance of SfvO2 [14,17,18]. The purpose of our 

study is first to determine if ScvO2 and femoral venous oxygen saturation (SfvO2) can be 

used interchangeably in critically ill patients and in high-risk surgery and second, to evaluate 

whether changes in SfvO2 may be used as a parameter for treatment. 

 

Methods 

Study centre 

This prospective, observational, controlled study was performed in a non-academic 

university affiliated teaching hospital in The Netherlands [Gelre Hospital location Lukas in 

Apeldoorn, The Netherlands]. The ICU is a 12-bed “closed format” department. Per year 

about 17,500 surgical procedures are performed in this hospital. The study was approved by 

the Local Ethics Committee. Written informed consent was obtained in all cases from the 

patient or from the patient’s legal representative. 

 

Patients and data collection 

 Three groups of patients were analyzed. First, 100 stable cardiac outpatients who 

underwent elective right heart catheterization in day care. This population served as control 

group. Second, 30 high-risk (ASA score > 2) patients who underwent elective intermediate / 

high-risk surgery (surgical patients). Third, 30 consecutive critically ill patients who were 

acutely admitted to the ICU either directly from the ED, from the general ward or after acute 

surgery with septic shock [19] or cardiogenic shock [20] (ICU patients). 

 



 All included patients were older than 18 years. Exclusion criteria were acute 

abdominal or thoracic aneurysm, pregnancy, lack of data (technical problems) or lack of 

written informed consent. 

 In the control group not only ScvO2 and SfvO2, but also SvO2 was determined. During 

the right heart catheterizations 3 samples (femoral vein, proximal inferior caval vein, 

pulmonary artery) were obtained after routine cannulation of the femoral vein. Correct 

position of the catheter was confirmed by real-time angiography. 

In the surgical patients samples were obtained simultaneously before start of the 

procedure, i.e. after induction but before application of sterile sheeting (T=0), and at the end 

of the procedure, i.e. after sterile sheeting was removed (T=1). In the ICU patients samples 

were simultaneously obtained in the first hour of resuscitation (T=0) as soon as the central 

venous line was in place, and 6 hours thereafter (T=1). Femoral blood samples were 

obtained by puncture. 

 In the surgical and ICU patients hemodynamic measurements as well as blood 

samples and arterial blood gas analyses were recorded. Also, the use of fluids, packed red 

blood cells and vasopressors were recorded. 

 Central venous catheters [Edwards Lifesciences LLC, Irvine, CA, USA; usable length 

16 cm.] were inserted into an internal jugular vein or subclavian vein according to standard 

procedure. Correct position in the superior caval vein was confirmed by the presence of 

central venous pressure tracings and chest radiography. No complications other than 

transient arrhythmias were observed during the insertion of any catheter. In case of the use 

of a pulmonary artery catheter (PAC) [Criticath SP 5507H TD, Becton Dickinson, Singapore] 

in the ICU, blood samples were drawn from the proximal port of the catheter as 

representative of central venous blood [21-23]. All blood samples were analyzed by a co-

oximeter (Radiometer ABL800 flex, Copenhagen, Denmark). The Acute Physiology, Age and 

Chronic Health Evaluation (APACHE) II-score was collected for ICU patients [24]. 



 

Statistical analysis 

Statistical tests were two-tailed and performed by the statistical package for the social 

sciences (IBM SPSS 19 for Windows, Chicago, IL, USA). GraphPad software (Prism 5, 

version 5.02 for Windows, and StatMate 2.0, San Diego, CA, USA) was used for graphics. 

Measurements were not independent but clustered within each patient. All data were tested 

for normal distribution with the D’Agostino-Pearson omnibus normality test before further 

statistical analysis. T-test (paired) was used where appropriate. Non-parametric testing of 

continuous variables was performed using Mann-Whitney-U test or Wilcoxon’s paired rank-

sum test. Otherwise the Fisher’s exact test was used. For both time points (T=0 and T=1) in 

the surgical and ICU group, (SfvO2 - ScvO2) was calculated. 

Paired samples were compared by (Spearman, rs) correlation [25] and the agreement 

between absolute values of ScvO2 and SfvO2 and the agreement of the changes of these 

values were assessed by the mean bias and 95% limits of agreement (mean bias ± 1.96 x 

standard deviation (SD)) as described by Bland and Altman (BA analysis) [26]. Limits of 

agreement  (LOA) were considered acceptable if they were within 5%. Based on the findings 

in the control group (SD 7 to 10; r = 0.60) we determined that number of paired samples 

required for a 90% power in a two-sided test with a 0.05 type I error would be 30. Data are 

displayed as median [interquartile range (IQR)]. Statistical significance was assumed at p < 

0.05. 

 

Results 

Control group 

 In 100 patients (46 males, 54 females) who underwent elective right heart 

catheterization we obtained 100 paired blood samples. Median age was 73 [63 - 80] years. 



 

 SvO2 and ScvO2 correlated significantly (p < 0.001) with rs = 0.85. BA analysis 

revealed a bias (or absolute difference) of 0.5% ± 2.8% (95% LOA of -4.8 to 5.9%). 

 Median SfvO2 was lower than median SvO2 (66.3 [58.1 - 73.0]% vs. 68.9 [64.3 – 

72.6]%; p=0.03). According to BA analysis the mean bias between SvO2 and SfvO2 was 

2.1% ± 7.9%; 95% LOA -13.0 to 17.5%. Correlation between SvO2 and SfvO2 was significant 

(rs = 0.57; p < 0.001). 

 Results for median SfvO2 and median ScvO2 were very similar. Median SfvO2 was 

lower than ScvO2 (66.3 [58.1 - 73.0]% vs. 69.2 [64.9 - 73.2]%; p < 0.01) According to BA 

analysis the bias between ScvO2 and SfvO2 was 2.7% ± 7.9% 95% LOA were -12.9 to 18.2% 

(figure 1). Fifty-five percent of the paired SfvO2 and ScvO2 samples diverged by > 5%. 

Nevertheless, ScvO2 correlated with SfvO2 (rs = 0.55; p < 0.001). 
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Figure 1. Control Group. Bland and Altman plot showing the 

agreement between ScvO2 and SfvO2 (bias 2.7%, 95% LOA 

from -12.9% to 18.2%). 

 



Surgery group 

 Altogether 60 paired blood samples were obtained in 30 patients. Baseline 

characteristics are shown in table 1. Co-morbidities in this group of surgical patients: arterial 

hypertension (20), cardiac (atrial fibrillation, coronary artery disease) (12), diabetes mellitus 

(9), chronic obstructive pulmonary disease (6), neurological (6), other (21). 

Table 1. Characteristics of surgical and ICU patients 

variable surgery 

(n=30) 

ICU 

(n=30) 

P value septic shock 

(n=26) 

 

age (yr) 

 

75 [64 - 81] 

 

75 [67- 80] 

 

0.98 

 

75 [67 - 82] 

gender (male / female) 15 / 15 19 / 11 0.43 15/11 

MAP (mmHg) 74 [66 - 81] 74 [63 - 90] 0.75 74 [61 - 90] 

heart rate 

(beats / minute) 

73 [62 - 87] 109 [96 - 131] < 0.001 107 [96 - 114] 

hematocrit (%) 30.0 [27.8 - 34.0] 33.5 [30.0 - 37.0] 0.05 32.0 [30.0 - 35.5] 

FiO2 0.45 [0.40 - 0.50] 0.60 [0.40 - 0.65] 0.10 0.58 [0.40 - 0.60]  

APACHE II  22 [17- 28]  24 [15 - 30] 

CVC 

(jugular / subclavian) 

29 / 1 14 / 16 <0.001 12 / 14 

ScvO2 (%) 81.0 [ 78.0 - 86.5] 77.0 [65.8 - 83.3] 0.02 78.0 [65.7 - 83.0] 

SfvO2 (%) 83.0 [ 78.0 - 88.0] 71.0 [58.8 - 82.0] < 0.001 74.0 [63.5 - 81.2] 

 

ICU, intensive care unit; MAP, mean arterial pressure; FiO2, fraction of inspired oxygen; APACHE II, acute 

physiology, age and chronic health evaluation; CVC, central venous catheter; ScvO2, central venous oxygen 

saturation; SfvO2, femoral venous oxygen saturation. Data are presented as median [IQR] or as numbers; P 

value, ICU vs. surgery. 



 Types of surgery (and number) performed on these patients were as follows: liver (9), 

lung (8), colon (6), aorta (4), and other (3). Median length of stay in the hospital (LOSHOSP) 

was 10 [6-19] days. Post-operative complications included: pneumonia (4), ileus (4), 

relaparotomy (4), cardiac ischemia (3), de novo atrial fibrillation (2), neurological (1), wound 

infection (1), urinary tract infection (1), systemic inflammatory response syndrome (1), 

pulmonary embolus (1), and other (5). None of the patients died postoperatively in the 

hospital. 

 At T=0 the SfvO2 underestimated the ScvO2 (bias of -1.9% ± 9.3%). The 95% LOA 

were -20.0% to 16.3% (figure 2). At T=1 the SfvO2 underestimated the ScvO2 (bias of -1.0% 

± 14.9%). The 95% LOA ranged from -30.2% to 28.3% (figure 2). At both time points SfvO2 

and ScvO2 did not correlate significantly (p = 0.23 and p = 0.06, respectively). The 

differences between median (SfvO2 - ScvO2) at T=0 and T=1 were not significant (2.0 [-5.0 - 

7.5]% vs. 4.0 [-6.5 - 7.0]%; p = 0.71). The median changes of SfvO2 and ScvO2 from T = 0 to 

T = 1 were equivalent (-5.0 [-13.8 - 5.8]% vs. -2.0 [-11.0 - 2.5]%; p = 0.89). In only 57% the 

changes in SfvO2 and ScvO2 over time were in the same direction; this was independent of 

the type of surgery. 

 

ICU group 

 Thirty acutely admitted patients were included. Baseline characteristics are shown in 

table 1. At admission, four patients were in cardiogenic shock based on acute coronary 

syndrome or cardiac failure. Twenty-six patients were in septic shock. Causes of sepsis were 

respiratory (n=13), abdominal (n=8), urological (n=2), or other (n=3). In the majority of 

patients (28/30) one or more inotropes were used (28/30): dopamine (n=1), norepinephrine 

(n=16), milrinone (n=26), isoprenaline (n=1). 

 



 

Figure 2. Bland and Altman plots showing the agreement between ScvO2 and SfvO2 in the 

surgery group at T=0 and T=1 and in the ICU group at T=0 and T=1; various bias and 95% LOA 

in results section. 

 

 At T=0 the SfvO2 overestimated the ScvO2 (bias of 4.6% ± 14.3%). The 95% LOA 

were -23.5% to 32.6% (figure 2). At T=1 the SfvO2 overestimated the ScvO2 (bias of 3.3% ± 

11.1%). The 95% LOA ranged from -18.5% to 25.1% (figure 2). At both time points SfvO2 

and ScvO2 correlated significantly (p = 0.01 and p = 0.002, respectively) with comparable rs 

(0.46 vs. 0.55). The difference between SfvO2 and ScvO2 and the range of variation 

diminished over time (from -4.0 [range -44.0 to 28.0] at T=0 to -1.0 [range -32.0 to 11.0] at 

T=1; figure 3). 
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Figure 3. ICU group. The median 

difference between SfvO2 and ScvO2 at 

T=0 (-4.0%, range -44% to 28%) and T=1 

(-1.0%, range -32% to 11%). 

 Changes of SfvO2 and ScvO2 over time occurred in the same direction in 87%  of the 

cases (26/30; in-hospital mortality 27% (7/26)). In twenty of these patients the value of both 

SfvO2 and ScvO2 increased; mortality of this subgroup was 25% (5/20). In four cases ScvO2 

increased after treatment while SfvO2 decreased. In-hospital mortality in this small subgroup 

(75% (3/4)) was not significantly higher compared to the other 26 patients (p=0.33). The 95% 

LOA between both changes were -32.6% to 30.1%. The total in-hospital mortality in this 

group was 33%. 

 Results for 26 patients in septic shock were similar to the results of the total ICU 

group (table 1). At T=0 the SfvO2 overestimated the ScvO2 (bias of 2.2% ± 12.8%). The 95% 

LOA were -27.5% to 22.8%. At T=1 the SfvO2 overestimated the ScvO2 (bias of 3.5% ± 

11.9%). The 95% LOA ranged from -26.5% to 19.9%. At both time points SfvO2 and ScvO2 

correlated significantly (p = 0.01 and p = 0.003, respectively) with comparable rs (0.43 vs. 

0.54). Median LOSHOSP was 13 [5-27] days and in-hospital mortality was 35% (9/26). 

 



Comparison between patient groups 

 Gender and age were equally distributed in the control and surgery group (table 2). 

The absolute values of SfvO2 and ScvO2 were higher in the surgery group compared to the 

control group (table 2). The difference between SfvO2 and ScvO2 values also varied 

significantly between study groups (table 2). 

 

Table 2. Comparison of study groups (T=0) 

 control 

(n = 100) 

surgery 

(n=30) 

P value 
a
 ICU 

(n=30) 

P value 
b
 

 

age (year) 

gender (m / f) 

 

ScvO2 (%) 

SfvO2 (%) 

SfvO2 - ScvO2 (%) 

 

73 [63-80] 

46 / 54 

 

69.2 [64.9 - 73.2] 

66.3 [58.1 - 73.0] 

-1.5 [-8.5 - 2.7] 

 

75 [64 - 81] 

15 / 15 

 

81.0 [ 78.0 - 86.5] 

83.0 [ 78.0 - 88.0] 

2.0 [-5.0 - 7.5] 

 

0.39 

0.83 

 

<0.001 

<0.001 

0.03 

 

75 [67-80] 

19 / 11 

 

77.0 [65.8 - 83.3] 

71.0 [58.8 - 82.0] 

-4.0 [-12.3 - 2.5] 

 

0.41 

0.14 

 

<0.001 

0.06 

0.37 

ICU, intensive care unit; m, male; f, female; ScvO2, central venous oxygen saturation; SfvO2, femoral venous 

oxygen saturation; SfvO2 - ScvO2, difference between SfvO2 and ScvO2; 
a
 surgery vs. control group; 

b
 ICU vs. 

control group; Data are presented as median [IQR] or as numbers. 

 In contrast to the median value of SfvO2 median value of ScvO2 was higher in the 

acutely admitted critically ill patients compared to the patients in the control group. 

 The absolute values of the venous oxygen saturations were significantly lower in the 

septic ICU patients (ScvO2 77.0 [65.8 - 83.3]%; SfvO2 71.0 [58.8 - 82.0]%) than in surgical 

patients (ScvO2 81.0 [78.0 - 86.5]%; SfvO2 83.0 [78.0 - 88.0]%) at T=0. This difference 

disappeared at T=1 (table 3). 



Table 3. Characteristics surgical and ICU patients at different time points 

variable surgery 

(n=30) 

ICU 

(n=30) 

P value 

T = 0    

MAP (mmHg) 74 [66 - 81] 74 [63 - 90] 0.75 

heart rate (beats / minute) 73 [62 - 87] 109 [96 - 131] < 0.001 

ScvO2 (%) 81.0 [78.0 - 86.5] 77.0 [65.8 - 83.3] 0.02 

SfvO2 (%) 83.0 [78.0 - 88.0] 71.0 [58.8 - 82.0] < 0.001 

FiO2 0.45 [0.40 - 0.50] 0.60 [0.40 - 0.65] 0.10 

SfvO2 - ScvO2 2.0 [-5.0 - 7.5] -4.0 [-12.3 - 2.5] 0.03 

 

T = 1    

MAP (mmHg) 77 [72 - 94] 65 [59 - 74] < 0.001 

heart rate (beats / minute) 82 [66 - 99] 99 [84 - 109] 0.03 

ScvO2 (%) 79.0 [72.8 - 83.0] 81.5 [75.0 - 83.3] 0.47 

SfvO2 (%) 83.0 [71.5 - 87.0] 79.5 [72.0 - 85.0] 0.46 

FiO2 0.45 [0.40 - 0.67] 0.45 [0.40 - 0.60] 0.53 

SfvO2 - ScvO2 4.0 [-6.5 - 7.0] -1.0 [-6.8 - 4.3] 0.08 

 

change of ScvO2 (T1 – T0) -2.0 [-11.0 - 2.5] 5.0 [ 1.0 - 10.3] 0.001 

change of SfvO2 (T1 – T0) -5.0 [ -13.8 - 5.8] 4.5 [-4.8 - 21.0] 0.01 

total infusion (ml) 3150 [ 1534 - 4795] 3286 [2369 - 5135] 0.43 

fluid balance (ml) 272 [-525 - 1127] 2589 [1137 - 3721] 0.01 

ICU, intensive care unit; MAP, mean arterial pressure; FiO2, fraction of inspired oxygen; APACHE 

II, acute physiology, age and chronic health evaluation; CVC, central venous catheter; ScvO2, 

central venous oxygen saturation; SfvO2, femoral venous oxygen saturation. Data are presented as 

median [IQR] or as numbers. 



Discussion 

We conclude that SfvO2 should not be used as a surrogate of ScvO2 due to the lack 

of agreement between both variables under different circumstances. This uncertainty in 

estimating ScvO2 by SfvO2 hampers protocol-guided hemodynamic optimization in which 

decreases in SfvO2 of ScvO2 may trigger therapeutic interventions. As for the absolute values 

of SfvO2 and ScvO2, substituting the change of ScvO2 by the change of SfvO2 is not suitable. 

These results are of confirmative but also additional value with respect to recent reports on 

populations of critically ill patients [14, 17]. 

This is the first study describing the relationship between femoral and non-femoral 

central venous saturations in outpatients. Although those patients do not resemble healthy 

volunteers, the results will give us at least an idea of the physiological relationship between 

femoral and non-femoral central venous saturations in stable hemodynamic conditions. In 

these stable conditions without any reason for redistribution of blood flow, the median values 

of ScvO2 or SvO2 and SfvO2 were significantly different, and LOA as described by BA 

analysis were wide. Apparently, even in stable hemodynamic conditions a statement on the 

systemic balance between oxygen delivery and oxygen demand should not be based on 

SfvO2 values. 

 No study compared ScvO2 and SfvO2 in surgical patients before. In the present study 

mean biases between ScvO2 and SfvO2 were relatively small during anesthesia in 

intermediate and high-risk surgery but LOA were wide. The Bland and Altman projections 

implacably demonstrate that several values differed even more than 15% from each other. 

Even more concerning was the lack of predictability for the direction of change of ScvO2 by 

SfvO2: it’s like tossing a coin. We think that peri-operative protocols as suggested for ScvO2 

[27,28] should not be based on SfvO2 values. 

 



 Treatment of shock implies improvement of the circulatory state with redistribution of 

flow not only in vital organs but also in more peripheral tissue, including limbs. The results in 

the ICU group elegantly show that after 6 hours of intensive treatment the mean difference 

between SfvO2 and ScvO2 decreased, i.e. after reversal of shock and improvement of the 

circulation SfvO2 approached ScvO2. In the vast majority of patients changes of SfvO2 and 

ScvO2 occurred in the same direction, i.e. rise or fall, during resuscitation. Although not 

significant due to insufficient power, the mortality rate was higher when ScvO2 increased but 

SfvO2 decreased after 6 hours of treatment in the ICU (3/4; 75%). Apparently, in these cases 

treatment failed to improve circulation and shock was not adequately reversed. Also, regional 

(splanchnic, leg blood flow) changes in oxygen delivery and consumption cannot predict 

systemic changes [28] and differences in regional oxygen extraction ratio [29] attribute to the 

differences between ScvO2 and SfvO2 in our study. In conclusion, SfvO2 did not adequately 

predict ScvO2 in critically ill patients. This is in line with recent clinical work in which a similar 

lack of agreement between SfvO2 and ScvO2 was described [14,17]. Both studies describe 

wide LOA as well, i.e. more than 50% of ScvO2 and SfvO2 values diverged by more than 5% 

[14,17]. Although in those studies more critically ill patients (n=39 and n=43, respectively) 

were included than in the present study, our study carries a control group and compares 

changes of both values over time. 

 Several strengths of this study should be mentioned. First, a relatively large group of 

stable cardiac patients served as control group. Second, a power analysis was performed 

before the start of the study. Third, we did not only compare absolute values but also 

changes over time of both ScvO2 and SfvO2 during treatment in surgery and in the ICU. 

Fourth, femoral blood samples were taken by puncture, which excludes possible influences 

of the catheter length on oxygen content or reliability of the samples. 

 



 However, this study also has limitations. First, measurements were done intermittently 

and not continuously. Second, all surgical and ICU patients were sedated, mechanically 

ventilated, and none of them were primarily in hemorrhagic shock. Therefore care must be 

taken before generalizing our results to other patients with different pathophysiology. Third, 

we investigated acutely admitted ICU patients and timing of measurements was probably not 

always in the same stage of disease. However, this approach reflects common clinical 

practice and is a well-known drawback in all studies involving critically ill patients. Fourth, 

one may argue that movements of the legs, especially during global hypoxia may have 

influenced the results. However, all cardiac patients were stable, locally anaesthetized and 

lying still during the procedure. All surgical and most (28 out of 30) ICU patients were 

measured after induction of general anesthesia. The other two ICU patients were quiescent 

at the time of measurements. Furthermore, the occurrence of strong leg movements would 

have caused even larger differences between ScvO2 and femoral venous saturations than 

reported in our results. Hence, we do not think this potential confounder plays a role in our 

study. Finally, in this study ScvO2 and SfvO2 values did not change between different time 

points as a result of a study intervention. However, measurements took place within 

individual patients: each subject served as its own control. 

 

Conclusion 

SfvO2 cannot replace ScvO2, neither in stable conditions nor during surgery or during the 

resuscitation phase in critically ill patients. 
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Abstract 

Objective We evaluated the relationship of lactate measured in a pre-clinical setting to 

outcome. Simultaneously, we evaluated the feasibility of implementing blood lactate 

measurement in a pre-hospital setting as part of a quality improvement project. 

 

Methods Chart review of patients from whom serum lactate levels prospectively were 

obtained in a pre-hospital setting. Total population was divided into two groups, i.e. a shock 

group and a non-shock group according to predefined shock symptoms. The shock group 

was divided into two groups, i.e. a lactate < 4mmol/L (subgroup I) and a lactate ≥ 4mmol/L 

(subgroup II). 

 

Results In about 50% of possible cases lactate was measured in the pre-hospital setting. 

Median lactate in subgroup I (n=74) was 3.2 (1.5-3.9) mmol/L vs. 5.0 (4.0-20.0) mmol / L in 

subgroup II (n=61) (p < 0.0001). Significant differences were found in length of stay in 

intensive care unit (p = 0.03) or hospital (p = 0.04) and mortality (subgroup I 12.2% vs. 

subgroup II 44.3%; p = 0.002). In normotensive shock patients revealing a lactate ≥ 4mmol/L 

(n=27) the mortality was higher compared to normotensive shock patients with a lactate < 

4mmol/L (n=31) (35% vs. 7%; p < 0.001). 

 

Conclusion Implementation of lactate measurement in pre-hospital setting is feasible, and 

potentially clinical relevant. Lactate measured in a pre-clinical setting is related to outcome. 

Subsequent studies should evaluate if treatment of shock patients based on pre-hospital 

lactate measurement will improve outcome. 



Introduction 

Physical findings and vital signs are important, but not always sufficient for accurate 

detection of global tissue hypoxia [1]. Global tissue hypoxia as a result from systemic 

inflammatory response or circulatory failure is an important indicator of shock preceding 

multiple organ dysfunction syndrome (MODS). Due to global tissue hypoxia, with 

concomitant risk of developing an oxygen debt, anaerobic metabolism occurs and lactate 

production is increased. If this situation persists, the lactate metabolic clearance rate is 

surpassed and circulating lactate levels may be elevated as well. 

Numerous studies have established the use of lactate as a diagnostic, therapeutic 

and prognostic marker in different shock states and other critical conditions [2-5]. Serum 

lactate concentrations > 4 mmol/L are unusual in normal and not critically ill hospitalized 

patients, independent of underlying comorbidities [6]. Lactate concentration > 4 mmol/L in the 

presence of systemic inflammatory response syndrome (SIRS) criteria significantly increases 

intensive care unit (ICU) admission rates and mortality rate in normotensive patients [7]. 

Also, lactate represents a useful and clinically obtainable surrogate marker of tissue hypoxia 

and disease severity, independent of blood pressure [8]. This was corroborated by others, 

who also demonstrated that early lactate clearance was associated with decreased mortality 

rate in patients with severe sepsis and post-cardiac arrest patients [9,10]. These findings 

have facilitated the clinical application of point-of-care measurements and portable 

monitoring of lactate over the past decade in the emergency department (ED), operating 

theatre and ICU [11-13]. In addition, several years ago Shapiro et al. suggested that lactate 

seemed a promising risk-stratification tool in the ED setting [14]. They found a significant 

higher mortality rate in patients with a serum lactate ≥ 4 mmol/L. Measurement of serum 

lactate in a pre-hospital setting, i.e. in the ambulance, could warn paramedics of pending 

organ failure despite normal global hemodynamic parameters. We evaluated the relationship 

of lactate measured in a pre clinical setting to outcome. Simultaneously, we evaluated the 



feasibility of implementing blood lactate measurement in a pre-hospital setting as part of a 

quality improvement project. 

 

Methods 

Setting 

 We studied charts of ambulances that arrived at a non-academic medical centre 

[Gelre Hospital (GH), site Lukas, Apeldoorn, The Netherlands]. These charts are 

standardized by the Dutch ambulance organization. The GH is an affiliated 925-bed teaching 

hospital and the ICU is a 14-bed “closed format” department. The ambulance service covers 

an area of about 2000 km2 with approximately 620,000 inhabitants. The ambulance service is 

divided into 4 clusters, the main cluster being Apeldoorn, an urban area with approximately 

270,000 inhabitants. 

 

Implementation 

 From an environmental scan [15] we learned that in the Netherlands measurement of 

lactate has not been done in daily practice throughout the pre-hospital phase. Because 

lactate measurement was an unknown feature for our ambulance personnel the next phase 

of implementation, setting a target, seemed important to prepare them for a change in 

behaviour. To make behavioural change possible, teaching regarding why, what, and when 

for changing behaviour is crucial. During the two months prior to the first blood lactate 

measurements in pre-hospital setting all ambulance personnel was trained. First, as part of 

the education program, one of the investigators (PS) explained in a lecture the theoretical 

essence of this project. The why, the expected potential benefit for shock patients in the 

future was also mentioned. Finally, all ambulance personnel received a two hour course on 

working with the lactate meter (Accutrend© lactate meter (Roche Diagnostic GmbH) in the 



field. This course was not only theoretical but also contained actual practice. With this course 

we intended to lower the threshold in the field for the use of an extra device. The emphasis 

on who to change was focused on the ambulance personnel. 

 

Patients and data collection 

 This study is a chart review of patients from whom serum lactate levels prospectively 

were obtained in a pre-hospital setting. Total population was divided into two groups, i.e. a 

shock group and a non-shock group according to predefined shock symptoms which were 

defined as 1) a heart rate <50 or >100 beats per minute, 2) systolic blood pressure <90 

mmHg, 3) respiration rate <10 or >30 breaths per minute, 4) peripheral arterial oxygen 

saturation <95% (COPD patients <90%), 5) collapse or Glasgow Coma Scale (GCS) <14. 

Patients suffering from two or more of these symptoms were included in the shock group; 

those with none or one deviated shock parameter were included in the control (non-shock) 

group. Exclusion criteria were age <18 years, hypoglycemia, seizures, no consent, treatment 

not according to the Dutch national ambulance protocol (“Landelijk Protocol Ambulance”, 

LPA 7) or lacking data. In the field respiration rate was noted according to the Dutch national 

ambulance chart, being five options: none, 1-5, 6-9, 10-29 and more than 30 breaths per 

minute. For analysis, respiratory rates were divided into three categories: 0-9, 10-29 and >30 

breaths per minute [16]. After defining the non-shock and shock group the latter population 

was divided into two subgroups: one subgroup with blood lactate < 4 mmol/L (= subgroup I) 

and another subgroup with blood lactate ≥ 4 mmol/L (= subgroup II). Early treatment given in 

pre-hospital setting was divided in three categories: 1) oxygen plus basic peripheral IV line; 

2) as previous, plus plasma expander; 3) as previous, plus intubation. 

 

 



Lactate measurements 

 During the maintenance phase all lactate meters (Accutrend© lactate meter (Roche 

Diagnostic GmbH) were calibrated regularly according instructions by the manufacturer. 

Capillary or venous lactate levels were measured with these meters. Local coordinators were 

interviewed on the experiences of the ambulance personnel, the lactate meter and its use in 

the field. Also points for improvement were noted. 

 Vitals were determined with Lifepack© 12 (Medtronic). Collecting data was approved 

by the Medical Ethics Committee. Informed consent was obtained from all participants. 

 

Statistical analysis 

 The statistical package for the social sciences (SPSS 16.0.1 for Windows) was used 

for statistical analysis. All data were tested for normal distribution with the Kolmogorov-

Smirnov test before further statistical analysis. Since normality could not be assumed, 

differences between groups were assessed using non-parametric Mann-Witney U analysis 

and Spearman correlation tests. Data were displayed as median and range. Categorical data 

were tested by χ2 test. Receiver operating curves (ROC) curves were used to describe the 

relation between increased lactate levels and vital signs and to evaluate their reliability as a 

prognostic factor. In all cases a p-value < 0.05 was considered to be statistical significant. 

  



 

Results 

Implementation 

 In about 50% of possible cases lactate was measured in the pre-hospital setting in 

the Apeldoorn area. The number of measurements was lower in more rural areas (24%). 

Interviews with coordinators in the 4 clusters of the ambulance service revealed consistently 

the same causes of non-compliance and the following barriers were encountered. Duration of 

lactate measurement (60 seconds) resulted in restraint for a successive attempt. In the rural 

areas especially, less frequent calls resulted in less experience in handling the lactate meter. 

Measurement seemed less aggravating for ambulance personnel when for instance patients 

hemodynamics were less deteriorated or when GCS was high or normal. Although personnel 

were well aware of the possible reasons why to change medical acting in the field variation 

from standard protocol (LPA 7) was still an issue. Overall, the majority of ambulance 

personnel experienced inclusion criteria as too strict. An extra measurement was not always 

considered possible in sometimes-stressful situations. On the other hand, occasional 

feedback on particular cases such as repeated lactate measurements in the ED or ICU was 

experienced as positive. 

 

Lactate measurements 

As a result of the implementation of lactate measurement in the pre-hospital setting a 

total 277 ambulance charts were reviewed, allowing evaluation of clinical relevance. Sixty-

one charts did not meet inclusion criteria: forty-one patients were in pre-hospital setting 

diagnosed with seizures, eighteen charts were invalid and two patients were not treated 

according to the national ambulance protocol leaving 216 charts fit for study. Eighty-one 



patients did not meet shock criteria (non-shock group) but 135 patients did (shock group). 

Characteristics of the patients are shown in table 1. 

 The numbers of shock criteria per patient in the shock group were distributed as 

follows: 2 criteria in 55 (40.8%) patients; 3 criteria in 41 (30.6%) patients; 4 criteria in 28 

(20.4%) patients and 5 criteria in 11 (8.1%) patients. In normotensive shock patients (MAP 

60-90mmHg) revealing a lactate ≥ 4mmol/L (n=27) the mortality was higher compared to 

normotensive shock patients with a lactate < 4mmol/L (n=31) (35% vs. 7%; p < 0.001). 

Median lactate in the shock group was significantly higher compared to the non-shock group: 

3.9 (1.5-20.0) mmol/L vs. 2.8 (0.8-7.2) mmol/L (p < 0.0001). In hospital mortality differed 

significantly from the non-shock group: 26.7% in the shock group vs. 1.2% in the control 

group (p < 0.001). 

 In the shock subgroups (subgroup I: lactate < 4 mmol/L, n=74; subgroup II: lactate ≥ 4 

mmol/L, n=61) age and sexes were equally distributed. Median lactate in subgroup I was 3.2 

(1.5-3.9) mmol/L vs. 5.0 (4.0-20.0) mmol / L in subgroup II (p < 0.0001). Compared to 

subgroup I more patients showed an unfavourable respiratory pattern in subgroup II 

(category respiratory rate <10 or >29 breaths / minute) (35.1%vs. 65.6%). Only one patient 

(1.4%) needed intubation in subgroup I but 15 patients  (24.6%) needed intubation in 

subgroup II (p < 0.001). Also significant differences were found in length of stay in intensive 

care unit or critical care unit (LOSICU) (p = 0.03), length of hospital stay (LOSHOSP) (p = 0.04) 

and mortality (subgroup I 12.2% vs. subgroup II 44.3%; p = 0.002). Results within the shock 

group are shown in table 2. 

  



Table 1. Base-line characteristics of non-shock and shock group. 

 non-shock group 

(n=81) 

shock group 

(n=135) 

P value 

 

 

Age (yr) 

Sex (%) 

  Male 

  Female 

Heart rate (beats per minute) 

Mean blood pressure (mmHg) 

Respiratory rate 

        0-9 

        10-29 

        >29 

Arterial saturation (%) 

Lactate (mmol/L) 

GCS 

RTS 

Diagnosis (%) 

  Trauma 

  Respiratory failure 

  Cardiac failure (incl. resuscitation) 

  Sepsis / infection 

  Haemorrhage 

  Acute abdomen 

  CNS 

  Other 

 

LOSICU/CCU (days) 

LOSHOSP (days) 

In hospital mortality (%) 

 

54 (18-94) 

 

56.8 

43.2 

75 (51-146) 

97 (61-133) 

 

0 

76 

5 

98 (84-100) 

2.8 (0.8-7.2) 

15 (6-15) 

12 (10-12) 

 

9.9 

1.2 

1.2 

1.2 

7.4 

16.0 

2.5 

60.6 

 

0 (0-1) 

1 (0-26) 

1.2 

 

72 (18-91) 

 

60.0 

40.0 

91 (0-150) 

73 (0-140) 

 

14 

69 

52 

92 (0-100) 

3.9 (1.5-20.0) 

14 (3-15) 

11 (0-12) 

 

5.9 

8.9 

14.1 

14.1 

18.5 

8.1 

6.7 

23.7 

 

1 (0-46) 

4 (0-53) 

26.7 

 

< 0.001
*
 

 

0.67 

 

0.005
*
 

<0.0001
*
 

0.004
*
 

 

 

 

<0.0001
*
 

<0.0001
*
 

<0.0001
*
 

<0.0001
*
 

 

 

 

 

 

 

 

 

 

 

<0.0001
*
 

<0.0001
*
 

<0.0001
*
 

 

 

Data presented as numbers or median (range). * Statistically significant difference. GCS, Glasgow Coma 

Scale; RTS, Revised Trauma Score; CNS, central nervous system; LOSICU/CCU , length of stay in intensive or 

critical care unit; LOSHOSP, length of stay in hospital. 

 



Receiver operating characteristic (ROC) curves were constructed for measurements 

taken in pre-hospital setting. These curves represent the reliability of different values as 

predictors of in-hospital mortality. Area under the curve (AUC) was significantly higher for 

lactate compared to vitals in both the total population (lactate 0.827 vs. SaO2 0.127, MAP 

0.350 and heart rate 0.500; p < 0.01) and the shock group (lactate 0.775 vs. SaO2 0.157, 

MAP 0.421 and heart rate 0.435; p < 0.01). We established a lactate level of 3.2mmol/L as 

the best cut-off point. A lactate level of ≥ 3.2mmol/L was 75% sensitive (95% CI 62-88%) and 

72% specific (62-82%) for prediction of death; figure 1. 

 

Figure 1. ROC curves for mortality prediction in the 

shock group. The AUC was 0.775 for lactate, 0.157 for 

arterial saturation (SaO2), 0.421 for mean arterial 

pressure (MAP) and 0.435 for heart rate (HR). 



Table 2. Base-line characteristics subgroups of shock patients. 

 subgroup I (n=74) 

(lactate < 4 mmol/L) 

subgroup II (n=61) 

(lactate ≥4 mmol/L) 

p-value 

 

Age (yr) 

Sex (%) 

  Male 

  Female 

Heart rate (beats per minute) 

Mean blood pressure (mmHg) 

Respiratory rate 

        0-9 

        10-29 

         >29 

Arterial saturation (%) 

Lactate (mmol/L) 

GCS 

RTS 

Diagnosis (%) 

  Trauma 

  Respiratory failure 

  Cardiac failure (incl. resuscitation) 

  Sepsis / infection 

  Haemorrhage 

  Acute abdomen 

  CNS 

  Other 

 

LOSICU/CCU (days) 

LOSHOSP (days) 

In hospital mortality (%) 

 

74 (18-90) 

 

56.8 

43.2 

82 (35-150) 

78 (34-140) 

 

3 

48 

23 

94 (47-100) 

3.2 (1.5-3.9) 

15 (3-15) 

11 (5-12) 

 

4.1 

12.2 

9.5 

10.8 

14.9 

10.8 

6.8 

30.9 

 

0 (0-12) 

1 (0-53) 

12.2 

 

70 (19-91) 

 

63.9 

36.1 

99 (0-140) 

70 (0-140) 

 

11 

21 

29 

88 (0-100) 

5.0 (4.0-20.0) 

15 (3-15) 

10 (0-12) 

 

8.2 

4.9 

19.7 

18.0 

23.0 

4.9 

6.6 

14.7 

 

1 (0-46) 

7 (0-46) 

44.3 

 

0.59 

 

0.40 

 

0.20 

0.77 

0.01
* 

 

 

 

< 0.0001
*
 

< 0.0001
*
 

0.68 

0.01
*
 

0.07 

 

 

 

 

 

 

 

 

 

0.03
* 

0.04
*
 

0.02
*
 

 

 

Data presented as numbers or median (range). * Statistically significant difference. GCS, Glasgow Coma 

Scale; RTS, Revised Trauma Score; CNS, central nervous system; LOSICU/CCU , length of stay in intensive or 

critical care unit; LOSHOSP, length of stay in hospital. 

 



 Discussion 

 Logistical implementation of lactate measurement on the ambulance services means 

implementation of an extra medical act and extra effort. We concluded that this is feasible, 

albeit difficult. One of the reasons for this difficulty is that we aimed at changing behaviour 

without the presence of logistical or procedural errors that often motivate clinical collectives 

to action [15]. Also, involving ED personnel, including consultants may enhance the chance 

of success in a complex and dynamic environment such as the acute care that only can 

function as result of interplay of diverse departments and teams [15,17]. Difficulty with lactate 

measurements in very stressful situations or even ignoring such measurement during these 

events seems reasonable. Lactate measurements are probably less important in patients 

being resuscitated and in need for instant and maximum treatment. In these cases the 

urgency is obvious and will be carried over to the ED personnel. However, during the 

interviews it became clear that for the ambulance personnel lactate measurement in patients 

with less deteriorated hemodynamics seemed less necessary. This is a pity, for lactate 

measurement in the pre-hospital setting could especially be of use in this category of 

patients: i.e. patients being more severely ill than could suspected by vitals only. 

Consequently, a substantial number of patients with prognostically important hypoperfusion 

remain undetected. Most importantly, high lactate levels should trigger for specific 

intervention, i.e. fluid therapy, to improve lactate clearance and to improve outcome[18]. 

Treatment aiming at high lactate clearance is associated with decreased mortality rate in 

severe sepsis patients with elevated baseline lactate but without hypotension [9]. Our results 

seem concordant with the latter finding, i.e. mortality was significantly increased in 

normotensive shock patients if their pre-hospital lactate level was ≥ 4mmol/L (7% vs. 35%). 

Again, this finding is important because those patients would probably not be identified as 

being critically ill in the pre-hospital or ED setting. Recently Howell et al. also found higher 

mortality rates with increased lactate levels (≥4 mmol/L) in normotensive patients. In their 

patient population with suspected infection they confirmed that a single lactate measurement 



was independently predictive of mortality and not a surrogate marker of hypotension [19]. 

Early lactate determination seems helpful for triage decisions, not only in the ED, but also 

before ED presentation. Patients might indeed benefit from advanced activation of medical 

staff in the destination hospital. 

 Several limitations to our observations should be mentioned. First, this quality 

improvement project was not powered to yield conclusions pertaining to the obtained lactate 

measurements. Nevertheless, the data are interesting, since even in this small study strong 

association between lactate and increased morbidity and mortality could be demonstrated. 

This illustrates the importance of measuring lactate in the pre-hospital setting. Still, lactate 

measurements were not compared with the lactate levels in the ED. Consequently, the 

influence of lactate clearance could not be described and the use of the threshold value of 

3.2mmol/L may therefore be of limited value. Second, lactate was measured either from 

venous or capillary blood. Lactate determination in an ED or ICU can be done form venous 

or arterial blood sample and in most previous studies on lactate measurements were done 

arterially. In pre-hospital setting this is however not possible and venous (capillary) samples 

are the first choice. Previous studies showed these measurements to be equivalent [20,21]. 

Finally, the lactate measurements are predominantly performed in the Apeldoorn area and 

thus reflect a single centre observation. Further studies should reveal whether successful 

implementation in several ambulance regions may yield comparable results and if lactate 

measurements in the pre-hospital setting could be used as guideline for treatment. 

 We conclude that implementation of lactate measurement in pre-hospital setting is 

feasible, albeit difficult and potentially clinical relevant. Subsequent studies should evaluate if 

treatment based on pre-hospital lactate measurement will improve outcome. 
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Abstract 

Objective To evaluate whether lactate levels and derived variables are associated with 

organ failure and in-hospital mortality in a mixed intensive care unit (ICU) population. 

 

Methods Retrospective observational study. Case records from 2251 consecutive ICU 

patients admitted between 2001 and 2007 were analyzed. Base line characteristics, all 

lactate measurements, Sequential Organ Failure Assessment (SOFA) scores and in-hospital 

mortality were recorded. The time integral of arterial blood lactate levels above the upper 

normal threshold of 2.2 mmol/L (lactate-time-integral), maximum lactate (max-lactate), and 

time-to-first-normalization, were calculated. Survivors and non-survivors were compared and 

receiver operating characteristic (ROC) analysis were applied. 

 

Results A total of 20755 serum lactate measurements were analyzed. In non-survivors 

(n=405) lactate-time-integral, time-to-normal and cumulative SOFA were higher than in 

hospital survivors (all p<0.001). AUC of ROC curves to predict in-hospital mortality was the 

largest for max-lactate, whereas it was not different among all other lactate derived variables 

(all p>0.05). The area under the ROC curves for admission lactate and lactate-time-integral  

was not different (p=0.36). 

 

Conclusion Cumulative lactate is associated with in-hospital mortality in a heterogeneous 

ICU population. In our patients lactate peak values, but not the time integral of arterial blood 

lactate levels above the upper normal threshold predicted in-hospital mortality. 



Introduction 

Hyperlactataemia is common in critically ill patients and may reflect an imbalance 

between local or systemic oxygen supply (DO2) and oxygen consumption (VO2). 

Hyperlactataemia may also be found during increased aerobic glycolysis in hypermetabolic 

states from various causes [1,2], in patients treated with catecholamines [3,4], as a 

consequence of alkalosis in hyperventilation [5], and with impaired hepatic lactate clearance 

in sepsis or low flow states [6]. Elevated serum lactate levels are associated with the 

development of multiple organ dysfunction (MODS) postoperatively, following trauma, and 

septic shock [7-10] and it has been suggested that hyperlactataemia is associated with 

worse outcome [10-13]. Persistence of lactate levels above normal is associated with higher 

mortality rates in patients with severe sepsis, septic shock [9,14] and in post-cardiac arrest 

patients [15]. We hypothesized that the duration of hyperlactataemia represented by the time 

integral of arterial blood lactate levels above the upper normal threshold of 2.2 mmol/L 

(lactate-time-integral) outperforms single lactate measurements in predicting outcome. 

We therefore retrospectively investigated the relationship between lactate derived 

variables (admission level, maximum level, time-to first-normalization, lactate-time-integral) 

and organ failure, as assessed by the Sequential Organ Failure Assessment (SOFA) score 

[16-18], as well as in-hospital mortality in a large, mixed ICU population. Additionally, we 

performed subgroup analysis on categories in which lactate has been described as predictor 

of mortality (sepsis and circulatory failure) [10-13]. 

  



Methods 

Setting 

 A retrospective observational study in a university affiliated teaching hospital where 

the ICU is a mixed, 10 bed “closed format” department. There were no changes in medical 

staff during the study period. Case records from all ICU patients with available serum lactate 

measurements admitted over a 5-year period, January 2002 - December 2006, were 

identified in the ICU database. The study was approved by the Local Ethics Committee that 

waived the need for informed consent. 

 

Data collection 

 Data from all days spent in the ICU were collected retrospectively from the electronic 

patient data monitoring system and the hospital administration database. We collected 

demographic information, diagnosis, acute physiology and chronic health evaluation 

(APACHE II), simplified acute physiology score (SAPS-II), all serum lactate levels, and 

relevant variables for calculation of daily-assessed SOFA score (table 1). Diagnosis 

classifications were based on the APACHE II classifications, hence diagnosis category 

weight [19]. Finally, length of stay in the ICU (ICULOS), days in the hospital before discharge 

(LOSHOSP) and hospital survival were recorded. 

 

Parameters of organ failure 

 SOFA scores were prospectively calculated daily during ICU stay on a routine basis. 

The highest value for each organ system in the preceding 24-hour period was used. If 

variables required for calculation were missing, they were considered as normal until the first 



measured value became available. For any missing value thereafter, the last measured value 

known was used. The following SOFA-derived variables were used: 

1. Initial SOFA score on the first day of ICU admission (from time of admission to 24 

hours following admission, e.g., from 6 am to 6 am the next day). 

2. Cumulative SOFA (cum-SOFA): the sum of all daily SOFA scores during the stay in 

the ICU. 

If the patient received renal placement therapy (RRT) the maximum of 4 points was used for 

the renal component of the SOFA score. 

 

Lactate levels and derived variables 

 Lactate levels were measured in arterial blood using point-of-care blood gas 

analyzers (Rapidlab 865, Siemens, Munich, Germany; upper normal limit 2.2mmol/L). 

The time integral for lactate levels above the upper normal threshold of 2.2 mmol/L was 

calculated during the entire ICU-stay (lactate-time-integral) using custom made software. We 

used a formula that, for practical reasons, assumed a linear change over time between 

measurements. Figure 1 illustrates four possible scenarios used for calculating lactate-time-

integral. Lactate buffer solutions for RRT and continuous epinephrine infusion were not used 

during the study period following the general policy in the unit. 

 

Statistical analysis 

 The statistical package for the social sciences (SPSS 16.0.1 for Windows, Chicago, 

IL, USA) was used for statistical analyses and additional software was used for graphics 

(Prism 5.0 for windows, La Jolla, CA, USA) and comparison of ROC curves (MedCalc 11.2.1, 

Mariakerke, Belgium). Data are presented as mean ± SD or  



 

Figure 1. Illustration on calculation of lactate area under the curve above the 

upper normal limit of serum lactate (2.2 mmol/L). The following four equations 

were used in computing lactate-AUC: 

1. AUC A = ((½ · (lactate 0 – lactate 1)) + lactate 1)) · (time 1 – time 0) 

2. AUC B = ((½ · (lactate 2 – lactate 1)) + lactate 1)) · (time 2 – time 1) 

3. AUC C = ((lactate 2 – 2.2)² · (time 3 – time 2)) / 2 · lactate 2 

4. AUC D = ((lactate 4 – 2.2)² · (time 4 – time 3)) / 2 · lactate 4 

 

median [inter-quartile range] as indicated by assessment of normal distribution (D’Agostino-

Pearson omnibus normality test). Wilcoxon rank-sum test was used for categorical data. 

Differences of admission source or admission diagnosis between groups of survivors and 

non-survivors and those with and without hyperlactataemia were assessed using the Chi 

square test. Receiver Operating Characteristic (ROC) curves were used for the assessment 

of sensitivity and specificity of lactate derived variables in predicting in-hospital mortality. 

Areas under the ROC curves (AUCROC) were compared by the method described by DeLong 

et al. [20]. Statistical significance was assumed at p < 0.05. 

 



Results 

Table 1. Baseline and clinical characteristics 

characteristics all 

n = 2251 

surv 

n = 1846 

non surv 

n = 405 

P value 
a
 

age (yr) 66 (12-98) 69 (57-76) 75 (67-81)  

sex M : F (%) 61 : 39 61 : 39 60 : 40  

SAPS-II 38 (20-113) 33 (24-43) 51 (41-65) < 0.001 
*
 

APACHE II 17 (10-54) 15 (11-19) 23 (17-28) < 0.001 
*
 

diagnosis (%) 

vasc surg 

abd surg 

other surg 

heart failure 

resp failure 

GI bleeding 

neurological 

other 

sepsis 

 

16.0 

22.4 

9.8 

14.8 

11.8 

3.8 

4.5 

3.7 

13.1 

 

17.2 

23.5 

10.9 

12.3 

11.5 

4.3 

4.6 

3.9 

11.8 

 

10.4 

17.2 

4.9 

26.4 

13.4 

1.5 

2.7 

4.2 

19.2 

< 0.01 
# * 

vasoactive agent (%) 33 28 57 < 0.001 
* 

LOS ICU (days) 2 (1-5) 2 (1-5) 3 (1-8) < 0.001 
*
 

LOS HOSP (days) 14 (7-27) 15 (9-28) 6 (2-16) < 0.001 
*
 

in hosp mortality (%) 18    

 

Data are presented as numbers and median (interquartile range). AUC, area under the curve; surv, 

survivors; non surv, non-survivors; SAPS-II, simplified acute physiology score; APACHE II, acute 

physiology, age and chronic health evaluation; vasc surg, vascular surgery; abd surg, abdominal 

surgery; resp failure, respiratory failure; GI, gastrointestinal; vasoactive agent: noradrenaline, 

dopamine, dobutamine, phosphodeisterase inhibitor; LOS ICU, length of stay at intensive care; 

LOS HOSP, length of stay at hospital; in hosp mortality, in-hospital mortality; 
a
 survivors vs. non-

survivors, 
*
 Statistically significant difference. Statistics by Chi-square tests 

#
 and Wilcoxon rank-

sum tests. 



  

 During the 5-year period case records of 2251 patients (age 66 [12-98] years; 39% 

female) were identified. A total of 20755 serum lactate measurements were analyzed. 

Median lactate concentration at admission was 1.7 [1.1-2.8] mmol/L; minimum 0.6 mmol/L 

and maximum 27.0 mmol/L. Max-lactate was 2.1 [1.5-3.3] mmol/L, and lactate-time-integral 

0.0 [0.0-244] min·mmol/L. Baseline and clinical characteristics of all patients are summarized 

in table 1 (total population) and table 2 (subgroups). 

Table 2. Baseline characteristics subgroups 

characteristic sepsis 

n=307 

respiratory failure 

n=303 

cardiac failure 

n=213 

trauma 

n=76 

hemorrhage 

n=165 

age (yr) 69 (60-77) 68 (57-76) 72 (63-78) 37 (24-66) 70 (58-78) 

sex M : F (%) 63 : 37 58 : 42 60 : 40 75 : 25 61 : 38 

SAPS II 48 (37-57) 39 (31-50) 48 (37-63) 24 (17-35) 36 (28-45) 

APACHE II 21 (17-26) 18 (14-22) 22 (16-28) 11 (8-16) 15 (11-19) 

      

heart rate (beats/min) 115 (96-130) 115 (95-130) 110 (80-125) 95 (80-110) 100 (85-115) 

syst BP (mmHg) 105 (80-130) 123 (105-140) 110 (85-140) 123 (105-140) 105 (85-135) 

MAP (mmHg) 58 (50-62) 63 (55-69) 59 (51-65) 65 (58-74) 62 (55-70) 

      

vasoactive agent (%) 56 36 56 20 31 

mech. ventilation (%) 49 47 63 59 36 

      

lactate (mmol/L) 2.4 (1.6-3.9) 1.7 (1.1-2.6) 2.4 (1.4-4.8) 2.0 (1.4-3.2) 1.0 (0-2.1) 

max lactate (mmol/L) 3.0 (2.1-4.9) 2.1 (1.6-2.9) 3.0 (1.9-5.2) 2.3 (1.5-3.3) 1.2 (0-2.8) 

cum-lactate 

(min·mmol/L) 

216 (0-2634) 0 (0-143) 138 (0-1245) 1 (0-243) 0 (0-38) 

in hosp mortality (%) 29 21 38 8 8 

Data are presented as numbers and median (interquartile range). SAPS-II, simplified acute physiology score; APACHE II, 

acute physiology, age and chronic health evaluation 



 In-hospital mortality of our population was 18% and was higher in patients with 

hyperlactataemia during ICU-stay compared to those without hyperlactataemia (26.4% vs. 

10.8%; p < 0.001; table 1). In patients who died in the hospital (n = 405), admission lactate 

(2.6 [1.5-5.0] mmol/L), max-lactate (3.2 [1.9-5.8] mmol/L) and lactate-time-integral (192 [0-

1881] min·mmol/L), were higher than in hospital survivors (n = 1846; admission lactate (1.6 

[1.1-2.5] mmol/L), max-lactate (2.0 [1.4-3.0] mmol/L) and lactate-time-integral 0 [0-134] 

min·mmol/L, respectively; all p < 0.001); Figure 2. 
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Figure 2. Admission lactate levels (mmol/L), maximum lactate levels (mmol/L), cum-SOFA 

per day (points/day), lactate-time-integral per day ([min·mmol/L]/day) for survivors (n = 

1846) and non-survivors (n = 405); bars show median (upper interquartile range); 

logarithmic scale. 

 



 Figure 3 illustrates the relationship between lactate-time-integral per day and cum-

SOFA per day in survivors (n=1846) and non-survivors (n=405). Geometric means [95% CI] 

of lactate-time-integral per day ([min·mmol/L] / day) and of cum-SOFA per day (points / day) 

were significantly higher in non-survivors (174 [128-236] min·mmol/L / day and 11.1 [10.5-

11.8] points / day) compared to survivors (44 [40-51] min·mmol/L / day and 9.1 [8.9-9.4] 

points / day); both p < 0.001. 
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Figure 3. Relationship between lactate-time-integral per day and cum-SOFA per day 

in both survivors and non-survivors: geometric means (open dot: survivors, closed 

dot: non-survivors) with 95% confidence intervals; logarithmic scale. 

 

 Figure 4 demonstrates the difference between admission lactate levels and lactate-

derived variables with respect to predicting in-hospital mortality. AUCROC for admission 

lactate and lactate-time-integral were similar (0.666 [95% CI 0.646 to 0.686] vs. 0.676 [95% 

CI 0.657 to 0.696]; p=0.36). AUCROC for max-lactate (0.692 [95% CI 0.672 to 0.711]) was 



larger than AUCROC for lactate (0.666 [95% CI 0.646 to 0.686]; p = 0.01) lactate-time-integral 

(0.676 [95% CI 0.657 to 0.696]; p < 0.01), and time to normal (0.552 [95% CI 0.531 to 

0.573]; p < 0.001). The cut-off points derived from the ROC curve for lactate, max-lactate 

and cumulative lactate were 2.7 mmol/L, 2.5 mmol/L and 53 min·mmol/L,  respectively. 

 

Fig. 4 Receiver operating characteristic curves for in-hospital 

mortality prediction. Area under the curve was 0.552 for time to 

normal, 0.666 for lactate, 0.676 for lactate-time-integral and 0.692 

maximum lactate 

 Subgroup analysis revealed similar results. In none of the subgroups (sepsis, n=307; 

cardiac failure, n=213) AUCROC for lactate-time-integral was larger than AUCROC for single 

lactate values. In all subgroups admission lactate and maximum lactate differed between 

survivors and non survivors (all p < 0.001). 



Discussion 

In the present study lactate-time-integral was not superior in predicting in-hospital 

mortality compared to admission or maximum arterial lactate concentrations. Admission 

lactate values, maximum lactate values during ICU stay, and lactate-time-integral, were all 

associated with in-hospital mortality. 

High lactate clearance within the first 6 hours of sepsis is associated with decreased 

60-day mortality, even in the absence of arterial hypotension: survivors compared with non-

survivors had a lactate clearance of 38 vs. 12%, respectively [14]. Recently, in a randomized 

study, the use of lactate clearance was described as an efficacious alternative for ScvO2 

(target > 70%) guided resuscitation of patients in septic shock [21]. However, due to practical 

reasons a treatment bias could not be excluded. Also, difference in protocol actions were 

small: despite a well performed study chance may have influenced the results. In the present 

study we did not look at lactate clearance as described by Nguyen et al, a ratio of lactate 

values, but a combination of the lactate derived variables used may be considered as a 

surrogate. Yet, in the subgroup of patients with sepsis the lactate-time-integral or time to 

normal did not outperform max-lactate. This was the case in a study in which the duration of 

hyperlactataemia, lactime, was the best discriminant of survival when the patients who died 

in the first 24 hours were excluded [10]. We performed a retrospective study and choose not 

to exclude those patients who died early after onset of the disease to picture the influence of 

lactate and lactate derived variables in clinical reality. In conclusion, the present results 

recognize the importance of lactate clearance as described by others but also underline the 

importance of magnitude of lactate values during ICU treatment. 

A serum lactate threshold of ≥ 4 mmol/L has been used to initiate protocol-based 

resuscitation [22,23]. Such an approach might imply acceptance of intermediate serum 

lactate levels in the range of 2 to 4 mmol/L. However, elevated mortality rates are also 

described in critically ill patients with only moderate elevated serum lactate levels during or 



even before admission to the emergency department (ED) [24-26]. Additionally, in two recent 

retrospective studies the relationship between lactate levels, lactate derived variables and 

outcome in critically ill patients was assessed. It was concluded that not only 

hyperlactataemia but also relative hyperlactataemia, i.e. lactate levels in the upper normal 

range, are associated with increased mortality [27,28]. Our results in ICU patients are 

concordant with these results and we believe that normal values provide a reasonable 

clinical sign that tissue oxygenation is adequate and the metabolism is primarily aerobic. 

Nevertheless, it is possible that a higher lactate concentration threshold would have revealed 

different results. In addition, our results suggest that presence of hyperlactataemia 

outperforms its persistence in predicting in-hospital mortality. This might also be explained by 

two other factors. First, the retrospective design of our study and the lack of a specific 

intervention protocol limits the generalisation of our results. Second, arterial lactate 

concentrations not only depend on lactate production but also on its clearance. It is not 

known whether one mechanism is more important than the other with respect to outcome 

prediction. Nevertheless, the mechanism causing hyperlactataemia may play an important 

role in outcome prediction, rather than the hyperlactataemia itself. For instance, as described 

in two recent reports [30,31], the severity of hyperlactataemia due to metformin accumulation 

alone does not predict outcome but even in those cases the causative role is uncertain. Also, 

co morbidities such as renal insufficiency of liver failure may play an additional role [30,31].  

Finally, non-survivors revealed shorter LOSICU and LOSHOSP, whereas lactate-time-

integral was significantly higher in non-survivors compared to survivors. This means that 

non-survivors accumulate enough SOFA points to predict outcome independent of LOSICU as 

illustrated in figure 3. The duration and magnitude of increased serum lactate levels, 

represented by the area under the lactate curve, is associated with final outcome. 

Nevertheless, in the present study the specificity and sensitivity, described by AUCROC, of 

admission lactate and lactate-time-integral were similar in predicting in-hospital mortality. 

 



Several limitations to our observations should be considered. First, this was a 

retrospective study, which precludes definitive conclusions. On top of that, there was no 

predefined lactate measurement or lactate-based goal-directed protocol.  However, we 

consider the results strong enough to warrant further prospective studies analyzing the 

described phenomena, particularly, because the data were collected over a 5 year period 

and derived from a large group of patients. Second, this was a single unit study and therefore 

the results may only reflect the regional population and ICU management strategies. 

Nevertheless, we believe that selection bias was minimized since all consecutive admissions 

were included in the data analysis, since there was no change in medical staffing, and 

admission and discharge criteria were stable during the study period. Third, we assumed a 

linear change in time between two lactate measurements, which is a simplification of a real 

biologic process. However, we believe that our approach represents an approximation with 

acceptable precision for the purpose of the present study. 

 We conclude that lactate load correlated with cumulative SOFA score and is 

associated with in-hospital mortality in a heterogeneous ICU population. Additionally, 

magnitude of serum lactate levels and not necessarily duration of elevated serum lactate 

levels are of value in predicting in-hospital mortality. 
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Abstract 

Purpose To investigate the interchangeability of mixed and central venous-to-arterial carbon 

dioxide differences and the relation between the central venous-to-arterial carbon dioxide 

differences (pCO2 gap) and cardiac index (CI).  We also investigated the value of the pCO2 

gap in outcome prediction. 

 

Methods We performed a post-hoc analysis of a well-defined population of 53 patients with 

severe sepsis or septic shock. Mixed and central venous pCO2 were determined earlier at a 

6-hour interval (T=0 to T=4) during the first 24 hours after intensive care unit (ICU) 

admittance. The population was divided into two groups based on pCO2 gap (cut off value 

0.8 kPa). 

 

Results The mixed pCO2 difference underestimated the central pCO2 difference by a mean 

bias of 0.03 kPa ± 0.32 kPa ( 95% limits of agreement: -0.62 kPa to 0.58 kPa). We observed 

a weak relation between pCO2 gap and CI. The in hospital mortality rate was 21% (6/29) for 

low gap group and 29% (7/24) for high gap group; Odds ratio 1.6 (95% CI 0.5-5.5), p = 0.53. 

At T=4 the Odds ratio was 5.3 (95% CI 0.9-30.7); p=0.08. 

 

Conclusions The central venous pCO2 should not be used as surrogate for the mixed 

venous pCO2 in patients with severe sepsis or septic shock. The likelihood of bad outcome 

enhances when a high pCO2 gap persists after 24 hours of therapy. 



Introduction 

Shock is defined as global tissue hypoxia secondary to an imbalance between 

systemic oxygen delivery (DO2) and oxygen demand (VO2). Global tissue hypoxia as a result 

of systemic inflammatory response or circulatory failure is an important indicator of serious 

illness preceding multiple organ failure. The development of organ failure predicts outcome 

of the septic patient [1]. Unrecognized and untreated global tissue hypoxia increases 

morbidity and mortality: decreased mixed venous oxygen saturation (SvO2) values or central 

venous oxygen saturation (ScvO2) values predict poor prognosis in septic shock [2,3]. 

However, in the majority of patients with severe sepsis or septic shock who are acutely 

admitted to the intensive care unit (ICU) ScvO2 values are >70% [4,5]. Hence, normal ScvO2 

values do not guarantee adequate tissue oxygenation and other circulatory parameters are 

needed to evaluate resuscitation efforts. 

A variable that has been described in this context is the central venous-to-arterial 

carbon dioxide difference (pCO2 gap) [6]. Under physiological conditions, venous-to-arterial 

carbon dioxide difference usually does not exceed 0.8 kPa (6 mmHg) [7] and reflects 

adequacy of venous blood flow, i.e. cardiac output (CO) [8,9]. On macro-circulatory level, an 

inverse relationship between pCO2 gap and cardiac index (CI) has been described in 

critically ill patients [10,11]. Indeed, in patients who fulfilled resuscitation endpoints according 

to international guidelines [1] a cutoff value for pCO2 gap of 0.8 kPa discriminated between 

high and low lactate clearance and CI [6]. Thus, combining ScvO2 values as surrogate for 

global tissue hypoxia and pCO2 gap as surrogate for CI may be useful during resuscitation of 

critically ill patients. However in patients with severe sepsis, on the microcirculatory level 

distributive changes may be independent of CO [12,13]. This means that, on a regional level, 

in accordance to the possibility of persistent tissue hypoxia despite normal ScvO2 levels, 

accumulation of carbon dioxide (CO2) may occur in sepsis despite adequate CO. 

 



 In line with investigations on the agreement between SvO2 and ScvO2, it seems 

useful to determine whether an agreement between  mixed and central venous-to-arterial 

carbon dioxide difference in septic patients exists [5,11]. In other words, are mixed and 

central venous-to-arterial carbon dioxide difference interchangeable? 

 We examined the relationship between central venous-to-arterial carbon dioxide 

difference and CI and we addressed the question whether central venous-to-arterial carbon 

dioxide differences are of additional value in outcome prediction. Additionally, we 

investigated the agreement between mixed and central venous-to-arterial carbon dioxide 

difference in a well defined population of patients with severe sepsis or septic shock [5]. 

 

Methods 

Setting 

We studied ICU populations in two teaching hospitals: the Martini Hospital 

[Groningen, The Netherlands] (MH) with a 14-bed “closed format” mixed medical / surgical 

ICU department and the Medical Center Leeuwarden [Leeuwarden, The Netherlands] (MCL) 

with a 16-bed “closed format” mixed medical / surgical ICU, including cardiothoracic patients. 

Previously, written informed consent was obtained in all cases from the patient or from the 

patient’s legal representative. The use of earlier obtained data [5] was approved by both 

Local Ethics Committees. 

 

Patients and data collection 

This post-hoc analysis of data from a prospective observational study included a 

population of patients we have described before [5]. All patients were 18 years or older, with 

sepsis or septic shock according to international criteria as the principal reason for ICU 



admittance [14]. Patients were included in case of a clinical indication for additional 

hemodynamic monitoring using a pulmonary artery catheter (PAC) [Criticath SP 5507H TD, 

Becton Dickinson, Singapore] or a Continuous Cardiac Output (CCO) catheter [Arrow 

Deutschland GmbH, Erding, Germany]. The catheter was inserted into an internal jugular or 

subclavian vein according to standard procedure. Position was confirmed by the presence of 

pulmonary artery pressure tracings and chest radiography. Primary data, including 

hemodynamic variables, were collected at 6-hour interval (T0, T1, T2, T3, T4) during the first 

24 hours after acute ICU admittance. Standard blood samples of 2 ml were drawn 

simultaneously from arterial line, distal (pulmonary artery; PA) and proximal / side portal 

(superior caval vein; SCV) from PAC or CCO catheter. To avoid falsely high readings due to 

aspiration of pulmonary capillary blood, aspiration was done gently to avoid high negative 

pressure when blood samples were taken. Blood was sampled from the proximal port of the 

catheter as representative of central venous blood [15,16]. All blood samples were analyzed 

by a point-of-care co-oximeter (Radiometer ABL800 flex, Copenhagen, Denmark) available 

in both ICU’s. The Acute Physiology, Age and Chronic Health Evaluation (APACHE) II-score 

after 24 hours of ICU admittance was calculated [17]. 

 

Statistical analysis 

For analysis the population was divided into two groups: patients with a low pCO2 gap 

(<0.8kPa) vs. patients with a high pCO2 gap (>0.8kPa) at ICU admission (T=0). Statistical 

tests were two-tailed and performed by the statistical package for the social sciences (IBM 

SPSS 19 for Windows, Chicago, IL, USA) or MedCalc software (version 11.2.1, Mariakerke, 

Belgium) for comparing ROC curves. GraphPad software (Prism 5.0, La Jolla, CA, USA) was 

used for graphics. Measurements were not independent but clustered within each patient. All 

data were tested for normal distribution with the D’Agostino-Pearson omnibus normality test 

before further statistical analysis. Differences between both groups were assessed using 



Student’s t-test in case of normal distribution. For categorical data Chi-Square test or 

Fisher’s exact test was used. For each time point (T0-T4) the difference between arterial CO2 

partial pressure (paCO2) and central venous (pvCO2), i.e. pCO2 gap was calculated. Also, for 

each time point the average of CI, mean arterial pressure (MAP), ScvO2, lactate, and infusion 

rate of both norepinephrine and dopamine was calculated. The agreement between CI and 

pCO2 gap was assessed by the mean bias and 95% limits of agreement (mean bias ± 1.96 x 

standard deviation) as described by Bland and Altman (BA) [18]. Pearson correlation 

coefficient between mixed and central venous pCO2 differences was determined. Finally, the 

odds ratio for mortality between patients with a high pCO2 gap and patients with a low pCO2 

gap at both T=0 and T=4 was calculated. Data are displayed as mean ± SD. Statistical 

significance was assumed at p < 0.05. 

 

Results 

 We enrolled 56 patients, of whom three patients were excluded due to lack of data 

(technical problems). We evaluated data from 53 patients with sepsis. Thirty patients were 

enrolled at MCL and 23 patients were enrolled at MH. No complications other than transient 

arrhythmias were observed during the insertion of any catheter. 

 Altogether 245 paired blood samples were obtained. At T=0, 29 patients had a central 

pCO2 difference less than 0.8 kPa (low gap group), and 24 patients had a central pCO2 

difference larger than 0.8 kPa (high gap group). Baseline characteristics and outcome of the 

total population and both groups are shown in table 1. Length of stay at the ICU (LOS ICU) was 

12 ± 10 days and length of stay at the hospital (LOSHOSP) was 25 ± 18 days. 

  



Table 1. Baseline characteristics 

variable total population (n=53) low gap (n=29) high gap (n=24) P value 
# 

age (yr) 66 ± 12 67 ± 13 66 ± 11 0.83 

gender (m/f) 28 / 25 17 / 12 11 / 13 0.41 
1) 

APACHE II 27 ± 8 26 ± 7  27 ± 9 0.70 

diagnosis    0.78 
1) 

  abdominal 25 13 9  

  respiratory 16 10 7  

  urological 5 2 3  

  other 7 4 5  

therapy     

  mechanical ventilation 52 / 53 28 / 29 24 / 24 1.00 
2) 

  RRT 15 / 53 5 / 29 10 / 24 0.08 
2) 

  dopamine (µg/kg/min) 4.1 ± 3.9 3.6 ± 3.5 4.8 ± 2.7 0.41 

  norepinephrine (µg/kg/min) 0.20 ± 0.18 0.23 ± 0.23 0.16 ± 0.19 0.35 

MAP (mmHg) 66 ± 10  68 ± 9 63 ± 11 0.11 

CVP (mmHg) 12 ± 6 12 ± 5 13 ± 6 0.38 

CI (L/min/m
2
) 3.7 ± 1.2 4.1 ± 1.1 3.3 ± 1.1 0.01 

* 

lactate (mmol/L)  3.3± 3.0 2.8 ± 3.1 3.9 ± 2.9 0.19 

ScvO2 (%) 71.8 ± 10.1  74.5 ± 9.3 71.1 ± 7.1 < 0.001 
* 

SvO2 (%) 71.9 ± 10.7  73.2 ± 9.1 70.3 ± 6.6 < 0.01 
* 

pCO2 difference (kPa) 0.70 ± 0.52  0.38 ± 0.42 1.10 ± 0.33 < 0.001 
* 

hematocrit (%)  31 ± 1 30 ± 5 31 ± 6 0.49 

SaO2 (%) 96 ± 2 97 ± 2 96 ± 3 0.37 

pH  7.30 ± 0.10 7.31 ± 0.09 7.29 ± 0.11 0.59 

Data are presented as mean ± SD or as numbers; 
#
 low gap vs. high gap group; APACHE II, acute physiology, age 

and chronic health evaluation; RRT, renal replacement therapy; MAP, mean arterial pressure; CVP, central venous 

pressure; CI, cardiac index; ScvO2, central venous oxygen saturation; SvO2, mixed venous oxygen saturation; 

SaO2, arterial oxygen saturation; 
1)
 Fisher’s exact test; 

2)
 Chi Square test; 

*
 statistically significant difference 



Agreement mixed and central pCO2 difference 

 The mixed pCO2 difference underestimated the central pCO2 difference by a mean 

bias (or absolute difference) of 0.03 ± 0.32 kPa in all paired measurements. The 95% limits 

of agreement ranged from -0.62 to 0.58 kPa (figure 1). Correlation was significant (p < 0.001) 

with Pearson correlation coefficient r of 0.57. Mean delta was not significantly different from 0 

(p = 0.11): both values tend to be equal. This was confirmed by an intra-class coefficient 

between the mixed and central pCO2 differences of 0.70 (p < 0.001). 
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Figure 1. Bland and Altman plots showing the agreement between mixed 

venous pCO2 (PmvCO2) and central venous pCO2 (PcvCO2) at T=0. 

Mean bias 0.03 ± 0.32 kPa; 95% limits of agreement from -0.62 to 0.58 

kPa. 

 

 The results at various time points were similar with at T=0 a mean bias of -0.13 ± 0.40 

kPa and 95% limits of agreement of -1.0 to 0.8 kPa. 



 

 When the central pCO2 difference was plotted against CI for all paired measurements, 

there was an inverse logarithmic relationship with increasing central pCO2 difference as CI 

decreased (regression equation: CO2gap = 10 (-0.90 CI + 0.07) ; R2 = 0.07  p < 0.0001; figure 2). 
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Figure 2. Correlation between central venous pCO2 difference and 

cardiac index in total population for all paired measurements at T=0. R
2
 

= 0.07;  p < 0.0001. 

Differences between low gap and high gap group 

 At T=0, low gap group patients had a significantly lower pCO2 gap than patients of the 

high gap group (0.38 ± 0.42 kPa vs. 1.10 ± 0.33 kPa; p < 0.001). There was no significant 

difference between the two groups for age, gender, APACHE II, diagnosis and treatment 

received (table 1). The groups did not differ in both arterial blood pressure with equivalent 

inotropic doses and degree of hyperlactaemia. CI was significantly lower in the high gap 

group (3.3 ± 1.1 L/min/m2 vs. 4.1 ± 1.1 L/min/m2; p = 0.01). 



 Figure 3 shows the evolution in time of the central pCO2 difference and CI. During the 

first 24 hours of treatment there was no significant difference in ScvO2 (except for T=0), 

MAP, and lactate. At all time points, there was no significant difference in either 

norepinephrine and dopamine infusion rate or the number of patients receiving these 

catecholamines. 

0.0

0.5

1.0

1.5
high gap low gap

0 1 2 3 4

# #

timepoints

P
C

O
2
 d

if
fe

re
n

c
e

 (
k

P
a

)

 

2.5

3.0

3.5

4.0

4.5
high gap low gap

0 1 2 3 4

# #

timepoints

c
a

rd
ia

c
 i
n

d
e

x
 (

L
/m

in
/m

2
)

 

Figure 3. Evolution in time of central pCO2 difference and 

cardiac index for both high gap and low gap group; time 

interval between time points: 6 hours. #, statistically 

significant difference. 



Outcome 

 The hospital mortality rate for all patients was 24.5% (13/53). The in hospital mortality 

rate was 21% (6/29) for low gap group and 29% (7/24) for high gap group; Odds ratio 1.6 

(95% CI 0.5-5.5), p = 0.53. Patients with a central pCO2 difference larger than 0.8kPa at T=4 

had a higher mortality change (n=8; in hospital mortality 38%) compared to patients with a 

central pCO2 difference smaller than 0.8kPa at T=4 (n=39; in hospital mortality 10%): Odds 

ratio 5.3 (95% CI 0.9-30.7); p=0.08. 

 

Discussion 

 We observed a strong agreement between the mixed venous pCO2 and the central 

venous pCO2 differences with seemingly relatively small limits of agreement in patients with 

severe sepsis or septic shock. From a practical perspective, the clinical utility of central pCO2 

values is of potential interest in determining the venous-arterial pCO2 difference. The present 

BA analysis implacably demonstrates a strong agreement between mixed and central 

venous pCO2 differences. This in line with  recent findings by Cuschieri et al. who described 

a mixed population of critically ill patients, including patients with circulatory and cardiogenic 

shock. They observed a minimal but significant difference with slightly higher mean mixed 

pCO2 values compared to mean central pCO2 values (difference 0.02kPa) [11]. Similarly, we 

found a mean delta equal to zero. Despite the practical attractiveness of the abovementioned 

observations, we believe that the 95% limits of agreement (-0.62 to 0.58 kPa; and -1.0 to 0.8 

kPa at T=0) are relatively wide compared to the clinical relevant cutoff value of 0.8 kPa. This 

means that both central venous pCO2 values as well as mixed venous pCO2 values may be 

used for the calculation of a venous-arterial pCO2 difference, but that clinicians should not 

interchange these variables during treatment. 

 We observed a weak but significant inverse logarithmic relation between the pCO2 

gap and global blood flow, i.e. CI, in this specific sepsis population. Indeed, this is in line with 



physiological theory, which describes an inverse curvilineair relation between cardiac output 

and pCO2 difference, according to a modified Fick equation for a range of  CO2-production-

isopleths [19]. Various studies described such an inverse relationship between mixed 

venous-arterial pCO2 difference and CI in septic circulatory failure [20-22]. The increase in 

the venous-arterial pCO2 gradient is explained by a inadequate washout of CO2. Hence, a 

low-flow state is characterized by failure in oxygen delivery to the tissues and excesses of 

CO2 in venous blood. In addition to this, in sepsis an increase in pCO2 difference may persist 

in higher ranges of cardiac output. Due to heterogeneity of microcirculatory blood flow, 

inadequate washout of CO2 in microcirculatory weakunits, despite normal of even elevated 

cardiac output, has been observed during sepsis [12,13].  Vallée et al. [6] tested this 

hypothesis in patients with septic shock, who were supposedly adequately resuscitated at 

the systemic level, with a ScvO2 ≥ 70% [1]. A central venous-arterial pCO2 difference > 6 

mmHg at baseline was inversely correlated with lactate clearance and reduction in SOFA 

score after 24 hours. This might be due to the observed significant lower cardiac index in the 

high gap group, but the normal ScvO2 also points towards the possibility of distributive 

deficits of a normal or elevated systemic blood flow. As expected [4], in our population the 

mean ScvO2 values were higher than 70%. The far majority the patients with a high CO2 gap 

at ICU admittance were in the horizontal part of the cardiac output - CO2 gap curve, indicating 

the relative independence of the two variables in this particular range of systemic blood flow. 

 Finally, the predictive value of the pCO2 difference for outcome is questionable. 

However, a modest time-dependent relationship between an increased pCO2 difference and 

outcome was found. Although not significant, with the persistence of an increased pCO2 

difference the Odds ratio for bad outcome increases. Whether the significantly higher CI and 

ScvO2 in the low pCO2-gap group is causatively related or an epiphenomenon remains topic 

of debate, since protocols that aim for supranormal values have been proven to be harmful in 

critically ill patients [23,24]. 



This study has limitations. First, this is a multicenter, post-hoc study, and its 

observational character has clear limitations. Second, statements about any impact on 

therapeutic intervention are not possible. Third, since all patients were septic, our findings 

may not be generalized to patients less critically ill or to those with other forms of shock. 

Finally, lack of clear insight of treatment prior to ICU admittance at the different EDs or wards 

is a limitation of our study as well. Nevertheless, since we aimed at the usefulness of the 

central venous CO2 difference after ICU admittance, we think these factors are not pertinent 

to the results. 

 

Conclusion 

 Both central venous pCO2 values as well as mixed venous pCO2 values may be used 

for the calculation of a venous-arterial pCO2 difference, but they should not be 

interchangeably during treatment of patients with severe sepsis or septic shock.  

 The central venous pCO2 difference correlates with CI but should not be used to 

estimate CI in patients with severe sepsis and septic shock. 

 A priori, the predictive value for outcome of the central venous pCO2 difference is 

questionable but persistence of an increased central venous pCO2 difference after 24 hours 

of therapy enhances the likelihood of bad outcome. 
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 The majority of patients described in the present thesis were admitted at the various 

hospitals and ICUs with severe sepsis or septic shock. Sepsis is a syndrome characterized 

by infection acompanied by a systemic inflammatory response syndrome (SIRS), i.e. a 

generalized condition which affects the entire body. With increasing seriousness organs fail 

and (relative) hypotension occurs. The complexity of the pathophysiology of sepsis demands 

treatment strategies that covers much more than just the prescription of the right antibiotic to 

eliminate the source, e.g. bacteria. One crucial part of therapy is hemodynamic optimization 

of the patient. This is recognized by the international Surviving Sepsis Campaign by 

embracing the EGDT strategy [1]. Indeed, one can argue on the implementation of a single 

center strategy in international guidelines [2,3] but this discussion may never blur the notion 

of the strategy itself. Of course, goal-oriented manipulation of cardiac preload, afterload and 

contractility, including ScvO2 monitoring is a valuable strategy in a subset of patients. The 

results presented in chapter 2 subscribe this: early identification of patients at risk for 

cardiovascular collapse is important as illustrated by the high mortality rate (57%) in the 

small subset of patients with an initial ScvO2 <50%. Hence, low ScvO2 values do exist early 

after ICU admittance, but apparently its incidence is very low (chapter 2) which makes 

generalized EGDT application a premature activity [2]. However, to ignore a valuable 

strategy such as EGDT at this stage may be an unwise thing to do. EGDT implies early 

recognition of the critically ill patient and enforces continuous reassessment of treatment [4] 

which is probably one of the greatest gains in treating patients with severe sepsis or septic 

shock over the last decade. This also implies that irrespective of proper EGDT treatment the 

clinician should not rest on his or her laurels once several treatment goals have been 

achieved. 

 When a clinician sets several treatment goals, he or she should be aware of the value 

of each goal used. Thus, pursuing abstract numbers without comprehension of their 

relevance should be avoided. It should also not be considered to assume that a ScvO2 value 

of 70% automatically means a SvO2 value of 65% in patients with severe sepsis or septic 



shock. As applies to the trends of both values, the agreement between both absolute values 

is unacceptably wide which means that ScvO2 does not reliably predict SvO2 (chapter 3). The 

difference is not a fixed 5% as stated in many text books and both values should not be 

considered numerically equal. This is not only of academic importance [5] but also clinically 

relevant [6]. If one abandons SvO2 and uses ScvO2 in the resuscitation of critically patients 

one should be aware that also information on pulmonary artery pressures, cardiac filling 

pressures, and cardiac output is disposed. Nevertheless, alternative less invasive 

hemodynamic monitoring devices such as transoesophageal echocardiography, PiCCO, and 

Flo Trac are available [7,8]. With the use of these devices PAC-related complications can be 

avoided [9].  

 The abovementioned lack of agreement between ScvO2 and SvO2 values does not 

exclude the clinical use of both values separately. In line with earlier work [10], ScvO2 values 

in nonsurvivors fell more frequently below the cutoff value of 70% compared to survivors and 

SvO2 values below 65% were more frequently found in nonsurvivors compared to survivors. 

This suggests that after the first hours of resuscitation monitoring of venous oxygen 

saturations could still be clinically relevant. 

 When a central venous access via the jugular or subclavian vein is impossible a 

relatively easy and safe option is central venous access via the femoral vein. The femoral 

central venous line is an adequate route for administration of e.g. antibiotics or 

catecholamines, although the risk for infectious and thrombotic complications should be kept 

in mind [11]. However, it is not an adequate site to obtain data as a surrogate for ScvO2 

values (chapter 4): SfvO2 cannot replace ScvO2. This is not only the case during surgery or 

resuscitation of critically ill patients, including patients with septic shock, but also in stable 

conditions. Thus ease, or incompetence, should never be a surrogate for good data. 

Hopefully the data are convincing enough to abandon such practice in the future. 

 



 Treatment of shock implies improvement of the circulatory state with redistribution of 

flow. Illustratively, four cases are mentioned in chapter 4 in which SfvO2 decreased after six 

hours of treatment while ScvO2 increased. Three out of these four patients died. Although not 

sufficiently powered, this underlines the urgency of shock treatment and the possible 

consequences when a patient does not respond to treatment. 

 Before treatment, (septic) shock should be recognized as early as possible. Delayed 

identification of global tissue hypoxia increases morbidity and mortality. When paramedics 

can recognize critically ill patients better, they will be able not only to start treatment early but 

also to inform ED personnel so appropriate measures can be taken. Vital signs are not 

always accurate enough to detect global tissue hypoxia. Lactate however, rarely transcends 

4 mmol/L in not critically ill patients and lactate also seems a useful additional risk 

stratification tool [14-16]. Fortunately, the implementation of prehospital lactate measurement 

is feasible (chapter 5). Unfortunately, less deteriorated hemodynamics does not trigger the 

average paramedic to obtain a lactate measurement. This makes the implementation difficult 

and strenuous efforts are necessary to train personnel on the use of early lactate 

measurement. The results presented in chapter 5 are in line with earlier findings [17] and 

support the conclusion that early lactate determination is helpful in early triage decisions. 

With the present results in mind should we abolish measurement of vital signs and ignore 

clinical presentation? Absolutely not: one should take both vitals and a lactate into account. 

 In the setting of the ICU it is common practice to take a lactate measurement. 

However, the frequency of measurement varies in clinical practice. Especially during the first 

hours of treatment regular measurements seem useful as part of reassessment. Indeed, 

increased clearance during the first six resuscitation hours means better survival [18]. But 

does the value of lactate evaporate after the first hours of ICU admittance? No: on-going 

watchfulness is the order. Despite equivalent specificities and sensitivities for predicting in-

hospital mortality, not only lactate at admission but also lactate-derived variables were 

significantly different between survivors and nonsurvivors (chapter 6). In addition, 



persistence of hyperlactataemia was associated with organ failure expressed in (cumulative) 

SOFA points. This provides a link to clinical practice and subscribes the use of lactate as a 

risk-stratification tool [16]. 

 How sensitive is lactate as a warning signal for organ failure and outcome? This 

partly depends on the cut off point. The choice in chapter 6 for the threshold of 2.2 mmol/L 

(upper normal limit) was a deliberate one. First, the goal is to ‘normalize’ the patients’ status 

and second, also moderate elevated lactate levels decrease survival chances [1,17,19]. 

Another issue in this context is the mechanism causing hyperlactataemia which is probably 

more important than the hyperlactataemia itself  [20-22]. Hence, the question on predictive 

sensitivity is difficult to answer and maybe not important. Of note, presence of 

hyperlactataemia in ICU patients is important and should encourage the clinician to 

reflection. To put the hyperlactataemia in perspective, the clinical picture, hemodynamics, 

ScvO2, and vital signs should be considered. 

 During treatment of critically ill patients and the regular reassessment of this 

treatment ScvO2 and lactate are useful but not perfect tools. The pCO2 gap described in 

chapter 7 may indeed be a welcome additional application. This variable indirectly estimates 

systemic blood flow and may help to identify the patients who remain inadequately 

resuscitated [23]. When the pCO2 gap is used in clinical practice central venous and mixed 

venous pCO2 values should not be used interchangeably for calculation of venous-arterial 

pCO2 difference: although the 95% limits of agreement seem attractively small, they are 

relatively wide (chapter 7). 

 A high pCO2 gap (> 0.8 kPa or > 6 mmHg) at ICU admission may be indicative for low 

lactate clearance and limited reduction in SOFA score after 24 hours of treatment [23]. On 

top of that, when the pCO2 gap remains high after 24 hours of treatment survival chances 

seem to diminish (chapter 7). However, these results do not warrant the use of pCO2 

difference in future treatment algorithms.  



 

 Taken together, the following conclusions can be derived from the studies described 

in this thesis: 

o The incidence of low ScvO2 values of acutely admitted critically ill patients is low in 

Dutch ICUs. This is especially true for patients with sepsis or septic shock. 

o In our setting, use of ScvO2-guided resuscitation may only be helpful in a small 

subset of sepsis. 

o Mean SvO2 values and mean ScvO2 values in acutely admitted critically ill patients, 

including patients with severe sepsis or septic shock, are in the normal range in our 

ICUs. 

o ScvO2 does not reliably predict SvO2 in patients with sepsis, independent of sepsis 

origin. 

o The change of ScvO2 compared to the change of SvO2 is not more reliable than the 

exact numerical values in patients with sepsis. 

o SfvO2 cannot replace ScvO2, neither in stable conditions nor during surgery or during 

the resuscitation phase in critically ill patients. 

o The implementation of lactate measurement in pre-hospital setting is feasible and 

potentially clinical relevant, albeit difficult. Subsequent studies should evaluate if 

treatment based on pre-hospital lactate measurement will improve outcome. 

o Persistence of hyperlactataemia is associated with organ failure expressed in 

(cumulative) SOFA points. 

o Lactate load is associated with in-hospital mortality in a heterogeneous ICU 

population. 

o The central venous pCO2 should not be used as surrogate for the mixed venous 

pCO2 in patients with severe sepsis or septic shock. 



o A priori, the predictive value for outcome of the central venous pCO2 difference is 

questionable but persistence of an increased central venous pCO2 difference after 24 

hours of therapy seem to enhance the likelihood of bad outcome in patients with 

severe sepsis or septic shock. 
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 De meerderheid van de patiënten hier beschreven waren op de diverse intensive care 

afdelingen (IC) opgenomen met ernstige sepsis of septische shock. Sepsis is een syndroom 

wat voortkomt uit de reacties van het lichaam, inflammatoire respons, op een infectie; het 

hele lichaam is hierbij betrokken. Bij toenemende ernst zullen organen minder goed gaan 

functioneren zodat zelfs orgaanfalen ontstaat. Indien ook de bloeddruk in bepaalde mate 

daalt wordt gesproken van septische shock. Vanwege de complexiteit van dit ziektebeeld 

vereist de behandeling veel meer dan alleen het voorschrijven en toedienen van een 

antibioticum. Zoals in internationale richtlijnen wordt beschreven, is het optimaliseren van de 

hemodynamiek belangrijk onderdeel van de behandeling. Deze aanbeveling is gebaseerd op 

één, overigens veelbetekende, strategie welke in één ziekenhuis werd uitgevoerd. Men kan 

zich inderdaad de vraag stellen of de letterlijke implementatie van deze strategie in 

internationale richtlijnen gewenst is. De resultaten waren indrukwekkend maar de resultaten 

zijn ook nooit meer in gelijke mate elders behaald. Dit neemt niet weg dat de strategie om 

doelgericht en op geleide van onder andere de centraal veneuze saturatie (ScvO2) de 

cardiale ‘prestatie indicatoren’ (preload, afterload, contractiliteit) te verbeteren (‘Early Goal-

Directed Therapy’, EGDT) wel degelijk een waardevolle strategie is. De resultaten 

beschreven in hoofdstuk 2 bevestigen dit: 57% van de patiënten met een zeer lage ScvO2 

(<50%; normaal waarde 70%) bij opname overleeft de sepsis niet. Dus vroege herkenning 

van de ernstig zieke patiënt met een hoog risico op hemodynamische ineenstorting 

belangrijk zodat daarna tijdens de eerste uren ‘agressief’ behandeld kan worden. 

Desalniettemin komen op Nederlandse IC’s  bij acute opnames van septische patiënten zeer 

weinig lage ScvO2 waarden voor (hoofdstuk 2). Algemene introductie van EGDT lijkt dus 

voorbarig en zullen de resultaten van diverse grote studies verspreid over meerdere centra 

EGDT in perspectief plaatsen. Hiermee wordt niet geïmpliceerd dat EDGT genegeerd moet 

worden, in tegendeel. De arts wordt indachtig EGDT gedwongen de behandeling continue te 

evalueren: op zijn of haar lauweren rusten is er niet bij! Deze geprotocolleerde aanpak is een 

belangrijke vooruitgang in de behandeling van patiënten met ernstige sepsis of septische 

shock.  



 Wanneer een arts bepaalde behandelingsdoelen nastreeft (bijvoorbeeld normalisatie 

van de SvO2) dient hij of zij zich ook bewust te zijn van de waarde van elk doel. Met andere 

woorden, het zonder enig begrip najagen van abstracte getallen (biologische parameters) 

moet worden vermeden. Zo is het eveneens onverstandig bij septische patiënten aan te 

nemen dat een normale ScvO2 (70%) automatisch een normale gemengd veneuze saturatie 

(SvO2) betekent. Beide parameters zijn fysiologisch met elkaar verbonden maar zowel de 

absolute waarden als de trend van beide parameters variëren te veel zodat ScvO2 de SvO2 

niet betrouwbaar inschat (hoofdstuk 3). Dit is niet alleen van enig academisch belang maar is 

ook klinisch relevant. Het vervangen van SvO2 waarden door ScvO2 waarden impliceert dat 

de Swan Ganz katheter (arteria pulmonalis katheter; SG) waarmee de SvO2 wordt gemeten 

in de kast blijft liggen. Hiermee worden de aan SG gerelateerde complicaties uiteraard 

vermeden, maar tegelijkertijd wordt aanvullende informatie (arteria pulmonalis drukken, 

cardiale vullings drukken, slagvolume) over boord gegooid.  

 Hoewel ScvO2 en SvO2 niet elkaars gelijke zijn, kunnen beide parameters nog steeds 

onafhankelijk van elkaar gebruikt worden. Gedurende de eerste 24 uur na IC opname 

werden meer lage ScvO2 en SvO2 waarden gezien bij patiënten die uiteindelijk in het 

ziekenhuis overleden (nonsurvivors) dan bij patiënten die niet overleden (survivors). Dit 

suggereert dat bepaling van veneuze saturaties ook ná de eerste uren relevant kan zijn. 

 Voor het bepalen van ScvO2 of SvO2 is een centraal veneuze toegang via de vena 

jugularis interna of vena subclavia nodig. Wanneer het verkrijgen van een dergelijke toegang 

niet lukt gecontra-indiceerd is  er nog altijd een andere optie: de vena femoralis. Via deze 

route kunnen ook catecholaminen en antibiotica  worden toegediend, waarbij wel het risico 

op mogelijke complicaties (infectie, thrombose) in het achterhoofd moet worden gehouden. 

Echter, voor het vergaren van data als surrogaat voor ScvO2 is deze route ongeschikt: de 

femoraal veneuze saturatie (SfvO2) is geen alternatief voor ScvO2 (hoofdstuk 4). Dit geldt 

niet alleen bij kritisch zieke patiënten of patiënten die een operatie ondergaan maar zelfs ook 

in de poliklinische setting (hoofdstuk 4). Hopelijk zijn de data gepresenteerd in hoofdstuk 4 



overtuigend genoeg om dergelijke praktijken voortaan achterwege te laten. Gemak, of zelfs 

incompetentie, mogen nooit leiden tot onbetrouwbare parameters. 

 Voordat een behandeling van ernstige sepsis of septische shock gestart kan worden 

moet de patiënt met een dergelijk syndroom eerst worden herkend, en liefst zo snel mogelijk. 

Vertraagde herkenning van weefsel hypoxie (globaal zuurstof tekort) leidt tot verhoogde 

morbiditeit en sterfte. Als de ziekte al door paramedici, zoals ambulance personeel, herkend 

kan worden is dat dus winst: de behandeling wordt snel gestart en het personeel op de 

Spoedeisende Hulp (SEH) kan op de komst van een kritisch zieke patiënt worden 

voorbereid. Conventionele parameters (bloeddruk, saturatie, hartslagfrequentie) zijn niet 

altijd accuraat genoeg voor detectie van weefsel hypoxie. Buiten het ziekenhuis worden geen 

centrale lijnen aangelegd en ScvO2 kan hier dus niet gebruikt worden als surrogaat voor 

weefsel hypoxie. Lactaat lijkt een goed alternatief: lactaat is bij niet-kritisch zieke patiënten 

zelden hoger dan 4 mmol/L en lactaat is al beschreven als hulpmiddel om risico op sterfte in 

te schatten op een SEH. Gelukkig is de implementatie van een lactaat bepaling door 

ambulance personeel haalbaar (hoofdstuk 5). Helaas voelt het ambulance personeel zich 

echter niet altijd genegen bij patiënten met nog redelijke conventionele parameters het 

lactaat ook daadwerkelijk af te nemen. Dat is jammer, want juist deze patiënten populatie 

zou gebaat kunnen zijn bij vroege herkenning en behandeling van ziekte. Bovendien verloopt 

de implementatie van lactaat meting in een pre-hospitale setting hierdoor moeizaam. 

Overigens zijn de resultaten beschreven in hoofdstuk 5 geen vrijbrief om de conventionele 

parameters en klinische presentatie van de patiënt te negeren: lactaat kan een belangrijk 

hulpmiddel zijn. 

 Op de IC wordt regelmatig lactaat bepaald. Als onderdeel van een 

behandelingsstrategie om het lactaat binnen 6 uur te normaliseren heeft lactaat zijn reeds 

bewezen. Maar verdampt het nut na de eerste 6 uur? Dit lijkt het niet het geval en continue 

alertheid is het devies want niet alleen het lactaat bij opname is van belang maar ook hogere 

lactaat waarden gedurende het hele verblijf op de IC onderscheiden survivors van 



nonsurvivors (hoofdstuk 7). Bovendien is een verhoogd lactaat geassocieerd met orgaan 

falen uitgedrukt in SOFA score, het eerste teken aan de wand van verslechtering. Hierbij 

moet wel worden opgemerkt dat uiteraard niet alleen naar een verhoogd lactaat 

(hyperlactatemie) moet worden gekeken, maar dat dit ook in perspectief moet worden 

geplaatst. 

 Uit voorgaande blijkt dat zowel ScvO2 als lactaat nuttige parameters zijn tijdens de 

behandeling van kritisch zieke patiënten. Echter, zo is ook gebleken, beide parameters zijn 

niet perfect. In hoofdstuk 7 wordt nog een derde handvat aangereikt: het arterio-veneuze 

pCO2 verschil (pCO2 gap). Met behulp van de pCO2 gap kan een inschatting worden 

gemaakt van de circulatie (lees: bloed flow, slagvolume): een verhoogde pCO2 gap verraadt 

een verlaagd slagvolume. Bovendien kan ook de pCO2 gap worden gebruikt om  nog 

onvoldoende behandelde, maar niet als dusdanig herkende patiënten worden herkend. Voor 

de berekening kunnen zowel de centraal veneuze als gemengd veneuze pCO2 worden 

gebruikt, maar beide getallen mogen niet met elkaar worden verwisseld. Met andere 

woorden: ze zijn niet elkaars gelijke (hoofdstuk 7). Wanneer een verhoogde pCO2 gap na 24 

uur behandeling op de IC verhoogd blijft dan daalt mogelijk de overlevingskans van de 

patiënt: de shock kon niet adequaat genoeg worden bestreden. 

 Uit de hier beschreven studies kunnen de volgende conclusies worden getrokken: 

o Lage ScvO2 waarden komen bij acuut opgenomen septische patiënten weinig voor. 

o Resuscitatie op geleide van ScvO2 lijkt vooral waardevol in een klein deel patiënten 

met ernstige sepsis. 

o ‘Gemiddelde’ SvO2 en ScvO2 waarden bij acuut opgenomen septische patiënten zijn 

normaal in Nederlandse IC’s. 

o ScvO2 is geen betrouwbaar surrogaat voor SvO2 bij septische patiënten; dit geldt niet 

alleen voor de absolute getallen maar ook voor de veranderingen. 



o SfvO2 mag niet gebruikt worden als surrogaat voor ScvO2 bij zowel stabiele cardiale 

poliklinische patiënten, patiënten die chirurgie ondergaan of bij kritisch zieke 

patiënten. 

o Het implementeren van lactaat metingen door ambulance personeel is mogelijk, 

moeizaam maar waarschijnlijk wel klinisch relevant. 

o Voortdurende hyperlactatemie is geassocieerd met orgaan falen, uitgedrukt in SOFA 

score. 

o Lactaat is geassocieerd met sterfte in een heterogene IC populatie. 

o De centraal veneuze pCO2 is geen surrogaat voor de gemengd veneuze pCO2 bij 

patiënten met ernstige sepsis of septische shock. 

o A priori is de voorspellende waarde van het centraal veneuze pCO2 verschil (pCO2 

gap) voor sterfte nihil, maar een persisterend verhoogde pCO2 gap na 24 uur 

behandeling op de IC lijkt de kans op sterfte te verhogen bij patiënten met ernstige 

sepsis of septische shock. 

  

  



 

    
 

 

Abbreviations 

  



AMC   Amsterdam Medical Center 

APACHE II  acute physiology, age and chronic health evaluation 

AUC   area under the curve 

CCO   continuous cardiac output 

CI   cardiac index 

CI   confidence interval 

CNS   central nervous system 

CO   cardiac output 

CO2   carbon dioxide 

CPR   cardiopulmonary resuscitation 

CVC   central venous catheter 

CVP   central venous pressure 

DO2   systemic oxygen delivery 

ED   emergency department 

EGDT   early goal-directed therapy 

GCS   Glasgow Coma Scale 

GDT   goal-directed therapy 

GH   Gelre Hospital 

Hct   hematocrit 

HR   heart rate 



ICU   intensive care unit 

LOA   95% limits of agreement 

LPA   Landelijk Protocol Ambulance 

LOSHOSP  length of hospital stay 

LOSICU   length of ICU stay 

LOSICU / CCU  length of intensive care unit / critical care unit stay 

MAP   mean arterial pressure 

MCL   Medical Center Leeuwarden 

MH   Martini Hospital 

MODS   multiple organ dysfunction syndrome 

O2   oxygen 

O2ER   oxygen extraction ratio 

PA   pulmonary artery 

PAC   pulmonary artery catheter 

PaCO2   arterial CO2 partial pressure 

PCO2 gap  central venous to arterial carbon dioxide difference 

PvCO2   central venous CO2 partial pressure 

ROC   receiver operating characteristic 

RRT   renal replacement therapy 

RTS   revised trauma score 



SAP   systolic arterial pressure 

SAPS   simplified acute physiology score 

SaO2   arterial oxygen saturation 

SCV   superior caval vein 

ScvO2   central venous oxygen saturation 

S(c)vO2  mixed / central venous oxygen saturation 

(ScvO2 – SvO2) difference between ScvO2 and SvO2 

SfvO2   femoral venous oxygen saturation 

SIRS   systemic inflammatory response syndrome 

SOFA   sequential organ failure assessment 

SvO2   mixed venous oxygen saturation 

VO2    systemic oxygen demand 
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Dankwoord 

  



Dit proefschrift is het resultaat van een samenwerking met tien afdelingen binnen zeven 

verschillende medische centra. Er zijn dan ook zeer velen aan wie ik veel dank verschuldigd 

ben: u bent mij allen dierbaar. Zonder alle hulp was het simpelweg niet gelukt een dergelijk 

project naast mijn opleiding tot anesthesioloog af te ronden. Het waren achtenzeventig 

buitengewoon interessante maanden waarin tot mijn genoegen het nuttige ook met het 

aangename kon worden verenigd: “Het moet wel leuk blijven!” 

Staat u mij toe een aantal personen bij naam te noemen en hen te bedanken. 

Dr. M.A. Kuiper, beste Michaël, ruim zes jaar geleden sprak jij mij aan over deelname aan 

een onderzoek. Je had een idee en met groot enthousiasme stopte je me een copy in 

handen; ik moest maar eens gaan lezen en nadenken. Dat heb ik gedaan. Sindsdien heb ik 

je leren kennen als een zeer innemend mens en integer clinicus en vorser op wie een 

uitspraak van Confucius wel van toepassing is: “twijfel is de waakhond van het inzicht.” 

Popper had het kunnen zeggen, vind je ook niet? Naast wetenschap is muziek een primaire 

levensbehoefte voor jou en na de uren jazzles op vinyl in jouw muziekkamer groeit ook mijn 

collectie, op CD dat wel, gestaag: dat is genieten!  

Dr. P.E. Spronk, beste Peter, via cyberspace kwam ik voor het eerst in aanraking met jou, 

althans jouw werk, meer bepaald jouw commentaar op mijn wetenschappelijke gespartel. 

Dat was even slikken: niet mals maar wel buitengewoon leerzaam. Na de kennismaking in 

Brussel veranderde jouw commentaar niet maar mijn interpretatie wel. En dat is toch wel 

kenmerkend: jouw motivatie en ongebreideld enthousiasme besprenkeld met een sausje van 

humor werken aanstekelijk. Hoewel mijn hoofd menigmaal tolde van de nieuwe input na een 

bezoekje Apeldoorn reed ik met goede moed weer naar huis in de hoop snel weer eens iets 

“over de schutting te flikkeren”! 

  



Professor dr. T.W.L. Scheeren, beste Thomas, ruim twee jaar geleden heb jij tot mijn 

genoegen de taak van promotor aanvaard. In deze periode heb ik dankbaar gebruik gemaakt 

van jouw kennis en kunde. Ik dank jou niet alleen voor de kritieken maar ook voor 

interessante en vrolijke gesprekken. Gelukkig ziet het er naar uit dat onze wetenschappelijke 

wegen zich voorlopig niet scheiden! 

Dr. J.K.G. Wietasch, beste Götz, uit hoofde van jouw functie als opleider was je al snel 

betrokken bij dit project. Je bleek veel meer dan een opleider en ik dank jou dan ook hartelijk 

voor de logistieke en mentale ondersteuning. Daarnaast was je niet alleen een uiterst 

betrouwbare gesprekspartner maar ook een zeer welkome tafelgast! 

Graag neem ik van de gelegenheid gebruik om de leden van de beoordelingscommissie, 

Prof. Dr. J. Bakker, Prof. Dr. W.F. Buhre en Prof. Dr. M.M.R.F. Struys te bedanken voor de 

tijd en moeite welke zij zich getroost hebben om dit proefschrift te beoordelen.  

Beste paranimfen, Remco en Dedmer, twee grote broers die mij in deze tijden bijstaan: beter 

had ik mij niet kunnen wensen. Dank jullie wel! 

Mijn ouders, Ineke en Henk, ben ik zeer veel verschuldigd. Mede dankzij het warme, stabiele 

nest, alle steun en het onmetelijke geduld ben ik nu niet alleen wie ik ben, maar ook wat ik 

ben, namelijk anesthesioloog en doctor in medische wetenschappen. Liefs en dank! 

Muriël en Kim, Jocelyne en Dorian en Bastiaan: wat mooi en fijn dat jullie familie zijn! 

Anne en Haydée, wat moet ik zonder de morele steun, adviezen en nuchterheid? Helemaal 

niets. Liefs en dank! 

Wandert en Laura: dank voor de lach en getoonde interesse! We moeten maar weer eens zo 

snel mogelijk en zo lang mogelijk tafelen op ons dakterras. 

Alle vrienden en vriendinnen: dank jullie wel, uit de grond van hart hoop ik dat jullie nog lang 

vrienden en vriendinnen zullen zijn! 



Lieve Amber, mijn liefste, vrolijke roerige tijden maken we mee en ondertussen moet ik zo 

nodig iets wetenschappelijks doen…Gelukkig plaats jij alles met een olijke blik of een 

nuchtere opmerking in perspectief. Ik dank je voor de vrolijke noot, het luisterend oor en 

briljante ideetjes, en nog veel meer!  

Lieve Bram, dankzij jou is alles zo heerlijk relatief. Je hebt nu nog geen idee en dat moet je 

misschien maar zo lang mogelijk volhouden. Of doe stiekem net alsof. 

 

 

 

 


